A PENALTY METHOD TO REDUCE OVERFITTING

IN ARTIFICIAL NEURAL NETWORKS

By
PING JIANG

Bachelor of Science
Tongji University
Shanghai, PR China
1984

Master of Science
Oklahoma State University
Slitter, Oklahoma
1994

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1996

A PENALTY METHOD TO REDUCE OVERFITTING

IN ARTIFICIAL NEURAL NETWORKS

Thesis Approved:

\ cdo. 280

(/ Thesis Advisor

/—>f"7’>/1 /\m

\Z/mww ((c*é&/m

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. John P. Chandler for his
guidance, encouragement and invaluable instructions. He made a great effort to improve
this thesis in both contents and English. Likewise, sincere appreciation is extended to the
advisory committee members, Dr. K M. George and Dr. B. E. Mayfield. for their
assistance.

Very special thanks and love go to my parents, Su Zhen Zhu and Yun Jiang. |
would also like to express my gratitude to my sister Wan Qing Jiang and her family for
their continuing support and understanding during my study overseas. Without their
support, this thesis would not be possible.

Finally I would like to express thanks to all faculty and staff in the Computer

Science Department for their support during my study in Oklahoma State University.

1

TABLE OF CONTENTS

Chapter Page
LANTRODUCTION oo s s s s et s rosisiess 1

1.1 Artificial Neural Network HiStOTY oocoiiiiiiiiiiie e 1
1.2 Artificial Neural Network Models and Applications ..., 2
1.3 Leaming in Feedforward Artificial Neural Networkscocoooiiiiiiiiiiiiies e 5
1.4 Overfitting in Artificial Neural Networkscccoooiiiiiiiiiiiccieceee e 8
1.5 The OQyective of THS SIHAY i b s st s d8tms o bt 9
2 PERFORMANCE OPTIMIZATION mmessmmmsmmmsssmmsemmssims s s 11

P B T L T T 11
2.2 Steepest Descent Method cooooiiiiiiiiiiiii e 19
2:3 Newtan's Method «.ovvcnvumnamnunwennsemp e asissnmsys 22
2.4 The Conjugate Gradient Method coooiiiiiii i 24
3. ARTIFICIAL NEURAL NETWORK LEARNING ALGORITHMS ... 28
3.1 Architectures of Feedforward Artificial Neural Networks ... 28
3.2 Dynamic Behavior in Artificial Neural Networks ... 34
3.3 Overfitting and Generalization in Artificial Neural Networks ... 36
3.4 Stopped Tramning Method to Reduce Overfitting ... 38
3.5 Penalty Method to Reduce Overfitting oocoooiiiiiiiiiii e 39

v

3.6 Computation in Feedforward Aurtificial Neural Networkscccoccoiiiiiiiinnn. 41
4. IMPLEMENTATION AND DISCUSSION OF RESULTS ... 49
4.1 Language Implementation and Neural Network Architecture Design 49
4.2 Diseussion oF TESt RESIME s 50
5. Conclusion and Future WOrk ..ot 75
BIBLIOGRAPHY, ..cmiasonsosorsosssissss i s soiassim s e s s aiving 2T
APPENDIX -~ PROGRAMLISTING ..cicninmmorisioniariomsssm mismmsesteasupismimimasss 82

LIST OF TABLES
Table Page

4.1 Performance of Training and Generalization RMS
with 7 hidden nodes and A =0 ..o, 54

4.2 Performance of Training and Generalization RMS
with 7 hiddengodesand A =DO0000L ..owonrvanmmsmaimmsnsivsimseiieis 54

4.3 Performance of Training and Generalization RMS
with 7 hidden nodes and A = 0.0001cccooiiiiniiiiies P 55

4.4 Performance of Training and Generalization RMS
with 7 hidden nodes and A = 0.001 ... 55

4.5 Performance of Training and Generalization RMS
with 7 hidden nodes and A = 0.01 ... e S N e A S S S e 55

4.6 Performance of Training and Generalization RMS
with B hiddennodesand A =0 ... e 56

4.7 Performance of Training and Generalization RMS
with 8 hidden nodes and A = 0.00001 ..o 56

4.8 Performance of Training and Generalization RMS
with 8 lidden nodes and A =0.0001 cninminmniamiismsaiissssis 57

4.9 Performance of Training and Generalization RMS
with 8 hidden nodes and A = 0.001 ... 57

4.10 Performance of Training and Generalization RMS
with Sddegnotdes g A 2001 cormcammammmssmmmons s SsRE 57

4.11 Performance of Training and Generalization RMS
with 9hiddennodeSaid A= 0 .ivvcnmionuirassm et i i 58

4.12 Performance of Training and Generalization RMS
with 9 hidden nodes and A = 0.00001 ...t 58

4.13 Performance of Training and Generalization RMS
with 9'hidden nodesand 2= 00001 .oinnainssmsnmssismimasnestissis 59

4.14 Performance of Training and Generalization RMS
with 9 hidden nodes and A =0.001 ... i 59

4.15 Performance of Training and Generalization RMS
with 9 hidden nodes and A = 0.01 oooiiiiiiiiiic e, 60

4.16 Performance of Training and Generalization RMS
with 10hidden nodes SaA A =0 i s s v 60

4.17 Performance of Training and Generalization RMS
with 10 hidden nodes and A = 0.00001ccooiiiiiiiiiiiiiice P 61

4.18 Performance of Training and Generalization RMS
with 10 liddeninodes and A=0.0001 ... cuuumonmmnimesesimansass 61

4.19 Performance of Traming and Generalization RMS
with 10 hidden nodes and A =10.001iccocviusesicinnmmionnimanmissns rumssmmstneniomas e snsasass 62

4.20 Performance of Training and Generalization RMS
with 10 hidden nodesand A = 0.01 ... ISUUT 62

4.21 Performance of Training and Generalization RMS
With' 17 hiddennodes @il A0 s i e s s s 62

4.22 Performance of Training and Generalization RMS
with 17 hidden nodes and A = 0.00001. ... covvieoncreissossaasiesassssmevrsssinsmsvinssssss 63

4.23 Performance of Training and Generalization RMS
with 17 hidden nodes and A = 0.0001 ... 63

4.24 Performance of Training and Generalization RMS
with: 17 hiddennodesand A = 0001 ..ccovnpummmmaimmsmusss s 63

4.25 Performance of Training and Generalization RMS
with 17 hidden nodesand A =0.01 ..., s 64

4.26 Performance of Training and Generalization RMS
with 18 hiddennodes a0l A =0 ..ot imssisssmsamsieg 64

4.27 Performance of Training and Generalization RMS
with 18 hidden nodes and A = 0.00001 coooiiiiiiiii e 64

4.28 Performance of Training and Generalization RMS
with 18 hidden nodes and A =0.0001 ... 65

4.29 Performance of Training and Generalization RMS

with 18 hiddennodesand A = 0.001 ... i

4.30 Performance of Training and Generalization RMS

with 18 hidden nodes and A = 0.01 ..o,

4.31 Performance of Training and Generalization RMS

with 19 hidden nodes and A =0 .oooorrernee e

4.32 Performance of Training and Generalization RMS

with 19 hidden nodes and A =0.00001ooviimiiiiii,

4.33 Performance of Training and Generalization RMS

with 19 hidden nodes and A = 0.0001 ..o

4.34 Performance of Training and Generalization RMS

with 19 hidden nodesand A =0.001 e

4.35 Performance of Training and Generalization RMS

with 19 hidden nodesand A = 0.01 ... e,

4.36 Performance of Training and Generalization RMS

with 20 hidden nodes and A =0 ..oooiiiieiee e

4.37 Performance of Training and Generalization RMS

with 20 hidden nodesand A = 0.0001oooviiimiiiiaiiiins

4.38 Performance of Training and Generalization RMS

with 20 hidden nodes and A = 0.001 ..o,

4.39 Performance of Training and Generalization RMS

with 20 hidden nodes and A = 0.01 ...

viii

............. TR o

LIST OF FIGURES

Figure

1.2.1 A Generic Processing Element ...
3.1.1 A Three Layer Feedforward Network R S
3.1.2 The Sigmoid FUNCHION ooooiiiiiiiiiccie e
3.1.3 Fhe Byperbolic POttt osummi st s s e s
3.3.1 The Relationship Between Training Error and Testing Error
3:5.1 The First Order Derivative of Pentalty Temm iociciviiniiivmminsaisiiio
4.1 The Relationship Between Generalization RMS and A (2/7/1)
4.2 The Relationship Between Generalization RMS and A (2/8/1)
4.3 The Relationship Between Generalization RMS and A (2/9/1)
4.4 The Relationship Between Generalization RMS and A (2/10/1)
4.5 The Relationship Between Generalization RMS and A (2/17/1)
4.6 The Relationship Between Generalization RMS and A (2/18/1)
4.7 The Relationship Between Generalization RMS and A (2/19/1)

4.8 The Relationship Between Generalization RMS and A (2/20/1)

4.9 The Relationship Between Generalization RMS and
NumiberOFWEIRHES ccoromrrmmmmsmssmmssnrsnssmmparsemsses S a e R T RA TR SRS

1. INTRODUCTION

1.1 Artificial Neural Network History
Neurocomputing is an interdiscipline concermed with information processing
systems, i.e., neural networks that can be trained to develop operational capabilities to

respond to an information environment. The human brain is composed of about 10"
neurons (nerve cells) of different types [1]. The neural network was originally aimed
towards modeling networks of real neuron in the brain. The history of neural networks can
be traced back to 1943 when Warren McCulloch and Walter Pitts [2][3] proposed a
simple model of a neuron as a binary threshold unit to compute arithmetic and logical
functions. In 1949 Donald Hebb [4] published a book called “The Organization of
Behavior” which proposed a specific learning law for the synapses of neurons. He used
this learning law to explain qualitatively some experimental results from psychology.
Hebb’s research inspired many researchers to pursue the same theme, which eventually
laid down the foundation for the advent of neurocomputing. The first successful
neurocomputer called the Mark I Perceptron, was built by Frank Rosenblatt, Charles
Wightman and others during 1957 and 1958 [6]. Rosenblatt is considered to be the
founder of neurocomputing. Bernard Widrow, working with his graduate students,
developed different types of neural network processing elements called the ADALINE and
MADALINE, and applied them successfully in a type of electronically adjustable resistor
called the memistor. Despite some setbacks in the late 1960s and 1970s, the artificial
neural network researchs regained their momentum thanks to physicist John Hopfield and

other dedicated rtesearchers. In 1986, David Rumelhart and James McClelland edited a

book called Parallel Distributed Processing (PDP) [20], Volume 1 and Volume II. The

field exploded since then. Today we are witnessing substantial growth in neural network

research and development.

1.2 Artificial Neural Network Models and Applications

A neural network is a parallel distributed information processing structure in the
form of a directed graph, with the following sub-definitions [2]

e The nodes of the graph are called processing elements or artificial neurons.

» The links of the graph are called connections.

e Each processing element can receive any number of incoming connections (also

called “put” connections).

e Each processing element can have any number of outgoing connections.

e Processing elements can have local memory.

e Each processing element processes a transfer function which can use (and alter)

local memory, use input signals, and produce output signals.

\‘ Transfer Local Output Copies of
input signals ‘ memory signal A_,-»:: output signals

function

A y

Figure 1.2.1 A Generic Processing Element

A generic processing element is shown in Figure 1.2.1. A typical neural network consists
of many simple neuron-like processing elements, also called units or neurons. These
processing elements are linked together to form a network. There are many different ways
to connect the processing elements. Therefore there are many different neural network
models. Basically we can divide neural network models into three categories [15]:

e Feedforward (multilayer) networks

e Feedback (recurrent) networks

e Cellular networks

In feedforward neural networks. processing elements are arranged in a
feedforward manner. One example of feedforward networks is the fully connected
feedforward network model. On the other hand, in feedback neural networks, the models
are no longer trivial since they consist of processing elements with dynamic building
blocks (e.g. mtegrator or unit delays) and they operate in feedback mode. The Hopfield
network and Boltzmann machine are examples of feedback networks. Cellular neural

networks, similar to cellular automata, consist of regularly spaced special artificial neurons

called cells, which communicate directly with other neurons only in their nearest
neighborhood. The Kohonen map is one example of cellular networks.

Neural networks have been used in many fields. A list of some applications are as
follows [16]:

Transportation: Aircraft control systems, automobile automatic guiding systems.

Economics: Credit card application processing, corporation financial analysis,

currency price prediction, market forecasting,
Defense: Weapon steering, target tracking, object discrimination, signal/image

identification and data compression.

Electronics: Code sequence prediction, process control, chip failure analysis,
voice synthesis.
Manufacturing: Manufacturing process control, visual quality inspection systems,
product quality prediction.
Medical: Optimization of transplant times, hospital quality improvement.
Robotics: Trajectory control, manipulator controls, vision systems.

Speech: Speech recognition, speech compression.

Telecommunications: Image and data compression, automated information

services.

1.3 Learning in Feedforward Artificial Neural Networks

One of the interesting properties of a feedforward neural network is its capability
of learning, ie, a feedforward neural network can self-adjust its behavior by using
information from the environment. When we use a feedforward neural network to solve a
problem, we first train the network using a set of input-output sample data. Based on this
data set, the network, when properly trained, will not only try to leam the sample set
correctly, but also to generalize from the training set examples to the entire problem
domain. This capability of generalization makes artificial neural networks very useful tools
to solve a set of problems which are not clearly defined.

A neural network consists of processing elements and connections. Each
connection has a weight to represent the relative importance of the connection, except for
the output connections. A processing element sums all its weighted inputs and passes the
result to the transfer (activation) function to yield the output of the processing element.
The nonlinear transfer function can be a step (threshold) function as used by McCulloch-
Pitts[3] to solve classification problems. But generally the step function is replaced by a
non-linear continuous function (e.g. a sigmoid function). Artificial neural networks are
organized into layers. A neural network links the output of neurons of one layer to the
neurons of the next layer. A fully connected feedforward network is a network such that
the output of neurons in one layer are linked to all neurons of the next layer, except for the
output layer of the network. The computation of the network is carried out on a layer-by-
layer basis, starting from the input layer. The computation process continues until the

output has been reached. Such a computation is called a forward pass.

Leamning is an important requirement of neural networks. A neural network usually
has to be trained to perform a desired task. The application of neural networks involves
two major phases: learning phase and performance phase. During the learning phase, a
neural network is given a set of input/output sample data. The network calculates the
output based on the input data and the result is compared with the desired output. If the
calculated output is not close to the desired output, the network will try to modify its
weights until a better approximation is reached. Such leaming is called supervised
learning. This learning method is also called “learning with a teacher” because the learning
is done on the basis of direct comparison of network output with known correct answers.
Sometimes the learning goal is not defined at all in terms of specific correct examples. The
only available information is in the correlation of the input data or signals. The network is
expected to create categories from the correlation and to produce outputs corresponding
to the mput category. Such a leamning is called unsupervised leaming. Often the learning
phase will involve hundreds of thousands of repetitions as the neural network goes
through all of the training examples before the neural network enters the performance
phase. During the performance phase, the neural network is able to compute outputs from
non-example input data.

From an optimization point of view, leamning in a neural network is equivalent to
minimizing the sum of squares of the output errors, sometimes called “error function”. A
learning algorithm is applied to transform the calculated errors into weight adjustments

until a local minimum in the error function is reached. Most learning algorithms that are

used for training feedforward neural networks are those that enforce the leaming process
by means of backpropagation [10].

Although the learning algorithms may be different, the leaming procedures are
basically the same. The following is a general outline of the learning procedure used in all
backpropagation algorithms:

1. The network is given a random set of initial weights.

2. Training examples are given to the network.

3. For each input-output pairs, there are two phases: a forward pass and a

backward pass.

4. The forward pass is to calculate the outputs on a layer-by-layer basis until the

output layer has been reached.

5. During the backward pass, the calculated outputs from the output layer are

compared with the desired output, and errors are computed for the output nodes.
Then the network adjusts its weights in a backward fashion, starting from the
output layer, to reduce the errors.

6. This process continues until convergence has been reached.

There are several mathematical models in optimization [12][14][15] which can be
applied in the learning process of artificial neural networks. The least mean square (LMS)
model is the most widely used in artificial neural network analysis. The error
(performance) function is defined as the squared summation of the difference between the

computed outputs and the desired outputs. The optimization goal is to minimize this error

function. Most of the learning algorithms are gradient-based learning algorithm which can

OELAFOMA STATE UN TVEREITY

be divided into three categories: the steepest descent method, the Newton method and the

conjugate gradient methods[12]. These methods will be introduced in Chapter two.

1.4. Overfitting in Artificial Neural Networks

When a neural network is trained, the weights are modified in order to minimize
the error in the training patterns. For continuous domains, or large discrete ones, it is
impossible to provide samples of every possible input. For a large network system, if the
system simply memorizes the training patterns, it may do quite well during the training
process but it may give spurious and misleading outputs if the input is slightly different
from the sample inputs. This is called overfitting.[23] An example is a high-order
polynomial fitted through a small number of points. Overfitting happens when the network
has as many or more degrees of freedom (the number of weights) than the number of
training samples. In other words there are not enough examples to constrain the network.
It is advisable to use the smallest system that will fit the data. If the system has only a
limited number of degrees of freedom, it will use a limited number of data to adapt to the
largest constraints and ignore the smaller (possible spurious) constraints. As a rule of
thumb, for a network to be able to generalize, it should have fewer parameters(weights)
than there are data points in the training set. Unfortunately, it usually isn’t obvious what
size is best so a common approach is to train successively smaller networks until the
smallest one is found that will learn the data.[23][27] This approach has several
disadvantages. First it is time consuming, since a large number of networks must be
trained. Second, the smallest feasible networks may be sensitive to initial conditions and

learning parameters, and be more likely to be trapped in local minima. Another approach is

z
|

to have the network itself remove non-useful connections during training by giving each
connection a tendency to decay, so that connections disappear [23][24][26]. This prompt
me to use penalty method to reduce overfitting in artificial neural networks [24][26]. The

purpose of this thesis will be illustrated in the following section.

1.5. The Objective of This Study
This thesis focuses on the possibilities of reducing overfitting in artificial neural
networks. The penalty method[24][26] will be implemented to reduce overfitting. The idea

is to add a term to the performance function as follows:

E(w) = % i[(f"“(p,,w)— t,)T(f{K'(pl,w)— t,)+ AZMJ (1.5.1)

=1 “1+w! /w;

The first term measures the performance of the network. It is the sum of squared
errors over the set of training data. The second term measures the size of the network. Its
sum extends over all connections C. A represents the relative importance of the complexity
term with respect to the performance term.

The learning rule is to change the weights according to the gradient of the entire

function, continuously doing justice to the trade-off between error and complexity. The

extreme cases of very large and very small weights are easily interpreted. For |w,| >> w, ,
the second term is close to A, This justifies the interpretation of the complexity term as a
counter of significant-sized weights. On the other hand, if |w,| << w, the second term is

close to zero. “Large” and “Small” are defined with respect to the scale w,, a constant

parameter that has to be decided in the procedure. Q is the number of input output pairs.

The conjugate gradient method[12][14][15] will be used to minimize the performance
function (1.5.1). To fully understand the subject, we need some basic knowledge of

nonlinear optimization, which will be discussed m Chapter two.

10

2. PERFORMANCE OPTIMIZATION

From an optimization point of view, training a network is equivalent to minimizing
a global error function, which is a multivariate function that depends on the weights in the
network. In this chapter, we introduce some fundamental concepts, various classical
optimization methods and the mathematical principles behind these methods. The
principles were discovered by scientists and mathematicians such as Kepler, Newton,
Gauss, Cauchy and Leibniz. With the advent of digital computers. these principles have
been successfully applied to develop algorithms in the field of optimization. Although
these algorithms are different, they all use iterative methods. We will first introduce some

basic concepts that will be used later in analyses of various optimization methods.

2.1 Basic Concepts [11]
Unless otherwise stated, the domains of all variables are real numbers.

An m>n matrix represented by

Gy - . s Gy,

A= , (2.1.1)

a a

L ml * 2 i mr _|

can be expressed as A = [a,;,] . It has m rows and n columns. If m is equal to n, the

mxn
matrix is called a square matrix. A 1xn matrix is called a row vector and an mx| matrix is
called a column vector. In this thesis, all matrices are represented by uppercase bold face

letters and row vectors are represented by lowercase bold face letters.

11

OKLAHOMA STATE UNIVEREITY

The multiplication of two matrices A = [a,,]

= dmxr

and B = [bﬂt]Mr is defined as

C=[cy],,, such that

Cy = Z.a” xb, (2.12)
=

The number of columns in matrix A must be equal to the number of rows in matrix B.

