
IMPROVED SIGNAL EXTENSION METHODS

FOR WAVELET SMOOTHING

By

JONATHAN MARK HYNSON

Bachelor of Science

Oklahoma State University

Stillwater. Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1996

IMPROVED SIGNAL EXTENSION METHODS

FOR WAVELET SMOOTHING

Thesis Approved:

Dean of the Graduate College

Jl

PREFACE

This research work has developed as a subset of pattern-based data analysis

research. Pattern-based data analysis requires a relatively smooth trend to provide

accurate and useful classification and analysis of the chemical process. Yet, most sensor

signals contain both noise and measurement error which makes pattern classification

difficult. Wavelet decomposition provides an excellent trend extraction technique. The

fundamental sensor trend is extracted by eliminating the process noise and measurement

error. The resulting smoothed sensor signal can be used for pattern-based classification

and analysis.

Wavelet representation is similar to Fourier representation, however, wavelets

offer several distinct advantages over Fourier representation. The implementation of

wavelet decomposition causes end-distortion of the extracted trend. To overcome this

end-distortion, an extension technique is used. The sensor signal is extended, then

smoothed with the wavelet decomposition. The extended smoothed trend is removed to

leave a smoothed version of the original sensor signal. The objective of this thesis is to

develop an adaptive extension technique to eliminate the end-distortion of the

III

extracted trend. The adaptive extension technique can be applied to many different types

of process sensors.

This thesis proposes five new adaptive extension techniques. Each of the

techniques is evaluated to determine which technique performs the best. The technique

that is recommend as the best extension technique is the simplest to implement and has

the least amount of computational requirements.

There are several people that I would like to thank for their work and

encouragement as I completed my work for a Master of Science in Chemical Engineering

at Oklahoma State University. First and foremost I would like to thank my parents Larry

and Kathy Hynson. They have provided more than enough love and encouragement as

they raised me. Their numerous words of encouragement have provided me with the

endurance to continue. I would also like to thank my siblings: Janette, Jennifer, and

Jason. They are always dear to my heart.

I would like to thank Dr. Rob Whiteley. As my advisor he has unselfishly put

much time and effort into my research and, specifically, this thesis. I would also like to

thank Dr. AJ Johannes and Dr. Martin High for serving on my thesis committee.

Additionally, I would like to thank Bruce Colgate and Jack DeVeux at Phill ips Petroleum

for their work on the research project.

IV

I would also like to thank Mike Dodson and Keith Crone for their spiritual

guidance and encouragement while I was a student at OSU. There are several fellow

students who have offered words of encouragement and for advice which I will be

eternally grateful. 1 would like to thank Paul and Megan Belcher for their continual

encouragement to finish this thesis. I would like to thank Brian Neely and Greg Holland.

As fellow graduate students, they have helped me in so many ways.

In conclusion, I will summarize my research experience with a quote from King

Solomon. He stated, "Of making many books there is no end, and much study wearies

the body." [Bible, Ecclesiastes 12: 12b]

v

Chapter
TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Background 1
1.2 Problem Addressed in Thesis 5
1.3 Organization of Thesis 8

n.

III.

WAVELETS BACKGROUND 9
2.1 Introduction 9
2.2 Fourier Representation , 9
2.3 Wavelet Representation 13
2.4 Wavelet Decomposition 19
2.5 Trend Extraction 22
2.6 Implementation of Trend Extraction 25
2.7 Chapter Summary 29

PROPOSED EXTENSION METHODS 3]
3.1 Introduction 3)
3.2 Raghavan NET2 Technique 36
3.3 Dead-zone 45
3.4 Adaptive NET2 Extension Technique 50
3.5 Square Root Objective Function Extension Technique 51
3.6 First Point Past Dead-Zone Extension Technique 52
3.7 Fuzzy Tie-Point Extension Technique 52
3.8 Weighted Fuzzy Tie-Point Extension Technique 58
3.9 Chapter Summary 62

IV. Performance of Proposed Extension Techniques.. 65
4.1 Introduction .. 65
4.2 Ability to Minimize End-Distortion 65
4.3 Robustness Evaluation 83
4.4 Sampling Rate Evaluation 88
4.5 Evaluation of Composite Results 90

VI

Chapter Page

V. CONCLUSIONS 94
5.1 Conclusions 94
5.2 Recommendations for Future Work 95

LIST OF REFERENCES 97

APPENDIXES 101

APPENDIX A 101
A.I Fuzzy Logic 101
A.2 Approximate Reasoning 104
A.3 Defuzzification 107

APPENDIX B... 109
B.I Computer Code for Adaptive NET2

Extension Technique 109
B.2 Computer Code for Square Root Objective Function

Extension Technique 110
B.3 Computer Code for First Point Past Dead-Zone

Extension Technique III
B.4 Computer Code for Fuzzy Tie-Point

Extension Technique III
B.5 Computer Code for Weighted Fuzzy

Extension Technique 127

VII

LIST OF TABLES
Table Page

3-1. Rule-base used to rate the tie-point for Fuzzy Tie-Point
extension technique ,....... 55

3-11 Rule-base for rating each possible tie-point for the
Weighted Fuzzy Tie-Point extension technique 60

4-1. Evaluation of extension techniques to minimize
end-distortion for the flow meter sensor 74

4-II. Evaluation of extension techniques to minimize
end-distortion for the temperature sensor 79

4-llI. Evaluation of extension technique for robustness
on flow meter 84

4-1V. Evaluation of extension technique for robustness
on temperature meter 87

4-V. Sampling rate comparison of extension techniques 90

VIII

LIST OF FIGURES

Figure Page

1-1. Process sensor noise from two different process sensors " 2

1-2. Extracted sensor trends for two different process sensors 3

1-3 Process sensor pattern Pgenerated from smoothed trend plots 4

1-4. Process sensor pattern generated from original sensor signals.
The sampled representation for the upper trend plot
is clearly not representative of the true trend 5

1-5. Example of end distortion when using discrete wavelet transforms 7

2-1. Fourier decomposition of a signal and the
reconstruction to time domain 12

2-2. (a) Original wavelet function, (b) translated wavelet function,
and (c) dilated and transl ated wavelet function 15

2-3. Daubechies family wavelet and scaling function
with order = I 17

2-4. Daubechies family wavelet and scaling function
with order =3 18

2-5. Daubechies family wavelet and scaling function
with order =6 19

2-6. Decomposition pyramid for wavelet representation .. 23

2-7. Decreasing number of blurred coefficients used to represent
a signal at different levels of decomposition 24

2-8. Number of terms used to calculate the convolution
term at each index .. 28

ix

3-1. Original sensor signal to be smoothed 32

3-2. Extended signal prior to wavelet smoothing 33

3-3. Extended signal after wavelet smoothing 34

3-4. The original sensor signal with the extracted trend 35

3-5. The inverted symmetric extension technique. The extended
signal is generated from the windowed signal........... 37

3-6. Inverted symmetric extension technique with high tie-point 38

3-7. Inverted symmetric extension technique with a low tie-point 39

3-8. Smoothed signal using inverted symmetric extension
technique with high tie-point 40

3-9. Smoothed signal using inverted symmetric extension
technique with low tie-point 41

3-10. Smoothed signal using inverted symmetric extension
technique with correct tie-point 42

3-1 I. Sensor signal showing the periodic frequency of the
sensor noise 45

3-12. Power spectrum of sensor signal . 46

3-13. Extended signal with dead-zone less than dominant period of
the sensor signal. Notice the extended signal is moved up 48

3-14. Extended signal with dead-zone equal to dominant period
of the sensor signal. Notice the extended signal is very
close to the current sensor values 49

3-15. Fuzzy Tie-Point extension technique membership function
for the mean squared deviation 54

3-16. Fuzzy Tie-Point extension technique membership function
for the index number 54

x

Figure Page

3-17. Fuzzy Tie-Point extension technique ti.e-point rating
membership function 56

3-18. Weighted Fuzzy Tie-Point extension technique membership function
for the mean squared deviation 59

3-19. Weighted Fuzzy Tie-Point extension technique membership
function for the index number 59

3-20. Weighted Fuzzy Tie-Point extension technique rating of each point 61

4-1. The test standard: Extracted trend as smoothed in
the middle of the signal................... 66

4-2. Compared trend: Extracted trend as smoothed at the
end of the signal : 67

4-3. Flow meter sensor signal for the seven days. Sample
period is one minute 70

4-4. Flow meter sensor power spectrum plot. 1000 sensor values
used with a sample period of one minute 71

4-5. Temperature sensor signal for the seven days. Sample
period is one minute 72

4-6. Temperature sensor power spectrum plot. 1000 sensor
values used with a sample period of one minute 73

4-7. Worst case for smoothed flow meter sensor signal for the
seven days using First Point Past Dead-Zone
extension technique 77

4-8. Worst case for smoothed flow meter sensor signal for the
seven days using Weighted Fuzzy Tie-Point
extension technique 78

4-9. Worst case for smoothed temperature sensor signal for the
seven days using First Point Past Dead-Zone
extension technique 81

XI

Figure Page

4-10. Worst case for smoothed temperature sensor signal for the
seven days using Weighted Fuzzy Tie-Point
extension technique..... 82

4-9. Example of Raghavan NET2 extension technique 92

4-10. Example of First Point Past Dead-Zone extension technique... 93

A-I. Graphical representation of fuzzy set of tall people 103

A-2. Fuzzy logic impl ication with one condition 104

A-3. Example of fuzzy logic implication with one condition 105

A-4. Fuzzy logic implication with one condition 105

A-5. Fuzzy logic two conditions implication rule-base 106

A-6. General form of Mamdani's implication rule for two conditions 106

xii

Glossary

Dead-Zone

NET2

Tie-Point

Threshold

Roman Letters

a

b

f

I,

G

H

j

NOMENCLATURE

Minimum number of sensor points included in the
calculation of the tie-point

New Extension Technique 2 developed by V. Raghavan

Point where the extended signal is appended to the current
sensor signal

Maximum number of sensor points included in the
calculation of the tie-point

Fourier coefficients for cosine basis function or scaling
function coefficients

Fourier coefficients for sine basis function or wavelet
function coefficients

Scaling function coefficients

Wavelet coefficients

Frequency

Sampling rate of the signal

Highpass filter

Lowpass filter

Index number (integer)

Index number (integer)

XllI

k

m

M

n

N

T

x

XTP

Greek Letters

¢J(X)

VJCX)

Index number (integer)

Dimension of vector

Mean squared deviation

Dimension of vector

Integer value representing the total number of points

Period of frequency

Vector representation

Mean

Tie-point

Threshold number

Dead-zone size

Objective function use d in square root extension technique
to calculate the tie point

Fuzzy membership value for element Xl

Scaling function

Wavelet

xiv

Chapter One: Introduction

1.1 Background

New computer applications for process monitoring and control continue to be

developed. One application being pioneered at Oklahoma State University is the

utilization of the computer for advanced process monitoring, specifically pattern-based

sensor data analysis [Raghavan, 1995; Raghavan and Whiteley,]993; Whiteley and Davis

]994; Whiteley and Davis 1993]. Tlie methods developed by Whiteley et al. use trend

data for one or more sensors to monitor a chemical process. The trend patterns for the

sensors are combined to develop a fingerprint of the current operating condition of the

process. The fingerprint is then compared with historical plant operating data to classify

the current process conditions. This information can be made available for monitoring

purposes or used for other applications [Anderson, 1993 and Sinha, 1995].

Pattern-based process monitoring can be broken up into three distinct tasks:

individual sensor trend extraction, composite pattern (fingerprint) formation, and pattern

classification. The three steps are performed sequentially. The first step is trend

extraction. During trend extraction, the fundamental trends associated with each of the

sensors which make up the process fingerprint are identified. Almost all sensors are

affected by both measurement and process noise. These effects make pattern

classification very difficult. The goal of trend extraction is to reduce or eliminate as

much noise and interference as possible. The following figure illustrates an example of

the process noise in two different sensors.

Figure 1-1: Process sensor noise from two different process sensors.

Q)
;:,

~...
o
(/)

c:
Q)
en

I I \i Nr'\
~,~i··_··_·_--;·rfflJ~ -
--- -_ ~~-~ ~ ~~~~ ~~ - + -..iJ~-~J1fj~r I

I I I
I I I
I I I
I I I

---------~-~~~~--
__ I I

...... I I I
I I I
I I I

Increasing Time

Both sensors have noise which can make the pattern classification more difficult. The

noise in the upper trend plot in Figure 1-1 is characterized by a larger amplitude and a

higher frequency. The lower trend plot exhibits noise with a smaller amplitude and a

lower frequency. In both cases a technique is needed to extract the fundamental trend of

the signal. In essence, trend extraction attempts to mimic human intuition to pick out the

underlying process trend. The following figure shows the extracted trend from the

process sensors.

2

I
I

I , I----------,-- T--------------------
I I
I I
I I
I I
I I
I I- -- --- --- -.------ --'--i- ----- ---,

Increasing Time

Figure 1-2: Extracted sensor trends for two different process sensors.

The extracted sensor trends are then used for the second step of pattern-based data

analysis. The second step is pattern development. During this step a vector

representation of the extracted trend patterns is formed to provide a fingerprint of the .

process signal. The first trend is sampled within a fixed length pattern window to form a

vector of sampled sensor values. The next sensor trend is sampled and the values are

concatenated to the first sensor trend vector. This continues until all the sensor trends

have been sampled and combined to form one vector. This is the process fingerprint.

This fingerprint is then used to classify the process conditions.

3

Pattern Window. ..

Increasing Time

I---------"'1--
I
I
I
I
I
I

---~-----i--------
I

0.2 L--__............__-.L........L... ..a...-_.....L----I

0.6 r------,----+~---,._-_+___,

0.3

0.5

0.4

Figure 1-3: Process sensor pattern Ii generated from smoothed trend plots.

[0.28 0.27 0.29 0.300.300.430.47 0.520.48 0.56]T.

For Figure 1-3, the fingerprint or process pattern would be represented as the vector P =

The last step is pattern classification. The fingerprint representing the process

pattern can be classified using any suitable pattern recognition method [Whiteley and

Davis 1994; Whiteley and Davis 1993]. The classification is based on historical data.

The current sensor pattern is compared to historical patterns and a match is made.

4

1.2 Problem Addressed. in Thesis

Trend extraction is a key step in pattern-based sensor data analysis. The

extracted trend must maintain the fundamental sensor trend while eliminating noise and

interference. Otherwise, the sampled pattern vector as illustrated in the following figure

is not representative of the true trend. Pattern classification becomes more robust as

noise effects are eliminated.

Pattern Window

•

ell
~

tii
>
to-

o I

~ ----------,--
Q) I
(/) I

I

I
I
I- -- --- --- -,-- ------
I

Increasing Time

Figure 1-4: Process sensor pattern generated from original sensor signals. The sampled
representation for the upper trend plot is clearly not representative of the true
trend.

Discrete wavelet transforms [Mallat, 1989; Daubechies, 1990; Rioul and

Duhamel, 1992; Walter, 1992; Chui, 1992a] can be used to extract the fundamental trend

while eliminating process noise. The wavelet transforms provide an ability to adjust the

noise filtering. When a higher level of smoothing is used, then the wavelet transforms

5

provide a trend with l_ess of the high frequency content of the sensor signal. Alternatively,

a lower level of smoothing can be used where more of the high frequency signal is

retained in the extracted trend. This thesis does not address selection of the appropriate

level of smoothing but focuses on an implementation problem which occurs after the

degree of smoothing has been fixed.

Wavelet transforms have a problem when applied to real-time appli.cations.

Unless special steps are taken as described in this thesis, application of the wavelet

transforms to a real-time sensor signal will cause end-distortion at each end of the signal.

This end-distortion may cause the extracted trend to deviate from the true underlying

trend. End-distortion is a mathematical consequence of implementing wavelet smoothing

using a traditional convolution filtering approach. Figure 1-5 illustrates distortion of the

extracted trend at the real-time end of the process signal. The right side of the smoothed

sensor signal exhibits end-distortion caused by the wavelet transforms. The smoothed or

extracted trend indicates the process measurement is declining when, in fact, it appears

that the measurement is actually leveling out. Correct classification of the process state

cannot be made unless the extracted trend is also correct.

6

••
I
I
I

I
I

I I

--.-----------.--~---.-.------------~-- ----------·-·--t--·--------··-·--

Figure 1-5: Example of end distortion when using discrete wavelet transforms.

I
Real TimeIncreasing Time

.~~~,~~~~~---_.-.-
I
I
I
I
I
I
I
I
I-------- ------ -- --- ---_.--- .. ------

_________________ ,, .. __. .. • 4. _

-----------------r-····-

...
o
<J)

c:
CIl
en

This work proposes five techniques to eliminate or minimize the end-distortion

associated with wavelet transforms. These techniques are based on the inverted

symmetric extension technique originally proposed by Raghavan [Raghavan, 1995].

Each of the five proposed techniques are discussed in detail. Then the five techniques are

evaluated to determine which technique provides the best overall trend extraction

performance.

7

1.3 Organization of Thesis

This thesis has fi ve chapters. The second chapter covers the implementation of

wavelet transforms and the problem associated with using the convolution filtering

approach. All five of the proposed extension techniques are presented in the third

chapter. The performance evaluation of all the extension techniques is presented in the

fourth chapter. The last chapter summarizes the conclusions for this work and includes

recommendations for future work concerning trend extraction using wavelet transforms.

8

Chapter Two: Wavelets Background

2.1 Introduction

This chapter presents the mathematical background on Fourier signal

decomposition and wavelet signal decomposition. The Fourier decomposition is

discussed first as an introduction to concepts associated with the more complex wavelet

decomposition used for signal smoothing. The procedures for implementing both the

Fourier and wavelet decomposition are also provided in this chapter. The last part of this

chapter covers the application of Fourier and wavelet decomposition for trend extraction.

2.2 Fourier Representation

A Fourier decomposition converts a time-series signal into a sum of unique sine

and cosine functions [Tolstov, 1962 and Weaver, 1983]. The sine and cosine functions

are the basis functions for the Fourier series representation. These basis functions are

periodic and are referred to as global rather than local basis functions since they are

defined for all time. The general form of the discrete Fourier series is as follows:

(2.1).

