
A PENALTY METHOD TO REDUCE OVERFITTING

IN ARTIFICIAL NEURAL NElWORKS

By

PING JIANG

Bachelor of Science
Tongji University

Shanghai, PR China
1984

Master of Science
Oklahoma State University

Slitter, Oklahoma
1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1996

A PENALIT METHOD TO REDUCE OVERFITTING

IN ARTIFICIAL NEURAL NETWORKS

Thesis Approved:

~0=:0~A-
JAtJm?UJ (. (!~
Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. John P. Chandler for his

guidance, encouragement and invaluable instructions. He made a great effort to improve

this thesis in both contents and English. Likewise, sincere appreciation is e},.1ended to the

advisory committee members, Dr. KM. George and Dr. B. E. Mayfield for their

assistance.

Very special thanks and love go to my parents, Su Zhen Zhu and Yun Jiang. I

would also like to express my gratitude to my sister Wan Qing Jiang and her family for

their continuing support and understanding during my study overseas. Without their

support, this thesis would not be possible.

Finally I would like to express thanks to all faculty and staff in the Computer

Science Department for their support during my study in Oklahoma State University.

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1. 1Artificial Neural Network History 1

1 2 Artifi . I N 1N k M dId A Ii .. CIa eura etwor 0 e s an pp catIons 2

1.3 Learning in FeedfOlward Artificial Neural Networks 5

1.4 Overfitting in Artificial Neural Networks 8

1. 5 The Objective of This Study 9

2. PERFORMANCE OPTIMIZATION 11

2.1 Basic Concepts 11

2.2 Steepest Descent Method 19

2.3 Newton's Method 22

2.4 The Conjugate GTadient Method 24

3. ARTIFICIAL NEURAL NETWORK LEARNING ALGORITIlMS 28

3.1 Architectures ofFeedforward Artificial Neural Networks 28

3.2 Dynamic Behavior in Artificial Neural Networks 34

3.3 Overfitting and Generalization in Artificial Neural Networks 36

3.4 Stopped Training Method to Reduce Overfitting 38

3.5 Penalty Method to Reduce Overfitting 39

lV

3.6 Computation in FeeMorward Artificial Neural Networks .41

4. IMPLEMENTATION AND DISCUSSION OF RESULTS 49

4.1 Language Implementation and Neural Network Architecture Design 49

4.2 Discussion of Test Results 50

5. Conclusion and Future Work 75

BffiLIOGRAPHY 77

APPENDIX -- PROGRAM LISTING 82

v

____________J

Table

LIST OF TABLES

Page

4.1 Performance ofTraining and Generalization RMS
with. 7 hidden nodes and A = a 54

4.2 Performance of Training and Generalization RMS
with 7 hidden nodes and A= 0.00001 54

4.3 Performance of Training and Generalization RMS
with 7 hidden nodes and A= 0.0001 55

4.4 Performance of Training and Generalization RMS
with 7 hidden nodes and A= 0.001 55

4.5 Performance of Training and Generalization RMS
with 7 hidden nodes and A= 0.01 55

4.6 Performance of Training and Generalization RMS
with 8 hidden nodes and A = a 56

4.7 Performance of Training and Generalization RMS
with 8 hidden nodes and A = 0.00001 56

4,8 Performance of Training and Generalization RMS
with 8 hidden nodes and A= o. 000 1 57

4.9 Performance ofTraining and Generalization RMS
with 8 hidden nodes and A= o. 00 1 57

4.10 Performance ofTraining and Generalization RMS
with 8 hidden nodes and A= 0.01 57

4.11 Performance ofTraining and Generalization RMS
with 9 hidden nodes and A= a 58

4.12 Performance ofTraining and Generalization RMS
with 9 hidden nodes and A= 0.00001 58

4.13 Performance ofTraining and Generalization RMS
with 9 hidden nodes and A= 0.0001 59

vi

4.14 Performance of Training and Generalization RMS
with 9 hidden nodes and A= 0.001 59

4.15 Performance of Training and Generalization RMS
with 9 hidden nodes and A= 0.01 60

4.16 Performance of Training and Generalization RMS
with 10 hidden nodes and A= 0 60

4.17 Performance of Training and Generalization RMS
with 10 hidden nodes and A = O. 0000 1 61

4.18 Performance of Training and Generalization RMS
with 10 hidden nodes and A= 0.0001 61

4.19 Performance of Training and Generalization RMS
with 10 hidden nodes and A = 0.001 62

4.20 Performance of Training and Generalization RMS
with 10 hidden nodes and A = 0.01 62

4.21 Performance ofTraining and Generalization RMS
with 17 hidden nodes and A = 0 62

4.22 Performance ofTraining and Generalization RMS
with 17 hidden nodes and A= o. 0000 1 63

4.23 Performance of Training and Generalization RMS
with 17 hidden nodes and A = O. 000] 63

4.24 Performance of Training and Generalization RMS
with 17 hidden nodes and A= 0.001 63

4.25 Performance ofTraining and Generalization RMS
with 17 hidden nodes and A= 0.01 64

4.26 Performance ofTraining and Generalization RMS
with 18 hidden nodes and A= a 64

4.27 Performance ofTraining and Generalization RMS
with 18 hidden. nodes and A= 0.00001 64

4.28 Performance ofTraining and Generalization RMS
with 18 hidden nodes and A = 0.0001 65

vii

4.29 Performance of Training and Generalization RMS
with 18 hidden nodes and A = 0.001 65

4.30 Performance of Training and Generalization RMS
with 18 hidden nodes and A= 0.01 65

4.31 Performance ofTraining and Generalization RMS
with 19 hidden nodes and A= 0 66

4.32 Performance of Training and Generalization RMS
with 19 hidden nodes and A= 0.00001 66

4.33 Performance of Training and Generalization RMS
with 19 hidden nodes and A = 0.000 I 66

4.34 Performance ofTraining and Generalization RMS
with 19 hidden nodes and A= 0.001 67

4.35 Performance ofTraining and Generalization RMS
with 19 hidden nodes and A = 0.0] 67

4.36 Performance of Training and Generalization RMS
with 20 hidden nodes and A= 0 67

4.37 Performance of Training and Generalization RMS
with 20 hidden nodes and A = 0.000 I 68

4.38 Performance ofTraining and Generalization RMS
with 20 hidden nodes and A= 0.001 68

4.39 Performance of Training and Generalization RMS
with 20 hidden nodes and A= 0.01 69

viii

Figure

LIST OF FlGURES

Page

1.2.1 A Generic Processing Element
..,

.. ::J

3.1.1 A Three Layer FeedfolWard Network 29

3.1.2 The Sigmoid Function 33

3.1.3 The Hyperbolic Function 33

3.3.1 The Relationship Between Training Error and Testing Error 36

3.5.1 The First Order Derivative ofPenalty Term .41

4.1 The Relationship Between Generalization RMS and A(2/711) 70

4.2 The Relationship Between Generalization RMS and A (2/8/l) 70

4.3 The Relationship Between Generalization RMS and A (2/911) 71

4.4 The Relationship Between Generalization RMS and A(2/10/1) 71

4.5 The Relationship Between Generalization RMS and A (2/17/1) 72

4.6 The Relationship Between Generalization RMS and A(2/18/1) 72

4.7 The Relationship Between Generalization RMS and A (2/19/1) 73

4.8 The Relationship Between Generalization RMS and A (2/20/1) 73

4.9 The Relationship Between Generalization RMS and
Number of Weights 74

ix

1. INTRODUCTION

1.1 Artificial Neural Network History

Neurocomputing is an interdiscipline concerned with information processmg

systems, i.e., nemal networks that can be trained to develop operational capabilities to

respond to an information environment. The human brain is composed of about lOll

neurons (nerve cells) of different types [1]. The neural network was originally aimed

towards modeling networks of real neuron in the brain. The history ofneural networks can

be traced back to 1943 when Warren McCulloch and Walter Pitts [2][3] proposed a

simple model of a neuron as a binary threshold unit to compute arithmetic and logical

functions. In 1949 Donald Hebb [4] published a book called "The Organization of

Behavior" which proposed a specific learning law for the synapses of neurons. He used

this learning law to explain qualitatively some experimental results fJom psychology.

Hebb's research inspired many researchers to pursue the same theme, which eventually

laid down the foundation for the advent of neurocomputing. The first succes ful

neurocomputer called the Mark I Perceptron, was built by Frank Rosenblatt, Charles

Wightman and others during 1957 and 1958 [6]. Rosenblatt is considered to be the

founder of neurocomputing. Bernard Widrow, working with his graduate students,

developed different types of neural network processing elements called the ADALINE and

MADALINE, and applied them successfully in a type of electronically adjustable resistor

called the memistor. Despite some setbacks in the late 1960s and 1970s, the artificial

neural network researchs regained their momentum thanks to physicist John Hopfield and

other dedicated researchers. In 1986, David Rumelhart and James McClelland edited a

book called Parallel Distributed Processing (PDP) [20], Volume I and Volume II. The

field exploded since then. Today we are witnessing substantial growth in neural network

research and development.

1.2 Artificial Neural Network Models and Applications

A neural network is a parallel distributed information processing structure in the

form of a directed graph, with the following sub-definitions [2]

• The nodes of the graph are called processing elements or artificial neurons.

• The links ofthe graph are called connections.

• Each processing element can receive any number of incoming connections (also

called '1>ut" connections).

• Each processing element can have any number of outgoing connections.

• Processing elements can have local memory.

• Each processing element processes a transfer function which can use (and alter)

local memory, use input signals, and produce output signals.

2

input signals
Transfer

function

1+----1 Local
memory

Copies of
output signals

Figure 1.2.1 A Generic Processing Element

A generic processing element is shown in Figure 1.2.1. A typical neural network consists

of many simple neuron-like processing elements, also called units or neurons. These

processing elements are linked together to form a network. There are many different ways

to connect the processing elements. Therefore there are many different neural network

models. Basically we can divide neural network models into three categories [15]:

• Feedforward (multilayer) networks

• Feedback (recurrent) networks

• Cellular networks

In feedforward neural networks. processing elements are arranged in a

feedforward manner. One example of feedforward networks IS the :fully connected

feedforward network model. On the other hand, in fe,edback neural networks, the models

are no longer trivial since they consist of processing elements with dynamic building

blocks (e.g. integrator or unit delays) and they operate in feedback mode. The Hopfield

network and Boltzmann machine are examples of feedback networks. Cellular neural

networks, similar to cellular automata, consist of regularly spaced special artificial neurons

3

called cells, which communicate directly with other neurons only m their nearest

neighborhood. The Kohonen map is one example of cellular networks.

Neural networks have been used in many fields. A list of some applications are as

follows [16]:

Transportation: Aircraft control systems, automobile automatic guiding systems.

Economics: Credit card application processing, corporation financial analysis,

currency price prediction, market forecasting.

Defense: Weapon steering, target tracking, object discrimination, signaVimage

identification and data compression.

Electronics: Code sequence prediction, process control, chip failure analysis,

voice synthesis.

Manufacturing: Manufacturing process control, visual quality inspection systems,

product quality prediction.

Medical: Optimization of transplant times, hospital quality improvement.

Robotics: Trajectory control, manipulator controls, vision systems.

Speech: Speech recognition, speech compression.

Telecommunications: Image and data compression, automated information

seIVIces.

4

1.3 Learning in Feedforward Artificial Neural Networks

One of the interesting properties of a feedfoIWard neural network is its capability

of learning, i.e., a feedfoIWard neural network can self-adjust its behavior by using

information from the environment. When we use a feedforward neural network to solve a

problem, we first train the network using a set of input-output sample data. Based on this

data set, the network, when properly trained, will not only try to learn the sample set

correctly, but also to generalize from the training set examples to the entire problem

domain. This capability of generalization makes artificial neural networks very useful tools

to solve a set ofproblems which are not clearly defined.

A neural network consists of processing elements and connections. Each

connection has a weight to represent the relative importance of the connection, except for

the output connections. A processing element sums all its weighted inputs and passes the

result to the transfer (activation) function to yield the output of the processing element.

The nonlinear transfer function can be a step (threshold) function as used by McCulloch

Pitts[3] to solve classification problems. But generally the step function is replaced by a

non-linear continuous function (e.g. a sigmoid function). Artificial neural networks are

organized into layers. A neural network links the output of neurons of one layer to the

neurons of the next layer. A fully connected feedforward network is a network such that

the output ofneurons in one layer are linked to all neurons of the next layer, except for the

output layer of the network. The computation of the network is carried out on a layer-by

layer basis, starting from the input layer. The computation process continues until the

output has been reached. Such a computation is called a forward pass.

5

Learning is an important requirement ofneural networks. A neural network usually

has to be trained to perform a desired task. The application of neural networks involves

two major phases: learning phase and performance phase. During the learning phase, a

neural network is given a set of input/output sample data. The network calculates the

output based on the input data and the result is compared with the desired output. If the

calculated output is not close to the desired output, the network will try to modify its

weights until a better approximation is reached. Such learning is called supervised

learning, This learning method is also called "learning with a teacher" because the learning

is done on the basis of direct comparison of network output with known correct answers.

Sometimes the learning goal is not defined at all in terms of specific correct examples. The

only available information is in the correlation of the input data or signals. The network is

expected to create categories from the correlation and to produce outputs corresponding

to the in,put category. Such a learning is called unsupervised learning. Often the learning

phase will involve hundreds of thousands of repetitions as the neural network goes

through all of the training examples before the neural network enters the perfonnance

phase. During the performance phase, the neural network is able to compute outputs from

non-example input data.

From an optimization point of view, learning in a neural network is equivalent to

minimizing the sum of squares of the output errors, sometimes called "error function". A

learning algorithm is applied to transform the calcuJated errors into weight adjustments

until a local minimum in the error function is reached. Most learning algorithms that are

6

used for training feedfOIward neural networks are those that enforce the learning process

by means ofbackpropagation [10].

Although the learning algorithms may be different, the learning procedures are

basically the same. The following is a general outline of the learning procedure used in all

backpropagation algorithms:

1. The network is given a random set of initial weights.

2. Training examples are given to the network.

3. For each input-output pairs, there are two phases: a forward pass and a

backward pass.

4. The forward pass is to calculate the outputs on a layer-by-layer basis until the

output layer has been reached.

5. During the backward pass, the calculated outputs from the output layer are

compared with the desired output, and errors are computed for the output nodes.

Then the network adjusts its weights in a backward fashion, starting from the

output layer, to reduce the errors.

6. This process continues until convergence has been reached.

There are several mathematical rnodelsin optimization [12][14][151 which can be

applied in the learning process of artificial neural networks. The least mean square (LMS)

model is the most widely used in artificial neural network analysis. The error

(performance) function is defined as the squared summation of the difference between the

computed outputs and the desired outputs. The optimization goal is to minimize this error

function. Most of the learning algorithms are gradient-based learning algorithm which can

7

be divided into three categories: the steepest descent method, the Newton method and the

conjugate gradient methods[12]. These methods will be introduced in Chapter two.

1.4. Overfitting in Artificial Neural Networks

When a neural network is trained, the weights are modified in order to minimize

the error in the training patterns. For continuous domains, or large discrete ones, it is

impossible to provide samples of every possible input. For a large network system., if the

system simply memorizes the training patterns, it may do quite well during the training

process but it may give spurious and misleading outputs if the input is slightly different

from the sample inputs. This is called overfitting. [23] An example is a high-order

polynomial fitted through a small number of points. Overfitting happens when the network

has as many or more degrees of freedom (the number of weights) than the number of

training samples. In other words there are not enough examples to constrain the network.

It is advisable to use the smallest system that will fit the data. (f the system has only a

limited number of degrees of freedom, it will use a limited number of data to adapt to the

largest constraints and ignore the smaller (possible spurious) constramts. As a rule of

thumb, for a network to be able to generalize, it should have fewer parameters(weights)

than there are data points in the training set. Unfortunately, it usually isn't obvious what

size is best so a common approach is to train successively smaller networks until the

smallest one is found that will learn the data. [23][27] This approach has several

disadvantages. First it is time consuming, since a large number of networks must be

trained. Second, the smallest feasible networks may be sensitive to initial conditions and

learning parameters, and be more likely to be trapped in local minima. Another approach is

8

to have the network itself remove non-useful connections during training by giving each

connection a tendency to decay, so that connections disappear [23][24][26]. This prompt

me to use penalty method to reduce overfitting in artificial neural networks [24][26]. The

purpose of this thesis will be illustrated in the following section.

1.5. The Objective of This Study

This thesis focuses on the possibilities of reducing overfitting in artificial neural

networks. The penalty method[24][26] will be implemented to reduce overfitting. The idea

is to add a term to the perfonwmce function as follows:

(1.5.1)

The first term measures the performance of the network. It is the sum of squared

errors over the set of training data. The second term measures the size of the network. Its

sum extends over all connections C. Arepresents the relative importance of the complexity

term with respect to the performance term.

The leaming rule is to change the weights according to the gradient of the entire

function, continuously doing justice to the trade-off between error and complexity. The

extreme cases ofvery large and very small weights are easily interpreted. For IWi I» W O ,

the second term is close to A, This justifies the interpretation of the complexity term as a

counter of significant-sized weights. On the other hand, if Iwil« W o the second term is

close to zero. ''Large'' and "Small" are defined with respect to the scale w 0' a constant

parameter that has to be decided in the procedure. Q is the number of input output pairs.

9

The conjugate gradient method[12][14][15] will be used to minimize the performance

function (1.5. 1). To fully understand the subject, we need some basic knowledge of

nonlinear optimization, which will be discussed in Chapter two.

10

2. PERFORMANCE OPTIMIZATION

Unless otherwise stated, the domains of all variables are real numbers.

2.1 Basic Concepts [11]

(2. 1. 1)

0 1"

am"

A = [0 ..]. . It has m rows and n columns. If ill is equal to n, the
IJ mXII

A=

An m xn matrix represented by

From an optimization point ofview, training a network is equivalent to minimizing

matrix is called a square matrix. A 1xn matrix is called a row vector and an mx I matrix is

can be expressed as

Gauss, Cauchy and Leibniz. With the advent of digital computers. these principles have

optimization methods and the mathematical principles behind these methods. The

been successfully applied to develop algorithms in the field of optimization. Although

these algorithms are different, they all use iterative methods. We will first introduce some

a global error function, which is a multivariate function that depends on the weights in the

basic concepts that will be used later in analyses of various optimization methods.

principles were discovered by scientists and mathematicians such as Kepler, Newton,

network. In this chapter, we introduce some fundamental concepts, various classical

called a column vector. In this thesis, all matrices are represented by uppercase bold face

letters and row vectors are represented by lowercase bold face letters.

11

I......

and also

(2.1.6)

(2.1.5)

(2.1.3)

(2.1.2)

(2.1.4)

n

Cik =Lay x bjk
j=1

A matrix A = [a r] is called symmetric ifit is a square matrix such that alJ =afi
y nXll

The transpose of a matrix A = [ail] . represented by AT = [a 'j] is a matrix
'J mXII I J n)(m

A diagonal matrix A = [a y.) is a square matrix such that aij =0 for aU
n><IP

The muhiplication oftwo matrices A = [ai'] and B = [bJk] is defined as
.I mxn JlX!

1~ i ~ nand 1:::; j ~ nand i ;t; j and is represented by

c = [C'k Jmxl such that

Specifically if au =1 for all 1~ i ~ n, then the diagonal matrix is called an identity matrix

such that aij = afi for all 1~ i ~ m and 1 ~ j ~ n. Obviously we have

The number of columns in matrix A must be equal to the number of rows in matrix B.

for all 1~ i ~ nand 1~ j ~ n. It can be represented as

I.

A square matrix B is called the inverse of a square matrix of A if

AD = BA = I (2.1. 7)

12

A symmetric matrix A is called positive (negative) definite if the quadratic form

(2.1.8)

(2.1.10)

(2.1.11)

(2.1.12)

XTAx> 0 (< 0) for all X:t- 0

()

111<

Ilxllk = ~ IxJ

The k-norm of a vector x = [XI] is defined as
"xl

The inner product of two vectors x = [Xi] and y = [YI] is defined as
nxl IUel

B can be written as A -1 . If the inverse of a matrix A doesn't exist, A is called a

can be written as Ax = b, where A = [a,,,] , x = [Xi] and b = [b l] . The
!J mXJI JPcI m_l

A matrix A is called positive (negative) semidefinite if the equality is included in

A simultaneous linear equation system, represented by

equation is solvable if A -1 exists. In that case

The Gaussian elimination method can be used to solve the system (2.1.10).

the above condition.

singular matrix. Otherwise it is called nonsingular.

