THE EFFECT OF HETEROSCEDASTICITY ON AN OPERATING CHARACTERISTIC CURVE IN A DESIGNED EXPERIMENT

By
SARAH EILEEN JOHNSON
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1995

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

December, 1996

THE EFFECT OF HETEROSCEDASTICITY ON AN OPERATING CHARACTERISTIC CURVE IN A DESIGNED EXPERIMENT

Thesis Approved

ACKNOWLEDGMENTS

I would like to thank Dr. Ken Case for providing me direction, support, and very helpful advice with my research and with life in general. I rely very much on his opinions and suggestions. I would also like to thank my committee members, Dr. David Pratt and Dr. Michael Branson, for their very helpful suggestions throughout the course of my research.

I would like to specifically thank Dr. P.L. Claypool for his extremely useful idea about the median test and his unsolicited interest in my research. His insight and expertise helped me along when I was at a difficult point in my study.

Most importantly, I want to thank my husband, Kyle. It takes true love to proofread your wife's thesis, especially when the topic lies outside your area of general knowledge. Without his support, encouragement, and understanding patience, not to mention his perseverance, I would not have been able to finish this research in such a timely manner.

Finally, I want to thank Kimball Johnson for her invaluable assistance in the typing and preparing of this document.

TABLE OF CONTENTS

I. THE PROBLEM AND ITS SETTING 1
Introduction 1
Definition of Terms 2
Assumptions with ANOVA 2
Statement of the Problem 4
Example of a Designed Experiment Containing Heterogeneity of Variance $+$
Operating Characteristic Curve 6
General Approach 6
Importance of the Stidy 7
Obective Statement 8
Subobrectives 8
ASSLMPTIONS 9
II. REVIEW OF THE LITERATURE 10
Assumptions 10
Testing for Homogeneity of Variance 10
New Methods of Performing ANOVA 11
Effects of Unequal Variances 13
Working with Unequal Variances 14
SUMMARY 15
III. METHODOLOGY 16
Steps in Analyzing a Designed Experiment 16
Subobjective One: Setting the Parameters 19
Combinations of Factors to Test 19
Levels of Mean and Standard Deviation Shift 21
Definition of Data Collected. 22
Subobjective Two: Writing the Simulation Program 22
The Design of the Program 22
The Random Number Generator 25
Validation and Verification 26
An Equation for Sample Size 29
Calculation of the Sample Size. 31
Subobjective Three: Analysis 31
Operating Characteristic Curves 32
A Test for Significant Difference of Curves 33
IV. ANALYSIS 36
No-Interaction Results 36
OC Curves 36
Statistical Tests 39
Validation of Observations 41
With-Interaction Results 42
oC Curves 43
Statistical Tests. 45
I'alidation of Observations 46
Differences $+7$
V. SUMMARY AND CONCLUSIONS 48
StMMARY 48
Concllsions 49
Directions for Fiture Research 50
BIBLIOGRAPHY 52
APPENDIX A: SIMULATION PROGRAM 54
APPENDIX B: NO-INTERACTION DATA 63
APPENDIX C: OC CURVES FOR NO-INTERACTION DATA 77
APPENDIX D: HYPOTHESIS TEST RESULTS FOR NO-INTERACTION DATA 91
APPENDIX E: WITH-INTERACTION DATA 95
APPENDIX F: OC CURVES FOR WITH-INTERACTION DATA 109
APPENDIX G: HYPOTHESIS TEST RESULTS FOR WITH-INTERACTION DATA 123
APPENDIX H: DIFFERENCES IN HYPOTHESIS TESTS 127

LIST OF TABLES

Table Page

1. Treatment Combinations for Example 5
2: Data for Example 5
2. Box's 1954b Levels and Settings 14
3. Symbolic Representation of Experimental Design 17
5: A SUbSET OF All Possible COMbinations 20
6: NON-REDUNDANT COMBNATIONS 21
7: Matrix for Levels of Mean and Standard Deviation Shift 21
8: Settings in Designed Experiment 23
9: Maximum Error for Some Values of n 31
10: Sample Table for Chi-Square Test. 33
11: Hypothesis Test Example 34
12: Results of Hypothesis Tests for OC Curves for No-Interaction Data 40
13: Results of Hypothesis Tests for OC Curves for With-Interaction Data 45
14: Difference in Hypothesis Tests 47
LIST OF FIGURES
Figure Page
1: Operating Characteristic Curve for Example 6
2: Example of OC CURVE For Factor A 32
3: OC Curves for No-Interaction Data where A is Shifting Means 37
4: OC Curves for No-Interaction Data where A and B are Shifting Means 38
5: OC Curves for With-Interaction Data where A is Shifting Means 43
6: OC Curves for With-Interaction Data where A and B are Shifting Means 44

LIST OF EQUATIONS

1: Me.av Square Error.. 17
2: Mean Square Between for a Factor .. 18
3: Mean Square Between for an AxB Interaction .. 18
4: SAMPLE SIZE .. 30
5: Test Statistic for Median Test ... 34

I. The Problem and Its Setting

Introduction

Designed experiments provide an organized means for scientifically determining the relationships of inputs to outputs in a given process. Statistical techniques can be used to determine which inputs are most critical to the final product and which inputs do not significantly impact the final product. This knowledge can be invaluable when an individual is setting tolerances, determining which input processes to try to improve, and trying to control the output, or the final product.

Designing experiments requires several steps: 1) brainstorm to determine which input factors are likely to be significant, 2) decide at what range of levels the significant input factors should be set, and 3) arrange all, or a set of, the factors and levels in such a way as to ensure consideration of all the possible combinations. Each of the combinations of factors and settings the experimenter decides to run is called a treatment combination. Once the three steps are completed, the process is run for a set number of times, or replications, for each of the different combinations of factors and settings, and the output characteristic of interest is measured and recorded. The experimenter determines the number of replications to run by deciding how much error is acceptable. Two types of error exist: 1) declaring that an input factor does have an effect on the output when it really does not (Type I error), and 2) declaring that an input factor does not have an effect on the output when it really does (Type II error). The experimenter must reconcile these risks with the amount of data she or he is willing to collect. Once all the data is collected,
an analysis of variance (ANOVA) is performed to determine how the input factors affect the output. With this information, an individual can adjust the input factors to get the desired results for the output.

Definition of Terms

Factor. Any one of several inputs to a process that can be manipulated during experimentation (Schmidt, 1994).

Interaction. A combination of factors wherein one factor's effect on the response is dependent on the levels of other factor(s).

Heterogeneity of variance. Unequal variance. Heterogeneity of variance can also be called heteroscedasticity.

Treatment Combination. A combination of factors and levels at which the experiment is performed.

Replication. A repetition of the experiment.

Assumptions with ANOVA

To perform the ANOVA one must make two primary assumptions: 1) the data from the process is independent and normally distributed, and 2) the variance of the replications within a given treatment combination is equal to variance of the replication within every other treatment combination. The second assumption is sometimes referred to as homogeneity of variance, or homoscedasticity. In addition, the process must be in a state of statistical control (SOSC). According to Shewhart (1980), "A phenomenon will
be said to be controlled when, through the use of past experience, we can predict, at least within limits, how the phenomenon may be expected to vary in the future." The data must be in a SOSC so the experimenter can be certain that the variation in the data was due only to the changing treatment combinations and not to a special cause variation in the process itself.

In practice, however, these assumptions may not hold true. If the data are not normally distributed, averaging the data in each treatment combination can make the averages approach normality, due to the central limit theorem. If the assumption of homogeneity of variance is not true the analyst typically transforms the data in an effort to make the variances become more equal. After the variances are transformed, a regular ANOVA can be performed. If the process is not in a SOSC, methods should be used to control the process before a designed experiment is ever performed.

Extensive research has been done on how to test for homogeneity of variance. Research has also been done to determine robust methods for testing for homogeneity of variance in case the normality assumption does not hold true (Conover, Johnson, \& Johnson, 1981). However, little research has been performed on the effect of performing an ANOVA in a two way classification (two factors with two levels) when the homogeneity of variance assumption is not true. Box (1954a) addresses the effect of inequality of variance on an ANOVA but restricts it to a one-way classification (one factor at several levels). Dudewicz and Bishop (1981) developed a new procedure for performing an ANOVA with unequal variances in an r-way layout, where r is some integer, but did not address the effects of performing a traditional ANOVA. Box (1954b)
discusses the effects of unequal variance on the ANOVA in the two-way classification, but only with one observation per treatment combination, which assumes no interactions exist. The literature holds a distinct lack of information about the effect of inequality of variances on an ANOVA for a classification greater than one-way. This research proposes to begin to fill that gap by examining the case of the two-way classification.

Statement of the Problem

The impact of unequal variances between treatment combinations on a two-way ANOVA are unknown. This research will examine a case in which the variance of the data coming from the process is heterogeneous. This could happen for a number of reasons. When performing a designed experiment, a set of treatment combinations must be defined. A combination required by the experiment may never have been run before. Changing the setting of a factor(s) could increase or decrease the variance, either directly or through some interaction. This increase or decrease causes the assumption of equal variances to be untrue. When the false assumption occurs, the effect on the ANOVA is unknown. An example will illustrate the problem.

Example of a Designed Experiment Containing Heterogeneity of Variance

Let A and B be two factors that could be significant to some process. Assume that the two factors contribute a linear effect to the process at hand. Also assume that the two factors each have two settings. Let a " + " indicate the high level setting of each factor, and let a "-" indicate a lower level setting of each factor. The two factors can only have one interaction, $\mathbf{A} \times \mathbf{B}$. Then, a set of treatment combinations can be defined as in Table 1 .

Table 1: Treatment Combinations for Example

Treatment Combinations (TC)	A	B	AxB
1	-	-	+
2	-	+	-
3	+	-	-
4	+	+	+

The next step is to determine the number of replications necessary for statistically valid results, which for this design will be nine. Running nine replications gives a Type I (α) probability of 0.05 and a Type II (β) probability of .25 that a factor or interaction identified as significant truly does belong in the calculation for variance (Schmidt, 1994). The next step is to run the process and gather the data for each of the nine replications. This data is in Table 2, below.

Table 2: Data for Example

TC	A	A	AxB	Replications									mean	variance
				1	2	3	4	5	6	7	8	9		
1	-	-	+	9.99	10.33	8.33	9.62	11.44	8.84	14.58	10.92	9.80	10.43	3.34
2	-	+	-	8.85	9.26	9.23	9.80	12.15	12.72	11.78	11.93	11.97	10.86	2.34
3	+	-	-	16.09	13.91	6.71	6.53	12.49	11.16	6.71	11.76	1.86	9.69	20.25
4	+	+	+	8.91	3.36	13.23	12.29	7.83	3.77	10.78	3.24	0.81	7.14	20.17

The mean and variance have been found for this data, and it can be seen that the variances for the four treatment combinations are not equal. It looks as though setting factor A at the "+" level increases the variance greatly. The question now is what effect these variances will have on the ANOVA. There are 2 possible effects: 1) the values of the Type I and Type II errors for the variance could be something other than the values at which the analyst has set them, or 2) absolutely nothing. If, after some research, it is
determined that the former effect occurs, the severity of any change must be determined. Without knowing the probability of a Type I (α) and Type II (β) error occurring, the ANOVA will not produce meaningful results.

Operating Characteristic Curve

A graphical representation of both the α and β error can be seen in an operating characteristic (OC) curve. When analyzing the results of an experiment, the first step is to hypothesize that the mean of a factor at its lower setting is the same as the mean at its higher setting. An OC curve of this process would be a graph with the probability of accepting the hypothesis on the vertical axis and the actual values of the mean on the horizontal axis. For the above example, an OC curve could look like Figure 1.

Figure 1: Operating Characteristic Curve for Example

General Approach

In order to determine if the probabilities of error are something other than they were set to be when the ANOVA was performed, an individual could design an
experiment and generate the data for the replications. Since the individual would be generating the data, the true means and variances for all the levels of all the factors would be known. By knowing the data, the individual would know what results an ANOVA should give. Then the individual could perform an ANOVA and compare what they know the result should be to the result they obtained. By doing this several times, the individual could determine if the error probabilities they were finding were equal to the error probabilities they set when they performed the ANOVA. In this manner, an entire OC curve could be made for the results of the ANOVA on the unequal variances. If this OC curve were compared to an OC curve where the variances were equal, a difference could clearly be seen if one existed.

Importance of the Study

Currently, the effect of the heterogeneity of variance of a factor or group of factors on the OC curve for the mean of any factor or interaction is neglected. If the effect is significant, then correcting for it could change the outcome of a designed experiment. For example, an experimenter might set alpha equal to 0.05 . The effect of heterogeneity of variance could cause the alpha value for the ANOVA to be significantly higher or lower. If this were the case, the results of the ANOVA -- the significant factors and interactions -- would have more or less chance for error than the experimenter intended. The different alpha level could change the experimenter's decision about which factors were important to the process being studied.

Objective Statement

This research proposes to determine the effect of the heterogeneity of variance of a particular factor or group of factors on the operating characteristic (OC) curve for the mean of any factor or interaction.

Subobjectives

The first subobjective. The first subobjective is to set the parameters of the study. Subobjective one has three parts: 1) determining which combinations of factors and levels or groups of factors and levels should be used in the study, 2) deciding at what levels of mean and standard deviation shift to set those combinations of factors and levels, and 3) defining precisely what data will be collected and how it will be calculated.

The second subobjective. The second subobjective is to write a simulation program to perform the experiments at the correct settings of combinations, analyze the data to determine significance, and record the results. The simulation program will be written in FORTRAN. This will require several steps: 1) designing the program, 2) writing the simulation code, 3) finding a random number generator, 4) validating and verifying the program code, 5) determining an equation for sample size, and 6) calculating the number of simulation replications.

The third subobjective. The third subobjective is to analyze the data. Analyzing the data will include: 1) calculating and graphing the OC curves, and 2) determining if the shifting variance affects the OC curves. The analysis will determine the effect of the heterogeneity of variance of a particular factor or group of factors on the OC curve for the mean of any factor or interaction.

Assumptions

The effect of the heterogeneity of variance of a particular factor or group of factors on the OC curve for the mean of any factor or interaction for a two factor, two level designed experiment will be approximately the same as in an f factor, l level designed experiment.

II. Review of the Literature

Assumptions

In a two factor, two level ANOVA, it is assumed that the response variable is normally and independently distributed, the terms in the model are linear, and that the variance of the replications within each treatment combination is equal (Anderson and McLean 1974). To be normally distributed means that the response data, if enough were collected, would take on all the characteristics of a normal distribution. That is, the response data would fit the equation for the normal probability density with two parameters, $\mu=$ population mean and $\sigma^{2}=$ population variance. To be independent means that the value of one response has no bearing on the value of the next response. To have equal variances means that the variance of a given set of responses for one treatment combination is the same as the variance of a set of responses for another treatment combinations. In the example in Chapter 1, the response data were normally and independently distributed but did not have equal variances. This research addresses the assumption of homogeneous variance so the author will now concentrate only on this assumption.

Testing for Homogeneity of Variance

In an effort to conform to the assumption of homogeneity of variance necessary to perform the traditional ANOVA, several methods have been developed to test the equality of variances. With several tests in existence, the question arises as to which of the existing tests is the most robust, or less likely to be wrong if any of the assumptions for performing
the tests are not true. Several comparison studies have been done, the most extensive of which was by Conover, Johnson, and Johnson (1981) who compared 56 tests for equality of variance. The purpose of their comparison was to find a list of tests that had a stable Type I error rate when the normality assumption was not true, sample sizes were small or unequal, and the distributions were skewed or heavy tailed. The study was performed using simulation. A test was defined to be robust if the Type I error rate was less than 10 percent for a 5 percent test. The tests that showed a stable Type I error rate were then compared on the basis of power. (Power $=1-\beta$.) For each test of equal variance, the authors computed each test statistic 1000 times in each of 91 situations representing various deviations from the assumptions. From the simulation, the authors found that three tests appeared to be most robust in terms of Type I error rate and power.

New Methods of Performing ANOVA

Although Conover, Johnson, and Johnson determined which tests were most robust for determining equal variances, they did not explore options in case the tests determined that the variances were unequal. The usual approach for dealing with this inequality is to transform the variances in some way. According to Bishop and Dudewicz (1981) these transformations can be useful, but are only approximate in terms of equal variances. To combat this problem, Bishop and Dudewicz developed a new method for performing an exact ANOVA with unequal variances. They retained the assumptions of normality and independence but did not consider variance at all in the computation. Because they did not consider variance, their method applies to data with both equal and unequal variances. Their theory is based on two-stage sampling instead of the more
traditional one-stage procedures. They replaced the traditional F statistic with their own, called \widetilde{F}. The test statistic \widetilde{F} replaces the standard error $\left(\frac{s}{\sqrt{n}}\right)$ with some value $z>0$ chosen to obtain the desired power. This z value eliminated the need for any variance term. In addition, they replaced \bar{X} with \widetilde{X}, so the mean did not have to be known. Bishop and Dudewicz mathematically proved the validity of the above substitutions and went on to compare the results of this test to those of one-stage test statistics that have been proposed to test the equality of means when the variances were unequal.

Bishop and Dudewicz compared their \widetilde{F} with the usual F statistic, Welch's W, and Brown and Forsythe's F^{*}. The equations for Welch's W and James' test statistic can be found in Brown and Forsythe (1974). They are both modifications of the usual F statistic. Brown and Forsythe's F^{*} changed the denominator of the F statistic so that it had the same expected value as the numerator when the population means were equal (Brown and Forsythe, 1974). Brown and Forsythe considered only a one-way layout and compared the four tests at equal and unequal sample sizes and equal and unequal variances using a Monte Carlo simulation. They recommended using F^{*} or W instead of James' statistic or the usual F statistic regardless of the equality of the variances. Bishop and Dudewicz did not compare their \widetilde{F} to James' test statistic based on the results of Brown and Forsythe (1974).

Bishop and Dudewicz also compared the tests with equal and unequal sample sizes and equal and unequal variances. They found that their \widetilde{F} statistic was superior to Welch's W and Brown and Forsythe's F^{*}. They also found that \widetilde{F} performed better than F when
the variances were unequal. With equal variance, \widetilde{F} performed adequately as long as the sample size was small (Bishop and Dudewicz, 1981).

Effects of Unequal Variances

Numerous studies have been performed on the effects of an incorrect homogeneity of variance assumption in an analysis of variance. Some of the more notable ones are Rogan and Keselman, 1977; Boneau, 1960; Lindquist, 1953; and Box, 1954a. Glass, Peckham, and Sanders, 1972, have a survey paper that discusses most of this research. The one overwhelming similarity among these papers is that they all consider the problem with a one-way analysis of variance. The conclusion among all these papers is that when sample sizes are equal, the ANOVA F-test is insensitive to heterogeneity of variance (Glass and Stanley, 1970). However, when sample sizes are unequal, The F-test can become much more sensitive.

Of all the research on the effect of heterogeneity of variance, Box (1954b) is the only researcher who considered a two-way analysis of variance. Scheffe (1959) discusses the problem, but bases all of his discussion on Box's 1954b paper. Box (1954b) considers a two-way layout with one observation per cell. In this case, it is generally assumed that no interactions exist. For the purposes of this discussion, call the two variables A and B Box varies the number of levels for both A and B , then sets unequal variances among the levels of A. The levels of B have equal variances. Table 3 below shows how he set his factors, levels, and variances.

Table 3: Box's 1954b Levels and Settings
A

B								

where $\sigma_{1 A}^{2}: \sigma_{2 A}^{2}: \sigma_{3 . A}^{2}$ was in the ratio of $1: 2: 3$. He found the probability of Type I error for equality of row means and column means. His hypothesis for factor A was H_{0} : No row effect, or equivalently $\mathrm{H}_{0}: \mu_{A 1}=\mu_{A 2}=\mu_{A 3}$. He failed to reject his null hypothesis when sample sizes were equal.

Working with Unequal Variances

Schmidt and Launsby(1994) also accepted the non-homogeneity of variance in designed experiments. In an effort to minimize the variance of a process, they studied five measures of dispersion (variance). The measures of dispersion were supposed to identify which factor(s) was causing high variance in the process. Once this information was known, the factors could be set at levels which minimized their variance. Schmidt and Launsby performed a Monte Carlo simulation to determine the dispersion effect detection capabilities of the five techniques. Their results showed that the standard deviation of responses for different factor combinations must change by at least a factor of 3 to be detected by the five techniques. Even with a factor of 3, only two of the five techniques tested proved to detect the non-homogeneity of variance consistently.

Summary

It is a recognized fact that the assumption of homogeneity of variance necessary to perform a traditional ANOVA is often false. New methods to perform an ANOVA have been developed. These methods primarily involve changing the F statistic in some way Attempts have been made to determine the effect of unequal variance on the results of the ANOVA under certain conditions. Box's 1954b work considers a two-way classification, but he uses one observation per cell which assumes no interaction exists. Box also only varies the variance for one-factor, letting the levels of the other factor have equal variances. When an ANOVA is performed on a two factor, two level designed experiment where both factors have unequal variances between levels and/or where an interaction exists, the effect of the unequal variances is unknown.

III. Methodology

This chapter begins by explaining how to analyze a designed experiment Although the specific format shown is not used in this research, understanding how to analyze a designed experiment is the first step in understanding the rest of the methodology for this research. The explanation below is aimed at analyzing a single experiment by hand, but the same methodology is used in the simulation program. The rest of the chapter addresses each of the subobjectives in turn.

Steps in Analyzing a Designed Experiment

The explanation below assumes a factorial arrangement of treatments, or that each level of a given factor is combined with all levels of every other factor, for the designed experiment and an equal number of replications for each treatment combination. Schmidt and Launsby (1994) outlined the process of analyzing a designed experiment in five steps.

Step 1. Define the hypothesis. When performing an ANOVA, the null hypothesis is that the mean of the data obtained when a factor is set at its upper level is equal to the mean of the data obtained when the same factor is set at its lower level. The alternative is that the two means are unequal. The hypotheses are mathematically stated as follows:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{(+)}=\mu_{(-)} \\
& \mathrm{H}_{3}: \mu_{(+)} \neq \mu_{(-)}
\end{aligned}
$$

Step 2. Select a level for α, the probability of a Type I error.
Step 3. Compute the mean square error (MSE) and the mean square between (MSB). This is done in the following manner. Perform the experiment and calculate the
mean and variance as shown in Table 4 below. To find the mean square error, use Equation 1.

Table 4: Symbolic Representation of Experimental Design

$\begin{gathered} \text { Treatment } \\ \text { combinations } \\ \left(\mathrm{TC}_{t}\right) \end{gathered}$	Replications	Mean $\left(\bar{y}_{i}\right)$	Variance $\left(\mathrm{s}^{2},\right)$
TC ${ }_{1}$	$\mathrm{y}_{11}, \mathrm{y}_{12}, \ldots, \mathrm{y}_{\text {in }}$	$\sum_{i=1}^{*} \frac{y_{1 j}}{n}$	$\frac{\sum_{j=1}^{n}\left(y_{1}-\bar{y}_{1}\right)^{2}}{n-1}$
TC_{2}	$\mathrm{y}_{21}, \mathrm{y}_{22}, \ldots, \mathrm{y}_{2 \mathrm{n}}$	$\sum_{j=1}^{2} \frac{y_{2 j}}{n}$	$\frac{\sum_{i=1}^{n}\left(y_{2}-\bar{y}_{2}\right)^{2}}{n-1}$
:	:	:	:
TC ${ }_{\text {i }}$	$y_{i 1}, y_{i 2}, \ldots, y_{\text {mn }}$	$\sum_{j=1}^{n} \frac{y_{m j}}{n}$	$\frac{\sum_{m=1}^{\dot{1}}\left(y_{m}-\bar{y}_{m}\right)^{2}}{n-1}$
$\overline{\bar{y}}=\frac{\sum_{j=1}^{\prime} \bar{y},}{m} \quad \overline{S^{2}}=\frac{\sum_{j=1}^{\prime} s_{j}^{2}}{m}$			

Equation 1: Mean Square Error
$M S E=\frac{S S E}{d f_{(E)}}=\frac{\sum_{k=1}^{T C}\left(n_{T C}-1\right) S_{T C}^{2}}{\sum_{k=1}^{T C}\left(n_{T C}-1\right)}$ where
$M S E=$ mean square error
$S S E=$ sum of squares error
$d f_{(E)}=$ degrees of freedom for error
$T C=$ number of treatment combinations
$n_{T C}=$ number of data values in treatment combination TC
$S_{r}^{2}=$ variance of the data in treatment combination TC

If the replication sizes are equal, as in this example, then the equation for MSE can be simplified to be equal to the average variance, or $\overline{S^{2}}$ from above. To find the $M S B$, use the appropriate equation below. Compute the test statistic $F_{o}=\frac{M S B}{M S E}$.