9

-

The sensor signal X =[xeO) x(l) x(2) ". x(N-1)] has N elements. The xU) terms are the

sensor measurements at the JoUl sampling instant. The sensor signal is indexed from j =0

to j =N-l. The Fourier coefficients are represented by the ai and bi terms and are

calculated from the following formula:

10

and NI2-1 sine coefficients.

resulting signal X is unique.

(2.2b).

(2.2a).

as calculated from above.

2 N-I [2 "Ja; = -Lx(j)cOS 1rlJ
N ;=0 N

? N-I [2 "Jb
i

=..::.. LxU)sin 1rlJ
N i=ll N

There is no bo term,
with ao = 2ao as calculated from above

and for an even number of N, a N12 +1 = 2aN12 +)

when the Fourier coefficients are used to reconstruct a signal using Equation 2.1, the

The Fourier coefficients provide a frequency domain representation of the original

there is exactly one set of Fourier coefficients that represent a sensor signal. Likewise,

time domain signal. The Fourier coefficients indicate the amplitude or contribution of an

individual frequency to the original time domain signal. The Fourier transform is an

exact one-to-one transform [Morrison, 1994]. When converted to the frequency domain,

For a signal with an even number of N sensor points, there are a total of N Fourier

coefficients which can be used to represent the sensor signal; N/2+ 1 cosine coefficients

-

The alternative representation provided by a Fourier decomposition is illustrated

by the following example. Consider the sensor signal X = [x(O) x(l) x(2) x(3) x(4) x(5)]

= [3 7 6 4 9 2]. The Fourier representation for X can be generated from Equations 2.2a

and 2.2b. The Fourier coefficients are calculated as following:

ao = 5.17
aJ = -1.33
bl = 0.58
a2 =-1.67
b2 = 2.31
a3 = 0.83

The original sensor signal can be recovered from the Fourier coefficients by application

of Equation 2.1. The two vectors provide alternative representations for the same signal

X with the time domain representation given by [376492] and the frequency domain

representation given by [5.17 -1.33 0.58 -1.672.31 0.83].

The following figure provides graphical interpretation of Equation 2.1 for the

previous example. Each of the terms from Equation 2.1 is plotted with the appropriate

coefficient. The higher terms represent the higher frequency components of the signal.

At each integer point along the x-axis the values of the periodic functions can be summed

to reconstruct the sensor measurement at that sampl ing instant. For example, at j = a the

values of each of the six basis functions are 5.17. -1.33, 0, -1.67, 0, 0.83. These all sum

to 3 which is the value of the first term of the original signal. The conversion back to the

time domain results in the reconstruction of the original signal X = [376492].

II

-

12

Figure 2-1: Fourier decomposition of a signal and the reconstruction to time domain.

s

II

432

II

• Original time-series signal

O"-=~-+----+----:::r"=---_-~~-=:::::"-'-=--~+---I---~_---l

-1

-2 L-- --.J

o

10 r----------------------:------------,

9

8

7

6

St--------4------------------------4
4

3

2

In summary, the Fourier decomposition provides a method to generate alternative

representation for a time-series signal. The representation involves two basis functions

and provides the ability to decompose a discrete sensor signal into a unique set of

In practice, Equation 2.2 is seldom used to calculate the Fourier coefficients for a

signal. Instead, the Fast Fourier Transfonn (FFf) is typically employed [Press et aI.,

1992; Gray and Goodman. 1995]. The FFf is a very efficient numerical method to

calculate the individual Fourier coefficients for long signals. In order to utilize the Fast

Fourier Transfonns, the signallenglh must be a power of 2.

more detailed and technical information on wavelet transfonns, there are numerous

1990; Daubechies, 1992; Rioul and Duhamel, 1992; Chui, 1992; Chui, 1992a; Vetterli

However, the wavelet transforms use different basis functions which are localized in time

(2.3).f(x) = I a{4J(2 1 x - k) +IbiVl(2 i x - k)
A k

J3

Mallat, 1989a]:

Wavelet representations are conceptually similar to the Fourier representation,

This section is a brief introduction to wavelet representation. The discussion is

limited to provide only a basic understanding and appreciation for the need and

articles and books available [MalIat, 1989; MalIat, 1989a; Mallat, 1989b; Daubechies,

rather than global [Daubechies, 1992]. The general form for a wavelet representation of a

and Herley, 1992; Rioul and Duhamel, 1992; Strang, 1989; and Strang, 1992].

development of the extension techniques which are presented in the next chapter. For

signal is as follows [Chui, 1992; Daubechies, 1990; Daubechies, 1992; MaHat, 1989;

individual frequency components. This result is exploited in the next chapter when it

2.3 Wavelet Representation

becomes necessary to identify the dominant frequency in a sensor measurement prior to

signal extension and trend extraction.

The x1h element of the sensor signal is represented by theftx) tenn; the a and b tenns are

the decomposition coefficients. The change in notation from representing the signal as

f(x) rather than xU) is due to the use of the j index in Equation 2.3. The basis functions in

Equation 2.3 are q, and 'II. These are special functions with ljI defined as the wavelet

function and q, defined as the scaling function. The wavelet and the scaling function are

complex, high order polynomials rather than simple cosine and sine functions as used in

the Fourier decomposition.

The special form of Equation 2.3 results in a number of useful characteristics.

The 2! term in both basis functions imparts a dilation property which causes the wavelet

and scaling functions to constrict (compress) at higher frequencies and dilate (expand) at

lower frequencies. The k tenn in Equation 2.3 imparts time translation. The translation

and the dilation characteristics mean that the basis functions are time-frequency

dependent localized functions. The combination of these two characteristics imparts the

ability to perform both time and frequency analyses using a discrete wavelet

decomposition. The following figure demonstrates how the dilation and translation tenns

work.

14

Scaling Function

20

20

10

Wavelet Function

10 20

o

1

2

1 fI

-1 L-- ----'

o

(a)

(b)

Figure 2-2: (a) Original wavelet function, (b) translated wavelet function, and
(c) dilated and translated wavelet function.

20
x ----~..~

15

2

1

o ~~

-1

-2-1 L..-- --J

o 10 20 0 10

..c
a..

(f)

a.. 0.-

(c)

16

translation of the wavelet and scaling functions.

fundamental concepts employed are independent of wavelet family and order. The

(2.4a).

(2Ab).

¢(x) = I ck <!J(2x - k)
k

'I!(x) = I dk ¢(2x - k)
k

presented in later chapters, are applicable to any family of wavelets however as the

The wavelet and scaling basis functions are also special and follow the form:

As just mentioned, different wavelet and scaling functions can be generated

respectively. Depending on the constraints imposed of! ¢(x) and l{J(x) when these

values. Typical constraints include orthogonality and orthonomality of the wavelet and

family determines the length of the convolution filters used to implement the wavelet

functions are synthesized, the scaling function and wavelet coefficients will change

based on the complexity of the wavelet and scaling functions. The order of the wavelet

family of wavelets [Daubechies, 1990 and Daubechies, 1992]. The results, which are

transfonns. The work reported in this thesis has focused on the use of the Daubechies

scaling functions. As before, the k tenn in Equations 2.4a and 2Ab imparts the

Ck and dk. tenns are the scaling function coefficients and wavelet function coefficients,

The ¢(x) and tp(x) tenns are the scaling functlon and wavelet function respectively. The

depending on the conditions that the functions are required to meet. This leads to the

development of different wavelet "families." These families are then divided into orders

-

represent the lowest order. The next figure shows a more complex wavelet and scaling

following illustrations show the wavelet and scaling function for the Debauches family

These are the least complex wavelet and scaling functions in the Daubechies family; they

1

o

Wavelet Function

11------,

-1

1.5 ,..-------r-----,

0.5

-0.5

-1.5 '-----"------'
o

II)

a.
/I.,,

10.5
--> X

0'-----'------"
o

17

11----------,1

Scaling Function

0.8

0.4

0.2

1.2 ,..-----,.------,

:c
';: 0.6

I
I

Figure 2-3: Daubechies family wavelet and scaling function with order =I.

for different orders.

function.

-

5
._> X

-1

Wavelet Function

1

2..-------...,

1.5

-0.5

en 0.5
0-
1\
: 0

--> x

Scaling Function

0.2

a

1

0.8

1.4.-----------.

1.2

-0.2

-0.4 '-------'-------' -1 .5 '----------'
o 5 0

:E 0.6
0-
1\
: 0.4

Figure 2-4: Daubechies family wavelet and scaling function with order =3.

increases the order of the polynomial used to generate the wavelet and scaling functions.

The complexity of the functions increases as the order increases. The higher order

For the work in this thesis, the Daubechies family with an order of six was used.

The corresponding wavelet and scaling functions are shown in the following figure.

18

Scaling Function Wavelet Function
1.5

1 1'1

1

0.5
0.5

:c en
c.. c.. a
1\ 1\
I I
I

~
I

0 -0.5

V
-1

-0.5
-1.5

0 5 10 0 5 10
--> X --> X

Figure 2-5: Daubechies family wavelet and scaling function with order =6.

2.4 Wavelet Decomposition

As described in the appropriate literature, there are a number of techniques which

can be used to generate a wavelet decomposition of a discrete signal. The most elegant

and easily understood technique employs matrix algebra [Strang, 1989 and Strang, J992].

Unfortunately, the matrix method is industrially impractical due to large, sparse matrices

which are computationally difficult to handle. The most common method to perform

19

wavelet decomposition employs a convolution filtering approach. This is the technique

used for this research project.

In order to use this method, the discrete sensor signal must be a power of two.

That is, the signal must have 2N points where N is an integer value. The discrete process

sensor signal is then converted into a series of decomposition coefficients (at and bi)

generated from the scaling (c1) and the wavelet (di) coefficients as per Equations 2.3,

2.4a, and 2.4b.

To illustrate, consider a signal represented by the vector a~ =[a~ a~ a~ a~ a.~

a~ a~ a~]. The superscript denotes the number of levels of decomposition. Hence,

each element of the original signal has a superscript of zero. For n points in the original

signal, there are n/2 coefficients of a~12 and b~12 generated at the first level of

20

The index j denotes the level of decomposition. The a and b coefficients are the

(2.5b).

(2.5a).

. n
J = 1, .. ,-; k = l,oo.,n

2

j=I, .. ,n; k=l, n
2

decomposition coefficients with the superscript representing the level of decomposition.

decomposition. These decomposition coefficients are generated by the following fonnula

[Chui, 1992 and Daubechies, 1992]:

-

The c and d terms are the scaling function and wavelet coefficients, respectively, as

defined previously. The decomposition coefficients are calculated from Equations 2.5a

and 2.5b and depend on the wavelet family and order.

After one level of decomposition the original eight element example signal from

the previous page is represented by the following coefficients [all a~ a: a~] and

[b/ b~ b~ b~]. The a l coefficients are used as the input for the next level of

decomposition to generate the a2 and b2 coefficients. This results 'in the following

coefficients [a; a~] and [bJ
2 b;]at the secon~ level of decomposition. The maximum

number of levels of decomposition depends on the size of the original signal. With 2N

points, then the signal can be decomposed N levels. For this case, the signal contains

decomposition where there are no b's).

there are half as many a's and b's as the previous level (except for the zero level of

eight values so the signal can be decomposed three levels. At the third and final level of

(2.6).k = l,.. ,n.

21

a~ =Ia;c2i-1 + IbJd2i.k
J.: 1

The original signal can be reconstructed from the decomposition coefficients as

follows [Chui, 1992 and Daubechies,]992]:

decomposition. the coefficients would be [a;] and [bi']. At each level of decomposition,

-

When the original signal (a~) is reconstructed with all the decomposition coefficients,

there is perfect reconstruction. The reconstructed signal is an exact duplicate of the

original signal.

2.S Trend Extraction

Wavelet decomposition provides an appealing technique to extract the

fundamental trend of a sensor signal. The original signal as denoted by a~ is

decomposed into the a:'12 and b~1l coefficients. These coefficients break the signal up

into the smoothed part of the signal and the high frequency component of the signal. The

a l coefficients are the blurred coefficients; they repre~ent the smoothed signal. The b l

coefficients are the detai I coefficients. These coefficients represent the high frequency

component of the signal at the frequency associated with the level of decomposition. At

each· level of decomposition only the blurred coefficients are used to decompose the

signal. The following figure illustrates how the decomposition process works.

22

Figure 2-6: Decomposition pyramid for wavelet representation.

Detail coefficients

a l

/\
/\

At the first level of decomposition, the original signal (a~) is separated into two

Blurred coefficients

the blurred coefficients as generated at each level of decomposition.

repeated at each level of decomposition; the smoothed signal continues to be broken into

a smoothed component and a high frequency component. The following figure illustrates

then further decomposed into the blurred signal and the detail signal. This process is

composite signals; the first composite signal captures the smooched part of the original

detail coefficients (b,:I2)' At the next level of decomposition, the blurred signal (a/I,12) is

signal. It is represented by the blurred coefficients (a~I2)' The other composite signal

contains the high frequency component of the original signal. It is represented by the

23

3)(_

time scales. The blurred coefficients are used to generate an increasingly smoothed

original signal. At the second level of decomposition, there are only two blurred

)(

87

)()(

6

)(

54

)(

32

)(o

..
I

1)()()(xc,g
"iii >-R <)

E c
CD

0 ::>
<) 0-
CD l!:0 u.
'0 Ol

iii c:
> "in

2CD III X)(
....J CD

U
.EO

increasing levels of decomposition to capture the original signal over increasingly larger

Figure 2-7: Decreasing number of blurred coefficients used to represent a signal at
different levels of decomposition.

approximation of the original signal as the level of decomposition increases.

blurred coefficients cover a larger time scale. The basis functions dilate (expand) with

From Figure 2-7, the number of blurred coefficients decreases by a factor of two at each

level of decomposition. For example, there is a signal with eight elements. At the first

level of decomposition, there are only four blurred coefficients used to represent the

coefficients to represent the smoothed composite of the original signal. At each level, the

-

24

-

Trend extraction uses only the blurred coefficients to reconstruct the smoothed

signal. At each level of decomposition, the original signal is smoothed further. The

blurred coefficients capture the smoothed part of the signal while the detail coefficients

capture the high frequency component of the signal. At an appropriate decomposition

level, the smoothed signal is reconstructed using only the blurred coefficients for that

level. The detail coefficients are ignored. Since, the detail coefficients are not used in the

reconstruction of the smoothed signal; the high frequency component of the original

signal has been eliminated. This reconstructed signal represents the fundamental sensor

trend with no high frequency noise or measurement error. The more levels of

decomposition, the more smoothed the reconstructed signal is.

2.6 Implementation of Trend Extraction

As previously stated, this research uses the convolution filtering approach to

generate the wavelet decomposition. The blurred and detail coefficients are generated

with two different convolution filters. These are special filters generated from the

wavelet family and wavelet order [Mallat, 1989; Mallat, 1989a; Mallat, 1989b; Vetterlj

and Herley, 1992; Rioul and Duhamel, 1992]. The first filter is a lowpass filter

designated as H. The second filter is a highpass filter designated by G. These filters are

convolved with the original signal (a~) and downsampled to generate the blurred and

detail coefficients. The following formula is used:

25

-

(2.7a).

(2.7b),

The" v" represents the downsampling operation where every other term from the

For trend extraction only the blurred coefficients are used to reconstruct the

perfectly by the reverse process as given in the following formula:

(2.9).

(2.8).

When using the convolution operation. each tenn in the resulting vector is

generated from the sum of the product of specific terms from the two convolved vectors.

The" /\ " represents the upsampling operation where'a zero is inserted between each tenn

explained in more detail shortly. At each level of decomposition, new blurred and detail

This means that the first and last terms in the resulting vector are generated from only a

of the a' and bJ coefficients before convolving ("*" operation) with the appropriate filter.

convolution operation is kept. The convolution operation is denoted by "*" and will be

coefficients are generated from Equations 2.7a and 2.7b. The signal can be reconstructed

smoothed signal. Hence, the following equation is used for trend extraction application.

26

-
few tenns from the convolved vectors. In general, the discrete linear convolution

operation is defined as [long, 1982 and Gray and Goodman, 1995]:

k k

y(k) =I x(n)h(k - n) =I x(k - n)h(n)
n=O n=O

(2.10).

The expanded fonn of the convolution results in the following values for y(k) as

calculate y(k) can be illustrated in the following figure with a 4-d.imensional vector i and

The convolution product has dimension length of n + m - 1. The number of terms used to

(2.11).

y(l) = x(l) . h(l)

y(2) = x(l)· h(2) +x(2)· h(1)

y(3) = xC I). h(3) + x(2)· h(2) + x(3)· h(l)

y(k -1) =x(n)' hem - 1) + x(n - 1)· hem)

y(k) = x(n)· hem)

1992; Gray and Goodman, 1995]:

5-dimensional vector h

computed for an n-dimensional vector X and m-dimensional vector it [MathWorks,

27

-

4,---------------__--_.----------------,

where m>n, then the first and last n-l elements of y(k) exhibit distortion due to the

y(k) terms contain enough of x(n) and hem) terms so there is no distortion. For the case

Figure 2-8: Number of terms used to calculate the convolution tenn at each index.

98764 5

ConvolutJon Tenn
32

oL----~--~--~--~--~--~--~__~____l

o

§
~ 3 • • • •c
.2
:;
(5
>c
0
0
(l)

;;;
"3
0 2 • • • • • •ra
0

.2
lJ)

E
~

"15
iii.c 1 • • • • • • • •E
:>
z

exhibit distortion. For the example in Figure 2-8, the y(4) through y(5) terms would have.

from only a few terms from x(n) and hem). Because only a few elements ofX' and bare

used in the calculation, these end tenns contain a distorted representation. The middle

The expanded form shows that the terms for y(k) at each end of the series are calculated

convolution operation. For the case n>m, then the first and last m-] elements of y(k)

no end-distortion as caused by the convolution operation. If y(k) is needed with no

distortion at each end of the signal, then the number of x(n) terms or hem) terms is

increased so that the resulting k-elements of y have no distortion. For the case where

28

-

m>n, then add 2n - 2 elements to hem) so that k-elements of y have no distortion. For the

case n>m, then add 2m - 2 elements to x(n) so that k-elements of y have no distortion.