13

Linear independence

Consider a set ofveetors {Xl'X 2 ,X 3 ,,,·,X
D

}, If there exist n scalars al'a2 ;",a n ,

Specifically when k is equal to 2, it is called the Euclidean norm. It represents the

length of an n-dimensional space vector. For Euclidean normed vectors, there is a

Schwarz inequality

(2.1.]4)

(2.1.]5)

(2.1.13)

(1) For all x/'X j EX,

T(x; + x J) == T(xl) +T(x))

(2) For all Xi EX, a E R ,

T(ax,) == aT(x f)

The equality holds if and only if x = Ay, f... is real number.

Two vectors X and yare said to be orthogonal if (x,y) == 0

A transformation T from x to y (T: x- > y) consists of three things

(1) A set of elements x j E X called the domain

(2) A set of elements YI E Y called the range.

(3) A rule relating each Xi E X to Yi E Y.

A transformation is called linear if

at least one ofwhich is nonzero, such that

(2.1.16)

14

Consider a linear transformation A: X->X, Given a set of vectors ZE X which are

any vector space can have many basis sets, the number of elements in basis sets is the same

(2.1.18)

(2. I. 19)

(2.1.17)

2~k~D

X = a X +a X + .. ·+a X
I 1 2 2 " u

A(z)= AZ

YI' Y2" .., YD by the Gram-Schmidt method as follows

A basis set for X is a set of linearly independent vectors which spans X. Although

Z and A. are called eigenvectors and eigenvalues, respectively. The matrix representation of

Eigenvalues and Eigenvectors

not equal to zero, and a set of scalars A. that satisfy

[12]. Given n independent vectors X I ,X 2 ,"',x u ' we can obtain n orthogonal vectors

every vector XEX, there exist n scalars a j ,a2 ,.· ',a", such that

and let {Xl' X2 , X3 , ..•, Xu} be a subset of vectors in x. This subset spans X if and only if

then the set of n vectors are called linearly independent. Let X be a linear vector space,

the eigencharacter equation is

Az= AZ (2.1.20)

or

[A - AI] z = 0 (2.1.21)

15

Because z '* 0 we can obtain the eigenvalues and eigenvectors by solving the

following equation

I[A- ,,1.1]1 =0 (2.1.22)

Ifwe have n distinct eigenvalues for an n-dimensional matrix A, we are guaranteed

to find n independent eigenvectors. Therefore the eigenvectors make up a basis set for the

Zl ,Z2"", Zn are the eigenvectors of the matrix A. We have the following diagonalization.

(2.1.24)

(2.1.23)

o
o

Consider the following function ofn variables:

o 0

The Taylor series expansion for this fimction, at the point x· is

where {AI' A:!,. ..,All} are the eigenvalues of the matrix A.

Taylor Series

vector space of the transformation. Furthermore, let B =[ZI ,Z2'" ., zn], where

• T • 1 .)T n2 ()I (•)F(x)=F(x)+'VF(x) Ix=x·(x-x)+"2(x-x v F x x-x· x-x + ... (2.1.25)

where 'VF(x) is the gradient, and is defined as

[]

T

8 8 8
V'F(x) = - F(x) - F(x) ... -F(x)

&) &2 &0
(2.1.26)

16

and 'V 2 F(x) is the Hessian matrix, defined as

(2.1.27)

Minima [12][16]

Strong minimum: A point x' is a strong minimum of F(x) if a scalar 8>0 exists,

such that F(x) < F(x + 6x) for all6x such that 5> 116xll > 0 .

Weak minimum: A point x' is a weak minimum of F(x) if it is not a strong

minimum, and a scalar 8 > 0 exists, such that F(x) =:; F(x +6x) for all 5> 116xll > o.

If we move away from a strong minimum a small distance in any direction the

function will increase.

The point x· is a unique global minimum ofF(x) ifF(x) < F(x. + 6x) for all

~x:;t: o.

For a strong mmunum •x , the function may be smaller than the smaIJ

neighborhood of x·, In such a case the strong minimum is called a local minimum. For a

global minimum the function will be larger than the minimum point at any point in the

domain.

Necessary and Sufficient conditions for Optimization

17

From the Taylor series we know that the first order necessary condition for x· to

-

be a local minimum point for a function is the gradient at x· is equal to zero. i. e.

V'F(x)1 . = 0
%""1'

(2.1.28)

Any points that satisfy the above equation are called stationary points. Even

though the above equation is satisfied, there is no guarantee that the local minimum is

eigenvalues of the Hessian matrix.

we can decide if the function has a nnmmum or IDaXlDlUm by checking the

reached. The second order Decessary condition for a strong minimum is that the Hessian

(2.1.29)1 T TF(x)=-x Ax+d x+c
2

1. If the eigenvalues ofthe Hessian matrix are all positive, the function will have

Hessian matrix to be positive definite. For a quadratic function

matrix to be semidifinite. The sufficient conditions for a strong minimum to exist is the

a strong minimum

2. If the eigenvalues are all negative the function will have a strong maximum.

3. If some eigenvalues are positive and others are negative the function will have a

saddle point.

4. If the eigenvalues are all nonnegative, but some eigenvalues are zero, the

function will either have no stationary point or a weak minimum

5. If the eigenvalues are all nonpositive, but some eigenvalues are zero, the

function will have either have a weak maximum or will have no stationary point.

We can consider that all analytic functions behave like quadratics over a small

neighborhood.

18

If the LlX(k) is sufficient small, we can expand F(X(k+l» as a first order Taylor series, i.e.

All the optimization algorithms which we will discuss use iterative

processes. [12][15] We begin from some initial guess, xo' and then update the guess

according to the following equation

(2.2.3)

(2.2.1)

(2.2.2)

(2.1.30)

(2.1.31)

g(k) = \7F(x)1
.. - .. (I.)

LlX(k) = (X(k+t) - x(k» = a(k)p(k)

or

2.2 Steepest Descent Method f12]

The objective of steepest decent is to satisfy the following condition:

F(X(k+l» < F(x (k» .

F(X(k+l» = F(x(k» +g(k)T 6x(k) ,

where g(k)T is the gradient evaluated at the point X(k)

In order for F(X(k+l» < F(x(k» to be satisfied, the second term of(2.2.2) must be

negative. i. e.

(2.2.4)

We will select a(k) (a.k.a learning rate in neural net publication) which is usually

small, such that it is greater than zero. So

g(k)T p(k) < 0

19

Any vector PL: that satisfies (2.2.4) is called a descent direction. We need to find

(2.2.5)

(2.2.6)

1. Set k=O, guess x(O) , select a(k)

2. Compute g(k) = VF(x)1 It)
~-,.

Algorithm 2.2.1 The algorithm for steepest descent

steepest descent direction. The algorithm of steepest descent is as follows.

select p (k) such that

The equality holds if and only if p(k) = Ag(k) where A. is a real number. Therefore if we

then IpCkJgCk)I has the maximum value which implies that the vectorPk points to the

the steepest descent direction. Recalling the Schwarz inequality, we have

-

5. If X (k+l) satisfies the convergence criteria, then stop

6. Set k=k+ 1 goto 2

The learning rate a(k) must be chosen to satisfy the following to guarantee

convergence [16]

2aCk) < __
Amax

(2.2.7)

20

. """"'"

To minimize (2.2.8) we can take the derivative with respect to a(k) and set it to

(2.2.8)

(2.2.9)

(2.2.10)
g(k)1 p(k)

P (k)1 B(k)p (k)

ark) = _ V'F(X)Tlx-x1t) p(k) =

p(k)1 V'2F(x)lx-x(tl p(k)

Another method to choose the learning rate a (1<) is to minimize the performance

d F(X(k) + a(k)p(k» = V'F(X)TI p(k) + a(k)p(k)1 V' 2 F(x)1 i p(k) =0
dark) x-x(t) x-x(,

This method is also called a line search algorithm.

Algorithm 2.2.2 The algorithm for the steepest descent with line search

We can solve for a (k)

zero.

where H(k) is the Hessian matrix evaluated at point X(k) , i.e.

function with respect to a(1<) at each iteration, i.e. we choose a(k) to minimize

-

1. Set k=O, guess x(k)

g (k)' P 0<)

P (k)1 HO<)p (1<)

6. If x(k) satisfies the convergence criteria, then stop

7. Set k=k+1 goto 2

21

series, the convergence rate is often very slow. Also steepest descent is not scale-invarient.

The advantage of steepest descent is that it is simple and will converge as long as

(2.3.1)

(2.3.2)

Newton's method is based on the second-order Taylor's series [12].

a (1<) satisfies (2.2.7). However because the method is based on the first-order Taylor

Solving for ~x (k) , we have

Taking the derivative with respect to ~x (k) and setting it to zero, we have

2.3 Newton's Method

changed.

If we replace one component x j by C· Xi' the speed of con ergence may be greatly

(2.3.3)

So Newton's method can be represented by

(2.3.4)

where H(k) is the Hessian matrix evaluated at point x k . i.e.

(2.3.5)

In practice the inverse matrix is not computed as this is too slow.

Algorithm 2.3.1: The algorithm for Newton's method is

1. Set k=O, guess X(I)

2. Compute g(k) = V'F(x)1 (1<) and H(k) = V2 F(x)1 (1<.
1~ S~

22

3. Compute 6x(k) by solving the following equations

B(k)6x (k) = _g(k)

4. Compute X(k+l) = x(k) + ~X(k)

5. If X(k) satisfies the convergence criteria, then stop

6. Set k=k+ 1 goto 2

It can be shown that the rate of convergence of Newton's method is second-order

if Hessian matrix is positive definite. If the function is quadratic, Newton's method will

converge in one step. Quadratic convergence is the fastest rate normally encountered in

nonlinear optimization and for this reason Newton's method is of fundamental importance.

However, very few practical problems have a Hessian matrix that is everywhere positive

definite. Even if the Hessian matrix O(k) is positive definite at a nonstationary point,

x (k+1) may lie outside the region where the quadratic approximation at x (k) is valid. This

can be a problem when the curvature of the function in part of the region between x (k)

and x (k) + P (k) is sharper than that predicted by second derivatives alone. In this case

ark) = 1 can be too big a step because it is possible for the function to increase again. An

improvement that could overcome this is to determine ark) by linear search. However

such search is undesirable [12] because it slows down the method substantially.

There are three more serious difficulties. The first is the possibility that

g(k)T 6X(k) =0 when g(k) ;t; 0, in which case X(k) is already the minimum along 6X(k) and

no further progress is possible. The second difficulty is that O(k) may be singular, in

23

which case there is either no solution to (2.3.2) or else there are infinite number of

solutions. Finally, if x(k) is a saddle point at which H(k) is non-singular, then g(kl = 0 and

(2.3.2) can be satisfied only if p'k) = 0 which is obviously useless as a search vector.

Clearly, Newton's method is not a satisfactory general-purpose algorithm for function

rninimintion. Fortunately it can be modified to provide reliable algorithms. The general

philosophy behind these modified Newton's method is to replace the Hessian matrix with a

matrix that is guaranteed always to be positive definite and which is otherwise close to

Hessian matrix. For a special fonn of the performance function such as least squares,

Gauss-Newton method [12][14] and the Levenberg-Marquardt [28][29] method are very

efficient alternatives to Newton's method.

2.4 The Conjugate Directions Method (12)[14J115]

The Newton method has the advantage of requiring only one iteration to converge

on a quadratic function which is one form of quadratic termination. However it requests to

calculate and store the second derivatives of the Hessian matrix. The conjugate direction

method is to search the minimum in the conjugate direction to guarantee quadratic

termin.ation. Suppose that we want to minimize the function (2.1.29). We define the

conjugate directions as follows:

Definition 2.4.1:

A set of vectors {PI<) is mutually conjugate with respect to a positive definite

Hessian matrix A ifand only if

(2.4.1)

24

....

ofA.

There are a lot ofvectors that satisfies (2.4.1). One set consists of the eigenvectors

(2.4.3)

(2.4.4)

(2.4.2)VF(x) = Ax +d

where a(klis chosen to minimize F(x) in the direction p(k l .

Ifwe calculate the change in the gradient at iteration k+ 1, we have

Lig(k l = g(k+ll _ g(kl = (Ax(k+ll + d) - (Ax(k) + d) = MX(k)

From equation (2.2.2), we have

It can be shown (12] that ifwe make a sequence of exact linear searches along any

set of conjugate directions {p I'P2 ,. . "P D }, then the exact minimum of any quadratic

function with n parameter, will be reached in at most one cycle of n searches. Recall that

for quadratic function, the gradient is

We can now restate the conjugate conditions by substituting (2.4.2) and (2.4.3)

into (2.4.1).

(2.4.5)

Usually we use the steepest descent method to begin the search, i. e.

p(') =-g(') (2.4.6)

Then at each iteration we need to construct a vector p(lll which is orthogonal to

{Lig('l, Lig(l),. ..,Lig(k-l)}. We can use Gram-Schmidt orthogonalization (2.1.18). It can

be simplified [12] to the following form

25

The /3(k) can be chosen by several different methods, which will produce

(2.4.8)

(2.4.7)

(2.4.9)

(2.4.10)

P (k) =_g (k) + f3(k)p (k-1)

developed by Hestenes and Stiefel,

developed by Polak and Ribiere.

The algorithm is as follows:

equivalent results for quadratic functions. The most cornmon choices [12] are

developed by Fletcher and Reeves, and

-

Algorithm 2.4.1: The conjugate gradient method

1. Set k=O, guess x(')

2. Select the first search direction according to the steepest descent method, i.e.

3. Calculate g(k) according to (2.2.5), i.e.

g(k) = V'F(x)1 lk)
~-x

4. Calculate the /3(k) according to (2.4.8) or (2.4.9) or (2.4.10).

5. Calculate p(k) according to (2.4.7), i.e.

26

6. Calculate b.X(k) according to (2.4.4), i.e.

Choosing a(") to minimize F(x) along x = x +a(k)p(")

7. Calculate X(k+1) as follows

X (11.+1) =X (II.) + b.x (k)

8. If X (11.+1) satisfies the convergence criteria, stop

9. Goto step 3.

27

-

3. ARTIFICIAL NEURAL NElWORK LEARNING ALGORITHMS

In the previous chapter, we introduced some basic optimization theory. Now we

will apply the theory to artificial neural networks. In particular, we will describe the

architecture, dynamic adjustment, computation and conjugate gradient learning algorithms

in artificial neural networks.

3.1 Architectures of Feedforward Artificial Neural Networks

In chapter one, we know that there are basically three types of artificial neural

networks. This thesis will focus on the most widely used type, multilayer feedforward

networks. The architecture of a multilayer feedforward network is shown in Figure 3.1.1.

Such a network arranges neurons in layers. All neurons in a layer are connected to all

neurons in the adjacent layers through unidirectional links. These links are represented by

synaptic weights. Notice that we treat the input layer of the network as some connection

nodes. The hidden layers of the network also consists of some comlection nodes. The

hidden layers of a network are all of the layers except the input and output layers of the

network. So the number of hidden layers is the number of layers in a network minus one.

Generally speaking there is no theoretical limit on the number of hidden layers, but in

practice one or two hidden layers is usually enough to model even the most complex

problems. It has been shown that it is sufficient to use a maximum of three layers (two

hidden layers and one output layer) to solve an arbitrarily complex pattern recognition

problems [I 5].

28

""",.

The notations we "Will use are shovvn in Figure 3.1.1. All neurons in a layer are

consecutively indexed beginning frOID 1, in an top - down fashion. The layers are indexed

in a left-to-right order and are identified by square-bracketed superscripts. All inputs to a

W ll) n III a(I] W[2) n[2] a PI w l}) n (3) aP]
1,1 I I 1,1 J I 1.1 I I

PI
[(II fPI fPI

a[OI
0

nP] n l2] n r31 a (3)

" 1 2 1 2 '~ "

f(11 f!2 1 [\31PR

I a lol w 2 a (II w2 a l21
W sj •R 0 '1.', 0 '').12 0

Figure 3. 1.1. A lbree-Layer FeeMorward Network

29

,....,

-

neuron in layer k are denoted as a\.1,;-1] where i = 0,1,2,,,,,SK_1 (SK_I is the number of

neurons in (k-l)th layer). In the case of k-l = 0, a\O] are the inputs oftbe network. For

each layer, we assumed an extra bias node which has a constant output value of -1, i.e.,

a~k] =-1 for all k =O,I, ... ,K-l. Notice that for each k> 2, a\\;-I] is also the output of

neuron i in (k-l)th layer. The outputs in the k:th layer of network can be written in vector

form as a\kl . A weight is represented as w~~l, j '#- 0 where k is the layer index and 'j,i"

means that the weight is the connection from the ith neuron in layer k-l to the jth neuron

in layer k. In vector form., weights can be represented by w fkl = (w~~lr. The n~\;l

represents the weighted sum of a nemon j in layer k. The weighted sum of the inputs of a

neuron j in layer k can be expressed as

(3.1.1)

The output of the neuron j in layer k can be expressed as

j = 1,2, ... n k (3.1.2)

where f1.1,;1 is the activation function of the neuron.

In vector form., there formula can be written as

where elkl = (f[.I,;1r is a vector of activation function values.

30

(3.1.3)

(3.1.4)

3.1.3. Since we can always scale down the input and output values to the interval (0, l) or

The graphs of the sigmoid and hyperbolic functions are shown in Figure 3.1.2 and Figure

(3.1.6)

(3.1.5)f(x) __I_
1+ e-x

Hyperbolic function

Sigmoid function

expressed as follows:

The original activation function was a binary (hard-limiting) function [3]. This

used in multilayer networks as long as the functions are differentiable. The most

order to solve a general type of mapping application problems, we need to use nonlinear

commonly used functions are the sigmoid function and the hyperbolic function which are

continuous activation functions. There are many nonlinear activation functions that can be

limits the application of perceptron neural networks to only classification problem In

-

(-1, 1), there 1S no significant difference between the two filllctions. In this paper, the

sigmoid function is used.

The weights in a neural network are initially chosen to be small random numbers.

Since the activation function is active only in a small domain interval as shown in Figure

3.1.2, we should choose the initial weights to be small values. lithe initial weights are too

large, the activation functions may saturate at the beginning of the training and the

network is prone to get stuck in a local minimum near the starting point [16]. In this

paper, the initial weights of all neural networks are chosen as random numbers uniformly

-0.5
distributed between ------

fan - in of that node
and 0.5 [15], where the fan-in

fan - in ofthat node

ofthat node is the number of inputs including bias that are input to that node.

31

."""p

--

FOIward computations

As we know from chapter 1, a neural network learning process includes two

phases: forward computation and backward computation. During the forward

computation, a set of input data is given to the neurons in the first layer (input layer).

These neurons are activated and pass the results to neurons in the next layer. The process

continues until the output layer is reached and the outputs of the network have been

calculated. The process can be summarized as follows:

1. Given input vector x, set n lol = x

2. The weight matrix and activation function flk],k = 1,2'00" M are known, where

M is the number oflayers in the network.

3. Compute n[k] =(w1k]f a lll-1] and ark] =flkJ(nlkJ) for k=1,2, ... ,M.

4. a lMl is the output ofthe network.

32

-

Figure 3.1.2 The Sigmoid Function

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 C9 \fl .". ~ 0 N
'<;"

0.8

0.6

0.4

0.2

0
C9 tfl "'r

-0.2

-0.4

-0.6

-0.8

-1

-

Figure 3.1.3 The Hyperbolic Function

3.2 Dynamic Behavior in Feedforward Artificial Neural Network

33

- ,....

-

--

A feedfOlward artificial neural network changes its behavior (weights) dynamically

during the training session. The error made by the network during training is measured by

a predefined function called the error function (performance) function [15], cost function

[24] or energy function [26]. The error function is used to calculate the errors and the

distribution of errors among all neurons of a network. Then the connection weights are

changed to reduce the error of the network. This dynamic adaptation of weights euds

when the error is within a tolerance limit or an optimum point has been reached "",;tb

respect to some optimization criterion. We will discuss generalization in the next section.

Now we explain in detail some concepts involved in an artificial neural network training

process.