Equation 2: Mean Square Between for a Factor

$$
\begin{aligned}
& M S B_{f}=\frac{S S B_{f}}{d f_{f}}=\frac{\sum_{k=1}^{t_{f}} n_{f k}\left(\bar{y}_{f k}-\overline{\bar{y}}\right)^{2}}{l_{f}-1} \text { where } \\
& M S B_{f}=\text { the mean square between for factor } \mathrm{f} \\
& l_{f}=\text { the number of levels for factor } \mathrm{f} \\
& n_{f k}=\text { the number of data values for factor } \mathrm{f} \text { at level } \mathrm{k} \\
& \bar{y}_{f k}=\text { the average response for factor } \mathrm{f} \text { at level } \mathrm{k} \\
& \overline{\bar{y}}=\text { the grand average of all the replications }
\end{aligned}
$$

Equation 3: Mean Square Between for an AxB Interaction

$$
M S B_{(A \times B)}=\frac{\operatorname{SSB}_{(A \times B)}}{d f_{(A \times B)}}=\frac{S S_{(T O T)}-\operatorname{SSB}_{(A)}-\operatorname{SSB}_{(B)}-S S E}{d f_{(T O T)}-d f_{(A)}-d f_{(B)}-d f_{E}} \text { where }
$$

$M S B_{(A \times B)}=$ mean square between for the interaction AxB
$S S B_{(A \times B)}=$ sum of squares between for AxB
$S S_{(T O T)}=$ sum of squares total, which is $\mathrm{S}^{2}(\mathrm{~N}-1)$ where S^{2} is the variance of all N response values
$d f_{(T O T)}=$ degrees of freedom total which is $\mathrm{N}-1$
$d f_{(A \times B)}=$ degrees of freedom for AxB , which is found from the expression in the denominator of the $M S B_{(A x B)}$ equation

Step 4. Determine the critical F value, F_{s}, to compare against the above test statistic. The format for the F_{c} value is $\mathrm{F}_{l-\alpha \mathrm{dfb} \cdot \mathrm{dfe}}$ where α is the probability of a Type I error, $d f b$ is the degrees of freedom for the MSB and $d f e$ is the degrees of freedom for the MSE. The value for α is determined in step 2. The $d f b=l-1$ where l is the number of levels, and $d f e=\sum_{i=1}^{m}(n-1)$ where m is the total number of treatment combinations and n is the number of replications. The F_{c} value must be found in an F table.

Step 5. Compare the value of F_{o} from step 3 to F_{c} from step 4. If $F_{o} \leq F_{c}$, fail to reject H_{0}. If $\mathrm{F}_{\mathrm{o}} \geq \mathrm{F}_{\mathrm{c}}$, reject H_{o} with ($\left.1-\alpha\right) 100 \%$ confidence. If H_{o} is rejected for any factor or interaction, that factor or interaction is significant to the process of interest.

Subobjective One: Setting the Parameters

Subobjective one has three parts: 1) determining which combinations of factors and levels, or groups of factors and levels, should be used in the study, 2) deciding at what levels of mean and standard deviation shift to set those combinations of factors and levels, and 3) defining precisely what data will be collected and how it will be calculated.

Combinations of Factors to Test

Determining on which combinations of factors or groups of factors to perform the study requires two steps: 1) find the entire set of combinations, and 2) remove the redundant combinations.

Finding the entire set of possible combinations can be done by holding one combination of levels and factors constant and changing every other combination of levels and factors, then repeating this for every combination. The combinations are $\mathrm{A}-, \mathrm{A}+, \mathrm{B}-$, $\mathrm{B}^{+}, \mathrm{A}-\mathrm{B}-, \mathrm{A}-\mathrm{B}+, \mathrm{A}+\mathrm{B}-$, and $\mathrm{A}+\mathrm{B}+$, where $\mathrm{a}+$ means the high level and $\mathrm{a}-$ means the low level. An AB combination means that both A and B are set at some experimental level. The interaction $A B$ cannot be independently set at any level because it is dependent on A and B. The interaction can be controlled only by controlling A and B. An example of how to find every possible combination is in Table 5, below.

Table 5: A Subset of All Possible Combinations

Mean	Standard Deviation
A-	A-
A-	A+
A-	B-
A-	B+
A-	A-B-
A-	A-B+
A-	A+B-
A-	A+B +

Mean	Standard Deviation
$\mathrm{A}+$	$\mathrm{A}-$
$\mathrm{A}+$	$\mathrm{A}+$
$\mathrm{A}+$	$\mathrm{B}-$
$\mathrm{A}+$	$\mathrm{B}+$
$\mathrm{A}+$	$\mathrm{A}-\mathrm{B}-$
$\mathrm{A}+$	$\mathrm{A}-\mathrm{B}+$
$\mathrm{A}+$	$\mathrm{A}+\mathrm{B}-$
$\mathrm{A}+$	$\mathrm{A}+\mathrm{B}+$

The process illustrated above would be continued for every combination. This method gives 64 combinations. If a level of a factor is not included in a particular combination, it is assumed that level of that factor will be set at the base level, which is a normal distribution with a mean of zero and a standard deviation of one, $\sim N(0,1)$.

To recognize the redundant combinations, it is important to note that each factor is independent of all other factors and each level is independent of the other level. Because of this independence, setting $\mathrm{A}+$ against B - is not different from setting $\mathrm{A}+$ against $\mathrm{B}+$. This means that only 26 non-redundant combinations exist, as shown in Table 6.

Table 6: Non-redundant Combinations

Mean	SD
A-	A-
A-	A +
A-	A-B-
A-	A+B-
A-	A-B +
A-	A+B +
A-B-	A-
A+B-	A-
A-B+	A-
A+B+	A-
A-B-	A-B-
A-B-	A+B-
A-B-	A-B+

Mean	SD
$\mathrm{A}-\mathrm{B}-$	$\mathrm{A}+\mathrm{B}+$
$\mathrm{A}+\mathrm{B}-$	$\mathrm{A}-\mathrm{B}-$
$\mathrm{A}+\mathrm{B}-$	$\mathrm{A}+\mathrm{B}-$
$\mathrm{A}+\mathrm{B}-$	$\mathrm{A}-\mathrm{B}+$
$\mathrm{A}+\mathrm{B}-$	$\mathrm{A}+\mathrm{B}+$
$\mathrm{A}-\mathrm{B}+$	$\mathrm{A}-\mathrm{B}-$
$\mathrm{A}-\mathrm{B}+$	$\mathrm{A}+\mathrm{B}-$
$\mathrm{A}-\mathrm{B}+$	$\mathrm{A}-\mathrm{B}+$
$\mathrm{A}-\mathrm{B}+$	$\mathrm{A}+\mathrm{B}+$
$\mathrm{A}+\mathrm{B}+$	$\mathrm{A}-\mathrm{B}-$
$\mathrm{A}+\mathrm{B}+$	$\mathrm{A}+\mathrm{B}-$
$\mathrm{A}+\mathrm{B}+$	$\mathrm{A}-\mathrm{B}+$
$\mathrm{A}+\mathrm{B}+$	$\mathrm{A}+\mathrm{B}+$

Levels of Mean and Standard Deviation Shift

In Box's study, the largest variance ratio between levels of a factor is 1:3, which gives a standard deviation ratio between levels of a factor of $1: 1.47$. This study goes well beyond that. The decision of how many levels of mean and standard deviation shift to simulate was influenced by how other literature handles the problem and the amount of calculation required (additional levels of mean and standard deviation shift increase the number of calculations exponentially). A mixture of these factors leads to the levels in Table 7.

Table 7: Matrix for Levels of Mean and Standard Deviation Shift
Standard Deviation Shift

Mean Shift		1σ	2σ	3σ	4σ
	0σ				
	1σ				
	2σ				
	3 σ				
	4σ				

In Table 7, the mean shift of $x \sigma$ means that the mean shifts x base level process standard deviations. The base level process standard deviation is one in this case. The simulation model fills in the blank matrix.

Definition of Data Collected

The data collected is the proportion of detection of significance for each factor and the interaction. A cell is the proportion of detection of significance, which is equal to the number of times a factor is detected to be significant divided by the number of runs that were made. One run is defined as performing the experiment one time.

Subobjective Two: Writing the Simulation Program

Subobjective two requires several steps: 1) designing the program, 2) writing the simulation code, 3) finding a random number generator, 4) validating and verifying the program code, 5) determining an equation for sample size, and 6) calculating the number of simulation replications.

The Design of the Program

This program simulates running a designed experiment just as would be done in real time. It gathers data, fills in the response matrix, analyzes the data with an ANOVA, and performs an F-test for significance. The differences are that the data is generated, not collected from a real-world setting, and that the experiment is performed thousands of times with different factors and levels at different mean and standard deviation shifts.

The combinations of factors and levels that are changing are put into two arrays, one for the mean and one for the standard deviation. At the beginning of the program, the
arrays are read and the appropriate levels of mean and standard deviation shift are assigned to the appropriate levels of factors. If a level of a factor is not specifically assigned, its mean is set to zero and its standard deviation to one. Once both the levels of both the factors are assigned a mean and standard deviation value, two uniform $(0,1)$ random numbers, U_{1} and U_{2}, are generated for each level of each factor (for a total of 8 random numbers). These uniform random numbers, U_{1} and U_{2}, along with the mean, μ, and standard deviation, σ, values, are used to generate a normal random variate, X , for each level of each factor with the equation $X=\mu+\sigma \sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right)$ [Law and Kelton, 1991].

The settings in the designed experiment are in Table 8. The experiment has

Table 8: Settings in Designed Experiment

A	B	AxB
-	-	+
-	+	-
+	-	-
+	+	+

nine replications, as recommended by Schmidt and Launsby [1994]. The simulation program is run two ways: 1) with no interaction, and 2) with an interaction. With no interaction, the values for the cells in the response matrix in row one were obtained by summing the normal random numbers for the low levels of factors A and B. In row two, the low level of A and the high level of B were added, and so on for all four rows. With the interaction, the values for the cells in the response matrix in row one were obtained by summing the normal random numbers for the low levels of factors A and B and adding the product of the low levels of factors A and B , and so on for all four rows. For example,
the first row response is calculated using (A-) and (B-). If $(A-)=5$ and $(B-)=10$ for a particular replication of a response, the calculation for the no-interaction term would be $(A-)+(B-)=5+10=15$. With an interaction, the first row response is calculated by $(\mathrm{A}-)+(\mathrm{B}-)+(\mathrm{A}-)^{*}(\mathrm{~B}-)=5+10+5^{*} 10=65$. For the second cell in row one, eight more uniform random numbers are calculated, and the process begins again.

Generating eight random numbers for each cell in the response matrix is somewhat wasteful because for any cell only four of the numbers are needed (since it takes 2 uniform random numbers to get one normal random number for one level of a factor, and only two levels are ever used at once.) However, as discussed later in the section about the random number generator, no shortage of random numbers exists. The improvement in efficiency that would be obtained by only generating the numbers necessary for use is not really needed

After the program has filled in the response matrix, it analyzes the data as shown in the first section of this chapter. The program performs an ANOVA and uses an F-test to determine which factors are significant, if any. The program keeps a count of the number of times any factor is significant. Then, the program starts the process again with a different setting of mean and standard deviation shift until the settings from the entire mean and standard deviation shift matrix have been executed.

After the matrix is completely filled in, the program repeats the process 500 times. The 500 repetitions are called simulation replications. The reasoning behind choosing 500 is discussed in a later section. After the program has completed the 500 replications, it divides the number of times a factor was significant by 500 . This gives a proportion of
significance. The program then prints the proportion matrices for factors A and B and interaction AB . Afterward, it returns to the beginning of the program and reads the next combination of factors and levels to shift, and begins the process again. After the program has gone through all 26 combinations of factors and levels to shift, it ends. A copy of the program is in Appendix A.

The Random Number Generator

The program uses Marse's and Roberts's random number generator. The generation routine "accepts an integer seed in the range $\left[1,2^{31}-2\right]$ and produces a new seed using a Prime Modulus Multiplicative Congruential Generator" [Marse and Roberts, 1983]. The new seed is returned as the function parameter. The function converts the seed to a uniform $(0,1)$ single precision random number and returns the random number as the value of the function. The formal definition of the generator is $Z_{n}=\left(a Z_{n-1}\right) \bmod m$ where the prime modulus used is $2^{31}-1, Z_{o}$ is the starting seed, a is the multiplier 630360016 , and the uniform $(0,1)$ value returned is Z_{n} / m.

All random number generators have a period. A period is the number of random numbers a generator can generate before it repeats itself. When the generator starts repeating the same numbers, the numbers are no longer random and could produce correlated data. The longest period of this random number generator is equal to $m=2^{31}$ 1. It generates $2,147,483,647$ random numbers before beginning to repeat itself. This simulation uses $93,600,000$ random numbers. There are over 2 billion random numbers left before the generator starts repeating itself. Therefore, the period length will produce numbers that are random and will not produce correlated data.

The number of random numbers used in this simulation is calculated by the following: 8 random numbers are generated for each cell of the designed experiment matrix, the designed experiment matrix has 4 rows and 9 columns, a designed experiment is performed for each of the 5 levels of mean shift and 5 levels of standard deviation shift, 500 simulation replications are performed for each setting of mean and standard deviation shift, and there are 26 settings of mean and standard deviation shift. The product of these numbers is $8 * 4 * 9 * 5 * 5 * 500 * 26=93,600,000$.

Validation and Verification

Pritsker [1995] defines validation as "the process of establishing that a desired accuracy or correspondence exists between the simulation model and the real system." Verification is "the process of establishing that the computer program executes as intended" [Pritsker, 1995]. Two areas need to be considered separately in this application: the main program and the random number generator.

Main Program

Since this simulation is not attempting to model a particular real-world system, validation is not a significant issue. The typical methods of validating (e.g., comparing simulation output to real-system output with the same set of input parameters) are not applicable here.

Verifying that the program works correctly is a significant issue. Verification was performed by a piecemeal process in which the program printed out the numbers it had
calculated at any given point and the same numbers were calculated by hand. When the numbers matched, the program was working correctly.

The verification process started by modifying the program to print the values of mean and standard deviation for the levels of both the factors to make sure that the arrays of combinations had been entered properly and that the assignment process was working. Then, the program was set to print the normal random numbers it generated and the data it calculated for the designed experiment response matrix. The same data was then calculated by hand from the random numbers. When these matched, the program was modified to print the mean and variance of each row. When the hand calculations for the mean and variance matched, the program was modified to print the MSE, MSB, and Fvalue for each factor. The verification of these numbers by hand calculations meant that the main body of the program was working correctly for the first set of combinations at the first setting of mean and standard deviation shift.

To determine if the program was still working properly for later combinations of factors and later settings of mean and standard deviation shift, the above process was repeated for the tenth combination of factors and levels and other levels of mean and standard deviation shift. When this was first done, the program's numbers were incorrect due to the placement of an initialization loop. After the initialization was correctly placed, the program produced the correct data.

To ensure that the counting mechanism for the number of significant factors was working properly, the program was modified to print the F-values for each factor, and then set to run for 10 replications. The number of significant As, Bs, and ABs was
counted by hand to make sure it matched the computer's count. The last step was to make sure the program was dividing the count of the significant factors by the number of simulation replications. To do this, the data from checking the counting mechanism was divided by ten and compared to the final results of the program. This matched, so the program was working correctly.

Random Number Generator

Two areas need to be considered for the random number generator: 1) technical accuracy, or the ability to actually generate random numbers (validation), and 2) correct implementation (verification).

Fishman and Moore [1982] tested several multiplicative congruential random number generators with modulus $2^{31}-1$. In all tests, they failed to reject the hypotheses for the multiplier used in this random number generator, which means that this random number generator was not deficient in any of the areas tested. For more details on the tests performed and the methods of performing them, see Fishman and Moore [1982]. This multiplier's most common use is in the SIMSCRIPT II simulation programming language.

To verify that the generation routine had been implemented in this program correctly, a list was obtained of the first 10 numbers the routine should generate, given a certain seed. When the first ten numbers generated by this program matched the list of numbers the routine should generate, the routine was verified.

An Equation for Sample Size

The number of simulation replications necessary for an accurate result is dependent on the maximum error of the estimate one is willing to accept. The maximum error of the estimate, E , is the difference between the sample mean and the population mean.

Assuming that the data comes from a normal population, the equation for E can be obtained from the mathematical expression of the value of a random variable having an approximately standard normal distribution. The expression is $\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$ where \bar{x} is a sample mean, μ is the population mean, σ is the standard deviation of the population, and n is the sample size. So, with probability $1-\alpha$ where α is the probability of a Type I error, it can be said that $-z_{\alpha / 2} \leq \frac{\bar{x}-\mu}{\sigma \sqrt{n}} \leq z_{\alpha / 2}$, or that $\frac{|\bar{x}-\mu|}{\sigma \sqrt{n}} \leq z_{\alpha / 2}$ where $z_{\alpha / 2}$ is a value such that the normal curve area to its right equals $\alpha / 2$. Then, if E is set to the maximum value of $|\bar{x}-\mu|$ the equation can be rearranged to get $E=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ with probability 1- α. This equation can be used to determine the maximum error of an estimate at any value of n, assuming the data come from a normal population.

The data that go into the results matrix for this research are not normally distributed. The number in each cell of the matrix is a sum of ones and zeroes divided by the total number of runs. The values of one and zero are arbitrary -- they come from trials where two results are possible: not significant and significant. A zero is assigned to a 'not significant' result and a one is assigned to a 'significant' result. These trials are called Bernoulli trials. Data from Bernoulli trials take on a binomial distribution. A binomial
distribution has the parameters n and p, where n is the number of trials and p is the probability of success. The mean of a binomial distribution is $\mu=\mathrm{n}^{*} \mathrm{p}$. The variance is σ^{2} $=n^{*} p^{*}(1-p)$. The quantity $(1-p)$ is often assigned to the variable q, which gives $\sigma^{2}=$ $n^{*} p^{*}$.

The actual value in each cell of the matrix is a sample proportion, \hat{p}, equal to X / n, where X is the total number of significant results and n is the total number of runs. The expected value of a proportion is equal to p . This can be seen by the following: $\mathrm{E}(\hat{p})=$ $\mathrm{E}(\mathrm{X} / \mathrm{n})=(1 / \mathrm{n})(\mathrm{np})=\mathrm{p}$. The expected variance of a proportion is equal to $(\mathrm{pq}) / \mathrm{n}$. The equation for E from above cannot be used until it is adjusted to reflect a binomial distribution of proportions.

The normal approximation to the binomial distribution states the following: If x is a value of a random variable having the binomial distribution with parameters n and p, and if $z=\frac{x-n p}{\sqrt{n p q}}$, then the probability density corresponding to z is the standard normal density. Using the same substitution and rearranging as above, the equation for E of a binomial distribution is $E=z_{\alpha / 2} \sqrt{n p q}$. Substituting for the variance of a proportion, Equation 4 is derived.

Equation 4: Sample Size

$$
E=\frac{z_{\alpha / 2} \sqrt{p q}}{\sqrt{n}}
$$

Using this equation, the values of E are found for several values of n and an appropriate number of simulation runs is chosen.

Calculation of the Sample Size

Cell $_{11}$, or the cell in the first row and first column of the results matrix, is based on all factors having a $\mathrm{N}(0,1)$ distribution. Since the alpha value for this experiment is equal to 0.05 , cell 1_{11} should always have a value of around 0.05 . Since the cell is the proportion of successes, the value of p will also be 0.05 , which leaves $q=0.95$. Since $\alpha=0.05$ the value of $z_{\alpha / 2}$ is equal to $z_{0.025}=1.96$. Substituting these values into the equation for E gives $E=\frac{1.96 \sqrt{0.05(0.95)}}{\sqrt{n}}=\frac{0.42717}{\sqrt{n}}$. Table 9 shows the values of E for some values of n.

Table 9: Maximum Error for Some Values of \mathbf{n}

\mathbf{n}	\mathbf{E}
100	0.042717
200	0.030205
500	0.019104
1000	0.013508

Five hundred simulation replications are executed in this research. The errors for n equal to 100 and 200 are too high for this application. The decrease in error for n equal to 1000 is not large enough to justify the time it would take to double the number of replications. An error of 0.019 with only 500 replications seems to be a good balance.

Subobjective Three: Analysis

There are two parts to the analysis: 1) calculating and graphing the OC curves, and 2) determining if the shifting variance affects the $O C$ curves.

Operating Characteristic Curves

The data collected by the simulation program can be used to make OC curves. The simulation's final output is the proportion of significance for each factor and the interaction. A graph of OC curves for this data for a particular factor has a vertical axis of the probability of accepting the null hypothesis given that it is false. This is also called the β value, or the probability of a Type II error, as discussed in Chapter 1. The null hypothesis states that the means of a factor at its upper and lower levels are equal. The horizontal axis shows the actual values of the mean. An OC curve is drawn for every value of the standard deviation shift. To determine if the changing standard deviation affects the OC curve, a test must be performed to determine if the curves are significantly different. An example of what an OC curve might look like for factor A is in Figure 2, below. These curves are for A-shifting both means and standard deviations.

Figure 2: Example of OC Curve for Factor A
The OC curve is read as follows:

When the sd shift of A- equals one: if the mean shift of A- equals zero, the probability of accepting the null hypothesis is about 0.95 ; if the mean shift of A- equals one, the probability of accepting the null
hypothesis is approximately 0.50 ; if the mean shift of A - is equal to two, three, or four, the probability of accepting the null hypothesis is approximately zero.

When the sd shift of A- equals two: if the mean shift of A- equals zero, the probability of accepting the null hypothesis is about 0.95 ; if the mean shift of A- equals one, the probability of accepting the null hypothesis is about 0.67 ; if the mean shift of A- equals two, the probability of accepting the null hypothesis is about 0.11 ; if the mean shift of A- is equal to three or four, the probability of accepting the null hypothesis is approximately equal to zero.

The curves for the other values of the standard deviation shift can be read in a similar manner.

A Test for Significant Difference of Curves

A median test, with one adjustment, is used to test for a significant difference between curves. The median test compares the matrices row by row with an $\mathrm{r} \times \mathrm{c}$ contingency table. A median test is designed to examine whether several samples came from populations having the same median. Rather than separating this data by the median, it is separated according to the proportion of detection of significance. All of the assumptions, the test statistic, and the decision rule for the median test will still hold. The table for each row has the format shown in Table 10.

Table 10: Sample Table for Chi-Square Test

Amount Detected Amount not Detected Totals

$\mathrm{SD}=1$	$\mathrm{SD}=2$	$\mathrm{SD}=3$		$\mathrm{SD}=4$		$\mathrm{SD}=5$
	Totals					
O_{11}	O_{12}	O_{13}	O_{14}	O_{15}	a	
O_{21}	O_{22}	O_{23}	O_{24}	O_{25}	b	
n	n	n	n	n	N	
n	n	n		N		

The values of O_{11} through O_{15} are calculated by multiplying the proportion of detection of significance in the results matrix by the sample size $n=500$. The values of
O_{21} through O_{25} are calculated by subtracting the value in the corresponding cell in the top row from the sample size. The value of n will be the same in every column. The value of a is the sum of O_{11} through O_{15}. The value of b is the sum of O_{21} through O_{25}. The value N is the sum of a and b. The hypotheses are as follows:
H_{0} : All five populations have the same number of significant detections
H_{3} : At least two of the populations have different numbers of significant detections

The test statistic is in Equation 5. If T is greater than the ($1-\alpha$) quantile of a chi-square

Equation 5: Test Statistic for Median Test

$$
T=\frac{N^{2}}{a b} \sum_{i=1}^{5} \frac{O_{1 i}{ }^{2}}{n}-\frac{N a}{b}
$$

random variable with 4 degrees of freedom, H_{o} is rejected. Otherwise, the analyst fails to reject H_{0} (Conover, 1980). In this application, α is set to 0.05 , which gives a chi-square value of 9.488. Table 11, below, shows an example. The data is from the no interaction simulation for Factor A with the mean and standard deviation (sd) shifts shown.