This leads to the need for appropriate extension techniques when wavelet smoothing is

employed via the convolution method for trend extraction. The original signal must be

extended on each end to compensate for the end-distortion which is guaranteed to occur.

2.7 Chapter Summary

Wavelet representation and Fourier representation both provide techniques to

accomplish trend extraction. Trend extraction is accomplished by removing the high

frequency content of a sensor signal. The wavelet decomposition is preferred for trend

extraction because this technique uses localized basis functions rather than global basis

functions used in Fourier representation. The nature of the wavelet decomposition is such

that the smoothed approximations that can be generated via this method are much better

than those which can be generated using only the low frequency components of a Fourier

decomposition.

The wavelet representation uses the convolution operation to perform the wavelet

decomposition and reconstruction. The convolution approach is preferred over the matrix

method since the matrix technique is computationally intensive and impractical on an

industrial scale. The convolution operation used for the wavelet decomposition causes

end-distortion in the extracted trend. End-distortion at the real-time end of a signal is

29

-

unacceptable since the smoothed approximation is not representative of the true trend.

Hence, a method to avoid end-distortion and preserve the true trend of a signal is

essential.

30

Chapter Three: Proposed Extension Techniques

3.1 Introduction

Wavelet smoothing is used to provide accurate real-time trend extraction in the

pattern-based monitoring methods being developed by Dr. Whiteley's research group at

Oklahoma State University. However, as described in the previous chapter, the

implementation of the wavelet smoothing causes end-distortion of the extracted trend. To

avoid this problem, the windowed sensor signal is extended on each side to provide a

composite extended signal. This composite extended signal is then smoothed. The

extended parts of the signal on each end are then removed to leave the smoothed trend of

the original signal without any end-distortion. The resulting smoothed signal provides a

reasonable approximation of the fundamental trend of the signal.

When this approach is applied for real-time trend extraction, a problem arises on

the real-time end of the sensor signal. The "old" end of the signal can be extended with

existing sensor data. However, the required extension data on the real-time end

corresponds to a future prediction of plant perfonnance. This data must be synthesized in

a manner which does not adversely affect the smoothed trend which is extracted.

31

....
o
Vl
c:
Q)

en

Window

~ •

~~~ I

I

Now
,. Past Future ..

Increasing Time •

Figure 3-1: Original sensor signal to be smoothed.

32



Figure 3-2: Extended signal prior to wavelet smoothing.

\

Extension
(synthesized using
an extension
technique to be
described)

I~' I

Signal to be smoothed

Increasing Time

Extension
(actual data)

...
o
V>
c
Q)

U)

-

33



Figure 3-3: Extended signal after wavelet smoothing.

Increasing Time

Extension
(synthesized using
an extension
technique to be
described)

\1

Signal to be smoothed

r I
I ro I ! I

III . / I
;

I

I~
•

Extension
(actual data)

....
oen
c
Q)

(J)

34



Figure 3-4: The original sensor signal with the extracted trend.

specifically designed for wavelet smoothing. As a first effort, Mr. V. Raghavan

Future

Now

Past

I
I
I
!, i
I

Increasing Time

This real-time extension problem requires development of extension techniques

Q)
;j

~....
o
III
C
Q)

(J)

developed the Raghavan NET2 technique to provide a method for real-time extension

[Raghavan, 1995]. The Raghavan NET2 technique uses the most current sensor data to

extend the real-time end of the sensor signal. However, the Raghavan NET2 technique

was developed for a specific application and requires extensive trial-and-effort to adapt

for other applications. The main contribution of this thesis is the generalization of the

35



-

Raghavan NET2 technique. Specifically, the work reported in this thesis employs

Raghavan 's basic ideas in a methodology which adapts to the characteristics of the signal

being smoothed. There are five new proposed extension techniques presented in this

chapter. Each of the five new proposed extension techniques are described in detail.

Before doing so, the Raghavan NET2 technique is reviewed.

3.2 Raghavan NET2 technique

Raghavan examined several possible extension techniques in his Master of

Science thesis [Raghavan, 1995]. He examined several of the extension techniques,

including the following techniques: extending the signal with zeroes, extending the signal

with constant values, extending the signal as a periodic extension, extending the signal as

a mirror image of the current signal [Raghavan, 1995]. He concluded that none of the

traditional extension techniques are adequate for real-time trend extraction. He then

proceeded to propose a new extension technique called the Raghavan NET2 technique.

Raghavan's solution was an inverted symmetric extension approach [Raghavan,

1995]. The idea behind the Raghavan NET2 technique is to extend the signal by

mimicking the most recent sensor signal values. If the sensor signal is increasing, then

the extended signal needs to increase at the same rate. If the sensor signal is staying

relatively constant, then the extended signal needs to stay relati vely constant. The

extended signal is the inverted signal of the mirror image of the signal. This results in an

36

-



demonstrates how the inverted symmetric extension technique works.

is attached to the windowed sensor signal at the tie-point. The following figure

Extended SignalSensor Signal

Q)
::J
C\]

>

Tie-Point

~

o
I/)
c
Q)

C/)

extended signal that is generated using the most recent sensor signal data. The extension

Current Time

Increasing Time

Figure 3-5: The inverted symmetric extension technique. The extended signal is
generated from the windowed signal.

The tie-point between the extension and the windowed sensor signal has a dramatic effect

on the shape of the composite signal. If the tie-point is high. then the extended signal is

shifted up. If the tie-point is low, then the extended signal is shifted down. The

following two figures illustrate the two cases:

37

-



Figure 3-6: Inverted symmetric extension technique with high tie-point.

-

Q)
::::l
cu
>...
o
II)

c::
Q)

(J)

Sensor Signal

Increasing Time

Extended Signal

Current Time

38

--



Current Time

Figure 3-7: Inverted symmetric extension technique with a low tie-point.

Extended Signal

Tie-Point

Sensor Signal

Increasing Time

Q)

~

~....
o
U)

c:
Q)

en

F""'"

The tie-point is the key parameter that must be specified in the Raghavan NET2

technique. If the tie-point is too high or too low, then the extracted trend which is

generated does not adequately represent the sensor signal. The following figures use the

previous examples to illustrate how the choice of the tie-point affects the smoothed trends

that are ultimately extracted.

39



Q)
::I
"iii
>...
a
fI)

c:
Q)

C/)

Increasing Time

Figure 3-8: Smoothed signal using inverted symmetric extension technique with high tie
point.

40



...
o
rJ)
r:::
Q)

(/)

Increasing Time

Figure 3-9: Smoothed signal using inverted symmetric extension technique with low tie

point.

41



-

Cll
::::J

"'iii
>...
o
1Il
c:
Cllen

Increasing Time

Figure 3-10: Smoothed signal using inverted symmetric extension technique with correct
tie-point.

In the Raghavan NET2 technique, the tie-point is calculated as the average of the

most recent sensor data. The maximum number of sensor signal values included in the

tie-point calculation is called the threshold number, a. From the threshold number, a

dead-zone number, ~, is calculated. The dead-zone is the minimum number of sensor

signal values to be included in the calculation of the tie-point. The Raghavan NET2

technique uses a threshold size of 50 sensor signal values. Hence, the dead-zone is

calculated as 40 percent of the threshold size. So, the dead-zone is 20 sensor signal

values. There are no guidelines as to establish this threshold number. The threshold

42



The mean associated with each point between the dead-zone and the threshold is

number and dead-zone values listed above are hard-coded in the Raghavan NET2

(3.1).

(3.2).
m ( -)2

M= I xj-.xm

;=0 I

_ I m
x = - ~ x. a?:. m ?:. f3

m .£..J r'
m ;=1

used to calculate the mean squared deviation (M) as following:

technique. These values were empirically detennined for the specific application under

Note that Xo denotes the sensor reading at the current instant in time. The mean is then

calculated according to the following equation:

investigation at the time of Raghavan's research.

-

A total of (a-p) M's are calculated in this manner. The value of the mean ~ j for the

smallest Mj is used as the tie point XTP .

The extended signal is calculated with the tie-point and the most recent process

sensor signal. The extended signal is calculated from the following formula:

n
x(-k) =[x(k) - xTP ] + x(k), k =1,2... 

3
(3.3).

43

-



---

The extension for the real-time end of the signal [xC-1), x( -2), ... xC_!: )] is calculated from
3

the current process sensor signal, x(-k), and the tie-point, XTP. The signal is indexed with

the tie-point having an index of k = O. The k index is negative for future sampling

instances consistent with the traditional process control convention. The length of the

extension is n/3 where 11 is the number of points in the windowed signal. Wavelet

smoothing is then applied to the fully extended signal. After smoothing, the extended

part of the smoothed signal is removed to leave the original sensor signal without end-

distortion.

The Raghavan NET2 technique offers no guidelines for calculating either the

threshold size or the dead-zone size. The size of threshold and dead-zone are detennined

on a purely empirical basis. This situation demanded more research to develop an

improved extension technique to provide accurate trend extraction from different sensor

signals.

44



-

3.3 Dead-Zone

The dead-zone requires that a certain number of sensor points be included in the

calculation of the tie-poi nt. Based on the current author's research, the dead-zone needs

to be based on the period of the dominant frequency in the signal which is being

smoothed. The following figure is representative of the trends produced by most plant

sensors. A periodic component is clearly visible in the sensor data.

OJ
:J
ctl
>....
o
Cf)

c
OJ

Cf)

Increasing Time

Figure 3-11: Sensor signal showing the periodic frequency of the sensor noise.

45



using a power spectral analysis with Fourier transforms.

of each frequency. The more intense frequencies correspond to the frequencies which

800700600500400300200100

5

4.5

4

>. 3.5u
c
0)
::J 30-
0)....

LL
2.5'0

0)
-0

2.3
'c
Ol
co 15::;E

1

0.5

0
0

The following method is used to determine the dominant frequency in the signal.

have a larger amplitude in the Fourier transform. The power spectrum for the previous

this sensor signal to obtain the Fourier coefficients. Then the power spectrum is plotted

First, a range of the sensor signal is selected. A Fourier transformation is performed on

[Press etat., 1992]. The power spectrum measures the relative intensity (or magnitude)

sensor signal is represented by the following figure.

process and the control system. This creates a dominant frequency that can be calculated

The periodic changes in the sensor are due to sensor noise and interactions between the

-

Index Value (Corresponds to Frequency)

Figure 3-12: Power spectrum of sensor signal.

46



This power spectrum shows that there is a large spike around the index value of 50. This

index can be converted to the corresponding frequency with the following equation [Press

et al., 1992]:

(3.4).

Thefterm is the frequency (cycles per second),f~ is the sampling rate of the original

signal (samples per second), k represents the index from the power spectrum, and N is the

number of points in the original sensor signal. For the previous example, the dominant

frequency would be calculated from the index value of 50. The original signal is sampled

every minute, and there are 768 sensor values in the original signal. Using Equation 3.4,

the dominant frequency is calculated as 1.085x 10-3 c:ycles per second. The period can be

calculated from the following equation [Bueche and Wallach, 1994]:

T=~
f

(3.5).

The period, T, is the time required to make one complete cycle. So, the period from the

previous example is 922 seconds per cycle. The number of sampled sensor values in the

period can be calculated from the following equation [Bueche and Wallach, 1994]:

T,,=T j,

47

(3.3).

..........



period, T. For the previous example. the number of points in the period is 15.

due to the noise in the sensor signal. The following illustration with a periodic signal

The dead-zone should be set to the number of points for the dominant period. If

• •

•••
• •

• •

• •

• •

• •
•••

• •

•••
• •
• •

• •
•••

•••
• •

• •
•• •
• • •
• ••
• • •

• •
•••

•
•

•
•
•

•••
• •

•
•

•
•
•

• •
•••

•
•
•
•
•

•••
• •
•

•
•

•

0.9

0.8

0.7
Q)
:::J

"iii
> 0.6
"iii
c
Cl

en 0.5
'0
Q)

.~ .
~ 0.4

o
Z

0.3

the dead-zone is less than the dominant period then the extended signal tends to fluctuate

demonstrates how the dead-zone works.

The number of points in the period, Tn is calculated from the sampling rate,fh and the

0.2

Signal Extended Signal

0.1

o
o 10 20 30 40 50 60 70 80 90 100

Time (minutes)

Figure 3-13: Extended signal with dead-zone less than dominant period of the sensor
signal. Notice the extended signal is moved up.

48

--



Time (minutes)

When the dead-zone is much larger than the dominant frequency of the sensor signal,

100

•

•

90

•

•

80

• •
•••

• •

• •

Extended Signal

• •
•••

• •

•

•

70

• •
•

•••

•

•

60

Signal

• •
•••

• •

• •

•

•

50

•••
• •
• •

•

•

40

• •
•••

• •

• •

•

•

30

•••
• •

• •

•

•

20

• •
•••

• •

• •

•

•

10

•••
• •
• •

•

•

0'--------------------------+--------
o

0.6

0.7

0.2

0.8

0.1

ro
c
OJ •
i:i5 0.'1
"0
OJ
.~

ro
E 0.3

o
Z

OJ
:J
ro> 0.5 •

Figure 3-14: Extended signal with dead-zone equallo dominate period of the sensor
signal. Notice the extended signal is very similar to the current sensor values.

then the extended signal tends to be slower to react to actual changes in the sensor value.

The larger dead-zone tends to damp any true changes in the trend of the sensor signal.

When the dead-zone is smaller than the dominant sensor signal, then the extended signal

tends to shift up and down when the signal should be stable as in the previous figures.

Therefore, it is important to calculate the dead-zone accurately. All of the proposed

extension techniques use the dead-zone to calculate the tie-point for the inverted

symmetric extension similar to the Raghavan NET2 extension technique.

The following five sub-sections describe the improved real-time extension

techniques proposed by the current author. All of the techniques employ adaptive

49

--



mechanisms to specify the threshold, dead-zone and tie-point in Raghavan's NET2

technique.

3.4 Adaptive NET2 Extension Technique

two differences. First, the dead-zone, ~, is established by the period of the dominant

frequency rather than a fix.ed number. Second, the threshold number, a., is calculated

The first technique is an adaptive version of the Raghavan NET2 technique with

(3.7).a = 3{3'

from the following equation:

The threshold number, <x, is limited to three times the dead-zone size,~. The tie-point for

the Adaptive NET2 extension technique is calculated the same as the Raghavan NET2

technique. The extended part of the signal for the Adaptive NET2 is synthesized using

Equation 3.3. The Adaptive NET2 extension technique is essentially the same as the

Raghavan NET2 technique, but the dead-zone calculation is automated to do what

Raghavan discovered empirically. The computer algorithm for the Adaptive NET2

ex.tension technique is presented in Appendix B.

--

50

--



3.5 Square Root Objective Function Extension Technique

The second technique proposed is similar to the Adaptive Raghavan NET2

technique with a single exception. This technique uses a different criteria to calculate the

tie-point. The dead-zone, ~, is calculated based on the number of points in the dominant

frequency of the sensor signal. Likewise, the threshold number, a, is calculated from

equation 3.7.

A different objective function is used in the place of the mean squared error

function defined for the Raghavan NET2 technique. The modified objective function is

presented below:

I /I

y, = rL(x j -x)2, 3f3~n>f3
'\ill ;=1

(3.8).

The only difference in Equation 3.2 and 3.8 is that a weighting factor of 1/ In is

used instead of lin. This has the effect of decreasing the weighting influence of the

number of points used to calculate the mean squared error. The potential benefit of this

modification is to generate a tie-point that has less squared error associated with that

particular tie-point. The computer algorithm for the Square Root Objective Function

extension technique is presented in Appendix B.

51



3.6 First Point Past Dead-Zone Extension Technique

The third technique proposed does not use an objective function of any sort to

locate the tie-point. The tie-point is simply calculated as the mean for all points in the

dead-zone plus the first point past dead-zone.

Second, tie-point is calculated with the least number of signal values. The potential

benefit is that the tie-point is more responsive to any true changes in the sensor signal.

This has two different effects. First, the tie-point calculation procedure is simplified.

l~
X TP ={J + 1Lx,

1=/3
(3.9).

::>
~S'
(;10

'a:::
'::.

",'
~,

JI;J.

)"...;al
:»~.
)00"

t';
,.....4....~
~!3...
~;~
'"Sfl.......

~

••

The computer algorithm for the First Point Past Dead-Zone extension technique is

presented in Appendix B,

3.7 Fuzzy Tie-Point Extension Technique

This proposed extension technique uses fuzzy logic [Zadeh, 1965] to calculate the

tie-point. The appendix contains a section with background information on fuzzy logic.

52



The tie-point is detennined using a fuzzy logic rule-base and approximate

reasoning with two inputs. The two inputs are the mean squared deviation as defined in

Equation 3.2 and the number of points used to calculate the mean squared deviation. The

dead-zone is incorporated into the fuzzy logic technique. This tie-point is used to extend

the signal based on the inverted symmetric extension technique in the nonnal fashion.

The procedure employed in this technique is as follows. First, the dead-zone is set

to the period associated with the dominant frequency of the signal. Then the mean

squared deviation is calculated with Equation 3.2. The values for both variables are then

converted into fuzzy membership functions. The membership functions are adaptive

depending on the dead-zone parameter. The baseline mean squared deviation, M~l is

calculated for the dead-zone (Equation 3.2 where i =~). All the subsequent M;'s are

scaled by M~. The index number for every point is also scaled back by~. The

membership functions are listed below.

53



:>
S

MediumSmall
f---"""'\

0.2

Very Smon Small Meclium High

0.6

oL-__-L ---.:Il:...- ....L- _

o
Mean Squared Deviation I M ~

0.8

0.4

Figure 3-15: Fuzzy Tie-Point extension technique membership function for the
mean squared deviation.

J.'
Index Number I

Figure 3-16: Fuzzy Tie-Point extension technique membership function for the
index number.

54

.....



Both the index number and the mean squared deviation variables are used to fire the tie-

point evaluation rules. The following is the rule-base for the Fuzzy Tie-Point extension

technique. The higher ratings are desired.

Table 3-1: Rule-base used to rate the tie-point for Fuzzy Tie-Point extension technique.

Index Number

less mathematical deviation from the rest of the signal. The smaller index number is

The tie-point is desired with a smaller mean squared deviation so that the tie-point has

small medium large
vsmall vexc good ok
small good ok bad
medium exc good ok
high good ok bad
vhigh ok bad bad

Mean
Squared
Deviation

desired so that the tie-point is more responsive to any true changes in the signal. The

if-then rule-base works in the following way. With a small index number and a very

small mean squared deviation, then the tie-point evaluation rating would be very

excellent. Or, if the index number is medium and the mean squared deviation is high,

then the tie-point evaluation rating would be ok.

This Fuzzy Tie-Point extension technique uses Mamdani's implication rule which

is a max-min operator for each rule [Mamdani 1975; Mamdani and Assilian, 1975;

Mamdani, 1977]. The rules are combined using "and" defined as the intersection

(minimum) of each rule with the other rules. The output membership function is based

on a rating calculated for each index number.

55



Figure 3-17: Fuzzy Tie-Point extension technique tie-point rating membership function.

After the rating membership function is determined, then the fuzzy membership function

)
S·
:»

1::
::':::
'P'
:.1]1
"'::1
).,
~:l,,;
.... 4_.,
...,~~...,..~t:1-
"If,
to·... (...

~cellent Very ExcellenlGood

Rating of Flip POint

OKBad

-

is converted into a crisp number. The rating membership function is defuzzified using

the center of area defuzzification method [Brae and Rutherford, 1978; Lee, 1990a;

Hellendorn and Thomas, 1993; Mendel, 1995]. The crisp rating value is calculated based

on the following equation [Lee. 1990a]:

(3.10).

40

Illz(xj)'X j
j=O

z. = 40

Ill/X)
j=O

The Xj terms are the rating value calculated from the rule-base and Figure 3-17. These Xj

elements are discretized over j points (j = 0 to 40). The Il, term is the membership value

56



for rating value from Fi gure 3-17. The output, z, is the crisp rating for each index

number.

This technique takes the output membership function and converts into a crisp

number using Equation 3.10. The output is a crisp number representing the fuzzy rating

value of the tie-point at each index number. The tie-point is assigned as the mean

corresponding to the index number with the highest rating. The signal is then extended

using the inverted symmetric extension technique with the tie-point as defined as

Equation 3.3.

The Fuzzy Tie-Point extension technique incorporates human intuition and

experience in the calculation of the tie-point. The expected effect of this technique is to

calculate a tie-point that is more reflective of the signal. The benefits of this technique is

the separation of the two parameters used to calculate the tie-point, the index number and

the mean squared deviation. This separation of the input parameters allows the

possibility to weight each parameter independently of the other parameter. However, the

fuzzy logic makes this extension technique more complex to implement than the other

proposed techniques. The technique is also more computationally intensive than the

other techniques. The computer algorithm for the Fuzzy Tie-Point extension technique is

presented in the Appendix B.

57

)

~
:»
c::
:'
~~
$"

:/]1

-c l
;p~'

'-'1t',
c"....:~
'-~3....
~;3
'"S='f,
p'... 4.'



3.8 Weighted Fuzzy Tie-Point Extension Technique

This technique modifies the procedure described in the previous subsection by use

of a weighting factor [Sugeno and Murakami, 1985; Lee, 1990a] to rate each possible

tie-point. All the points that lie in the dead-zone are assigned a weighting factor of one.

The points laying outside the dead-zone are assigned a weighting factor using fuzzy logic.

This weighting factor is based on the mean squared deviation and index number for each

point.

The Weighted Fuzzy Tie-Point extension technique starts in the same manner as

the Fuzzy Tie-Point extension method. The number of points in the dead-zone are used

to calculate the mean square deviation. The two input variables are the scaled mean

squared deviation and the scaled index number. Both values are converted into fuzzy

values using the following membership functions:

58

)

3'
"J>

c:::.
",1.a,
$:1"

J]!
."--:c

;J;~'

-'l~;,....
_.~