The transpose of a matrix A = [ajj] _, represented by AT = [a_”] is a matrix

nxm

such that a; =a, forall 1</ <m and 1< j <n. Obviously we have

(AT) = A (2.1.3)
and also
(AB)" =BTA" (2.1.4)

A matrix A = [ag.]m 1s called symmetric if it is a square matrix such that g, =a,
forall 1<i<n and 1< j <n. It can be represented as

A= AT (2.1.5)

A diagonal matrix A = [ay]m is a square matrix such that a, = 0 for all
1<i<nand 1< j<n and 7 # j and is represented by

D = diag(a,,,a,,,--.a,,) (2.1.6)

Specifically if a, =1 for all 1</ < n, then the diagonal matrix is called an identity matrix

L

A square matrix B is called the inverse of a square matrix of A if

AB=BA =1 (2.1.7)

12

OKILAHOMA STATE UNTVERSTTY

B can be written as A~ . If the inverse of a matrix A doesn’t exist, A is called a
singular matrix. Otherwise it is called nonsingular.
A symmetric matrix A is called positive (negative) definite if the quadratic form
x"Ax>0 (<0) forall x#0 (2.1.8)
A matrix A is called positive (negative) semidefinite if the equality is included in
the above condition.
A simultaneous linear equation system, represented by

a, x, +a,x, +---+a,x, =b

In""n 1

................................

(2.1.9)
QX Fh 5% Frt il x. =b.

can be written as Ax =b, where A = [a,].]m,m' X= [x‘]mﬂ and b = [bf]mr The

equation is solvable if A" exists. In that case

5 = A% (2.1.10)
The Gaussian elimination method can be used to solve the system (2.1.10).
The inner product of two vectors x = [xf]mﬂ and y = [y,.]m‘l is defined as
xy)=x"y=y'x=2xy (2.1.11)
1

The k-norm of a vector x =[x,] is defined as

Ixll, = (i\x.r] (2.1.12)

13

OKLABOMA STATE UNIVERSITY

Specifically when k is equal to 2, it is called the Euclidean norm. It represents the

Schwarz inequality

(x| = [7y| < Il I
The equality holds if and only if x = Ay, A is real number.
Two vectors x and y are said to be orthogonal if (x,y)=0

A transformation T from x to y (T: x->y) consists of three things
(1) A set of elements x; ex called the domain

(2) A set of elements y, €y called the range.

(3) A rule relating each x, €x to y, €y.

A transformation is called linear if

(1) Forall x,,x, €x,

T(x; +x,)=T(x,) +T(x,)
(2)Forall x, ex, a eR,

T(ax,) = aT(x,)

Linear independence

length of an n-dimensional space vector. For Euclidean normed vectors, there is a

(2.1.13)

(2.1.14)

(2.1.15)

Consider a set of vectors {xl,xz,xs,-— y x,}, If there exist n scalars a,,a,--,a,,

at least one of which is nonzero, such that

ax,+a,x, +---+a,x, =0

14

(2.1.16)

OKLABOMA STATE UNTVEREITY

then the set of n vectors are called linearly independent. Let X be a linear vector space,
and let {x,,x,,xs,---,xn} be a subset of vectors in x. This subset spans X if and only if
every vector xeX, there exist n scalars a,,a,, :-,a,, such that
X=x, ¥k, ++a.x. (2.1.17)
A basis set for X is a set of linearly independent vectors which spans X. Although
any vector space can have many basis sets, the number of elements in basis sets is the same
[12]. Given n independent vectors x,,X,,-,X_,, We can obtain n orthogonal vectors

Y1s¥2s Y, by the Gram-Schmidt method as follows

Y. =%

(y,,xk) 2<k<n (2.1.18)
k=X
* Z }’n)ﬂ)

Eigenvalues and Eigenvectors

Consider a linear transformation A: X->X, Given a set of vectors ze X which are

not equal to zero, and a set of scalars A that satisfy
A(z)= Az (2.1.19)

z and A are called eigenvectors and eigenvalues, respectively. The matrix representation of

the eigencharacter equation is

Az=Az (2.1.20)

or

[A-AL]z=0 (2.1.21)

OKLAHOMA STATE UNTVERSITY

Because z # 0 we can obtain the eigenvalues and eigenvectors by solving the

following equation

[A-41]=0 (2.1.22)

If we have n distinct eigenvalues for an n-dimensional matrix A, we are guaranteed

to find n independent eigenvectors. Therefore the eigenvectors make up a basis set for the

vector space of the transformation. Furthermore, let B = [z, 3Zys' -,zn], where

z,,Z,5 2, are the eigenvectors of the matrix A. We have the following diagonalization.

A0 .
0 4, 0
[B"AB] = (2.1.23)
|0 0 - A,

where {1,.4,,--.4,} are the eigenvalues of the matrix A.
Taylor Series

Consider the following function of n variables:

F(X) = F(%,:%:-5%,) (2.1.24)

The Taylor series expansion for this function, at the point x" is
F(x)=F(x")+VF(x)"| _.(x-x")+ %(x- x) VE(x) - (x-x")+--- (2.1.25)

where VF(x) is the gradient, and is defined as

5
74 o 174
VE(x) =| — T oy s 2.1.26
(x) [ilF(X) izF(x) FnF(x):‘ (2.1.26)

OKLABOMA STATE UNTVERESTITY

and V?F(x) is the Hessian matrix, defined as

& & & |
EEF(x) 0%, Fx) - - - e, F(x)
& & &
% F(x) EEF(x) = e, F(x)
V*F(x) = : : : (2.1.27)

& & &

_——&" Z F(x) B o gy - = - ac F(x) _

Minima [12][16]

Strong minimum: A point X is a strong minimum of F(x) if a scalar >0 exists,

such that F(x) < F(x +Ax) for all Ax such that 6 > |Ax]|>0 .

Weak minimum: A point x is a weak minimum of F(x) if it is not a strong

minimum, and a scalar & > 0 exists, such that F(x) < F(x +Ax) for all & > |Ax]> 0.

If we move away from a strong minimum a small distance in any direction the
function will increase.

The point x is a unique global minimum of F(x) if F(x) < F(x + Ax) for all
Ax # 0.

For a strong minimum x , the function may be smaller than the small
neighborhood of x°, In such a case the strong minimum is called a local minimum. For a

global minimum the function will be larger than the minimum point at any point i the

domain.

Necessary and Sufficient conditions for Optimization

17

OKILABOMA STATE UNTVEREITY

From the Taylor series we know that the first order necessary condition for x” to

be a local minimum point for a function is the gradient at x~ is equal to zero. i.e.

VF(x) _-=0 (2.1.28)

Any points that satisfy the above equation are called stationary points. Even
though the above equation is satisfied, there is no guarantee that the local minimum is
reached. The second order necessary condition for a strong minimum is that the Hessian
matrix to be semidifinite. The sufficient conditions for a strong minimum to exist is the

Hessian matrix to be positive definite. For a quadratic function

F(x) =%xTAx +d"x +c (2.1.29)

we can decide if the function has a minimum or maximum by checking the

eigenvalues of the Hessian matrix.

ORKLABOMA STATE UNIVEREITY

1. If the eigenvalues of the Hessian matrix are all positive, the function will have
a strong minimum.

2. If the eigenvalues are all negative the function will have a strong maximum.

3. If some eigenvalues are positive and others are negative the function will have a
saddle point.

4. If the eigenvalues are all nonnegative, but some eigenvalues are zero, the
function will either have no stationary point or a weak minimum.

5. If the eigenvalues are all nonpositive, but some eigenvalues are zero, the
function will have either have a weak maximum or will have no stationary point.

We can consider that all analytic functions behave like quadratics over a small

neighborhood.

18

All the optimization algorithms which we will discuss use iterative

processes.[12][15] We begin from some initial guess, x,, and then update the guess

according to the following equation

XD = x® 4 g p® (2.1.30)

or

Ax® = (x(kﬂ: —x®)= ampm

(2.1.31)
2.2 Steepest Descent Method [12]
The objective of steepest decent is to satisfy the following condition:
F(x*™?) < F(x¥). (2.2.1)

If the Ax™is sufficient small, we can expand F(x™*") as a first order Taylor series, i.e.

F(x™?V) = Fx®) +g® Ax®, (2.2.2)

where g™ is the gradient evaluated at the point x™

g™ = VF(x) _, (2.2.3)

In order for F(x®**) < F(x™) to be satisfied, the second term of (2.2.2) must be

negative. 1.e.

T T
gfk) éxl'k) (k)) (k) <0

=g p (2.2.4)

We will select o™’ (a.k.a leamning rate in neural net publication) which is usually

small, such that it is greater than zero. So

gm’pm <0

19

OKLAHOMA STATE UNIVEREITY

Any vector p, that satisfies (2.2.4) is called a descent direction. We need to find

the steepest descent direction. Recalling the Schwarz inequality, we have
p*g®|<p®[,le*], (2.2.5)

The equality holds if and only if p® = Ag® where A is a real number. Therefore if we
select p™ such that

p“ =-g® (2.2.6)

then ‘p""g“‘" has the maximum value which implies that the vectorp, points to the

steepest descent direction. The algorithm of steepest descent is as follows.

Algonithm 2.2.1 The algorithm for steepest descent
1. Set k=0, guess x'*, select a®
2. Compute g% = VF(x)|__a,
3. pﬂ'-) - _gﬂ‘)
4. Compute x**" =x® + g™p®

5. If x™* satisfies the convergence criteria, then stop

6. Set k=k+1 goto 2

The learning rate @™ must be chosen to satisfy the following to guarantee

convergence [16]

(2.2.7)

20

OKLABOMA STATE UNTVERSITY

Another method to choose the learning rate @™ is to minimize the performance

function with respect to @™ at each iteration, i.e. we choose ™ to minimize

To minimize (2.2.8) we can take the derivative with respect to o™ and set it to

ZEro.

d = F(x“&) s a(ll)pfk]) = VF(x)Th_x(n p(k] + a.{klp(k)'l VEF(X)]l_"l-. p[k] = 0 (2.2‘9)
o
We can soltve for ¢®

VF(x)T| s pm ()
™ ® o2 - w ckg‘ (llj-n a0 (2.2.10)
p® VIE(x) _.p® p® H%p

where H™ is the Hessian matrix evaluated at point x™ | ie.
HY = V*F(x)|__
This method is also called a line search algorithm.

Algorithm 2.2.2 The algorithm for the steepest descent with line search

1. Set k=0, guess x™

2' g(k) = VF(X)|,_,IIKI
3 p(k) — _gﬂ‘}

VE(x)"| _o p® ®' o
4. Compute a™ = -) g P & ¥

p% VE),_ o p® p® H®p®
5. Compute x*? =x® +o™p®

6. If x™ satisfies the convergence criteria, then stop

7. Set k=k+1 goto 2

21

OKLARBOMA STATE UNIVERSEITY

The advantage of steepest descent is that it is simple and will converge as long as
a™ satisfies (2.2.7). However because the method is based on the first-order Taylor

series, the convergence rate is often very slow. Also steepest descent is not scale-invarient.

If we replace one component x; by C-x,, the speed of convergence may be greatly

changed.

2.3 Newton’s Method

Newton’s method is based on the second-order Taylor’s series [12].
F(x**) = F(x® +Ax) = F(x®)+g®" Ax® +%Ax“‘>’ﬂf‘"m“" (2.3.1)

Taking the derivative with respect to Ax™ and setting it to zero, we have

g(k'l +H°"Ax°" =0

{2.3.2)
Solving for Ax® , we have
Ax® = —H™ g® (2.3.3)
So Newton’s method can be represented by
x D — g 00 _ Hm"g{m (2.3.4)
where H™' is the Hessian matrix evaluated at point x, . i.e.
HY = V*F(x)__o (2.3.5)

In practice the inverse matrix is not computed as this is too slow.

Algorithm 2.3.1: The algorithm for Newton’s method is

1. Set k=0, guess x

2. Compute g™’ = VF(x)| _., and H" = V*F(x)| _a,

22

OKLABOMA STATE UNITVERESITY

3. Compute Ax™ by solving the following equations

H“‘)&x“" = _g(h}
4. Compute x*™ =x™ + Ax™

5.1f x™ satisfies the convergence criteria, then stop

6. Set k=k+1 goto 2

It can be shown that the rate of convergence of Newton’s method is second-order
if Hessian matrix is positive definite. If the function is quadratic, Newton’s method will
converge in one step. Quadratic convergence is the fastest rate normally encountered in
nonlinear optimization and for this reason Newton’s method is of fundamental importance.
However, very few practical problems have a Hessian matrix that is everywhere positive
definite. Even if the Hessian matrix H™ is positive defnite at a nonstationary point,
x**Y may lie outside the region where the quadratic approximation at x™’ is valid. This

can be a problem when the curvature of the function in part of the region between x™’

and x™® +p™ is sharper than that predicted by second derivatives alone. In this case

a™ =1 can be too big a step because it is possible for the function to increase again. An
improvement that could overcome this is to determine o'’ by linear search. However
such search is undesirable [12] because it slows down the method substantially.

There are three more serious difficulties. The first is the possibility that
g™ Ax™ =0 when g™ #0, in which case x® is already the minimum along Ax™® and

no further progress is possible. The second difficulty is that H™ may be singular, in

23

ORLAHOMA STATE UNTVEREITY

which case there is either no solution to (2.3.2) or else there are infinite number of

solutions. Finally, if x™ is a saddle point at which H™ is non-singular, then g™ =0 and
(2.3.2) can be satisfied only if p™’ =0 which is obviously useless as a search vector.

Clearly, Newton’s method is not a satisfactory general-purpose algorithm for function
minimization. Fortunately it can be modified to provide reliable algorithms. The general
philosophy behind these modified Newton’s method is to replace the Hessian matrix with a
matrix that is guaranteed always to be positive definite and which is otherwise close to
Hessian matrix. For a special form of the performance function such as least squares,

Gauss-Newton method [12][14] and the Levenberg-Marquardt [28][29] method are very

efficient alternatives to Newton’s method.

2.4 The Conjugate Directions Method [12]]14]{15]

The Newton method has the advantage of requiring only one iteration to converge
on a quadratic function which is one form of quadratic termination. However it requests to
calculate and store the second derivatives of the Hessian matrix. The conjugate direction
method is to search the minimum in the conjugate direction to guarantee quadratic

termination. Suppose that we want to minimize the function (2.1.29). We define the
conjugate directions as follows:

Definition 2.4.1:

A set of vectors {pk} is mutually conjugate with respect to a positive definite

Hessian matrix A if and only 1f

p.Ap; =0 k# j (2.4.1)

24

OXKILABOMA STATE UNTVEREITY

There are a lot of vectors that satisfies (2.4.1). One set consists of the eigenvectors

of A.

It can be shown [12] that if we make a sequence of exact linear searches along any
set of conjugate directions {p 3Py P, } , then the exact minimum of any quadratic

function with n parameter, will be reached in at most one cycle of n searches. Recall that

for quadratic function, the gradient is

VF(x) = Ax +d (2.4.2)
[f we calculate the change in the gradient at iteration k+1, we have

Ag™ =g® —g® =(Ax™* +d)-(Ax™ +d) = AAX® (2.4.3)
From equation (2.2.2), we have

Ax™ = (xum) __xlk)) = a™p™ (2.4.4)

where a™is chosen to minimize F(x) in the direction p™ .
We can now restate the conjugate conditions by substituting (2.4.2) and (2.4.3)
mto (2.4.1).

a“"p""TAp“’ = Ax®Y Ap? = Ag“"Tp”) -0 k #j (2.4.5)

Usually we use the steepest descent method to begin the search, 1.e.

p® =—g® (2.4.6)

Then at each iteration we need to construct a vector p**’ which is orthogonal to

{.ﬁg"),Ag‘” Ag""”}. We can use Gram-Schmidt orthogonalization (2.1.18). It can

be simplified [12] to the following form

25

OKLABOMA STATE UNIVERETY

pM =g 4 gk (2.4.7)

The SB™ can be chosen by several different methods, which will produce

equivalent results for quadratic functions. The most common choices [12] are

ﬁg"‘"”rg“"

gY@ = — (2.4.8)
Ag® p®

developed by Hestenes and Stiefel,

)" (k)

w_ 8" g"
)5' = g("“lrg“‘—’l (2.4.9)

developed by Fletcher and Reeves, and

ﬁgu«-nTgm

) _
g = g(k—nTg(k—!) (2.4.10)

developed by Polak and Ribiere.

The algorithm is as follows:
Algorithm 2.4.1: The conjugate gradient method

1. Set k=0, guess x‘*

2. Select the first search direction according to the steepest descent method, i.e.

(9) (0)

p =-g
3. Calculate g™ according to (2.2.5), i.e.

g™ = VF(x)|__u,
4. Calculate the ™ according to (2.4.8) or (2.4.9) or (2.4.10).
5. Calculate p™ according to (2.4.7), i.e.

(k) _ (k) (k) . (k-1)
p =g +4"p

26

OKLABOMA STATE UNIVE HEiTY

6. Calculate Ax™ according to (2.4.4), i.e.

Ax™ = (x“”” _xun) L a"‘)p""

Choosing &' to minimize F(x) along x = x +a*'p®
7. Calculate x™* as follows

R N (S W (3

8. If x**™ satisfies the convergence criteria, stop

9. Goto step 3.

27

ORLABOMA STATE UNIVEHEITY

3. ARTIFICIAL NEURAL NETWORK LEARNING ALGORITHMS
In the previous chapter, we introduced some basic optimization theory. Now we
will apply the theory to artificial neural networks. In particular, we will describe the

architecture, dynamic adjustment, computation and conjugate gradient learning algorithms

in artificial neural networks.

3.1 Architectures of Feedforward Artificial Neural Networks

In chapter one, we know that there are basically three types of artificial neural
networks. This thesis will focus on the most widely used type, multilayer feedforward
networks. The architecture of a multilayer feedforward network is shown in Figure 3.1.1.
Such a network arranges neurons in layers. All neurons in a layer are connected to all
neurons in the adjacent layers through unidirectional links. These links are represented by
synaptic weights. Notice that we treat the input layer of the network as some connection
nodes. The hidden layers of the network also consists of some connection nodes. The
hidden layers of a network are all of the layers except the input and output layers of the
network. So the number of hidden layers is the number of layers in a network minus one.
Generally speaking there is no theoretical limit on the number of hidden layers, but in
practice one or two hidden layers is usually enough to model even the most complex

problems. It has been shown that it is sufficient to use a maximum of three layers (two

hidden layers and one output layer) to solve an arbitrarily complex pattern recognition

problems [15].

28

OKILAROMA STATE UNIVEHREITY

The notations we will use are shown in Figure 3.1.1. All neurons in a layer are
consecutively indexed beginning from 1, in an top - down fashion. The layers are indexed

in a lefi-to-right order and are identified by square-bracketed superscripts. All inputs to a

1] (1} 1] 2] 2] (2] 13 [3] [3]
wlu o, a, Wy, o, a, Wl.’ o, a
P, z i z ,{ £ z x‘ £ >
! ! s
ol ij1 n 2) o all
P, z £l ¥ £ z ’{ £ o
[0} (1 121
a, a, ag
o\ IR T 1 I 2
1 1 2 2 1 1
. —
P, z £l s £2! X £il
| 10) 2 m 2 (2]
wsl R a(] w!:.ll al2| w!;.l: aO

Figure 3.1.1. A Three-Layer Feedforward Network

29

OKLABOMA STATE UN VEREITY

neuron in layer k are denoted as a{i"'lI where 1=0,1,2,...,S,, (S, is the number of

neurons in (k-1)th layer). In the case of k-1=0, a[iu] are the inputs of the network. For

each layer, we assumed an extra bias node which has a constant output value of -1, i.e.,

.

1 for all k=0,1,...,K-1. Notice that for each k > 2, a[“"] is also the output of

neuron i in (k-1)th layer. The outputs in the kth layer of network can be written in vector

form as a[,"]. A weight is represented as wijﬁl , J# 0 where k is the layer index and “j.i"
means that the weight is the connection from the ith neuron in layer k-1 to the jth neuron

in layer k. In vector form, weights can be represented by witl =(w[5})T The nl*
’ 81 ’ J

represents the weighted sum of a neuron j in layer k. The weighted sum of the inputs of a

neuron j in layer k can be expressed as

M _] [k)
n; =Zw,a "4
1=0

(3:1.1)
The output of the neuron j in layer k can be expressed as
alll = £ (nl¥)) i=12,.m, (3.1.2)
where fJ{"] is the activation function of the neuron.
In vector form, there formula can be written as
o = (vv["})Ta[""l (3.1.3)
alkl = f["l(n["l) (3.1.4)

T S .
where fl* = (f El“l) is a vector of activation function values.

30

OKLABOMA STATE UNTVEREITY

The original activation function was a binary (hard-limiting) function [3]. This
limits the application of perceptron neural networks to only classification problem. In
order to solve a general type of mapping application problems, we need to use nonlinear
continuous activation functions. There are many nonlinear activation functions that can be
used in multilayer networks as long as the functions are differentiable. The most

commonly used functions are the sigmoid function and the hyperbolic function which are

expressed as follows:

Sigmoid function f(x)= 1 +1 — (3.1.5)
o

Hyperbolic function f(x) = e; = e_;‘_ (3.1.6)
[

The graphs of the sigmoid and hyperbolic functions are shown in Figure 3.1.2 and Figure
3.1.3. Since we can always scale down the input and output values to the interval (0, 1) or
(-1, 1), there is no significant difference between the two functions. In this paper, the
sigmoid function is used.
The weights in a neural network are initially chosen to be small random numbers.
Since the activation function is active only in a small domain interval as shown in Figure
3.1.2, we should choose the initial weights to be small values. If the initial weights are too
large, the activation functions may saturate at the begmning of the training and the
network is prone to get stuck in a local minimum near the starting point [16]. In this

paper, the mitial weights of all neural networks are chosen as random numbers uniformly

05 05 .
distributed between an 15], where the fan-in
ou fon T ottt uode. = Bmeinofthatacds F)

of that node is the number of mputs including bias that are input to that node.