Table 11: Hypothesis Test Example
Means: A-

SDs: A-	Factor A -- Raw Data				
	sd $=1$	sd $=2$	sd $=3$	sd $=4$	sd $=5$
mean $=0$	0.0520	0.0480	0.0480	0.0660	0.0400
mean $=1$	0.2680	0.1740	0.1320	0.0960	0.0680
mean $=2$	0.6000	0.4720	0.3160	0.2020	0.1600
mean $=3$	0.7780	0.6640	0.5520	0.3640	0.3260
mean $=4$	0.8720	0.7900	0.7120	0.6460	0.4960

Hypothesis Test	
Calc. Test Value	Result
3.782	Accept
97.108	Reject
300.096	Reject
299.391	Reject
197185	Reject

This method can not compare entire curves, but it can compare the points that make up the curves, which is a very close approximation. If the shifting variances significantly affect the operating characteristic curves, they should also significantly affect the points that comprise the operating characteristic curves.

IV. Analysis

The analysis contains three major sections: 1) the analysis and interpretation of the results of the simulation without interactions, 2) the analysis and interpretation of the results of the simulation with interactions, and 3) a discussion of the differences between the no-interaction and interaction simulation results.

No-Interaction Results

As explained in Chapter 3, the no-interaction results are obtained from the simulation when no interaction term is included in the generation of data. The result of not including an interaction term in the simulation program is that no forced interaction is present in the data generation process. However, the interaction term can still be significant, which is illustrated by the fact that data obtained from the simulation for the interaction term are significant. Therefore, the interaction term $A B$ is included in the analysis and tested just like the factors A and B. The raw data from the simulation is in Appendix B.

OC Curves

As discussed in Chapter 3, the vertical axis of an OC curve is the probability of accepting the null hypothesis given that it is false. This is also called the β value, or the Type II error. The null hypothesis states that the mean of the data obtained when a factor is set at its upper level is equal to the mean of the data obtained when the same factor is set at its lower level. The horizontal axis is the actual value of the mean. An OC curve
exists for each factor and interaction at each value of the standard deviation shift. The horizontal axis in this case is the value of the mean shift.

Since 26 different combinations of factor settings were simulated, 26 sets of fifteen OC curves exist. The fifteen OC curves come from 5 levels of standard deviation shift for A, B, and AB . To simplify the data interpretation and provide similar scales among the OC curves for A, B, and $A B$, all fifteen curves have been plotted on one graph for each combination of factor settings. An example of one of these graphs is in Figure 3.

Figure 3: OC Curves for No-Interaction Data where \mathbf{A} is Shifting Means

The A, B, and AB at the top of the graph indicate which set of curves goes with which factor. The numbers on the horizontal axis repeat from 0 to 4 because the values of the curve are known at each level of mean shift (0 through 4) for each factor. The values are repeated to make the graph easier to read. The box in the lower right-hand corner notes that the low level of factor A is shifting means and standard deviations.

Although each set of OC curves for a particular combination is slightly different from all the other sets of OC curves, two primary patterns appear. The set of curves in Figure 3 above is representative of all the sets of OC curves where only factor A shifted means regardless of which factors and levels shifted standard deviations. The other pattern is in Figure 4, below. This pattern is representative of all the sets of OC curves where factors A and B, at any combinations of levels, shifted means regardless of which factors and levels shifted standard deviations. The complete set of 26 graphs is in Appendix C.

Figure 4: OC Curves for No-Interaction Data where A and B are Shifting Means

Some observations can be made about the OC curves. These observations are obtained by noting the repeated patterns and drawing conclusions from them. While
repeated patterns can make a strong statement, they are not necessarily statistically convincing. In the next section, each of these observations will be addressed and tested statistically. The observations are as follows:

1. Shifting the standard deviation of any combination of factors does not meaningfully affect the OC curve for a particular factor when the mean of that factor does not shift.
2. When the mean of a particular factor is shifted, shifting the standard deviation value does meaningfully affect its OC curve.
3. Neither shifting means nor shifting standard deviations in any combination affects the OC curve for the interaction. The vertical axis value (β) is not meaningfully different for any value of the mean or standard deviation. It remains constant at approximately $0.95(\alpha=0.05)$.

Statistical Tests

The method of testing for significant differences of curves is presented in Chapter 3. The test has to be performed for each factor and the interaction at each value of the mean. The null hypothesis states that the proportion of significance at all levels of standard deviation are equal at a particular mean (i.e., the values within a particular row of the results matrix are equal). If the null hypothesis is not rejected, it can be concluded that shifting the standard deviation, for a particular mean, does not have a statistically significant effect on the proportion of significance. This conclusion implies that the heterogeneity of variance of the factor for which the conclusion was drawn has no significant effect on the OC curve for the mean of any factor or interaction, as long as the mean of the factor that was tested does not shift.

The results of the hypothesis tests for the two sets of OC curves shown above are in Table 12. The factors and levels shifting means and standard deviations are at the top of each table. An "Accept" in a cell means that the null hypothesis was not rejected for that factor at that level of mean shift. A "Reject" means that the null hypothesis was rejected for that factor at that level of mean shift.

Table 12: Results of Hypothesis Tests for OC Curves for No-Interaction Data

Means: A-
SDs:

A	B	AB
Accept	Accept	Accept
Reject	Accept	Accept

Means: A-B-
SDs: A-

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

Just as the sets of OC curves had two primary patterns, so do the hypothesis tests. The results of the hypothesis tests for the six combinations of factor settings where A shifted means and B did not are identical to the results above where A - is shifting means, with one exception. That exception, for a mean shift of A- and a standard deviation shift of $\mathrm{A}+\mathrm{B}+$, is that the AB term rejected the null hypothesis at mean shift $=0$. The calculated test value was 10.3172 against a table value of 9.488 . Because this rejection only happened one time and the calculated test value was relatively close to the table value, it is safe to assume that the rejection was due to random chance rather than the shifting standard deviation value of $\mathrm{A}+\mathrm{B}+$.

The results of the hypothesis test for the twenty combinations of factor settings where both A and B shifted means are all very similar to the resuits in Table 12 where A-
and B- are shifting means. Among all twenty tables, only eleven out of the 300 results are different. Since no pattern appears to exist and the calculated test values are all very close to the table value, it is again assumed that the aberrations are due to random chance rather than a significant effect of shifting means or standard deviations. The test results for all 26 sets of data are in Appendix D. The calculated test values are in Appendix B with the raw data. The results of the hypothesis tests can be used to statistically validate the observations about the OC curves in the previous section.

Validation of Observations

The first observation from above is as follows: Shifting the standard deviation of any combination of factors does not meaningfully affect the OC curve for a particular factor when the mean of that factor does not shift. The hypothesis tests conclusively prove this observation to be true. In every combination of settings where only factor A shifts means, the null hypothesis is never rejected for factor B. This means that no matter how the standard deviation shifts for factor B, the points that make up the OC curve are not significantly different at any level of factor A's mean shift.

The second observation is: When the mean of a particular factor is shifted, the shifting standard deviation value meaningfully affects its OC curve. This observation is seen to be true from the hypothesis test results. In every instance when a factor shifts means, the null hypothesis for that factor is rejected for mean shifts equal to $1,2,3$, or 4 (see Table 12). This pattern indicates that the changing standard deviation is significantly affecting the value of the proportion of significance at these levels of mean shift. Because the values for the OC curves were calculated by subtracting the proportion of significance
from one, anything that significantly affects the proportions of significance significantly affects the OC curve. Once this is accepted, it can be observed that the probability of accepting $\mathrm{H}_{0}: \mu_{(-)}=\mu_{(-)}$for a particular factor whose mean is shifting increases as the standard deviation shift increases. This statement restates observation two, but makes the conclusion directional.

The third observation: Neither shifting means nor shifting standard deviations in any combination affects the OC curve for the interaction. The vertical axis value (β) is not significantly different for any value of the mean or standard deviation. It remains constant at approximately $0.95(\alpha=0.05)$. Neither shifting means nor shifting standard deviations in any combination affects the OC curve for the interaction because the null hypothesis is never rejected for the interaction, except for some random occurrences. The numerical value can be seen from the raw data in Appendix B.

With-Interaction Results

The "with-interaction" results are the data obtained from the simulation where an interaction term is included in the generation of the data. The interaction term is the product of the appropriate levels of factors A and B. This forced interaction increases the probability of the interaction term being significant in the analysis. It also increases the probability that the shifting standard deviation will affect the OC curve for the interaction. The raw data from the "with-interaction" simulation is in Appendix E.

OC Curves

The axes of the OC curves are the same as they are in the no-interaction case. As in the no-interaction case, two primary patterns appear in the OC curves for the withinteraction data. The first pattern is similar to the first pattern for the no-interaction results. The set of curves in Figure 5, below, is representative of all the sets of OC curves where only factor A is shifting means regardless of which factors and levels are shifting standard deviations. The shape of the OC curves for A varies more in this set of data than with the no-interaction data set, but A is still the only factor to have an OC curve with values that deviate significantly from 0.95 .

Figure 5: OC Curves for With-Interaction Data where A is Shifting Means

The second pattern of OC curves for the with-interaction data is in Figure 6.
When compared to the second pattern for the no-interaction data, it is obvious that the OC curve for the interaction term AB has changed. It now has values for its OC curves
that are significantly different from 0.95 . Forcing an interaction into the data generation by including the product of factors A and B has affected the OC curve significantly. The complete set of OC curves for the with-interaction data is in Appendix F.

$$
\begin{gathered}
\text { Legend } \\
\begin{array}{|lllll}
\hline-s d=1 & ----s d=2 & \cdots \cdots \cdot s d=3 & -\cdots-\cdot s d=4 & -\cdots-\cdot s d=5 \\
\hline
\end{array}
\end{gathered}
$$

Figure 6: OC Curves for With-Interaction Data where A and B are Shifting Means

Again, observations can be made from the OC curves, but the same caveat still applies that observations are not as strong as statistical conclusions. As before, the statistical tests will be presented in the next section. The observations are as follows, with the first two being identical to the first two from the no-interaction section:

1. Shifting the standard deviation of any combination of factors does not meaningfully affect the OC curve for a particular factor when the mean of that factor does not shift.
2. When the mean of a particular factor is shifted, the shifting standard deviation value does meaningfully affect its OC curve.
3. To effect a change on the OC curve for an interaction, all the terms of that interaction must shift means.
4. The magnitude of the slope of the OC curve for the interaction is less likely to increase meaningfully between the mean shifts of 0 and 1 than the magnitudes of the slopes of the OC curves for the factors that make up the interaction.

Statistical Tests

The hypothesis tests for the with-interaction data were performed exactly the same way as for the no-interaction data. The results of the hypothesis tests for the OC curves above are in Table 13.

Table 13: Results of Hypothesis Tests for OC Curves for With-Interaction Data

	Means: SDs:	$\begin{aligned} & \text { A- } \\ & \text { A- } \end{aligned}$		Means: SDs:	$\begin{aligned} & \text { A-B- } \\ & \text { A- } \end{aligned}$	
	A	B	AB	A	B	AB
mean $=0$	Accept	Accept	Accept	Accept	Accept	Accept
mean $=1$	Reject	Accept	Accept	Reject	Reject	Accept
mean $=2$	Reject	Accept	Accept	Reject	Reject	Reject
mean $=3$	Reject	Accept	Accept	Reject	Reject	Reject
mean $=4$	Reject	Accept	Accept	Reject	Reject	Reject

Two patterns exist in the hypothesis test results that match the patterns in the OC curves. The pattern for only A shifting means is the same as in the no-interaction results analysis. A few of the results do not match, but for the reasons explained in the previous section, these can be attributed to random chance.

The pattern for both A and B shifting means is different from the no-interaction results analysis. The forced interaction in the data generation causes the interaction term to reject the null hypothesis for the last three mean shifts. An interesting result from this
test is in cell ${ }_{23}$, the cell for a mean shift of 1 under the interaction term. In the tests results shown above, the result was to accept the null hypothesis. However, of the twenty sets of combinations where both A and B shifted means, eight of the tests resulted in a conclusion to reject the null hypothesis. The number of occurrences suggest that this result is meaningful, but no obvious pattern exists that suggests what the meaning may be. The results of all the hypothesis tests are in Appendix G. The calculated test values for the hypothesis tests are with the raw data in Appendix E.

Validation of Observations

The first two observations are identical to the first two observation from the NoInteraction Results section and can be shown to be true in this case with the same reasoning.

The third observation is: To effect a change on the OC curve for an interaction, all the terms of that interaction must shift means. This statement is intuitive from looking at the graphs but can also be shown by the hypothesis tests. The only time the null hypothesis is rejected for the interaction is when a level of both factors is shifting means.

The fourth observation: The magnitude of the slope of the OC curve for the interaction is less likely to increase meaningfully between the mean shifts of 0 and 1 than the magnitudes of the slopes of the OC curves for the factors that make up the interaction. This observation is seen in the hypothesis test results by the frequency (twelve out of twenty times) that the null hypothesis for the interaction term where the mean shift is equal to 1 is accepted. It suggests that the mean shift must be more extreme to cause a
significant effect for the interaction than for the main factors. This indicates that the interaction responds more slowly to the data than the main factors do.

Differences

The primary differences between the no-interaction and with-interaction results are the OC curves for the interaction. In the former case, the OC curves do not vary significantly whereas in the latter case they do. To determine precisely where the data between the two cases differed significantly, the results of the hypothesis tests can be compared. The comparisons for the hypothesis test results shown earlier are in Table 14, below. The tables serve as an easy way to compare how the results for the two sets of data differed.

Table 14: Difference in Hypothesis Tests

	ans	$\begin{aligned} & \text { A- } \\ & \text { A- } \end{aligned}$		Means SDs:	$\begin{aligned} & \text { A-B- } \\ & \text { A- } \end{aligned}$	
	A	B	AB	A	B	AB
mean $=0$	0	0	0	0	0	0
mean $=1$	0	0	0	0	0	0
mean $=2$	0	0	0	0	0	Reject
mean $=3$	0	0	0	0	0	Reject
mean $=4$	0	0	0	0	0	Reject

The zero means no difference exists between the two tests. A "Reject" or "Accept" is the result of the test for the with-interaction data. In these cases, the nointeraction data obviously had the opposite result. The complete set of tables that show the differences are in Appendix H .

V. Summary and Conclusions

Summary

The objective of this research was to determine the effect of the heterogeneity of variance of a particular factor or group of factors on the operating characteristic (OC) curve for the mean of any factor or interaction in a designed experiment. To accomplish this, a simulation program was written to simulate a designed experiment. The simulation forced particular factors and groups of factors to shift variances and means, then performed an analysis of variance to determine which, if any, interactions or factors were significant in the experiment. The program simulated two cases: 1) no interaction effect in the system, and 2) with an interaction effect in the system.

The program executed the experiment five hundred times for each case and kept a count of the interactions and factors that were detected to be significant. The final output of the simulation was a proportion of detection of significance for each factor and interaction for 26 combinations of factors and levels shifting means and standard deviations. This output was obtained for each of the two cases above.

The data from the simulation were used to plot operating characteristic curves by subtracting the output value from one and plotting it. Then, hypothesis tests were performed to determine if the points that made up the operating characteristic curves were significantly different from each other. These hypothesis tests were performed by using a modified median test, where the median was substituted with the proportion of detection of significance, in effect making a 2×5 contingency table. In the course of making the OC
curves, several observations were made based on the repeated patterns made by the OC curves. These observations were then validated statistically using the results of the hypotheses tests and the patterns they formed. These statistically validated conclusions became the basis for the conclusions of the research.

Conclusions

The primary conclusions answer the question that was the basis of this research: What is the effect of heteroscedasticity on the operating characteristic curve in a designed experiment? The two conclusions that apply to the factors of a designed experiment follow:

1. The data did not provide enough evidence to support the statement that, in a designed experiment, the heterogeneity of variance of a particular factor or group of factors has a significant effect on the OC curve of the mean of any factor or interaction that is not shifting means. That is, unless a given factor or interaction were shifting means, any factor or combination of factors, including the given factor, could shift standard deviations without significantly affecting the OC curve of the mean for the given factor.
2. In the situation when the mean of a given factor does shift, shifting the standard deviation value does significantly affect the OC curve. The more the standard deviation shifts, the more probable is the acceptance of the null hypothesis.

The two conclusions that consider the effect of heteroscedasticity on the OC curve for the interaction term in a designed experiment follow:
3. To cause the OC curve of a two-way interaction to be significantly different at various levels of standard deviation shift, both of the factors that make up the interaction must shift means.
4. The OC curve for an interaction responds to a mean shift more slowly than the factors that make up the interaction.

Directions for Future Research

This study examined a 2^{2} full factorial experiment. Two level experiments with more than two factors could be addressed, as could two and three level fractional factorials. It would be interesting to see how the OC curve of a three-way interaction, when the simulation program was coded to force a three-way interaction into the experiment's response, would respond if exactly two of the factors in the interaction shifted means.

Other designs for experiments are excellent areas for future research: central composite designs, Latin squares, and split-plot designs are just a few. This research centers around a completely randomized design. Any design with blocking variables could consider different combinations of unequal variances with the blocking variable and the treatment variable. Mixed models of any design type would add another level to the study

Research could also be done to determine the effect of heteroscedasticity on an analysis of variance for any design-type with missing data. Different estimation procedures for the missing data affect the results of the ANOVA; adding unequal variances could affect the ANOVA even more.

The existing literature shows that heteroscedasticity with unequal sample sizes in a one-way analysis affects the F-test significantly. Further research could be performed to find the effect of unequal sample sizes in a two-way or higher classification with any of the various experimental designs discussed above.

Finally, this research concentrated on the effect of violating only one of the three major assumptions in an ANOVA. Along with unequal variance, the assumptions of normality and independence are also required to perform an ANOVA. In the literature search for this research, no study was found that concentrated on any of the assumptions in a classification higher than one-way. The effects of violating the normality and independence assumptions could be investigated in a manner similar to this research, or the problem could be paired with any of the variations listed above for another direction of study.

Bibliography

Anderson, V.L. and R.A. McLean, Design of Experiments: A Realistic Approach, Marcel Dekker, Inc., New York, 1974.

Bishop, T A. and E.J. Dudewicz, "Heteroscedastic ANOVA," Sankhya: The Indian Journal of Statistics, Vol. 34, Series B, Pts. 3 and 4, 1981, pp. 40-57.

Brown, M.B., and A.B. Forsythe, "The Small Sample Behavior of Some Statistics Which Test the Equality of Several Means," Technometrics, Vol. 16, No. 1, 1974, pp. 129-132.

Boneau, C.A., "The Effect of Violations of Assumptions Underlying the t Test," Psychological Bulletin, Vol. 57, No. 1, 1960, pp. 49-64.

Box, G. E. P., "Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance problems, I. Effect of Inequality of Variance in the One-Way Classification," The Annals of Mathematical Statistics, Vol. 25, 1954a, pp. 290302.

Box, G. E. P., "Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance problems, I. Effect of Inequality of Variance in the Two-Way Classification," The Annals of Mathematical Statistics, Vol. 25, 1954b, pp. 484498.

Conover, W. J., Practical Nonparametric Statistics, Second Edition, John Wiley \& Sons, New York, 1980.

Conover, W.J., Johnson, M.E. and Johnson, M.M., "A Comparative Study of Tests for Homogeneity of Variances, with Application to the Outer Continental Shelf Bidding Data," Technometrics, Vol. 23, No. 4, 1981, pp. 351-361.

Dudewicz, E.J., and Bishop, T. A., "Analysis of Variance with Unequal Variances," Journal of Quality Technology, Vol. 13, No. 3, 1981, pp. 111-114.

Fishman, G.S. and L.R. Moore, "A Statistical Evaluation of Multiplicative Congruential Random Number Generators with Modulus $2^{31}-1$," Journal of the American Statistical Association, Vol. 77, No. 377, 1982, pp. 129-136.

Glass, G.V. and J.C. Stanley, Statistical Methods in Education and Psychology. Englewood Cliffs, NJ, Prentice-Hall, 1970.

Glass, G.V., Peckham P.D., and Sanders, J.R., "Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance," Review of Education Research. Vol. 42, No. 2, 1972, pp. 237-288.

Law, A. M. And W.D. Kelton, Simulation Modeling and Analysis, Second Edition, McGraw-Hill, New York, 1991.

Lindquist, E. F., Design and Analysis of Experiments in Education and Psycholog: Boston, Houghton-Mifflin, 1953.

Marse, K. and S.D. Roberts, "Implementing a portable FORTRAN Uniform $(0,1)$ Generator," Simulation, October 1983, pp. 135-139.

Pritsker, A.A.B, Introduction to Simulation and SLAM II, Fourth Edition, Systems Publishing Corporation, West Lafayette, Indiana, 1995.

Rogan, J.C. and H.J. Keselman, "Is the ANOVA F-Test Robust to Variance Heterogeneity When Sample Sizes are Equal?: An Investigation Via a Coefficient of Variation," American Educational Research Journal, Vol. 14, No. 4, Fall 1977, pp. 493-498.

Scheffe, H., The Analysis of Variance, John Wiley \& Sons, Brisbane, 1959.
Schmidt, S.R. and R.G. Launsby, Understanding of Industrial Designed Experiments: Blending the Best of the Best Designed Experiment Techniques, 4th Edition, Air Academy Press, Colorado Springs, 1994.

Shewhart, W. A., Economic Control of Quality of Manufactured Product, American Society for Quality Control, Milwaukee, Wisconsin, 1980, p. 6.