~~~.. '

~;~
'"If,,..,..

~

Figure 3-18: Weighted Fuzzy Tie-Point extension technique membership function for the
mean squared deviation.

)

3'..
...1
...,
'"');;.a.
ii"

J~I...:
~..
"';1.,:-
_.~

~!3....
~;3
g=',...... I.'

6543

/J'ean SqJared OEMalim rM~

2

SrraJI

2.6 2.B

High

2 2.2 2.'

Index Number I Il
\.8

,----- --------
\.6

Medium High

141.2

0'-----...

1

1 Medium

0.4

0.2

0.6

O.B

Figure 3-19: Weighted Fuzzy Tie-Point extension technique membership function for the
index number.

59

F

Both the scaled index number and the scaled mean squared deviation variables are used to

fire the tie-point evaluation rules. The following is the rule-base for the Weighted Fuzzy

Tie-Point extension technique. The higher ratings are desired.

Table 3-11: Rule-base for rating each possible tie-point for the Weighted Fuzzy Tie
Point extension technique.

Index Number

index number. The if-then rule-base works in the following way. With a medium index

Each possible tie-point is rated for a smaller scaled mean squared deviation and a smaller

Mean
Squared
Deviation

medium med high high
small exe ok bad
medium good ok bad
large ok bad bad

)..
~....,..."',;:.
JIll

i"

IJI
·'1--c

J:i.'

-~l:?;_...
_.~

A~3,.,

;;~
..,j
fl,..,... t...

number and a small mean squared deviation, then the tie-point evaluation rating would be

excellent.

The technique uses Mamdani's rule of inference (max-min operation) with "and"

defined as the intersection (minimum) of the values. The output membership function is

the rating of each of the points generated by the following figure. The rating membership

function is converted to a crisp number with the center of area defuzzification technique

(Equation 3.10). This crisp rating value is used as the weighting factor.

60

1
800

0.8

0.6

0.4

0.2

OK

1.1 1.2

OL...-JL.--------"-- --l£- ~

'().2 '().1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rating dRip Poirt (vi)

Figure 3-20: Weighted Fuzzy Tie-Point extension technique rating of each point.

The weighting factor is then used to calculate the tie-point from the following equation:

a {J

I w, ·Xi + Ix;
,=(3)=0

z= (3.10).

The weighting factor, Wi, is calculated from the rule-base and Figure 3-20. The Xi terms

are the possible tie-points that are used to generate the weighting factors (Wi)' There are ~

points in the dead-zone while ex - ~ points lie outside the dead-zone. The ~ points laying

in the dead-zone each receive a weighted factor (Wi) of one while the ex - ppoints laying

6\

outside the dead-zone have a weighting factor (Wi) assigned as described previously. The

actual tie-point (z which is a crisp value) is then used in the extension technique. The

signal is then extended around the tie-point using the inverted symmetric extension

technique with Equation 3.3.

This Weighted Fuzzy Tie-Point extension technique is based on human

experience and intuition. The tie-point is calculated over the range of sensor values from

the most current sensor value up to the threshold sensor value. The benefit of this

extension technique is that the tie-point represents more sensor values than the other

proposed extension techniques. This hopefully results in a tie-point which is more

representative of the sensor signal. The drawbacks of this technique is that it is more

computationally intensive to calculate the tie-point. This technique, like the other Fuzzy

Tie-Point extension technique, is more complex to implement than the other extension

techniques. The complete computer algorithm for the Weighted Fuzzy Tie-Point

extension technique is presented in the Appendix.

3.9 Chapter Summary

The convolution operation used to implement wavelet smoothing causes the end

distortion of the extracted trend. An extension technique can be used to minimize if not

eliminate the end-distortion. To smooth a windowed sensor signal, the signal is extended

on each end. The extended signal is then wavelet smoothed. The extended part of the

62

smoothed signal is removed to leave the smoothed signal window without end-distortion.

After Raghavan examined the existing traditional extension technique, he concluded that

none of these existing techniques performed adequately [Raghavan, 1995]. He then

proposed the Raghavan NET2 technique based on the inverted symmetric extension of

the signal, The extended signal is appended to the windowed sensor signal at the tie-

point. The tie-point is the key parameter in the Raghavan NET2 technique. The).'~
calculation of the tie-point is based on empirical research for the sensor signal that

Raghavan examined.

This thesis presents an adaptive method to calculate the tie-point based on the

characteristics of the sensor signal. The tie-point is cakulated based on the period of the

dominant frequency of the sensor signal. The dominant frequency is determined from the

power spectrum plot of the sensor signal. This thesis presents five proposed extension

techniques. All proposed extension techniques use the adaptive dead-zone size to extend

the signal with an inverted extension method. The first proposed extension technique is

the Adaptive NET2 extension technique. This technique is essentially the same as the

Raghavan NET2 technique except the tie-point is calculated with an adaptive dead-zone.

The second technique, the Square Root Objective Function extension technique, uses a

different objective function to calculate the tie-point. The third technique, the First Point

Past Dead-Zone extension technique, uses only the sensor values in the dead-zone plus

one to calculate the tie-point. The last two proposed extension techniques incorporate

fuzzy logic. One technique. the Fuzzy Tie-Point extension technique, uses the fuzzy logic

to calculate the tie-point. The other, the Weighted Fuzzy Tie-Point extension technique,

63

..-

-

calculates the tie-point using a weighting factor determined from the fuzzy logic

reasoning.

64

.., ..

Chapter Four: Performance of Proposed Extension Techniques

4.1 Introduction

This chapter documents the performance of the five proposed extension

techniques and the Raghavan NET2 extension technique. Three different criteria are used

to evaluate the trend extraction properties of each technique. The first rates the ability of

~
I"
S.
••-.;1
.t

••."
each extension technique to minimize end-distortion. The second evaluates the

robustness of the extension techniques when the size of the dead-zone differs from the

period of the dominant frequency in the sensor signal. The final test quantifies the effect

of signal sampling rate on trend extraction performance. For each evaluation procedure,

both the rationale behind the procedure and the quantification method are elaborated.

Results for each of the extension techniques are presented. The results of all of the three

evaluations are used to identify the "best" of the proposed extension techniques.

4.2 Ability to Minimize End-Distortion

To be useful, an extension technique must make the trend of the smoothed signal

accurately match the trend of the raw sensor data. The perfect extension technique would

eliminate all end-distortion caused by the convolution operation used to implement the

wavelet transforms. In this perfect smoothing situation, the extracted trend at the end of

65

.0

-

~

!

the signal would be the same as if the extracted trend was generated from the middle of

the sensor signal because the future trend of the sensor signal beyond the window of

interest is actually known. Consequently, for the first evaluation criteria, which measures

end-distortion, we elected to use the extracted trend as smoothed in the midd.le of-the·

signal as the test standard. This test standard is then compared to the smoothed trend as

extracted from the real-time end of the signal. The following figure shows a sensor signal

when the trend is extracted from the middle of the signal. This trend represents the test

standard.

•t
I.
~l

~I

:'.f
.'
t"

0.7 ,....--.-----r--r----r---.,..--.,........-~-_

0.65
I~ \Q)

:J .I~
~Ico !I I> 0.6

~

0

1II)

, ~c:

~, II i 11
\

Q) A' ~C/)
0.55 I '~U '~~I~ I

'U .J ~, ' ' ~
Q)

I l~~ M~.~ , 1'1
'I I' II,co I' !

E 0.5 I Ii" I 1 ~II [1(1 III I~

0 Iz

i I j

0.45 ! I

IWindow of interest

0.4
34 36 38 40 42 44 46

Ti me (hou rs)

Figure 4-1: The test standard: Extracted trend as smoothed in the middle of the signal.

66

The following figure shows the same sensor signal smoothed at the real-time end of the

signal using the First Point Past Dead-Zone extension technique.

0.7r--r---r--"--r--r--..-_~

0.65
Q)
:J

~ 0.6
L-

o
en
C
Q)

en 055"0 .
Q)

.~

ca

~ 0.5
z

0.45

! '
I

, I \

(

"..
;.,.
••,-
oJ!