31

OKLABOMA STATE UN VEESITY

Forward computations

As we know from chapter 1, a neural network leamning process includes two

phases: forward computation and backward computation. During the forward

computation, a set of input data is given to the neurons in the first layer (input layer).
These neurons are activated and pass the results to neurons in the next layer. The process

continues until the output layer is reached and the outputs of the network have been

calculated. The process can be summarized as follows:

1. Given input vector x, set n'" = x

2. The weight matrix and activation function f'*! k =1,2,...,M are known, where

M is the number of layers in the network.
3. Compute n* = (wlk])Ta[k'l] and 2 = f["l(n{"i) fork=1,2,... M.

4. a™ is the output of the network.

32

OKILABOMA STATE UNIVERSITY

Figure 3.1.2 The Sigmoid Function

0471

06T

0871

Figure 3.1.3 The Hyperbolic Function

3.2 Dynamic Behavior in Feedforward Artificial Neural Network

33

KLABOMA STATE UNIV

A feedforward artificial neural network changes its behavior (weights) dynamically
during the training session. The error made by the network during training is measured by
a predefined function called the error function (performance) function [15]. cost function
[24] or energy function [26]. The error function is used to calculate the errors and the
distribution of errors among all neurons of a network. Then the connection weights are
changed to reduce the error of the network. This dynamic adaptation of weights ends
when the error is within a tolerance limit or an optimum point has been reached with
respect to some optimization criterion. We will discuss generalization in the next section.
Now we explain in detail some concepts involved in an artificial neural network training
process.
As discussed in chapter one, learning can be divided into supervised leamning and
unsupervised learning. Supervised leamming is used in this thesis. Supervised learning
implies a situation in which the network is functioning as an input/output system. In other
words, the network receives an input vector and calculates an output vector using forward
calculation. This output vector is compared with the “desired” or “correct” output vector.
The error is backpropagated through the network to adjust the weights until the error is
small and generalization is acceptable. Normally we need two sets of input/output data.
One is for training purpose, the other is used to test the network after it has been trained.
The number of nput/output data vectors in the training set depends on the number of
weights in the network. A general rule of thumb is that the number of data vector in
traming set must be much larger than the number of parameters (weights) to avoid

overfitting [2][23]. Overtfitting will be discussed in the next section.

34

B

T-1g

ial

STATE UNIV

-«

OKLABOM

There are two methods used to adjust weights during training process. One is
called on-line learning. The other is called off-line learning (also called batch learning). In
on-line learning, weights are adjusted each time an input is presented to a neural network
and errors have been produced. In off-line learning, weight updating is deferred until all
inputs have been presented to the network. The comparison of on-line and off-line
learning is listed as follows [15].

1. On-line learning is usually convenient and more effective than off-line learning

when the number of training examples is very large.

2. On-line leamning introduces some randomness (noise) that often may help

escape from local minima.

3. Usually, On-line leamning is faster and more effective than off-line learning,
especially for large-scale classification problems.

4. However, for many applications, especially if high precision mapping is
required, off-line learning may be the method of choice.

5. Off-line learning lends itself to straightforward application of more sophisticated

optimization procedures.

Practically, the relative effectiveness of on-line and off-line learning is highly dependent on

the problem. From the optimization point of view, off-line learning is more suitable to

implement learning algorithms.

3.3 Overfitting and Generalization in Artificial Neural Networks

35

sl

RLABOMA STATE UNIVEARSITY

We have introduced basic concept of overfitting in chapter one. Now we explain
some mechanisms behind this phenomenon.

When a network is trained, the weights are modified in order to decrease the errors
in the training data set. If the network is tested on a new set of data, initially the errors in
the test data set tend to decrease in step with the training error as the network tries to
generalize from the training data set. However if the training data are incomplete, it may
contain spurious and misleading regularities due to sampling [2][23]. Therefore as training

continues, the errors in the test data set increase. Figure 3.3.1 illustrates this situation

schematically.

Error

™

\\\/ Testing Error

\ Tranung Error

0 Traming Time

Figure 3.3.1 The Relanonship Between Tramung Error and
Testing Error
Mathematically, the objective of learning in the neural network is to infer a
function from a given sample data set. Learning algorithms are essentially to search for a
function that fits the given data in the specified space of functions. After learning, the
neural network is able to maximize its predictive accuracy in the new data set. If we work
too hard to find the best fit to the training data, there is a risk that we will fit the noise in

the data by memorizing various peculiarities of the training data rather than finding a

36

p——

RLAHOMA STATE UNIVEBSITY

general predictive rule [40]. It is generally agreed that overfitting is closely related to the
architecture of the network, i.e., the size of network. If training starts with too small a
network for the problem, no learning can occur. If the network is too large, it may be
vulnerable to overfitting [44]. The question is what size network gives valid

generalization. Eric B. Baum and David Haussler [33] analyzed theoretically the lower and

upper bounds on the size of the sample size vs. network size needed to achieve valid

generalization. Their conclusion is as follows:

Given m random training examples chosen from an arbitrary probability distribution,

assume
0<e<1/8 (¢ is called the accuracy parameter), it can be proved that if

m > O(Elogﬁ) random examples can be loaded on a feedforward network, so that at
£ £

least a fraction 1--;— of the examples are correctly classified, then one has confidence

approaching certainty that the network will correctly classify a fraction 1-¢ of future

test examples drawn from the same distribution. The lower bound for the number of
. W . .
random examples is 2] — | . Although these results are very encouraging, the theoretical
£

bounds are quite crude and the gap between the upper and lower bound on the worst case
sample size for architectures with one hidden layer remains open. Also, the case of
multiple hidden layers is still open. Finally, the result applies only to the threshold

functions, although these authors conjectured it might apply to nonlinear functions such as

sigmoid as well.

37

it

¥ |

NIVERSITY

2

B

TT

aY
[1

E...
N

KLABOMA

Subutai Ahmad and Gerald Tasauro [35] analyzed how many training patterns and
training cycles are needed for a problem of a given size and difficulty, how to represent the
input, and how to choose training examples. They concluded that the performance of a
network is closely related to the number of training patterns and the size of the network.
Their results showed that for a fixed network size, the failure rate decreases exponentially
with the size of the training set. The number of patterns requires to achieve a fixed
performance level was shown to increase linearly with the network size.

To summarize, overfitting is related to the degrees of freedom of a neural network.
The degrees of freedom of a neural network includes not only the weights but also the

potential non-linearity of the network, the architecture, and the number of data vectors

used during traning [26].

3.4 Stopped Training Method to Reduce Overfitting

Having discussed some mechanisms and factors that affect overfitting, we are
ready to explore methods to reduce overfitting. There are many methods to reduce
overfitting and improve generalization [23]. Two categories that are widely used are the
stopped training method [23][30][36] and penalty method [23][24][26]. We will explain
the stopped training method in this section and penalty methods in the next section.

The stopped training method estimates the generalization ability during training
and stops when the generalization ability begins to decrease (i.e. the testing error begins to
increase). Experimental experience suggests that the training and generalization behavior
in Figure 3.3.1 is typical [2][23]. In order to find the minimum of the test error, we divide

the data into a training set and validation set. At periodic intervals, the process of network

38

INTVEHSITY

¥
L

ﬂ‘.:".'
d

training is stopped temporarily, the weights are temporarily frozen and the network
generalization is tested by the validation set using mean squared error. The mathematical

foundation for this method is the cross-validation method of statistics [46].

3.5 Penalty Method to Reduce Overfitting

Although the stopped training method is straightforward. it may not be practical
when only a limited amount of data is available. Another way to reduce overfitting is to
use a penalty method {23][24][26][34][38]. The basic approach involves adding penalty
terms to the usual error function in order to constrain the search and cause weights to
decay differentially. (So a penalty method is also called a constrained optimization
method). This is very similar to many proposals in statistical regression where a
“simplicity” measure is minimized along with the error term and is sometimes referred to
as ridge regression and biased regression [41]-[44]. Basically, the statistical concept of
biased regression derives from parameter estimation approaches that attempt to achieve a
best linear unbiased estimator (called “BLUE”). By definition an unbiased estimator is one
with the lowest possible variance and theoretically, unless there is significant collinearity
or nonlinearity among the variables, a least squares estimator(LSE) can be shown to be a
BLUE. However if input variables are correlated or nonlinear with the output (as in the
case in back-propagation) then there is no guarantee that the LSE will also be unbiased.
Consequently, introducing a bias (penalty) term may actually reduce the variance of the
estimator below that of the theoretically unbiased estimator.

Now the question is what types of penalty term shall we choose. There are many

different types of penalty term used in neural networks to reduce overfitting [23]. Some of

39

ATV RSIT Y
i ¥ = - 4

them have a disadvantage in that large weights decay at the same rate as small weights. It

is possible to design biases that influence weights when they are relatively small or even in

a particular range of values [37]. One form used in this thesis is a rectangular hyperbolic

function defined as follows:

Z
W
1+w?

flw) = (3.5.1)

After taking the derivative with respect to w, we have the following first derivative

of flw):

2
at‘(w)=-l+‘:“:uz (3.52)

The derivative of f{w) is plotted in Figure 3.5.1. It is non-monotonic showing a
strong differential effect on small weights close to the origin (+ or -). It approximates to
zero when the weights are far away from the origin which means it has little effect on large
weights. The object is to reduce weights that are small and unimportant to values very
close to zero. After that, these connections could be removed from the network. Any
neurons that became disconnected during this pruning process could be removed. This

results in a simple and more parsimonious neural model of the problem.

40

f'(w)

efres et i e b b
YN N W o W0
) w0

04
06
08
5]
w
Figure 3.5.1 The First Derivative of the
Penalty Term

3.6 Computation in Feedforward Artificial Neural Networks

We have discussed forward computation in feedforward artificial neural networks.
Now we will formulate the backpropagation computation in feedforward artificial

networks. Considering a neural network of M layer, the performance function is defined as

follows:

E(w) = %g[(f“‘l(p"w) = ti)T(flk!(p”w) —~ t,) + AZ%} (3.6.1)
The first term is the performance function (error function). The second term is the penalty
term. It sums over all connection weights. Q is the number of input/output samples. p, is
the ith input datum. t, is the desired ith output. A and w, are constants that are adjusted
during training. Because the differentiation is additive, it is convenient to consider one

input /output sample i. In practice, this is used for on-line training. Summation over the

entire set of input/output samples constitutes off-line training. So we have

4]

F—

VHRSITY

E'=E((f[kl(Pn“')—t‘]T(f"‘](p., —t)+;z z"“’o)

3.6.2
1+w] /w; (3:62)

To calculate the gradient element g, , we take the derivative of E; with respect to

"" and, using chain rule, we have

ghl = E __E_A) +p (3.6.3)
S T =N T RPN i 2
J aVJI: a]jk aN; J

where p is an element of penalty term and is defined as

- wﬂlwo
D, = A(()— (3.6.4)
Y)
i 0

From (3.1.1), we have

—_— (3.6.3)

If we define [16]

K.
k) = =i _ Gk (k-]
i} éw"‘] Sj ai +pji (366)
i

S

(s, is called the sensitivity of E; to change in the jth element of the net input at layer k)

then (3.6.3) becomes

L

gl = i ._SN alkll.*_p

dv”" (3.6.7)

To derive the recurrence relationship for the sensitivities, we will use the Jacobian

matrix which we have already introduced in Chapter 2.

42

o S B o3 Ak
S ITNTVEHBITY

L)

AN

OKLAROMA STAT

a] [k+1] dl [k+1]
1
al[]k] a][zkl
[k+1]) [k+1]
PASUIPY.
[k] [k]
~ [k+1] o, cn,
m -

(k+1] [k+1]
alsk-l alsk-'l
1] PN
L 2 a,

all'kﬂl
Skul

Ak T
1
k]
2ty
&l[kﬂl
2
k
P

. [K]
(Flls|i

Now consider the element ij in (3.6.8), we have

sk
[k+1],, fk]

ZWH 9 J [x]
a1£k+ll B =1 _wlk*l! ﬁj
at P TR g

J] J
fk] (kI X
[k+1] & (DJ) o

_ — k] ¢ (k]
=W o ——— = (n.)
i v i i
éhj

where

X (o
£ (nl‘kl)_ d](EkIJ)

So the Jacobian matrix can be written as

&[‘i*'l

W E()
an

where

43

(3.6.8)

(3.6.9)

(3.6.10)

(3.6.11)

o, .
f (o) o e e 0
W,
0 f (o) 0
1K)
F (n")= ' (3.6.12)
1K)
0 0 f (o)
We can now write the sensitivity recursively in matrix form as follows
3 AT B - ; :
s = G—hn:l = [c'?“lk} Cﬂmlklll = F(n“‘J)-(W“‘ U)T ﬁli—ll (3.6.13)
012

= F(nllil) ’ (w|k+I])T i s[k+1'|

Now we can see the recurrent relationship of the sensitivity. The sensitivities are
propagated backward through the network from the last layer to the first layer. In order to
complete the backpropagation, we need to know the starting point of the

backpropagation. The starting point can be obtained from the output layer.

(K] E

Since
i &!Kl el K]

==t (o) (3.6.15)

Wwe can write
(K]

¥ =—(t,-a,)f (al) (3.6.16)

In matrix form (3.6.15) can be expressed as
. [K]
s¥=-F (o™)(t-a) (3.6.17)

=Ty

_ >
A WMTIAMEB TTAITV B
iy Liima = =

A SiAll

e
-

& V‘Vl
Meled

-

O3

So we can recursively calculate the sensitivities from the last layer to the first layer.
Knowing the sensitivities, we can calculate the gradient according to (3.6.6). The

following algorithm is the off-line model based on Algorithm 2.4.1

Algorithm 3.6.1: Given a set of S = {(q,,tl)[q, isinput, t, is desired output of q,}

of d training samples and given a network of K layers with input

dimension u and output dimension v.

1. Initialize all weights w'*! = (w“]),l =1,2,....K as random

i

numbers uniformly distributed between s sl :
fan - in of that unit

and

0.5
fan - in of that unit

. Set w,, 4.
Initialize g™ = 0.

2. For each sample (x,,t,) €S, repeat the following steps.

2.1 Compute the actual outputs of network according to (3.1.3)
and (3.1.4) using the weight w”
2.2 Calculate the gradient g(xi) according to (3.6.3)
2.3 Sumup g(x,),ie, g* =g" +g(x;)
3. Ifk=1then set p® =r™ =—g®
4. Compute a‘® using a line search technique [12].
5. Compute w*™ = w® +a®p™ using step 2 to compute

(k+1)

g

45

s OWTAME TTAITV RS

1'Y¥

SR U

6. Compute S according to (2.4.8) or (2.4.9) or (2.4.10).
7. Compute p** = —g**V 4 gp®

8. If all the weights are such that the following convergence

criterion is satisfied, then go to step 9

d

S(EW) [S(Ewe)

V = < || < tol
d d

Otherwise set k=k+1 and go to 2.

(k+1)

9. Set w=w and stop.

All other LMS-based training methods can be considered as special cases of A=0.
For the stopped training method, the stopping criterion is based on the generalization
performance of the network, tested using the validation set. The training will be stopped if

the generalization error begins to increase. The following off-line training algorithm for

the stopped training method is based on Algorithm 2.4.1
Algorithm 3.6.2: Given a set of S = {(q,,t,)| q, is input, t, is desired output of q,}

of d training samples and given a network of K layers with input

dimension u and output dimension v.

1. Initialize all weights w!t = (w"'),l =1,2,...,K as random

i

numbers uniformly distributed between =1 and

fan - in of that unit

0.5
fan - in of that unit

. Set w, A

Initialize g = 0.

46

s AMAME TTAITUMHSI]
[y LiAvs - -

A o1

v

ad T
A Al

-
KLAROM

A vV

2. For each sample (x,,t,) €S, repeat the following steps.

2.1 Compute the actual outputs of network according to (3.1.3)

and (3.1.4) using the weight w'".
2.2 Calculate the gradient g(x;) according to (3.6.3) with
p; = 0.
2.3 Sumup g(x;),ie, g* =g" +g(x;)
3. Ifk=1 then set p®’ =r" =—g

4. Compute a'*) using a line search technique [12].

5. Compute w*" = w® + a®p™ using step 2 to compute

g(k‘ﬂ])
6. Compute A according to (2.4.8) or (2.4.9) or (2.4.10)

7. Compute p**" = —g®*) 4 g0p®

8. If k mod C (C is constant) =0, calculate the actual output of

Networks according to (3.1.3) and (3.1.4) using validation data

set and increment v.

9. If the following convergence criterion is satisfied using both the

validation set data and training set data, then go to step 10

Sl 3 (Eee)

Otherwise set k=k+1 and go to step 2

10. Set w = w**" and stop.

47

The implementation of the stopped training method is problem-dependent. In this
thesis, the training will be temporarily stopped after the network has been trained in a
constant number of epochs. The network is then to be tested using validation set. If the

generalization error decreases, the network resumes the training process, otherwise it

stops training.

43

4. IMPLEMENTATION AND DISCUSSION OF RESULTS

4.1 Language Implementation and Neural Network Architecture Design

In order to test the effectiveness of the penalty method in reducing overfitting in
Artificial Neural Networks, we implement it using the AN.S.I. standard FORTRAN 77
language. The performance of the leamning algonthm with penalty method is compared
with the performance of the standard learning algorithm without a penalty term.

The design of a neural network is highly problem-dependent. It is the problem that
determines what neural network architecture should be used. The topology of the neural
network determines the total number of connection weights which in tum determines the
performance of the network. Using more connection weights means that we need to have
more training samples to train the network m order to get good generalization
performance. As a rule of thumb, for a network to be able to generalize. it should have
fewer connection weights than there are data points in the training set. Otherwise.
overfitting may occur. In this thesis, we first test a small network which doesn’t have any
overfitting. We then add the hidden nodes to the network. As the network becomes larger.
the generalization error becomes larger and larger. By using a penalty method. we can
reduce the generalization error.

For a given problem, we need to decide when to stop the training process. There
are several stopping criteria. For example, we can use performance function value (RMS)
as a criterion. We can set a tolerance value such that the performance function value
(RMS) is within the tolerance. We can also use the difference of two consecutive

performance function values as the criteria. The problem with these criteria is that we

49

¥

don’t know the generalization performance. A good fitting of the training samples doesn’t
mean that the network will generalize well over the entire problem domain. Therefore. to
obtain better generalization performance, we need to use some optimal stopping point so
that the network has good generalization performance. This is especially important when
we have a network that has overfitting. In this paper. we will divide the sample data into
two sets. One is the training set and the other is the validation set. When the network is
trained, we will test the generalization performance at certain numbers of iterations using
the validation set. We will use the performance function value as the stopping criterion. If

the generalization RMS begins to increase, we will stop training.

4.2 Discussion of Test Results

We use a curve fitting problem to test the learning algorithm. We divide the test
data into a training set and a validation set. Each set contains 49 pairs. There are two input
node and one output nodes in the network. One hidden layer is used. We increase the
number of nodes in the hidden layer from 7 to 20 so that we can test the generalization
performance in different network topologies. We are especially interested in testing if the
penalty method can improve the generalization performance in an overfitting network.

The initial weights of a neural network have an effect on the training time. Several
methods have been proposed to give a neural network as good an initial state as possible.
This requires some prior knowledge and/or some understanding of the learning mechanism
in the network. We initialize the weights with random values uniformly distributed

between -0.5 and 0.5 [15].