As discussed in chapter one, learning can be divided into supervised learning and

unsupervised learning. Supervised learning is used in this thesis. Supervised Learning

implies a situation in which the network is functioning as an input/output system. In other

words, the network receives an input vector and calculates an output vector using forward

calculation. This output vector is compared with the "desired" or "correct" output vector.

The error is backpropagated through the network to adjust the weights until the error is

small and generalization is acceptable. Normally we need two sets of input/output data.

One is for training purpose, the other is used to test the network after it has been trained.

The number of input/output data vectors in the training set depends on the number of

weights in the network. A general rule of thumb is that the number of data vector in

training set must be much larger than the number of parameters (weights) to avoid

overfitting [2][23]. Overfitting will be discussed in the next section.

34

,.,.

-

--

There are two methods used to adjust weights during training process. One is

called on-line learning. The other is called off-line learning (also called batch learning). In

on-line learning, weights are adjusted each time an input is presented to a neural network

and errors have been produced. In off-line learning, weight updating is deferred until all

inputs have been presented to the network. The comparison of on-line and off-line

learning is listed as follows [15].

1. On-line learning is usually convenient and more effective than off-line learning

when the number of training examples is very large.

2. On-line learning introduces some randomness (noise) that often may help

escape from local minima.

3. Usually, On-line learning is faster and more effective than off-line learning,

especially for large-scale classification problems.

4. However, for many applications, especially ifhigh precision mapping is

required, off-line learning may be the method of choice.

S. Off-line learning lends itself to straightforward application of more sophisticated

optimization procedures.

Practically, the relative effectiveness of on-line and off-line learning is highly dependent 011

the problem From the optimization point of view, off-line learning is more suitable to

implement learning algorithms.

3.3 Overfitting and Generalization in Artificial Neural Networks

35

....

--

We have introduced basic concept of overfitting in chapter one. Now we explain

some mechanisms behind this phenomenon.

When a network is trained, the weights are modified in order to decrease the errors

in the training data set. If the network is tested on a new set of data, initially the errors in

the test data set tend to decrease in step with the training error as the network tries to

generalize from the training data set. However if the training data are incomplete, it may

contain spurious and misleading regularities due to sampling [2][23]. Therefore as training

continues, the errors in the test data set increase. Figure 3.3.1 illustrates this situation

schematically.

Error

~ Test:ln8 Error

Trairung Error
-~~~-

o '--------------- Traming Tune

Figure 3.3.1 The Relabonsh1p Betvleen Trainmg Error and

Testing Error

Mathematically, the objective of learning in the neural network is to infer a

function from a given sample data set. Learning algorithms are essentially to search for a

function that fits the given data in the specified space of functions. After learning, the

neural network is able to maximize its predictive accuracy in the new data set. Ifwe work

too hard to find the best fit to the training data, there is a risk that we will fit the noise in

the data by memorizing various peculiarities of the training data rather than finding a

36

general predictive rule [40]. It is generally agreed that overfitting is closely related to the

architecture of the network., i. e., the size of network. If training starts with too small a

network for the problem, no learning can occur. If the network is too large, it may be

vulnerable to overfitting [44]. The question is what size network gives valid

generalization. Eric B. Baum and David Haussler [33] analyzed theoretically the lower and

upper bounds on the size of the sample size vs. network size needed to achieve valid

generalization. Their conclusion is as follows:

Given m random training examples chosen from an arbitral)' probability distribution,

assume

0:$ & :$ 1/8 (£ is called the accuracy parameter), it can be proved that if

m ~ 0(: log ~) random examples can be loaded on a feedforward network, so that at

least a fraction 1- ~ of tbe examples are correctly classified, tben one has confidence
2

approaching certainty that the network will correctly classify a fraction 1- & of future

test examples drawn from the same distribution. The lower bound for the number of

random examples is n(:) .Although these results are very encouraging, the theoretical

bounds are quite crude and the gap between the upper and lower bound on the worst case

sample size for architectures with one hidden layer remains open. Also, the case of

multiple hidden layers is still open. Finally, the result applies only to the threshold

functions, although these authors conjectured it might apply to nonlinear functions such as

sigmoid as well.

37

....

Subutai Ahmad and Gerald Tasauro [35] analyzed how many training patterns and

training cycles are needed for a problem of a given size and difficulty, how to represent the

input, and how to choose training examples. They concluded that the performance of a

network is closely related to the number of training patterns and the size of the network.

Their results showed that for a fixed network size, the failure rate decreases exponentially

with the size of the training set. The number of patterns requires to achieve a fixed

perrormance level was shown to increase linearly with the network size.

To summarize, overfitting is related to the degrees of freedom of a neural network.

The degrees of freedom of a neural network includes Dot only the weights but also the

potential non-linearity of the network, the architecture, and the number of data vectors

used during training [26].

3.4 Stopped Training Method to Reduce Overfitting

Having discussed some mechanisms and factors that affect overfitting, we are

ready to explore methods to reduce overfitting. There are many methods to reduce

overfitting and improve generalization [23]. Two categories that are widely used are the

stopped training method [23][30][36] and penalty method [23][24][26]. We Vvill explain

the stopped training method in this section and penalty methods in the next section.

The stopped training method estimates the generalization ability during training

and stops when the generalization ability begins to decrease (i.e. the testing error begins to

increase). Experimental experience suggests that the training and generalization behavior

in Figure 3.3.1 is typical [2][23]. In order to find the minimum of the test error, we divide

the data into a training set and validation set. At periodic intervals, the process of network

38

....

-

-

training is stopped temporarily, the weights are temporarily frozen and the network

generalization is tested by the validation set using mean squared error. The mathematical

foundation for this method is the cross-validation method of statistics [46].

3.5 Penalty Method to Reduce Overfitting

Although the stopped training method is straightforward. it may not be practical

when only a limited amount of data is available. Another way to reduce overfitting is to

use a penalty method [23][24][26][34][38]. The basic approach involves adding penalty

terms to the usual error function in order to constrain the search and cause weights to

decay differentially. (So a penalty method is also called a constrained optimization

method). This is very similar to many proposals in statistical regression where a

"simplicity" measure is minimized along with the error term and is sometimes referred to

as ridge regression and biased regression [41]-[44]. Basically, the statistical concept of

biased regression derives from parameter estimation approaches that attempt to achieve a

best linear unbiased estimator (called "BLUE') By definition an wlbiased estimator is one

with the lowest possible variance and theoretically, unless there is significant collinearity

or nonlinearity among the variables, a least squares estimator(LSE) can be shown to be a

BLUE. However if input variables are correlated or nonlinear with the output (as in the

case in back-propagation) then there is no guarantee that the LSE wi]] also be unbiased.

Consequently, introducing a bias (penalty) term may actually reduce the variance of tbe

estimator below that of the theoretically unbiased estimator.

Now the question is what types of penalty term shall we choose. There are many

different types ofpenalty term used in neural networks to reduce overfitting [23]. Some of

39

,...

-

them have a disadvantage in that large weights decay at the same rate as small weights. It

is possible to design biases that influence weights when they are relatively small or even in

a particular range ofvalues [37]. One form used in this thesis is a rectangular hyperbolic

function defined as follows:

zero when the weights are far away from the origin which means it has little effect on large

(3.5.2)

(3.5.1)

2w
f(w) = --1+--W""""2

The derivative of f(w) is plotted in Figure 3.5.1. It is non-monotonic showing a

strong differential effect on small weights close to the origin (+ or -). It approximates to

After taking the derivative with respect to w, we have the following first derivative

off(w):

weights. The object is to reduce weights that are small and unimportant to values very

close to zero. After that, these connections could be removed from the network. Any

neurons that became disconnected during tm.s pruning process could be removed. This

results in a simple and more parsimonious neural model of the problem.

40

-

3.6 Computation in Feedforward Artificial Neural Networks

We have discussed fOlWard computation in feedfolWard artificial neural networks.

1..·fo'....
I

0.8

0.6

0.4

0.2-~ 0
r0- Ll) r-;- Ll) 9 Ll) ';"

-D. 2 q> U(<;l

-D.4

-D.6

-D.8

-1

w

Figure 3.5.1 The First Derivative of the
Penalty Term

Now we will formulate the backpropagation computation in feedfoIWard artificial

networks. Considering a neural network ofM layer, the performance function is defined as

follows:

(3.6.1)

The first term is the performance function (error function). The second term is the penalty

term. It sums over all connection weights. Q is the number of input/output samples. PI is

the ith input datum t l is the desired ith output. A. and w 0 are constants that are adjusted

during training. Because the differentiation is additive, it is convenient to consider one

input /output sample i. In practice, this is used for on-line training. Summation over the

entire set of input/output samples constitutes off-line training. So we have

--
41

. ad

-

_1((Ik l())T(Ik J()) "w~ /w~)E j -- f p"w -t1 f p.,w -tj +}'L,... 1 2
2 I l+w j /WO

(3.6.2)

To calculate the gradient element gij' we take the derivative of E; with respect to

w \?l and, using chain rule, we have

where p ji is an element ofpenalty term and is defined as

From (3.1.1), we have

Ifwe define [16]

(3.6.3)

(3.6.4)

(3.6.5)

(3.6.6)

(Sj is called the sensitivity of E j to change in the jth element of the net input at layer k),

then (3.6.3) becomes

g[k1 = OE; =slkl.a[k-IJ+p ..
)1 lNik) J I JI

Jl

(3.6.7)

To derive the recurrence relationship for the sensitivities, we will use the Jacobian

matrix which we have already introduced in Chapter 2.

42

Now consider the element ij in (3.6.8), we have

-
&[k+I) &[k+1 1

I I
&11;] &~k]

I

&[\:+1] &[k+11
2 2--

" IkJ &Ik]
&lk+l1 /All 2

&Ikl
-

&[k+l) &lk+l)
Sk_1 ~+I

&Ik] " Ik]
, I /Alz

j ~ [1.:+1J [1;1)
&[1;+1] (/~~ W il a, &[k J

I = 1=1 = wlb-t] _J_

ib. [k] &. 1,1;) J1 & I,k)
J J J

Cflkl (n [kl) . Ik)
= W[k+lJ j = W!k+11 f (n[kl)

I) &[1;J I) J

J

where

&[k+l)
I

(3.6.8)

(3.6.9)

,/k) Cf[k)(n lk1)
f (n[kJ) _ J

j - &Ik)
J

So the Jacobian matrix can be written as

" [k+l] ,
en =W1k+Jj . F(n Ikl)
&[kl

where

43

(3.6.10)

(3.6.11)

-

o o

o

(3.6.12)

o o

propagated backward through the network from the last layer to the first layer. In order to

complete the backpropagation, we need to know the starting point of the

(3.6.13)

= (~ Ik+l))T ~ ~[k) _ &L j _ en &I:,j _ F .[k) W[k+1j T (/L.,j

S - ChlkJ - &Ikj &[1.+1 1 - (n).(). Ch[k+lj

backpropagation. The starting point can be obtained from the output layer.

Now we can see the recurrent relationship of the sensitivity. The sensitivities are

We can now write the sensitivity recursively in matrix form as follows

SIK) = OE, = -(t - a)~
1 &Ik) I I &(1<)

I I

(3.6.14)

Since

~ ~rKI .[K)
_U'c:1_i _ _U'<1_; _ f (IKI)- - n·&[K] &(1<1 I

J I

(3.6.15)

we can write

.IK)

s(1<) = -(to - a.)f (n(1<))
.1 I' 1

(3.6.16)

In matrix form (3.6.15) can be expressed as

(3.6.17)

44

"...

-

So we can recursively calculate the sensitivities from the last layer to the fust layer.

Knowing the sensitivities, we can calculate the gradient according to (3.6.6). The

following algorithm is the off-line model based on Algorithm 2.4.1

Algorithm 3.6.1: Given a set of S ={(q., t 1) q, is input, t l is desired output of q,}

of d training samples and given a network ofK layers with input

dimension u and output dimension v.

1. Initialize all weights w 1k)= (w~ln,l = 1,2,00.,K as random

-0.5
numbers uniformly distributed between ------

fan - in. of that unit

0.5
------- . Set w 0' A..
fan - in of that unit

Initialize g (k) = 0 .

2. For each sample (Xi> t.) ES, repeat the following steps.

and

2.1 Compute the actual outputs ofnetwork according to (3.1.3)

and (3.1.4) using the weight W(k)

2.2 Calculate the gradient g(xJ according to (3.6.3)

2.3 Sum up g(xJ, i.e., g(k) =g(k) +g(xJ

3. Ifk=l then set p(I) =r(l) =_g(l)

4. Compute a (k) using a line search technique [12].

5. Compute W(k+l) == W(k) + a(k)p(k) using step 2 to compute

45

-

6. Compute /3("') according to (2.4.8) or (2.4.9) or (2.4.10).

8. If all the weights are such that the following convergence

criterion is satisfied, then go to step 9

±(E(W(Ii.+l»))
]}....:..i=--'-I <

d

Otherwise set k=k+1 and go to 2.

(J,;.+I)9. Set W = wand stop.

All other LMS-based training methods can be considered as special cases of 1-.=0.

For the stopped training method, the stopping criterion is based on the generalization

performance of the network, tested using the validation set. The training will be stopped if

the generalization error begins to increase. The following off-line training algorithm for

the stopped training method is based on Algorithm 2.4.1

Algorithm 3.6.2: Given a set of S={(q"tl)lq. is input, t l is desired output ofQI}

of d training samples and given a network of K layers with input

dimension u and output dimension v.

1. Initialize all weights wI.] =(w~n,l = 1,2, ... ,K as random

-0.5
numbers uniformly distributed between ------

fan - in oftbat unit

0.5 S 1-------. et w 0' /I..

fan - in of that unit

Initialize g(k) = o.

46

and

-

2. For each sample (xpt t) ES, repeat the following steps.

2.1 Compute the actual outputs ofnetwork according to (3.1.3)

and (3.1.4) using the weight w(],;).

2.2 Calculate the gradient g(x j) according to (3.6.3) with

Pji = O.

2 ., S (). (k) (J,;) ()
.j urn up g Xi ,I.e., g = g +g Xi

3. Ifk=l then set p(l) = r(l) = _gel)

4. Compute at],;) using a line search technique [12].

5. Compute w(k+J) = W(k) + a(k)p(k) using step 2 to compute

(k+l)g .

6. Compute p(k) according to (2.4.8) or (2.4.9) or (2.4.10)

8. lfk mod C (C is constant) =0, calculate the actual output of

Networks according to (3.1.3) and (3.1.4) using validation data

set and increment v.

9. lfthe following convergence criterion is satisfied using both the

validation set data and training set data, then go to step 10

±(E(W(k+I»))

....:..i=....:.I >
d d

OtheIWise set k=k+ 1 and go to step 2

10. Set w = W(],;+l) and stop.

47

d

--
The implementation of the stopped training method is problem-dependent. In this

thesis, the training will be temporarily stopped after the network has been trained in a

constant number of epochs. The network is then to be tested using validation set. If the

generalization error decreases, the network resumes the training process, othenvise it

stops training.

48

-

4. ThIPLEMENTATJON AND DISCUSSION OF RESULTS

4.1 Language Implementation and Neural Network Architecture Design

In order to test the effectiveness of the penalty method in reducing o\'erfitting in

Artificial Neural Networks, we implement it using the A.N.S.1. standard FORTRAN 77

language. The performance of the learning algorithm with penalty method is compared

with the performance of the standard learning algorithm without a penalty term.

The design of a neural network is highly problem-dependent. It is the problem that

determines what neural network architecture should be used. The topology of the neural

network determines the total number of connection weights which in tum determines the

performance of the network. Using more connection weights means that we need to have

more training samples to train the network in order to get good generalization

performance. As a rule of thumb, for a network to be able to generalize. it should have

fewer connection weights than there are data points in the training set. Otherwise.

overfitting may occur. In this thesis, we first test a small network which doesll't have any

overfitting. We then add the hidden nodes to the network. As the network becomes larger.

the generalization error becomes larger and larger. By using a penalty method. we can

reduce the generalization error.

For a given problem, we need to decide when to stop the training process. lllere

are several stopping criteria. For example, we can use performance function value (RMS)

as a criterion. We can set a tolerance value such that the performance function value

(RMS) is within the tolerance. We can also use the difference of two consecutive

performance function values as the criteria. The problem \vith these criteria is that we

49

-

don't know the generalization performance. A good fitting of the training samples doesn't

mean that the network will generalize well over the entire problem domain. Therefore. to

obtain better generalization performance, we need to use some optimal stopping point so

that the network has good generalization performance. This is especiaUy important v.hen

we have a network that has overfitting. In this paper, we will divide the sample data into

two sets. One is the training set and the other is the validation set. When the network is

trained, we will test the generalization performance at certain numbers of iterations using

the validation set. We will use the performance fimction value as the stopping criterion. If

the generalization RMS begins to increase, we \\>111 stop training.

4.2 Discussion of Test Results

We use a curve fitting problem to test the learning algorithm. We divide the test

data into a training set and a validation set. Each set contains 49 pairs. There are t\"O input

node and one output nodes in the network. One hidden layer is llsed. We increase the

number of nodes in the hidden layer from 7 to 20 so that we can test the generalization

performance in different network topologies. We are especially interested ill testing if the

penalty method can improve the generalization performance in an overfitting network.

The initial weights of a neural network have an effect on the training time. Several

methods have been proposed to give a neural network as good an initial state as possible.

This requires some prior knowledge andJor some understanding of the leaming mechanism

in the network. We initialize the weights with random values unifonnly distributed

between -0.5 and 0.5 [15].

50

Now we analyze the results of the test. First we investigate the network with two

input nodes, 7 hidden nodes, and one output node(2I7/l). It has 29 weights. We test the

network with different to. values (0.01, 0.001, 0.0001, 0.00001). The training and

generalization performance is listed in Table 4.1 through Table 4.5. It takes about 11

epochs oftraining to get the training RMS value of 0.07078 and generalization RMS value

of 0.07247 for t.. equals O. The relationship between generalization RMS and fo. is depicted

in Figure 4.1. We can see that for t.. from 0 to 0.001, there is not much improvement in

generalization RMS. The generalization RMS increases with t.. larger than 0.00 I. Ne\.1 we

increase the number ofhidden layer nodes to 8 (2/8/1). The network now has 33 weights.

The training and generalization RMS are listed in Table 4.6 through Table 4.10. Similarly

we test the network with different t.. (0.01,0.001,0.0001,0.00001). It takes about 15

epochs to get the training RMS value of 0.07298 and generalization RMS value ofO.074c)

for t.. equals O. The relationship between generalization RMS and t.. is depicted in Figme

4.2. The generalization RMS is slightly decreased when)... equals 0.00 I. Ne\.1 we increase

the number of hidden nodes to 9 (2/9/1). This network has 37 weights. The training and

generalization RMS are listed in Table 4.11 through Table 4.15. We test the network with

different t.. (0.01,0.001,0.0001 0.00001). It takes about 12 epochs to get the training

RMS value of 0.07598 and generalization RMS value of 0.07966 for I... equals O. TIle

relationship between generalization RMS and t.. is depicted in Figure 4.3. As expected, the

generalization RMS is slightly decreased when t.. equals 0.0001. These results show that

for the network that is not overfitted, if the t.. is properly chosen, the generalization of the

network can be slightly improved. The maximum improvement is 9% in 2/8/1. TIle

51

minimum improvement is 0.5%. The reason for this is that the network is not overfining

yet in these cases. Therefore there is no significant improvement in generalization of the

network. The interesting point is that the minimum generalization RMS happens v..ith

different A. (for example 2/8/1 and 2/9/1). Another important result is that if ;.. is not

properly chosen, the generalization RMS can increase significantly. The reason is that the

penalty term dominates the performance function. In other words the network is 0\ er

regulated. Now ,ve add another hidden node. The network has] a hidden nodes (2/1 Oil).

The total number of weights becomes ·U, which is very close to the number of sample 49.

We test the network with different A. (0.01, 0.008, 0.006, 0.004, 0.002. 0.001. 0.0008.

0.0006, 0.0004, 0.0002, 0.0001, 0.00001). Typical training and generalization RMS are

listed in Table 4.16 through Table 4.20. The relationship between generalization RMS and

A. is depicted in Figure 4.4. When A. is close to 0.0008, there is a rather large improvement

(16.5% in this case) in the generalization performance of the network. Obviously 0.0008 is

the optimum point of A.. Also when A. is away from the optimum point. there is no

significant change in the generalization behavior of the network. TIle reason for this

phenomenon is that at this point the network already shows some degree of overfittillg.