·ct
;..
.' J,: ;
....,
.- "I
j!~

~~~:1:
'I');...
.....""

38 403634

Window of interest
0.4 ~---::~-~-.....J----L...---L._-.L_--JL...-..J

26 28 30 32

Time (hours)

Figure 4-2: Compared trend: Extracted trend as smoothed at the end of the signal.

The closer the two extracted trends in Figures 4-1 and 4-2 match each other, the better the

extension technique performed in minimizing end-distortion. If the two extracted trends

match each other perfectly, then the extension technique eliminated all end-distortion.

This comparison technique provides a means to quantify trend extraction fidelity.

-
67

-



This is the quantitative test procedure.

I. Select the window of sensor data to be used for evaluation purposes. For all of the

results reported in this thesis, a window size of 768 sensor values was used with a sample

period of one minute. The windowed signal is extended to 1024 points (128 points on

each side).

2. Wavelet smooth the extended signal from step one using the 6th order Daubechies

•II
;)
.f..

wavelet family with four levels of decomposition. After reconstructing the smoothed

signal, trim the 128 points on each end of the signal which are affected by end-distortion.

The remaining 768 point smoothed signal is the comparison case.

3. Take the last 384 sensor values from the window of interest from step one. Then

append the next 640 sensor values using sensor values from the original sensor data. This

results in a signal of 1024 points. Wavelet smooth the 1024 windowed signal using the

61h order Daubechies wavelet family with four levels of decomposition. After

reconstructing the smoothed signal, trim the last 640 points on right side of the smoothed

signal. The remaining 384 point smoothed signal is the test standard.

4. Sample the comparison and test standards at every third value for 16 sample points.

The sampling for the comparison case starts on the real-time end and proceeds back in

time. The test sample is sampled so that the sampled points for the test case correspond

to the same points in time as the comparison case.

68

.-



5. Compare the two sampled trends by calculating the absolute difference between the

sampled points for both trends. The following equation is used:

16

d =L IxCi) - y(i)1
;=0

(4.1 ).

The d term is the absolute difference between the sampled standard trend xU) and the

sampled comparison trend y(i) with i representing sample index (max(i) = 16 in both

cases).

6. Compare the two sampled trends by calculating the squared difference between

sampled points for both trends. The following equation is used:

•I
•
"..

16

S= L[x(i) - YCi)]2
;=0

(4.2).

--

The S term is the squared difference between the sampled standard trend as given by xU)

and the sampled comparison trend given by y(i).

69

-



This evaluation procedure is repeated after shifting the window one minute in time. For a

source signal of 10,080 points with 6845 windows are analyzed.

The analysis was perfonned using seven days of actual plant data and two

different sensors. The first sensor is a flow meter. The characteristics of this sensor are

very representative of the usual sensor encountered in a plant situation. Sensor

measurements were first nonnalized to a a- I scale using the sensor zero and the

measurement span. The next figure is the flow sensor signal for the seven days worth of

I
j

•,
•

0.9

data.

.. e..

0.1

OL.-_----L.__--L-_----J__---'-__...L--_---'-__--'--__..L...-..J

o 20 40 60 80 100 120 140 160

0.8

0.2

0.3

0.5

0.6

0.4

0.7

1.----.---.....-------._._---r----r-----...----r---..----.

....
o
(J)

C
QJ

(J)

"0
QJ
N

co
E.....
o
Z

Q)
:::J

ro
>

Time (hours)

Figure 4-3: Flow meter sensor signal for the seven days. Sample period is one
minute.

70

- -



The period of the dominant frequency for this sensor was detennined from the power

spectrum which is presented in the following figure. The power spectrum plot was

generated from the sensor values from Figure 4-3 using only values from 78 to 95 hours.

The sample period is one minute so there are a total of 1000 sensor values used to

generate the power spectrum plot.

6r---,----.-----,..-----..-----.

J
?,l
,.'
~l,. '

1000800600400200

t

••
I
I
I I
I I I

- - - - - - ..~ - - - - - - - - - - .. - - -1-" - ~ - -
I I
I I
I I
I I
I' I
1 1
I .. I I

.... .. __ -:_ .. _ .. __ __ .. __ _ _ _ .. __ .. .JI _
• 1

I I 1
1 I 1
1 I I
1 1 I

_. ~ -_. ::
_______: I. .! _

1 I

• I I
I 1 1
I 1 1

• I I
I 1 I

• 1 I
• I I

-----,------------T------------~-----------,------
I t I I

• I I I
• I I I
t I I I
I I I I
I I I I
I I r I

----~------------.-_._--------,------------~----.1 I
1 I
1 1

I
I

2 --

5 ---

1

3 ---

4
>.

:t::::
en
c:
Q)-c:

~
c:
Q)
:J
C"
~
u..

Index Number

Figure 4-4: Flow meter sensor power spectrum plot. 1000 sensor values used with a
sample period of one minute.

From a detailed examination of Figure 4-4, there is a spike at the index value of 62. So

using Equations 3.4, 3.5, and 3.6, the period of the dominant frequency is about 16

minutes. This period corresponds to a dead-zone of 16 points for the flow sensor.

71



The second sensor used for evaluation purposes was a temperature sensor. The

following figure shows the seven days worth of data which was used.

0.6 r---.------r---r-----r-----,----r-----r--~___,

0.55

Q)
::J
n1 0.5>....
0
!/l
C
Q)

0.45 JUJ
~ 1

OJ
"N

:I:ctl
E.... 0.4

-I
0 1;1z

:~
~ :)

0.35
,:1
J'l
.'

....

16014012010080604020
0.3 '--_--'--_---L__-'--_-'-__..L..-_---L-_-...JL.....-_~

o
Time (hours)

Figure 4-5: Temperature sensor signal for the seven days. Sample period is one
minute.

Figure 4-6 presents the power spectrum plot for the temperature sensor. The power

spectrum plot was generated from the sensor values from Figure 4-5 using only values

from 78 to 95 hours with a sample period of one minute. This corresponds to ]000

sensor values. From a more detailed examination of Figure 4-6, there is a large spike at

the index of 33. Using equations 3.4,3.5, and 3.6, this corresponds to a period of 30

72



minutes for the dominant frequency. A dead-zone size of 30 points was used for the

temperature sensor.

.!...

..•

..
J

1000800600400200

4.-----r----r-I---,------\"--.---
I,,

1 I iI I

3.5 -----------~------------: ------------~------------~ ------------
It. I

I I • I
I I I I
I • I I

3 -----------~------------~ -----------.:.-----------~------------
I f I I
I • I I
I • I I
I 1 I I

2 5
I I I I

. -----------...------------.. -----------_.- -----------.. ------------
I I I
I I I
I I I
I I I

2 ------------:.------------ ------------:------------~------------
I I
I I
I I
I I

1 5 I I I

. -----------~------------T-----------~------------,-----------I I I I
I ,". - I I
I I I I
I I I I

1 - ---------~------------~------------:------------~----- -----I I I I
I I I I
I I I ,
I I I I

0.5 "~:.~:~-----( ---- -----(-- ------t- ----------(---~~ ~
o " .~

o

~
rtJ
C
Q)-c
>.
u
c
Q)
:::J
0"
~

LL

Index Number

Figure 4-6: Temperature sensor power spectrum plot. 1000 sensor values were used with
a sample period of one minute.

In both cases, the seven days of data provided 6845 test cases. The maximum

absolute difference and maximum squared difference over all 6845 case evaluations are

presented for the flow meter sensor in Table 4-1. These maximums quantify the worst

performance of each extension technique. When the worst case for one extension

technique is compared to the other extension techniques, it can be determined as to which

73



F

extension technique does the best at minimizing end-distortion under the worst case

conditions. The worst case occurs when the sensor trend e'xhibits an abrupt change.

The other test measurements are the sum of the absolute difference and sum of the

squared difference which are also tabulated in Table 4-1 for all 6845 cases. This

quantifies the performance of each extension technique over the entire seven day test

period. Lower scores are indicative of better performance.

Table 4-1: Evaluation of extension techniques to minimize end-distortion for the flow
meter sensor.

Flow Meter Sensor
Extension Technique Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Raghavan NET2 0.081 0.92 9.83 574
Adaptive NET2 0.194 1.42 7.07 344
Squared Objective Function 0.152 1.22 5.73 323
First Point Past DZ 0.076 0.78 4.84 314
Fuzzy Winner 0.134 1.34 5.91 322
Weighted Fuzzy 0.082 0.92 4.93 309

The maximum values for the maximum squared difference and the maximum

absolute difference occur when the flow meter undergoes a change in the fundamental

sensor trend. The Raghavan NET2, the First Point Past Dead-Zone, and the Weighted

Fuzzy extension techniques all have essentially the same maximum squared difference for

the flow meter. The First Point Past Dead-Zone has a slightly lower maximum absolute

difference than the other two extension techniques. This means that these three extension

techniques all perform better in adjusting the tie-point when there are fundamental

changes in the sensor signal. These three techniques perform better at minimizing the

74

"
:1.,

......



end-distortion when the sensor undergoes a sudden change in the fundamental ensor

trend. The other three extension techniques, the Adaptive NET2, the Squared Objective

Function, and the Fuzzy Tie-Point, all have higher maximum squared and maximum

absolute difference values. These extension techniques do not adjust the tie-point as fast

as the other three extension techniques when the fundamental sensor trend changes.

The sum of the squared difference and the sum of the absolute difference provide

insight into the performance of each extension technique used to 'calculate a tie-point over

an extended period of time. When examining the sum of squared difference and the sum

of absolute difference, the Weighted Fuzzy technique and the First Point Past Dead-Zone

perform better than the other four extension techniques. The Squared Objective Function

and the Fuzzy Tie-Point extension techniques perform better than the Adaptive NET2 and

the Raghavan NET2 extension techniques. The Raghavan NET2 extension technique

performs much worse than the other extension techniques. This technique performs

almost twice as bad as the Weighted Fuzzy and the First Point Past Dead-Zone exten ion

technique in selecting a tie-point over all the 6845 cases. The Raghavan NET2 technique

does a poor job at minimizing the end-distortion based on the overall analysis. The

Raghavan NET2 technique has a tendency to overreact. Poor empirical evidence of this

tendency was the driving factor for the work reported in this thesis.

In summary, for the flow meter sensor, the Raghavan NET2, the Weighted Fuzzy,

and the First Point Past Dead-Zone extension techniques perform better at selecting a tie-

point when the sensor undergoes fundamental changes. This leads to a better job in

75

I.

.
' ..



i"""

minimizing the end-distortion for the sudden change in fundamental sensor trend.

However, when examined over the 6845 cases, the Raghavan NET2 technique does not

perfonn well at minimizing the end-distortion. The Weighted Fuzzy and the First Point

Past Dead-Zone extension techniques have less of a tendency to overreact that is reflected

in lower cumulative differences over time. These two extension techniques, Weighted

Fuzzy and the First Point, are the better extension techniques for the flow meter sensor.

The following figures show the worst case for the First Point Past Dead-Zone and the

Weighted Fuzzy extension techniques.

--

76

:..

7



0.9
Q)

Standard::J
ro

0.8>
~

0en
c:
CD

0.7en
"0
Q)

.~

ctI
E...
0z

56 58 60 62
Time (hours)

64 66

Figure 4-7: Worst case for smoothed flow meter sensor signal for the seven days using
First Point Past Dead-Zone extension technique.

77



1r------,------r----r----~-~-~_...

0.9
Q)
~

co
0.8> Standard •l-

e
r.n
c::
CD
(/) 0.7
"'C
Q)

.~
ro

0.6E
l-

e
Z

0.5
..
.I

0.4 :l
54 56 58 60 62 64 ,66 :1:,

Time (hours) )

Figure 4-8: Worst case for smoothed flow meter sensor signal for the seven days using
Weighted Fuzzy Tie-Point extension technique.

The same tests were perfonned using the temperature sensor. This sensor has a

large natural period with a small high frequency noise content when compared to the

previous flow meter. The maximum absolute difference and maximum squared

difference for the 6845 case evaluations are presented for the temperature sensor in Table

4-11. These maximums quantify the worst perfonnance of each extension technique. The

sum of absolute difference and sum of squared difference are also presented in Table 4-n.

78



Table 4-11: Evaluation of extension techniques to minimize end-distortion for the
temperature sensor.

T t Sempera ure ensor
Extension Technique Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Haghavan NET2 0.0010 0.12 0.132 64
Adaptive NET2 0.0138 0.37 0.527 99
Squared Objective Function 0.0068 0.27 0.419 93
First Point Past DZ 0.0070 0.27 0.403 92
Fuzzy Winner 0.0104 0.34 0.504 91
Weighted FuzzY 0.0075 0.28 0.449 99

The Raghavan NET2 technique performs much better than the other extension

techniques. This improved performance results from the fact that the Raghavan NET2

technique has a small dead-zone and the temperature sensor has a very small amplitude of

noise with a large period. The Raghavan NET2 technique can respond to any fluctuations

in the temperature sensor much faster with the small dead-zone size. This means that the

,
I

I
1,
;)

maximum absolute difference and the maximum squared difference for the Raghavan

NET2 technique are much smaller than the other extension techniques. Because the

Raghavan NET2 technique uses such a small dead-zone size, the sum of absolute

difference and the sum of squared difference are also smaller than the other extension

techniques.

Among the five proposed extension techniques, the Weighted Fuzzy, the Squared

Objective Function, and the First Point Past Dead-Zone extension techniques all have the

lowest maximum absolute difference and maximum squared difference. These three

techniques perform better at minimizing the end-distorlion when the temperature sensor

undergoes a fundamental trend change. All of the proposed extension techniques seem to

79



work equally well at minimizing the end-distortion over the entire 6845 cases. None of

the proposed extension techniques perform significantly better than any of the other

extension techniques.

In conclusion, the Raghavan NET2 technique shows better perfonnance on the

temperature sensor than the other proposed extension techniques. This results from a

small dead-zone size that allows the Raghavan NET2 technique to adjust the tie-point

quickly to reflect changes in the sensor. The other extension techniques use a larger

dead-zone size that limits the response time to any fluctuations in the sensor. Of the five

proposed extension techniques, the Squared Objective Function, the Weighted Fuzzy, and

the First Point Past Dead-Zone extension techniques all perfonned about equally well.

The following figures show the worst case for the Weighted Fuzzy and the First Point

Past Dead-Zone extension techniques.

80

.
I

I
J,



0.55
CD
::::J Standard
('Q

>
~

0 0.5t/)

c:
CDen ,. .
"'C
CD

0.45.~

ro
E
~

0
z

0.4

666462605856
a.35~_~__...L....--_----I.,__--L.-_-----I__--'

54
Time (hours)

Figure 4-9: Worst case for smoothed temperature sensor signal for the seven days using
First Point Past Dead-Zone extension technique.

81



....

0.6 r------r------r---r-----,----r----,

0.55
StandardQ)

:J
co
>... 0.50
(/J
l::
Q)

(f)

"0
Q) 0.45.~
m
E...
0z

0.4

.
0.35

J

56 58 60 62 64 66 \54 1
Time (hours)

,
)

Figure 4-10: Worst case for smoothed temperature sensor signal for the seven days using
Weighted Fuzzy Tie-Point extension technique.

More sensors encountered in plant situations exhibit dynamics more similar to the

flow meter than the temperature sensor. For this reason, the flow meter sensor results are

.weighted more heavily when evaluating the overall performance of each extension

technique. Consequently, we conclude the Weighted Fuzzy extension technique and the

First Point Past Dead-Zone extension technique perform better at minimizing the end-

distortion than the other proposed extension techniques.

82



4.3 Robustness Evaluation

The purpose of this test was to evaluate performance with an inaccurate estimate

of the dead-zone. The top two performers from the end-distortion test, the First Point

Past Dead-Zone and the Weighted Fuzzy extension technique, as well as the Adaptive

NET2 extension technique, were selected for evaluation.

All of the proposed extension techniques use the dead-zone as calculated from the

dominant frequency of the sensor signal (as explained in Section 3.3). However, there

can be some difficulty in calculating the dominant frequency. This robustness test

evaluates performance when different values of the dominant frequency are used to set

the dead-zone size.

The test was performed using the same data for the flow meter and the

temperature sensor shown in Figures 4-3 and 4-5, respectively. The test procedure is

identical to the end-distortion test except that different values of the dead-zone were used

in the extension techniques. For the robustness test on the flow meter, the dead-zone size

is decreased by 25 percent and then 50 percent for dead-zone sizes of 12 and 8 points.

The basel ine dead-zone size of 16 points is then increased by 25 percent and 100 percent

for dead-zone size of 20 and 32 points.

83

1
1,
..



-

-

Table 4-IlI contains the robustness evaluation for the flow meter. The size of the

dead-zone decreases moving down the table.

Table 4-III: Evaluation of extension technique for robustness on flow meter.

Flow Meter Sensor

Dead Zone =32
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.228 1.53 12.20 437
First Point Past DZ 0.137 1.22 8.77 387
WeiQhted Fuzzy 0.168 1.37 10.20 415

Dead Zone =20
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.228 1.52 8.68 373
First Point Past DZ 0.085 0.98 5.44 329
Weighted Fuzzy 0.110 1.08 6.32 340

Dead Zone =16
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.194 1.42 7.07 344
First Point Past DZ 0.076 0.78 4.84 314
Weighted Fuzzy 0.082 0.92 4.93 309

Dead Zone =12
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.151 1.28 5.52 324
First Point Past DZ 0.060 0.77 3.93 31q
Weighted Fuzzy 0.065 .0.79 3.91 294