50

Now we analyze the results of the test. First we investigate the network with two
mput nodes, 7 hidden nodes, and one output node(2/7/1). It has 29 weights. We test the
network with different A values (0.01, 0.001, 0.0001, 0.00001). The training and
generalization performance is listed in Table 4.1 through Table 4.5. It takes about 11
epochs of training to get the training RMS value of 0.07078 and generalization RMS value
of 0.07247 for A equals 0. The relationship between generalization RMS and X is depicted
in Figure 4.1. We can see that for A from 0 to 0.001, there is not much improvement in
generalization RMS. The generalization RMS increases with A larger than 0.001. Next we
increase the number of hidden layer nodes to 8 (2/8/1). The network now has 33 weights.
The training and generalization RMS are listed in Table 4.6 through Table 4.10. Similarly
we test the network with different A (0.01, 0.001, 0.0001, 0.00001). It takes about 15
epochs to get the training RMS value of 0.07298 and generalization RMS value of 0.0749
for A equals 0. The relationship between generalization RMS and A is depicted in Figure
4.2. The generalization RMS is slightly decreased when A equals 0.001. Next we increase
the number of hidden nodes to 9 (2/9/1). This network has 37 weights. The training and
generalization RMS are listed in Table 4.11 through Table 4.15. We test the network with
different A (0.01, 0.001, 0.0001, 0.00001). It takes about 12 epochs to get the training
RMS value of 0.07598 and generalization RMS value of 0.07966 for A equals 0. The
relationship between generalization RMS and A is depicted in Figure 4.3. As expected, the
generalization RMS is slightly decreased when i equals 0.0001. These results show that
for the network that is not overfitted, if the A is properly chosen, the generalization of the

network can be slightly improved. The maximum improvement is 9% in 2/8/1. The

51

TAJTIVEHBILY

minimum improvement is 0.5%. The reason for this is that the network is not overfitting
vet in these cases. Therefore there is no significant improvement in generalization of the
network. The interesting point is that the minimum generalization RMS happens with
different A (for example 2/8/1 and 2/9/1). Another important result is that if A is not
properly chosen, the generalization RMS can increase significantly. The reason is that the
penalty term dominates the performance function. In other words the network is over
regulated. Now we add another hidden node. The network has 10 hidden nodes (2/10/1).
The totai number of weights becomes 41, which is very close to the number of sample 49.
We test the network with different A (0.01, 0.008, 0.006, 0.004. 0.002. 0.001, 0.0008.
0.0006, 0.0004, 0.0002, 0.0001, 0.00001). Typical training and generalization RMS are
listed in Table 4.16 through Table 4.20. The relationship between generalization RMS and
A is depicted in Figure 4.4. When A is close to 0.0008, there is a rather large improvement
(16.5% in this case) in the generalization performance of the network. Obviously 0.0008 is
the optimum point of A. Also when A is away from the optimum point. there is no
significant change in the generalization behavior of the network. The reason for this
phenomenon is that at this point, the network already shows some degree of overfitting.
Adding a proper penalty term can indeed improve the generalization performance. Now
we further increase the number of hidden nodes to 17 (2/17/1) to force the network to
have overfitting. The total number of weights becomes 69, which is larger than the number
of data vectors. Again we test the network with different A (0.01. 0.008, 0.006, 0.004,
0.002, 0.001, 0.0008, 0.0006, 0.0004, 0.0002, 0.0001, 0.00001). Typical training and

generalization RMS are listed in Table 4.21 through Table 4.25. The relationship between

generalization RMS and A is depicted in Figure 4.5. As expected, the generalization
performance increases by 21.76% when A is close to 0.001 which is the optimum point.
Again, when A ts away from the optimum point. there is no significant change in the
generalization behavior of the network. Finally we increase the number of network hidden
nodes to 18 (2/18/1), 19 (2/19/1) and 20 (/2/20/1), The training and generalization RMS
are listed in Table 4.26 through Table 4.30, Table 4.31 through Table 4.35 and Table 4.36
through Table 4.40 respectively. The relationship between generalization RMS and 2 is
depicted in Figure 4.6, 4.7 and 4.8 respectively. The generalization performance has
increased by 22.66%, 23.01% and 23.58% respectively. The optimum point is 0.001.
Again, when A is away from the optimum point, there is no significant changes in the
generalization behavior of the network. The maximum fluctuation is 5%. Figure 4.9
lustrates the relationship between the generalization RMS and number of weights. The

generalization RMS increases with the number of weights.

53

Table 4.1 Performance of Training and Generalization RMS

with 7 hidden nodesand A = 0

Epoch | Training RMS Generalization RMS | Convergence Error
0 21470 .20951
1 .81256e-1 .84198e-1 13344
2 .8016%e-1 .83484e-1 .10870e-2
3 .79033e-1 | .82563e-1 .11356e-2
+ .77986e-1 .81635e-1 .10473e-2
5 .75036e-1 .78775e-1 .29496e-2
6 .73678e-1 .77430e-1 .13584e-2 |
7 72243e-1 75587e-1 .14346e-2 ‘
8 .71906e-1 .73347e-1 .33651e-3
9 .71947e-1 .73375e-1 41071e-4
10 .70740e-1 7244 1e-1 .12078e-2
1} .70781e-1 .72472e-1 41225e-4
Table 4.2 Performance of Training and Generalization RMS
with 7 hidden nodes and A = 0.00001
Epoch | Training RMS Generalization RMS | Convergence Error
0 .21470 .20951
1 .81262e-1 .8419%¢-1 13344
2 .80162e-1 .83475e-1 .10996e-2
3 .78998e-1 .82525e-1 11645e-2
4 .77950e-1 .81585e-1 .10472e-2
5 .74875e-1 .78605e-1 30755e-2
6 .73582e-1 77323e-1 .12924e-2
7 .72342e-1 .75639-1 .12400e-2
8 .72368e-1 .73709%e-1 .24394e-4
9 72316e-1 .73740e-1 .47802e-4
10 .70841e-1 .72556e-1 .15252e-2
| 11 70896e-1 .72598e-1 55625e-4

54

Table 4.3 Performance of Training and Generalization RMS

with 7 hidden nodes and A = 0.0001

Epoch | Training RMS Generalization RMS | Convergence Error
0 21470 20951
1 .81315e-1 .84208e-1 13339
2 .80084e-1 .83369%e-1 .12310e-2
3 78629%-1 .82140e-1 .14550e-2
4 . 17582e-1 .8118%-1 .10466e-2
5 .73153e-1 .76766e-1 .442809e-2
6 .72514e-1 .76123e-1 .63911e-3
7 .73406e-1 .76018e-1 .89135e-3
8 .74318e-1 .75891e-1 .91268e-3
9 .74394e-1 7563 1e-1 .715291e-4
10 72867e-1 .74796e-1 .15261e-2
Table 4.4 Performance of Training and Generalization RMS
with 7 hidden nodes and A = 0.001
Epoch | Training RMS Generalization RMS Convergence Error
0 .214756 .20951
1 .818428e-1 .84206e-1 13291
2 .762907e-1 .75073e-1 .55521e-2
3 .762788e-1 .75064e-1 .11969e-4
4 .728380e-1 .73281e-1 .34407e-2
5 .740105e-1 .73026e-1 11724e-2
6 .729603e-1 .72207e-1 .10502e-2
7 .726419e-1 .71966e-1 31834e-3
3 .72826%e-1 .72103e-1 .18496e-3

with 7 hidden nodes and A = 0.01

Table 4.5 Performance of Training and Generalization RMS

Epoch | Training RMS Generalization RMS | Convergence Error
0 21523 .20951

1 .86686e-1 .85248e-1 12854

2 .86658e-1 .85241e-1 .27226e-4

3 .8665%-1 .85241e-1 .54052e-7

55

Table 4.6 Performance of Training and Generalization RMS

with 8 hidden nodes and A =0

Epoch | Training RMS | Generalization Convergence Error
RMS
0 21300 20783
1 .81865e-1 .84872e-1 13113
2 .81546e-1 .84750e-1 .31916e-3
3 .81314e-1 8463 1e-1 .23208e-3
4 8083 1e-1 .84302e-1 .48292e-3
5 .79667e-1 .83330e-1 .11635e-2
6 .77924e-1 81717e-1 .17428e-2
. 73846e-1 .77607e-1 .40786e-2
8 .73020e-1 76771e-1 .82560e-3
9 .713335e-1 .77067e-1 .31477e-3
10 .73138e-1 .76587e-1 .19700e-3
11 . 73397e-1 .76834e-1 .25948e-3
12 . 73596e-1 .75347e-1 .19911e-3
13 .71368%e-1 .75399e-1 .92867e-4
14 .72979%e-1 .74904e-1 .71044e-3
15 .72980%e-1 .74911e-1 .1063%e-4
Table 4.7 Performance of Training and Generalization RMS
with 8 hidden nodes and A = 0.00001
Epoch | Training RMS | Generalization RMS [Convergence Error
0 .21300 .20783
1 .81870e-1 .84873e-1 13113
2 .81550e-1 .84749e-1 .32092e-3
3 81312e-1 .84626e-1 .23800e-3
4 .80803e-1 .84276e-1 .50863e-3
5 .79611e-1 .83275e-1 11915e-2
6 .77787e-1 .81577e-1 .18243e-2
7 73775e-1 .77526e-1 40117e-2
8 7294 5e-1 . 76684e-1 83007e-3
9 73206e-1 7693 1e-1 .26036e-3
10 .73080e-1 .716556e-1 .12506e-3
11 73488e-1 .76945e-1 .40746e-3

56

Table 4.8 Performance of Training and Generalization RMS

with 8 hidden nodes and A = 0.0001

Epoch | Training RMS | Generalization RMS | Convergence Error
0 21300 .20783
1 .81922e-1 84879e-1 13108
2 81583e-1 84743e-1 .33850e-3
3 81278e-1 .84572e-1 30554e-3
4 .80455¢e-1 .83948e-1 .82285e-3
5 79244e-1 .82891e-1 .12103e-2
6 .75561e-1 .79263e-1 .36829e-2
7 .73676e-1 .77358e-1 .18849e-2
8 | .7258%-1 76121e-1 .10873e-2
9 | 72426e-1 .75774e-1 16327e-2
10 72028e-1 7537 5e-1 .39757e-3
11 73457e-1 .76553e-1 .14292e-2
Table 4.9 Performance of Training and Generalization RMS
with 8 hidden nodes and A = 0.001
| Epoch | Training RMS | Generalization RMS | Convergence Error
0 | 21306 20783 '
B | 82428e-1 | .84938e-1 | .13063
| 2 | .73557e-1 71637e-1 | .88708e-2
| 3 73553e-1 71632e-1 | 48850e-5 B
I 69478e-1 | 67971e-1 40742¢-2
5 | 69746e-1 68204e-1 | 26743e-3
6 | 69678e-] 61845e-1 | 67486e-4
7 69682e-1 68148e-1 37051e-5 -
8 69682e-1 68148e-1 30886e-6
9 69682e-] 68148e-1 .23042e-7
Table 4.10 Performance of Training and Generalization RMS
with 8 hidden nodes and A = 0.01
Epoch | Training RMS | Generalization RMS | Convergence error
0 21360 20783 ?
| 87072e-1 .85567e-1 | .12653
2 87065e-1 85565e-1 | 73488e-5
3 87065e-1 85565e-1 | 46825e-7

57

Table 4.11 Performance of Training and Generalization RMS

with 9 hidden nodesand A =0

| Epoch | Training RMS | Generalization RMS Convergence error
0 21164 120649
1 .82246e-1 .85295¢e-1 112939
2 82098e-1 .85269e-1 .14840e-3
3 82037e-1 .85255e-1 61313e-4 |
4 81982e-1 .85238e-1 .54493e-4 1
5 81922e-1 .85216e-1 .60419e-4 |)
6 81830e-1 85176e-1 91445e-4 ' ‘
7 8161 6e-1 .85053e-1 21424e-3 z
3 80688e-1 .84328e-1 .92840e-3 5
9 79370-1 83157e-1 13175e-2 >
10 75564e-1 79274e-1 38059e-2 5
11 75491e-1 .79203e-1 .73353e-4 :
12 75979-1 79660e-1 .48856e-3 3

Table 4.12 Performance of Training and Generalization RMS

with 9 hidden nodes and A = 0.00001 25
el
Epoch | Training RMS | Generalization RMS Convergence error E;lj
0 21164 20649 ()
1 .82252e-1 .85295e-1 .12939
2 82103e-1 .85269e-1 .14878e-3
3 .82041e-1 .85255e-1 .62247e-4
4 .81985e-1 .85238e-1 .5631%e-4
S .81920e-1 .85214e-1 .64392e-4
6 .81818e-1 .85166e-1 .10264e-3
7 .81553e-1 .85007e-1 .26484e-3
8 .80362e-1 .84034e-1 .11909e-2
9 .79113e-1 .82908e-1 .12490e-2
10 75376e-1 .78860%e-1 .37366e-2
11 .75933e-1 .78988e-1 .55684e-3
12 .76266e-1 .78714e-1 .33293e-3
13 .716260e-1 78711e-1 .61392e-5
14 .76303e-1 .78735e-1 .43153e-4

58

Table 4.13 Performance of Training and Generalization RMS

with 9 hidden nodes and A = 0.0001

Epoch | Training RMS | Generalization RMS Convergence error
0 21165 .20649
1 .82301e-1 .85300e-1 12934
2 .82140e-1 .85271e-1 .15257e-3
3 .82077e-1 .85253e-1 .72151e-4
4 81998e-1 85225e-1 .78343e-4
5 81874e-1 .85168e-1 .12462e-3
6 .81506e-1 | .84933e-1 .36810e-3
7 .80028e-1 | 83674e-1 14773e-2
8 .18732e-1 .82474e-1 .12961e-2
9 . 75209e-1 . 78455e-1 3523]e-2
10 75985e-1 .78188e-1 77556e-3
11 .76001e-1 78197e-1 16124e-4
Table 4.14 Performance of Training and Generalization RMS
with 9 hidden nodes and A = 0.001
] Epoch | Training RMS Generalization RMS Convergence error
[0 21171 120649
[1] .82792e-1 .85343e-1 .12891]
[2 82426e-1 85191e-1 36665e-3
3 80899%e-1 .81993e-1 .15264e-2
4 .80905e-1 .81983e-1 .62907e-2
5 7863 5e-] .80548e-1 .22705e-2
6 78620e-1 .80540e-1 15373e-4
7 78616e-1 .8053%e-1 .31036e-5
8 78616e-1 .8053%e-1 17509e-6
9 .78616e-1 .80539%e-1 56642e-8
10 .78616e-1 .8053%e-1 19099e-8
11 .78616e-1 .80539%e-1 .23701e-8
12 78616e-1 .80539%e-1 .23900e-8
13 78616e-1 .80539%e-1 .24640e-8

59

Table 4.15 Performance of Training and Generalization RMS

with 9 hidden nodes and A = 0.01

Epech | Traiming RMS | Generalization RMS | convergence error
0 21231 20649 '-
1 .87290e-1 .85800e-1 .12502
2 .87298e-1 .85803e-1 .80299e-5
3 .87298e-1 .85803e-1 .29196e-7
4 .87298e-1 .85803e-1 .72447e-9
5 | .87298e-1 .85803e-1 .10729¢-9
6 .87298e-1 85803e-1 .11008e-8
7 .87298e-1 85803e-1 .11066e-8
Table 4.16 Performance of Training and Generalization RMS
with 10 hidden nodes and A =0
Epoch | Training RMS Generalization RMS Convergence error
0 .21053 .20540
1 .82509e-1 .85585e-1 12802
2 .82425e-1 | .85584e-1 .84206e-4
3 .82402e-1 .85583e-1 .22950e-4
4 .82391e-1 .85583e-1 .11260e-4
5 .82338e-1 .85583e-1 .54434e-5
6 .82383e-1 .85583e-1 .26885e-5
7 82381e-1 85583e-1 .13347e-5
8 82381e-1 85583e-1 66744e-6
9 .82380e-1 85583e-1 .33381e-6
10 .82380e-1 85583e-1 .16989%e-6
11 .82380e-1 .85583e-1 .83724e-7
12 .82380e-1 .85583e-1 43954e-7

60

—

AMA @ WAl A IR b
L2 OB R | i A Ty L
* [y 17 Arm s <

Bt
2 11

Table 4.17 Performance of Training and Generalization RMS

with 10 hidden nodes and A = 0.00001

Epoch | Training RMS | Generalization RMS Convergence error
0 21053 .20540
1 .82514e-1 .85585e-1 12802
2 .82430e-1 .85584e-1 .84214e-4
3 .82407e-1 .85584e-1 23136e-4 I
4 .82396e-1 .85583e-1 11472e-4
5 .82390e-1 .85583e-1 .56202e-5
6 .82387e-1 .85583e-1 2816%e-5
¥ .82386e-1 .85583e-1 .14299¢-5
8 .82385e-1 .85583e-1 .72607e-6 4
9 .82385e-1 .85583e-1 37244e-6 N
10 .82384e-1 .85583e-] .18811e-6 i
11 82384e-1 85583e-1 95430e-7 23
12 .82384e-1 .85583e-1 .50804e-7 3¢
13 .82384e-1 85583e-1 .23701e-7 f"_'!:
'
M
Table 4.18 Performance of Training and Generalization RMS "I
with 10 hidden nodes and A = 0.0001 -';4
Pua,
b
Epoch | Training RMS | Generalization RMS Convergence error "‘
0 21054 .20540
1 82563e-1 .85589%-1 .12798
2 82478e-1 85587e-1 .84371e-4
3 82453e-1 .85586e-1 .25065e-4
4 82439%e-1 85586e-1 .13688e-4
5 82432e-1 .85585e-1 .76576e-5
6 82427e-1 .85585e-1 .44965e-5
7 82425e-1 .85585e-1 .27137e-5
| 8 82423e-1 .85584e-1 .16627e-5
9 82422e-1 .85584e-1 .10320e-5
10 82421e-1 .85584e-1 .64469e-6
11 .82421e-1 .85584e-1 .40640e-6
12 .82421e-1 .85584e-1 .25965e-6
13 .82420e-1 .85584e-1 .15910e-6
14 82420e-1 85584e-1 .10113e-6 |
15 .82420e-1 .85584e-1 .65429e-7
16 .82420e-1 .85584e-1 .37626e-7
17 .82420e-1 .85584e-1 .26195e-7
18 .82420e-1 85584e-1 .15057e-7
19 .82420e-1 .85584e-1 .13412e-7
61

Table 4.19 Performance of Training and Generalization RMS

with 10 hidden nodes and A = 0.001

Epoch | Training RMS | Generalization RMS Convergence error
0 21061 20540

1 .83040e-1 85622e-1 .12757

2 .82927e-1 85612e-1 .11260e-3

3 .82304e-1 .85251e-1 .62384e-3

4 .715336e-1 .74562e-1 .69670e-2

5 .75338e-1 74563e-1 .18460e-5

Table 4.20 Performance of Training and Generalization RMS

with 10 hidden nodes and A = 0.01

Epoch | Training RMS | Generalization RMS Convergence error
0 21128 20540

1 .87416e-1 .85975e-1 .12386

2 .87439%e-1 .85982e-1 22154e-4

Table 4.21 Performance of Training and Generalization RMS

with 17 hidden nodes and A =0

Epoch | Training RMS | Generalization RMS Convergent error
0 20624 20116

1 .83251e-1 .86404e-1 12299

2 .83242e-1 86409%-1 .9394]e-5

3 .8324]e-1 .86409e-1 .50516e-6

4 .83241e-1 864009e-1 .32754e-7

5 .83241e-1 86409e-1 .95812e-9

Table 4.22 Performance of Training and Generalization RMS

with 17 hidden nodes and A = 0.00001

Epoch | Training RMS | Generalization RMS Convergence error
0 20624 20116

1 .83256e-1 .86404e-1 12298

2 .83247e-1 .86409e-1 .92395e-5

3 .83246e-1 .86409e-1 .49143e-6

-4 .83246e-1 .86409e-1 .32637e-7

5 .83246e-1 .86409e-1 .22227e-9

6 .83246e-1 .86409%-1 .15910e-8

Table 4.23 Performance of Training and Generalization RMS

with 17 hidden nodes and A = 0.0001

Epoch | Training RMS Generalization RMS Convergence error
0 .20625 .20116
1 .83302e-1 .86405e-1 L2295
2 .83294e-1 .86409e-1 .78463e-5
3 .83294e-1 .86410e-1 .37290e-6
4 .8329%e-1 .86410e-1 .23036e-7
3 .83294e-1 .86410e-1 .10274e-8
| 6 .83294e-1 .86410e-1 .37958e-10
Table 4.24 Performance of Training and Generalization RMS
with 17 hidden nodes and A = 0.001
Epoch | Training RMS | Generalization RMS Convergent error
0 .20636 .20116
1 15497 16212 .51394e-1
2 .15494 16212 .33582e-4
3 15494 16212 .52376e-8
4 15494 16212 .52370e-3
5 15494 16212 .87815e-9
6 15494 16212 .90276e-7
7 .88951e-1 .91593e-1 .6598%-1
8 .88948e-1 .91568e-1 .34102e-5
9 8561]e-1 .83072e-1 .33362e-2
10 .82904e-1 .80588e-1 .27070e-2
11 .68028e-1 .66880e-1 14875e-1
12 .68843e-1 .67574e-1 .81435e-3

63

Table 4.25 Performance of Training and Generalization RMS

with 17 hidden nodes and A =0.01

Epoch | Training RMS | Generalization RMS Convergence error
0 20751 20116

1 16007 16212 4743%-1

2 .16003 16212 47439%-1

3 .16006 16212 .20426e-6

4 .92736e-1 88925e-1 .67297e-1

5 .92736e-1 .88926e-1 .15556e-6

6 .92737e-1 .88911e-1 .15256e-5

7 .92737e-1 88912e-1 27432-7

Table 4.26 Performance of Training and Generalization RMS

with 18 hidden nodes and A =0

Epoch [Training RMS | Generalization RMS Convergence error
0 .20588 .20082

1 .83299-1 | .86456e-1 12258

2 .83291e-1 .86460e-1 .78597e-5

3 .83290e-1 86461e-1 .35343e-6

4 .83290e-1 86461e-1 .20773e-7

5 .83290e-1 | 86461e-1 .10029e-8

Table 4.27 Performance of Training and Generalization RMS

with 18 hidden nodes and A = 0.00001

Epoch | Training RMS | Generalization RMS Convergence error
0 .20588 .20082

1 .83304e-1 .86456e-1 12258

2 .83296e-1 .86460e-1 .77094e-5

3 .83296e-1 .86461e-1 .34352e-6

4 .83296e-1 .86461e-1 22254e-7

5 .83296e-1 .86461e-1 .33955e-8

Table 4.28 Performance of Training and Generalization RMS

with 18 hidden nodes and A = 0.0001

Epoch | Training RMS Generalization RMS | Convergence error
0 20590 20082 |
1 83350e-1 .86457e-1 | 12255
[2 83343e-1 .86461e-1 | .63923e-5
3 83343e-1 86461e-1 24713e-6
4 83343e-1 86461e-1 13728e-7
5 .83343e-1 86461e-1 .18923e-8