Appendix A: Simulation Program

PROGRAM THESIS

CHARACTER*2 MEAN(26,2$), \mathrm{SD}(26,2)$

* The MEAN array has the factors and levels that will shift means. The
* SD array has the factors and levels that will shift sds. The four R
* variables hold uniform random numbers from the function UNIRAN.
*

REAL MEVAR(4,2),RSPNSE(4,9),SHIFT(6,6,3),R1,R2,R3,R4,UNIRAN
*

* The MEVAR array will hold the mean and variance of the rows in the
* DOE response matrix. RSPNSE will hold the raw data of the response
* matrix. SHIFT holds the levels of mean and sd shift and will also
* hold the type II error for A, B, and AB .
*

REAL AP,AM,BP,BM,APM,APSD,AMM,AMSD,BPM,BPSD,BMM,BMSD
*

* AP, AM, BP, and BM stand for $\mathrm{A}^{+}, \mathrm{A}-, \mathrm{B}+$, and $\mathrm{B}-$, respectively.
* An M afterward stands for Mean and an SD afterward stand for the
* standard deviaiton.
*

REAL FA,FB,FAB,FC,PI,R5,R6,R7,R8
*

* $F A$ is the F test value for factor A and so on for B and $A B$. FC is
* the critical F value with alpha $=.05, \mathrm{vl}=1$, and $\mathrm{v} 2=32$. The value is 4.152 .
*

REAL Q,GRNDAV,SBARSQ,MSE,MSBA,MSBB,MSBAB
*

* I, R, and C, and are counters for do loops. R stands for row and C stands
* for column. Q is the value of a single response. GRNDAV is first the
* sum of the averages of the DOE response matrix and then the Grand Average.
* SBARSQ is the sum of the squared variances. MSE is the mean square error.
* MSBA is the mean square between for factor A ; likewise for B and AB .
* Progseed holds the first seed and is used to send the seed to
* Marse and Roberts's random number function UNIRAN.
*

INTEGER X,Y,SIMREP,I,R,C,L,PROGSEED,A,B,D,E
*

* These integers are all DO loop counters. SIMREP stands for simulation
* replications.
*
*
* These data statements initialize the mean and sd arrays. Column 1
* is listed first, followed by column 2.
*

```
DATA MEAN/'A-','A-','A-','A-','A-','A-','A-','A+',
\(+\quad\) 'A-','A+','A-','A-','A-','A-','A+','A+',
```



```
+ 'A+','A+',' ',' ',' ',' ', ',' ','B-','B-',
```



```
\(+\quad\) ' \(\mathrm{B}-{ }^{\prime}, \mathrm{B}+{ }^{\prime}, ' \mathrm{~B}+{ }^{\prime}, ' \mathrm{~B}+{ }^{\prime}, ' \mathrm{~B}+{ }^{\prime}, \mathrm{B}+{ }^{\prime}, ' \mathrm{~B}+{ }^{\prime}, \mathrm{B}+{ }^{\prime}, ' \mathrm{~B}+{ }^{\prime} /\)
DATA SD/'A-','A+','A-','A+','A-','A+','A-','A-','A-','A-',
\(+\quad\) 'A-','A+','A-','A+','A-','A+','A-','A+',
\(+\quad\) 'A-','A+','A-','A+','A-','A+','A-','A+',
+ ' ',' ','B-','B-','B+','B+',',',',',' ',
\(+\quad\) 'B-','B-','B+','B+','B-','B-','B+','B+',
\(+\quad\) 'B-','B-','B+','B+','B-','B-','B+','B+'/
PROGSEED \(=1973272912\)
```

*
* This do loop initializes the SHIFT array with the correct numbers of
* mean and sd shift that each factor and level from the mean and sd arrays
* will go through.
* DO $10 \mathrm{X}=0,4$
SHIFT $(\mathrm{X}+2,1,1)=\mathrm{X}$
SHIFT $(1, \mathrm{X}+2,1)=\mathrm{X}+1$
10 CONTINUE
PRINT*,'THIS VERSION HAS CROSS-PRODUCTS FOR THE INTERACTION.'
*
* The I loop is to make the program execute for every value in the MEAN
* and SD arrays. Many of the variables are initialized to zero after
* this loop to reset them after each set of factors and levels shifts.
*

DO $220 \mathrm{I}=1,26$
SBARSQ $=0$

* These loops initialize the rest of the SHIFT array to zero.

DO $13 \mathrm{Z}=1$, 3
DO $12 \mathrm{X}=2,6$
DO $11 \mathrm{Y}=2,6$
SHIFT(X,Y,Z) $=0$
11 CONTINUE
12 CONTINUE
13 CONTINUE

* These loops initialize the RESPNSE array to zero.

DO $15 \mathrm{X}=1,4$
DO $14 \mathrm{Y}=1,9$
$\operatorname{RSPNSE}(\mathrm{X}, \mathrm{Y})=0$
14 CONTINUE
15 CONTINUE

$$
\mathrm{PI}=3.141593
$$

* The SIMREP loop is for the simulation replications. The X loop makes the
* program go through every row (mean shift) of the array SHIFT. The Y loop
* makes the program go through every column (sd shift) of the array SHIFT.

DO 100 SIMREP $=1,500$
DO $90 \mathrm{X}=1,5$
DO $80 \mathrm{Y}=1,5$

* These loops initialize the MEVAR array to zero.

DO $18 \mathrm{R}=1,4$
DO $16 \mathrm{C}=1,2$
$\operatorname{MEVAR}(\mathrm{R}, \mathrm{C})=0$
16 CONTINUE
18 CONTINUE
SBARSQ = 0
*

* Assigns the appropriate mean shift to the appropriate factor
* and level. The default is mean $=0$.

IF (MEAN (I, 1).EQ.'A+') THEN
$\mathrm{APM}=\operatorname{SHIFT}(\mathrm{X}+1,1,1)$
ELSE
$\mathrm{APM}=0.0$
ENDIF
IF (MEAN(I, 1).EQ 'A-') THEN
$\mathrm{AMM}=\mathrm{SHIFT}(\mathrm{X}+1,1,1)$
ELSE
$\mathrm{AMM}=0.0$
ENDIF
IF (MEAN(I,2).EQ.'B+') THEN
BPM $=\operatorname{SHIFT}(X+1,1,1)$
ELSE
BPM $=0.0$
ENDIF
IF (MEAN(I,2).EQ.'B-') THEN
BMM $=\operatorname{SHIFT}(\mathrm{X}+1,1,1)$
ELSE
$\mathrm{BMM}=0.0$
ENDIF
*

* Assigns the appropriate sd shift to the appropriate factor
* and level. The default is $s d=1$.

IF (SD(I, 1).EQ.'A+') THEN
$\operatorname{APSD}=\operatorname{SHIFT}(1, \mathrm{Y}+1,1)$

> ELSE $$
\mathrm{APSD}=1.0
$$

ENDIF
IF (SD(I,1).EQ.'A-') THEN
$\operatorname{AMSD}=\operatorname{SHIFT}(1, Y+1,1)$
ELSE
$\mathrm{AMSD}=1.0$
ENDIF
IF (SD(I, 2).EQ.'B+') THEN
$\operatorname{BPSD}=\operatorname{SHIFT}(1, \mathrm{Y}+1,1)$
ELSE
BPSD $=1.0$
ENDIF
IF (SD(I,2) EQ.'B-') THEN
BMSD $=\operatorname{SHIFT}(1, Y+1,1)$
ELSE
$\mathrm{BMSD}=1.0$
ENDIF
*

* These loops generate random numbers and add the appropriate numbers
* together to get the response. The "truth" function is the sum of the
* appropriate levels of factors for the no-interaction case and the sum plus the product for
* the with-interaction case. R is for the rows of the DOE response matrix and C is for the * columns. UNIRAN is the function for the uniform random numbers.
*

```
DO \(30 \mathrm{R}=1,4\)
    DO \(25 \mathrm{C}=1,9\)
    R1 = UNIRAN(PROGSEED)
    R2 = UNIRAN(PROGSEED)
    R3 \(=\) UNIRAN(PROGSEED)
    R4 = UNIRAN(PROGSEED)
    R5 \(=\) UNIRAN(PROGSEED)
    R6 = UNIRAN(PROGSEED)
    R7 \(=\) UNIRAN(PROGSEED)
    R8 = UNIRAN(PROGSEED)
    \(\mathrm{AP}=\mathrm{APM}+\mathrm{APSD}{ }^{*} \operatorname{SQRT}\left(-2^{*} \operatorname{LOG}(\mathrm{R} 1)\right)^{*} \operatorname{COS}\left(2^{*} \mathrm{PI}{ }^{*} \mathrm{R} 2\right)\)
    \(\mathrm{AM}=\mathrm{AMM}+\mathrm{AMSD} * \mathrm{SQRT}\left(-2^{*} \mathrm{LOG}(\mathrm{R} 3)\right)^{*} \mathrm{COS}\left(2^{*} \mathrm{PI} \mathrm{R}^{*} 4\right)\)
    \(\mathrm{BP}=\mathrm{BPM}+\mathrm{BPSD}{ }^{*} \operatorname{SQRT}\left(-2^{*} \operatorname{LOG}(\mathrm{R} 5)\right)^{*} \operatorname{COS}\left(2^{*} \mathrm{PI}^{*} \mathrm{R} 6\right)\)
```


*

* The settings of the levels change with each row.
*

IF (R.EQ.1) $\mathrm{Q}=\mathrm{AM}+\mathrm{BM}+\mathrm{AM} \mathrm{A}^{*} \mathrm{BM}$

* For the no-interaction case, $\mathrm{Q}=\mathrm{AM}+\mathrm{BM}$

$$
\text { IF (R.EQ.2) } \mathrm{Q}=\mathrm{AM}+\mathrm{BP}+\mathrm{AM} \mathrm{M}^{*} \mathrm{BP}
$$

* For the no-interaction case, $\mathrm{Q}=\mathrm{AM}+\mathrm{BP}$ IF (R.EQ.3) $\mathrm{Q}=\mathrm{AP}+\mathrm{BM}+\mathrm{AP}$ *BM
* For the no-interaction case, $\mathrm{Q}=\mathrm{AP}+\mathrm{BM}$ IF (R.EQ 4) $\mathrm{Q}=\mathrm{AP}+\mathrm{BP}+\mathrm{AP}$ *BP
* For the no-interaction case, $\mathrm{Q}=\mathrm{AP}+\mathrm{BP}$ $\operatorname{RSPNSE}(\mathrm{R}, \mathrm{C})=\mathrm{Q}$
*
* Column 1 of MEVAR is being used to add the raw data.
* Here, it just holds sums.
*

$\operatorname{MEVAR}(R, 1)=\operatorname{MEVAR}(R, 1)+Q$
25 CONTINUE
30 CONTINUE
DO $40 \mathrm{~L}=1,4$
*

* Now, column 1 of MEVAR holds the means of each row.
*

$\operatorname{MEVAR}(L, 1)=\operatorname{MEVAR}(L, 1) / 9.0$
40
CONTINUE

DO $60 \mathrm{R}=1,4$
DO $50 \mathrm{C}=1,9$
*

* Column 2 of MEVAR is collecting the sum for the numerator of the
* equation for variance.
*

$\operatorname{MEVAR}(\mathrm{R}, 2)=\operatorname{MEVAR}(\mathrm{R}, 2)+\left((\operatorname{RSPNSE}(\mathrm{R}, \mathrm{C})-\operatorname{MEVAR}(\mathrm{R}, 1))^{* *} 2\right)$
50 CONTINUE
60 CONTINUE
DO $70 \mathrm{R}=1,4$
*

* Column 2 of MEVAR will now hold the variances of each row.
* SBARSQ is the sum of the variances.
*

$$
\operatorname{MEVAR}(\mathrm{R}, 2)=\operatorname{MEVAR}(\mathrm{R}, 2) / 8.0
$$

$$
\mathrm{SBARSQ}=\mathrm{SBARSQ}+\mathrm{MEVAR}(\mathrm{R}, 2)
$$

70 CONTINUE
*

* MSE is the average of the variances for each row.
* MSB is N/4 times delta squared. In all cases, $\mathrm{N}=36$.
* So, the delta squareds are multiplied by 9 .
*

$$
\begin{aligned}
& \text { MSE }=\operatorname{SBARSQ} / 4.0 \\
& \operatorname{MSBA}=9.0^{*}((((\operatorname{MEVAR}(3,1)+\operatorname{MEVAR}(4,1)) / 2.0)- \\
& \left.\quad((\operatorname{MEVAR}(1,1)+\operatorname{MEVAR}(2,1)) / 2.0))^{* *} 2\right) \\
& \operatorname{MSBB}=9.0^{*}((((\operatorname{MEVAR}(2,1)+\operatorname{MEVAR}(4,1)) / 2.0)-
\end{aligned}
$$

```
    + ((MEVAR(1,1)+MEVAR(3,1))/2.0))**2)
        MSBAB = 9.0 * ((((MEVAR(1,1) + MEVAR(4,1)) / 2.0) -
    + ((MEVAR(2,1)+MEVAR(3,1))/2.0))**2)
```

*
* The observed F effect for any factor or interaction is the MSB of that
* factor or interaction divided by the MSE.

$$
\begin{aligned}
& \mathrm{FA}=\mathrm{MSBA} / \mathrm{MSE} \\
& \mathrm{FB}=\mathrm{MSBB} / \mathrm{MSE} \\
& \mathrm{FAB}=\mathrm{MSBAB} / \mathrm{MSE} \\
& \mathrm{FC}=4.152
\end{aligned}
$$

*
* The IF statements are equivalent to the last step of a hypothesis
* test. If the observed F is greater than the critical F, then the
* conclusion is that the factor or interaction is significant. If this is
* the case, 1 is added to the appropriate cell in the SHIFT matrix.
* At this point, the matrix values are the number of times a factor
* or interaction was signigicant.
*

$$
\begin{array}{ll}
& \text { IF }(\text { FA.GT.FC }) \\
+ & \text { SHIFT(X }+1, \mathrm{Y}+1,1)=\operatorname{SHIFT}(\mathrm{X}+1, \mathrm{Y}+1,1)+1.0 \\
+\quad & \text { IF }(\mathrm{FB} \cdot \mathrm{GT} \cdot \mathrm{FC}) \\
+\quad \text { SHIFT }(\mathrm{X}+1, \mathrm{Y}+1,2)=\operatorname{SHIFT}(\mathrm{X}+1, \mathrm{Y}+1,2)+1.0 \\
+\quad & \text { IF (FAB.GT.FC) } \\
+\quad \text { SHIFT }(\mathrm{X}+1, \mathrm{Y}+1,3)=\operatorname{SHIFT}(\mathrm{X}+1, \mathrm{Y}+1,3)+1.0
\end{array}
$$

*
* The end of the X, Y, and SIMREP loops.
*

80 CONTINUE
90 CONTINUE
100 CONTINUE
*

* This loop divides the sums in the SHIFT array by the number of simulation
* replications, which gives the proportion of time each factor or
* interaction was significant. These are the values that will be compared
* to the theoretical calculations. OC curves will aslo be made from these
* values.
*

DO $130 \mathrm{Z}=1,3$
DO $120 \mathrm{R}=1,5$

$$
\text { DO } 110 \mathrm{C}=1,5
$$

$$
\operatorname{SHIFT}(\mathrm{R}+1, \mathrm{C}+1, Z)=\operatorname{SHIFT}(\mathrm{R}+1, \mathrm{C}+1, \mathrm{Z}) /(\mathrm{REAL}(\mathrm{SIMREP})-1)
$$

120 CONTINUE
130 CONTINUE
*

* This section prints the data. It is more complicated than necessary because it
* printed so the Excel could read it as matrices.
*

PRINT 140,MEAN(I,1),MEAN(I, 2)
140 FORMAT (1X,'MEANS. ',A,A)
PRINT 145,SD(I,1),SD(I,2)
145 FORMAT (1X,' SDs: ',A,A)
DO $210 \mathrm{Z}=1,3$
IF (Z.EQ.1) PRINT*'A'
IF (Z.EQ.2) PRINT*,'B'
IF (Z.EQ.3) PRINT*,'AB'
DO $200 \mathrm{R}=2,6$

$$
\mathrm{A}=2
$$

$B=3$
C=4
D=5
$\mathrm{E}=6$
PRINT 190,SHIFT(R,A,Z),SHIFT(R,B,Z),SHIFT(R,C,Z),SHIFT(R,D,Z),

+ SHIFT(R,E,Z)
190 FORMAT (1X,F7.5,' ',F7.5,' ',F7.5,' ',F7.5,' 'F7.5)
200 CONTINUE
210 CONTINUE
*
* This continues the I loop. Now, the program will go on to the next
* set of factors and levels that need to be shifted.
*

220 CONTINUE
END
*

* This is Marse and Roberts random number generator [Marse and Roberts, 1983].
*

REAL FUNCTION UNIRAN(SEED)
INTEGER B2E15,B2E16,HI15,HI31,LOW15,LOWPRD,MODLUS,

+ MULT1,MULT2,OVFLOW,SEED
DATA MULT1,MULT2/24112,26143/
DATA B2E15,B2E16,MODLUS/32768,65536,2147483647/
HI15 = SEED/B2E16
LOWPRD $=(\text { SEED-HI15*B2E16 })^{*}$ MULT1
LOW15 = LOWPRD/B2E16
HI31 = HI15*MULT1 + LOW15
OVFLOW = HI31/B2E15
SEED $=((($ LOWPRD - LOW15*B2E16 $)-$ MODLUS $)+$
+ (HI31 - OVFLOW*B2E15)*B2E16) + OVFLOW
IF (SEED.LT.0) SEED = SEED + MODLUS

```
HI15 = SEED/B2E16
LOWPRD = (SEED - HI15*B2E16)*MULT2
LOW15 = LOWPRD/B2E16
HI31 = HI15 * MULT2 + LOW15
OVFLOW = HI31/B2E15
SEED = (((LOWPRD - LOW15*B2E16) - MODLUS) +
+ (HI31 - OVFLOW*B2E15)*B2E16) + OVFLOW
IF (SEED.LT.0) SEED = SEED + MODLUS
UNIRAN = (2*(SEED/256) + 1)/16777216.0
RETURN
END
```


Appendix B: No-Interaction Data

MEANS: SD:					
A- A- mean $=0$ 0.0560 0.0580 0.0560 0.0840 0.0480 mean $=1$ 0.5160 0.3300 0.2600 0.1680 0.1140 mean $=2$ 0.9840 0.8780 0.6980 0.4480 0.3340 mean $=3$ 1.0000 1.0000 0.9400 0.7840 0.6800 mean $=4$ 1.0000 1.0000 0.9960 0.9740 0.8720 B mean $=0$ 0.0560 0.0480 0.0500 0.0600 0.0560 mean $=1$ 0.0360 0.0460 0.0540 0.0600 0.0660 mean $=2$ 0.0600 0.0600 0.0540 0.0620 0.0720 mean $=3$ 0.0520 0.0540 0.0420 0.0580 0.0540 mean $=4$ 0.0480 0.0400 0.0400 0.0560 0.0440 AB mean $=0$ 0.0460 0.0560 0.0500 0.0540 0.0560 mean $=1$ 0.0340 0.0580 0.0500 0.0620 0.0500 mean $=2$ 0.0580 0.0440 0.0420 0.0620 0.0620 mean $=3$ 0.0460 0.0640 0.0300 0.0520 0.0540 mean $=4$ 0.0380 0.0580 0.0400 0.0760 0.0520					

Hypothesis Test	
Calc. Test Value	Result
6.654	Accept
246.006	Reject
687.622	Reject
388.664	Reject
197.429	Reject

0.940	Accept
5.591	Accept
1.481	Accept
1.461	Accept
2.059	Accept

0.757	Accept
4.778	Accept
3.817	Accept
6.721	Accept
9.486	Accept

	$\begin{gathered} \text { MEANS: } \\ \text { SDs: } \\ \hline \end{gathered}$	$\begin{aligned} & \text { A- } \\ & \text { A+ } \end{aligned}$	Reject hypothesis if lest value >9.488		
A					
mean $=0$	0.0520	0.0500	0.0540	0.0460	0.0620
mean $=1$	0.5280	0.3560	0.2300	0.1800	0.1300
mean $=2$	0.9840	0.8780	0.6440	0.4920	0.3660
mean $=3$	1.0000	0.9980	0.9540	0.8080	0.6520
mean $=4$	1.0000	1.0000	0.9960	0.9620	0.8640
B					
mean $=0$	0.0700	0.0420	0.0720	0.0560	0.0840
mean $=1$	0.0540	0.0400	0.0660	0.0740	0.0520
mean $=2$	0.0640	0.0600	0.0640	0.0520	0.0660
mean $=3$	0.0440	0.0600	0.0640	0.0520	0.0440
mean $=4$	0.0580	0.0500	0.0560	0.0660	0.0420
AB					
mean $=0$	0.0640	0.0460	0.0580	0.0720	0.0840
mean $=1$	0.0520	0.0380	0.0540	0.0620	0.0540
mean $=2$	0.0460	0.0520	0.0760	0.0740	0.0660
mean $=3$	0.0560	0.0460	0.0620	0.0500	0.0400
mean $=4$	0.0520	0.0580	0.0700	0.0560	0.0660

Hypothesis Test	
Calc. Test Value	Result
1.408	Accept
250.786	Reject
605.516	Reject
438.176	Reject
198.342	Reject

8.620	Acccpt
6.423	Accept
1.086	Accept
3.327	Accept
3.141	Accept

6.772	Accept
3.083	Accept
6.021	Accept
3.036	Accept
1.931	Accept

							MEANS:
SDs:							

A-B-\end{array} \quad $$
\begin{array}{c}\text { Reject hypothesis if } \\
\text { test value > 9.488 }\end{array}
$$\right]\)

Hypothesis Test	
Calc. Test Value	Result
4.527	Accept
371.512	Reject
891.329	Reject
691.634	Reject
465.299	Reject

3.019	Accept
3.803	Accept
0.406	Accept
5.558	Accept
4.447	Accept

0.684	Accept
3.343	Accept
6.887	Accept
5.913	Accept
5.567	Accept

	$\begin{gathered} \text { MEANS: } \\ \text { SDs: } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A}- \\ \mathrm{A}+\mathrm{B}- \end{gathered}$	Reject hypothesis if test value >9.488			Hypothesis Test	
						Calc. Test	Result
A						Value	
mean $=0$	0.0520	0.0680	0.0620	0.0520	0.0500	2.285	Accept
mean $=1$	0.5340	0.2500	0.1860	0.1120	0.1160	332.647	Reject
mean $=2$	0.9860	0.7280	0.4720	0.3100	0.2100	806.832	Reject
mean $=3$	1.0000	0.9720	0.8260	0.5300	0.3700	804.341	Reject
mean $=4$	1.0000	0.9980	0.9560	0.8200	0.6060	518.744	Reject
B							
mean $=0$	0.0520	0.0520	0.0600	0.0660	0.0680	2.027	Accept
mean $=1$	0.0540	0.0460	0.0720	0.0440	0.0640	5.372	Accept
mean $=2$	0.0400	0.0600	0.0340	0.0540	0.0620	6.484	Accept
mean $=3$	0.0540	0.0500	0.0320	0.0560	0.0480	3.939	Accept
mean $=4$	0.0440	0.0500	0.0360	0.0420	0.0420	1.230	Accept
AB							
mean $=0$	0.0560	0.0360	0.0420	0.0480	0.0640	5.267	Accept
mean $=1$	0.0400	0.0520	0.0320	0.0560	0.0600	5.952	Accept
mean $=2$	0.0600	0.0520	0.0360	0.0480	0.0680	5.887	Accept
mean $=3$	0.0580	0.0540	0.0420	0.0540	0.0560	1.568	Accept
mean $=4$	0.0580	0.0460	0.0420	0.0560	0.0600	2.529	Accept

MEANS: SDs:					
A- A-B mean $=0$ 0.0480 0.0420 0.0480 0.0540 0.0600 mean $=1$ 0.5820 0.2840 0.1620 0.1500 0.1040 mean $=2$ 0.9920 0.7280 0.4440 0.2880 0.2240 mean $=3$ 1.0000 0.9640 0.8000 0.5560 0.4060 mean $=4$ 1.0000 1.0000 0.9480 0.7920 0.6640 B mean $=0$ 0.0500 0.0640 0.0460 0.0380 0.0660 mean $=1$ 0.0400 0.0620 0.0460 0.0480 0.0640 mean $=2$ 0.0300 0.0600 0.0560 0.0540 0.0400 mean $=3$ 0.0440 0.0620 0.0460 0.0440 0.0520 mean $=4$ 0.0420 0.0620 0.0300 0.0500 0.0580 AB 0.488					
mean $=0$	0.0680	0.0580	0.0700	0.0740	0.0440
mean $=1$	0.0460	0.0480	0.0560	0.0680	0.0740
mean $=2$	0.0440	0.0440	0.0460	0.0560	0.0560
mean $=3$	0.0400	0.0600	0.0620	0.0380	0.0460
mean $=4$	0.0560	0.0460	0.0580	0.0840	0.0560

Hypothesis Test	
Calc. Test Value	Result
1.956	Accept
393.989	Reject
828.323	Reject
702.173	Reject
+18.229	Reject