Adding a proper penalty term can indeed improve the generalization performance. Now

we further increase the number of hidden nodes to 17 (2/17/1) to force the network to

have overfitting. The total number of weights becomes 69, which is larger thall the number

of data vectors. Again we test the network witb different A. (0.01. 0.008. 0.006, 0.004.

0.002,0.001,0.0008,0.0006,0.0004,0.0002. 0.000]. 0.00001). Typical training and

generalization RMS are listed in Table 4.2\ through Table 4.25. The relationship between

52

....

generalization RMS and A is depicted in Figure 4.5. As expected, the generalization

performance increases by 21.76% when A is close to 0.001 which is the optimum point.

Again, when A is away from the optimum point, there is no sig:n.i.ficant change in the

generalization behavior of the network. Finallv we increase the number of network hidden

nodes to 18 (2/18/1), 19 (2/19/1) and 20 (/2120/1), The training and generalization RM S

are listed in Table 4.26 through Table 4.30, Table 4.31 through Table 4.35 and Table 4.36

through Table 4.40 respectively. The relationship between generalization RMS and A is

depicted in Figure 4.6, 4.7 and 4.8 respectively. The generalization performance has

increased by 22.66%, 23.01 % and 23.58% respectively. The optimum point is 0.00 I.

Again, when A is away from the optimum point, there is no significant changes in the

generalization behavior of the network. The maximum fluctuation is 5%. Figure 4.9

illustrates the relationship between the generalization RMS and number of weights. TIle

generalization RMS increases with the number of weights.

53

-

Table 4.1 PeIformance of Training and Generalization RMS

\'vith 7 hidden nodes and A= 0

Epoch Training RMS Generalization RMS Convergence Error
0 .21470 .20951
1 .81256e-l .84198e-l .13344
2 .80169e-l .83484e-l .I0870e-2
3 .79033e-1 .82563e-l .11356e-2
4 .77986e-l .81635e-l .10473e-2
5 .75036e-l .78775e-l .29496e-2
6 .73678e-l .77430e-l .13584e-2
7 .72243e-l .75587e-l .14346e-2
8 .71906e-l .73347e-l .33651e-3
9 .71947e-1 .73375e-1 .41071e-4
10 .70740e-l .72441e-l .12078e-2
II .7078Ie-1 .72472e-l .41225e-4

Table 4.2 PeIformance of Training and Generalization RMS

with 7 hidden nodes and A= 0.0000 I

Epoch Training RMS Generalization RMS Convergence Error
0 .21470 .20951
I .81262e-1 .84199e-l .13344
2 .80162e-1 .83475e-l .10996e-2
3 .78998e-1 .82525e-l .1 I645e-2
4 .77950e-1 .81595e-1 .10472e-2
5 .74875e-1 .78605e-l .30755e-2
6 .73582e-1 .77323e-1 .12924e-2
7 .72342e-1 .7563ge-1 .12400e-2

8 .72368e-l .7370ge-1 .24394e-4

9 .72316e-1 .73740e-1 .47802e-4

10 .70841e-1 .72556e-1 .15252e-2

II 70896e-l .72598e-1 .55625e-4

54

 \

Table 4.3 Performance of Training and Generalization RMS

with 7 hidden nodes and A. = 0.000 I

Epoch Training RMS Generalization RMS Convergence Error
0 .21470 .20951
1 .81315e-l .84208e-l .13339
2 .80084e-l .83369e-l .1231Oe-2
3 .7862ge-l .82140e-l .14550e-2
4 .77582e-l .81189e-l .10466e-2
5 .73153e-l .76766e-l .44289e-2
6 .72514e-l .76123e-l .63911e-3
7 .73406e-1 .76018e-l .89135e-3
8 .74318e-l .75891e-l .91268e-3
9 .74394e-l .75631e-l .75291e-4
10 .72867e-l .74796e-l .15261e-2

Table 4.4 Performance ofTraining and Generalization RMS

with 7 hidden nodes and A. = 0.001

Epoch Training RMS Generalization RMS Convergence Error
0 .214756 .20951
1 .818428e-l .84296e-l .13291
2 .762907e-l .75073e-l .55521e-2
3 .762788e-l .75064e-l .1196ge-4
4 .728380e-l .73281e-l .34407e-2
5 .740105e-l .73026e-l 11724e-2
6 .729603e-l .72207e-l .10502e-2
7 .72641ge-l .71966e-l 31834e-3
8 .72826ge-l .72103e-l .18496e-3

Table 4.5 Performance of Training and Generalization RMS

with 7 hidden nodes and A= 0.01

Epoch Training RMS Generalization RMS Convergence Error

0 .21523 .20951

1 .86686e-l .85248e-l .12854

2 .86658e-l .85241e-l .27226e-4

3 .86659e-l .85241e-l .54052e-7

55

••
04,

j:..'&1
;>.
-"2"
-~-.1

-
Table 4.6 Performance of Training and Generalization RMS

with 8 hidden nodes and A= 0

Epoch Training RMS Generalization Convergence Error
RMS

0 .21300 .20783
1 .81865e-1 .84872e-1 .13113
2 .81546e-1 .84750e-1 .31916e-3
3 .81314e-l .84631e-l .23208e-3
4 .80831e-1 .84302e-l .48292e-3
5 .79667e-1 .83330e-1 .11635e-2
6 .77924e-1 .81717e-1 .17428e-2
7 .73846e-l .77607e-l .40786e-2
8 .73020e-l .76771e-l .82560e-3
9 .73335e-1 .77067e-1 .31477e-3
10 .73138e-1 .76587e-1 .19700e-3
11 .73397e-l .76834e-1 .25948e-3
12 .73596e-1 .75347e-l .19911e-3
13 .73689e-1 .7539ge-l .92867e-4
14 .7297ge-l .74904e-l .71044e-3
15 .72989e-l .74911e-1 .1063ge-4

Table 4.7 Performance ofTraining and Generalization RMS

with 8 hidden nodes and A= 0.00001

Epoch Training RMS Generalization RMS Convergence Error
0 .21300 .20783
1 .81870e-l .84873e-1 .13113
2 81550e-l .8474ge-l .32092e-3
3 .81312e-1 .84626e-l .23800e-3

4 .80803e-l .84276e-1 .50863e-3
5 .79611e-l .83275e-l 11915e-2
6 .77787e-1 .81577e-1 .18243e-2
7 .73775e-1 .77526e-l .40117e-2

8 .72945e-l .76684e-1 83007e-J

9 73206e-1 .76931e-l .26036e-3

10 .730&Oe-l .76556e-1 .12506e-3
] 1 73488e-1 .76945e-l .40746e-3

56

....
~.

-
Table 4.8 Performance of Training and Generalization RMS

with 8 hidden nodes and ;. = 0.000 1

Epoch Training RMS Generalization RMS Convergence Error
0 ,21300 ,20783 I

1 I ,8 1922e-l 8487ge-1 ,13108 I
2 8I583e-1 84743e-1 .33856e-3 I

3 .8I278e-1 .84572e-1 ,30554e-3 i

~ ,80455e-1 .83948e-1 .82285e-3 I
5 .79244e-1 ,82891e-l ' 12103e-~ I

I

6 .75561e-l ,79263e-l .3682ge-2 I
7 ,73676e-l ,77358e-l ,188-1ge-2 I

8 .7258ge-l ,76I21e-1 .IOS73e-2 I
9 ,72426e-l .75774e-1 ,16327e-2 I

10 72028e-l ,75375e-1 .39757e-3 I
11 ,73457e-l ,76553e-l , J4292e-2 I

Table 4.9 Performance of Training and Generalization RMS

with 8 hidden nodes an d A= 0.001

Epoch Training RMS Generalization RMS Convergence Error
0 21306 ,20783

1 ,82428e-l .84938e-1 .13063
2 ,73557e-l ,71637e-1 .88708e-2
3 .73553e-l ,71632e- 1 .48850e-5
4 ,69478e-1 .67971e-1 A0742e-~

5 ,69746e-1 ,68204e-l ,26743e-3 ~

6 ,69678e-l ,61845e-1 ,67486e-4 I
7 ,69682e-l ,68148e-l ,37051e-5
8 ,69682e-l 68148e-l ,30886e-6
9 69682e-l 68148e-1 ,23042e-7

Table 4.10 Perform.ance of Training and Generalization RMS

witb 8 hidden nodes and A = 0,01

Epoch Training RMS Generalization RMS Convergence error
0 .21360 ,20783

I 87072e-1 ,85567e-1 ,12653

2 ,87065e-1 85565e-l ,73488e-S

3 8706Se-1 8556Se-1 46825e-7

57

--

Table 4.11 Performance of Training and Generalization RMS

with 9 hidden nodes and A. = a

Epoch Training RMS Generalization RMS Convergence error
0 .21164 .20649
I .82246e-1 .85295e-l .12939
2 .82098e-l .85269e-1 .14840e-3
3 82037e-J .85255e-l .61313e-4
4 81982e-l .85238e-l .54493e-4
5 .81922e-l .85216e-1 .6041ge-4
6 .81830e-1 .85176e-l .91445e-4
7 .81616e-l .85053e-l .21424e-3
8 .80688e-1 .84328e-1 .92840e-3
9 79370e-l .83157e-1 .13 175e-2
10 I .75564e-l .79274e-l .3805ge-2
II .75491 e-I .79203e-I .73353e-4
12 7597ge-1 .79660e-1 .48856e-3

Table 4.12 Performance of Training and Generalization RMS

with 9 hidden nodes and A. = 0.00001

Epoch Training RMS Generalization RMS Convergence error
0 .21164 .20649
I .82252e-1 .85295e-l .12939
2 82103e-1 .85269e-l .14878e-3
3 .82041e-l .85255e-1 .62247e-4
4 .81985e-l .85238e-l .56319e-4
5 .81920e-l .85214e-l .64392e-4
6 .81818e-1 .85166e-l .10264e-3
7 .81553e-l .85007e-l .26484e-3
8 80362e-l .84034e-l .1 1909e-2
9 .79113e-l .82908e-1 .12490e-2
10 .75376e-1 .78869e-l .37366e-2

I I .75933e-l .78988e-l .55684e-3

12 .76266e-1 .78714e-l .33293e-3

13 .76260e-1 .78711e-l .61392e-5

14 .76303e-1 .78735e-l .43153e-4

58

--I

Table 4.13 Performance ofTraining and Generalization RMS

with 9 hidden nodes and A= 0.0001

EpOCh Training RMS Generalization RMS Convergence error
0 .21165 .20649
1 .82301e-l .85300e-l .12934
2 .8214ge-1 .85271e-l .15257e-3
3 .82077e-l .85253e-l .72151e-4
4 .81998e-l .85225e-l .78343e-4
5 81874e-1 .85168e-l . 12462e-3
6 .81506e-1 .84933e-l .36810e-3
7 .80028e-l .83674e-l .14773e-2
8 .78732e-l .82474e-1 .12961e-2
9 7520ge-l .78455e-l .35231e-2
10 75985e-l .78188e-l 77556e-3
11 .76001e-l .78197e-l .16124e-4

Table 4.14 Performance of Training and Generalization RMS

with 9 hidden nodes and A= 0.00]

Epoch Training RMS Generalization RMS Convergence error
0 .21171 .20649
1 .82792e-l .85343e-l .12891
2 .82426e-l .85191e-1 .36665e-3
3 8089ge- 1 .81993e-1 .15264e-2
4 .80905e-1 .81983e-l .62907e-2
5 .78635e-l .80548e-l .22705e-2
6 78620e-l .80540e-l .15373e-4
7 78616e-1 .80539e-1 .31036e-5
8 78616e-1 .80539e-1 .17509e-6
9 .78616e-1 .8053ge-l 56642e-8
10 .78616e-l .8053ge-l 1909ge-8

11 .78616e-1 .8053ge-1 .23701e-8
12 78616e-1 .8053ge-l .23900e-8
13 .78616e-l .8053ge-l .24640e-8

59

--
Table 4.15 Performance of Training and Generalization RMS

with 9 hidden nodes and A = 0.01

Epoch Training RMS Generalization RMS convergence error
0 .21231 .20649
1 .87290e-l .85800e-l .12502
2 .87298e-l .85803e-l .80299e-5
3 .87298e-l .85803e-l .29196e-7
4 .87298e-1 .85803e-l .72447e-9
5 .87298e-1 .85803e-1 .10729e-9
6 .87298e-1 85803e-l .11008e-8
7 .87298e-1 85803e-l .11 066e-8

Table 4.16 Performance ofTraining and Generalization RMS

with 10 hidden nodes and A= 0

Epoch Training RMS Generalization RMS Convergence error
0 .21053 .20540
1 .8250ge-1 .85585e-l .12802
2 .82425e-1 .85584e-l .84206e-4
3 .82402e-1 .85583e-l .22950e-4
4 .82391e-l .85583e-l .1 1260e-4
5 .82338e-l .85583e-l .54434e-5
6 .82383e-l .85583e-l .26885e-5
7 .82381e-l 85583e-l .13347e-5
8 82381e-l 85583e-l .66744e-6
9 .82380e-l .85583e-l .33381e-6

10 .82380e-l 85583e-l .1698ge-6

11 .82380e-l .85583e-l .83724e-7

12 .82380e-1 .85583e-1 .43954e-7

60

.,

"04
~~.....
' ..
-.1

-

-

Table 4.17 Performance ofTraining and Generalization RMS

with 10 hidden nodes and t.. = O. 00001

Epoch Training RMS Generalization RMS Converp;ence error
0 .21053 .20540
1 .825I4e-I .85585e-1 .12802
2 .82430e-I .85584e-l .84214e-4
3 .82407e-1 .85584e-1 .23136e-4
4 .82396e-I .85583e-1 .11472e-4
5 .82390e-I .85583e-1 .56202e-5
6 .82387e-1 .85583e-1 .2816ge-5
7 .82386e-1 .85583e-1 .1429ge-5
8 .82385e-1 .85583e-1 .72607e-6
9 .82385e-1 .85583e-l .37244e-6
10 .82384e-1 .85583e-1 .I8811e-6
11 .82384e-1 .85583e-l .95430e-7
12 .82384e-1 .85583e-l .50804e-7
l3 .82384e-1 .85583e-l .2370Ie-7

Table 4.18 Performance of Training and Generalization RMS

with 10 hidden nodes and A. = 0.0001

Epoch Training RMS Generalization RMS Convergence error
0 .21054 .20540
1 82563e-1 .8558ge-! .12798
2 82478e-1 .85587e-l .8437Ie-4
3 82453e-l .85586e-1 .25065e-4
4 8243ge-1 .855800-1 .13688e-4
5 82432e-l .85585e-1 .76576e-5
6 82427e-l .85585e-1 .44965e-5
7 82425e-1 .85585e-1 .27137e-5
8 .82423e-l .85584e-I .16627e-5
9 .82422e-l .85584e-I .I0320e-5
10 82421e-I .85584e-1 .6446ge-6

11 .82421e-1 .85584e-1 .40640e-6
12 .82421e-l 85584e-1 .25965e-6
13 .82420e-1 .85584e-1 .I5910e-6

14 .82420e-l .85584e-l .IOl13e-6
15 .82420e-1 .85584e-1 .6542ge-7

16 .82420e-1 .85584e-1 .37626e-7

17 .82420e-1 .85584e-1 .26195e-7

18 .82420e-1 .85584e-1 .15057e-7

19 .82420e-1 .85584e-1 .13412e-7

61

.,
4,
~.
to..
q
).

-'1
~.........
-.1

Table 4.19 Performance of Training and Generalization RMS

with 10 hidden nodes and A= 0.001

Epoch Training RMS Generalization RMS Convergence error
0 .21061 .20540
1 .83040e-l 85622e-l .12757
2 .82927e-l .85612e-l .11260e-3
3 .82304e-l .85251e-1 .62384e-3
4 .75336e-1 .74562e-1 .69670e-2
5 .75338e-l .74563e-1 . 18460e-5

Table 4.20 Performance of Training and Generalization RMS

with 10 hidden nodes and A= 0.01

Epoch Training RMS Generalization RMS Convergence error
0 .21128 .20540
1 .87416e-1 .85975e-l .12386
2 .8743ge-l .85982e-l .22154e-4

Table 4.21 Performance of Training and Generalization RMS

with 17 hidden nodes and A= 0

Epoch Training, RMS . Generalization RMS Convergent error

0 .20624 .20116
1 .83251e-l .86404e-1 .12299

2 .83242e-1 .8640ge-l .93941e-5

3 .83241e-l .8640ge-l .50516e-6

4 .8324Ie-l 8640ge-l .32754e-7

5 .83241e-l 86409e-1 .95812e-9

62

..
4 •.
~.

Table 4.22 Performance of Training and Generalization RMS

with 17 hidden nodes and A= 0.00001

Epoch Training RMS Generalization RMS Convergence error
0 .20624 .20116
1 .83256e-1 .86404e-l .12298
2 .83247e-l .8640ge-l .92395e-5
3 .83246e-l .8640ge-l .49143e-6
4 .83246e-1 .8640ge-l .32637e-7
5 .83246e-l .8640ge-l .22227e-9
6 .83246e-1 .8640ge-l .15910e-8

Table 4.23 Performance of Training and Generalization RMS

with 17 hidden nodes and A= 0.0001

Epoch Training RMS Generalization RMS Convergence error
0 .20625 .20116
1 .83302e-1 .86405e-l .12295
2 .83294e-l .8640ge-1 .78463e-5
3 .83294e-1 .86410e-l .37290e-6
4 .83294e-1 .8641Oe-l .23036e-7
5 .83294e-1 .8641Oe-l .10274e-8
6 .83294e-l .86410e-l .37958e-10

Table 4.24 Performance of Training and Generalization RMS

with 17 hidden nodes and A= 0.001

Epoch Training RMS Generalization RMS Convergent error
0 .20636 .20116
I .15497 .16212 .51394e-1

2 .15494 .16212 .33582e-4
3 .15494 .16212 .52376e-8

4 .15494 .16212 .52370e-8

5 .15494 .16212 .87815e-9

6 .15494 .16212 .90276e-7

7 .88951e-1 .91593e-1 .6598ge-l

8 .88948e-l .91568e-1 .34102e-5

9 .85611e-1 .83072e-1 .33362e-2

10 .82904e-1 .80588e-l .27070e-2

11 .68028e-1 .66880e-1 14875e-l

12 .68843e-l .67574e-1 .81435e-3

63

..
I,...'
~,.,
-1
;,
-<\
J~....
'..,
.•1

Table 4.25 Performance ofTraining and Generalization RMS

with 17 hidden nodes and A. = 0.0 I

Epoch Training RMS Generalization RMS Convergence error
0 .20751 .20116
I .16007 .16212 .4743ge-l
2 .16003 .16212 .47439e-l
3 .16006 .J6212 .20426e-6
4 .92736e-1 88925e-l .67297e-J
5 .92736e-l .88926e-l .15556e-6
6 .92737e-1 .8891 Ie-I .15256e-5
7 .92737e-l 88912e-1 .27432e-7

Table 4.26 Performance of Training and Generalization RMS

with 18 hidden nodes and A= a

Epoch Training RMS Generalization RMS Convergence error
0 .20588 .20082
1 .8329ge-1 .86456e- J .12258
2 .83291e-l .86460e-1 .78597e-5
3 .83290e-1 86461e- 1 .35343e-6
4 .83290e-1 .86461 e- 1 .20773e-7
5 83290e-l 86461e-l .1002ge-8

Table 4.27 Perfonnance of Tralning and Generalization RMS

with 18 hidden nodes and A= 0.0000 1

Epoch Training RMS Generalization RMS Convergence error
0 .20588 .20082
1 .83304e-1 .86456e-l .12258

2 .83296e-l .86460e-1 .77094e-5

3 .83296e-l .86461e-1 .34352e-6
4 .83296e-l .86461e-1 22254e-7

5 .83296e-l .86461e-l .33955e-8

64

.,

.J

-
Table 4.28 Performance of Training and Generalization RMS

with I8 hidden nodes and A= 0.0001

Epoch Training RMS Generalization RMS Convergence error
0 .20590 .20082
1 .83350e-l .86457e-l .12255
2 .83343e-l .86461e-l .63923e-5
3 .83343e-l .86461e-1 .24713e-6
4 .83343e-l .86461e-l 13728e-7
5 .83343e-1 .86461e-l .18923e-8