Dead Zone =8
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.105 1.08 5.40 370
First Point Past DZ 0.060 0.72 4.93 390
Weighted Fuzzy 0.063 0.73 4.37 360

84

..

<



....

For all three extension techniques, the maximum absolute difference and the

maximum squared difference decreases as the dead-zone decreases. The smaller dead-

zone alJows the tie-point to adjust faster to reflect changes in the fundamental sensor

trend. The sum of absolute difference and the sum of squared difference also decreases as

the dead-zone size decreases up to the smallest dead-zone. At the smallest dead-zone

size, the tie-point is subject to noise fluctuations in the sensor signal. These noise

fluctuations cause the extension techniques to calculate a tie-point that is not reflective of

the actual sensor trend. This leads to the increase in the sum of absoJute difference and

sum of squared difference. In general, a smaller dead-zone gives better performance than

a larger dead-zone size. However, if the dead-zone size is too small, then the extension

technique does not perform well at all.

Both the First Point Past Dead-Zone and the Weighted Fuzzy extension

techniques perform better than the Adaptive NET2 technique at the larger dead-zone

sizes. The First Point Past Dead-Zone extension technique has lower values for all four

evaluated criteria for the larger dead-zone sizes. However at dead-zone sizes of 16 and

12 points, both the First Point Past Dead-Zone and the Weighted Fuzzy extension

techniques perform equally as well. At the smallest dead-zone size, all three techniques

perform about the same. Overall, First Point Past Dead-Zone extension technique

performs slightly better than the Weighted Fuzzy and significantly better than the

adaptive NET2 technique. If there is a problem in estimating the dead-zone, it is better to

underestimate rather than overestimate the size of the dead-zone.

85

•



-

The robustness test was also performed using the temperature sensor. For

temperature sensor, the baseline dead-zone is 30 points. This baseline dead-zone was

decreased by 33 percent and 50 percent for a dead-zone size of 20 and 15 points,

respectively. The baseline dead-zone was also increased by 33 percent and 1.00 percent

for dead-zone size of 40 and 60 points, respectively. The results of the test are presented

in Table 4-IV.

As before, the maximum squared difference and absolute difference decrease as

the dead-zone decreases. The extension techniques react faster to any changes in the

sensor signal so the maximum differences are lower with the smaller dead-zone. The

sum of squared difference and sum of absolute difference also decrease as the dead-zone

size decreases. The extension techniques perform better when the dead-zone estimate is

smaller than actual. Results of this test and the earlier end-distortion test suggest that the

magnitude of the high frequency noise in a sensor signal should also be used to set the

size of the dead-zone.

All three proposed extension techniques perform better on the temperature sensor

than the flow meter sensor. The First Point Past Dead-Zone extension technique

performs better than the other two extension techniques for all the different dead-zone

sizes. The Weighted Fuzzy and the Adaptive NET2 both perform about the same.

86



Table 4·IV: Evaluation of extension technique for robustness on temperature meter.

Temperature Sensor

Dead Zone =60
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.0168 0.420 1.02 151
First Point Past DZ 0.0190 0.343 0.74 138
WeiQhted Fuzzy 0.0120 0.358 0.95 161

Dead Zone =40
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.0149 0.385 0.72 117
First Point Past DZ 0.0087 0.300 0.51 106
WeiQhted Fuzzy 0.0097 0.329 0.61 121

Dead Zone = 30
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.0138 0.370 0.53 99
First Point Past DZ 0.0070 0.270 0.40 92
Weighted Fuzzy 0.0075 0.280 0.45 99

Dead Zone =20
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.0090 0.300 0.32 79
First Point Past DZ 0.0044 0.240 0.24 71
Weighted Fuzzv 0.0051 0.240 0.28 75

Dead Zone =15
Max Squared Max Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
Adaptive NET2 0.0046 0.210 0.24 72
First Point Past DZ 0.0031 0.180 0.18 65
Weighted Fuzzv 0.0037 0.207 0.20 66

The combines results of the two robustness test indicate that the First Point Past

Dead-Zone extension technique perfonns slightly better than the Weighted Fuzzy and

much better than the Adaptive NET2 extension techniques. When using different dead-

zone sizes, the First Point Past Dead-Zone has the less end-distortion than the other two

87



proposed extension techniques. All of the extension techniques perform better when the

size of the dead-zone is underestimated rather than overestimated. So if there is any

problem in estimating the period of the dominant frequency, it is better to err in a manner

which makes the dead-zone smaller.

4.4 Sampling Rate Evaluation

The purpose of this test is to determine if the extension techniques are

independent of the signal sampling rate. The tie-points used by the First Point Past Dead

Zone extension technique and the Weighted Fuzzy extension technique were compared

using a sampling rate of one minute and a second sampling rate of ten seconds. The tie

point was recorded and then compared with the tie-point calculated at the other sampling

rate. The comparisons were made using the same flow sensor and temperature sensor

data as before.

The test procedure is gi ven below.

I. Select the window of sensor data to be used for evaluation purposes. A window size

of 768 sensor values was used for the one minute sampling rate which is extended to

1024 points for smoothing. A window size of 4608 sensor values was used for the ten

second sampling rate that is extended to 8192 points for smoothing.

88



-

2. Calculate the tie-point for both sampling rates.

3. Compare the tie-point as calculated at the different sampling rates using the absolute

difference as calculated from the following equation:

(4.3).

The d term is the absolute difference between the tie-point as calculated at ten second

sampling rate (Zl) and the tie-point as calculated from the one minute sampling rate (Z2).

4. Compare the tie-point as calculated at the different sampling rate for each extension

technique using the squared difference as calculated from the following equation:

(4.4 ).

The s term is the squared difference between the tie-point as calculated aL ten second

sampling rate (ZI) and the tie-point as calculated from the one minute sampling rate (Z2).

The window of interest moves so all 6845 cases are considered. The results are given

below.

89



Table 4-V: Sampling rate comparison of extension techniques.

Flow Meter Sensor Temperature Sensor
Sum Squared Sum Absolute Sum Squared Sum Absolute

Difference Difference Difference Difference
First Point Past DZ 0.0107 5.788 0.00021 0.520
Weighted Fuzzy 0.0105 5.766 0.00022 0.707

The sum absolute difference for the flow meter is 5.8 for both extension

techniques over the 6845 cases. The temperature sensor shows an even smaller sum of

absolute difference and sum of squared difference between the tie-points. This improved

performance is due to the difference in the characteristics of the tlow and temperature

signals. However, the conclusion of this test is that the First Point Pa<;t Dead-Zone

extension technique and the Weighted Fuzzy extension technique work regardless of the

sampling rate. Neither extension techniques is affected by the sampling rate of the

sensor.

4.5 Evaluation of Composite Results

Based on the results presented, the First Point Past Dead-Zone extension

technique is the preferred choice. The First Point Past Dead-Zone extension technique

generally outperformed the other methods on all three tests. Based on the ability to

minimize end-distortion, the First Point Past Dead-Zone extension technique has the

lowest maximum squared difference, the lowest absolute difference, and the sum of the

absolute difference for both sensors of the proposed extension techniques. This technique

90



ranks best as the sum of the squared difference for both sensors. For the robustness

evaluation, this technique has the lowest sum of squared difference and sum of absolute

difference for six out of the eight comparison cases. For the other two cases, it ranks as

second best. The sampling test verified the technique is unaffected by sampling rate as

desired.

Two other criteria not listed tend to favor the First Point Past Dead-Zone

extension technique. The First Point Past Dead-Zone extension technique has less

computing requirements. This technique requires minimal effort to calculate the tie

point. The runner-up, the Weighted Fuzzy tie-point extension technique, is

computationally intensive. The other criteria is based on the ease of implementation.

The First Point Past Dead-Zone extension technique is much simpler to implement than

the Weighted Fuzzy tie-point extension technique. Furthermore, Weighted Fuzzy tie

point extension technique has membership functions and the defuzzification algorithm

which must be maintained. The simplicity of the First Point Past Dead-Zone extension

technique contrasts sharply with the complexity of the Weighted Fuzzy tie-point

extension technique.

The following comparison shows the improvement from the Raghavan NET2 to

the First Point Past Dead-Zone extension technique. A periodic sensor signal with a

period of 20 points is used to simulate a steady process measurement which has been

contaminated by noise. The signal stays constant around a value of 0.5. The extracted

trend should stay flat along the signal value of 0.5.

91



1 r-------r---....,....----.r-------r----....,....-------,

0.8 "" -

-'

O.2~

600500400300200100
o1..-.--__----1. ....1...- "--- ..1..-1 __--"'1 ......

o
Time (minutes)

Figure 4-11: Example of Raghavan NET2 extension technique.

Use of the Raghavan NET2 technique results in distortion at the end of the signal. The

smoothed trend should lie flat along the middle of the graph. This distortion is due to the

small dead-zone of 3 points as hard-coded in the Raghavan NET2 technique.

The next figure is the same signal with the First Point extension technique.

92



-

1 ~---r-.----r----,-----,--.---'-I--""

0.2

.

-

OL...-__L...-__J........-__J........-__J........-__.L--_---'

o 100 200 300 400 500 600
Time (minutes)

Figure 4-12: Example of First Point Past Dead-Zone extension technique.

This extension technique smoothes the trend with no distortion at the end of the signal.

The smoothed trend stays relatively constant around the signal value of 0.5. The success

of the First Point Past Dead-Zone extension technique is attributable to the adaptive

nature of the technique which is driven by the characteristics of the signal being

smoothed.

93



CHAPTER FIVE: CONCLUSIONS

This chapter summarizes the work presented in this thesis. After briefly

reviewing the motivation for this research, a final analysis of the five proposed extension

techniques is presented. Use of the First Point Past Dead-Zone extension technique is

recommended as the preferred approach. Finally, recommendations for future work are

presented. There are several areas that could benefit from more research.

5.1 Conclusions

The motivation for this research stems from the desire to apply wavelet smoothing

for trend extraction. However, implementation of wavelet smoothing using traditional

convolution filters causes end-distortion of the extracted trends. Five new extension

techniques were proposed as a way to minimize the end-distortion. Each of these

extension techniques use the dead-zone as calculated from the dominant frequency in the

signal to be smoothed. The adaptive nature of the dead-zone calculation significantly

improves the fidelity of extracted trends from sensor signals with differing frequencies

and amplitudes of noise. Definition and use of the dead-zone was one of the

contributions made by this research.

94



There are three main conclusions resulting from the research presented in this

thesis. First, all five of the proposed extension techniques minimize the end-distortion

caused by the wavelet smoothing. Second, the First Point Past Dead-Zone is the best of

the five proposed extension techniques. It is the best technique at minimizing the

end-distortion. This technique is the most simple to implement while requiring the least

amount of computational effort. It is unaffected by the sampling rate. Yet, this technique

is robust enough to provide trend extraction even with inaccurate estimates of the

dead-zone. The final conclusion is that the First Point Past Dead-Zone extension

technique is easily adaptable and can be applied with minimal effort.

5.2 Recommendations for Future Work

The following list summarizes suggested areas of future research in wavelet

smoothing and signal extension:

I. Evaluate the performance of the five proposed extension techniques when using

different wavelet families or with varying degrees of smoothing.

2. Develop code to combine the natural frequency calculation for the dead zone along

with the extension and smoothing algorithms to provide a complete wavelet smoothing

program for trend extraction and other possible monitoring and control applications ..

95



3. Simplify the fuzzy algorithm for improved usability. This could allow a user to tune

the rule-base and membership functions as to maximize performance for specific wavelet

smoothing applications where the First Point Past Dead-Zone technique fails to provide

the desired level of performance.

96



...

LIST OF REFERENCES

Anderson, J. J. A Pattern-Based Approach to Gain Scheduling, School of Chemical
Engineering. Oklahoma State University: Stillwater, Oklahoma (1993).

Bellanger, M. Digital Processing of Signals Theory and Practice. Second Edition, John
Wiley and Sons, New York (1990).

Braae, M. and D. A. Rutherford. "Fuzzy Relations in a Control Setting." Kybernetes 7 (3),
185-188 (1978).

Bracewell, R. M. The Fourier Transfonn and Its Applications. McGraw-HilI Book
Company, New York (1965).

Bueche, F. and D. Wallach. Technical Physics. Fourth Edition, John Wiley and Sons,
Inc., New York (1994).

Chui, C. K. An Introduction to Wavelets. Academic Press, Inc., Boston (1992).

Chui, C. K., Ed. Wavelets: A Tutorial in Theory and Applications. Acdemic Press. Inc."
Boston (1992a).

Daubechies, I. "The Wavelet Transforms, Time-Frequency Localization and Signal
Analysis." IEEE Transactions On Information Theory 36 (5), 961-1005 (1990).

Daubechies, 1. Ten Lectures on Wavelets. Society For Industrial and Applied
Mathematics, Philadelphia (1992).

Elliot, D. F., Ed. Handbook of Digital Signal Processing Engineering Applications.
Academic Press, San Diego (1987).

Gray, R. M. and J. W. Goodman. Fourier Transforms An Introduction for Engineers.
Kluwer Academic Publishers, Boston (1995).

Hellendorn, H. and C. Thomas. "Defuzzification in Fuzzy Controllers." Journal of
Intelligent and Fuzzy Systems 1 109-123 (1993).

97



Jong, M. T. Methods of Discrete Signal and System Analysis. McGraw-Hill Book
Company, New York (1982).

King, R., M. Ahmadi, et aL Digital Filtering in One and Two Dimensions Design and
Applications. Plenum Press, New York (1989).

Korner, T. W. Fourier Analysis. Cambridge University Press, Cambridge, Great Britain
(1988).

Kreyszig, E. Advanced Engineering Mathematics. Fifth Edition, John Wiley and Sons,
New York (1983).

Lee, C. C. "Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Part 1." IEEE
Transactions on Systems. Man, and Cybernetics 20 (2), 404-418 (1990).

Lee, C. C. "Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II." IEEE
Transactions on Systems, Man, and Cybernetics 20 (2),4 19-435 (1990a).

Mallat, S. G. "A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation." IEEE Transactions on Pattern Analysis and Machine Intelligence 11
(7),674-693 (1989).

MaHat, S. G. "Multifrequency Channel Decomposition of Images and Wavelet Models."
IEEE Transactions on Acoustics, Speech, and Signal Processing 37 (12),20912109
( I 989a).

Mallat, S. G. "Multiresolution Approximations and Wavelet Orthonormal Bases of
L2(R)." Transactions of the American Mathematical Society 315 (1), 69-87 (1989b).

Mamdani, E. H. "Application of Fuzzy Algorithms for Control of Simple Dynamic
Plant" Proceedings of the IEEE 121 (12),1585-1588 (1974),

Mamdani, E. H. and S. Assilian. "An Experiment in Linguistic Synthesis with a Fuzzy
Logic ControJler." International Journal ofMan-Machine Studies 7 1-13 (1975).

Mamdani, E. H. "Application of Fuzzy Logic to Approximate Reasoning Using
Linguistic Synthesis." IEEE Transactions on Computers C·26 (12), 1182-1191 (1977).

Mendel, 1. M. "Fuzzy Logic Systems for Engineering: A TutoriaL" Proceedings of the
IEEE 83 (3), 345-377 (1995).

Misawa, E. A. Fuzzy Systems Theory and Applications. Lecture Notes for MAE 5733
Spring Semester Course at Oklahoma State University: Stillwater, Oklahoma (1994).

Morrison, N. Introduction to Fouri.er Analysis. John Wiley and Sons, New York (1994).

98



-

Press, W. H., S. A. Teukolsky, et aI., Eds. Numerical Recipes in C The Art of Scientific
Computing. Second Edition, Press Syndicate of the University of Cambridge, New York
(1992).

Raghavan, V. K. Wavelet Representation of Sensor Signals for Monitoring and Control,
School of Chemical Engineering. Oklahoma State University: Stillwater, Oklahoma
(1995).

Raghavan, V. K. and J. R. Whiteley. Wavelet Representation of Sensor Patterns for
Monitoring and Control. American Institute of Chemical Engineers 1993 Annual
Meeting, St. Louis, Missouri, November 7-12 (1993).

Rioul, O. and P. Duhamel. "Fast Algorithms for Discrete and Continuous Wavelet
Transforms." IEEE Transactions on Information Theory 38 (2), 569-585 (1992).

Sinha, M. Pattern-Based Process Characterization and Gain-Scheduling for Nonlinear
Chemical Processes, School of Chemical Engineering. Oklahoma State University:
Stillwater, Oklahoma (1995).

Smith, W. W. and J. M. Smith. Handbook of Real-Time Fast Fourier Transforms. IEEE
Press, New York (1995).

Sugeno, M. and K. Murakami. "An Experimental Study on Fuzzy Parking Control Using
a Model Car." Industrial Applications of Fuzzy Control. M. Sugeno, Ed. Amsterdam, The
Netherlands, Elsevier Science Publishing Company, Inc" 125-138 (1985).