5.727	Accept
4.463	Accept
6.915	Accept
2.495	Accept
7.156	Accept

4.934	Accept
5.485	Accept
1.676	Accept
5.353	Accept
7.163	Accept

	MEANS: SDs:	$\begin{gathered} \mathrm{A}- \\ \mathrm{A}+\mathrm{B}+ \end{gathered}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0440	0.0480	0.0460	0.0580	0.0660
mean $=1$	0.5500	0.2900	0.1540	0.0840	0.1120
mean $=2$	0.9700	0.7300	0.5100	0.2860	0.2220
mean $=3$	1.0000	0.9620	0.7820	0.5840	0.4080
mean $=4$	1.0000	1.0000	0.9560	0.8080	0.6160
B					
mean $=0$	0.0300	0.0520	0.0480	0.0660	0.0480
mean $=1$	0.0660	0.0520	0.0540	0.0400	0.0760
mean $=2$	0.0720	0.0540	0.0700	0.0420	0.0620
mean $=3$	0.0500	0.0780	0.0420	0.0540	0.0580
mean $=4$	0.0440	0.0560	0.0540	0.0480	0.0440
AB					
mean $=0$	0.0320	0.0560	0.0460	0.0720	0.0680
mean $=1$	0.0460	0.0520	0.0420	0.0480	0.0600
mean $=2$	0.0580	0.0400	0.0520	0.0520	0.0660
mean $=3$	0.0480	0.0500	0.0540	0.0580	0.0520
mean $=4$	0.0380	0.0440	0.0440	0.0540	0.0480

Hypothesis Test	
Calc. Test Value	Result
3.496	Accept
$\mathbf{4 0 4 . 4 4 2}$	Reject
780.888	Reject
669.559	Reject
503.461	Reject

7.118	Accept
7.030	Accept
5.390	Accept
6.795	Accept
1.334	Accept

10.317	Reject
1.986	Accept
3.580	Accept
0.596	Accept
1.599	Accept

| | MEANS:
 SDS: | A-B-
 A- |
| :--- | :---: | :---: | :---: | :---: | :---: |
|
 mean $=0$ 0.0400 0.0440 0.0500 0.0420 0.0500
 mean $=1$ 0.5480 0.3100 0.2500 0.1680 0.1320
 mean $=2$ 0.9860 0.8660 0.6540 0.4660 0.3620
 mean $=3$ 1.0000 1.0000 0.9420 0.7920 0.6540
 mean $=4$ 1.0000 1.0000 0.9960 0.9560 0.8700
 B
 mean $=0$ 0.0420 0.0520 0.0400 0.0440 0.0580
 mean $=1$ 0.5120 0.3460 0.2100 0.1880 0.1140
 mean $=2$ 0.9880 0.9040 0.6640 0.5260 0.3640
 mean $=3$ 1.0000 0.9960 0.9400 0.7960 0.6560
 mean $=4$ 1.0000 1.0000 1.0000 0.9680 0.8620
 AB
 mean $=0$ 0.0400 0.0540 0.0400 0.0500 0.0620
 mean $=1$ 0.0640 0.0460 0.0400 0.0640 0.0540
 mean $=2$ 0.0600 0.0320 0.0500 0.0500 0.0500
 mean $=3$ 0.0360 0.0480 0.0580 0.0440 0.0480
 mean $=4$ 0.0640 0.0460 0.0480 0.0440 0.0580 | | |

Hypothesis Test	
Calc. Test Value	Result
0.982	Accept
267.075	Reject
618.777	Reject
425.604	Reject
182.264	Reject

2.544	Accept
248.638	Reject
626.612	Reject
412.682	Reject
217.513	Reject

3.814	Accept
4.526	Accept
4.464	Accept
2.833	Accept
3.002	Accept

| | MEANS:
 SDs: | A+B-
 A- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reject hypothesis if
 test value >9.488
 mean $=0$ 0.0480 0.0360 0.0540 0.0360 0.0720
 mean $=1$ 0.5260 0.3420 0.2520 0.1540 0.1280
 mean $=2$ 0.9860 0.8380 0.6660 0.4740 0.3380
 mean $=3$ 1.0000 1.0000 0.9500 0.8100 0.6700
 mean $=4$ 1.0000 1.0000 0.9960 0.9620 0.8740
 B
 mean $=0$ 0.0540 0.0460 0.0600 0.0580 0.0460
 mean $=1$ 0.5680 0.3720 0.1900 0.1600 0.1360
 mean $=2$ 0.9800 0.8600 0.6720 0.4560 0.3620
 mean $=3$ 1.0000 0.9920 0.9500 0.8100 0.6300
 mean $=4$ 1.0000 1.0000 0.9980 0.9540 0.8680
 AB 0.0560
 mean $=0$ 0.0520 0.0540 0.0500 0.0520 0.0560
 mean $=1$ 0.0440 0.0500 0.0700 0.0740 0.0520
 mean $=2$ 0.0380 0.0400 0.0460 0.0480 0.0560
 mean $=3$ 0.0440 0.0460 0.0460 0.0620 0.0600
 mean $=4$ 0.0520 0.0540 0.0440 0.0440 0.0460 | | |

Hypothesis Test	
Calc. Test Value	Result
9.543	Reject
258.017	Reject
615.938	Reject
408.499	Reject
180.025	Reject

1.728	Accept
329.903	Reject
613.152	Reject
457.794	Reject
188.220	Reject

0.208	Accept
6.369	Accept
2.335	Accept
3.057	Accept
0.963	Accept

	MEANS: SDs:	$\begin{gathered} \text { A-B+ } \\ \text { A- } \end{gathered}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0380	0.0580	0.0560	0.0880	0.0560
mean $=1$	0.5740	0.3740	0.2380	0.1760	0.1300
mean $=2$	0.9800	0.8740	0.6760	0.4980	0.3160
mean $=3$	1.0000	0.9960	0.9380	0.8180	0.6560
mean $=4$	1.0000	1.0000	1.0000	0.9640	0.8540
B					
mcan $=0$	0.0620	0.0500	0.0620	0.0460	0.0700
mean $=1$	0.5400	0.3220	0.2420	0.1460	0.1500
mean $=2$	0.9820	0.8840	0.6380	0.5060	0.3680
mean $=3$	1.0000	0.9920	0.9440	0.8200	0.6320
mean $=4$	1.0000	1.0000	1.0000	0.9640	0.8740
AB					
mean $=0$	0.0520	0.0660	0.0540	0.0420	0.0760
mean $=1$	0.0580	0.0520	0.0460	0.0460	0.0740
mean $=2$	0.0680	0.0620	0.0460	0.0580	0.0600
mean $=3$	0.0580	0.0480	0.0600	0.0400	0.0600
mean $=4$	0.0440	0.0300	0.0460	0.0440	0.0720

Hypothesis Test	
Calc. Test Value	Result
11.678	Reject
307.272	Reject
660.578	Reject
408.249	Reject
227.900	Reject

3.514	Accept
262.063	Reject
597.969	Reject
447.388	Reject
190.161	Reject

6.369	Accept
5.185	Accept
2.356	Accept
3.145	Accept
10.371	Reject

	MEANS: SDs:	$\begin{gathered} \mathrm{A}+\mathrm{B}+ \\ \mathrm{A}- \end{gathered}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0480	0.0340	0.0580	0.0560	0.0660
mean $=1$	0.5140	0.3820	0.2260	0.1500	0.1340
mean $=2$	0.9800	0.8820	0.6560	0.4080	0.3380
mean $=3$	1.0000	0.9940	0.9400	0.7760	0.6560
mean $=4$	1.0000	1.0000	0.9940	0.9640	0.8400
B					
mean $=0$	0.0620	0.0520	0.0680	0.0640	0.0520
mean $=1$	0.5380	0.3640	0.2320	0.1840	0.1400
mean $=2$	0.9920	0.8560	0.6740	0.4580	0.3820
mean $=3$	1.0000	0.9940	0.9340	0.7840	0.6680
mean $=4$	1.0000	1.0000	0.9960	0.9820	0.8760
AB					
mean $=0$	0.0340	0.0520	0.0660	0.0620	0.0640
mean $=1$	0.0360	0.0720	0.0640	0.0580	0.0560
mean $=2$	0.0520	0.0540	0.0480	0.0520	0.0600
mean $=3$	0.0420	0.0320	0.0660	0.0500	0.0560
mean $=4$	0.0440	0.0620	0.0440	0.0520	0.0540

Hypothesis Test	
Calc. Test Value	Result
5.913	Accept
262.916	Reject
702.903	Reject
414.358	Reject
242.098	Reject

1.884	Accept
251.894	Reject
604.134	Reject
388.459	Reject
202.008	Reject

6.658	Accept
6.646	Accept
0.762	Accept
7.234	Accept
2.355	Accept

	MEANS: SDs:	$\begin{aligned} & \text { A-B- } \\ & \text { A-B- } \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0440	0.0620	0.0520	0.0500	0.0600
mean $=1$	$0.53+0$	0.2560	0.1580	0.1300	0.0860
mean $=2$	0.9900	$0.73+0$	0.5040	0.2960	0.1800
mean $=3$	1.0000	0.9740	0.7980	0.5640	0.4080
mean $=4$	1.0000	1.0000	0.9480	0.8160	0.6500
B					
mcan $=0$	0.0420	0.0560	0.0380	0.0600	0.0440
mean $=1$	0.5540	0.2260	0.1560	0.1440	0.1020
mean $=2$	0.9720	0.7520	0.4400	0.3100	0.2100
mean $=3$	1.0000	0.9560	0.7800	0.5600	0.3840
mean $=4$	1.0000	1.0000	0.9440	0.8240	0.6520
AB					
mean $=0$	0.0600	0.0520	0.0540	0.0580	0.0560
mean $=1$	0.0620	0.0420	0.0320	0.0700	0.0600
mean $=2$	0.0600	0.0420	0.0600	0.0540	0.0500
mean $=3$	0.0600	0.0500	0.0460	0.0400	0.0400
mean $=4$	0.0480	0.0480	0.0640	0.0440	0.0520

Hypothesis Test	
Calc. Test Value	Result
2.161	Accept
361.058	Reject
866.902	Reject
708.492	Reject
436.773	Reject

3.939	Accept
371.280	Reject
811.027	Reject
707.428	Reject
$\mathbf{4 2 8 . 7 7 2}$	Reject

0.378	Accept
9.736	Reject
2.271	Accept
3.077	Accept
2.437	Accept

MEANS: SDs:					
 A-B- A+B- mean $=0$ 0.0480 0.0460 0.0300 0.0480 0.0720 mean $=1$ 0.5200 0.2560 0.1580 0.0980 0.0640 mean $=2$ 0.9920 0.7620 0.4180 0.3000 0.2460 mean $=3$ 1.0000 0.9560 0.7900 0.6140 0.4080 mean $=4$ 1.0000 1.0000 0.9540 0.8260 0.6600 B mean $=0$ 0.0500 0.0500 0.0500 0.0460 0.0380 mean $=1$ 0.5280 0.2640 0.1300 0.1340 0.0840 mean $=2$ 0.9880 0.6980 0.4980 0.3060 0.2440 mean $=3$ 1.0000 0.9660 0.7960 0.5780 0.4660 mean $=4$ 1.0000 0.9980 0.9600 0.7640 0.6000 AB mean $=0$ 0.0600 0.0280 0.0360 0.0340 0.0620 mean $=1$ 0.0500 0.0560 0.0400 0.0780 0.0460 mean $=2$ 0.0540 0.0520 0.0640 0.0440 0.0740 mean $=3$ 0.0500 0.0480 0.0420 0.0520 0.0580 mean $=4$ 0.0380 0.0340 0.0300 0.0560 0.0740					

Hypothesis Test	
Calc. Test Value	Result
9.703	Reject
392.509	Reject
831.207	Reject
651.449	Reject
428.692	Reject

1.219	Accept
370.625	Reject
745.678	Reject
607.579	Reject
534.768	Reject

11.887	Reject
8.378	Accept
4.967	Accept
1.432	Accept
15.224	Reject

MEANS: SDs:					
A-B- A-B + mean $=0$ 0.0480 0.0380 0.0540 0.0560 0.0480 mean $=1$ 0.5500 0.2440 0.1660 0.1100 0.0940 mean $=2$ 0.9900 0.7840 0.4560 0.3160 0.2040 mean $=3$ 1.0000 0.9820 0.8220 0.5340 0.3900 mean $=4$ 1.0000 1.0000 0.9640 0.8100 0.6360 B mean $=0$ 0.0540 0.0520 0.0580 0.0520 0.0600 mean $=1$ 0.5360 0.2160 0.1640 0.1180 0.1240 mean $=2$ 0.9900 0.7500 0.4460 0.3080 0.2280 mean $=3$ 1.0000 0.9820 0.7860 0.5560 0.3760 mean $=4$ 1.0000 1.0000 0.9460 0.7620 0.6040 AB mean $=0$ 0.0380 0.0500 0.0380 0.0340 0.0400 mean $=1$ 0.0500 0.0440 0.0540 0.0440 0.0580 mean $=2$ 0.0300 0.0540 0.0680 0.0520 0.0600 mean $=3$ 0.0480 0.0640 0.0400 0.0540 0.0600 mean $=4$ 0.0520 0.0500 0.0340 0.0500 0.0600					

Hypothesis Test	
Calc. Test Value	Result
2.120	Accept
390.665	Reject
872.048	Reject
784.654	Reject
481.725	Reject

0.506	Accept
342.645	Reject
819.476	Reject
765.676	Reject
512.813	Reject

1.875	Accept
1.600	Accept
8.046	Accept
3.621	Accept
3.814	Accept

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0660	0.0360	0.0560	0.0400	0.0520
mean $=1$	0.5620	0.2560	0.1660	0.1240	0.0860
mean $=2$	0.9840	0.7080	0.4240	0.2680	0.2160
mean $=3$	1.0000	0.9880	0.7940	0.5340	0.4280
mean $=4$	1.0000	1.0000	0.9580	0.8240	0.6500
B					
mcan $=0$	0.0520	0.0700	0.0380	0.0420	0.0580
mean $=1$	0.5340	0.2500	0.1640	0.1100	0.0740
mean $=2$	0.9900	0.7460	0.4040	0.2920	0.2180
mean $=3$	1.0000	0.9820	0.8140	0.5700	0.4240
mean $=4$	1.0000	0.9980	0.9660	0.8180	0.6020
AB					
mean $=0$	0.0360	0.0460	0.0460	0.0440	0.0500
mean $=1$	0.0520	0.0660	0.0600	0.0620	0.0480
mean $=2$	0.0440	0.0500	0.0580	0.0540	0.0320
mean $=3$	0.0400	0.0440	0.0560	0.0480	0.0560
mean $=4$	0.0420	0.0380	0.0740	0.0440	0.0480

$|$| Hypothesis Test | | |
| :---: | :---: | :---: |
| Calc. Test
 Value | Result | |
| 6.232 | Accept | |
| 403.194 | Reject | |
| 832.885 | Reject | |
| 721.464 | Reject | |
| 450.445 | Reject | |
| | | |
| 6.654 | Accept | |
| 387.806 | Reject | |
| 859.334 | Reject | |
| 705.358 | Reject | |
| 540.617 | Reject | |
| | | |
| 1.263 | Accept | |
| 2.019 | Accept | |
| 4.535 | Accept | |
| 2.206 | Accept | |
| 8.773 | Accept | |

	MEANS: SDs:	$\begin{aligned} & \text { A+B- } \\ & \text { A-B- } \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0300	0.05 ${ }^{\text {d }}$	0.0480	0.0440	0.0540
mean $=1$	0.5820	0.2280	0.1460	0.1200	0.0840
mean $=2$	0.9780	0.7200	0.4520	0.2900	0.2200
mean $=3$	1.0000	0.9700	0.8120	0.5460	0.3900
mean $=4$	1.0000	1.0000	0.9440	0.7740	0.5880
B					
mcan $=0$	0.0320	0.0480	0.0500	0.0560	0.0380
mean $=1$	0.5760	0.2280	0.1540	0.0960	0.0980
mean $=2$	0.9900	0.7360	0.4400	0.3340	0.1800
mean $=3$	1.0000	0.9860	0.7460	0.5560	0.3540
mean $=4$	1.0000	1.0000	0.9640	0.7800	0.6440
AB					
mean $=0$	0.0600	0.0560	0.0380	0.0640	0.0580
mean $=1$	0.0700	0.0460	0.0420	0.0360	0.0540
mean $=2$	0.0500	0.0300	0.0680	0.0440	0.0460
mean $=3$	0.0380	0.0800	0.0640	0.0600	0.0460
mean $=4$	0.0500	0.0600	0.0340	0.0600	0.0520

Hypothesis Test	
Calc. Test Value	Result
4.466	Accept
461.229	Reject
796.398	Reject
749.388	Reject
533.857	Reject

4.356	Accept
+53.640	Reject
850.151	Reject
784.324	Reject
472.560	Reject

3.881	Accept
7.331	Accept
8.241	Accept
9.830	Reject
4.660	Accept

	$\begin{gathered} \text { MEANS: } \\ \text { SDs: } \end{gathered}$	$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$	Reject hypothesis if test value >9.488			Hypothesis Test	
						Calc. Test	Result
A						Value	
mean $=0$	0.0640	0.0580	0.0420	0.0600	0.0640	3.051	Accept
mean $=1$	0.5200	0.2600	0.1380	0.1180	0.0760	374.224	Reject
mean $=2$	0.9840	0.7200	0.4440	0.2560	0.1900	880.567	Reject
mean $=3$	1.0000	0.9700	0.8260	0.5800	0.3780	758.840	Reject
mean $=4$	1.0000	0.9980	0.9560	0.8040	0.6500	444.347	Reject
B							
mean $=0$	0.0500	0.0500	0.0480	0.0580	0.0620	1.451	Accept
mean $=1$	0.5340	0.2300	0.1480	0.1100	0.0860	388.198	Reject
mean $=2$	0.9920	0.7340	0.4460	0.3040	0.2140	830.252	Reject
mean $=3$	1.0000	0.9760	0.7940	0.5780	0.4540	637.161	Reject
mean $=4$	1.0000	0.9980	0.9460	0.8380	0.6300	466.970	Reject
AB							
mean $=0$	0.0540	0.0540	0.0460	0.0500	0.0560	0.649	Accept
mean $=1$	0.0620	0.0600	0.0580	0.0500	0.0480	1.478	Accept
mean $=2$	0.0460	0.0600	0.0440	0.0540	0.0700	4.371	Accept
mean $=3$	0.0520	0.0540	0.0400	0.0620	0.0520	2.515	Accept
mean $=4$	0.0620	0.0620	0.0640	0.0480	0.0500	2.121	Accept

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}-\mathrm{B}+ \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0640	0.0760	0.0520	0.0640	0.0760
mean $=1$	0.5300	0.2740	0.1400	0.1240	0.0960
mean $=2$	0.9920	0.7440	$0 .+260$	0.2860	0.2120
mean $=3$	1.0000	0.9740	0.7540	0.5700	0.4120
mean $=4$	1.0000	1.0000	0.9520	0.8020	0.6120
B					
mcan $=0$	0.0460	0.0580	0.0540	0.0680	0.0580
mean $=1$	0.5360	0.2580	0.1580	0.0960	0.0760
mean $=2$	0.9820	0.7160	0.4560	0.2780	0.2460
mean $=3$	1.0000	0.9640	0.8120	0.5960	0.4080
mean $=4$	1.0000	0.9980	0.9500	0.8180	0.6740
AB					
mean $=0$	0.0400	0.0480	0.0460	0.0760	0.0760
mean $=1$	0.0500	0.0620	0.0420	0.0500	0.0500
mean $=2$	0.0560	0.0420	0.0500	0.0580	0.0500
mean $=3$	0.0480	0.0720	0.0420	0.0500	0.0220
mean $=4$	0.0600	0.0460	0.0480	0.0540	0.0560

Hypothesis Test	
Calc. Test Value	Result
3.252	Accept
361.662	Reject
864.935	Reject
676.508	Reject
504.241	Reject

2.359	Accept
404.960	Reject
780.716	Reject
684.795	Reject
398.086	Reject

11.245	Reject
2.124	Accept
1.614	Accept
14.400	Reject
1.328	Accept

| | MEANS:
 SDS: | A+B-
 A+B+ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Reject hypothesis if
 test value >9.488
 mean $=0$ 0.0400 0.0440 0.0320 0.0560 0.0500
 mean $=1$ 0.5860 0.2820 0.1640 0.0940 0.0780
 mean $=2$ 0.9800 0.7200 0.4420 0.2840 0.2480
 mean $=3$ 1.0000 0.9760 0.8100 0.5600 0.4140
 mean $=4$ 1.0000 1.0000 0.9520 0.7540 0.6300
 B
 mean $=0$ 0.0560 0.0500 0.0460 0.0480 0.0600
 mean $=1$ 0.5280 0.2520 0.1680 0.1260 0.1080
 mean $=2$ 0.9880 0.7320 0.4500 0.2740 0.2340
 mean $=3$ 1.0000 0.9760 0.7900 0.5900 0.4160
 mean $=4$ 1.0000 1.0000 0.9760 0.8460 0.6340
 AB 0.0760 0.0440
 mean $=0$ 0.0500 0.0480 0.0560 0.0760 0.0700
 mean $=1$ 0.0620 0.0660 0.0380 0.0480 0.0440
 mean $=2$ 0.0560 0.0660 0.0540 0.0460 0.0 .0
 mean $=3$ 0.0580 0.0560 0.0660 0.0560 0.0460
 mean $=4$ 0.0520 0.0500 0.0580 0.0520 0.0480 | | |

Hypothesis Test	
Calc. Test Value	Result
3.997	Accept
$\mathbf{+ 7 8 . 1 1 3}$	Reject
776.298	Reject
713.560	Reject
484.269	Reject

1.379	Accept
328.580	Reject
824.104	Reject
680.684	Reject
510.820	Reject

6.147	Accept
6.690	Accept
3.065	Accept
1.909	Accept
0.568	Accept

	MEANS: SDs:	$\begin{aligned} & \text { A-B+ } \\ & \text { A-B- } \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0400	0.0540	0.0580	0.0360	0.0620
mean $=1$	0.5340	0.2420	0.1380	0.0980	0.1200
mean $=2$	0.9840	0.7680	0.4780	0.3020	0.2080
mean $=3$	1.0000	0.9780	0.8180	0.5680	0.3920
mean $=4$	1.0000	1.0000	0.9540	0.8000	0.6280
B					
mcan $=0$	0.0320	0.0540	0.0380	0.0640	0.0620
mean $=1$	0.5400	0.2480	0.1540	0.1280	0.0780
mean $=2$	0.9820	0.7240	0.4920	0.3360	0.2060
mean $=3$	1.0000	0.9740	0.7960	0.5760	0.3780
mean $=4$	1.0000	1.0000	0.9540	0.8060	0.6280
AB					
mean $=0$	0.0480	0.0860	0.0420	0.0680	0.0640
mean $=1$	0.0660	0.0500	0.0600	0.0540	0.0540
mean $=2$	0.0420	0.0440	0.0520	0.0580	0.0380
mean $=3$	0.0660	0.0380	0.0420	0.0620	0.0560
mean $=4$	0.0460	0.0740	0.0340	0.0540	0.0500

Hypothesis Test		
Calc. Test Value	Result	
5.474	Accept	
372.505	Reject	
846.828	Reject	
750.110	Reject	
480.577	Reject	
8.674	Accept	
383.605	Reject	
775.903	Reject	
745.284	Reject	
480.492	Reject	

10.477	Reject
1.463	Accept
2.923	Accept
6.047	Accept
8.697	Accept

MEANS: SDs:					
A-B+ A+B- mean $=0$ 0.0460 0.0360 0.0400 0.0340 0.0500 mean $=1$ 0.5480 0.2460 0.1460 0.1140 0.1000 mean $=2$ 0.9800 0.7360 0.4700 0.2660 0.1880 mean $=3$ 1.0000 0.9680 0.7760 0.5660 0.4040 mean $=4$ 1.0000 1.0000 0.9460 0.7940 0.6140 B mean $=0$ 0.0400 0.0500 0.0380 0.0660 0.0380 mean $=1$ 0.5620 0.2640 0.1720 0.1100 0.0980 mean $=2$ 0.9880 0.7360 0.4560 0.2620 0.2060 mean $=3$ 1.0000 0.9760 0.7640 0.5860 0.4200 mean $=4$ 1.0000 0.9980 0.9660 0.8240 0.6220 AB mean $=0$ 0.0460 0.0500 0.0420 0.0520 0.0640 mean $=1$ 0.0560 0.0400 0.0580 0.0540 0.0700 mean $=2$ 0.0620 0.0520 0.0460 0.0640 0.0600 mean $=3$ 0.0460 0.0480 0.0560 0.0480 0.0420 mean $=4$ 0.0600 0.0440 0.0640 0.0500 0.0480					