Table 4.29 Performance of Training and Generalization RMS

with 18 hidden nodes and A = 0.001

Epoch | Training RMS | Generalization RMS Convergence error
0 20602 .20082
1 .15500 16212 .51014e-1
2 15497 16212 34231e-4 «
3 .15497 16212 .40106e-8 "
4 15497 16212 .40101e-8 ';
5 .15497 16212 .85814e-10 o
6 .15497 16212 .10421e-6 ;‘
7 .89342e-1 .91949e-1 .65631e-1
8 .89342¢-1 .91954e-1 .71895e-6
9 .86015e-1 .83390e-1 33271e-2
10 83447e-1 .81007e-1 25680e-2
i1 .69512e-1 .65347e-1 .13935e-1
12 .71419e-1 .67266e-1 .19075e-2
Table 4.30 Performance of Training and Generalization RMS
with 18 hidden nodes and A = 0.01
Epoch | Training RMS | Generalization RMS Convergence error
0 20723 .20082
1 .16038 16212 .46849%e-1
| 2 .16034 16212 .3895%e-4
3 .16034 16212 .21797e-6
4 .92795e-1 .88842e-1 67549¢e-1
5 .92796e-1 8884 1e-1 .19225e-6
6 .92797e-1 .88831e-1 .13584e-5
7 .927597e-1 .88831e-1 .21081e-7
8 .92797e-1 .8883]e-1 .12166e-8

65

Table 4.31 Performance of Training and Generalization RMS

with 19 hidden nodes and A =0

Epoch | Training RMS | Generalization RMS Convergence error

0 .20556 .20050

| .83340e-1 .86501e-1 .12222

2 .83333e-1 .86505e-1 .64557e-5

3 .83333e-1 .86505e-1 .24511e-6

4 .83333e-1 .86505e-1 .11280e-7

5 .83333e-1 .86505e-1 .28768e-9

Table 4.32 Performance of Tramning and Generalization RMS

with 19 hidden nodes and A = 0.00001

Epoch | Training RMS | Generalization RMS Convergence error

0 .20557 .20050

1 .83345e-1 .86501e-1 12222

2 .8333%e-1 .86505e-1 .63169e-5

3 .83338e-1 .86505e-1 .23887e-6

4 .83338e-1 .86505e-1 .14396e-7

5 .83338e-1 .86505e-1 .34601e-8

Table 4.33 Performance of Training and Generalization RMS

with 19 hidden nodes and A = 0.0001

Epoch | Training RMS | Generalization RMS | Convergence error

0 .20558 .20050

1 .83392e-1 .86502e-1 12219

2 .83387e-1 .86505e-1 .50733e-5

3 .83386e-1 .86505e-1 .16458e-6

4 .83386e-1 .86505e-1 .90807e-8

5 .83386e-1 .86505e-1 .28287e-8

66

Table 4.34 Performance of Training and Generalization RMS

with 19 hidden nodes and A = 0.001

Epoch | Training RMS | Generalization RMS Convergence error
0 20571 .20050
1 15504 16212 .50670e-1
2 15500 .16212 .34791e-4
3 15500 16212 .69051e-8
4 .15500 16212 .79955e-8
5 .15500 16212 .40426e-8
6 .89710e-1 .92336e-1 .65296e-1
7 .89703e-1 .92302e-1 .66916e-5
8 .85541e-1 .82931e-1 41623e-2
9 .83212e-1 .80810e-1 .23292e-2
10 .69514e-1 .65436e-1 13697e-1
| 11 .70726e-1 66649%e-1 12120e-2
Table 4.35 Performance of Training and Generalization RMS
with 19 hidden nodes and . = 0.01
Epoch | Training RMS | Generalization RMS Convergence error
0 .20699 .20050
1 16069 16212 46295e-1
2 16065 16212 .38828e-4
3 .16065 16212 .22826e-6
4 .92840e-1 .8875%e-1 67815e-1
S .92840e-1 .88762e-1 .65271e-6
| 6 .92841e-1 .88756e-1 .107%1e-5
7 0284]e-1 .88756e-1 .12603e-7
8 .9284]e-1 .88756e-1 .3291]e-8

Table 4.36 Performance of Training and Generalization RMS

with 20 hidden nodes and A = 0

Epoch | Training RMS | Generalization RMS Convergence error
0 20528 .20022

1 .83376e-1 .86541e-1 12190

2 .83370e-1 .86544e-1 .53513e-5

3 .83370e-1 .86545e-1 .17393e-6

4 .83370e-1 .86545e-1 41071e-8

5 .83370e-1 .86545e-1 .28875e-8

67

Table 4.37 Performance of Training and Generalization RMS

with 20 hidden nodes and A = 0.00001

Epoch | Training RMS | Generalization RMS Convergence error
0 20528 .20022
1 .83381e-1 .86541e-1 12190
2 .83376e-1 .86544e-1 .52143e-5
3 .83376e-1 .86545e-1 .16957e-6
4 .83376e-1 .86545e-1 .74668e-8
5 .83376e-1 .86545e-1 .92002e-9
Table 4.38 Performance of Training and Generalization RMS
with 20 hidden nodes and A = 0.0001
Epoch | Training RMS | Generalization RMS T Convergence error
0 20529 20022
| 1 .83428e-1 .86542e-1 12186
| 2 .83424e-1 .86545e-1 .40386e-5
3 .83424e-1 .86545e-1 .10815e-6
| 4 83424e-1 .86545e-1 | 64594e-9
Table 4.39 Performance of Training and Generalization RMS
with 20 hidden nodes and A = 0.001
Epoch | Training RMS | Generalizatin RMS Convergence error
0 20543 .20022
1 15507 16212 .50356e-1
2 | .15503 16212 35301e-4
3 15503 16212 .26528e-8
4 15503 16212 .26525¢e-8
5 45503e-1 16212 .12365e-8
6 .90054e-1 92656e-1 .64985e-1
7 90049e-1 .92634e-1 .47295e-5
8 85303e-1 82694e-1 47460e-2
9 83209e-1 .80812e-1 .20942e-2
10 69532e-1 .65542e-1 .13677e-1
11 .69788e-1 .66073e-1 .25598e-3

68

Table 4.40 Performance of Training and Generalization RMS

with 20 hidden nodes and A = 0.01

Epoch | Training RMS | Generalization RMS Convergence error
0 20677 20022
1 16100 16212 45772e-1
2 .16096 16212 38782e-4
3 .16096 16212 24146e-6
4 .92872e-1 .88685e-1 .68094e-1
5 192870e-1 .88692e-] .15384e-5
6 9287 1e-1 .88688e-1 .74493e-6
7 92871e-1 .88688e-1 .10809e-7
| 8 92871e-1 | .88688e-1 .37280e-9

69

Generalization RMS

0.00001
> 0.0001
0.0014

0.01

Figure 4.1 The Relationship Between Generalization RMS and A (2/7/1).

9.00E-C2
8.50E-02 1
8.00E-02 +
7.50E-02 1
700E-02 +
6.50E-02 ¢
6.00E-02 +
550E02 +
5.00E-02

Generalization RMS

0.00001
0.0001]
0.001]
0.01

&y

Figure 4.2 The Relationship Between Generalization RMS and A (2/8/1).

70

8.60E-02

7 5]
= 8 40E-02 +
o
= B820E02+4
e
© BOOE-O2 4
N
S 780024
[«§]
o
S 780E02 ¢
7.40E-02 ' . .
o S = o ey
: B &8 &
o 3 o
Ci o
A

Figure 4.3 The Relationship Between Generalization RMS and A (2/9/1).

9.00E-02
=
B.SOE-02 +
o
.§ 8.00E-02 +
.g 750E-02 +
© 700E02 7
=
& 6.50E02 ¢
&)
G.CI)E-OQ‘_ = :m; +—t ;q: .‘m., :N
3 g8 8 8 8 s g
S Q 2 o o o =]
. o o o
< -
A

Figure 4.4 The Relationship Between Generalization RMS and A (2/10/1).

71

9.50E02
9.00E-02 1
8.50E-02 -
8.00E-02 +
7.50E-02 +
7.00E-02 +
6.50E-02 +
6.00E-02 -
5.50E-02 [
5.00E-02

Generalization RMS

0.000014
0.00014{
0.0002

~ 0.0004}

0.0006

0.001

0.002

0.004 1
0.006

Figure 4.5 The Relationship Between Generalization RMS and A (2/17/1).

9.50E-02
g 8.50E-02
~ TS0E-02
g 6.50E-02
'S 550802 4
§ 450E-02 +
E 350E02 +
S 250E02 t
O 150E02 ¢
5.00E-03 i T e =t
= o o o o o S
3 88 28 2 s
o o o
A

Figure 4.6 The relationship Between Generalization RMS and A (2/18/1).

72

;P s

9.50e-02

vy S00E02 4
= 850E02 1
= 8
= 8O00E02¢
§ 7.50E-02 +
= T00E021
= 650E-02 4
g 6.00E-02 }
550E-02 +
5 D0E-02 T S WP —————
o 5 & 8 8 8 s
8 8 8 2 &2 ¢
o o o = =
A

Figure 4.7 The Relationship Between Generalization RMS and A (2/19/1).

9.50E-02
E 9.00E-02 }
&~ 850E02]
S B00E02{
S 750802 |
N 700802+
® 65002
E 6.00E02 +
S 550E02 1
5DDE-O2D rg: g, 8 il
£ 8§ 8 § 8 3
o = o
A

Figure 4.8 The relationship Between Generalization RMS and A (2/20/1).

73

RN F PN

9.00E-02

850802 +
=
[~
© 800E02+
w
2
® 750802 4
P
%}
q-: /
O om0z
630802 ———F—t+—4+—t—t+—t+——+——+
29 37 45 61 69 77

Number of weights

Figure 4.9 The Relationship Between Generalization RMS and Number
of Weights

74

5. CONCLUSION AND FUTURE WORK

Overfitting is a very important issue in artificial neural networks. A network that
cannot generalize is useless. There are several methods to reduce overfitting. In this paper,
we use a penalty method to reduce the overfitting. The results are compared with those
without penalty term. From this study, we find several important conclusions

¢ Overfitting does exist in artificial neural networks.

e As the neural network becomes larger, the generalization performance becomes
worse. So we may choose the smallest networks that fit the data.

» When the network has a larger number of samples than weights, the penalty
method can still be used to increase slightly the generalization performance of
the network. However, we should be careful in choosing A to be close to the
optimum point. Otherwise, generalization performance can be decreased
significantly.

e When the network has more weights than number of samples, the penalty
method can be used to improve significantly the generalization performance of
the networks. We need to choose A close to the optimum point to improve the
generalization performance. However, generally speaking, the performance will
not be significantly changed if A is not close to the optimum point.

e The optimum point of A is network architecture dependent.

Future work can be done in several areas as listed below:

e To use different penalty terms. One example is to include the output term in the

performance function. Another example is to include both output term and the

75

weight term [24] or to use a roughness penalty [20].
¢ Another method that can be investigated is an interactive method in which the
designer checks the trained network and decides which nodes to remove.
Several heuristics are used to identify units that don’t contribute to the solution.
One method is to remove a node that has a constant output over all training
patterns. When a number of nodes have highly correlated responses over all
patterns, they can be combined into one node.
e A comparison study may be needed to investigate the effectiveness of different

methods in reducing overfitting.

76

Bibliography

1] John, H., K. Anders and G. P. Richard “Introduction to the Theory of Neural
Computers”™, Lecture Notes Vol. 1. Addison-Wesley Publishing Company.. 1991.

[2] Hecht-Nielsen Robert, “Neurocomputing”, Addison-Wesley Publishing Company.
1990.

[3] McCulloch, W. S. and W. Pitts., “A Logical Calculus of the Ideas Immanent in
Nervous Activity”, Bulletin of Math. Bio., 5. 1943,

[4] Hebb, D., "The Organization of Behavior,” Wiley, New York, 1949.

[5] Minsky, M., "Neural Nets and the Brain-model Problem™, Doctoral Dissertation.
Princeton University, Princeton, NJ, 1954.

[6] Rosenblatt, F., "The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain™, Psych. Rev., 65, 1958.

[7] Minsky, M. and S. Papert, “Perceptrons”, MIT Press. Cambridge. MA. 1969,

(8] Hopfield, J.J., "Neurons with Graded-response Have Collective Computational
Properties Like Those Two-state Neurons™, Proc. Natl. Acad. Sci. 81. 1984,

[9] Hopfield, J.J., “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities”, Proc. Natl. Acad. Sci. 79, 1982.

[10] Rumelhart, D.E. and J. L. McClelland, “Parallel Distributed Processing:
Explorations in the Micro Structure of Cognition I & I1.” MIT Press. Cambridge MA.
1986.

[11] Strang G.. "Linear Algebra and its Application™, Academic Press. New York. 1980.

[12] Scales, L. E.. “Introduction to Nonlinear Optimization™. New York, Springer-Verlag.

77

1985.

[13] Magnus, R. H., "Conjugate Direction Methods in Optimization™. Springer-Verlag.
New York, 1980.

[14] Wolfe, M.A., "Numerical Methods for Unconstrained Optimization™. Van Nostrand
Reinhold Company, 1978.

[15] Cichocki, A. and Unbehauen, R_, ”Neural Networks for Optimization and Signal
Processing”, Wiley, 1993.

[16] Hagan Martin T., “Neural Network Design”, Lecture Notes. Oklahoma State
University, 1995.

[17] Freeman James A. and David M. Skapura, “Neural Networks Algorithms.
Applications and Programming Techniques”, Addison-Wesley Publishing Company.
1992.

[18] Barnard Etienne, “Optimization for Training Neural Nets™. IEEE Transactions on
Neural Networks, Vol. 3, No. 2, pp. 232-240., Mar., 1992,

[19] Webb Andrew R_, “Functional Approximation by Feedforward Networks: A Least-
squares Approach to Neural Networks™. [EEE Transactions on Neural Networks.
Vol. 5, No. 3, pp. 363-371, May, 1994,

[20] Bishop Chris M., “Curvature-driven Smoothing: A Leamning Algorithm for
Feedforward Networks”, IEEE Transactions on Neural Networks. Vol. 4. No. 5. pp.
882-884, Sept. 1993.

[21] De Villiers Jacques and Etienne Bamard “ Backpropagation Neural Nets with One

and Two Hidden Layers”. IEEE Transactions on Neural Networks, Vol. 4, No. 1, pp.

78

136 - 141, Jan. 1992.

[22] Hagan Martin T., “Training Feedforward Networks with the Marquardt
Algorithm”, IEEE Transactions on Neural Networks. Vol. 5. No. 6. pp. 989-903,
Nov. 1994,

[23] Reed Russell, “Pruning Algorithms-A Survey”, [EEE Transactions on Neural
Networks, Vol. 4, No. 5, 1993.

[24] Weigend Andreas S., Bemardo A. Huberman and David E. Rumelhart. -
Generalization by Weight-Elimination Applied to Currency Exchange Rate
Prediction”, Proc. Int. Joint Conf. Neural Networks, Vol. 1, pp. 837-841, Seattle.
1991.

[25] Amirikian Bagrat and Hajime Nishimura, "What Size Network Is Good for
Generalization of a Specific Task of Interest?””, Neural Network. Vol. 7. No. 2. pp.
321-329, 1994.

[26] Chauvin Yves, “Generalization Performance of Overtrained Back-propagation
Networks”, in Lecture Notes in Computer Science . Edited by L. B. Almeida and
C. J. Wellekens, Springer-Verlag, 1990.

[27] Press William H., Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery,
“Numerical Recipies in FORTRAN", Cambridge University Press. 1992.

[28] Levenberg Kenneth., “A Method For the Solution of Certain Non-linear Problems in
Least Squares”, Quart. Appl. Math., No. 2, pp. 164 - 168, 1994.

[29] Marquardt Donald W., “An Algorithm for Least-Squares Estimation of Nonlinear

Parameters”, J. Soc. Indust. Appl. Math. Vol. 11, No. 2, pp. 431 - 441, June, 1963.

79

[30] Ackley David H. and Michael L. Littman, “Generalization and Scaling in
Reinforcement Learning™. in Advances in Neural Information Processing 2. D.S.

Touretzky, Ed. pp. 550 - 557, 1989.

[31] Mozer Michael C. and Paul Smolensky, “Skeletonization: A Technique for
Trimming the Fat From a Network via Relevance Assessment™, in Advances in
Neural Information Processing 1. D.S. Touretzky, Ed. pp. 107 - 115, 1989,

[33] Baum Eric B. and David Haussler, “What Size Net Gives Valid Generalization?™. in
Advances in Neural Information Processing 1. D.S. Touretzky. Ed. pp. 81 - 90.

1989.

[34] Chauvin Yves., “A Back-Propagation Algorithm With Optimal Use of Hidden
Units”, in Advances in Neural Information Processing 1, D.S. Touretzky. Ed. pp
519 - 526, 1989.

[35] Ahmad Subatai and Gerald Tesauro, “Scaling and Generalization in Neural
Networks: A Case Study”, in Advances in Neural Information Processing 1. D.S

Touretzky, Ed. pp. 160 - 168, 1989.

[36] Morgan, N. and H. Bourlard, “Generalization and Parameter Estimation in
Feedforward Nets: Some Experiments™. in Advances in Neural Information
Processing 2, D.S. Touretzky, Ed. pp. 630 - 637, 1989,

[37] Hanson Stephen Jose and Lorien Y. Pratt, “Comparing Biases Minimal Network
Construction with Back-Propagation”, in Advances in Neural Information
Processing 1, D.S. Touretzky, Ed. pp. 177 - 185, 1989.

[38] Chauvin Yves, “Dynamic Behavior of Constrained Back-Propagation Networks™, in

80

—
Advances in Neural Information Processing 2. D.S. Touretzky. Ed. pp. 642 - 649,
1989.
[39] Le Cun Yann, John S. Denker and Sara A. Solla, “Optimal Brain Damage™. in
Advances in Neural Information Processing 2, D.S. Touretzky. Ed. pp. 598 - 605,
1989.
L [40] Dietterich Tom, “Overfitting and Undercomputing in Machine Leamning”, ACM

Computing Survey, Vol. 27, No. 3, pp. 326 - 327, Sept. 1995.

[41] Marquardt Donald W., “Generalized Inverse, Ridge Regression. Biased Linear
Estimation, and Nonlinear Estimation”, Technometrics. Vol. 12, No. 3, pp. 591 -
612, August, 1970.

[42] Marquardt Donald W. and Donald D. Snee, “Ridge Regression in Practice™. The
American Statistician, Vol. 29, No. 1, pp. 3 - 19, Feb. 1975.

[43] Hoerl Arthur E. and Robert W. Kennard. “Ridge Regression: Biased Estimation for
Nonorthogonal Problems”, Technometrics, Vol. 12, No. 1, pp. 55 - 67.. Feb. 1970.

[44] Hoerl Arthur E. and Robert W. Kennard, “Ridge Regression: Applications to
Nonorthorgonal Problems™, Technometrics, Vol. 12, No. 1, pp. 69 - 82 Feb. 1970.

[45] Sietsman, J. and R.J.F Dow, “Neural Net Pruning - Why and How", IEEE
International Conference on Neural Network 1. San Diego, California, pp.325 - 333,
July, 1988.