Table 4.29 Pe.rformance of Training and Generalization RMS

with 18 hidden nodes and A= 0.001

Epoch Training RMS Generalization RMS Convergence error
0 .20602 .20082
1 .15500 .16212 .51014e-l
2 .15497 .16212 .34231e-4
3 .15497 .16212 .40106e-8
4 15497 .16212 .40101e-8
5 .15497 .16212 .85814e-IO
6 .15497 .16212 .1042Ie-6
7 .89342e-l .91949e-l .65631e-l
8 .89342e-l .91954e-l .71895e-6
9 .8601Se-l .83390e-l .33271e-2
10 .83447e-l .81007e-l .25680e-2
11 .69512e-l .65347e-l .1393Se-l
12 .7141ge-l .67266e-l .19075e-2

Table 4.30 Performance of Training and Generalization RMS

with 18 hidden nodes and /1" = 0.01

Epoch Training RMS Generalization RMS Convergence error

0 .20723 .20082

1 .16038 .16212 .4684ge-1

2 .16034 .16212 .3895ge-4

3 .16034 .16212 .21797e-6

4 .92795e-1 .88842e-1 .6754ge-1

5 .92796e-l .88841e-1 . I9225e-6

6 .92797e-l .88831e-l .13584e-5

7 .92797e-l .&&&31e-1 .21081e-7

8 .92797e-1 .88831e-l .12166e-8

65

-

Table 4.31 Performance of Training and Generalization RMS

with 19 hidden nodes and A= 0

Epoch Training RMS Generalization RMS Convergence error
0 .20556 .20050
I .83340e-1 .86501e-l .12222
2 83333e-1 .86505e-1 .64557e-5
3 .83333e-1 .86505e-1 .24511e-6
4 .83333e-l .86505e-1 .1l280e-7
5 .83333e-l .86505e-l .28768e-9

Table 4.32 Performance of Training and Generalization RMS

with 19 hidden nodes and A= 0.00001

Epoch Training RMS Generalization RMS Convergence error
0 .20557 .20050
I .83345e-1 .86501e-l .12222
2 .83339e-1 .86505e-1 .6316ge-5
3 .83338e-l .86505e-1 .23887e-6
4 .83338e-l .86505e-1 .14396e-7
5 .83338e-1 .86505e-l .34601e-8

Table 4.33 Performance ofTraining and Generalization RMS

with 19 hidden nodes and A = 0.000 I

Epoch Training RMS Generalization RMS Convergence error

0 .20558 .20050
1 .83392e-1 .86502e-1 .12219

2 .83387e-1 .86505e-l .50733e-5

3 .83386e-1 .86505e-1 .16458e-6

4 .83386e-1 .86505e-l .90807e-8

5 .83386e-1 .86505e-l .28287e-8

66

--,

Table 4.34 Performance of Training and Generalization RMS

with 19 hidden nodes an.d A= 0.001

Epoch Training RMS Generalization PJv1S Convergence error
0 .20571 .20050
1 .15504 .16212 .50670e-1
2 .15500 16212 .34791e-4
3 .15500 .16212 .69051e-8
4 .15500 .16212 .79955e-8
5 .15500 .16212 .40426e-8
6 .89710e-l .92336e-l .65296e-l
7 .89703e-l .92302e-l .66916e-5
8 .85541e-l .82931e-l .41623e-2
9 .83212e-l .80810e-l .23292e-2
10 .69514e-l .65436e-1 .13697e-l
11 .70726e-l .6664ge-l .l2120e-2

Table 4.35 Performance of Training and Generalization RMS

with 19 hidden nodes and A= 0.01

Epoch Training RMS Generalization RMS Convergence error
0 .20699 .20050
1 .16069 .16212 .46295e-l
2 .16065 .16212 .38828e-4
3 .16065 .16212 .22826e-6
4 .92840e-l .8875ge-l .67815e-l
5 .92840e-l .88762e-1 .65271e-6
6 .92841e-l .88756e-l .10791e-5
7 .92841e-l .88756e-1 .12603e-7
8 .92841e-l .88756e- J .32911e-8

Table 4.36 Performance of Training and Generalization RMS

with 20 hidden nodes and A= 0

Epoch Training Rl\.1S Generalization PJv1S Convergence error

0 .20528 .20022

1 .83376e-1 .8654Ie-l .12190

2 .83370e-l .86544e-l .53513e-5

3 .83370e-l .86545e-l .17393e-6

4 .83370e-1 .86545e-1 .41071e-8

5 .83370e-l .86545e-1 .2887Se-8

67

C:l

..

Table 4.37 Performance ofTraining and Generalization RMS

with 20 hidden nodes and A= 0.0000 I

Epoch Training RMS Generalization RMS Convergence error
0 .20528 .20022
1 .8338Ie-1 .86541e-l .12190
2 .83376e-1 .86544e-1 .52143e-5
3 .83376e-1 .86545e-1 .16957e-6
4 .83376e-l .86545e-1 .74668e-8
5 .83376e-1 .86545e-1 .92002e-9

Table 4.38 Performance of Training and Generalization RMS

with 20 hidden nodes and 'A. = 0.000 I

Epoch Training RMS Generalization RMS Convergence error
0 .20529 .20022
1 .83428e-1 .86542e-1 .12186
2 .83424e-1 .86545e-1 .40386e-5
3 .83424e-1 .86545e-1 .10815e-6
4 .83424e-1 .86545e-1 .64594e-9

Table 4.39 Performance of Training and Generalization RMS

with 20 hidden nodes and 'A. = 0.00]

Epoch Training RMS Generalizatin RJ\1S Convergence error
0 .20543 .20022
1 .15507 .16212 .50356e-1
2 .15503 .16212 .35301e-4
3 .15503 .16212 .26528e-8
4 .15503 16212 .26525e-8

5 .45503e-1 .16212 .12365e-8

6 .90054e-1 .92656e-1 .64985e-1

7 .9004ge-1 .92634e-1 .47295e-5

8 .85303e-l 82694e-1 .47460e-2

9 83209e-1 .80812e-1 .20942e-2

10 .69532e-l .65542e-1 .13677e-1

II .69788e-1 .66073e-1 .25598e-3

68

--I

-
Table 4.40 Performance ofTraining and Generalization RMS

with 20 bidden nodes and A. = 0.01

Epoch Training RMS Generalization RMS Convergence error
0 .20677 .20022
1 .16100 .16212 .45772e-l
2 .16096 .. 16212 .38782e-4
3 .16096 .16212 .24146e-6
4 .92872e-1 .88685e-l .68094e-l
5 .92870e-l .88692e-1 .15384e-5
6 92871e-1 .88688e-l .74493e-6
7 92871e-l .88688e-1 .1080ge-7
8 .9287Ie-l .88688e-l .37280e-9

69

..,..~
•';t';

-

8.00E..Q2
C/.l 8.40E..Q2
::::E 8.20E..Q20:::

8.00E..Q2c:
0 7.80E..Q2
...... 700E-02
ctl
N 7.40E..Q2

~ 7.20E..Q2.... 7.00E..Q2Q)
c: 6.80E-02Q)

0 6.00E-02
6.40E..Q2

0 .- .- .-
0 0 0 0
0 0 ~0 ~

0
0 0

0 0

A

Figure 4.1 The Relationship Between Generalization RMS and A(2/7/1).

9.00E..Q2
C/.l

::::E S.50E..Q2
0::: S.CXJE..Q2
c:
.9 750E..Q2
......
ctl 700E..Q2
N

~ 650E..Q2
....
Q) 6.COE..Q2
c:
Q) 5.50E..Q2

0
5COE..Q2

0-
0 0 0 0
0 0 ~ 00 0
0 0

0 0

A.

Figure 4.2 The Relationship Between Generalization RMS and A(2/8/1).

70

1.
•

-

800E~2

en
~ 8.40E~2

et::
t: 8.20E~2

0....
~ 800E-Q2
N

~
7.80E~2I-

Cl.l
:::
Cl.l

7.00E~20

7.40E~2

a- ..a a a aa a a 0a ~ 0a
0 a

),

Figure 4.3 The Relationship Between Generalization RMS and A (2/9/1).

9.00E-Q2
en
~ 8.50E~
et::
.....

800E~0
~ 750E~
N

C':l 700E~
I-
Cl.l
:::

6.50E~~

0
6.00E~.. N lD .. o::r lD Na a a a a a aa a a ~ a a u...a a a 0a 0 a a a

0 a ~

A

Figure 4.4 The Relationship Between Generalization RMS aJ.1d A (2/1 011).

71

-

g.50E~2

en g.OOE~2

~
~

8.50E~2

:::: 8.00E~2

0.=:: 7.50E~2
ro
N 7.00E~2

ca
6.50E~~

v
:::: 6.00E~2v
0 5.50E~2

5.00E~2
0 0 N <:r <D N <:r <D

0 0 0 0 0 0 0 0
0 0 0 0 0 0 ~ 0 0
0 0 0 0 0 ci ci0 ci ci ci 0 0

ci 0

il

Figure 4.5 The Relationship Between Generalization RMS and A. (2/17/1).

9.50E~

en 8.50E~

~
7.50E~2

~

c 6.50E.Q2
0..... 5.50E~
ro
.~ 4.50E~

ro
3.50E~2~

v
c 2.50E~2v

0 1.50E~

5.00E-a3
0 <:r 00 N <D '<'"

0 0 0 0 0 0
0 0 0 ~ 0 ci0 0 ~ cici 0
0 0

il

Figure 4.6 The relationship Between Generalization RMS and A. (2/18/]).

72

•
~l

-w

d

9.50E-Q2

(/) 9.00E'{)2

~ 8.50E'{)2
0:::
c:: 8.00E'{)2

~ 750E.{)2ro
N

7.00E'{)2
ro.... 6.50E'{)2Q.)
I::
Q.) 6.00E-Q2

0
5.50E-Q2

5.00E-Q2
0 '<"'" ~ 00 N C.D '<"'"

0 0 0 0 0 0
0 0 0 0 0 ci0 0 ~ ci cici 0 0

A

Figure 4.7 The Relationship Between Generalization RMS and A (2/19/1).

9.50E-Q2
(/)

9.00E-Q2
~
0:::: 8.50E-Q2

I:: 8.00E-Q2
0

'':::; 7.50E-Q2
ro
N 7.00E'{)2
ro 6.50E-Q2....
Q.)

6.00E'{)2c::
Q.)

0 5.50E-Q2

5.00E-Q2
0 '<"'" ~ 00 N W '<"'"

0 0 0 0 0 ~0 0 0 0 0
0 0 0 ci ci 0

0 0 ci

A

Figure 4.8 The relationship Between Generalization RMS and A (2/20/1).

73

I.

:.

.~

9.00&02

:2
8.50&02

0::
......
(5 800&02
-'ro
N

ro 7.50&02...
<U
::::
<U

c.J 7.00&02

6.50&02

29 37 45 53 61 69 77

Number ofweights

Figure 4.9 The Relationship Between Generalization RMS and Number
ofWeights

74

'.
,,

"

- \

5. CONCLUSION AND FUTURE WORK

Overfitting is a very important issue in artificial neural networks. A network that

cannot generalize is useless. There are several methods to reduce overfitting. In this paper,

we use a penalty method to reduce the overfitting. The results are compared vvith those

without penalty term From this study, we find several important conclusions

• Overfitting does exist. in artificial neural networks.

• As the neural network becomes larger, the generalization performance becomes

worse. So we may choose the smallest networks that fit the data.

• When the network has a larger number of samples than weights, the penalty

method can still be used to increase slightly the generalization performance of

the network. However, we should be careful in choosing Ato be close to the

optimum point. Otherwise, generalization performance can be decreased

significantly.

• When the network has more weights than number of samples, the penalty

method can be used to improve significantly the generalization perfonnance of

the networks. We need to choose A close to the optimum point to improve the

generalization performance. However, generally speaking, the performance will

not be significantly changed if A is not close to the optimum point.

• The optimum point of Ais network architecture dependent.

Future work can be done in several areas as listed below:

• To use different penalty terms. One example is to include the output term in the

performance function. Another example is to include both output term and the

75

'...-
I~ \

.~

12.:)

weight term [24] or to use a roughness penalty [20].

• Another method that can be investigated is an interactive method in which the

designer checks the trained network and decides which nodes to remove.

Several heuristics are used to identify units that don't contribute to the solution.

One method is to remove a node that has a constant output over all training

patterns. When a number of nodes have highly correlated responses over all

patterns, they can be combined into one node.

• A comparison study may be needed to investigate the effectiveness of different

methods in reducing overfitting.

76

Bibliography

[1] John, H, K Anders and G. P. Richard "Introduction to the Theory of Neural

Computers", Lecture Notes Vol. L Addison-Wesley Publishing Company.. 1991.

[2] Hecht-Nielsen Robert, ''Neurocomputing'', Addison-Wesley Publishing Company.

1990.

[3] McCulloch, W. S. and W. Pitts., "A Logical Calculus of the Ideas Immanent in

Nervous Activity", Bulletin ofMath. Bio., 5, 1943.

[4] Hebb, D., "The Organization ofBeha"rior," Wiley, New York, 1949.

[5] Minsky, M., ''Neural Nets and the Brain-model Problem", Doctoral Dissertation.

Princeton University, Princeton, NJ, 1954.

[6] Rosenblatt, F., ''The Perceptron: A Probabilistic Model for Infonnation Storage and

Organization in the Brain", Psych. Rev., 65, 1958.

[7] Minsky, M. and S. Papert, "Perceptrons", MIT Press. Cambridge, MA. 1969.

[8] Hopfield, 1.1., ''Neurons with Graded-response Have Collective Computational

Properties Like Those Two-state Neurons", Proc. Natl. Acad. Sci 8 L 198-1.

[9] Hopfield, 1.1., "Neural Networks and Physical Systems with Emergent Collective

Computational Abilities", Proc. Natl. Acad. Sci. 79, 1982.

[10] Rumelhart, D.E. and 1. L. McClelland, "Parallel Distributed Processing:

Explorations in the Micro Structure of Cognition I & II," MIT Press. Cambridge MA.

1986.

[11] Strang G., ''Linear Algebra and its Application", Academic Press, New York. 1980.

[12] Scales, L. E., "Introduction to Nonlinear Optimization". New York, Springer-Verlag.,

77

1985.

[13] Magnus R. H., "Conjugate Direction Methods in Optimization". Springer-Verlag.

New York, 1980.

[14] Wolfe, M.A., ''Numerical Methods for Unconstrained Optimization", Van Nostrand

Reinhold Company, 1978.

[15] Cichocki, A. and Unbehauen, R., ''Neural Networks for Optimization and Signal

Processing", Wiley, 1993.

[16] Hagan Martin T., ''Neural Network Design", Lecture Notes. Oklahoma State

University, 1995.

[17] Freeman James A. and David M. Skapura, "Neural Networks Algorithms.

Applications and Programming Techniques", Addison-Wesley Publishing Company,

1992.

[18] Barnard Etienne, "Optimization for Training Neural Nets", IEEE Transactions 011

Neural Networks, Vol. 3, No.2, pp. 232-240.. MaL, 1992.

[19] Webb Andrew R., "Functional Approximation by FeedfOJward Networks: A Least-

squares Approach to Neural Networks", IEEE Transactions on Neural Networks,

Vol. 5, No.3, pp. 363-371, May, 1994.

[20] Bishop Chris M., "CuIV'ature-driven Smoothing: A Learning Algorithm for

Feedforward Networks", IEEE Transactions on Neural Networks. Vol. 4. No.5. pp.

882-884, Sept. 1993.

[21] De Villiers Jacques and Etienne Barnard" Backpropagation Neural Nets with One

and Two Hidden Layers", IEEE Transactions on Neural Networks. Vol. 4. No. I, pp.

78

·.l

'"'' ..,

136 - 141, Jan. 1992.

[22] Hagan Martin T., "Training Feedforward Nenvorks with the Marquardt

Algorithm", IEEE Transactions on Neural Networks. Vol. 5. No.6. pp. 989-993,

Nov. 1994.

[23] Reed Russell, ''Pruning Algorithms-A Survey", IEEE Transactions on Neural

Networks, Vol. 4, No.5, 1993.

[24] Weigend Andreas S., Bernardo A. Huberman and David E. Rumelhart. ,.

Generalization by Weight-Elimination Applied to Currency Exchange Rate

Prediction", Proc. Int. Joint Conf. Neural Networks, Vol. I. pp. 837-841, Seattle.

1991.

[25] Amirikian Bagrat and Hajime Nishimura, 'What Size Network Is Good for

Generalization of a Specific Task oflnterest?", Neural Network. Vol. 7. No.2. pp.

321-329,1994.

[26] Chauvin Yves, "Generalization Perfonnance of Overtrained Ba k-propagation

Networks", in Lecture Notes in Computer Science. Edited by L. B. Almeida and

C. 1. Wellekens, Springer-Verlag, 1990.

[27] Press William H, Saul A. Teukolsky, William T. Vetterling and Brian P. Flanllery.

"Numerical Recipies in FORTRAN". Cambridge University Press, 1992.

[28] Levenberg Kenneth., "A Method For the Solution of Certain Non-linear Problems in

Least Squares", Quart. App\. Math., No.2, pp. 164 - 168, 1994.

[29] Marquardt Donald W., "An Algorithm for Least-Squares Estimation of Nonlinear

Parameters",1. Soc. Indust. Appl. Math. Vol. I I, No.2, pp. 431 - 44 J, June,]963.

79

' ..,

.....

[30] Ackley David H. and Michael L Littman, "Generalization and Scaling in

Reinforcement Learning", in Advances in Neural Information Processing 2. D. S.

Touretzk1', Ed. pp. 550 - 557, 1989.

[31] Mozer Michael C. and Paul Smolensky, "Skeletonization: A Technique for

Trimming the Fat From a Network via Relevance Assessment", in Advances in

Neural Information Processing L D.S. Touretzky, Ed. pp. 107 - 115, 1989.

[33] Baum Eric B. and David Haussler, ''What Size Net Gives Valid Generalization')". in

Advances in Neural Information Processing 1. D. S. Touretzky, Ed. pp. 81 - 90.

1989.

[34] Chauvin Yves., "A Back-Propagation Algorithm With Optimal Use of Hidden

Units", in Advances in Neural Information Processing 1, D.S. Touretzky, Ed. pp

519 - 526, 1989.

[35} Ahmad Subatai and Gerald Tesauro, "Scaling and Generalization in Neural

Networks: A Case Study", in Advances in Neurallnfonnation Processing I. D.S.

Touretzky, Ed. pp. 160 - 168, 1989.

[36] Morgan, N. and H. Bourlard, "Generalization and Parameter Estimation in

Feedforward Nets: Some Experiments", in Advances in Neural Information

Processing 2, D.S. Touretzky, Ed. pp. 630 - 637,1989.

[37] Hanson Stephen Jose and Lorien Y. Pratt, "Comparing Biases Minimal Network

Construction with Back-Propagation", in Advances in Neural Information

Processing 1, D.S. Touretzky, Ed. pp. 177 - 185, 1989.

[38J Chauvin Yves, ''Dynamic Behavior of Constrained Back-Propagation Networks", in

80

•
I

'...
.,

(oj

j

Advances in Neural Information Processing 2. D.S. Touretzk")'. Ed. pp. 642 - 649,

1989.

[39] Le Cun Yann, John S. Denker and Sara A. Solla, "'Optimal Brain Damage". in

Advances in Neural Information Processing 2, D.S. Touretzk-y. Ed. pp. 598 - 60:-.

1989.

[40] Dietterich Tom., "Overfitting and Undercomputing in Machine Learning". ACM

Computing Survey, Vol. 27, No.3, pp. 326 - 327, Sept. 1995.

[41] Marquardt Donald W., "Generalized Inverse, Ridge Regression. Biased Linear

Estimation, and Nonlinear Estimation", Technometrics. Vol. 12, No.3, pp. 591 -

612, August, 1970.

[42] Marquardt Donald W. and Donald D. Snee, ''Ridge Regression in Practice". TIle

American Statistician, Vol. 29, No. 1, pp. 3 - 19, Feb. 1975.