Tolstov, G. P. Fourier Series. translated by R. A. Silverman, Dover Publications, Inc.,
New York (1962).

Vetterli, M. and C. Herley. "Wavelets and Filter Banks: Theory and Design." IEEE
Transactions on Signal Processing 40 (9),2207-2232 (1992).

Walter, G. G. "Discrete Discrete Wavelets." SIAM Journal of Mathematical Analysis 23
(4),1004-1014 (1992).

Weaver, H. K. Applications of Discrete and Continuous Fourier Analysis. John Wiley
and Sons, New York (1983).

Whiteley, 1. R. and 1. F. Davis. "Qualitative Interpretation of Sensor Patterns." IEEE
Expert 8 54-63 (1993).

Whiteley, J. R. and J. F. Davis. "A Similarity-Based Approach to Interpretation of Sensor
Data Using Adaptive Resonance Theory." Computers and Chemical Engineering 18 (7),
637-661 (1994).

99



Zadeh, L. A. "Fuzzy Sets." Information and ControlS 338-353 (1965).

Zimmermann, H. J. Fuzzy Set Theory and Its Applications. Second Edition, Kluwer
Academic Publishers, Boston (1991).

100



APPENDIX A

A.I Fuzzy Logic

Fuzzy logic was developed by L. Zadeh [Zadeh, 1965] as a way to quantify

vagueness and uncertainty. Fuzzy logic is a branch of mathematics known as fuzzy set

theory. Fuzzy set theory has developed from the more basic crisp set theory [Zadeh.

1965]. In crisp set theory, an element either belongs to a set or it is excluded from a set.

For example, the set of positive integer numbers less than five would be defined as ( 1,2,

3, 4}. In fuzzy set theory, an element is assigned to a set along with the degree of

membership to the set. This degree of membership quantifies the extent to which the

element belongs with the set. The degree of membership is defined by the Greek letter p.

The degree of membership is generally defined from 0 to I. The definition of a set in

fuzzy set theory is as follows [Zimmermann, 1991]:

A = {(x,,uA(x))lx E X} (A.I ).

The J.1 A (x) term is the degree of membership that the element x (which is defined over

the entire set of X) has in the set A. For example a crisp set of height of tall people could

include anyone with a height above 6 feet. This crisp set could be defined as the

following:

101



B = {xix ~ 6)

x is defined in feet.

(A.2).

The crisp set B represents all the tall people over the height of six feet. For a similar

example in fuzzy set theory, the height of tall people could be defined as the following

set:

B = {(6,.2),(6.25,.4),(6.5,.6),(6.75,.8),(7,l)) (A.3).

This fuzzy set B represents the set of taU people defined over the elements of 6, 6.25,

6.5,6.75, and 7 with the degree of membership associated with each element. The

elements which occur between elements listed are linearly interpolated while any

elements outside the range are taken as degree of membership of zero. So based on the

fuzzy set, a person who is 6.3 feet would be assigned a p. = 0.44. This fuzzy set can be

represented by the following as a mathematical equation:

B = {(x,Pii(x))lx E Xl

where

{

a, x ~ 5.75

J.lii(x) = O.8x - 4.6, 5.75 < x ~ 7

I, x >7

102

(A.4).

(A.S).



The set B is defined over the range of elements x as defined by equation A.5. This fuzzy

set can also be represented using graphical notation as the following [Zimmermann,

1991]:

0.8

0.6
:::L

0.4

0.2

0 I I

5.75 6 6.25 6.5 6.75 7

X

Figure A-I: Graphical representation of fuzzy set of tall people.

Each of the three representations illustrate the combined use of an element and the

degree of membership to represent fuzzy sets. This example of tall people is arbitrarily

based on the criteria established using human intuition. The example can be expanded to

include a fuzzy set of short people, medium people, extra-tall people, and so-on. Each

defined fuzzy set contains elements which may belong to other sets.

103



A.2 Approximate Reasoning

Approximate reasoning provides the mathematical framework to use fuzzy logic.

The use of approximate reasoning allows the introduction of rule-bases to facilitate the

application of fuzzy logic. The rules provide the systematic technique to quantify the

fuzzy logic as applied to fuzzy statements containing the linguistic variables. The general

form is as follows [Lee, 1990; Lee, 1990a; Misawa, 1993; Mendel, 1995]:

Rule I:

Suppose:

Result:

If x is A

x is A'

then y is B

Yis B'

Figure A-2: Fuzzy logic implication with one condition.

The terms A, A', B, and B' are the linguistic variables for the fuzzy statements. These

linguistic variables are typically fuzzy sets which are previously defined. Approximate

reasoning provides the structure to mathematically solve the above situation. The rule

defines the value for y implied from the value of x. The following example demonstrates

the application of the rules with implication using linguistic variables.

104



Rule 1:

Suppose:

Result:

If Apple is Red

Apple is Very Red

then Apple is Ripe

Apple is Very Ripe

Figure A-3: Example of fuzzy logic implication with one condition.

The premise (Rule I) states that if the apple is red then the apple is ripe. Suppose an

apple to be very red, then the implied inference result is that the apple is very ripe.

The implication used in this research is Mamdani's rule of implication [Mamdani

1975; Mamdani and Assilian, 1975; Mamdani, 1977]. The general form of one condition

rule-base is defined as following:

Rule I:

Suppose:

Result:

If x is A

x is A'

then y is C

y is C'

Figure A-4: Fuzzy logic implication with one condition.

Then Mamdani's rule of implication would be defined as following:

C=Ao(A4 C) (A.6).

105



The IlA(X) is the premise input (Rule 1), Ildy) is the premise (Rule 1) result, and IlA o(x) i

the actual input variable. The implication is the maximum-minimum' operator

(abbreviated max-min). This means that Ildy) is the maximum of the intersection of

IlA(X), IlA -(x), and IldY). The more general approach used in this research is the two

conditions rule-base such as the following:

Rule 1: If x is A and y is B then z is C

Suppose:

Result:

x is A' and y is B'

z is C'

Figure A-5: Fuzzy logic two conditions implication rule-base.

Equation A.6 becomes the following with the addition of the two conditions rule-base:

C' = (A' ,B') 0 [(A,B) ~ C] <=> [A'o(A ~ C)] 1\ [B'o(B ~ C)] (A.7).

When using multip.le rules then the general form for Mamdani's implication is as follows:

Rule 1: If x is AI and y is B I

Rule 2: If x is A 2 and y is B2

Rule 3: If x is A:, and y is B:,

Suppose: x is A' and y is B'

Result:

then z is C1

then z is Cz
then z is C:l

z is C'

L

Figure A-6: General form of Mamdani's implication rule for two conditions.

106



The output for z is calculated using the union of each rule with the other rules. So the

general form for two conditions using Mamdani's implication for N rules:

(A.8).

The output (C') set from the implication rule-base is a fuzzy membership function. This

fuzzy membership function is defined over the range of z values for each rule that is fired.

Once the output membership function, z, is calculated the resultant is usually converted

back to a crisp number. The process to convert a fuzzy set into a crisp set is known as

defuzzification.

A.3 Defuzzification

For this application. the inferred output fuzzy function is converted back to a crisp

numerical value. The defuzzification technique used is the center of area also known as

the center of mass [Brae and Rutherford, 1978; Lee, 1990a; Hellendorn and Thomas,

1993; Mendel, 1995]. The crisp numerical output from the output fuzzy function is

calculated as the center of gravity for the total output fuzzy function. The fuzzy

membership function is discretized over the range of elements (x). The crisp numerical

output is calculated based on the following equation [Lee, 1990a]:

107



(A.9).

The Xj term is the element which is discretized over j points (j = 1 to n). The J1z term is

the membership value for each element (Xj) over the whole range of j that x exists. The

output crisp value is the z term. This crisp value is used in the evaluation of the output

membership function. Based on several different criteria, the center of area is rated as

one of the better defuzzification techniques [Lee, 1990a; Hellendorn and Thomas, 1993].

108



APPENDIXB

B.t Computer Code for Adaptive NET2 Extension Technique

This is the computer code for the Adaptive NET2 extension technique. The windowed
signal is the vector represented by a[] with 768 points. The return vector a[] with 1024
can be smoothed with the wavelet smoothing code.

for (k=0;k<200+1 ;k++){
tmp[k]=a[n-k-l ];

for (k= index_num_one_freq;k<3*index_num_one_freq;k++) ( 1* k=length of skip
window *1

for (kk=O;kk<k+ 1;kk++) { 1* calculate the mean *1
meanl +=tmp[kk];

}
mean 1=mean lI(k+ I);

for (kk=O;kk<k+ I;kk++) { 1* calculate the sum_sq_error deviation *1
sum_sq_error += (mean I-tmp[kk])*(mean I-tmp[kk]);

}

if (sum_sq_error <=min_sum_sq_error)
{
min_mean=mean 1;
min_sum_sq_error=sum_sq_error;
flip_index=k+ 1;
}

sum_sq_error=O.O;
mean 1=0.0;

} 1* end of iteration k *1

for (k=0;k<n/3;k++) a[n+k]=2*min_mean-a[n-k-I];

Return vector a[] with 1024 points - this is the extended signal.

109



B.2 Computer Code for Square Root Objective Function Extension
Technique

This is the computer code for the Square Root Objective Function extension technique.
The windowed signal is the vector represented by a[) with 768 points. The return vector
a[] with 1024 can be smoothed with the wavelet smoothing code.

for (k=O;k<200+ 1;k++) {
tmp[k]=a[n-k- J];

for (k= index_num_one_freq;k<3*index_num_one_freq'k++) { 1* k=length of skip
window *1

for (kk=O;kk<k+ 1;kk++) { 1* calculate the mean *1
mean 1 +=trnp[kk];

}
meanl=mean I/(k+l);

for (kk=O;kk<k+ I;kk++) { /* calcuJate the sum_sq_error deviation *1
sum_sq_error += (mean I-tmp[kk])* (mean I-tmp[kk]);

}
root=sqrt(k+ 1); 1* root is sqrt of n *1
sUffi_sq_error=suffi_sq_error/root;

if (sum_sq_error <=min_sum_sq_error)
{
min_mean=mean 1;
min_sum_sq_error=suffi_sq_error;
fJip_index=k+ J;
}

sum_sq_error=O.O;
mean 1=0.0;

} /* end of iteration k */

for (k=O;k<n/3;k++) a[n+kl=2*min_mean-a[n-k-l];

Return vector aU with 1024 points - this is the extended signal.

110



B.3 Computer Code for First Point Past Dead-Zone Extension
Technique

This is the computer code for the First Point Past Dead-Zone extension technique. The
windowed signal is the vector represented by a[] with 768 points. The return vector aU
with 1024 can be smoothed with the wavelet smoothing code.

for (k=O;k<200+ 1;k++){
tmp[kJ=a[n-k-1 ];

for (kk=O;kk<index_num_one_freq+2;kk++) { /* calculate the mean */
mean I +=tmp[kk];

}
min_mean=mean I/(k+1);

for (k=O;k<n/3;k++) a[n+k]=2*min_mean-a[n-k-I];

Return vector a[] with 1024 points - this is the extended signal.

B.4 Computer Code for Fuzzy Tie-Point Extension Technique

This is the computer code for the Fuzzy Tie-Point extension technique. The windowed
signal is the vector represented by aD with 768 points. The return vector an with 1024
can be smoothed with the wavelet smoothing code.

for (k=0;k<200+1;k++)/
tmp[k]=a[n-k];

/* this calculates the sum of error at one freq */
for(i=O;i<index_num_one_freq; i++){

mean_one_freq += tmp[i];

for(i=O;i<index_num_one_freq; i++){
sum_error_one_freq += (mean_one_freq-tmp[i])*(rnean_one_freq-tmp[i]);

] II



for (k=index_num_one_freq;k<3*index_nuID_one_freq;k++) {
/* k=length of skip window to how far back*/

for (kk=O;kk<k+ I~kk++) { /* calculate the mean */
mean1 +=tmp(kk);
}

mean 1=mean lI(k+ l); /*remember index_num=k+1 */

for (kk=O;kk<k+l ;kk++) { /* calculate the sum_error deviation */
sum_error += (mean I-tmp[kk])*(mean] -tmp[kk]);

index_num=k+]; /* remember k is one less than index */

if (rating >=max_rating){
fl iP_mean=mean 1;
max_rating=rating;

index_max_rate=k+ 1;
}

sum_error=O,O;
mean 1=0.0;

} /* end of iteration k */

for (k=O;k<n13;k++) a[n+k]=2*flip_mean-a[n-k-1];

/*end of net2 */

/**********************************************************************/
/*$$$$$$ fuzzlets,c $$$$$$$$*/
/**********************************************************************/

/* written 1110/96 by Jonathan Hynson all rights reserved under US copyright laws */

112



/* program using Fuzzy Logic Reasoning to approximate the best choice for the */
/* flip point (average value) of wavelet extension technique developed by Vinod
Raghavan*/
/* singlet inputs with two fuzzy variables: sum_error (sum of squared deviation) */
/* & index_num(index number back from end of sensor data) higher number
further back from end */
/* Fuzzy Parameters: singlet inputs (two input variables with three func for each), */
/* one output variable (rating of flip pt with 4 (unc), Rules are listed below, */
/* Mamdani's implication rule (inference: max-min), COA (Center of Mass or
Centroid) defuzzification */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double fuzzlets(double sum_error, double index_num, double sum_error_one3req,
double index_num_one_freq)
{
/* These are the inputs: index_num & sum_error (actually sum_sq_deviation) */
/* sum_error (really sum_sq_deviation/n) & index_num increases as go back away from
end of data */
/* double sum_error, index_num; */
/* sum_error_one_freq is the sum deviation sq at one period of freq/n*/
/* index_num_one_freq is the number of pts (index) for one period of freq */
/* double index_num_one_freq, sum_errocone_freq; */

/* membership func: func return a mu for a given x value (index_num_* or sum_error_* )
*/
double mu_sum_error_sm_fun(double,double), mu_sum_error_med_fun(double,double),
mu_sum_erroclg_fun(double,double);
double mu_index_num_vsmall_fun(double,double),
mu_index_num_smaILfun(double,double), mu_index_num_med_fun(double,double);
double mu_index_num_h igh_fun(double,double),
mu_index_num_vhigh_fun(double,double);

/* max-min inference func for Mamdani's rule of implication;*/
double mu_flip_pCfun(double, double, double);

/* the mu values for each fun */
double mu_sum_error_sm,mu_sum_errocmed, mu_sum_error_lg;
double mu_index_nuffi_vsmall, mu_index_num_small, mu_index_num_med;
double mu_index_num_high, mu_index_num_vhigh;
double mu_flip_pCbad, mu_flip_PCok, mu_flip_pt_good;
double mu_flip_PCexc, mu_flip_Pcvexc;

\13



double flip_pcx=O.O; /* ranges 0 to 40, @ O. I increment; see flip_Pcrating */

/* membership func: func return a mu for a given x value (flip_pt_x) */
doubJe mu_flip_pCbad_fun(double), mu_flip_Pcok_fun(double),
mu_fI ip_PC.good_fun(double);
double mu_flip_pt_exc_fun(double), mu_flip_pCvexc_fun(double);

/* these are the membership values of the function; used to calculate mu of the func */
/* at the value of a given x (flip_pcx) from the above func */
double mu_flip_pcbad_slope, mu_flip_pcok_slope, mu_flip_p'-.,good_slope;
double mu_flip_pcexc_slope, mu_flip_PCvexc_slope;

/* func returns the mu_vaJue_acflip_pCx given the following (in this order) */
/* mu_flip_pt_* I, mu_flip_PC* I_slope, mu_flip_pC*2, mu_flip_PC*2_slope */
double centroid_defuzzjun(double, double, double, double);

/* these sum for centroid defuzzification method */
double mu_value_acflip_pCx=O.O, flip_pcrating=O.O;
double sum_ffiu_times_x=O.O, sum_mu=O.O;
/* maximize the flip_pt_rating, higher rating--> better choice for flip point */

/************* !!!!!!!! !NOTE: index_num>=dead_zone !!! 1!!!!!! !*********/
/* Check if index_num<index_num_one_freq ==> return flip_Pcrating=O & exit */
if (index_num<index_num_one_freq){

printf(" ERROR IN CODE!!! Index Number < Dead Zone (Number of points of
one period of freq) \n");

fl ip_pcrating=O;
return(flip_pt_rating);

/* Call the membership functions */

/* sum_error_one_freq & index_num_one_freq are set by the values of each */
/* variable at one complete period of the natural frequency of signal (sensor noise) */

mu_sum_error_sm = mu_sum_erroT_sm_fun(sum_erroT, sum_errocone_freq);
mu_sum_error_med = mu_sum_error_med_fun(sum_error, sum_error_one_freq);
mu_sum_errof_lg = mu_sum_error_lg_fun(sum_error, sum_error_one_freq);

/*printf(" mu sum error sm = %If\n", mu_sum_error_sm);
printf(" mu sum error med = %If\n", mu_sum_errocmed);
printf(" mu sum error Ig = %If \nil, mu_sum_error_lg);
printf(" \n"); */

114



mu_index_num_vsmall = mu_index_num_vsmaILfun(index_num,
index_num_one_freq);
mU_index_num_small = mu_index_oum_small_fun(index_num, index_num_one_freq);
mU_index_num_med = mu_index_num_med_fun(index_num, index_num_one_freq);
mU_index_num_high = mU_index_num_high_fun(index_num, index_num_one_freq);
mu_index_num_vhigh = mu_index_num_vhigh_fun(index_num, index_num_one_freq);

/*printf(" mu index num vsmall = %If \nil, mu_index_num_vsmall);
printf(" mu index num small = %If \n", mu_index_num_small);
printf(" mu index num med = %If\n'', mU_index_num_med);
printf(" mu index num high = %If \nil, mu_index_num_high);
printf(" mu index num vhigh = %If\n'', mu_index_num_vhigh);
printf(" \n"); */

/* initialize all mu_flip_PC* to 0 */
mu_flip_Pcbad=O;
mu_flip_pcok=O;
mu_flip_PCgood=O;
mu_flip_PCexc=O;
mu_flip_pt_vexc=O;

/* Each rule calls the rule base function */
/* max-min inference func: returns max(min(mu_sum_error_*,
mu_index_num_*),mu_fJip_PC*) for each rule in rule base */
/* parCl=rnin(rnu_sum_erroc*, mu_index_num_*) for Mamdani's rule of implication;
max-min inference; */
/* the max( parel, mu_flip_pc*) for the else (union) to pick largest mu_flip_PC* for
each * */

/* RULE ONE */
if (mu_sum_error_sm>O && mu_index_num_vsmall>O) {

mu_flip_PCvexc=mu_flip_Pcfun(mu_suffi_error_sm,mu_index_num_vsmall ,mu
_flip_PCvexc);
}

/* RULE TWO */
jf (mu_sum_error_sm>O && mU_index_nuffi_small>O) (

mU_flip_Pcgood=mu_flip_PCfun(mu_sum_error_sm,mu_index_num_small,mu_
flip_ptJ;ood);
}

/* RULE THREE */
if (mu_sum_errof_sm>O && mu_index_num3ned>O){

l15



mU_flip_pcexc=mu_flip_PCfun(mu_sum_error_sm,mu_index_num_med,mu_flip_PCex
c);
}

/* RULE FOUR */
if (mu_sum_errocsm>O && mu_index_num_high>O){

mU_flip_Pcgood=mu_f1ip_pt_fun(mu_sum_error_sm,mu_index_num_high,mu_tlip_PC
good);
}

/* RULE FIVE */
if (mu_sum_errocsm>O && mu_index_num_vhigh>O){

mu_tlip_Pcok=mu_tlip_PCfun(mu_sum_error_sm,mu_index_num_vhigh,mu_flip_PCo
k);
}

/* RULE SIX */
if (mu_sum_errocmed>O && mU_index_num_vsmall>O)(

mu_tl ip_pt-good=mu_fI ip_Pcfun(mu_sum_error_med,mu_index_num_vsmall,mu_tlip_
pt~ood); .
}

/* RULE SEVEN */
if (mu_sum_errocrned>O && mU_index_num_small>O){

rnu_f1ip_pt-ok=mu_flip_pCfun(mu_sum_error_med,mu_index_num_small,mu_flip_pt_
ok);
}

/* RULE EIGHT */
if (rnu_sum_errocmed>O && mu_index_num_med>O) (

mu_tlip_Pcgood=mu_fiip_pt-fun(mu_sum_erroT_med,rnu_index_num_med,mu_flip_pt