[46] Green, P.J. and B. W. Silberman, “Nonparametric Regression and Generalized Linear

Models - A Roughness Penalty Approach”, Chapman & Hall. 1994

81

APPENDIX--PROGRAM LISTING

82

PROGRAM DRIVER
(O ook ook o o o o o S ok oo koo R KK K KRR R K RO BRI R R R R K
THIS DRIVER IS TO GENERATE THE RANDOM WEIGHTS
W(MLAYR, MNODE, 0:MNODE) --THE WEIGHT OF
EACH LAYER.
P(MNODE) -- THE INPUT DATA OF THE SAMPLE
O(MNODE) -- THE OUTPUT CALCULATED FROM THE INPUT
DATA SAMPLE.
N(MLAYR, MNODE) -- THE WEIGHTED SUM OF THE
INPUTS OF A NEURON MNODE IN LAYER MLAYR
REF (3.1.1)
A(0:MLAYR, 0:MNODE) -- THE OUTPUT OF THE NEURON
MNODE IN LAYER MLAYR. REF (3.1.2)
NOTICE THAT A(0,*) REPRESENTS THE INPUT
LAYER. A(*,0) REPRESENTS THE BIAS.
NNODE(0:MLAYR) -- THE NUMBER OF NODE IN EACH
LAYER.
LAYER -- THE ACTUAL TOTAL LAYER OF THE NET. (EXCLUDING
THE INPUT LAYER)
MLAYR -- THE MAXMUM LAYER A NET CAN HAVE.
MNODE -- THE MAXMUM NODE ONE LAYER OF A NET CAN HAVE
LL -- SAMPLE INDEX
e e e e oo e o o Ko o K oK 3K oK K o oK R oK K 3 3 3k o oK o R o K K 3 oo oK o ok o R K o ok
PARAMETER(MLAYR = 4, MNODE = 100 MSAMP = 200)
DOUBLE PRECISION DRANDOM, W(MLAYR, MNODE, 0:MNQDE),
+ SEED,TOL,W0,LAMDA P(MSAMP MNODE),O(MSAMP MNODE),
+ N(MLAYR,MNODE), A(0.MLAYR,0:MNODE),
+ SENSIMLAYR MNODE) T(MSAMP MNODE),ERROR2 ERRORL,
+ G(MLAYR,MNODE,0:MNODE),TG(MLAYR,MNODE 0:MNODE),
+ FRET,TOL1,ERROR
INTEGER K,IJLL NNODE(0O:MLAYR).METHOD.LAYER NSAMP
INTEGER NUM,ITER MAXNUM NWEIG,PSTAT

E ¥ N K N OB ¥ O & ¥ ¥4 ¥ ¥ & ®E B B X B #

QOOOOMNONDOOOOOO0OO0 00NN

& THE FOLLOWING DATA 1S USED IN CONJUGATE GRADIENT METHOD
DOUBLE PRECISION PP(MLAYR,MNODE 0:MNODE).BETA,
+ TGO(MLAYR,MNODE,0:MNODE),PPO(MLAYR,MNODE,0:MNODE)
PSTAT=10

SET UP NETWORK

(s NelE.

CALL NETSETUP(LAYER MLAYR ,NNODE,SEED,W0,LAMDA METHOD)
CALL NETPRINT(LAYER MLAYR,NNODE SEED, W0.LAMDA METHOD)

INITIAL WEIGHT WITH RANDOM NUMBER

N 0N

CALL INIWEIGHT(W, LAYER, MLAYR NNODE, MNODE SEED.
+ NWEIG)

C
E PRINT THE NUMBER OF WEIGHT
€

WRITE(*,1001)NWEIG

1001 FORMAT(1X,'THE NUMBER OF WEIGHT I[S. '15)
C

83

5 READ IN TRAINING DATA P(I) AND T(I)
C READ IN THE INPUT AND DESIRED OUTPUT OF ONE TRAINING SAMPLE
C

CALL GETINPUTDATA(P,T, MNODE NNODE(0),.NNODE(LAYER).
+ MSAMP ,NSAMP)

&
2 CALCULATE THE PERFORMANCE FUNCTION
C
ERROR = SQRT(TEST(MSAMP,MNODE,W MLAYR LAYER,
+ NNODE,LAMDA WO0)/NSAMP)
PRINT*, 'BEFORE TRAINING GENERALIZATION ERROR: . ERROR
C
C LOOP OVER ITERATION
e SET TOLERANCE AND MAXIMUM ITERATION NUMBER
&
TOL =4.0D-10
TOL1=3.5D-2
MAXITER=20
ITER=0
e
1000 ITER=ITER + 1
C
C ENTER ITERATION
C
CALL INITG(LAYER.MLAYR.NNODE MNODE,TG)
C
C SUM TOTAL GRADIENT
C
DO 320 LL=1,NSAMP
C
c FEEDFORWARD COMPUTATION
C
CALL FORWARD(P,ONMLAYR.LAYER.MNODE A.
+ NNODE,W LLMSAMP)
C
C CALCULATE THE SENSITIVITY MATRIX
&
CALL SENSITIVITY(SENSILW.LAYER MLAYR NNODE,
+ MNODE,T,O.N,LL MSAMP)
LG8

C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
&

CALL GRAD(SENSI.A,W LAYER, MLAYR,

+ NNODE,MNODE,G,W0,LAMDA)

C
C SUM UP THE TOTAL GRADIENT
G

CALL SUMGRAD(G,LAYER MLAYR,NNODE . MNODE.TG)
320 CONTINUE
C
C FIND THE PERFORMANCE FUNCTION VALUE, BEFORE LINE SEARCH
C

ERRORI1= SQRT(FINDE(P,T MSAMP NSAMP MNODE,

84

+ WMLAYR LAYER,NNODE,O,LAMDA W0) /NSAMP)
IF (MOD(ITER,PSTAT) .EQ. 1) THEN
WRITE(*,1600)[TER.ERROR1

1600 FORMAT(1X,'BEFORE LINE SEARCH, ITER # 15.2X,

+ 'ERRORI VALUE =',G25.20)

ENDIF
C
C FIRST START AND RESTART USING STEEPEST DESCENT
¢
IF (ITER .EQ. 1 .OR. MOD(ITER,NWEIG) .EQ. 0) THEN
CALL GETPP(PP,PP0.TG,MLAYR,LAYER, MNODE.NNODE,
+ 0.D0)
ENDIF
C
C ASSIGN THE TG TO TGO
C
CALL ASSIGN(TG,TGO,MLAYR,LAYER,MNODE,NNODE)
CALL ASSIGN(PP,PPO,MLAYR.LAYER MNODE,NNODE)
C

C COMPUTE ALGORITHM 3.6.1 (4) AND (5),
CALL LINMIN(FRET.P,T MSAMP NSAMP,
+ MNODE.W,PPOMLAYR.LAYER,NNODE,O,LAMDA W0)

C

C USING STEP 2 TO COMPUTE THE G(K+1)

C

CALL INITG(LAYER, MLAYR,NNODE MNODE.TG)
DO 321 LL=1 NSAMP

C

C FEEDFORWARD COMPUTATION

C

CALL FORWARD(P,ONMLAYR LAYER MNODE. A,
+ NNODE.W.,LL MSAMP)
C
C CALCULATE THE SENSITIVITY MATRIX
C
CALL SENSITIVITY(SENSL,W.LAYER MLAYR.NNODE,
+ MNODE.,T,O,N,LLMSAMP)
C
C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
C
CALL GRAD(SENSL AW .LAYER, MLAYR,
+ NNODE,MNODE,G,W0,LAMDA)
(&
C SUM UP THE TOTAL GRADIENT
C
CALL SUMGRAD(G,LAYER MLAYR NNODE MNODE.TG)
321 CONTINUE
(&
C FIND THE PERFORMANCE FUNCTION VALUE, AFTER LINE SEARCH
&
ERROR2= SQRT(FINDE(P, T MSAMPNSAMP MNODE.
+ WMLAYRLAYER NNODE,O,LAMDA W0) /NSAMP)
c [F(MOD(ITER,PSTAT) .EQ. 0) THEN
WRITE(*,1100)ITER, ERROR2

85

1100 FORMAT(1X.'AFTER LINE SEARCH, [TER#"I5 2X.
+ 'ERROR2 VALUE ="',G25.20)

(6 ENDIF
C [F(MOD(ITER,PSTAT) .EQ. 1) THEN
& IF (ABS(ERROR2 - ERRORI1) .LT. TOL) THEN

ERROR = ABS(ERROR2 - ERROR1)
WRITE(*,101)ERROR
101 FORMAT (1X,'ERROR =',G25.20)
C STOP
C ENDIF

C VALIDATE THE NETWORK USING VALIDATION SET.

C IF(MOD(ITER PSTAT) .EQ. 1) THEN
ERROR = SQRT(TEST(MSAMP,MNODE, W, MLAYR LAYER,
+ NNODE,LAMDA,W0)/NSAMP)
WRITE(*,1200)ERROR
1200 FORMAT(1X,'AFTER TRAINING GENERALIZATION ERROR: ',G25.20)
C ENDIF
C
BETA=FINDBETA(TG,TGO,MLAYR LAYER,MNODE,
+ NNODE)
CALL GETPP(PP,PP0,TG.MLAYR, LAYER MNODE ,NNODE,
+ BETA)

PRINT TG, AFTER STEP 7

ASSING TG TO TGO, TGO STORES P(K+1)

2 Wl e B g Wi

CALL ASSIGN(TG,TGOMLAYR.LAYER. MNODE NNODE)
C
I[F ((ABS(ERROR2 - ERROR1) .GT TOL .OR. ERRORI1 GT.TOLI
+ .OR. ERROR2 .GT. TOL1) .AND ITER LT. MAXITER)THEN
ERRORI1 =ERROR2
GOTO 1000
ELSE
[F (ITER .LT. MAXITER)THEN
WRITE(*.1300)
1300 FORMAT(1X,'SOLUTION CONVERGE TO THE TOLERANCE'")
ENDIF

WRITE(*,1400)ITER.ERROR1 . ERROR2 ABS(ERROR2-ERROR 1)
1400 FORMAT(1X,TTER="152X,'ERRORI1=",G2510,2X,'/ERROR2=",
+ G25.10.2X,'ERROR=' G25.10)
¢
C TEST THE NETWORK USING TEST SET
C
ERRCR = SQRT(TEST(MSAMP MNODE W MLAYR.LAYER,
+ NNODE,LAMDA WO0)/NSAMP)
WRITE(*,1500)ERROR
1500 FORMAT(1X,'AFTER TRAINING ERROR=',G25.10)
ENDIF
c

86

STOP
END

(3 oK ok s s oo o o o K SR oo oo K K o O o 3 o o R R R R K

SUBROUTINE GETINPUTDATA(P,T.MNODE DIMIN.DIMOUT MSAMP,

+ NSAMP)
(0 K K s o ook o s s ok o ok sk s s R ok ko ok o R R R KRR
C THIS SUBROUTINE IS TO READ THE INPUT DATA FROM ¥
C TRAINING SAMPLE AND THE TARGET CUTPUT DATA. :;

et e L e L e e L

INTEGER MNODE, DIMIN.DIMOUT | NSAMP MSAMP,]
DOUBLE PRECISION PIMSAMP ,MNODE), T(MSAMP MNODE)
C
IN=20
OPEN(UNIT = IN, FILE ='TRAIN.DAT'STATUS ="0OLD'IOSTAT=I0ERR)
IF(IOERR .NE. 0) THEN
WRITE(*,10) IOERR

10 FORMAT(1X,'CANNOT OPEN NETWORK TRAINING DATA FILE(TRAIN.DATY,

+ 15)
STOP
ENDIF
C READ IN NUMBER OF TRAINING SAMPLE
READ(IN,*)NSAMP

DO 100 J= 1, NSAMP
C READ IN THE INPUT DATA
READ(IN,*)(P(J,1),]=1.DIMIN)

C READ IN THE DESIRED OUTPUT DATA(TARGET DATA)
READ(IN,*)T(].I),I=1, DIMOUT)
100 CONTINUE

C

CLOSE (UNIT=IN)
C

RETURN

END

(e o o ook ok o 3 o K R OK R K HOK O K KKK Sk K Kk R R KR

SUBROUTINE PRINTINPUTDATA(P,T.MNODE.DIMIN ,DIMOUT MSAMP,

+ NSAMP)
(0 AR oo o R TR R SR K oK SRR o K o 3236 o K O S o oK Ko K o o o o
C THIS SUBROUTINE IS TO PRINT THE INPUT DATA OF x
C TRAINING SAMPLE AND THE TARGET OUTPUT DATA. *

O e L L

INTEGER MNODE, DIMIN,DIMOUT,|,NSAMP.MSAMP.]
DOUBLE PRECISION P(MSAMP ,MNODE), T(MSAMP,MNODE)
e
C PRINT IN THE INPUT DATA
WRITE(*,100)NSAMP
100 FORMAT(1X,NUMBER OF SAMPLE IS: '15)
C
DO 200 J=1,NSAMP
WRITE(*,300)J
300 FORMAT(IX,'SAMPLE #'5)
DO 20 1= 1.DIMIN
WRITE(* .400)P(1.J)

87

400 FORMAT(1X,'THE INPUT DATA ARE:'E15.7)

20 CONTINUE
C
DO 30 I= 1,DIMOUT
WRITE(*,500)T(LJ)
500 FORMAT(1X,'THE DESIRED OUTPUT DATA ARE:'E15.7)

30 CONTINUE
200 CONTINUE
C
RETURN
END

O R AR R KA R KA R oK K o K KK 3 Ko KK K oo oo o R

SUBROUTINE ASSIGN(ORIG,NEW ,MLAYRNLAYR,MNODE,

+ NNODE)
(ko s o s oo o o R K o KK K RO KRR OK R R R R R R Rk
C THIS SUBROUTINE IS TO COPY A ORIG MATRIX TO NEW MATRIX. *
C IT IS USED TO COPY TG. ®

(O ok ok ok KRR KR KO JOHOK R K KK KK R R KRR KRR R R KRR R Rk

INTEGER MLAYR,NLAYR,MNODE ,NNODE(0:MLAYR)
DOUBLE PRECISION ORIG(MLAYR,MNODE,0:MNODE),
+ NEW(MLAYR,MNODE,0:MNODE)
INTEGER 1,J,K KK,LL
C
DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1 KK
DO 30 I=0,LL
NEW(K,J,I)=ORIG(K,J.I)
30 CONTINUE
20 CONTINUE
10 CONTINUE
c
RETURN
END

(1R 3o o Mo KKK KR KR 3 K KK o K o K 3 K O K

FUNCTION BRENT(AX.BX,CX,F. TOL. XMIN)
Ct*#*tt***tttt****#t#t***t#tttttttst*tttatttutnt-*ata*xutt:*:s*satt*tﬁan
GIVEN A FUNCTION F, AND GIVEN A BRACKETING
TRIPLET OF ABSCIESSAS AX, BX, CX(SUCH THAT BX IS
BETWEEN AX, AND CX, AND F(BX) IS LESS THAN BOTH
F(AX) AND F(CX)), THIS ROUTINE ISOLATES THE MINIMUM
TO A FRACTIONAL PRECISION OF ABOUT TOL USING BRENT'S
METHOD. THIS ABXCISSA OF THE MINIMUM IS RETURNED AS
XMIN, AND MUNIMUM FUNCTION VALUE IS RETURNED AS BRENT,
THE RETURNED FUNCTION VALUE.

® * * # x B % =

*

PARAMETERS. MAXIMUM ALLOWED NUMBER OF ITERATIONS.GOLDEN*
RATIO; AND A SMALL NUMBER THAT PROTECTS AGAINST TRYING *
TO ACHIEVE FRACTION ACCURACY FOR A MINIMUM THAT HAPPENS *
TO BE EXACTLY ZERO *
B g T T T T I ™
INTEGER ITMAX
DOUBLE PRECISION BRENT, AX BX.CX TOL.XMIN F,CGOLD.ZEPS

OO0 NDO0ONON0ON

88

C

(]

EXTERNAL F
PARAMETER(ITMAX=100, CGOLD=.381966D0.ZEPS=1.0D-~10)

INTEGER ITER
DOUBLE PRECISION A B.D,E.ETEMP,FU,FV.FW.FX.P.Q.R TOLI.TOL2.
+ U V.W,X, XM
A=MIN(AX,CX)
B=MAX(AX,CX)
V=BX
w=V
X=V
E=0.D0
FX=F(X)
FV=FX
FW=FX
DO 11 ITER = 1, ITMAX
XM = .5D0*(A+B)
TOL1 = TOL*ABS(X) +ZEPS
TOL2 = 2.D0O*TOLI
[F(ABS(X-XM) .LE. (TOL2 - .5D0*(B-A))) GOTO 3
IF(ABS(E) .GT. TOL1)THEN
R=(X-W)*(FX-FV)
Q=(X-V)*(FX-FW)
P=(X-V)*Q-(X-W)*R
Q=2.D0*(Q-R)
IF(Q.GT.0) P=P
Q=ABS(Q)
ETEMP=E
E=D
IF(ABS(P). GE.ABS(.SD0O*Q*ETEMP).OR P LE.Q*(A-X).OR

+ P.GE.Q*(B-X))GOTO 1

D=P/Q
U=X+D
IF(U-A LT.TOL2 .OR. B-U .LT. TOL2)D=DSIGN(TOL1 XM-X)
GOTO 2
ENDIF
[F(X.GE.XM)THEN
E=A-X
ELSE
E=B-X
ENDIF
D=CGOLD*E
IF(ABS(D).GE. TOL1)THEN
U=X+D
ELSE
U=X+DSIGN(TOL1,D)
ENDIF
FU =F(U)
IF(FU.LE FX)THEN
[F(U.GE X)THEN
A=X
ELSE
B=X
ENDIF

39

V=w
FV=FW
Ww=X
FW=FX
X=U
FX=FU
ELSE
I[F(ULT.X)THEN
A=U
ELSE
B=U
ENDIF
IF(FU.LE.FW .OR. W.EQ.X)THEN
V=W
FV=FW
W=U
FW=FU
ELSEIF(FU .LE. FV .OR. VEQ.X .OR. V.EQ W)THEN
v=U
FV=FU
ENDIF
ENDIF
11 CONTINUE
C
3 XMIN=X
BRENT=FX
RETURN
END
C##ta*x#*tlumt:nnktmrtt:*a**un**tst**#tttttxu**»***xu*ti#*:*xt***t
SUBROUTINE CONVERT(TG.MLAYR.MNODE NLAYR,
+ NNODE,AMAXNUM,NUM)

(%36 o8 o RS o oK KRR oK o o R K o KKK R Kk

C THIS ROUTINE 1S TO CONVERT THE 3-DIMENSIONAL *
C ARRAYS INTO I-DIMENSIONAL ARRAY. IT IS USED *
C TO APPLY LINE SEARCH ROUTINE i

(050K KRR MK K o KKK KKK S KR MR S KKK K oK O 4 KR

INTEGER MLAYR,MNODE ,NLAYR,NNODE(0:MLAYR),
+ MAXNUMNUM,LJ K. KK.LL
DOUBLE PRECISION A(MAXNUM) TG(MLAYR.MNODE,0:MNODE)

C
NUM=0
DO 10 K=1 NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1 KK
DO 30 I=1,LL
NUM=NUM+1
ANUMETGK. D
30 CONTINUE
20 CONTINUE
10 CONTINUE
C
RETURN
END

90

CHRERARF AR KRR FLERRERRRER R TR R RRRR AR R R R AR R BRI E R

bttt e L

& GIVEN A FUNCTION F AND ITS DERIVATIVE FUNCTION DF. AND .
C GIVEN A BRACKETING TRIPLET OF ABSCISSAS AX. BX. CX[SUCH *
C THAT BX IS BETWEEN AX AND CX AND F(BX) IS LESS THAN BOTH ~
C F(AX) AND F(CX)], THIS ROUTINE ISOLATES THE MINIMUM TO A *
6 FRACTIONAL PRECISION OF ABOUT TOL USING A MODIFICATION OF*
C BRENT'S METHOD THAT USES DERIVATIVES. THE ABSCISSA OF THE *
C MINIMUM IS RETURNED AS XMIN, AND THE MINIMUM FUNCTION *
€ VALUE [S RETURNED AS DBRENT, THE RETURNED FUNCTION VALUE *
C#**#************#***#*#tt*tt*t*##****#**"***#**“#*i*—#t*n*v*****v*w‘**

FUNCTION DBRENT(AX,BX.CX,F,DF, TOL, XMIN)

INTEGER [TMAX

DOUBLE PRECISION DBRENT.AX BX,CX. TOL.XMIN.DF.F.ZEPS

EXTERNAL DF.F

PARAMETER(ITEM=100,ZEPS=1.0D-10)

INTEGER ITER

DOUBLE PRECISION A,B.D,.D1.D2.DU.DV.DW DX .E FUFV.FW FX OLDE.

+ TOLI1, TOL2, U,U1,U2, VW XXM
LOGICAL OK1,0K2

A=MIN(AX,CX)

B=MAX(AX.CX)

V=BX

W=V

X=V

E=0.