Hypothesis Test	
Calc. Test Value	Result
2.288	Accept
390.885	Reject
873.090	Reject
690.959	Reject
492.789	Reject

6.545	Accept
398.696	Reject
872.006	Reject
664.092	Reject
506.361	Reject

2.870	Accept
4.373	Accept
2.135	Accept
1.138	Accept
2.827	Accept

	MEANS: SDs:	$\begin{aligned} & \text { A-B+ } \\ & \text { A-B+ } \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0540	0.0540	0.0580	0.0360	0.0520
mean $=1$	0.5440	0.2500	0.1540	0.1180	0.1100
mean $=2$	0.9960	0.7380	0.4760	0.3060	0.2020
mean $=3$	1.0000	0.9640	0.8120	0.5580	0.4520
mean $=4$	1.0000	0.9980	0.9560	0.7820	0.5900
B					
mcan $=0$	0.0520	0.0480	0.0560	0.0640	0.0720
mean $=1$	0.5060	0.2740	0.1440	0.1220	0.0860
mean $=2$	0.9740	0.7480	0.4820	0.2840	0.2200
mean $=3$	1.0000	0.9740	0.8140	0.5800	0.4340
mean $=4$	1.0000	0.9980	0.9540	0.7720	0.6780
AB					
mean $=0$	0.0400	0.0460	0.0500	0.0520	0.0620
mean $=1$	0.0520	0.0340	0.0280	0.0440	0.0440
mean $=2$	0.0360	0.0560	0.0520	0.0500	0.0500
mean $=3$	0.0540	0.0480	0.0580	0.0600	0.0600
mean $=4$	0.0240	0.0620	0.0560	0.0460	0.0640

Hypothesis Test	
Calc. Test Value	Result
3.036	Accept
365.744	Reject
846.781	Reject
646.046	Reject
543.213	Reject

3.375	Accept
336.420	Reject
811.431	Reject
672.333	Reject
+09.642	Reject

2.779	Accept
4.581	Accept
2.465	Accept
0.984	Accept
11.149	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$	Reject hypothesis if test value > 9.488		
A					
mean $=0$	0.0520	0.0420	0.0520	0.0520	0.0460
mean $=1$	0.5160	0.2500	0.1540	0.1080	0.0900
mean $=2$	0.9860	0.7300	0.4380	0.2580	0.2320
mean $=3$	1.0000	0.9720	0.7840	0.5620	0.4200
mean $=4$	1.0000	0.9980	0.9380	0.8000	0.6300
B					
mcan $=0$	0.0440	0.0560	0.0480	0.0660	0.0400
mean $=1$	0.5720	0.2840	0.1520	0.1140	0.0900
mean $=2$	0.9880	0.7680	0.4460	0.2780	0.1980
mean $=3$	1.0000	0.9660	0.7940	0.5480	0.4000
mean $=4$	1.0000	0.9980	0.9360	0.8080	0.6280
AB					
mean $=0$	0.0640	0.0740	0.0540	0.0560	0.0420
mean $=1$	0.0380	0.0420	0.0540	0.0400	0.0580
mean $=2$	0.0480	0.0600	0.0480	0.0380	0.0520
mean $=3$	0.0600	0.0580	0.0460	0.0440	0.0420
mean $=4$	0.0560	0.0440	0.0560	0.0580	0.0540

Hypothesis Test	
Calc. Test Value	Result
0.913	Accept
352.100	Reject
841.152	Reject
681.407	Reject
453.194	Reject

4.446	Accept
430.868	Reject
898.626	Reject
715.034	Reject
$\mathbf{4 5 3 . 8 8 8}$	Reject

5.198	Accept
3.652	Accept
2.702	Accept
2.947	Accept
1.214	Accept

	MEANS: SDs:	$\begin{gathered} \mathrm{A}+\mathrm{B}+ \\ \mathrm{A}-\mathrm{B}- \end{gathered}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0580	0.0500	0.0400	0.0580	0.0440
mean $=1$	0.5580	$0.23+0$	0.1480	0.0900	0.0840
mean $=2$	0.9860	0.7240	0.4380	0.2660	0.2380
mean $=3$	1.0000	0.9820	0.7840	0.5480	0.4200
mean $=4$	1.0000	0.9960	0.9360	0.8180	0.5940
B					
mcan $=0$	0.0500	0.0680	0.0600	0.0440	0.0640
mean $=1$	0.5680	0.2520	0.1160	0.1240	0.0860
mean $=2$	0.9780	0.7240	0.4800	0.2880	0.1780
mean $=3$	1.0000	0.9740	0.8080	0.5700	0.3900
mean $=4$	1.0000	0.9960	0.9560	0.8100	0.6300
AB					
mean $=0$	0.0560	0.0660	0.0500	0.0620	0.0480
mean $=1$	0.0540	0.0460	0.0480	0.0360	0.0540
mean $=2$	0.0540	0.0440	0.0620	0.0360	0.0440
mean $=3$	0.0520	0.0620	0.0500	0.0520	0.0740
mean $=4$	0.0440	0.0560	0.0400	0.0440	0.0640

$|$| Hypothesis Test | | |
| ---: | :---: | :---: |
| Calc. Test
 Value | Result | |
| 2.779 | Accept | |
| 47.507 | Reject | |
| 821.025 | Reject | |
| 706.365 | Reject | |
| 508.853 | Reject | |
| | | |
| 3.679 | Accept | |
| 451.959 | Reject | |
| 849.592 | Reject | |
| 738.266 | Reject | |
| 472.877 | Reject | |
| | | |
| 2.210 | Accept | |
| 2.418 | Accept | |
| 4.464 | Accept | |
| 3.734 | Accept | |
| 4.277 | Accept | |

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0540	0.0440	0.0460	0.0540	0.0520
mean $=1$	0.5420	0.2700	0.1260	0.1320	0.0960
mean $=2$	0.9880	0.7560	0.4820	0.3060	0.1980
mean $=3$	1.0000	0.9600	0.7960	0.5520	0.3720
mean $=4$	1.0000	1.0000	0.9260	0.8100	0.6620
B					
mcan $=0$	0.0420	0.0440	0.0560	0.0440	0.0640
mean $=1$	0.5360	0.2460	0.1320	0.1100	0.0740
mean $=2$	0.9840	0.7860	0.4600	0.2780	0.2120
mean $=3$	1.0000	0.9620	0.7680	0.5360	0.4200
mean $=4$	1.0000	1.0000	0.9340	0.8080	0.6660
AB					
mean $=0$	0.0500	0.0500	0.0560	0.0620	0.0460
mean $=1$	0.0480	0.0300	0.0500	0.0440	0.0440
mean $=2$	0.0500	0.0580	0.0560	0.0540	0.0480
mean $=3$	0.0520	0.0600	0.0520	0.0500	0.0460
mean $=4$	0.0680	0.0440	0.0760	0.0680	0.0460

Hypothesis Test	
Calc. Test Value	Result
0.926	Accept
383.823	Reject
851.737	Reject
745.800	Reject
393.466	Reject

3.874	Accept
413.393	Reject
887.271	Reject
675.261	Reject
396.063	Reject

1.568	Accept
2.961	Accept
0.683	Accept
1.055	Accept
7.358	Accept

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}-\mathrm{B}+ \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0520	0.0460	0.0560	0.0540	0.0620
mean $=1$	0.5580	0.2620	0.1320	0.1020	0.0820
mean $=2$	0.9840	0.7240	$0.4+60$	0.2780	0.1720
mean $=3$	1.0000	0.9920	0.7460	0.5680	0. 4.300
mean $=4$	1.0000	1.0000	0.9720	0.8020	0.6340
B					
mcan $=0$	0.0480	0.0400	0.0580	0.0620	0.0640
mean $=1$	0.5340	0.2540	0.1640	0.1140	0.0800
mean $=2$	0.9860	0.7660	0.4560	0.2900	0.1880
mean $=3$	1.0000	0.9780	0.7560	0.5680	0.4380
mean $=4$	1.0000	1.0000	0.9660	0.8320	0.6380
AB					
mean $=0$	0.0500	0.0560	0.0420	0.0620	0.0420
mean $=1$	0.0600	0.0400	0.0460	0.0520	0.0540
mean $=2$	0.0540	0.0500	0.0540	0.0500	0.0440
mean $=3$	0.0500	0.0360	0.0420	0.0520	0.0460
mean $=4$	0.0480	0.0580	0.0420	0.0720	0.0460

Hypothesis Test	
Calc. Test Value	Result
1.331	Accept
$4+5.554$	Reject
885.638	Reject
679.130	Reject
$\$ 97.460$	Reject

3.997	Accept
377.265	Reject
891.762	Reject
$6+9.796$	Reject
+83.656	Reject

3.209	Accept
2.457	Accept
0.702	Accept
1.909	Accept
5.765	Accept

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0560	0.0360	0.0440	0.0560	0.0760
mean $=1$	0.5360	0.2600	0.1440	0.1180	0.0840
mean $=2$	0.9720	0.7200	0.4620	0.2580	0.2120
mean $=3$	1.0000	0.9700	0.8060	0.5760	0.3680
mean $=4$	1.0000	1.0000	0.9440	0.8260	0.6160
B					
mcan $=0$	0.0540	0.0520	0.0660	0.0620	0.0600
mean $=1$	0.5540	0.2620	0.1780	0.0960	0.0980
mean $=2$	0.9900	0.7300	0.5020	0.2680	0.2040
mean $=3$	1.0000	0.9660	0.7620	0.5420	0.4300
mean $=4$	1.0000	1.0000	0.9440	0.8120	0.6160
$A B$					
mean $=0$	0.0420	0.0500	0.0640	0.0720	0.0640
mean $=1$	0.0540	0.0520	0.0400	0.0420	0.0540
mean $=2$	0.0540	0.0540	0.0540	0.0360	0.0720
mean $=3$	0.0480	0.0580	0.0400	0.0220	0.0400
mean $=4$	0.0600	0.0440	0.0500	0.0760	0.0640

$|$| Hypothesis Test | | |
| ---: | :---: | :---: |
| Calc. Test
 Value | Result | |
| 9.021 | Accept | |
| 385.225 | Reject | |
| 824.149 | Reject | |
| 761.446 | Reject | |
| 489.550 | Reject | |
| | | |
| 1.200 | Accept | |
| 396.904 | Reject | |
| 859.006 | Reject | |
| 661.289 | Reject | |
| 487.410 | Reject | |

5.339	Accept
2.032	Accept
6.342	Accept
8.769	Accept
5.609	Accept

Appendix C: OC Curves for No-Interaction Data

Mean	$A-$
$S D$	$A+$

Legend

Operating Characteristic curves
for 'no-interaction' data

Mean	$\mathrm{A}-$
SD	$\mathrm{A}+\mathrm{B}-$

Legend

Operating Characteristic curves for 'no-interaction' data

Mean	$\mathrm{A}-$
SD	$\mathrm{A}+\mathrm{B}+$

Operating Characteristic curves
for 'no-interaction' data

Legend

Mean	$A+B+$
$S D$	$A-$

Mean	A-B-
SD	A-B-

A
B
$A B$

Mean	$A-B-$
$S D$	$A+B-$

Legend

- - sd $=1$	$---s d=2$	$\cdots \cdot . \cdot$ sd $=3$	$\cdots--$ sd $=4$	$\cdots-$ sd $=5$

Legend

Operating Characteristic curves for 'no-interaction' data

Mean	$A+B-$
$S D$	$A-B-$

A B AB

Mean	A+B-
SD	$\mathrm{A}+\mathrm{B}-$

Legend

- sd $=1$	$---s d=2$	$\cdots \cdot s_{s d}=3$	$-\cdots \cdot s d=4$	$-\cdots-s d=5$

Operating Characteristic curves for 'no-interaction' data

Mean	$A+B-$
$S D$	$A-B+$

Mean	$\mathrm{A}+\mathrm{B}-$
SD	$\mathrm{A}+\mathrm{B}+$

Legend

$$
\longrightarrow s d=1 \quad---s d=2 \quad \cdots \cdot s d=3 \quad-\cdots-s d=4 \quad-\cdots-s d=5
$$

Operating Characteristic curves for 'no-interaction' data

Legend

sd $=1$	- - - sd=2	\cdots sd $=3$	----sd=4	- - - sd = 5

Operating Characteristic curves
for 'no-interaction' data

Mean	$\mathrm{A}-\mathrm{B}+$
SD	$\mathrm{A}-\mathrm{B}+$

Legend

- sd $=1$	$---s d=2$	$\cdots \cdot s_{s d}=3$	$-\cdots-s_{d}=4$	$-\cdots-s d=5$

Mean	$\mathrm{A}+\mathrm{B}+$
SD	$\mathrm{A}+\mathrm{B}-$

Legend

Mean	$\mathrm{A}+\mathrm{B}+$
SD	$\mathrm{A}+\mathrm{B}+$

Legend

Appendix D: Hypothesis Test Results for No-Interaction Data

MEANS:	A-		
	SDs:	A-	
mean $=0$	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Accept	Accept
mean $=2$	Reject	Accept	Accept
mean $=3$	Reject	Accept	Accept
mean $=4$	Reject	Accept	Accept

	MEANS:	A-	
	SDs:	A-B-	
	A	B	AB
mean $=0$	Accept	Accept	Accept
	mean $=2$		
	Reject	Accept	Accept
	Reject	Accept	Accept
mean $=4$	Reject	Accept	Accept
	Reject	Accept	Accept

$\begin{aligned} & \text { mean }=0 \\ & \text { mean }=1 \\ & \text { mean }=2 \\ & \text { mean }=3 \\ & \text { mean }=4 \end{aligned}$	MEANS: SDs:	$\begin{gathered} \mathrm{A}- \\ \mathrm{A}-\mathrm{B}+ \end{gathered}$	
	A	B	AB
	Accept	Accept	Accept
	Reject	Accept	Accept

MEANS: A-B-

	SDs:	A-	
	A	B	AB
mean $=0$	Accept	Accept	Accept
mean $=1$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Accept
mean $=3$	Reject	Reject	Accept
mean $=4$	Reject	Reject	Accept

MEANS: A-B+

	SDs:	A-	
mean $=0$	A	B	AB
mean $=1$	Reject	Accept	Accept
	Reject	Reject	Accept
mean $=2$	2	Reject	Reject
mean $=3$	Accept		
	Reject	Reject	Accept
mean $=4$	Reject	Reject	Reject

MEANS:
A-
SDs: A+ A B AB Accept Accept Accept Reject Accept Accept Reject Accept Accept Reject Accept Accept Reject Accept Accept

MEANS: A-
SDs: $\quad A+B-$

A	B	AB
Accept	Accept	Accept
Reject	Accept	Accept

MEANS: A-

SDs:		
A	B +	
Accept	Accept	Reject
Reject	Accept	Accept

MEANS: A+B-
SDs: A

A	B	AB
Reject	Accept	Accept
Reject	Reject	Accept

MEANS: $\quad \mathrm{A}+\mathrm{B}+$
SDs: A-

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

mean $=0$	MEANS: SDs:	$\begin{aligned} & \text { A-B- } \\ & \text { A-B+ } \end{aligned}$	
	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Accept
mean $=3$	Reject	Reject	Accept
mean $=4$	Reject	Reject	Accept

MEANS: A+B-

mean $=0$	SDs: A-B-		
	A	B	AB
	Accept	Accept	Accept
mean $=$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Accept
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Accept

MEANS: A+B-
SDs: $\quad \mathrm{A}-\mathrm{B}+$

mean $=0$ mean $=1$ mean $=2$ mean $=3$ mean $=4$	A	B	AB
	Accept	Accept	Reject
	Reject	Reject	Accept
	Reject	Reject	Accept
	Reject	Reject	Reject
	Reject	Reject	Accept

	MEANS:	A-B+	
	SDs:	A-B-	
	A	B	AB
mean $=0$	Accept	Accept	Reject
mean $=1$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Accept
mean $=3$	Reject	Reject	Accept
mean $=4$	Reject	Reject	Accept

MEANS: A-B-

SDs:	A+B-	
A	B	AB
Reject	Accept	Reject
Reject	Reject	Accept
Reject	Reject	Accept
Reject	Reject	Accept
Reject	Reject	Reject

MEANS:

A-B-
SDs:

A	A +	
A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

MEANS: A+B-
SDs: $\quad A+B-$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

MEANS: A+BSDs: $\quad \mathrm{A}+\mathrm{B}+$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

MEANS: A-B+ SDs: A+B-

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

$\begin{aligned} & \text { mean }=0 \\ & \text { mean }=1 \end{aligned}$	$\begin{array}{cc} \text { MEANS: } & \text { A-B+ } \\ \text { SDs: } & \text { A-B+ } \\ \hline \end{array}$		
	A	B	AB
	Accept	Accept	Accept
	Reject	Reject	Accept
mean $=2$	Reject	Reject	Accept
mean $=3$	Reject	Reject	Accept
mean $=4$	Reject	Reject	Reject

mean $=0$	$\begin{array}{cc} \text { MEANS: } & \mathrm{A}+\mathrm{B}+ \\ \text { SDs: } & \mathrm{A}-\mathrm{B}- \end{array}$		
	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Accept
mean $=3$	Reject	Reject	Accept
mean $=4$	Reject	Reject	Accept

MEANS: $\mathrm{A}+\mathrm{B}+$
SDs: A-B+

mean $=0$ mean $=1$ mean $=2$ mean $=3$ mean $=4$	A	B	AB
	Accept	Accept	Accept
	Reject	Reject	Accept
	Reject	Reject	Accept
	Reject	Reject	Accept
	Reject	Reject,	Accept

MEANS:

SD-B+		
SDs:	A + B +	
A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

MEANS: $\quad \mathrm{A}+\mathrm{B}+$ SDs: $\quad \mathrm{A}+\mathrm{B}-$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

MEANS: $\quad \mathrm{A}+\mathrm{B}+$ SDs: $\quad \mathrm{A}+\mathrm{B}+$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept

Appendix E: With-Interaction Data

MEANS:SDs:			Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0520	0.0480	0.0480	0.0660	0.0400
mean $=1$	0.2680	0.1740	0.1320	0.0960	0.0680
mean $=2$	0.6000	0.4720	0.3160	0.2020	0.1600
mean $=3$	0.7780	0.6640	0.5520	0.3640	0.3260
mean $=4$	0.8720	0.7900	0.7120	0.6460	0.4960
B					
mcan $=0$	0.0320	0.0380	0.0540	0.0640	0.0540
mean $=1$	0.0380	0.0480	0.0480	0.0460	0.0400
mean $=2$	0.0520	0.0600	0.0680	0.0460	0.0500
mean $=3$	0.0480	0.0520	0.0340	0.0600	0.0520
mean $=4$	0.0580	0.0480	0.0440	0.0540	0.0540
AB					
mean $=0$	0.0560	0.0500	0.0500	0.0580	0.0540
mean $=1$	0.0380	0.0400	0.0440	0.0500	0.0340
mean $=2$	0.0480	0.0340	0.0660	0.0660	0.0540
mean $=3$	0.0400	0.0580	0.0520	0.0440	0.0500
mean $=4$	0.0440	0.0540	0.0620	0.0700	0.0620

Hypothesis Test	
Calc. Test Value	Result
3.783	Accept
97.108	Reject
300.097	Reject
299.391	Reject
197.185	Reject

7.417	Accept
1.046	Accept
2.961	Accept
3.899	Accept
1.259	Accept

0.505	Accept
1.883	Accept
7.128	Accept
2.120	Accept
3.521	Accept

MEANS:SDs:		$\begin{aligned} & \mathrm{A}- \\ & \mathrm{A}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0540	0.0540	0.0560	0.0520	0.0640
mean $=1$	0.2700	0.1860	0.1820	0.1420	0.1160
mean $=2$	0.6580	0.5220	0.3500	0.2840	0.2360
mean $=3$	0.7660	0.6860	0.5280	0.4380	0.3880
mean $=4$	0.8640	0.7920	0.7220	0.5760	0.4900
B					
mcan $=0$	0.0480	0.0540	0.0620	0.0380	0.0580
mean $=1$	0.0420	0.0440	0.0540	0.0560	0.0500
mean $=2$	0.0720	0.0600	0.0560	0.0540	0.0500
mean $=3$	0.0520	0.0580	0.0560	0.0400	0.0480
mean $=4$	0.0580	0.0640	0.0640	0.0540	0.0400
AB					
mean $=0$	0.0580	0.0620	0.0400	0.0500	0.0620
mean $=1$	0.0480	0.0340	0.0440	0.0460	0.0440
mean $=2$	0.0600	0.0420	0.0600	0.0460	0.0480
mean $=3$	0.0460	0.0620	0.0540	0.0520	0.0440
mean $=4$	0.0600	0.0520	0.0380	0.0280	0.0480

Hypothesis Test	
Calc. Test Value	Result
0.832	Accept
46.492	Reject
255.891	Reject
210.751	Reject
220.879	Reject

3.570	Accept
1.590	Accept
2.575	Accept
2.124	Accept
3.708	Accept

3.453	Accept
1.413	Accept
2.849	Accept
2.076	Accept
7.192	Accept

MEANS:SDs:		A-A-B-		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0560	0.0400	0.0480	0.0420	0.0640
mean $=1$	0.2680	0.1060	0.0680	0.0440	0.0640
mean $=2$	0.6060	0.2360	0.1200	0.0900	0.0860
mean $=3$	0.7800	0.3780	0.1800	0.1180	0.0800
mean $=4$	0.8700	0.4360	0.2480	0.1660	0.1120
B					
mcan $=0$	0.0460	0.0420	0.0540	0.0500	0.0660
mean $=1$	0.0340	0.0300	0.0580	0.0320	0.0560
mean $=2$	0.0580	0.0520	0.0640	0.0580	0.0620
mean $=3$	0.0540	0.0440	0.0500	0.0460	0.0580
mean $=4$	0.0560	0.0880	0.0520	0.0660	0.0680
AB					
mean $=0$	0.0380	0.0380	0.0460	0.0500	0.0620
mean $=1$	0.0600	0.0540	0.0680	0.0460	0.0620
mean $=2$	0.0380	0.0420	0.0640	0.0700	0.0640
mean $=3$	0.0500	0.0500	0.0520	0.0420	0.0560
mean $=4$	0.0440	0.0600	0.0540	0.0680	0.0640

Hypothesis Test	
Calc. Test Value	Result
4.211	Accept
169.642	Reject
551.255	Reject
780.322	Reject
812.736	Reject

3.466	Accept
9.444	Accept
0.766	Accept
1.371	Accept
6.359	Accept

4.447	Accept
2.562	Accept
8.029	Accept
1.095	Accept
3.221	Accept

MEANS:SDs:		$\begin{aligned} & \text { A- } \\ & \text { A+B- } \end{aligned}$	Reject hypothesis if test value >9.488			Hypothesis Test		
		Calc. Test				Result		
A						Value		
mean $=0$	0.0440		0.0580	0.0540	0.0500	0.0480	1.211	Accept
mean $=1$	0.2800	0.1260	0.1020	0.0500	0.0820	143.277	Reject	
mean $=2$	0.5900	0.2760	0.1320	0.1240	0.0900	$+66.633$	Reject	
mean $=3$	0.7660	0.3680	0.2280	0.1140	0.0740	729.631	Reject	
mean $=4$	0.8580	0.4360	0.2160	0.1840	0.1220	782.765	Reject	
B								
mean $=0$	0.0380	0.0460	0.0460	0.0600	0.0360	4.134	Accept	
mean $=1$	0.0460	0.0620	0.0580	0.0560	0.0580	1.362	Accept	
mean $=2$	0.0400	0.0360	0.0380	0.0460	0.0720	9.890	Reject	
mean $=3$	0.0540	0.0600	0.0400	0.0600	0.0520	2.668	Accept	
mean $=4$	0.0420	0.0620	0.0520	0.0460	0.0620	3.327	Accept	
AB								
mean $=0$	0.0760	0.0460	0.0380	0.0380	0.0500	10.386	Reject	
mean = 1	0.0460	0.0420	0.0360	0.0400	0.0520	1.800	Accept	
mean $=2$	0.0840	0.0460	0.0540	0.0560	0.0640	7.327	Accept	
mean $=3$	0.0680	0.0660	0.0580	0.0560	0.0640	0.916	Accept	
mean $=4$	0.0440	0.0540	0.0500	0.0540	0.0560	0.932	Accept	