[43] Hoerl Arthur E. and Robert W, Kennard, ''Ridge Regression: Biased Estimation for

NODorthogonal Problems", Technometrics. Vol. 12. No.1, pp. S5 - 67. Feb. 1970

[44] Hoerl Arthur E. and Robert W. Kennard. "Ridge Regression: Applications to

Nonorthorgonal Problems", Technometrics, Vol, 12, No. I, pp. 69 - 82. Feb. 1970.

[45] Sietsman, 1. and R.1.F Dow, "Neural Net Pruning - Why and How", IEEE

International Conference on Neural Network I, San Diego, California, pp.325 - 333,

July, 1988.

[46] Green, P.l. and B. W. Silbennan, ''Nonparametric Regression and Generalized Linear

Models - A Roughness Penalty Approach", Chapman & Hall. 1994.

81

.
•.
'.,
.\'.j
.'
)

.--

APPENDIX--PROGRAM LISTING

82

·1•
j
.'

PROGRAM DRlVER

C***************·***·**************·*******·**·********.** •••***.*.****.
C THIS DRIVER IS TO GENERATE THE R.A.I\IDOM WEIGHTS *
C W(MLAYR, MNODE, 0: MNODE) --THE WEIGHT OF *
C EACH LAYER. *
C P(MNODE) - THE fNPUf DATA OF THE SAMPLE *
C O(1v1NODE) -- THE OUfPUf CALCULATED FROM THE INPUT *
C DATA SAMPLE. *
C N(MLAYR., MNODE) -- THE WEIGHTED SUM OF THE *
C fNPUfS OF A NEURON MNODE TN LAYER MLAYR *
C REF (3.1.1) •
C A(O:MLAYR, O:MNODE) - THE OUTPUT OF THE NEURO *
C MNODE IN LAYER MLAYR. REF (3.1.2) *
C NarICE THAT A(O,*) REPRESENTS THE INPUT •
C LAYER. A(*,O) REPRESENTS THE BIAS. *
C NNODE(O:MLAYR) -- THE NUtvlBER OF NODE IN EACH •
C LAYER. *
C LAYER -- THE ACTUAL TarAL LAYER OF THE NET. (EXCLUDING *
C THE INPUT LAYER) *

C MLAYR -- THE MAXMUM LAYER A NET CAN HAYE. *
C MNODE -- THE MAXMUM NODE ONE LAYER OF A NET CAN HAYE *
C LL -- SAMPLE INDEX *
C***

P.A.RNv1ETER(MLAYR = 4, MNODE = 100,MSAMP = 200)
DOUBLE PRECISION DRANDOM, W(MLAYR MNODE, O:MNODE),

+ SEED,TOL,WO,LAMDA,p(MSAMP,MNODE),O(MSAMP,MNODE),
+ N(MLAYR,MNODE), A(OMLAYR,O:MNODE),
+ SENS1(MLAYR,MNODE),T(MSAMP,MNODE),ERROR2.ERROR 1,
+ G(MLAYR,MNODE,O:MNODE),TG(MLAYR,MNODE,OMNODE),
+ FRET,TOLl,ERROR

INTEGER K,I,J,LL,NNODE(O:MLAYR),METHOD,LAYER,NSAMP
INTEGER NUM,ITER,MAXNUM,NWEIG,PSTAT

C
C THE FOLLOWING DATA IS USED IN CONJUGATE GRADIENT METHOD
C

DOUBLE PRECISION PP(MLAYR,MNODE,O:MNODE),BETA,
+ TGO(MLAYR,MNODE,O:J\.1NODE),PPO(MLAYR,IvfNODE,O:MNODE)

PSTAT=IO
C
C SET UP NETWORK
C

CALL NETSETUP(LAYER,MLAYR,NNODE,SEED,WO,LAMDA,METHOD)
CALL NETPRJNT(LAYER,MLAYR,NNODE,SEED,WO.LAMDA,METHOD)

C
C INITIAL WEIGHT WITH RANDOM NUMBER
C

CALL INIWEIGHT(W, LAYER, MLAYR.NNODE, MNODE,SEED.
+ NWEIG)

C
C PRlNT THE NUMBER OF WEI GHT
C

WRITE(*, 100 1)NWEIG
1001 FORMAT(lX,'THE !'.ruMBER OF WEIGHT IS. '.15)
C

83

-l

-

C READ IN TRAINING OATA P(l) AND T(l)
C READ IN THE INPUT AND DESIRED OUTPUT OF ONE TRAINING SAMPLE
C

CALL GETINPUTDATA(p,T,MNODE,NNODE(O).NNODE(LAYER),
+ MSAMP,NSAMP)

C
C CALCULATE THE PERFORMANCE FUNCTION
C

ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,
+ NNODE,LAMDA,WO)/NSAMP)

PRINT*, 'BEFORE TRAINING GENERALIZATION ERROR: ',ERROR
C
C LOOP OVER ITERATION
C SET TOLERANCE AND MAXIMUM ITERATION NUMBER
C

TOL = 4.00-10
TOll = 3.50-2
MAXITER=20

ITER=O

C
1000 ITER = ITER + 1
C
C ENTER ITERATION
C

CALL INITG(LAYER,MLAYR,NNODE,MNODE,TG)
C
C SUM TarAL GRADIENT
C

DO 320 LL=I,NSAMP
C
C FEEDFORWARD COMPUTATIO
C

CALL FORWARDCP.O,N.MLAYR,LAYER,MNODE,A.
+ NNODE,W,LL.MSAMP)

C
C CALCULATE THE SENSITIVITY MATRIX
C

CALL SENSITIVITY(SENSI,W,LAYER.,MLAYR.NNODE.
+ MNODE,T,O,N,LL,MSAMP)

C
C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
C

CALL GRAD(SENSI,A,W,LAYER, MLAYR,
+ NNODE,MNODE,G,WO,LAMDA)

C
C SUM UP THE TarAL GRADIENT
C

CALL SlJJ\.1GRAD(G,LAYER.,MLAYR,NNODE,MNODE.TG)
320 CONTINUE
C
C FfND THE PERFORMANCE FUNCTION VALUE. BEFORE Ll NE SEARCH
C

ERROR 1= SQRT(FINDE(P,T.MSAMP.NSAMP,MNODE,

84

-
+ W,MLAYR,LAYER,NNODE.O,LAMDAWO) /NSAMP)

IF (MOD(ITER,PSTAT) .EQ. 1) THEN
WRITE(*, 1600)ITER.,ERRORI

1600 FORMAT(lX,'BEFORE LINE SEARCH, ITER #' .IS.2X,
+ 'ERRORI VALUE = ',G25.20)

ENDIF
C
C FIRST START AND RESTART USING STEEPEST DESCENT
C

IF (ITER .EQ. 1 .OR. MOD(ITER.,NWEIG) .EQ. 0) THEN
CALL GETPp(pP,PPO,TG,MLAYR,LAYER.,MNODE.NNODE,

+ 0.00)
ENDIF

C
C ASSIGN THE TG TO TGO
C

CALL ASSIGN(TG,TGO,MLAYR,LAYER.,MNODE,NNODE)
CALL ASSIGN(pP,PPO,MLAYR.,LAYER.,MNODE,NNODE)

C
C COMPLTfE ALGORITHM 3.6.1 (4) AND (5)

CALL LINMIN(FRET,P,T,MSAMP,NSAMP,
+ MNODE,W,PPO,MLAYR,LAYER,NNODE,O,L.MIDA.,WO)

C
C USING STEP 2 TO COMPUTE THE G(K+I)
C

CALL INITG(LAYER.,MLAYR,NNODE.MNODE,TG)
DO 321 LL=l,NSAMP

C
C FEEDFORWARD COMPUTATION
C

CALL FORWARD(p,O,N,MLAYR,LAYER,MNODE ..A.,
+ NNODE,W,LL,MSAMP)

C
C CALCULATE THE SENSITIVITY MATRIX
C

CALL SENSITIVITY(SENSI,W,LAYER,MLAYR.NNODE,
+ MNODE,T,O,N,LL,MSAMP)

C
C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
C

CALL GRAD(SENSI,A W,LAYER, MLAYR.,
+ NNODE,MNODE,G,WO,LAMDA)

C
C SUM UP THE TOTAL GRADIENT
C

CALL SUMGRAD(G,LAYER,MLAYR.NNODE,MNODE.TG)
321 CONTINUE
C
C FIND THE PERFORMANCE FUNCTION VALUE, AFTER LINE SEARCH

C
ERROR2= SQRT(FINDE(P,T.MSAMP.NSAMP,MNODE.

+ W,MLAYR.,LAYER.,NNODE,O,LAMDA,WO) INSAMP)
C IF(MOD(ITER.,PST AT) .EQ 0) THEN

WRITE(*, II OO)ITER,ERROR2

85

-

1100 FORMAT(IX.'AITER LINE SEARCH, ITER# ',I5.2X.
+ 'ERROR2 VALUE = ',G25.20)

C ENDIF

C IF(MOD(ITER.,PSTAT) .EQ. I) THEN
C IF (ABS(ERROR2 - ERRORI) .LT. TOL) THEN

ERROR = ABS(ERROR2 - ERROR I)
WRITE(*,10 I)ERROR

101 FORMAT (lX,'ERROR = ',G25.20)
C STOP
C ENDIF

C VALIDATE THE NETWORK USING VALIDATION SET.

C IF(MOD(ITER.,PSTAT) .EQ. I) THEN
ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER.,

+ NNODE,LAMDA.,WO)/NSAMP)
WRITE(*,1200)ERROR

1200 FORMAT(lX,'AITER TRAINING GENERALIZATION ERROR: ',G25.20)
C ENDIF
C

BETA=FINDBETA(TG,TGO,MLAYR,LAYER.,MNODE,
+ NNODE)

CALL GETPP(pP,PPO,TG,MLAYR,LAYER,MNODE,NNODE,
+ BETA)

C
C PRINT TG, AFTER STEP 7
C
C ASSING TG TO TGO, TGO STORES P(K+ I)
C

CALL ASSIGN(TG,TGO.MLAYR,LAYER.l\1NODE,NNODE)
C

IF «ABS(ERROR2· ERRORI) .GT TOl.OR ERROR I GT. TOll
+ OR. ERROR2 .GT. TOLl) .AND ITER .IT. MAXITER)THEN

ERRORI = ERROR2
GOTO 1000

ELSE
IF (ITER LT MAXITER)THEN

WRITE(*,1300)
1300 FORMAT(IX,'SOLUTION CONVERGE ToniE TOLERANCE')

ENDLF

WRITE(*, 1400)ITER.,ERRORI.ERR0R2,ABS(ERROR2·ERROR I)
1400 FORMAT(lX,'ITER= ',I5,2X,'ERROR1= ',G25 10,2X,'ERR0R2=',

+ G25.10,2X,'ERROR=' G25.1 0)
C
C TEST THE NETWORK USING TEST SET
C

ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR.LAYER,
+ NNODE,LAMDA.,WO)fN SAMP)

WRlTE(*,1500)ERROR
1500 FOR.l\1AT(lX,'AITER TRAINING ERROR=',G25 10)

ENDIF
C

86

-
STOP
END

C**********·*****·**·****·**·***********************·*************••
SUBROUTINE GETINPUTDATA(P,T,MNODE.DrMIN.DIMOUT.MSAtvW,

+ NSAMP)
C***************************··*********·********************************
C
C

THIS SUBROUTINE IS TO READ THE INPUT DATA FROM
TRAINING SM1PLE AND THE TARGET OUfPlJr DATA

*
*

C**********··*****··***·*************·**************** *****************.
INTEGER MNODE, DrMlN,DIMOUT,l,NSAMP,MSAMP.J

DOUBLE PRECISION p(MSAMP,MNODE), T(MSAMP,MNODE)
C

IN =20
OPEN(UNIT = IN, FILE = 'TRAIN.DAT',STATUS = 'OLD',IOSTAT=IOERR)

IF(IOERR .NE. 0) THEN
WRITE(*, 10) IOERR

10 FORMAT(lX,'CANNOT OPEN NETWORK TRAINING DATA FlLE(TRAIN.DATY.
+ IS)

STOP
ENDIF

C READ IN NUIvtBER OF TRAINING SAMPLE
READ(IN,*)NSAMP

C
DO 100 J= 1, NSAMP

C READ IN THE INPUT DATA
READ(fN,·)(P(J,I),I=I,DfMfN)

C
C READ IN THE DESIRED OUTPUT DATA(TARGET DATA)

READ(IN,*)(T(J,I),I=I,DIMOUT)
100 CONTINUE
C

CLOSE (UNIT=IN)
C

RETURN
END

C***·*************************
SUBROUTINE PRlNTINPUTDATA(P,T.MNODE.DIMIN,DIMOUT.MSAMP,

+ NSAMP)
C*********************************··********·*··****** ******************
C
C

THIS SUBROlJrINE IS TO PRlNT THE INPUT OATA OF
TRAlNING SAMPLE AND THE TARGET OlJrPlJr OATA

..
*

C*******·***********************·************····***·***********.*******
INTEGER MNODE, DIMIN,DIMOUT,I,NSAMP.MSAMP.J

DOUBLE PRECISION P(MSAMP,MNODE), T(MSAMP,MNODE)
C
C PRlNT IN THE INPUT DATA

WRITE(*, IOO)NSAMP
100 FORMAT(lX,'NUIvtBER OF SAMPLE IS: ',15)
C

DO 200 J=I,NSAMP
WRITE(*,300)J

300 FORMAT(lX,'SA.MPLE # '.15)
DO 20 1= I.DIMIN

WRITE(*.400)p(I.n

87

-

400 FORMAT(lX,'THE INPUf DATA ARE: ',EI5.7)
20 CONTINUE
C

DO 30 1= I,DIMOUf
WRITE(*,500)T(I,J)

500 FORMAT(lX,'THE DESIRED OUfPur DATA ARE: '.E15T)
30 CONTINUE
200 CONTINUE
C

RETURN
END

C***
SUBROUfINE ASSIGN(ORIG,NEW,MLAYR,NLAYR.,MNODE.

+ NNODE)
C**
C
C

THIS SUBROUfINE IS TO COPY A ORIG MATRIX TO NEW MATRIX.
IT IS USED TO COPY TG.

*
*

C**
INTEGER MLAYR,NLAYR,MNODE,NNODE(O:MLAYR)

DOUBLE PRECISION ORIG(MLAYR,MNODE,O:MNODE).
+ NEW(MLAYR.,MNODE,O:MNODE)

INTEGER I,J,K,KK,LL
C

DO 10K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-l)
DO 20 J=I,KK

DO 30 I=O,LL
NEW(K,J,I)=ORIG(K,J,I)

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C**
FUNCTION BRENT(AX.BX,CX,F.TOL,XMIN)

C***

PARAMETERS. MAXIMUM ALLOWED NUMBER OF ITERATIONS~GOlDEN*

RATIO; AND A SMALL NUMBER THAT PROTECTS AGAJNST TRYING *
TO ACHIEVE FRACTION ACCURACY FOR A MINIMUM THAT HAPPENS *
TO BE EXACTLY ZERO *

C
C
C
C
C
C
C
C
C
C
C
C
C

GIVEN A FUNCTION F. AND GIVEN A BRACKETING
TRIPLET OF ABSCIESSAS AX. BX. CX(SUCH THAT BX IS
BETWEEN AX, AND CX. AND F(BX) IS LESS THAN BOTH
F(AX) AND F(CX», THIS ROUTINE ISOLATES THE MINIMUM
TO A FRACTIONAL PRECISION OF ABOLJr TOl USING BRENT'S
I\ttETHOD. THIS ABXCISSA OF THE MINIMUM IS RETURNED AS
XMlN. AND MUN1MU1v1 FUNCTION VALUE IS RETURNED AS BRENT.
THE RETURNED FUNCTION VALUE

*
*
*
*
*
*
*
*
*

c*** ******************
INTEGER ITMAX
DOUBLE PRECISION BRENT, AX,BX.CX.TOLXMIN,F,CGOLD.ZEPS

&8

-

EXTERNALF
PARAMETER(ITMAX=100, CGOLD=.381966DO.ZEPS=I.0D-IO)

C
INTEGER ITER
DOUBLE PRECISION A,B.D,E,ETEMP,FU,FV.FW.FX.P,Q.R.TOl I.TOl::!.

+ U,V,W,X,XM
A=MIN(AX,CX)

B=MAX(AX,CX)
V=BX

W=V
X=V
E=O.DO

FX=F(X)
FV=FX
FW=FX
DO 11 ITER = 1, ITMAX

XM = .5DO*(A+B)
TOll = TOL*ABS(X) +ZEPS
TOL2 = 2.DO*TOL I

IF(ABS(X-XM) .LE. (TOL2 - .5DO*(B-A») GGrO 3
IF(ABSCE) .GT. TOLl)THEN

R=(X-W)*(FX-FV)
Q=(X-V)*(FX-FW)
P=(X-V)*Q-(X-W)*R
Q=2.DO*(Q-R)
IF(Q.GT.O) P=-P
Q=ABS(Q)
ETEMP=E
E=D
IF(ABS(p)GE.ABS(.5DO*Q*ETEMPlORP LE.Q*(A-X).OR

+ P.GE.Q*(B-X»GGrO I
D=P/Q

U=X+D
IF(U-A.lT.TOl2 .OR. B-U .IT. TOL2)D=DSIGN(TOLIXM-Xl
GOT02

ENDIF
IF(X. GE.XM)THEN

E=A-X
ELSE

E=B-X
ENDIF
D=CGOLD*E

2 IF(ABS(D)GE.TOLl)THEN
U=X+D

ELSE
U=X+DSIGN(TOLl,D)

ENDIF
FU = F(lJ)

IF(FU.LE FX)THEN
IF(U.GE.X)THEN

A=X
ELSE

B=X
ENDIF

89

-

V=W
FV=FW
W=X
FW=FX
X=U
FX=FU

ELSE
IF(U.LTJC)THEN

A=U
ELSE

B=U
ENDlF
IF(FU.LE.FW .OR W.EQX)THEN

V=W
FV=FW

W=U
FW=FU

ELSEIF(FU .LE. FV .OR. Y.EQ.x .OR. Y.EQW)THEN
V=U
FV=FU

ENDIF
ENDIF

It CONTINUE
C
3 XMIN=X

BRENT=FX
RETURN
END

C**
SUBROUTINE CONVERT(TG,rvlLAYR,MNODE,NLAYR,

+ NNODE,A,MAXNUM,NUM)

*
*

THIS ROUTINE IS TO CONVERT THE 3-DIMENSIONAL
ARRAYS INTO I-DIMENSIONAL ARRAY. IT IS USED

TO APPLY LINE SEARCH ROUTINE

C
C
C

C**

*

C**
INTEGER MLAYR,MNODE,NLAYR,NNODE(O:MLA YR),

+ MAXNUM.NUM,I,J,K,KK,LL
DOUBLE PRECISION A(MAXNUM),TG(MLAYR.MNODE,O:MNODE)

C
NUM=O
DO 10 K=I,NLAYR

KK=NNODE(K)
LL=NNODE(K-I)
DO 20 J=I,KK

DO 30 [=I,LL
NUM=NUM+I

A(NUM)=TG(K,J,I)
30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

90

C***·**·***.***.***.
C*************************·*****************·**·****··*******•••••*****.
C GIVEN A FUNCTION F AND ITS DERIVATIVE FUNCTION DF. AND *
C GIVEN A BRACKETING TRIPLET OF ABSCISSAS AX. BX. CX[SUCH *
C THAT BX IS BETWEEN AX AND CX AND F(BX) IS lESS THAN BOTH *
C F(AX) AND F(CX)], THIS ROUTINE ISOLATES THE MINIMUM TO A *
C FRACTIONAL PRECISION OF ABOUT TOl USING A MODIFICAnON OF-
C BRENT'S METHOD THAT USES DERIVATIVES THE ABSCISSA OF THE *
C MINIMUM IS RETURNED AS XMlN, AND THE MINIMUM FUNCTION *
C VALUE IS RETURNED AS DBRENT, THE RETURNED FUNCTION VALUE·
c***************·**

FUNCTION DBRENT(AX,BX,CX,F,OF,TOL,XMIN)
INTEGER ITMAX
DOUBLE PRECISION DBRENT,AX.BX,CX.TOl,XMIN.DF,FZEPS
EXTERNAL DF,F
PARAMETER(ITEM=lOO,ZEPS=l.OD-IO)
INTEGER ITER
DOUBLE PRECISION A,B.D,Dl.D2,DU,DV,DW,DX,E,FU,FV.FW,FX.OlDE.