FX=F(X)

FV=FX

FW=FX

DX=DF(X)

DV=DX

DW=DX

DO 11 ITER=1,ITMAX
XM=0.5*(A+B)
TOL1=TOL*ABS(X}+ZEPS
TOL2=2.*TOLI

[F(ABS(X-XM) .LE. (TOL2 - .5%(B-A))GOTO 3
[F(ABS(E) .GT. TOL1) THEN
Di=2.%(B-A)
D2=Dl1
IF(DW.NE.DX)DI1=(W-X)*DX/(DX-DW)
[F(DV.NE.DX)D2=(V-X)*DX/(DX-DV)
Ul=X+DI
U2=X+D2
OKI1=((A-UN*(U1-B).GT 0) AND. (DX*D1 .LE. 0.)
OK2=((A-U2)*(U2-B).GT.0) AND. (DX*D2 LE. 0,
OLDE=E
E=D
[F(.NOT (OK1.0R.OK2)THEN
GOTO 1
ELSEIF (OK1 .AND. OK2)THEN
[F(ABS(DI1).LT.ABS(D2))THEN
D=DI
ELSE

91

D=D2
ENDIF
ELSEIF (OK1) THEN
D=D1
ELSE
D=D2
ENDIF
[F(ABS(D) .GT. ABS(0.5*OLDE)GOTO 1
U=X+D
[F(U-A LT. TOL2 .OR. B-U .LT. TOL2)D=SIGN(TOL1.XM-X)
GOTO 2
ENDIF
[F(DX.GE.0.)THEN
E=A-X
ELSE
E=B-X
ENDIF
D=.5*E
[F(ABS(D) .GE. TOL1)THEN
U=X+D
FU=F(U)
ELSE
U=X+SIGN(TOL1,D)
FU=F(U)
IF(FU.GT.FX)GOTO 3
ENDIF
DU=DF(U)
[F(FU.LE.FX)THEN
[F(U.GE.X) THEN
A=X
ELSE
B=X
ENDIF
V=W
FV=FW
DV=DW
W=X
FW=FX
DW=DX
X=U
FX=FU
DX=DU
ELSE
IF(U.LT.X)THEN
A=U
ELSE
B=U
ENDIF
[F(FU.LE.FW OR W.EQ X)THEN
V=W
FV=FW
DV=DW
w=U
FW=FU

DW=DU
ELSEIF(FU .LE. FV .OR. VEQ.X .OR. V.EQ W)THEN

V=U
FV=FU
DV=DU
ENDIF
ENDIF
11 CONTINUE
3 XMIN=X
DBRENT=FX
RETURN
END

FUNCTION FINDBETA(TG.TGO.MLAYR,NLAYR MNODE,
+ NNODE)

(O AR o O R R R KRR RO K R R R KRR R R O Rk Ok o

C THIS ROUTINE IS TO FIND THE BETA ACCORDING TO »

C (2.4.8)--(2.4.10). *
C TGMLAYR, MNODE, 0:MNODE) STORES TOTAL *
C GRADIENT -

(O KK A K o O K 0K 3 30K 6 KK KKK o K 3 K K K

INTEGER MLAYR.NLAYR,MNODE,NNODE(0:MLAYR)
DOUBLE PRECISION TG(MLAYR,MNODE,0:MNODE),
+ TGOMMLAYR.MNODE.0:MNODE) FINDBETA,SUM.SUMI
INTEGER 1,J,K,KK,LL
C
SUM=0.D0
SUM1=0.D0
DO 10 K=1 NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1 KK
DO 30 1=0.LL
SUM = SUM + TG(K,J.)*TG(K.J.»
SUMI = SUMI + TGO(K,J.*TGO(K.J.1)
30 CONTINUE
20 CONTINUE
10 CONTINUE
¢
FINDBETA=SUM/SUM]
RETURN
END

(O Ao sk o o o o o K o K KO SRS K R o o ok o Sk oKk R K K K K

FUNCTION FINDE(P,T, MSAMP NSAMP MNODE,
+ W,MLAYRNLAYR NNODE,O,LAMDA,WO0)

C*#:Hntt*t-t*tt:Hurlﬂt******t******t*t#**t*ttt*m*t*ttttnttmﬂmt*mt:tt

THIS FUNCTION IS TO FIND THE PERFORMANCE ¥
FUNCTION E(W) REF. (3.6.1). %
FINDE -- THE PERFORMANCE VALUE. REF (3.6.1) "

T(MSAMP,MNODE)-- THE DESIRED OUTPUT OF THE NET *
WMLAYR,MNODE,0:MNODE)--WEIGHT MATRIX OF THE NET *
O(MSAMP.MNODE)-- THE CALCULATED OUTPUT OF THE NET*
LAMDA-- THE CONSTANT IN THE PENALTY TERM ¥

pEsEoRe e Ne Ne]

93

c WO -- THE CONSTANTS IN THE PENALTY. *
C****tt***##**#*****tt*tt****t*‘********‘*k‘****‘t*‘*#“‘t!tt*ttt
C
INTEGER MSAMP ,NSAMP,MNODE MLAYR NLAYR.
+ NNODE(0:MLAYR)
DOUBLE PRECISION O{MSAMP,MNODE).T(MSAMP,MNODE),
+ W(MLAYR MNODE,0:MNODE).LAMDA, W0,SUM,.SUM1,FINDE.
+ P(MSAMP,MNODE)
DOUBLE PRECISION N(MLAYR,MNODE),A(0:MLAYR.0: MNODE)
INTEGER 1,J.K,L,KK,LL
C ALCULATE THE PENALTY TERM.
C
£1.41=0.D0
SLAN1=0.D0
0 100 K=1.NLAYR
. ~\NODE(K)
_ NODE(K-1)
DO 200 J=1 KK
DO 300 1=0,LL
SUM=SUM+LAMDA*(W(K,J1)**2/(W0**2+ W(K_J,[)**2))
300 CONTINUE
200 CONTINUE
100 CONTINUE
C
C CALCULATE THE FIRST TERM
C
DO 10 L=1,NSAMP
CALL FORWARD(P,0,N. MLAYR NLAYR MNODE,A NNODE,
+ W.LMSAMP)
DO 20 K=1, NNODE(NLAYR)
SUMI=SUMI1+(T(LK)-O(L K))**2
20 CONTINUE

10 CONTINUE
€

FINDE = 0.5D0* (SUM +SUM1)
C

RETURN

END

(% o K o AR SR Mo o o o o o Ko Ko o o o8 3o o ok o ok ok o ok

SUBROUTINE FORWARD(P,O,N,MLAYR . NLAYR MNODE_ A,
+ NNODE,W,SNMSAMP)

C**‘***************‘*************#********#******‘!tﬁ*!**ﬂ**t*#*li&t*i‘*&
THIS SUBROUTINE IS TO CALCULATE THE SUM OF x
THE INPUTS OF ANEURON J IN LAYER K
PLEASE REFERTO (3.1.1)
N(MLAYR,MNODE)--STORES THE SUM OF INPUTS OF

NEURON JIN LAYER K
A(0:MLAYR.MNODE)--STORES THE OUTPUT OF

NEURON JIN LAYER K
A(0:MLAYR,0:MNODE) -- STORES THE INPUT DATA.
P(MSAMP MNODE) -- IS THE INPUT DATA FROM ONE SAMPLE
T(MSAMP,MNODE) -- IS THE DESIRED OUTPUT DATA FROM ONE

SAMPLE

OO0 Oy Y Yy 03 03

LR S T S T TS T T S

94

i O(MSAMP.MNODE) -- IS THE OUTPUT CALCULATED FROM THE *
C NET. i
C W(MLAYR MNODE.0:MNODE) -- THE WEIGHT OF THE NET. *
C SN -- THE SAMPLE INDEX. =
(0K ok o o oo oo R o ok o ok S o R R R R R K R R KR R O R

INTEGER MLAYR MNODE NNODE(0:MLAYR},LJ.K,
+ NLAYRL,SNMSAMPKK,LL

DOUBLE PRECISION N(MLAYR MNODE),A(0:MLAYR,0:MNODE),
+ WMMLAYR MNODE,0:MNODE),SUM,P(MSAMP MNODE)),
+ O(MSAMP MNODE)

5
& STORE INPUT DATA INTO A(0,MNODE)
C

DO 100 =1, NNODE(0)

A(O,1)=P(SN,])

100 CONTINUE
&
C STORE THE BIAS
C

A(0,0) =-1.D0
C
C CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K
C
C LOOP OVER LAYER
C LOOP OVER LAYER

DO 10 K=1,NLAYR

C LOOP OVER CURRENT NODE (TARGET)

KK=NNODE(K)

LL=NNODE(K-1)

DO 20 J=1, KK
C LOOP OVER PRVIOUS NODE (SOURCE)

SUM = 0.0D0

DO 30 1=0,LL

SUM = SUM + W(K,J.D*A(K-1.)

30 CONTINUE

&
C CALCULATE THE SUM OF | NEURON J IN LAYER K
C
N(K,J) = SUM
(&
C CALCULATE THE OUTPUT OF NEURON J IN LAYER K
&
AK.J) = SIGF(N(K.,]))
20 CONTINUE
C
C THE BIAS
C
AK,0)=-I
10 CONTINUE
€
£ STORED THE OUTPUT IN A(NNODE(NLAYR))
=

KK=NNODE(NLAYR)
DO 200 I=1, KK

95

O(SN,I=A(NLAYR,])

200 CONTINUE

RETURN
END

(ot e s e e P

SUBROUTINE FRPRMN(P,N FTOL.ITER.FRET)

(DR Ao o Ao AR o AR Ko R R S o o K o 36 K O KK 3 K o o o O K

0O O YOE Y QR0 0

e

GIVEN A STARTING POINT P THAT IS A VECTOR OF LENGTH
N, FLETCH-REEVES-POLAK-RIBIERE MINIMIZATION IS
PERFORMED ON A FUNCTION FUNC, USING ITS GRADIENT AS

CALCULATED BY A ROUTINE DFUNC. THE CONVERGENCE TOLERANCE

ON THE FUNCTION VALUE IS INPUT AS FTOL. RETURNED

QUANTITIES ARE P(THE LOCATION OF THE MINUMUM), ITER(THE
NUMBER OF ITERATIONS THAT WERE PERFORMED).AND FRET(THE

MINIMUM VALUE OF THE FUNCTION). THE ROUTINE LINMIN IS
CALLED TO PERFORM LINE MINIMIZATIONS.

PARAMETERS: NMAX 1S THE MAXIMUM ANTICIPATED VALUE OF N.
ITMAX IS THE MAXIMUM ALLOWED NUMBER OF ITERATIONS: EPS
IS A SMALL NUMBER TO RECTIFY SPECIAL CASE OF CONVERGING

TO EXACTLY ZERP FUNCTION VALUE.

INTEGER ITER_.N,NMAX ITMAX

DOUBLE PRECISION FRET ,FTOL,P(N),EPS . FUNC
EXTERNAL FUNC

PARAMETER(NMAX=50,ITMAX=200.EPS=1.0D-10)

C USES DFUNC,FUNC,LINMIN

C

11

12

INTEGER ITS,J
DOUBLE PRECISION DGG,GAM.GG,G(NMAX). H(NMAX). XI(NMAX)
FP = FUNC(P)
CALL DFUNC(P,X1)
DO 11 J=1,N
G(H=XI1(J)
HU)=G(J)
XI(J=H()
CONTINUE
DO 14 ITS=1.ITMAX
CALL LINMIN(P,XI,N,FRET)
IF(2.* ABS(FRET-FP) LE. FTOL*(ABS(FRET }+ ABS(FP}+EPS))RETURN
FP = FUNC(P)
CALL DFUNC(P.XI)
GG =0.D0
DGG =0.D0
DO 12 J=1N
GG=GG+G(J)**2
DGG=DGG+(X1(Jy+G()*X1(J)
CONTINUE
[F(GG .EQ. 0)RETURN
GAM=DGG/GG
DO 13 J=I.N
G(H=XI1(J)
HU)=G(I*+GAM*H()
XI(Jy=H()

96

" FE R 2 X 4 & R X R

*

ok ek e o o ok o o e ok e sk s ok sk ok ook ok e ok s ok ko ok ok e ok ke ok ok ok ok sk ok e ok e o ok K ok e ok ke ok ok ol i ol 0 ol o okl ok o ok ok o e ok ok kK R R ok K

13 CONTINUE
14 CONTINUE
C
RETURN
END
Ct*t*#**#‘*t*****‘**tttt#t*t*tttt*!*l*tl*t#tttttl*##tt#ti!t*tt*t!*ttl
SUBROUTINE GETPP(PP,PPO,TGMLAYR NLAYR MNODE,

+ NNODE, BETA)
C*t*******‘#**t*i****‘*!t*******t***‘*t!*‘*t*‘*‘*t*!‘**t**i*#t#"
68 THIS SUBROUTINE IS TO CALCULATE METRIX PP. REF. *
C ALGORITHM 3.6.1 (3) AND (7). IT ADDS THE PREVIOUS ¥
C GRADIENT TO THE CURRENT GRADIENT ACCORDING TO .
C DIFFERENT BETA. REF (2.4.8)-(2.4.10). STORED THE -
C WHOLE GRADIENT IN PP. *
C***##****#**#*t*tt‘tt*#**#‘***#*****t*t‘*tt#i!ttt*ttttttt***!ttl

INTEGER MLAYR,NLAYR ,MNODE NNODE(0:MLAYR)
DOUBLE PRECISION PP(MLAYR,MNODE,0:MNODE),BETA,
+ TGMLAYR.MNODE,0:MNODE),
+ PPO(MLAYR.MNODE,0:MNODE)
INTEGER [LJ,K,KK,LL

C
C CALCULATE THE GRADIENT AND STORE IT IN PP
C
DO 10 K=1, NLAYR

KK=NNODE(K)

LL=NNODE(K-1)

DO 20 J=1.KK

DO 30 I=0,LL
PP(K,J.I)=-TG(K,J,]) + BETA * PPO(K,J..1)

30 CONTINUE

20 CONTINUE
10 CONTINUE
L&
RETURN
END
CHFEFErR ek ok R dop kR ok R ke o ook R oo ok R R R Rk Rk
SUBROUTINE GRAD(SENSI.A, W NLAYR, MLAYR,
+ NNODE,MNODE,G,W0.LAMDA)
C*****#***#0‘****#**&‘*#*#**t*t***#t*t**#*#*t*xu*t*tttttt*tt**tt‘ttl
THIS SUBROUTINE 1S TO CALCULATE THE o
GRADIENT OF THE PERFORMANCE W.R.T WEIGHT
REF. (3.6.6).
SENSI(MLAYR,MNODE)--THE SENSITVITY MATRIX. REF(3 6.12)
A(0:MLAYR,0:MNODE) -- THE OUTPUT OF A NEURON REF{3 1.2}
W(MLAYR,MNODE,0:MNODE)-- THE WEIGHT MATRIX
G(MLAYR.MNODE,0:MNODE)-- THE GRADIENT OF THE NET
OF ONE SAMPLE DATE.
W0 -- THE CONSTANTS IN PENALTY TERM WO,
LAMDA -- THE CONSTANT IN THE PENALTY
LR R R RS R R R s
INTEGER NLAYR, MLAYR,MNODE [.J.K.KK.LL,
+ NNODE(0:MLAYR)
DOUBLE PRECISION SENSI(MLAYR MNODE) A(0:MLAYR,
+ 0:MNODE),W(MLAYR,MNODE 0:MNODE),

IR T

* * ¥ ® *

onNnOnNOnNOonOnNOon

97

+ G(MLAYR MNODE,0:MNODE),W0,LAMDA

C
C CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
c WEIGHTS ACCORDING TO (3.6.6)
C
C LOOP OVER LAYER
C
DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1.KK
C
C BIAS TERM
¢
G(K.J,0)=SENSI(K,Jy+
- LAMDA * (W(K,J,0) * WO*WO)/(WO*WO0 + W(K.J.0)**2)
DO 301=1,LL
G(K,J,1)=SENSI(K,J) * A(K-1,1) +
+ LAMDA * (W(K, L) * WO*WO)/(WO*W0 + W(K J.1)**2)
30 CONTINUE

20 CONTINUE
10 CONTINUE
C
RETURN
END

(O R R R KR R R RO R R R R R R kR kR R Rk R

SUBROUTINE INITG(NLAYR MLAYR NNODE,

+ MNODE,TG)
C***t***t#ﬁ********t*t*#ﬂ*t‘t***#**#i*t*t#t‘*tt*tt**!it**
¢ THIS FUNCTION IS TO INITIALIZE THE TOTAL .
C GRADIENT TO 0 .

e e

INTEGER NLAYR, MLAYRMNODE [.J K. KK.LL,
+ NNODE(0:MLAYR)
DOUBLE PRECISION TG(MLAYR,MNODE,0:MNODE}

INITIALIZE THE TOTAL GRADIENT TO 0
AND NUMOFSAMPLE TO 0

ROy o

DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1, KK

DO 30 I=0,LL
TGK,JI)=0

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN

END

(Ko Ko o ok ok o oo ok oo o K oo K oK ok o KR R R o R Rk

SUBROUTINE INIWEIGHT(WEIGHT, NLAYR, MLAYR.NNODE,
+ MNODE. SEED.NWEIG)

98

s L e L it

INITIALIZE THE WEIGHT OF INPUT LAYER

NLAYR -- THE NUMBER OF LAYER (INCLUDING
OUTPUT AND HIDDEN LAYERS).

NUMNODE(]) -- THE NUMBER OF NODE AT LAYER I
NUMNODE(0) -- THE NUMBER OF INPUT (NODE).
NUMNODE(NLAYR) -- NUMBER OF NODE IN OUTPUT LAYER
NWEIG -- THE NUMBER OF WEIGHT

WEIGHT(LAYER, N. 0:N)>-- LAYER IN THE LAYER INDEX
N,M CORRESPONDING TO W(J,I), LE,,
WEIGHT(LAYER, N, M) IS THE WEIGHT
OF THE CONNECTION FROM NODE M OF
THE (LAYER-1)TH LAYER TO NODE N OF
THE LAYERTH LAYER.

WEIGHT(LAYER, N, 0) IS THE BIAS.

X X O O K OE R M AR O®E N R OE K Eow

o o o oo R oK R oK ok o oK KR o Kk o o o o o oo o KK o K o o oK ok o oK o o oK o K ok K o

INTEGER MLAYR, MNODE NWEIG
INTEGER 1,J,K,FANIN NNODE(0:MLAYR),NLAYR KK, LL
DOUBLE PRECISION WEIGHT(MLAYR. MNODE,0:MNODE), TEMP,
+ DRANDOM,SEED.TEMPI

nOonNnOoOonOnNOoONNONONOMNON

C
C GENERATE THE RANDOM NUMBER BETWEEN -0.5 TO 0.5
C

TEMPI = SEED
TEMP = DRANDOM(TEMPI) - .5D0
NWEIG=0
c
C LOOP OVER LAYER
€
DO 10 K=1, NLAYR
G
C CALCULATE THE FAN-IN OF THE LAYER
C
KK=NNODE(K)
LL=NNODE(K-1)
FANIN = NNODE(K-1}+ 1
{
C LOOP OVER ALL NEURONS IN CURRENT LAYER
C
DO 20 J=1, KK
C
C LOOP OVER ALL NEURONS IN PREVIOUS LAYER
C
DO301=0,LL
WEIGHT(K.J.I) = TEMP/FANIN
NWEIG = NWEIG + |
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN

99

END
C*#Kt*t**t‘t“*-‘t**¥*tt*t*‘*t***#ttt****‘*tl*“*t**#t**‘**
SUBROUTINE LINMIN(FRET,P,T MSAMP NSAMP.
+ MNODE,W,TGMLAYR NLAYR ,NNODE O,LAMDA W0)
(O ek o ok o o ook o o o ok S ok ok o o o OR R S ROROR RO o R Kk kR e K ok R R ko ok ok kK
GIVEN AN N-DIMENSIONAL POINT P(1:N) AND AN
N-DIMENSIONAL DIRECTION XI(1:N), MOVES AND
RESETS P TO WHERE THE FUNCTION FUNC(P) TAKES ON
A MINIMUM ALONG THE DIRECTION XI FROM P AND
REPLACES X1 BY THE ACTUAL VECTOR DISPLACEMENT
THAT P WAS MOVED ALSO RETURNS AS FRET THE VVALUE
OF FUNC AT THE RETURND LOCATION P. THIS IS *
ACTUALLY ALL ACCOMPLISHED BY CALLING THE ROUTINES*
MNBRAK AND BRENT. 6

*

REF "NUMERICAL RECIPIES" g
s ke s ke ok e 3k e o o o ok ok 3k ok ke ok ok ok ook ok o o o R o o o o o o o o ok ok ok o o o o oK o ok o ok o o ok ok o ok ok ok ok ok ok
INTEGER MSAMP NSAMP MNODE MLAYR NLAYR,
+ NNODE(0:MLAYR)
DOUBLE PRECISION O(MSAMP,MNODE), T(MSAMP.MNQCDE),
+ W(MLAYR MNODE,0:MNODE) TG(IMLAYR.MNODE,0: MNODE).
+ P(MSAMP MNODE),LAMDA WO0,TOL,FRET
INTEGER MSCOM,NSCOM . MNCOM,MLCOM,
+ NLCOM
PARAMETER(MLCOM=4 MNCOM=100,MSCOM=200)
INTEGER NNCOM(0:MLCOM)
DOUBLE PRECISION OCOM(MSCOM ,MNCOM),TCOM(MSCOM.
+ MNCOM),WCOM(MLCOM,MNCOM,0:MNCOM),
+ LAMCOM,WOCOM,TGCOM(MLCOM MNCOM,0.MNCOM),
+ PCOMMSCOM MNCOM)
DOUBLE PRECISION AX.BX . FA.FB.FX XMIN. XX BRENT
COMMON /F1/NSCOM, NLCOM, NNCOM
COMMON /F2/PCOM,0COM . TCOM WCOM , TGCOM,LAMCOM.WOCOM
INTEGER 1LJK.KK.LL
EXTERNAL F1DIM

L R S

o000 NnN

C
C INITIALIZE THE PARAMETERS
C
NSCOM=NSAMP
NLCOM=NLAYR
LAMCOM=LAMDA
WOCOM=W0
TOL=1.0D-4
DO 10 1=0,NLCOM
NNCOM(1)=NNODE(I)
10 CONTINUE
DO 50 [=1 NSCOM

KK=NNCOM(NLCOM)

DO 60 J=1.KK
OCOM(I.J=O(1L.)
TCOM(LJ=T(1.1)
PCOM(1.Jy=P(1.1)