MEANS:SDs:		A-A-B+		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0500	0.0560	0.0700	0.0540	0.0660
mean $=1$	0.3100	0.0940	0.0580	0.0540	0.0820
mean $=2$	0.5980	0.2440	0.1440	0.0760	0.0800
mean $=3$	0.7520	0.3620	0.1920	0.0860	0.0720
mean $=4$	0.8520	0.4620	0.2220	0.1620	0.1380
B					
mean $=0$	0.0460	0.0600	0.0420	0.0800	0.0520
mean $=1$	0.0320	0.0640	0.0480	0.0440	0.0840
mean $=2$	0.0400	0.0420	0.0680	0.0480	0.0540
mean $=3$	0.0280	0.0620	0.0380	0.0540	0.0640
mean $=4$	0.0600	0.0640	0.0480	0.0740	0.0540
AB					
mean $=0$	0.0420	0.0420	0.0540	0.0500	0.0440
mean $=1$	0.0420	0.0460	0.0340	0.0600	0.0740
mean $=2$	0.0440	0.0560	0.0500	0.0520	0.0440
mean $=3$	0.0500	0.0600	0.0560	0.0540	0.0500
mean $=4$	0.0660	0.0640	0.0620	0.0720	0.0640

Hypothesis Test	
Calc. Test Value	Result
2.557	Accept
220.423	Reject
536.842	Reject
766.252	Reject
774.088	Reject

8.550	Accept
15.739	Reject
5.299	Accept
10.483	Reject
3.475	Accept

1.302	Accept
10.342	Reject
1.163	Accept
0.705	Accept
0.483	Accept

MEANS: SDs:		$\begin{aligned} & \mathrm{A}- \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0300	0.0440	0.0320	0.0520	0.0480
mean $=1$	0.2500	0.1600	0.0740	0.0720	0.0700
mean $=2$	0.6360	0.2420	0.1480	0.1020	0.0980
mean $=3$	0.8040	0.3780	0.2160	0.1200	0.0760
mean $=4$	0.8540	0.4440	0.2500	0.1540	0.1140
B					
mean $=0$	0.0360	0.0540	0.0580	0.0400	0.0560
mean $=1$	0.0540	0.0520	0.0420	0.0340	0.0660
mean $=2$	0.0720	0.0520	0.0600	0.0540	0.0780
mean $=3$	0.0360	0.0460	0.0420	0.0500	0.0720
mean $=4$	0.0560	0.0500	0.0460	0.0660	0.0540
AB					
mean $=0$	0.0340	0.0520	0.0440	0.0620	0.0460
mean $=1$	0.0420	0.0500	0.0500	0.0560	0.0600
mean $=2$	0.0660	0.0360	0.0620	0.0400	0.0620
mean $=3$	0.0440	0.0540	0.0600	0.0600	0.0620
mean $=4$	0.0620	0.0740	0.0640	0.0500	0.0680

Hypothesis Test	
Calc. Test Value	Result
4.820	Accept
115.429	Reject
552.086	Reject
801.147	Reject
791.430	Reject

4.360	Acccpt
6.313	Accept
4.364	Accept
8.089	Accept
2.208	Accept

4.712	Accept
1.913	Accept
7.830	Accept
2.043	Accept
2.646	Accept

MEANS: SDs:		$\begin{aligned} & \text { A-B- } \\ & \text { A- } \end{aligned}$	Reject hypothesis if test value >9.488			
A						
mean $=0$	0.0480		0.0520	0.0520	0.0440	0.0480
mean $=1$	0.4760	0.2200	0.1740	0.1060	0.1180	
mean $=2$	0.9500	0.7480	0.5240	0.3680	0.2680	
mean $=3$	1.0000	0.9800	0.8480	0.6480	0.4860	
mean $=+$	1.0000	0.9960	0.9840	0.8660	0.7380	
B						
mean $=0$	0.0540	0.0480	0.0400	0.0420	0.0640	
mean $=1$	0.4380	0.2860	0.1620	0.1560	0.0800	
mean $=2$	0.9540	0.7740	0.5200	0.3840	0.2780	
mean $=3$	1.0000	0.9700	0.8440	0.6140	0.4980	
mean $=4$	1.0000	0.9980	0.9700	0.8620	0.7180	
AB						
mean $=0$	0.0440	0.0580	0.0540	0.0400	0.0600	
mean $=1$	0.0920	0.0860	0.0620	0.0760	0.0520	
mean $=2$	0.4220	0.2800	0.1660	0.1600	0.1060	
mean $=3$	0.8720	0.6560	0.3920	0.2840	0.1900	
mean $=4$	0.9940	0.9060	0.7520	0.5300	0.4240	

Hypothesis Test	
Calc. Test Value	Result
0.483	Accept
266.327	Reject
633.379	Reject
596.087	Reject
342.569	Reject

4.022	Accept
226.503	Reject
638.600	Reject
579.686	Reject
356.395	Reject

3.178	Accept
8.061	Accept
181.581	Reject
630.920	Reject
582.892	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}- \end{aligned}$		ect hypot value $>$	is if 8
A					
mean $=0$	0.0440	0.0360	0.0540	0.0420	0.0500
mean $=1$	0.4320	0.2860	0.2060	0.1380	0.1280
mean $=2$	0.9380	0.7340	0.5340	0.3600	0.2800
mean $=3$	1.0000	0.9660	0.8320	0.6300	0.4800
mean $=4$	1.0000	0.9980	0.9620	0.8300	0.6960
B					
mcan $=0$	0.0400	0.0500	0.0500	0.0520	0.0400
mean $=1$	0.4400	0.2740	0.1540	0.1200	0.0980
mean $=2$	0.9380	0.7400	0.5140	0.3420	0.2800
mean $=3$	1.0000	0.9600	0.8520	0.6760	0.5020
mean $=4$	1.0000	1.0000	0.9640	0.8620	0.7540
AB					
mean $=0$	0.0380	0.0500	0.0560	0.0460	0.0440
mean $=1$	0.0800	0.0780	0.0860	0.0940	0.0580
mean $=2$	0.4300	0.2500	0.1840	0.1320	0.0940
mean $=3$	0.8700	0.6260	0.4340	0.3060	0.2300
mean $=4$	1.0000	0.9220	0.7280	0.5500	0.4360

Hypothesis Test	
Calc. Test Value	Result
2.280	Accept
173.868	Reject
595.023	Reject
580.508	Reject
379.070	Reject

1.573	Accept
236.780	Reject
616.292	Reject
534.951	Reject
296.163	Reject

2.026	Accept
4.914	Accept
205.002	Reject
534.973	Reject
576.078	Reject

MEANS: SDs:		$\begin{aligned} & \text { A-B+ } \\ & \text { A- } \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0360	0.0500	0.0600	0.0840	0.0380
mean $=1$	0.4760	0.2760	0.1720	0.1300	0.0720
mean $=2$	0.9340	0.7720	0.4820	0.3800	0.2300
mean $=3$	1.0000	0.9720	0.8280	0.6680	0.4780
mean $=+$	1.0000	1.0000	0.9720	0.8520	0.7120
B					
mcan $=0$	0.0580	0.0560	0.0460	0.0560	0.0500
mean $=1$	0.4400	0.2480	0.2040	0.1160	0.1280
mean $=2$	0.9260	0.7300	0.4880	0.3820	0.2500
mean $=3$	1.0000	0.9780	0.8240	0.6760	0.4800
mean $=4$	1.0000	1.0000	0.9800	0.8680	0.6900
AB					
mean $=0$	0.0480	0.0580	0.0480	0.0400	0.0600
mean $=1$	0.1120	0.0740	0.0660	0.0620	0.0720
mean $=2$	0.4140	0.2220	0.1660	0.1320	0.1020
mean $=3$	0.8700	0.6500	0.4140	0.3080	0.2040
mean $=4$	0.9940	0.9320	0.7820	0.5340	0.4240

Hypothesis Test	
Calc. Test Value	Result
15.093	Reject
288.978	Reject
673.983	Reject
573.722	Reject
371.625	Reject

1.001	Accept
194.956	Reject
598.715	Reject
574.904	Reject
424.716	Reject

2.787	Accept
11.263	Reject
186.904	Reject
581.657	Reject
$626.7+5$	Reject

MEANS: SDs:		$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}- \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0500	0.0380	0.0420	0.0600	0.0560
mean $=1$	0.4100	0.2920	0.1820	0.1420	0.1220
mean $=2$	0.9540	0.7500	0.5200	0.3380	0.2860
mean $=3$	1.0000	0.9720	0.8220	0.6320	0.5060
mean $=4$	1.0000	0.9960	0.9680	0.8200	0.6840
B					
mcan $=0$	0.0500	0.0520	0.0480	0.0560	0.0580
mean $=1$	0.3960	0.2580	0.1640	0.1560	0.1120
mean $=2$	0.9500	0.7340	0.5220	0.3820	0.3100
mean $=3$	0.9980	0.9700	0.8480	0.6380	0.4900
mean $=4$	1.0000	1.0000	0.9800	0.8880	0.7300
AB					
mean $=0$	0.0380	0.0440	0.0580	0.0600	0.0440
mean $=1$	0.0980	0.0860	0.0760	0.0560	0.0580
mean $=2$	0.4260	0.2780	0.1720	0.1600	0.1280
mean $=3$	0.9000	0.6780	0.4540	0.3060	0.2400
mean $=4$	0.9880	0.8880	0.7160	0.5060	0.3880

Hypothesis Test	
Calc. Test Value	Result
3.643	Accept
163.823	Reject
646.191	Reject
547.115	Reject
403.302	Reject

0.688	Accept
150.793	Reject
566.525	Reject
576.624	Reject
361.957	Reject

4.016	Accept
9.398	Accept
166.146	Reject
596.219	Reject
600.356	Reject

MEANS:SDs:		$\begin{aligned} & \text { A-B- } \\ & \text { A-B- } \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$)	0.0540	$0.0+60$	0.0480	0.0460	0.0460
mean $=1$	0.4480	0.1380	0.0920	0.0520	0.0500
mean $=2$	0.9420	0.5840	0.2820	0.1720	0.0960
mean $=3$	1.0000	0.9100	0.5620	0.3320	0.1860
mean $=4$	1.0000	0.9940	0.8680	0.5720	0.3580
B					
mcan $=0$	0.0380	0.0400	0.0460	0.0520	0.0400
mean $=1$	0.4400	0.1540	0.0780	0.0700	0.0560
mean $=2$	0.9300	0.5980	0.2700	0.1540	0.0900
mean $=3$	1.0000	0.9080	0.5640	0.3360	0.1660
mean $=4$	1.0000	0.9940	0.8500	0.6000	0.3320
AB					
mean $=0$	0.0400	0.0460	0.0440	0.0700	0.0480
mean $=1$	0.1020	0.0480	0.0420	0.0580	0.0600
mean $=2$	0.4260	0.1800	0.0800	0.0820	0.0520
mean $=3$	0.8920	0.4920	0.1960	0.1280	0.0720
mean $=4$	0.9880	0.8180	0.4820	0.2900	0.1460

Hypothesis Test	
Calc. Test Value	Result
0.525	Accept
424.323	Reject
998.293	Reject
1041.498	Reject
875.829	Reject

1.606	Accept
387.970	Reject
1020.795	Reject
1066.492	Reject
890.138	Reject

5.889	Accept
19.052	Reject
347.269	Reject
1012.004	Reject
1006.022	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$	Reject hypothesis if test value >9.488			Hypothesis Test	
						Calc. Test	Result
A						Value	
mean $=0$	0.0340	0.0600	0.0440	0.0580	0.0500	4.840	Accept
mean $=1$	0.4320	0.2060	0.1200	0.0820	0.0740	296.487	Reject
mean $=2$	0.9500	0.5960	0.2900	0.1960	0.1580	905.881	Reject
mean $=3$	0.9980	0.8460	0.6140	0.3940	0.2660	788.851	Reject
mean $=4$	1.0000	0.9860	0.7780	0.6140	0.4040	697.353	Reject
B							
mcan $=0$	0.0360	0.0420	0.0400	0.0560	0.0360	3.380	Accept
mean $=1$	0.4360	0.1360	0.0840	0.0460	0.0500	419.327	Reject
mean $=2$	0.9560	0.5300	0.3040	0.1720	0.1180	957.999	Reject
mean $=3$	1.0000	0.9140	0.5660	0.3500	0.2240	973.915	Reject
mean $=4$	1.0000	0.9860	0.8280	0.5880	0.3860	769.788	Reject
AB							
mean $=0$	0.0480	0.0340	0.0480	0.0620	0.0500	4.290	Accept
mean $=1$	0.0920	0.0760	0.0520	0.0640	0.0660	6.882	Accept
mean $=2$	0.4420	0.2000	0.1200	0.1020	0.1020	269.259	Reject
mean $=3$	0.9140	0.4620	0.2740	0.2080	0.1460	802.161	Reject
mean $=4$	0.9940	0.7960	0.4820	0.3280	0.2320	837.447	Reject

	MEANS: SDs:	$\begin{aligned} & \text { A-B- } \\ & \text { A-B+ } \end{aligned}$	Reject hypothesis if test value >9.488		
A					
mean $=0$	0.0380	0.0280	0.0640	0.0540	0.0560
mean $=1$	0.4860	0.1720	0.0860	0.0600	0.0600
mean $=2$	0.9520	0.5780	0.2780	0.1560	0.1040
mean $=3$	1.0000	0.8920	0.5980	0.3400	0.2260
mean $=4$	1.0000	0.9980	0.8180	0.5760	0.3960
B					
mcan $=0$	0.0600	0.0540	0.0600	0.0500	0.0480
mean $=1$	0.4120	0.1960	0.1180	0.0640	0.0680
mean $=2$	0.9440	0.5920	0.3140	0.2180	0.1360
mean $=3$	1.0000	0.8900	0.5680	0.3860	0.2200
mean $=4$	1.0000	0.9780	0.7860	0.5280	0.3900
AB					
mean $=0$	0.0520	0.0360	0.0380	0.0540	0.0620
mean $=1$	0.0900	0.0600	0.0520	0.0600	0.0520
mean $=2$	0.4080	0.2040	0.1640	0.0820	0.0880
mean $=3$	0.8660	0.4880	0.2660	0.1760	0.1060
mean $=4$	0.9940	0.7920	0.4780	0.3200	0.2200

Hypothesis Test	
Calc. Test Value	Result
9.366	Accept
458.502	Reject
1025.623	Reject
951.286	Reject
773.055	Reject

1.197	Accept
293.947	Reject
881.746	Reject
915.601	Reject
756.611	Reject

5.332	Accept
8.400	Accept
229.659	Reject
800.920	Reject
856.872	Reject

MEANS: SDs:		$\begin{aligned} & \mathrm{A}-\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0480	0.0580	0.0520	0.0340	0.0460
mean $=1$	0.4480	0.1840	0.1180	0.0760	0.0660
mean $=2$	0.9520	0.5420	0.2680	0.1500	0.1300
mean $=3$	1.0000	0.8820	0.5540	0.3220	0.2380
mean $=4$	1.0000	0.9740	0.8140	0.5760	0.4140
B					
mean $=0$	0.0480	0.0500	0.0400	0.0540	0.0700
mean $=1$	0.4280	0.1960	0.1280	0.1040	0.0820
mean $=2$	0.9540	0.5280	0.2760	0.1520	0.1360
mean $=3$	0.9960	0.8720	0.5640	0.3640	0.2180
mean $=4$	1.0000	0.9620	0.8060	0.5780	0.3500
AB					
mean $=0$	0.0480	0.0540	0.0500	0.0420	0.0580
mean $=1$	0.0680	0.0640	0.0560	0.0560	0.0480
mean $=2$	0.4280	0.1940	0.1000	0.1000	0.0700
mean $=3$	0.8800	0.4800	0.2340	0.1480	0.0940
mean $=4$	0.9980	0.7800	0.4600	0.2760	0.1960

Hypothesis Test	
Calc. Test Value	Result
3.476	Accept
339.363	Reject
987.832	Reject
936.805	Reject
703.387	Reject

4.946	Acccpt
260.997	Reject
970.925	Reject
905.636	Reject
776.988	Reject

1.538	Accept
2.211	Accept
295.371	Reject
895.398	Reject
930.115	Reject

MEANS:SDs:		$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}-\mathrm{B}- \end{aligned}$		Reject hypothesis if test value > 9.488	
A					
mean $=0$	0.0340	0.0560	0.0600	0.0460	0.0600
mean $=1$	0.4940	0.1920	0.1180	0.1000	0.0720
mean $=2$	0.9300	0.5780	0.3100	0.2220	0.1380
mean $=3$	1.0000	0.8720	0.5980	0.3180	0.2180
mean $=4$	1.0000	0.9900	0.8320	0.5340	0.4200
B					
mcan $=0$	0.0300	0.0420	0.0460	0.0580	0.0380
mean $=1$	0.4380	0.1540	0.0960	0.0620	0.0540
mean $=2$	0.9500	0.5620	0.2700	0.1760	0.1000
mean $=3$	1.0000	0.8820	0.5860	0.3140	0.2220
mean $=4$	1.0000	0.9860	0.8040	0.5280	0.3720
AB					
mean $=0$	0.0560	0.0580	0.0360	0.0560	0.0340
mean $=1$	0.1140	0.0580	0.0520	0.0540	0.0580
mean $=2$	0.4140	0.2060	0.1380	0.0940	0.0780
mean $=3$	0.8780	0.4720	0.2600	0.1620	0.1060
mean $=4$	1.0000	0.7900	0.5200	0.3040	0.2500

Hypothesis Test	
Calc. Test Value	Result
5.155	Accept
380.315	Reject
843.341	Reject
958.107	Reject
763.348	Reject

5.233	Accept
378.873	Reject
1001.603	Reject
968.141	Reject
808.250	Reject

6.215	Accept
22.053	Reject
247.074	Reject
838.656	Reject
835.547	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$		Reject hypot test value $>$	
A					
mean $=0$	0.0500	0.0560	0.0320	0.0540	0.0480
mean $=1$	0.3760	0.1540	0.1060	0.0540	0.0440
mean $=2$	0.9540	0.5640	0.2660	0.1420	0.0980
mean $=3$	1.0000	0.9360	0.5760	0.3040	0.1820
mean $=4$	1.0000	0.9880	0.8740	0.5880	0.3800
B					
mcan $=0$	0.0500	0.0440	0.0480	0.0620	0.0500
mean $=1$	0.4360	0.1380	0.0800	0.0480	0.0600
mean $=2$	0.9500	0.5480	0.2360	0.1480	0.0980
mean $=3$	1.0000	0.9060	0.5700	0.3260	0.2120
mean $=4$	1.0000	0.9940	0.8660	0.6180	0.3680
$A B$					
mean $=0$	0.0440	0.0560	0.0380	0.0540	0.0440
mean $=1$	0.0800	0.0520	0.0580	0.0500	0.0700
mean $=2$	0.4220	0.1580	0.0900	0.0780	0.0680
mean $=3$	0.9100	0.4760	0.2420	0.1240	0.0840
mean $=4$	0.9980	0.7940	0.4740	0.2480	0.1960

Hypothesis Test	
Calc. Test Value	Result
3.939	Accept
293.130	Reject
1057.166	Reject
1115.902	Reject
826.761	Reject

1.875	Accept
407.648	Reject
1057.613	Reject
1002.616	Reject
836.463	Reject

2.544	Accept
5.571	Accept
324.696	Reject
993.038	Reject
971.285	Reject

MEANS:SDs:		$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}-\mathrm{B}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0680	0.0640	0.0660	0.0500	0.0580
mean $=1$	0.4060	0.1940	0.0960	0.1000	0.0820
mean $=2$	0.9560	0.5680	0.2960	0.1980	0.1220
mean $=3$	0.9960	0.8660	0.5360	0.3160	0.1880
mean $=4$	1.0000	0.9900	0.8180	0.5380	0.3640
B					
mcan $=0$	0.0500	0.0460	0.0640	0.0620	0.0500
mean $=1$	0.4460	0.1980	0.1180	0.0780	0.0680
mean $=2$	0.9360	0.5480	0.3100	0.1860	0.1220
mean $=3$	0.9980	0.8720	0.5800	0.3340	0.2240
mean $=4$	1.0000	0.9760	0.7900	0.5680	0.4080
AB					
mean $=0$	0.0300	0.0580	0.0440	0.0660	0.0500
mean $=1$	0.0720	0.0620	0.0420	0.0540	0.0600
mean $=2$	0.4400	0.1840	0.1140	0.0680	0.0540
mean $=3$	0.8660	0.5060	0.2800	0.1620	0.0860
mean $=4$	0.9960	0.8140	0.5020	0.2600	0.1980

Hypothesis Test	
Calc. Test Value	Result
1.852	Accept
256.400	Reject
944.268	Reject
985.783	Reject
831.463	Reject

2.519	Acccpt
329.223	Reject
899.393	Reject
928.137	Reject
704.341	Reject

8.010	Accept
4.466	Accept
351.337	Reject
840.475	Reject
968.982	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$		Reject hypo test value >	
A					
mean $=0$	0.0480	0.0380	0.0460	0.0440	0.0460
mean $=1$	0.4780	0.1580	0.0980	0.0660	0.0740
mean $=2$	0.9440	0.5480	0.2480	0.1900	0.1560
mean $=3$	1.0000	0.8720	0.5920	0.340 ()	0.1840
mean $=4$	1.0000	0.9860	0.8200	0.5340	0.3420
B					
mcan $=0$	0.0400	0.0440	0.0440	0.0240	0.0420
mean $=1$	0.4520	0.1880	0.1160	0.0920	0.0880
mean $=2$	0.9620	0.5700	0.2980	0.2000	0.1420
mean $=3$	0.9980	0.8640	0.6360	0.4020	0.2680
mean $=4$	1.0000	0.9840	0.8100	0.5900	0.4260
AB					
mean $=0$	0.0620	0.0400	0.0360	0.0280	0.0420
mean $=1$	0.1120	0.0780	0.0560	0.0540	0.0820
mean $=2$	0.4120	0.2080	0.1240	0.0800	0.0700
mean $=3$	0.8960	0.5080	0.3160	0.1800	0.1380
mean $=4$	0.9980	0.7740	0.4880	0.3340	0.2300

Hypothesis Test	
Calc. Test Value	Result
0.698	Accept
416.336	Reject
911.189	Reject
986.956	Reject
863.640	Reject

3.818	Accept
309.198	Reject
927.557	Reject
803.742	Reject
691.215	Reject

7.966	Accept
15.725	Reject
271.867	Reject
789.960	Reject
819.128	Reject

MEANS: SDs:		$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}-\mathrm{B}- \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0360	0.0520	0.0460	0.0540	0.0480
mean $=1$	0.4520	0.1440	0.0820	0.0620	0.0440
mean $=2$	0.9500	0.5900	0.3300	0.1860	0.1120
mean $=3$	1.0000	0.8980	0.5600	0.3640	0.2120
mean $=$ +	1.0000	0.9860	0.8280	0.5520	0.3520
B					
mcan $=0$	0.0280	0.0660	0.0540	0.0440	0.0640
mean $=1$	0.4700	0.2220	0.1480	0.0760	0.0600
mean $=2$	0.9240	0.5620	0.3260	0.2120	0.1420
mean $=3$	1.0000	0.8580	0.6000	0.3720	0.2500
mean $=4$	1.0000	0.9800	0.7900	0.5900	0.4060
AB					
mean $=0$	0.0460	0.0680	0.0540	0.0540	0.0400
mean $=1$	0.1320	0.0560	0.0560	0.0460	0.0480
mean $=2$	0.4060	0.1960	0.1140	0.0900	0.0700
mean $=3$	0.8960	0.4660	0.2700	0.1780	0.1440
mean $=4$	0.9940	0.7760	0.4980	0.3080	0.2580