+ TOll, TOl2, U,Ul,U2,V,W,X.XM
LOGICAL OKI,OK2
A=MIN(AX,CX)
B=MAX(AX.CX)
V=BX
W=V
X=V
E=O.
FX=F(X)
FV=FX
FW=FX
DX=DF(X)
DV=DX
DW=DX
DO II ITER=I,ITMAX

X1Vf=0.5*(A+B)
TOl I=TOl*ABS(X)+ZEPS
TOL2=2. *TOl 1
IF(ABS(X-XM) .lE. <TOll - .5*(B-A)))GOTO 3
IF(ABS(E) .GT. TOl I) THEN

DI=2*(B-A)
D2=DI
IF(DWNE.DX)DI=(W-X)*DX/(OX-DW)
IF(DV.NE.DX)D2={V-X)*DX/(DX-DV)
UI=X+DI
U2=X+D2
OKI=«A-UI)*(UI-B).GT 0) .AND. (OX*DI .lE. 0.)
0K2={(A-U2)*(U2-B).GTO) .AND. (DX*D2 .lE. 0)
OlDE=E
E=D
IFe.NOT. (OKI.0R.OK2))THEN

GOTOI
ElSEIF (OKI .AND. OK2)THEN

IF(ABS(DI).LTABS(D2)THEN
D=Dl

ELSE

91

2

O=D~

ENDIF
ELSEIF (OK 1) THEN

0=01
ELSE

0=02
ENDIF
IF(ABS(D) .GT. ABS(O.5*OLDE»GOTO 1
U=X+D
IF(U-A .LT. TOL2 .OR. B-U .LT. TOL2)O=SIGN(TOLLXM-X"l
GOT02
ENDIF
IF(DX.GE.O)THEN

E=A-X
ELSE

E=B-X
ENDIF
0=.5*E
IF(ABS(D) .GE. TOLl)THEN

U=X+D
FU=F(U)

ELSE
U=X+SIGN(TOLl ,0)
FU=F(U)
JF(FU.GT.FX)GOTO 3

ENDIF
DU=DF(U)
IF(FULE. FX)THEN

IF(UGE.X) THEN
A=X

ELSE
B=X

ENDIF
V=W
FV=FW
DV=DW
W=X
FW=FX
DW=DX
X=U
FX=FU
DX=DU

ELSE
IF(U.LTX)THEN

A=U
ELSE

B=U
ENDIF
IF(FULE.FW .OR. W.EQX)THEN

V=W
FV=FW
DV=DW
W=U
FW=FU

92

DW=DU
ELSEIFCFU .LE. FV .OR. V.EQ'x .OR. V.EQ. W)THEN

V=U
FV=FU
DV=DU

ENDIF
ENDIF

II CONTINUE
3 XMIN=X

DBRENT=FX
RETURN
END

*

*
*

THIS ROUTINE IS TO FIND THE BETA ACCORDING TO
(2.4.8) -- (2.4.10).

TG(MLAYR, IvlNODE, 0: MNODE) STORES TOTAL
GRADIENT

C
C
C
C

FUNCTION FINDBETA(fG,TGO.MLAYR,NLAYR,MNODE.
+ NNODE)

C***

*

C***
rNTEGER MLAYR,NLAYR,MNODE,NNODE(O:MLAYR)

DOUBLE PRECISION TG(MLAYR,MNODE,O:MNODE),
+ TGO(MLAYR,MNODE.O: MNODE).FINDBETA,SUM,SUM I

INTEGER I,J,K,KK,LL
C

SUM=O.DO
SUMl=O.DO

DO 10 K=l,NLAYR
KK=NNODE(K)
LL=NNODE(K-l)
DO 20J=l,KK

DO 30 I=O,LL
SUM = SUJ\..1 + TG(K,J.I)*TG(K,J,I)

SUMI = SUM I + TGO(K,J,I)*TG{)(K,J,I)
30 CONTINUE
20 CONTINUE
10 CONTINUE
C

FINDBETA=SUM/SUM J
RETURN
END

C*** ************

FUNCTION FJNDE(p,T,MSAMP,NSAMP,MNODE,
+ W,MLAYR,NLAYR,NNODE,O,LAMDA,WO)

C*** ***********
C THIS FUNCTION IS TO FIND THE PERFORMANCE *
C FUNCTION E(W) REF. (36.li *
C FINDE -- THE PERFORMANCE VALUE REF (3.6.1) *
C T(MSAMP,MNODE)-- THE DESIRED OUTPUT OF THE NET ...
C W(MLAYR,MNODE,O: MNODE)--WEIGHT MATRIX OF THE NET ...
C O(MSAMP,MNODE)-- THE CALCULATED OUTPUT OF THE NET*
C LAMDA-- THE CONSTANTIN THE PENALTY TERM *

93

C WO -- THE CONSTANTS IN THE PENALTY. *
C*** ***********
C

INTEGER MSAMP,NSAIvt:P,MNODE,MLAYR. LA·YR..
+ NNODE(O:MLAYR)

DOUBLE PRECISION O(MSAMP,fvrnODE).T(MSAMP,MNODE),
+ W(MLAYR,MNODE,O:MNODE),LAMDA.,WO,SUM.SUMI ,FINDE.
+ P(MSAMP M:NODE)

DOUBLE PRECISION N(MLAYR,M:NODE),A(O:rv1LAYR..OJ"fNODE)
INTEGER l,J,K,L,KK,LL

C t...LCULATE THE PENALTY TERM.
C

.sUI =O.DO
~:... \11=0.00

~,O 100 K=L\lLAYR
i'..:< =o\\ODE(K)
._L ,.,jJ 'ODE(K-I)
DO 200 J=I,KK

DO 300 I=O,LL
SUM=SUM+LAMDA*(W(K,J,I)** 2/(WO**2+W(K.J,I)**2))

CONTINUE
CONTINUE

CONTINUE

300
200
100
C
C CALCULATE THE FIRST TERM
C

DO 10 L=I,NSAMP
CALL FORWARD(p,O,N,MLAYR.,NLAYR,MNODE,A,NNODE,

+ W,L,MSAMP)
DO 20 K=I,NNODE(NLAYR)

SUM I=SUM I+(T(L,K)-O(L,K))**2
20 CONTINUE
10 CONTINUE
C

FINDE = 0.5DO* (SUM +SUMl)
C

RETURN
END

C**
SUBROlITINE FORWARD(p,O,N,MLAYR.NLA'lR,MNODE.A,

+ NNODE,W,SN,MSM1P)

*

*
*

•

•

*

*
•

*

THIS SUBROlITINE IS TO CALCULATE THE SUM OF
THE INPlITS OF A NEURON J IN LAYER K
PLEASE REFER TO (3.1.1)
N(rv1LAYR,MNODE)--STORES THE SUM OF INPlITS OF

NEURON J IN LAYER K
A(O: MLAYR.,MNODE)--STORES THE o lITPUT OF

NEURON J IN LAYER K
A(O:MLAYR,O:MNODE)·- STORES THE INPlIT DATA
P(MSAMP.MNODE) -- IS THE INPlIT DATA FROM ONE SAMPLE
T(MSAMP,MNODE) --IS THE DESIRED OUTPlIT DATA FROM ONE

SA\1PLE

C
C
C
C
C
C
C
C
C
C
C

C*** *******************

*

94

--
C
C
C
C

O(MSAIvIP,MNODE) -- IS THE OUTPlIT CALCULATED FROi,,1 THE
NET.

W(MLAYR,MNODE,O:MNODE) -- THE WEIGHT OF THE NET.
SN -- THE SAMPLE INDEX.

*
*
*

C*** *******************
INTEGER MLAYR,MNODE,NNODE(O:MLAYR),I,J,K,

+ NLAYRL,SN,MSAIvIP,KK,LL
DOUBLE PRECISION N(MLAYR,MNODE),A(O:MLAYR,O:MNODE),

+ W(MLAYR,MNODE,O:MNODE),SUM,p(MSAMP,MNODE),
+ O(MSAMP,MNODE)

C
C STORE INPUT DATA INTO A(O,MNODE)
C

DO 100 I=l, NNODE(O)
A(O,I)=p(SN,I)

100 CONTINUE
C
C STORE THE BIAS
C

A(O,O) = -LDO

CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K
C
C
C
C LOOP OVER LAYER
C LOOP OVER LAYER

DO IOK=I,NLAYR
C LOOP OVER CURRENT NODE (T ARGET)

K.K=NNODE(K)
LL=NNODE(K-l)
DO 20 J=l,KK

C LOOP OVER PRVlOUS NODE (SOURCE)
SUM = O.ODO
DO 30 l=O,LL

SUM = SUM + W(K,J,i)*A(K-I,l)
CONTINUE30

C
C CALCULATE THE SUM OF 1 NEURON J IN LAYER K
C

N(K,J) = SUM
C
C CALCULATE THE OlITPlIT OF NEURON J IN LAYER K
C

A(K,J) = SIGF(N(K,J»
20 CONTINUE
C
CTHEBIAS
C

A(K,O)=-I
10 CONTINUE
C
C STORED THE OUTPlIT IN A(NNODE(NLAYR»)
C

K.K=NNODE(NLAYR)
DO 200 1=1, KK

95

O(SN,I}=A(NLAYR,I)
200 CONTINUE

RETURN
END

SUBROurINE FRPRMN(p,N,FrOLJTER..FRETl
C***~********

C
C
C
C
C
C
C
C
C
C
C
C
C

GIVEN A STARTING POINT P THAT IS A VECTOR OF LENGTH
N, FLETCH-REEVES-POL.AK-RIBIERE MTNIMIZATION IS
PERFORMED ON A FUNCTION FUNC, USING ITS GRADIENT AS
CALCULATED BY A ROUTINE DFUNC. THE CONVERGENCE TOLERANCE
ON THE FUNCTION VALUE IS INPUf AS FrOL. RETURNED
QUANTITIES ARE ?(THE LOCATION OF THE MlNUMUM), ITER(THE
NUMBER OF ITERATIONS THAT WERE PERFORMEDl.AND FRET(THE
MlNIMUM VALUE OF THE FUNCTION). THE ROUflNE LINMIN IS
CALLED TO PERFORM LINE MINIMIZATIONS.
PARAMETERS: NMAX IS THE MAXIMUM ANTICIPATED V.l\LUE OF N:
ITMAX IS THE MAXIMUM ALLOWED NUMBER OF ITERATIONS: EPS
IS A SMALL NUMBER TO RECTIFY SPECIAL CASE OF CONVERGING
TO EXACTLY ZERP FUNCTION VALUE.

•
•

*
*
•
...
..
..
•
•
•

C*****************·*********************·*****************************.*.***.**
INTEGER ITER.,N,NMAX,ITMAX
DOUBLE PRECISION FRET,FrOL,P(N),EPS,FUNC

EXTERNAL FUNC
PARAMETER(NMAX=50,ITMAX=200.EPS=I.OD-IO)

C
C USES DFUNC,FUNC,LINivlIN
C

INTEGER ITS,J
DOUBLE PRECISION DGG,GAM.GG.G(NMAX).H(NMAX).XI(NMAX)
FP = fUNC(P)
CALL DfUNC(P,XI)
DO II J=l,N

G(1)=XI (J l
H(J)=G(J
XI(J)=H(J)

II CONTINUE
DO 14 ITS=l,ITMAX

CALL LINMlN(P,XI,N,FRET)
IH2* ABS(FRET-FP) .LE. FfOL*(ABS(FRET)+ABS(FP)+EPS) lRETURN

FP= FUNC(P)
CALL DFUNC(P,XI)
GG =0.00
DGG=O.DO

DO 12 J=I.N
GG=GG+G(1)**2
DGG=DGG+(XI(J}+G(J))*XI(J)

12 CONTINUE
IF(GG .EQ O)RETURN

GAM=DGG/GG
DO 13 J=I,N

G(J)=-Xl(J)
H(J}=G(J)+GM1*H(J)
XI(J)=H(J)

96

13 C01'.'T1NUE
14 CONTINUE
C

RETURN
END

C****************·**·**·**********·*·*····*·*·*·***···*.**.***.*.*.**
SUBROlITINE GETPP(pP,PPO,TG,!vU.AYR.,NLAYR.,MNODE,

+ NNODE, BETA)

•
•

•

THlS SUBROUTINE IS TO CALCULATE IvlETRIX PP. REF.
ALGORITHIvl 3.6.1 (3) MTD (7). IT ADDS THE PREVlOUS
GRADIENT TO THE CURRENT GRADIENT ACCORDING TO
DIFFERENT BETA. REF.(2.48)-(2.4.IO). STORED THE
WHOLE GRADIENT IN PP.

C
C
C
C
C

C********··*··*····***···**·*·*·**··**··******········*.**••*.***
*

C****·*·***·*******·*·***·**************·*··*******·**••********.
INTEGER MLAYR,NLAYR,MNODE,NNODE(O:MLAYR)

DOUBLE PRECISION PP(MLAYR.,MNODE,O:MNODE),BETA,
+ TG(MLAYR.,MNODE,O:MNODE),
+ PPO(MLAYR.,MNODE,O: MNODE)

INTEGER I,J,K,KK,LL
C
C CALCULATE THE GRADIENT AND STORE IT IN PP
C

DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-I)
DO 20 J=1,KK

DO 30 I=O,LL
PP(K,J,I) = -TG(K,J,I) + BETA * PPO(K,J,!)

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C*************·***·**·*·**************·***··**·*·····*••*.* ••• ****
SUBROlITINE GRAD(SENSI.A, W,NLAYR, MLAYR,

+ NNODE,MNODE,G,WO.LAMDA)
C*********·****************··*****···*·***·*****·*****•••••• **••••••
C THIS SUBROlITINE IS TO CALCULATE THE •
C GRADIENT OF THE PERFORMANCE W.RT WEIGHT •
C REF. (3.6.6). *
C SENSI(MLAYR,MNODE)--THE SENSITV1TY MATRIX. REF(36.12) •
C A(O:MLAYR.,O:MNODE) -- THE OUTPlIT OF A NEURON REF(3I.2J ..
C W(MLAYR.,MNODE,O:MNODE)-- THE WEIGHT MATRIX •
C G(MLAYR.,MNODE,O:MNODE)-- THE GRADIENT OF THE NET •
C OF ONE SAMPLE DATE. •
C Wo -- THE CONSTANTS IN PENALTY TERM WO •
C LAMDA -- THE CONSTANT IN THE PEN ALTY •
C··*********··*********·***··*·*·*****·······**····*·· *.******.**.**

INTEGER NLAYR, MLAYR,MNODE,U,K,KKLL,
+ NNODE(O:MLAYR)

DOUBLE PRECISION SENSICMLAYR,MNODE),A(O: MLA YR,
+ O:MNODE),W(MLAYR,MNODE,OtvfNODE).

97

+ G(MLAYRMNODE,OMNODE),WO,LAMDA
C
C CALCULATE THE GRADIENT OF PERFORNfACE FUNCTION W.RT
C WEIGHTS ACCORDING TO (3.6.6)
C
C LOOP OVER LAYER
C

DO IO K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-I)
DO 20 J= 1.K.K

C
CBIAS TERM
C

G(K J,O)=SENSI(K,J)+
+ LAMDA * (W(K,J,O) * WO*WO)/(WO*WO + W(K.J.0)**2)

DO 30 I=I,LL
G(K,J,I)=SENSl(K,J) * A(K-I ,I) +

+ LAMDA * (W(K,J,I) * WO*WO)/(WO*WO + W(K.J,I)**2)
30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C***
SUBROUTINE INITG(NLAYR,MLAYR.,NNODE,

+ MNODE,TG)
C*** ***
C THIS FUNCTION IS TO INITIALiZE THE TOTAL·
C GRADIENT TO 0 *
C**·***************

INTEGER NLAYR MLAYR,MNODE,U,K,I0(.LL.
+ NNODE(O:MLAYR)

DOUBLE PRECISION TG(MLAYR,MNODE,O:MNODEl
C
C INITIALIZE THE TOTAL GRADIENT TO 0
C AND NUMOFSAMPLE TO 0
C

DO 10K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-I)
D020 J=l,KK

DO 30 I=O,LL
TG(K,J,I)= 0

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C***
SUBROUTINE TNIWEIGHT(WEIGHT, NLAYR, MLAYR,NNODE.

+ MNODE, SEED,NWEIG)

98

NillvfNODE(I) -- THE NUMBER OF NODE AT LATIR I. *
NillvfNODE(O) -- THE NUMBER OF INPUT (NODE). *
NillvfNODE(NLAYR) -- NUMBER OF NODE IN ourPur LA)'ER *
NWEIG -- THE NUMBER OF WEIGHT *

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C

INITIALIZE THE WEIGHT OF INPUT LAYER

NLAYR -- THE NUMBER OF LA)'ER (INCLUDING
OUTPUT AND HIDDEN LAYERS)

WEIGHT(LAYER, N, O:N)-- LAYER IN THE LAUR INDEX
N,M CORRESPONDING TO W(J,I), I.E.,
WEIGHT(LAYER, N, M) IS THE WEIGHT
OF THE CONNECTION FROM NODE M OF
THE (LAYER-I)TH LAl'ER TO NODE N OF
THE LAYERTH LAYER

WEIGHT(LAYER, N, 0) IS THE BIAS.

*
*
*
*
*

*
*
*
*
*
*
*
*
*

C**
INTEGER MLAYR, MNODE,NWEIG
INTEGER I,J,K,FANlN ,NNODECO: MLAYR),NLAYR,KK,LL

DOUBLE PRECISION WEIGHT(MLAYR, MNODE,O:MNODE), TE!\1P,
+ DRANDOM,SEED,TEMPI

C
C GENERATE THE RANDOM NUMBER BETWEEN -05 TO 0.5
C

TEMPI = SEED
TEMP = DRANDOM(TEMPI) - .5DO
NWEIG= 0

C
C LOOP OVER LAYER
C

DO 10K=I. NLAYR
C
C CALCULATE THE FAN-IN OF THE LAYER.
C

KK=NNODE(Kl
LL=NNODE(K-l)
FANIN = NNODE(K-I) + I

C
C LOOP OVER ALL NEURONS IN CURRENT LAYER
C

0020 J=l, KK
C
C LOOP OVER ALL NEURONS IN PREVlOUS LAYER
C

DO 30 I = 0, LL
WEIGHT(K.J,I) = TEMPIFANIN
NWEIG = NWEIG + I

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN

99

END
C***

SUBROUTINE LINMIN(FRET,P,T.MSAMP,NSAMP.
+ MNODE,W,TG,MLAYR.,NLAYR.,NNODE,O,LMID.A...WO)

C**
C GIVEN AN N-DI:MENSIONAL POINT p(I:N) AND AN *
C N-DThr1ENSIONAL DIRECTION XI(l:N), MOVES AND *
C RESETS P TO WHERE THE FUNCTION FUNC(P) TAKES ON *
C A MINIMUM ALONG THE DIRECTION Xl FROM P AND *
C REPLACES XI BY THE ACTUAL VECTOR DISPLACEMENT *
C THAT P WAS MOVED ALSO RETURNS AS FRET THE \'ALUE *
C OF FUNC AT THE RETURND LOCATION P. THIS IS *
C ACTUALLY ALL ACCOMPLISHED BY CALLING THE ROlJrINES*
C MNBRAK AND BRENT. *
C *
C REF "NUNtERlCAL RECIPIES" *
C**

INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR.,
+ NNODE(O:MLAYR)

DOUBLE PRECISION O(MSAMP,MNODE),T(MSAI\1P.MNODE),
+ W(MLAYR,MNODE,O:MNODE),TG(MLAYRMNODE.OMNODE).
+ P(MSAMP.MNODE),LAMDA.WO,TOL,FRET

INTEGER MSCOM,NSCOM,MNCOM,MLCOM,
+ NLCOM

PARAMETER(MLCOM=4,MNCOM=100,MSCOM=200)
INTEGER NNCOM(O: MLCOM)
DOUBLE PRECISION OCOM(MSCOM,MNCOM),TCOM(MSCOM.