60 CONTINUE
50 CONTINUE

100

DO 20 K=1,NLCOM
KK=NNODE(K)
LL=NNODE(K-1)

DO 30 J=1,KK
DO 40 1=0,LL
WCOM(K,J,)=W(K,].I)
TGCOM(K,J,D=TG(K.J.I)

40 CONTINUE

30 CONTINUE

20 CONTINUE

€
G USES BRENT.F 1DIM,MNBRAK
C
AX =-1.0D0
XX =1.0D0
CALL MNBRAK(AX,XX,BX,FA FX FB F1DIM)
FRET = BRENT(AX . XX,BX,F1DIM,TOL, XMIN)
C
C CALCULATE THE TOTAL GRADIENT
C
DO 70 K=1,NLCOM
KK=NNODE(K)
LL=NNODE(K-1)
DO 80 J=1.KK
DO 90 1=0,LL
TGE,JLD=XMIN*TG(K.J,.D)
WELLD=WEKJDFTGE,JD
90 CONTINUE

80 CONTINUE
70 CONTINUE
&
RETURN
END

(O AR AR R SRR OR oK R R oo H oo KKKo K oo Kk

FUNCTION Fi1DIM(X)
INTEGER MSCOM ,NSCOM,MNCOM,MLCOM,
+ NLCOM
PARAMETER(MLCOM=4 MNCOM=100,MSCOM=200)
INTEGER NNCOM(0: MLCOM)
DOUBLE PRECISION OCOM(MSCOM,MNCOM).TCOM(MSCOM.
+ MNCOM).WCOMMLCOM ,MNCOM,0:MNCOM),
+ LAMCOM,W0COM, TGCOM(MLCOM MNCOM,0:MNCOM),
+ PCOM(MSCOM MNCOM)
DOUBLE PRECISION XT(MLCOM,MNCOM.0:MNCOM)
¢
C THE COMMON BLOCK
C
COMMON /FI/NSCOM, NLCOM. NNCOM
COMMON /F2/PCOM.OCOM,TCOM,WCOM,TGCOM.LAMCOM, W0COM
DOUBLE PRECISION FIDIM.X
EXTERNAL FINDE

101

C USES FINDE
C USED BY LINMIN AS THE FUNCTION PASSED MNBRAK AND BRENT
€
INTEGER [J KKK LL
DO 100 K=1,NLCOM
KK=NNCOM(K)
LL=NNCOM(K-1)
DO 200 J=1 KK
DO 300 [=0,LL
XT(K.J,)=WCOM(K,]I+ X*TGCOM(K,J,I)
300 CONTINUE
200 CONTINUE
100 CONTINUE
F1DIM = FINDE(PCOM,TCOM,MSCOM,NSCOM,MNCOM XT,
+ MLCOM,NLCOM,NNCOM,0COM,LAMCOM, WOCOM)
RETURN
END

(R Ao oK o 3 30 o A K o o 2 K K R K

SUBROUTINE MNBRAK(AX ,BX,CX,FA FB,FC,FUNC)
(O KA AR SR A R K R HOK S K 362 R K o
THIS ROUTINE IS TO INITIALLY BRACKETING
A MININUM. REF " NUMERICAL RECIPIES
IN FORTRAN, THE ART OF SCIENTIFIC COMPUTING"
BY WILLIAM H. PRESS, ETC.

GIVEN A FUNCTION FUNC AND GIVEN DISTINCT
INITIAL POINTS AX AND BX, THIS ROUTINE
SEARCHES IN THE DOWNHILL DIRECTION (DEFINED
BY THE FUNCTION AS EVALUATED AT THE INITIAL
POINTS) AND RETURNS NEW POINTS AX, BX,
CX THAT BRACKET A MINIMUM OF THE FUNCTION
ALSO RETURNED ARE THE FUNCTION VALUES AT
THE THREE POINTS, FA, FB AND FC
PARAMETERS: GOLD IS THE DEFAULT RATIO BY
WHICH SUCCESSIVE INTERVALS ARE MAGNIFIED,
GLIMIT IS THE MAXIMUM MAGNIFICATION FOR
A PARABOLIC-FIT STEP.
e sk o ke o K o o o o oK o ok ok o oK o S o o e o ke ok o S o k0 o o oo R o o ok ok o ok o o
DOUBLE PRECISION AX BX,CX.FA FB,FC,FUNC.GOLD.GLIMIT,TINY
EXTERNAL FUNC
PARAMETER (GOLD=1.618034D0,GLIMIT=100.D0.TINY=1 D-20)
DOUBLE PRECISION DUM FU,Q.R,U,ULIM
FA=FUNC(AX)
FB=FUNC(BX)
IF(FB .GT. FA) THEN
DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM
ENDIF

#* % # F F ¥ O ¥ ¥ F ¥ ¥ &4 B B B 0w

pisiisieNsReliviclicliniiscleoRoEolisioRoNe]

C FIRST GUESS FOR C

C

CX=BX +GOLD*(BX-AX}

FC =FUNC(CX)
C
C INITIALIZE THE ITERATION COUNT
&

ITER=0

1 IF(FB.GE.FC)THEN

R=(BX-AX)*(FB-FC)
Q=(BX-CX)*(FB-FA)
U=BX-((BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q-R),
+ TINY),Q-R))
ULIM=BX + GLIMIT *(CX-BX)
IF((BX-U)y*(U-CX) .GT. 0) THEN
FU =FUNC(U)
[F(FU .LT. FC)THEN
AX =BX
FA=FB
BX=U
FB=FU
RETURN
ELSE IF(FU .GT. FB) THEN
CX=U
FC=FU
RETURN
ENDIF
U=CX +GOLD*(CX - BX)
FU =FUNC()
ELSE [F((CX-U)*(U-ULIM) GT.0)THEN
FU =FUNC(U)
IF(FU .LT. FC) THEN
BX =CX
CX=U
U=CX+ GOLD*(CX - BX)
FB=FC
FC=FU
FU = FUNC(U)
ENDIF
ELSE IF((U - ULIM)*(ULIM - CX) .GE. 0)THEN
U=ULIM
FU = FUNC(U)
ELSE
U=CX+ GOLD * (CX - BX)
FU = FUNC(U)
ENDIF
AX=BX
BX =CX
CX=U
FA=FB
FB=FC
FC=FU
ITER =ITER +1
GOTO 1
ENDIF

103

RETURN
END
T T e T T e LT e T
SUBROUTINE NETPRINT(LAYER ML AYR NNODE,SEED.WO0.
+ LAMDA METHOD)
(0 3K sk skt o oo oK o R KR KKK KR K o O R R o K K o K K 36 K O o
C THIS SUBROUTINE IS TO PRINT THE NETWORK ARCHITCTURE AND *
C INITIAL PARAMETERS. X
(b ok o ook oo s sk ok ook ok sk ok ok s oo ok ok KK K KKK R K KR S R KR AR R R R
INTEGER LAYER MLAYR ,NNODE(O:MLAYR),METHOD ,NSAMP
DOUBLE PRECISION SEED, TOL, W0, LAMDA

C
WRITE(*,10)LAYER
10 FORMAT(1X,THE NUMBER OF LAYER IN THE NETWORK 1S: ' I4)
WRITE(*,20)NNODE(0)

20 FORMAT(1X,'THE INPUT DIMENSION IS ', 14)
DO 30 1=1, LAYER
WRITE(*,40)I, NNODE(I)
40 FORMAT(1X, THE NUMBER OF NODE IN LAYER " I4,'1S ', 14)
30 CONTINUE
WRITE(*,60)NNODE(LAYER)
60 FORMAT(1X,THE OUTPUT DIMENSION IS ', I4)
IF (METHOD .EQ. 0) THEN
WRITE(*,100)
100 FORMAT(1X,'THE PENALTY METHOD IS USED")
ELSE IF(IMETHOD .EQ.1) THEN
WRITE(*.200)
200 FORMAT(1X,'THE STOP TRAINING METHOD IS USED")
ELSE
WRITE(*.300)
300 FORMAT(1X,METHOD DATA ERROR'"}
STOP
ENDIF
(& PRINT THE PARAMETERS
WRITE(*,50)SEED,W0.LAMDA
50 FORMAT(1X,THE SEED IS "F10.4/1X.
+ /1X,THE WO IS " F16.12/1XTHE LAMDA IS ', F16.12)
&
RETURN
END
C#******************ﬁ***#*****#tttt***i*t**#l“**#t**#“*t*'*$**'*
SUBROUTINE NETSETUP(LAYER, MLAYR NNODE SEED,
+ WO0,LAMDA METHOD)

(O o KSR o o o 3o Ko o K SR KRR SRR K RO R KRR Kk R R

C »
C THIS SUBROUTINE IS TO READ THE INPUT FILE AND SET UP *
C THE NETWORK ARCHITECTURE AND INITIALIZE PARAMETERS*
C *

Ct***t*********#***ttt***t*ttttt!l’****t##*t#t#**#tt*t*t**t*##t**t

INTEGER LAYER, MLAYR. MAXNODE, NNODE(0:MLAYR)METHOD,
+ NSAMP
DOUBLE PRECISION SEED.TOL,W0,LAMDA

IN=50

104

OPEN(UNIT = IN, FILE = 'NET.DAT', STATUS ='OLD', IOSTAT= IOERR)
[F(IOERR .NE. 0) THEN
WRITE(*,10)I0ERR
10 FORMAT('CANNOT OPEN NETWORK DATA FILE (NET.DAT). IOERR="110)
STOP
ENDIF

READ IN THE NUMBER OF LAYER

(ale e

READ(IN,*)LAYER

INPUT LAYER IS IN NNODE(0).

NnnNonNnnN

READ(IN,*)(NNODE(I),[=0,LAYER)

(6)

READ(IN,*) METHOD

READ IN SEED NUMBER, TOLERANCE, W0 AND LAMDA

& e dle)

READ(IN *) SEED, W0, LAMDA
CLOSE (UNIT = IN)
C
RETURN
END

READ IN THE NUMBER OF NODE IN EACH LAYER, THE NUMBER OF NODE IN

READ IN METHOD, (0 FOR PENALTY METHOD, 1 FOR STOP TRAINING METHOD)

e e e e e

SUBROUTINE PRINT3D(A,MLAYR NLAYR MNODE.
+ NNODE)
(% e sk e o o e s ke b o e oo o stk S e ok oo RO i R o o ok oo ook o ook o ok i ok ok ek Ok K kR KK ok R
C THIS SUBROUTINE IS TO COPY A ORIGINAL MATRIX TO NEW MATRIX *
C IT ISUSED TO COPY TG ¥
(Co ROk A ROk Je o o KR A R RO R R R R OO R R R R R AR R R kR
INTEGER MLAYR NLAYR.MNODE NNODE(0:MLAYR)
DOUBLE PRECISION A(MLAYR ,MNODE,0:MNODE)
INTEGER [LJLK,KK.LL
DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 =1 KK
DO 30 I=0,LL
WRITE(*, 100)K,J,]
100 FORMAT(IX,/LAYER #' 15, 'J# "' 15, '1#']15)
WRITE(*, 2000A(K,J.I)
200 FORMAT(1X,/A VALUE: "E15.7)
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END

(R e L st

FUNCTION DRANDOM(DL)

Ct*tt#t*******tt*:ttt*tt*****#**t***#t#t#t**m*a:t:t:ttt*t#tx**#wtt*t

& THIS FUNCTION IS TO CREATE A RANDOM NUMBER BETWEEN *

105

€ 0TO1]
CHRFFREREE AR AT RE KR EREERER R AR KRR AR R R KRR R R RN R R AR R AR RN
DOUBLE PRECISION DL, DRANDOM
C
10 DL=DMOD(16807.0D0*DL,2147483647.0D0)
DRANDOM=DL/2147483648.0D0
[F(DRANDOM.LE.0.0D0 .OR. DRANDOM . GE.1.0D0YGO TO 10
END
(O 3Kk o o b oo ook o ok sk ok o o ok ok e ok o KK o KoK o o K K K K R K R KOk
SUBROUTINE SENSITIVITY(SENSI,W,NLAYR MLAYR NNODE,
+ MNODE,T,OUT ,N,SN,MSAMP)

(0% ok oo o s oo o ok ok e kst oo K o KoK S KK K KKK K o S o S o oo o o K KK O KO o
THIS SUBROUTINE IS TO CALCULATE THE *
SENSITIVITY DEFINED IN (3.6.6). PLEASE REFER
TO (3.6.6)-(3.6.16)

SENSIIMLAYR_MNODE)--THE SENSITIVITY MATRIX. REF(3.6.12)
W(MLAYR MNODE,0:MNODE)--WEIGHT MATRIX
T(MSAMP.MNODE)--THE DESIRED OUTPUT OF THE NET
OUT(MSAMP MNODE)--THE CALCULATED OUTPUT OF THE NET
NMLAYR,MNODE)--THE SUMMATION OF THE WEIGHT REF(3.1.1)
SN -- THE SAMPLE INDEX. *
R e s
INTEGER NLAYR,MLAYR,NNODE(0:MLAYR),l.J.K. KK LL,
+ MNODE MSAMP SN
DOUBLE PRECISION W(MLAYR.MNODE.0:MNODE),
+ SENSI(MLAYR MNODE) T(MSAMP .MNODE),
+ OUT(MSAMP,MNODE) N(MLAYR,MNODE),SUM

2 % 3 B B B

plisisloNeoNoloNoNpNe]

C
[t CALCULATE THE SENSITIVITY OF FINAL LAYER (3.6.16)
C
KK=NNODE(NLAYR)
DO 10 I=1,LKK
SENSI(NLAYR.[) = -(T(SN,I) - OUT(SN.I))
+ * SIGFD(N(NLAYR.D))
CONTINUE

L=

CALCULATE THE SENSITIVITY OF EACH LAYER STARTING
FROM THE FINAL LAYER. (3.6.12)

LOOP OVER LAYER

Yy O Y C¥ Y

DO 20 K=NLAYR-1,1,-1
KK=NNODE(K)
LL=NNODE(K+1)
DO401=1KK

SUM =0.D0
DO 30 J=1.LL
SUM = SUM + SIGFD(N(K,I)*W(K+1 JI*SENSI(K+1.J)
30 CONTINUE
SENSI(K,])= SUM
40 CONTINUE
0 CONTINUE

(5]

RETURN

106

END

(O e ok ook ok ko KK o ok o o KR K R RO KRRk Kk Kk Rk

FUNCTION SIGF(X)

(ks ok ko ok ok ok ok o o R R R R R KRR R R

& SIGMOID TRANSFER FUNCTION *
€ INPUT: DOUBLE PRECISION: X *
€ OUTPUT: DOUBLE PRECISION: SIGF *

(O sk ok oo o o K R K KRR kR R R Rk R R kR

DOUBLE PRECISION X, SIGF

SIGF = 1.D0 /(1.D0 + EXP(-X))
RETURN

END

C:*t#*******#*#**t**********#*t**#*tt*t**

FUNCTION SIGFD(X)
Ct*****t**t**l*"*****t***t#***************
c DERIVATIVE OF SIGMOID FUNCTION *
C INPUT: DOUBLE PRECISION: X *
s OUTPUT: DOUBLE PRECISION SIGFD *
C*t*t*t*t**t**t!#!**#*****#****t#***t**t#*t

DOUBLE PRECISION X, SIGFD

SIGFD= EXP(-X) / ((1.DO+EXP(-X))**2)

RETURN

END

(3o oo ok ok o ok oK ok Ko K o ok o K o ook ok ok ok R KK

SUBROUTINE SUMGRAD(G NLAYR,MLAYR ,NNODE,

+ MNODE.TG)
(03 3K 3 o o KK KK KKK 3 o K K KK K S S A K oK oK o K o K o K K ok ok
C THIS FUNCTION IS TO SUM UP THE GRADIENTS *
(3 OF EACH EPOCH *
C TG(MLAYR.MNODE 0:MNODE) - STORES *
C THE TOTAL GRADIENTS OF NUMOFSAMPLE SAMPLES. .
C REF. ALGORITHM 3.6.1 (2.2) *
C G(MLAYR,MNODE ,0:MNODE)--THE GRADIENT OF THE NET OF 4
G ONE SAMPLE. 4
C TGMLAYR,MNODE 0:MNODE)-- THE TOTAL(SUMMATION) GRADIENT*
(65 OF ALL SAMPLES. REF. ALG(2.3) "
(O3 o ok oo o o R SR K oK KK ook oK Ko o R ok o o o R O ok R K

INTEGER NLAYR, MLAYR MNODE.l.J.K,KK.LL,
+ NNODE(O:MLAYR)
DOUBLE PRECISION G(MLAYR MNODE 0:MNODE),
+ TG(MLAYR.MNODE.0:MNODE)

CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
WEIGHTS ACCORDING TO (3.6.6)
LOOP OVER LAYER

@ 0O 55

DO 10 K=I1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
DO 30 1=0.LL
TGEK,LD=TGK,J.D + GK, 1)
30 CONTINUE
20 CONTINUE

107

10 CONTINUE
RETURN
END
Ct*****t*****tt*tit*****t*t#ttt**t##t#*#*t*#t*i**t‘tltttttttt*t**t‘iti
SUBROUTINE SUMWEIGHT(P,ON MLAYR . NLAYR.MNODE.A.
+ NNODE,W,SN.MSAMP)
CHEFREERFEREEEREEREERREREERRRERRE R R RRRIRRERCREREERERRERERRER R R KRR R R LN
THIS SUBROUTINE IS TO CALCULATE THE SUM OF *
THE INPUTS OF A NEURON JIN LAYER K
PLEASE REFERTO (3.1.1)
N(MLAYR,MNODE)--STORES THE SUM OF INPUTS OF
NEURON JIN LAYER K
A(0'MLAYR ,MNODE)--STORES THE OUTPUT OF
NEURON JIN LAYER K
A(O:MLAYR,0:MNODE) -- STORES THE INPUT DATA.
P(MNSAMP.NMNODE) -- 1S THE INPUT DATA FROM ONE SAMPLE
" “1SAMP,MNODE) -- IS THE DESIRED OUTPUT DATA FROM ONE
SAMPLE
IWMSAMP MNODE) -- IS THE OUTPUT CALCULATED FROM THE
NET.
W(MLAYR,MNODE,0:MNODE) -- THE WEIGHT OF THE NET.
SN -- THE SAMPLE INDEX.
ook sk ok ok ok ok ke ok ok ok ok ksl sk R Rk Rk ek ok kR sk kR kR kR R ko kR kR Rk R R
INTEGER MLAYR MNODE NNODE(0:MLAYR).LLJK,
+ NLAYRL,SNMSAMP
DOUBLE PRECISION N(MLAYR,MNODE),A(0:MLAYR,0. MNODE).
+ W(MLAYR MNODE,0:MNOCDE),SUM,P(IMSAMP MNODE),
+ O(MSAMP MNODE)

¥ @ O

* # X #* ¥ * ¥

* - * - - o

plislisielioNelolpiielieleils

& STORE INPUT DATA INTO A(0,MNODE)
DO 100 I=1, NNODE(0)
A(0.J=P(SN,I)

C PRINT *'SN="'SN.P(SN,I="'P(SN,I)

100 CONTINUE

C STORE THE BIAS
A(0,0)=1.D0

CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K

LOOP OVER LAYER
LOOP OVER LAYER

DO 10 K=1,NLAYR
C LOOP OVER CURRENT NODE (TARGET)

DO 20 J=1, NNODE(K)
C LOOP OVER PRVIOUS NODE (SOURCE)
SUM = 0.0D0
DO 30 [=0,NNODE(K-1)
SUM = SUM + WK J.h*A(K-1,1)

C
¢
C
C
C

30 CONTINUE
C CALCULATE THE SUM OF | NEURON J IN LAYER K
N(K.J)=SUM

108

C WRITE (*, 500) K,JN(K,J)

C500 FORMAT(1X,/LAYER #'13, NODE #'I3 N =", F16.10)

C CALCULATE THE OUTPUT OF NEURON J IN LAYER K
A(K,J) = SIGF(N(K,T))

C WRITE (*, 400) K.J,AK.J)

C400 FORMAT(1X,LAYER # '3, NODE # '3, A=". F16.10)

20 CONTINUE

C THE BIAS
A(K,0)=1.D0

10 CONTINUE

C STORED THE OUTPUT IN A(NNODE(NLAYR))
DO 200 I=1, NNODE(NLAYR)
O(SN,)=A(NLAYR,D)

200 CONTINUE
RETURN

END

109

VITA
Ping Jiang
Candidate for the Degree of

Master of Science

Thesis: A PENALTY METHOD TO REDUCE OVERFITTING IN ARTIFICIAL

NEURAL NETWORKS
Major Field: Computer Science

Biographical:

Personal Data: Born in Shanghai, P. R. China, July 1962
the son of Su Zen Zhu and Yun Jiang.

Education: Graduated From Shanghai #2 High School, Shanghai, P. R. China;
received Bachelor of Science Degree in Structural Engineering from Tongji
University in July 1984; received Master of Science Degree in Civil
Engineering from Oklahoma State University in December 1994;

completed requirements for the Master of Science degree at Oklahoma
State University in July 1996.

Professional Experience: Engineer, Shanghai Municipal Engineering Institute,
Shanghai, P. R. China from 1984 through 1991.