Hypothesis Test	
Calc. Test Value	Result
2.188	Accept
+33.437	Reject
949.943	Reject
956.464	Reject
843.609	Reject

10.095	Reject
353.122	Reject
820.022	Reject
845.018	Reject
701.719	Reject

+4.463	Accept
41.783	Reject
262.181	Reject
801.571	Reject
800.962	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$	Reject hypothesis if test value >9.488			Hypothesis Test	
						Calc. Test	Result
A						Value	
mean $=0$	0.0500	0.0300	0.0360	0.0480	0.0480	3.882	Accept
mean $=1$	0.4540	0.2000	0.1260	0.0720	0.0580	352.374	Reject
mean $=2$	0.9360	0.5660	0.3080	0.1520	0.1020	975.273	Reject
mean $=3$	1.0000	0.8580	0.5640	0.3240	0.1920	969.212	Reject
mean $=4$	1.0000	0.9900	0.7880	0.5640	0.3660	791.223	Reject
B							
mean $=0$	0.0420	0.0420	0.0560	0.0540	0.0460	1.926	Accept
mean $=1$	0.4480	0.1980	0.1260	0.0740	0.0580	341.570	Reject
mean $=2$	0.9580	0.5400	0.3220	0.1780	0.1260	937.881	Reject
mean $=3$	0.9960	0.8640	0.5320	0.3660	0.2240	887.392	Reject
mean $=4$	1.0000	0.9820	0.8280	0.5260	0.3740	819.177	Reject
AB							
mean $=0$	0.0480	0.0740	0.0580	0.0460	0.0660	5.121	Accept
mean $=1$	0.0820	0.0460	0.0640	0.0680	0.0560	6.121	Accept
mean $=2$	0.4460	0.2000	0.0820	0.1140	0.0680	327.924	Reject
mean $=3$	0.8780	0.5000	0.2600	0.1560	0.1040	855.942	Reject
mean $=4$	0.9920	0.7920	0.4680	0.3020	0.1860	917.722	Reject

$\begin{array}{ll} \text { MEANS: } & \text { A-B+ } \\ \text { SDs: } & \text { A-B+ } \\ \hline \end{array}$				Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0600	0.0420	0.0560	0.0460	0.0640
mean $=1$	0.4360	0.1720	0.0780	0.0720	0.0400
mean $=2$	0.9540	0.5680	0.2780	0.1480	0.0780
mean $=3$	1.0000	0.9220	0.6060	0.3300	0.1880
mean $=4$	1.0000	0.9940	0.8620	0.5720	0.3280
B					
mcan $=0$	0.0540	0.0600	0.0420	0.0480	0.0540
mean $=1$	0.3900	0.1560	0.0800	0.0760	0.0460
mean $=2$	0.9400	0.5720	0.2760	0.1300	0.0940
mean $=3$	0.9980	0.8840	0.5620	0.3300	0.2080
mean $=4$	1.0000	0.9920	0.8640	0.5500	0.3720
AB					
mean $=0$	0.0280	0.0420	0.0340	0.0580	0.0560
mean $=1$	0.0780	0.0420	0.0460	0.0440	0.0320
mean $=2$	0.4100	0.1580	0.0840	0.0840	0.0440
mean $=3$	0.8680	0.4560	0.2260	0.1160	0.0900
mean $=4$	1.0000	0.7940	0.4600	0.2320	0.1600

Hypothesis Test	
Calc. Test Value	Result
33.422	Accept
392.115	Reject
1072.716	Reject
1062.564	Reject
921.197	Reject

1.913	Accept
309.807	Reject
1045.990	Reject
970.066	Reject
857.718	Reject

8.384	Accept
13.149	Reject
332.027	Reject
915.666	Reject
1045.961	Reject

MEANS: SDs:		$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0500	0.0540	0.0520	0.0380	0.0620
mean $=1$	0.4260	0.2060	0.1100	0.0920	0.0760
mean $=2$	0.9640	0.5520	0.2840	0.2220	0.1460
mean $=3$	0.9980	0.8880	0.5820	0.3660	0.2260
mean $=4$	1.0000	0.9860	0.8020	0.5680	0.3960
B					
mean $=0$	0.0580	0.0740	0.0480	0.0500	0.0600
mean $=1$	0.4720	0.1700	0.0720	0.0820	0.0540
mean $=2$	0.9300	0.5940	0.2960	0.1640	0.1160
mean $=3$	1.0000	0.8820	0.5720	0.3160	0.2720
mean $=4$	1.0000	0.9900	0.8200	0.5580	0.3560
AB					
mean $=0$	0.0380	0.0480	0.0380	0.0500	0.0680
mean $=1$	0.0940	0.0780	0.0640	0.0520	0.0560
mean $=2$	0.4260	0.1900	0.1340	0.0920	0.0780
mean $=3$	0.8720	0.4700	0.2600	0.1540	0.1360
mean $=4$	0.9960	0.8140	0.4940	0.3240	0.2200

Hypothesis Test	
Calc. Test Value	Result
3.096	Accept
284.237	Reject
906.408	Reject
917.189	Reject
745.701	Reject

3.880	Accept
432.346	Reject
951.773	Reject
898.628	Reject
833.798	Reject

6.548	Accept
9.278	Accept
269.075	Reject
797.495	Reject
876.592	Reject

MEANS: SDs:		$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}-\mathrm{B}- \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0760	0.0400	0.0620	0.0620	0.0680
mean $=1$	0.4540	0.1900	0.1200	0.0760	0.0740
mean $=2$	0.9340	0.5260	0.2800	0.1740	0.1180
mean $=3$	0.9980	0.8600	0.5640	0.3580	0.2300
mean $=4$	1.0000	0.9820	0.7900	0.5300	0.3540
B					
mcan $=0$	0.0360	0.0580	0.0420	0.0400	0.0620
mean $=1$	0.4420	0.1860	0.0980	0.0720	0.0780
mean $=2$	0.9440	0.5460	0.3260	0.1800	0.1280
mean $=3$	0.9940	0.8580	0.5700	0.3200	0.1940
mean $=4$	1.0000	0.9800	0.8000	0.5660	0.3840
AB					
mean $=0$	0.0420	0.0500	0.0560	0.0620	0.0780
mean $=1$	0.0600	0.0640	0.0620	0.0300	0.0480
mean $=2$	0.4520	0.1680	0.1320	0.0700	0.0660
mean $=3$	0.8740	0.4920	0.2480	0.1740	0.1200
mean $=4$	0.9940	0.7460	0.4720	0.3020	0.2200

Hypothesis Test	
Calc. Test Value	Result
6.186	Accept
337.348	Reject
924.036	Reject
882.202	Reject
817.549	Reject

5.947	Acccpt
336.863	Reject
904.534	Reject
959.415	Reject
753.710	Reject

6.809	Accept
8.046	Accept
347.461	Reject
813.681	Reject
831.260	Reject

MEANS:SDs:		$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$	Reject hypothesis if test value >9.488			Hypothesis Test		
		Calc. Test				Result		
A						Value		
mean $=0$	0.0440		0.0280	0.0520	0.0420	0.0340	4.479	Accept
mean $=1$	0.3940	0.1620	0.0700	0.0700	0.0580	316.028	Reject	
mean $=2$	0.9420	0.5840	0.2880	0.1580	0.1000	1004.834	Reject	
mean $=3$	0.9960	0.8900	0.5980	0.3260	0.2220	960.862	Reject	
mean $=4$	1.0000	0.9880	0.7960	0.5500	0.3800	779.648	Reject	
B								
mcan $=0$	0.0360	0.0460	0.0500	0.0480	0.0400	1.617	Accept	
mean $=1$	0.4220	0.1880	0.1100	0.0820	0.0580	307.887	Reject	
mean $=2$	0.9460	0.6000	0.3300	0.1820	0.1160	946.374	Reject	
mean $=3$	1.0000	0.8720	0.5720	0.3600	0.2560	863.284	Reject	
mean $=4$	1.0000	0.9860	0.8000	0.5640	0.4200	711.954	Reject	
AB								
mean $=0$	0.0640	0.0480	0.0500	0.0540	0.0460	2.046	Accept	
mean $=1$	0.0960	0.0400	0.0520	0.0460	0.0500	18.711	Reject	
mean $=2$	0.4620	0.2060	0.1380	0.0800	0.0740	330.291	Reject	
mean $=3$	0.8820	0.4740	0.2620	0.1800	0.1460	776.682	Reject	
mean $=4$	0.9920	0.7860	0.4780	0.3560	0.2520	776.634	Reject	

MEANS: SDs:		$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}-\mathrm{B}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0480	0.0480	0.0320	0.0480	0.0640
mean $=1$	0.4560	0.2360	0.1260	0.0860	0.0520
mean $=2$	0.9640	0.5740	0.2780	0.1800	0.1180
mean $=3$	1.0000	0.8920	0.5460	0.3980	0.2540
mean $=4$	1.0000	0.9860	0.7720	0.5800	0.3940
B					
mcan $=0$	0.0360	0.0500	0.0660	0.0400	0.0720
mean $=1$	0.4860	0.1720	0.0920	0.0680	0.0720
mean $=2$	0.9540	0.6420	0.2860	0.1660	0.6980
mean $=3$	1.0000	0.8880	0.5700	0.3280	0.2140
mean $=+$	1.0000	0.9880	0.8240	0.5200	0.3940
AB					
mean $=0$	0.0660	0.0540	0.0440	$0.04+0$	0.0700
mean $=1$	0.0920	0.0580	0.0440	0.0560	0.0500
mean $=2$	0.4220	0.1980	0.1260	0.0860	0.0600
mean $=3$	0.8660	0.4840	0.2380	0.2180	0.1320
mean $=4$	0.9840	0.7880	0.5080	0.3220	0.2060

Hypothesis Test	
Calc. Test Value	Result
5.602	Accept
$3+5.380$	Reject
1001.025	Reject
862.180	Reject
724.432	Reject

9.966	Reject
429.317	Reject
1061.632	Reject
972.550	Reject
800.889	Reject

5.591	Accept
12.411	Reject
290.050	Reject
747.021	Reject
845.658	Reject

	MEANS: SDs:	$\begin{aligned} & \mathrm{A}+\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$		Reject hypothesis if test value >9.488	
A					
mean $=0$	0.0500	0.0440	0.0480	0.0460	0.0500
mean $=1$	0.4260	0.1520	0.0720	0.0700	0.0420
mean $=2$	0.9320	0.5520	0.2600	0.1440	0.1000
mean $=3$	1.0000	0.8940	0.6080	0.3000	0.1880
mean $=4$	1.0000	1.0000	0.8620	0.5840	0.3800
B					
mcan $=0$	0.0500	0.0580	0.0500	0.0640	0.0500
mean $=1$	0.4420	0.1460	0.1100	0.0560	0.0400
mean $=2$	0.9560	0.5440	0.2800	0.1460	0.1020
mean $=3$	1.0000	0.9140	0.5600	0.2860	0.2140
mean $=4$	1.0000	0.9960	0.8500	0.5540	0.3820
AB					
mean $=0$	0.0540	0.0480	0.0380	0.0520	0.0540
mean $=1$	0.0900	0.0580	0.0560	0.0620	0.0560
mean $=2$	0.4480	0.1460	0.0900	0.0480	0.0720
mean $=3$	0.8700	0.4620	0.1880	0.1120	0.0880
mean $=4$	0.9980	0.8400	0.4660	0.2980	0.1840

Hypothesis Test	
Calc. Test Value	Result
0.300	Accept
388.232	Reject
1004.607	Reject
1052.896	Reject
837.220	Reject

1.586	Acccpt
402.106	Reject
1031.644	Reject
1053.165	Reject
832.120	Reject

1.932	Accept
6.997	Accept
401.371	Reject
962.262	Reject
991.092	Reject

Appendix F: OC Curves for With-Interaction Data

Operating Characteristic curves for 'with-interaction' data

Mean	A-
SD	A+

Operating Characteristic curves for 'with-interaction' data

Mean	A-
SD	$\mathrm{A}+\mathrm{B}-$

Legend

Operating Characteristic curves
for 'with-interaction' data

Mean	A-
SD	$\mathrm{A}-\mathrm{B}^{+}$

A
B
AB

Mean	$\mathrm{A}-$
SD	$\mathrm{A}+\mathrm{B}+$

Legend

- sd = 1	- - sd=2	- sd sd $=3$	$\cdots \cdot-\cdot$ sd $=4$	$\cdots-$ sd $=5$

Operating Characteristic curves
for 'with-interaction' data

Mean	A-B-
SD	A-

Legend

Operating Characteristic curves for 'with-interaction' data

Mean	$\mathrm{A}+\mathrm{B}+$
SD	$\mathrm{A}-$

(

Operating Characteristic curves for 'with-interaction' data

Mean	A-B-
SD	$\mathrm{A}+\mathrm{B}-$

Legend

Mean	A-B-
SD	$\mathrm{A}+\mathrm{B}+$

Legend

Mean	$\mathrm{A}+\mathrm{B}-$
SD	$\mathrm{A}-\mathrm{B}-$

$A \quad B \quad A B$

Mean	$\mathrm{A}+\mathrm{B}-$
SD	$\mathrm{A}+\mathrm{B}-$

Legend

Mean	$\mathrm{A}+\mathrm{B}-$
SD	$\mathrm{A}+\mathrm{B}+$

Legend
$s d=1 \quad---s d=2$
sd $=$

Legend

Legend

Mean	$\mathrm{A}+\mathrm{B}+$
SD	$\mathrm{A}-\mathrm{B}-$

Mean	$\mathrm{A}+\mathrm{B}+$
SD	$\mathrm{A}+\mathrm{B}-$

Legend

Mean	$\mathrm{A}+\mathrm{B}+$
SD	$\mathrm{A}+\mathrm{B}+$

Legend

Appendix G: Hypothesis Test Results for With-Interaction Data

MEANS: A-

mean $=0$ mean $=1$ mean $=2$ mean $=3$ mean $=4$	$\begin{array}{cc} \text { MEANS: A-B- } \\ \text { SDs: } \end{array}$		
	A	B	AB
	Accept	Accept	Accept
	Reject	Reject	Accept
	Reject	Reject	Reject
	Reject	Reject	Reject
	Reject	Reject	Reject

MEANS: A-B+

mean $=0$	A-		
	A	B	AB
	Reject	Accept	Accept
mean $=1$	Reject	Reject	Reject
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

MEANS:
A-
SDs: A + A B AB Accept Accept Accept Reject Accept Accept Reject Accept Accept Reject Accept Accept Reject Accept Accept

MEANS: A-
 SDs: $\quad \mathrm{A}+\mathrm{B}-$

A	B	AB
Accept	Accept	Reject
Reject	Accept	Accept
Reject	Reject	Accept
Reject	Accept	Accept
Reject	Accept	Accept

MEANS: A-
SDs: $\quad \mathrm{A}+\mathrm{B}+$

A	B	AB
Accept	Accept	Accept
Reject	Accept	Accept

MEANS: A+BSDs: A-

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

MEANS: $\quad \mathrm{A}+\mathrm{B}+$ SDs: A

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

mean $=0$	MEANS: SDs:	$\begin{aligned} & \text { A-B- } \\ & \text { A-B+ } \end{aligned}$	
	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

mean $=0$	MEANS: SDs:	$\begin{aligned} & \text { A+B- } \\ & \text { A-B- } \end{aligned}$	
	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Reject	Reject
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

mean $=0$	MEANS: SDs:	$\begin{aligned} & A+B- \\ & A-B+ \end{aligned}$	
	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Reject	Accept
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

mean $=0$	MEANS: SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}-\mathrm{B}- \end{aligned}$	
	A	B	AB
	Accept	Reject	Accept
mean $=1$	Reject	Reject	Reject
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

MEANS: A-B-
SDs: $\quad \mathrm{A}+\mathrm{B}-$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

MEANS: A-B-
SDs: $\quad \mathrm{A}+\mathrm{B}+$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

MEANS: A+B-
SDs: $\quad \mathrm{A}+\mathrm{B}-$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

MEANS: A+B-

SDs:	A+B+	
A	B	AB
Accept	Accept	Accept
Reject	Reject	Reject

$\begin{array}{cc}\text { MEANS: } & A-B+ \\ \text { SDs: } & A+B-\end{array}$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

mean $=0$	MEANS: SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}-\mathrm{B}+ \end{aligned}$	
	A	B	AB
	Accept	Accept	Accept
mean $=1$	Reject	Reject	Reject
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

MEANS: $\quad \mathrm{A}+\mathrm{B}+$
SDs: A-B-

mean $=0$ mean $=1$ mean $=2$ mean $=3$ mean $=4$	A	B	AB
	Accept	Accept	Accept
	Reject	Reject	Accept
	Reject	Reject	Reject
	Reject	Reject	Reject
	Reject	Reject	Reject

MEANS: $\mathrm{A}+\mathrm{B}+$

mean $=0$	A-B+		
	A	B	AB
	Accept	Reject	Accept
mean $=1$	Reject	Reject	Reject
mean $=2$	Reject	Reject	Reject
mean $=3$	Reject	Reject	Reject
mean $=4$	Reject	Reject	Reject

MEANS: $\quad \mathrm{A}-\mathrm{B}+$
SDs: $\quad \mathrm{A}+\mathrm{B}+$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Accept
Reject	Reject	Reject
Reject	Reject	Reject
Reject	Reject	Reject

MEANS: $\quad \mathrm{A}+\mathrm{B}+$
SDs: $\quad A+B-$

A	B	AB
Accept	Accept	Accept
Reject	Reject	Reject

MEANS:
A+B+
SDs: A+B + A B AB Accept Accept Accept Reject Reject Accept Reject Reject Reject Reject Reject Reject Reject Reject Reject

Appendix H: Differences in Hypothesis Tests

A zero means that the two data sets had the same result. A "Reject" or "Accept" is the test result for the with-interaction data. The no-interaction data would have the opposite result.

mean $=0$	MEANS: SDs:	$\begin{aligned} & \text { A- } \\ & \text { A- } \end{aligned}$	
	A	B	AB
	0	0	0
mean $=1$	0	0	0
mean $=2$	0	0	0
mean $=3$	0	0	0
mean $=4$	0	0	0

MEANS: SDs:	A-		
	A-B-		
	A	B	AB
mean $=0$	0	0	0
mean $=1$	0	0	0
mean $=2$	0	0	0
mean $=3$	0	0	0
mean $=4$	0	0	0

MEANS:	A-		
	SDs:	A-B+	
mean $=0$	A	B	AB
mean $=1$	0	0	0
mean $=2$	0	Reject	Reject
mean $=3$	0	0	0
mean $=4$	0	Reject	0
	0	0	0

MEANS: A-B-

	SDs:		
	\mathbf{A}	\mathbf{B}	AB
mean $=0$	0	0	0
mean $=1$	0	0	0
mean $=2$	0	0	Reject
mean $=3$	0	0	Reject
mean $=4$	0	0	Reject

MEANS: A-B+
SDs:

A	B	$A B$
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject
0	0	0

MEANS:
A-

SDs:	A+	
A	B	AB
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

MEANS: A-
SDs: $\quad \mathrm{A}+\mathrm{B}-$

A	B	$A B$
0	0	Reject
0	0	0
0	Reject	0
0	0	0
0	0	0

MEANS: A-
SDs: $\quad \mathrm{A}+\mathrm{B}+$

A	B	$A B$
0	0	Accept
0	0	0
0	0	0
0	0	0
0	0	0

MEANS: $\quad A+B-$

SDs:	A-	
A	B	AB
Accept	0	0
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject

MEANS: $\quad A+B+$
SDs: A-

A	B	$A B$
0	0	0
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject

MEANS: A+B-

	SDs:		
	A	A-B-	
	mean	$=0$	$A B$
	0	0	0
mean $=1$	0	0	Reject
mean $=2$	0	0	Reject
mean $=3$			
mean $=4$	0	0	0
	0	0	Reject

MEANS: A+B-

	SDs:				$A-B+$		
mean $=0$	A	B	$A B$				
mean $=1$	0	0	Accept				
mean $=2$	0	0	0				
mean $=3$							
mean $=4$	0	0	Reject				
	0	0	0				
	0	0	Reject				

mean $=0$	$\begin{array}{cc} \text { MEANS: } & \text { A-B+ } \\ \text { SDs: } & \text { A-B- } \end{array}$		
	A	B	AB
	0	Reject	Accept
mean $=1$	0	0	Reject
mean $=2$	0	0	Reject
mean $=3$	0	0	Reject
mean $=4$	0	0	Reject

MEANS SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}- \\ & \mathrm{A}+\mathrm{B}- \end{aligned}$	
A	B	AB
Accept	0	Accept
0	0	0
0	0	Reject
0	0	Reject
0	0	0

MEANS: A-B-

SDs:	A+B +	
A	B	AB
0	0	0
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject

MEANS: A+B-

SDs:	A+B-	
A	B	$A B$
0	0	0
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject

MEANS: SDs:	$\begin{aligned} & A+B- \\ & A+B+ \end{aligned}$	
A	B	AB
0	0	0
0	0	Reject

MEANS:
SDs:
A-B+ A B- 0 0 AB 0 0 0 0 0 0 0 Reject 0 0

$\begin{aligned} & \text { mean }=0 \\ & \text { mean }=1 \end{aligned}$	$\begin{array}{cl} \text { MEANS: } & \mathrm{A}-\mathrm{B}+ \\ \text { SDs: } & \mathrm{A}-\mathrm{B}+ \end{array}$		
	A	B	AB
	0	0	0
	0	0	Reject
mean $=2$	0	0	Reject
mean $=3$	0	0	Reject
mean $=4$	0	0	0

MEANS: $\quad \mathrm{A}+\mathrm{B}+$
SDs: A-B-

mean $=0$ mean $=1$ mean $=2$ mean $=3$ mean $=4$	A	B	AB
	0	0	0
	0	0	0
	0	0	Reject
	0	0	Reject
	0	0	Reject

MEANS: $\mathrm{A}+\mathrm{B}+$
SDs: $\quad \mathrm{A}-\mathrm{B}+$

mean $=0$ mean $=1$ mean $=2$ mean $=3$ mean $=4$	A	B	AB
	0	Reject	0
	0	-	Reject
	0	0	Reject
	0	0	Reject
	0	0	Reject

MEANS SDs:	$\begin{aligned} & \mathrm{A}-\mathrm{B}+ \\ & \mathrm{A}+\mathrm{B}+ \end{aligned}$	
A	B	AB
0	0	0
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject

MEANS: A+B+
SDs: $\quad A+B-$

A	B	$A B$
0	0	0
0	0	Reject

$\begin{gathered} \text { MEANS: } \\ \text { SDs: } \end{gathered}$	$\begin{aligned} & A+B+ \\ & A+B+ \end{aligned}$	
A	B	AB
0	0	0
0	0	0
0	0	Reject
0	0	Reject
0	0	Reject

VITA

Sarah Johnson

Candidate for the Degre of
Master of Science

Thesis: THE EFFECT OF HETEROSCEDASTICITY ON AN OPERATING CHARACTERISTIC CURVE IN A DESIGNED EXPERIMENT

Major Field: Industrial Engineering and Management
Biographical:
Personal Data: Born in Adrian, Michigan, On February 12, 1973, the daughter of Dan and Paula Lane.

Education: Graduated from Panama High School, Panama, Oklahoma, in May 1991; received Bachelor of Science degree in Industrial Engineering and Management from Oklahoma State University in 1995. Completed the requirements for the Master of Science degree with a major in Industrial Engineering and Management at Oklahoma State University in December 1996.

Experience: Employed by Oklahoma State University, Department of Industrial Engineering and Management as a graduate teaching assistant; employed as Quality Technician at National Standard, Inc., from 6-95 to 12-95; employed by Conoco, Inc., as Summer Enginering Intern for the summer of 1994.

Professional Memberships: American Society for Quality Control, Institute of Industrial Engineers, Alpha Pi Mu, Tau Beta Pi.