+ MNCOM),WCOM(MLCOM,MNCOM,O: MNCOM),
+ LAMCOM,WOCOM,TGCOM(MLCOM,MNCOM,O: MNCOM).
+ PCOM(MSCOM.MNCOM)

DOUBLE PRECISION AX.BX,FA.FB.FXXMIN.XX.BRENT
COMMON IFIINSCOM. NLCOM. NNCOM

COM:MON 1F2/PCOM.OCOM.TCOM.WCOM.TGCOM,LAMCOM. WOCOM
INTEGER I,J,K,KK.LL

EXTERNAL FIDIM
C
C INITIALIZE THE PARM1ETERS
C

NSCOM=NSAMP
NLCOM=NLAYR
LAMCOM=LAMDA
WOCOM=WO
TOL=I.OD-4
DO 10 I=O,NLCOM

NNCOM(l)=NNODE(I)
10 CONTINUE

DO 50 I=I,NSCOM
KK=NNCOM(NLCOM)
DO 60 J=lJ(K

OCOM(I,J)=O(I,J)
TCOM(I,J)=T(I,J)
PCOM(l,J)=P(U)

60 CONTINUE
50 CONTINUE

100

-

C
DO 20 K=I,NLCOM

K.K=NNODE(K)
LL=NNODE(K-I)
DO 30 J=l,KK.

D040I=0,LL
WCOM(K,J,I)=W(K,J,T)
TGCOM(K,J,I)=TG(K,J,J)

40 CONTINUE
30 CONTINUE
20 CONTINUE
C
C USES BRENT,FIDIM,l\1NBRAK
C

AX = -1.000
XX =1.000

CALL l\1NBRAK(AX,XX,BX,FA,FX,FB,F 1DlM)
FRET = BRENT(AX,XX,BX,FLDIM,TOL)CMJN)

C
C CALCULATE THE TarAL GRADIENT
C

DO 70 K=l,NLCOM
KK=NNODE(K)
LL=NNODE(K-1)
DO 80 J=LKK.

DO 90 I=O,LL
TG(K,J,I)=XMJN*TG(K,J,I)
W(K,J,I)=W(K,J,I)+TG(K,J,I)

90 CONTINUE
80 CONTINUE
70 CONTINUE
C

RETURN
END

FUNCTION F lDIM(X)
INTEGER MSCOM,NSCOM,MNCOM,MLCOM,

+ NLCOM
PARAMETER(MLCOM=4,MNCOM= I00,MSCOM=200)
INTEGER NNCOM(O:MLCOM)
DOUBLE PRECISION OCOM(MSCOM,MNCOM),TCOM(MSCOM,

+ MNCOM),WCOM(MLCOM,JvfNCOM,O:MNCOM),
+ LAMCOM,WOCOM TGCOM(MLCOM,MNCOM,O:MNCOM),
+ PCOM(MSCOM,MNCOM)

DOUBLE PRECISION XT(MLCOM,MNCOM,O:MNCOM)
C
C THE COMMON BLOCK
C

COMMON 1F1fNSCOM, 1'<1.COM, NNCOM
COMMON 1F2!PCOIvLOCOM,TCOM,WCOM,TGCOM.LAM COM,WOCOM
DOUBLE PRECISION FIDIM,X
EXTERNAL FINDE

C

101

C USES F1NDE
C USED BY LINMIN AS THE FUNCTION P.A,.SSED MNBRAK AND BRENT
C

INTEGER U.K,KK,LL
DO 100 K=I,NLCOM

KK=NNCOM(K)
LL=NNCOM(K-I)
DO 200 J= I,KK

DO 300 I=O,LL
XT(K,J,I}=WCOM(K,J,l)+X*TGCOM(K,J,I)

300 CONTINUE
200 CONTINUE
100 CONTINUE

F1DIM = FINDE(pcOM,TCOM,MSCOM,NSCOM,MNCOM,XI,
+ !vILCOM,NLCOM,NNCOM,OCOM,LAMCOM,WOCOM)

RETURN
END

SUBROUTINE MNBRAK(AX,BX,CX,FA.FB,FC,FUNC)
C***************************************·****************.*.*••*.
C THIS ROUTINE IS TO INIT1ALLY BRACKETING *
C A MININUM. REF " NUMERICAL RECIPfES ..
C IN FORTRAN, THE ART OF SCIENTIFIC COMPUTING" *
C BY WILLIAM H. PRESS, ETC. *
C •
C GIVEN A FUNCTION FUNC AND GIVEN DISTINCT *
C INITIAL POINTS AX AND BX, THIS ROUTINE ..
C SEARCHES IN THE DOWNHILL DIRECTION (DEFINED •
C BY THE FUNCTION AS EVALUATED AT THE INITIAL *
C P01NTS) AND RETURNS NEW P01NTS AX, BX, •
C CX THAT BRACKET A MINIMUM OF THE FUNCTION ..
C ALSO RETURNED ARE THE FUNCTION VALUES AT •
C THE THREE POINTS, FA, FB AND FC. •
C PARAMETERS: GOLD 1S THE DEFAULT RATIO BY •
C WHICH SUCCESSIVE INTERVALS ARE MAGNIFIED: *
C GLIMIT IS THE MAXIMUM MAGNIFICATION FOR •
C A PARABOLIC-FIT STEP. *
C*********·**********··***··*·**···*·*·****·······*···.*•••••••••

DOUBLE PRECISION AX,BX,CKFA.FB,FC,FUNCGOLD.GLIM IT ,TIN Y
EXTERNAL FUNC

PARAMETER (GOLD=I.618034DO,GLIMIT=100.DO,TINY=] D-20)
DOUBLE PRECISION DUM,FU,Q,R,U,ULIM
FA=FUNC(AX)
FB=FUNC(BX)
IF(FB .GT. FA) THEN

DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM

ENDIF
C
C FIRST GUESS FOR C

102

C
CX = BX +GOLD*(BX-AX)
Fe = FUNC(CX)

C
C INITIALIZE THE ITERATION COUNT
C

JTER=O
IF(FB GE.fC)THEN

R=(BX-AX)*(FB-FC)
Q=(BX-CX)*(FB-fA)

U=BX-«(BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q-R),
+ TINY),Q-R))

ULIM=BX + GLllvITT *(CX-BX)
IF«(BX-U)*(U-CX) .GT. 0) THEN

FU=FUNC(U)
IF(FU .LT. FC)THEN
AX=BX

fA=FB
BX=U
FB=FU
RETURN

ELSE [F(FU .GT. FB) THEN
CX=U

FC=FU
RETURN

ENDif
U = CX +GOLD*(CX - BX)
FU =FUNC(U)

ELSE IF«CX-U)*(U-ULIM) GT.O)THEN
FU = FUNCCU)
iF(FU .LT. FC) THEN

BX=CX
CX=U
U = CX + GOLD*(CX - BX)
FB=FC
FC =FU
FU = FUNC(U)

ENDIF
ELSE IF«U - ULIM)*(ULIM - CX) .GE. O)THEN

U= ULIM
FU = FUNC(U)

ELSE
U = CX + GOLD * (CX - BX)

FU= FUNC(U)
ENDIF
AX=BX
BX=CX
CX=U
FA=FB
FB=FC
FC=FU

ITER = ITER + 1
GOTO]

ENDIF

103

RETURN
END

SUBROlITINE NETPRlNT(LAYER,MLAYR.NNODE,SEED.\VO.
+ LAlvIDAMETHOD)

C*** ****************.
C THIS SUBROUTINE IS TO PRINT THE NETWORK ARCHITCTURE AND *
C INITIAL PARAMETERS. *
C***.

fNTEGER LAYER..MLAYR.,NNODE(O:MLAYR),METHOD,NSAMP
DOUBLE PRECISION SEED, TOL, WO, LMIDA

C
WRITE(*, IO)LAYER

10 FORlvlAT(lX,'THE NUMBER OF LAYER IN THE NETWORK IS: '.14)
WRITE(*,20)NNODE(0)

20 FORMAT(lX,'THE INPUT DIMENSION IS " 14)
DO 30 1=1, LAYER

WRITE(* ,40)I,NNODE(I)
40 FORMAT(lX,'THE NUMBER OF NODE IN LAYER ',14, 'IS " 14)
30 CONTINUE

WRITE(*,60)NNODE(LAYER)
60 FORMAT(lX,'THE OUTPUf DIMENSION IS " (4)

IF (METHOD .EQ. 0) THEN
WRITE(*,100)

100 FORMAT(lX,'THE PENALTY METHOD 15 USED')
ELSE IF(METHOD .EQ.l) THEN

WRITE(*,200)
200 FORMAT(lX,'THE STOP TRAINING METHOD IS USED')

ELSE
WRITE(* ,300)

300 FORMAT(IX,'METHOD DATA ERROR'}
STOP

ENDIF
C PRINT THE PARAMETERS

WRITE(* ,50)SEED,WO,LMIDA
50 FORMAT(1X,'THE SEED IS '.FIO.4/1X.

+ /lX,'THE WO IS ',FI6.12/lX,'THE LAMDA IS " F16.12)
C

RETURN
END

C*** ************
SUBROUTINE NETSETUP(LAYER,M.LAYR,NNODE,SEED,

+ WO,LAlvIDA,METHOD)
C*** **********.
C *
C THIS SUBROUflNE IS TO READ THE INPUT FILE AND SET UP *
C THE NETWORK ARCHITECTURE AND INITIALIZE PARAMETERS·

C •
C**

INTEGER LAYER, M.LAYR, MAXNODE, NNODE(O:MLAYRl.METHOD.
+ NSA1v1P

DOUBLE PRECISION SEED,TOL,WO.LAMDA
C

IN=50

104

OPEN(UNIT = lN, FILE = 'l';'ET.DAT', STATUS = 'OLD', lOST AT= IOERRi
W(lOERR .NE. 0) THEN
WRITE(*, I O)IOERR

10 FORMAT('CANNar OPEN NETWORK. DATA FILE (NET.DAT), IOERR= '.I 10)
STOP

ENDW
C
C READ IN THE NUMBER OF LAYER
C

READ(fN,*)LAYER
C
C READ IN THE NUMBER OF NODE IN EACH LAYER,THE NU!VtBER OF NODE I
C INPUT LAYER IS IN NNODE(O).
C

READ(lN,*)(NNODE(l),I=O,LAYER)
C
C READ TN METHOD, (0 FOR PENALTY METHOD, I FOR STOPTRAlNING METHODi

READ(IN,*) METHOD
C
C READ IN SEED NUMBER., TOLERANCE, WO AND LAMDA
C

READ(fN,*) SEED, WO, LAMDA
CLOSE (UNIT = IN)

C
RETURN
END

C**
SUBROUTINE PRTNT3D(A,I\1LAYR,NLAYR,MNODE,

+ NNODE)
C***
C THIS SUBROUTINE IS TO COPY A ORIGINAL MATRIX TO NEW MATRIX *
C IT IS USED TO COPY TG *
C***

INTEGER MLAYR.,NLAYR,MNODE,NNODE(O:MLA YR)
DOUBLE PRECISION A(MLAYR.,MNODE,OMNODE)

INTEGER I,JX,KK,LL
DO 10 K=l,NLAYR

KK=NNODE(K)
LL=NNODE(K-I)
DO 20 J= I,KK

DO 30 I=O,LL
WRITE(*, 100)K,J,l

100 FORMAT(IX,'LAYER # ',15, '1#', IS, '1# ',IS)
WRITE(*,200)A(K,J,l)

200 FORMAT(lX,'A VALUE: '.EI5.7)
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

C**
FUNCTION DRANDOMCDL)

C***
C THIS FUNCTION IS TO CREATE A RANDOM NUMBER BETWEEN *

105

C OTO 1
C***

DOUBLE PRECISION DL, DRANDOM
C

10 DL=DMOD(l6807.0DO*DL,2I47483647.0DO)
DRANDOM=DL/2147483648.0DO
IF(DRANDOMLE.O.ODO .OR. DR.AA'DOMGE.l.ODO) GOTO 10
END

C*** ****
SUBROUTINE SENSITIVITY(SENSI,W,NLAYR,tv1LAYR.NNODE,

+ MNODE,T,OUT,N,SN,MSAMP)
C**
C
C
C
C
C
C
C
C
C

THIS SUBROUTINE IS TO CALCULATE THE
SENSITIVITY DEFINED IN (3.6.6). PLEASE REFER
TO (3.6.6)-(3.6.16)
SENSI(Ml.AYR,MNODE)--THE SENSITIVITY MATRIX. REF(36.12)
W(MLAYR,MNODE,O:MNODE)--WEIGHT MATRIX
T(MSAMP,MNODE)--THE DESIRED OUTPUT OF THE NET
OUT(MSAMP,MNODE)--THE CALCULATED OUTPUT OF THE NET
N(MLAYR,MNODE)--THE SUMMATION OF THE WEIGHT REF(3. I. I)
SN -- THE SAMPLE INDEX.

*
*
*
*
•
*
•
*
*

C***•••
INTEGER NLAYR,MLAYR,NNODE(O:MLAYR),I,J.K,KK.LL,

+ MNODE,MSAMP,SN
DOUBLE PRECISION W(MLAYR,MNODE.O:MNODE),

+ SENSI(MLAYR,MNODE),T(MSAMP,MNODE),
+ OUf(MSAMP,MNODE),N(MLAYR,MNODE),SUM

C
C CALCULATE THE SENSITIVITY OF FINAL LAYER (3.616)
C

KK=NNODE(NLAYR)
DO 10 1=I,KK
SENSI(NLAYR,!) = -(T(SN,n - OUT(SN,I))

+ * SIGFD(N(NLAYR,!))
10 CONTINUE
C
C CALCULATE THE SENSITIVITY OF EACH LAYER STARTING
C FROM THE FINAL LAYER. (3.6.12)
C
C LOOP OVER LAYER
C

DO 20 K=NLAYR-l,I,-1
KK=NNODE(Kl
LL=NNODE(K+I)
DO 40 I = I,KK

SUM =O.DO
DO 30 J=I,LL

SUIvl = SUM + SIGFD(N(K,I»*W(K+ 1,J.I)*SENS](K+ U)
30 CONTINUE

SENSI(K,l) = SUM
40 CONTINUE
20 CONTINUE
C

RETURN

106

END

FUNCTION SIGF(X)
C**
C
C
C

SIGMOID TRANSFER FUNCTION
INPUT: DOUBLE PRECISION: X
OUTPUT: DOUBLE PRECISION: SIGF

*
*
*

C**
DOUBLE PRECISION X, SIGF
SIGF = I.DO 1(l.DO + EXP(-X))

RETURN
END

C**
FUNCTION SIGFD(X)

C**
C DERIVATIVE OF SIGMOID FUNCTION *
C INPUT: DOUBLE PRECISION: X *
C OUTPUT: DOUBLE PRECISION SIGFD *
C**

DOUBLE PRECISION X, SIGFD
SIGFD= EXP(-X) I «(1.DO+EXP(-X))**2)
RETURN

END
C**

SUBROUTINE SUMGRAD(G,NLAYR,MLAYR,NNODE,
+ MNODE,TG)

c**
C TIDS FUNCTION IS TO SUM UP THE GRADIENTS *
C OF EACH EPOCH. *
C TG(MLAYR.,MNODE,O:MNODE) - STORES *
C THE TOTAL GRADIENTS OF NUMOFSAMPLE SAMPLES. ..
C REF. ALGORITHM 3.6.1 (2.2) *
C G(MLAYR,MNODE,O:MNODE)--THE GR.AJ)IENT OF THE NET OF *
C ONE SAMPLE ..
C TG(MLAYR.,MNODE,O:MNODE)-- THE TOTAL(SUMMATIONl GRADIENT'"
C OF ALL SAMPLES. REF. ALG(2.3) ..
C***

INTEGER NLAYR, MLAYR,MNODE,U.K,KK.LL,
+ NNODE(O:MLAYR)

DOUBLE PRECISION G(MLAYR,MNODE,OMNODE),
+ TG(MLAYR,MNODE.O:MNODE)

C
C CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
C WEIGHTS ACCORDING TO (3.66)
C LOOP OVER LAYER
C

DO 10 K=l,NLAYR
KK=NNODE(K)
LL=NNODE(K-I)
DO 20 J=l,KK

DO 30 J=O,LL
TG(K,J,I)=TG(K,J,l) + G(K,J,I)

30 CONTINUE
20 CONTINUE

107

10 CONTINUE
RETURN
END

C***
SUBROUTINE SUMWEIGHT(p,O,N,MLAYR,NLA'{R,MNODE.A.

+ NNODE,W,SN,MSAMP)
C**

4

C
C
C

c
c
c
C
C
C
C
C
C
C
C

THIS SUBROUTINE IS TO CALCULATE THE Sillv1 OF
THE INPUTS OF A NEURON J IN LAYER K
PLEASE REFER TO (3.1.1)
N(MLAYR.,MNODE)--STORES THE SUM OF INPUTS OF

NEURON J IN LAYER K
A(O MLAYR.,MNODE)--STORES THE OUTPUT OF

NEURON J IN LA'r ER K
A(O: Ml. AYR,O:MNODE) -- STORES THE INPUT OATA.
P(l\ 1.3:\.;\lP.\I0.'ODE) -- IS THE INPUT DATA FROM ONE SAMPLE
T \lS.\MP,MNODE) --IS THE DESlRED OUTPUT DATA FROM ONE

SAMPLE
O(MSAMP,MNODE) -- IS THE OUTPUT CALCULATED FROM THE

NET.
W(MLAYR.,MNODE,O:MNODE) -- THE WEIGHT OF THE NET.
SN -- THE SAMPLE INDEX.

*
*
*
*
*
*
*
*

*

*

*
*

C***
INTEGER MLAYR.,MNODE,NNODE(O:MLAYRU.J.K.

+ NLAYR,L,SN,MSAMP
DOUBLE PRECISION N(MLAYR,MNODE),A(O:MLA·YR,Orv1NODE).

+ W(MLAYRMNODE,O:MNODE),SUM,p(MSAMP,MNODE),
+ O(MSAMP,MNODE)

C STORE INPUT OATA INTO A(O.MNODE)

DO 1001=1, NNODE(O)
A(O.l)=P(SN,I)

C PRINT *.'SN= ',SN.'P(SN,I)= ',P(SN,l)
100 CONTINUE

C STORE THE BIAS
A(O,O) = 1.00

C
C CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K
C
C LOOP OVER LAYER
C LOOP OVER LAYER

DO 10 K=I ,NLAYR
C LOOP OVER CURRENT NODE (TARGETl

DO 20 J=I,NNODE(K)
C LOOP OVER PRVTOUS NODE (SOURCE)

SUM = 0.000
DO 30 I=O.NNODE(K-l)

SUM = SUM + W(K.J,Il*A(K-l,Il
30 cm·HINUE
C CALCULATE THE SUM OF I NEURON J IN LAYER K

N(K,J) = SUM

108

C WRITE (*,500) K,J.N(K,J)
C500 FORMAT(lX,'LAYER # ',13,' NODE # '.13,' N = " F16. 10)
C CALCULATE THE ourpvr OF NEURON J IN LAYER K

A(K,J) = SIGF(N(K.,J))
C WRITE C*, 400) K.J,A(K,J)
C400 FORMAT(lX,'LAYER # '.13,' NODE # ',13,' A = '. FI6.10)
20 CONTINUE
CTHE BIAS

A(K,O) = I.DO
10 CONTINUE

C STORED THE ourpur IN A(NNODE(NLAYR))
DO 200 1=1, NNODE(NLAYR)
O(SN,I}=A(NLAYR,l)

200 CONTINUE
RETURN
END

109

Thesis:

VITA

Ping Jiang

Candidate for the Degree of

Master of Science

A PENALTY METHOD TO REDUCE OVERFITTING IN ARTIFICIAL
NEURAL NElWORKS

Major Field: Computer Science

Biographical:

Personal Data: Born in Shanghai, P. R. China, July 1962
the son of Su Zen Zhu and Yun Jiang.

Education: Graduated From Shanghai #2 High School, Shanghai, P. R. China;
received Bache.lor of Science Degree in Structural Engineering from Tongji
University in July 1984; received Master of Science Degree in Civil
Engineering from Oklahoma State University in. December 1994;
completed requirements for the Master of Science degree at Oklahoma
State University in July 1996.

Professional Experience: Engineer, Shanghai Municipal Engineeling Institute,
Shanghai, P. R. China from 1984 through 1991.