-E;ood);
}

/* RULE NINE */
if (mu_sum_error_med>O && mu_index_num_high>O){

mU_flip_Pcok=mu_flip_pCfun(mu_sum_error_med,mu_index_num_high,mu_flip_pt_o
k);

116



/* RULE TEN */
if (mu_sum_errocmed>O && mu_index_num_vhigh>O){

mu_flip_Pcbad=mu_flip_pcfun(mu_sum_errocmed,mu_index_num_vhigh,mu_flip_pt
_bad);
}

/* RULE ELEVEN */
if (mu_sum_erroc1g>O && mU_index_num_vsmall>O){

mU_flip_pCok=mu_flip_PCfun(mu_sum_error_lg,mu_index_num_vsmall,mu_flip_PCo
k);
}

/* RULE TWELVB */
if (mu_sum_erroc1g>O && mu_index_nulTI_small>O) {

mu_f1ip_Pcbad=mu_flip_pcfun(mu_sum_erroclg,mu_index_num_small,mu_flip_pCb
ad);
}

/* RULE THIRTEEN */
if (mu_sum_error_lg>O && mu_index_num_med>O){

mU_flip_Pcok=mu_flip_PCfun(mu_sum_erroc1g,rnu_index_num_med,mu_flip_PCok);
}

/* RULE FOURTEEN */
if (mu_sum_erroclg>O && mu_index_num_high>O){

mu_fl ip_pt_bad=mu_fl ip_Pcfun (mu_sum_error_lg ,mu_index_num_high,mu_fl ip_Pcba
d);
}

/* RULE FIFTEEN */
if (mu_sum_error_lg>O && mu_index_num_vhigh>O){

mu_flip_PCbad=mu_f1 ip_pt_fun(mu_sum_error_lg,mu_i ndex_num_vhigh,mu_flj p_pCb
ad);
}

117



printf(" mu_flip_pt_ok = %If\n", mu_flip_PCok);
printf(" mu_flip_ptJ;ood = %It\n", mu_f1ip_pt..good);
printf(" mu_flip_pCexc = %If \n", mu_flip_pcexc);
printf(" mu_flip_pt_vexc = %If\n", mu_fIip_pcvexc);*/

/* print only for diagnostic checking */
/*printf(" mu_fIip_PCbad_slope =%If\n", mu_flip_PCbad_sJope);
printf(" mu_f1ip_Pcok_sJope = %If \nil, mu_flip_pcok_slope);
printf(" mu_flip_pt~ood_slope= %If \nil, mu_f1ip_pc.good_slope);
printf(" mu_flip_pcexc_sJope = %If \n", mu_flip_pcexc_slope);
printf(" mu_flip_PCvexc_slope =%If \n ", mu_f1ip_pt_vexc_slope);*/

/* for loop for summing up centroid areas of output membership functions */
/* output member func is split into three segments: (bad,ok),(ok,good),(good,exc)*/
/* for each part of the for loop, the centroid_defuzz_fun is called to calculate */
/* the max {min(mu_f1ip_pc.*I_slope, mu_flip_PC*I), min(mu_flip_PC*2_slope,
mu_flip_pc.*2)} */
/* the resulting max (mu_value_acflip_pcx) is calculated into the centroid
defuzzification method */

flip_pc.x=O;
for (f1ip_pCx=O; f1ip_pcx<40.1;) {

if (flip_pcx<= 1O){ /* the first part of the ouput membership functions */
mu_f1ip_Pcbad_slope = mu_flip_Pcbad_fun(f1ip_pCx);
mu_f1ip_pt_ok_slope = mu_f1ip_Pcok_fun(f1ip_PCx);
mu_val ue_acfl ip_pt_x = centroid_defuzz_funCmu_flip_pt_bad,

mu_flip_Pcbad_slope. mu_flip_PCok, mu_flip_pt_ok_slope);
sum_mu_times_x = mu_value_at_f1ip_pt_x * f1ip_pcx +

sUID_mu_times_x;
sum_mu = mu_value_at_f1ip_PCx + sum_mu;

if (flip_pcx>10 && flip_pCx<20.1){ /* the second part of the ouput
membership functions */

mu_f1ip_pCok_slope = mu_flip_Pcok_fun(flip_pt_x);
mu_flip_pt~ood_slope = mu_fl ip_pt~ood_fun(fl ip_Pcx);
mu_value_acflip_pt_x = centroid_defuzz_fun(mu_flip_PCok,

mu_flip_pCok_slope, mu_tlip_pt~ood,mu_flip_PCgood_slope);
sum_mu_times_x = mu_value_a~_tlip_PCx * f1ip_pc.x +

sum_mu_times_x;
SUfi_mu = mu_value_acflip_pt_x + sum_mu:

118



if (flip_pcx>20 && flip_pcx<30.1){ /* the third part of the ouput membership
functions */

mu_flip_PCgood_slope =mu_.flip_pt.good_fun(flip_PCx);
mu_flip_PCexc_slope = mu_.flip_pcexc_fun(.flip_PCx);
ffiU_value_acflip_PCx = centroid_defuzz_fun(mu_flip_pcexc,

mu_flip_pt_exc_slope, mu_flip_PCgood, mu_flip_pt...,good_slope);
sum_ffiu_tirnes_x = mu_value_aC.flip_pCx * .flip_pcx +

sum_mu_times_x;
sum_mu = mu_value_ac.flip_pcx + sum_mu;

if (.flip_pcx>30 && .flip_pt_x<40.1) ( /* the fourth part of the ouput
membership functions */

mu_.flip_pt_exc_slope = mu_flip_pt_exc_fun(flip_PCx);
mu_.flip_PCvexc_slope = mu_flip_pt_vexc_fun(.flip_pcx);
mu_value_ac.flip_PCx =centroid_defuzz_fun(mu_.flip_pCvexc,

mu_.flip_pCvexc_sJope, mu_flip_pcexc, mu_fl ip_pcexc_slope);
sum_mu_times_x = mu_value_aCflip_pt_x * .flip_pcx +

sum_mu_times_x;
sum_mu = mu_value_acflip_pCx + sum_mu;

/* end of for loop summing aJl the centroid areas */
}

/*
printf(" sum_mu_times_x =%lf AND sum_mu = %If\n", sum_mu_times_x,
sum_mu);
printf(" flip point rating = %If (from fuzzlets function) \n", .flip_pcrating);
*/

if (sum_mu_times_x<=O.!) ( 1* Error Check of sum_mu_times_x *1
printf(" ERROR IN CALCULATION: Deffuzification Error with Sum of (mu

multiplied by x) \n");
flip_Pcrating=O;
retum(flip_Pcrating);

if (sum_mu<=O.OOI){ /* Error Check of sum_mu */

119



printf(" ERROR IN CALCULATION: Deffuzification Error with Sum of mu
\nil);

flip_pcrating=O;
return(flip_pcrating);

return(flip_Pcrating);
/* end of fuzzlets.c function called to calculate rating of flip point */
}

/****************************** THE MEMBERSHIP FUNCTIONS
*****************************/
/*******the mu_sum_error membership functions *******/
/* For all the mu_sum_error membership functions are adjusted back to
sum_error_one_period */
/* which is the sum_error @ one period of freq. */

/******* mu_sum_errocsm_fun *********** sum_error_small decreases linearly such
that */
/* trapazoid membership function without left leg */
/* the mu=1 (max value) is sum_error=(4/5)*sum_error_one_per, and mu=O (min value)
is (9/5)*surn_errocone_period */

double rnu_sum_errocsm_fun(double x, double sum_errocone_period)
(

double slope= l/(sum_error_one_period);
double mu, x_intercept_down=slope*(9*sum_error_one_period/5);
/* x_intercept_down=the x-intercept of the membership function with x-axis */

if(x<4*sum_errocone_period/5) mu = 1;
else if(x>=4*sum_error_one_period/5 && x<=9*sum_errocone_period/5) mu = 
slope*x + x_intercepcdown;
else mu=O;

return(mu);
1* end of mu_sum_error_sm fun */

/******* rnu_sum_errocmed_fun ******* sum_errocmed increase & decreases
linearly such that */
/* the mu=O (min value-left) is (4/5)*sum_errocone_period */
/* and mu= I (max value) is (9/5)*sum_errocone_period */

120



1* the mu=O (min value-right) is (l4/5)*sum_error_one_period *1

double mu_sum_error_med_fun(double x, double sum_error_one_period)
(

double slope= I/(sum_error_one_period);
double mu, x_intercept_up=slope*(4*sum_error_one_period/5);
double x_intercepCdown=slope*(14*sum_errocone_period/5);
1* x_intercepcup=the x-intercept of the increasing membership function with x-axis *1
1* x_intercepcdown=the x-intercept of the decreasing membership function with x-axis
*1

if (x>4*sum_error_one_period/5 && x<=9*sum_errocone_period/5) mu=slope*x
x_intercepcup;
else if (x>9*sum_error_one_period/5 && x<=J4*sum_errocone_period/5) mu=
slope*x+x_intercepCdown;
else mu=O;

return(rnu);
1* end of mu_sum_error_med_fun *1

1******* mu_sum_errof_lg_fun ******* sum_erroclg increases as l-l/(x/xO) *1
1* the mu=O (min value) is (9/5)*sum_errocone_period;
xO=(9/5)*sum_errocone_period *1
1* the function is l-l/(x/xo) which increases quadratic to infinity */

double mu_sum_erroclg_fun(double x, double sum_error_one_period)
(
double mu;

if(x>9*sum_errocone_period/5) mu= 1-I/(x/(9*sum_errocone_period/5»;
else mu=O;

return(mu);
1* end of mu_surn_error_lg_fun *1
}

/****************** The mu_index_num_ membership functions
*******************1
1* starCindex_num is the index at one period of freq and period=number of points for a
period *1

121



/******** mu_index_num_vsmaILfun ******** linearly decreasing membership
function */
/* mu=l (max value) is starCindex_num; the mu=O (min value-right) is
1.5*starCindex_num */

double mu_index_num_vsmalLfun(double x, double starCindex_num)
(
double mu, slope_oCline= l/(O.5*starCindex_num); /* slope of line: slope of
membership func */
double x_intercepcdown=slope_oCline*( 1.5*starCindex_num);
/* x-axis intercept for decreasing (right) side of trapazoid membership func */

if (x>=starCindex_num && x<=1.5*starCindex_num) mu = 
slope_oCline*x+x_intercept_down;
else mu=O;

return(mu);
/* end of double mu_index_num_vsmall_fun */
}

/******** mu_index_num_small_fun ******** triangle membership function */
/* the mu=O (min value-left) is start_index_num, and mu=} (max value) is
].5*starCindex_num */
/* the mu=] (min value-right) is 2*start_index_num */

double mu_index_num_small_fun(double x, double starcindex_num)
{
double mu, slope_oCline= l/(O.5*starcindex_num); /* slope of line: slope of
membership func */
double x_intercept_up=slope_oCline*(starcindex_num);
double x_intercepcdown=slope_oCline*(2*starcindex_num);
/* x-axis intercept for ~ncreasing (left) and decreasing (right) side of triangle membership
func */

if (x>start_index_num && x<= 1.5*starCindex_nurn) mu = slope_oCline*x
x_i ntercepcup;
else if (x> 1.5*start_index_num && x<=2*start_index_num) mu = 
slope_oCline*x+x_intercepCdown;
else mu=O;

return(rnu);

122



1******** mu_index_num_med_fun ******** triangle membership function *1
1* the mu=O (min value-left) is 1.5*starCindex_num, and mu= I (max value) is
2*starcindex_num *1
1* the mu=] (min value-right) is 2.5*start_index_oum *1

double mu_index_num_med_fun(double x, double starcindex_oum)
{
double mu, slope_oCline= I/(O.5*start_index_num); 1* slope of line: slope of
membership func *1
double x_intercepcup=slope_oCline*( l.5*start_index_num);
double x_intercepCdown=slope_oCline*(2.5*start_index_num);
1* x-axis intercept for increasing (left) and decreasing (right) side of triangle membership
func *1

if (x> 1.5*start_index_num && x<=2*starCindex_num) mu = slope_oClioe*x
x_intercepcup;
else if (x>2*start_index_num && x<=2.5*start_index_num) mu = 
slope_oCline*x+x_intercepCdown;
else mu=O;

retum(mu);

1******** mu_index_num_high_fun ******** triangle membership function *1
1* the mu=O (min value-left) is 2*starcindex_num, and mu=1 (max value) is
2.5*starcindex_num *1
1* the mu=l (min value-right) is 3*starcindex_num *1

double mu_index_num_high_fun(double x, double starCindex_num)
{
double mu, slope_oCline=1/(O.5*start_index_num); 1* slope of line: slope of
membership func *1
double x_i ntercept_up=sJ ope_oCline*(2*start_index_num);
double x_intercepcdown=slope_oCline*(3*starcindex_num);
1* x-axis intercept for increasing (left) and decreasing (right) side of triangle membership
func *1

123



if (x>2*starcindex_num && x<=2.5*starCindex_num) mu = slope_oCline*x
x_intercepcup;
else if (x>2.5*starcindex_num && x<=3*starcindex_num) mu = 
slope_oCline*x+x_intercepCdown;
else mu=O;

retum(mu);

/* end of mu_index_num_high_fun *1
}

/******* mu_index_num_vhigh_fun ******* mu_index_num_high_fun increases as 1
l/sqrt(x-xO) *1
1* the mu=O (min value) is 2.5*starcindex_num; *1
1* xO=2.5*start_index_num-1 (move the index to left by one) */
1* the function is l-l/sqrt(x-xo) which increases quadraticly to infinity */

double mu_index_num_vhigh_fun(double x, double start_index_num)
{
double mu, dummy_var=2.5*start_index_num-1;
/* dummy_var=xO which adjust so mu=O @ x=2.5*starCindex_num *1

if(x>2.5*start_index_num) mu = l-l/sqrt(x-dummy_var);
else mu=O;

return(mu);

1* end of mu_index_num_vhigh_fun *1
}

/******************* The flip_pcmembership functions *********1
double mu_flip_Pcbad_fun(double x)
{
double mu;

if (x>O.O && x<lO) mu = -0.1 *x + 1;
else mu=O;

return(mu);
1* end of mu_flip_pCbad_fun */
}

124



[
double mu;

if (x>O && x<=lO) mu=O.l*x;
else if (x>=10 && x<20) rnu=-O.l *x+2;
else rnu=O;

return(mu);
/* end of mu_flip_pt_ok_fun */
}

double mu_flip_pcgood_fun(double x)
{
double mu;

if (x>=l0 && x<=20) mu=O.l *x-l;
else if (x>=20 && x<30) mu=-O.l *x+3;
else mu=O;

return(mu);
/* end of mu_flip_pCgood_fun */
}

double mu_flip_pcexc_fun(double x)
{
double mu;

if (x>=20 && x<=30) mu=O.l *x-2;
else if (x>=30 && x<40) mu=-O.l *x+4;
else mu=O;

return(mu);
/* end of mu_flip_pcexc_fun */
}

double mu_flip_pcvexc_fun(double x)
{
double mu;

if (x>=30 && x<=40) mu=O.l *x-3;
else mu=O;

return(rnu );
/* end of mu_flip_PCvexc_fun */

125



L

/************** THE MAX-MIN INFRENCE ENGINE MAMDANI'S RULE OF
IMPLICATION *****************/
/* called from each of the nine rules in the main progrsm */
/* max(min(mu_sum_error, mu_index_num), mu_flip_pt)) */

double mu_flip_pCfun(double mu_sum_error, double mu_index_num, double
mu_flip_pt)
{

if (mu_sum_error <= mu_index_num && mu_sum_error > mu_flip_pt) mu_flip_pt =
mu_sum_error;
if (mu_index_num <= mu_sum_error && mu_index_num > mu_flip_pt) mu_flip_pt =
mu_index_num;
else mu_flip_pt = mu_flip_pt;

1* end of rule function */

/*************** Centroid Defuzzification Funtions ***************/
/* used in for loop, output member func is split into three segments */
/* decrease func is the member func sloping down while increase is sloping up. */
/* the mu_flip_decrease (or increase) is mu_value calculated from the fired rulebase. */
/* mu_flip_decrease_slope is calculated based on the membership rules */
/* for a particular value of flip_pcx_values along the horizontal axis */
double centroid_defuzz_fun(double mu_flip_dec,double mu_flip_dec_slope,double
mu_flip_inc,double mu_flip_inc_slope)
{

double mu_value;

if (mu_flip_dec>=mu_flip_inc) mu_value=mu_flip_dec;
else if (mu_flip_inc>mu_flip_dec) mu_va]ue=mu_flip_inc;

126



if (mu_flip_dec_slope>= mu_flip_inc) rnu_value=mu_flip_dec_slope;
else if (mu_flip_inc>mu_flip_dec_slope) mu_value=mu3Iip_inc;

if (mu_flip_dec>=mu_flip_inc_slope) mu_value=rnu_flip_dec;
else if (mu_flip_inc_slope>mu_flip_dec) mu_value=mu_flip_inc_slope;

if (mu_tlip_dec_slope>=mu_flip_inc_slope) mu_value=mu_flip_dec_slope;
else if (mu_flip_inc_slope>mu_flip_dec_slope) mu_value=mu_flip_inc_slope;

return (mu_value);
}

/**********************END OF FUZZLETS PROGRAM *******************/
/***********************************************************************
***/

Return vector a[] with 1024 points - this is the extended signal.

B.5 Computer Code for Weighted Fuzzy Extension Technique

This is the computer code for the Weighted Fuzzy extension technique. The windowed
signal is the vector represented by a[] with 768 points. The return vector aU with 1024
can be smoothed with the wavelet smoothing code.

for (k=O;k<700+ 1;k++) {
tmp[k]=a[n-k];

/* this calculates the sum of error at one freq */
for(i=O;i<index_num_one_freq; i++){

127



}
sum_one_freq=mean_one_freq;
rnean_one_freq=mean_one_freq/index_nurn_one_freq;

for(i=O;i<index_nurn_one_freq; i++) {
surn_errocone_freq += (mean_one_freq-tmp[i])*(mean_one_freq-tmp[i]);

for (k=index_num_one_freq;k<2.0*index_nuITl_one_freq;k++) {
1* k=length of skip window to how far back*1
1* k=the point index in the for loop *1

for (kk=O;kk<k+1;kk++) { 1* calculate the mean */
mean 1 +=trnp[kk];
}

mean 1=mean l/(k+1); /*rernember illdex_nuITl=k+1 *1

for (kk=O;kk<k+1;kk++) { 1* calculate the sum_error deviation *1
sum_error += (mean I-tmp[kk])*(mean I-tmp[kk]);

1* sum_error = sum_error; 1* this is sum_sq_dev *1
sum_error = sum_error/(k+ I); 1* this is sum_sq_dev/n *1

1* sum_error = sum_errorlsqrt(k+ 1); 1* this is sum_sq_dev/n *1

index_num=k+ 1;

1* if (rating >=max_rating) {
f1ip_rnean=mean 1;
rnax_rating=rating;

}*1

printf("tmp[%i]= %Ie surn_error= %le mean= %lf rating= %lf \n ", k, trnp[k],
sum_error, mean 1, rating);

surn_ratin~times_val ue+=tmp[k]*rating;
sum_rating+=rating;

128



l

sum_error=O.O;
meanl=O.O;

}1* end of iteration k */

printf("flip point= %5.4f sum_rating=%4.3e sUffi_times_mean=%4.3e\n",
fl ip_mean,sum_rating,sum_rating_times_value);

*flip_pt=flip_mean;
for (k=0;k<n/3;k++) a[n+kJ=2*f1ip_mean-a[n-k-1 J;

} I*end of net2 *1

/**********************************************************************/
/*$$$$$$$$$$$$$$$$$$$$$$$$$ weightfuzz.c $$$$$$$$$$$$$$$$$$$$$$$$$*1
/********** &&&&&&&&& NOTE: index_num>=dead_zone &&&&&&&&&&&
*********1
/**********************************************************************/

/* written 1/10/96 by Jonathan Hynson all rights reserved under US copyright laws *1
/* program using Fuzzy Logic Reasoning to approximate the best choice for the */
/* flip point (average value) of wavelet extension technique developed by Vinod
Raghavan*1
/* singlet inputs with two fuzzy variables: sum_error (sum of squared deviation) *1
/* & index_num(index number back from end of sensor data) higher number
further back from end */
/* uses a membership function to penalize for larger values of index_num */
/* Fuzzy Parameters: singlet inputs (two input variables with three func for each), */
1* one output variable (rating of flip pt with 4 func), Rules are listed below, */
/* Mamdani's implication rule (inference: max-min), COA (Center of Mass or
Centroid) defuzzification */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double weightfuzz(doubJe sum_error, double index_num, double sum_error_one_freq,
double index_num_one_freq)
{
1* These are the inputs: index_num & sum_error (actually sum_sq_deviation) *1

129



1* sum_error (really sum_sq_deviation/n) & index_num increases as go back away from
end of data *1
/* double sum_error, index_num; */
/* sum_errocone_freq is the sum deviation sq at one period of freq/n*/
1* index_num_one_freq is the number of pts (index) fOf one period of freq *1
/* double index_num_one_freq, sum_error_one_freq; *1

/* membership func: func return a mu for a given x value (index_num_* or sum_error_* )
*1
double mu_sum_errocsm_fun(double,double), mu_sum_error_med_fun(double,double),
mu_sum_errocl~fun(double,double);
double mu_index_num_med_fun(double,double),
mu_index_num_mhi gh_fun(double,double), mu_index_num_high_fun(double,double);

/* max-min inference func for Mamdani's rule of implication;*/
double mu_flip_PCfun(double, double, double);

/* the mu values for each fun *1
double mu_sum_errof_sm,mu_sum_error_med, mu_sum_error_lg;
double mu_index_num_med, mu_index_num_mhigh, mu_index_num_high;
double mu_flip_pCbad, mu_flip_PCok, mu_flip_PC.good, mu_flip_PCexc;

double flip_pt_x=O.O; 1* ranges 0 to 30, @ 0.1 increment; see flip_pt_rating *1

1* membership func: func return a mu for a given x value (flip_pcx) */
double mu_flip_PCbad_fun(double), mu_flip_Pcok_fun(double),
mu_flip_pt...,good3un(double),mu_flip_Pcexc_fun(double);

/* these are the membership values of the function; used to calculate mu of the func */
1* at the value of a given x (flip_pcx) from the above func *1
double mu_flip_Pcbad_slope, mu_flip_pt_ok_slope, mu_tlip_PCgood_slope,
mu_flip_pcexc_slope;

/* func returns the mu_value_aCflip_pt_x given the following (in this order) */
1* mu_flip_PC*', mu_flip_pt_* '_slope, mu_flip_PC*2, mu_flip_pC*2_slope *1
double centroid_defuzz_fun(double, double, double, double);

1* these sum for centroid defuzzification method */
double mu_value_at_flip_PCx=O.O, flip_Pcrating=O.O;
double sum_mu_times_x=O.O, sum_mu=O.O;
1* maximize the flip_pcrating, higher rating--> better choice for flip point */

/************* !!!!!!!! !NOTE: index_num>=dead_zone !!!!!!!!!! !*********/
1* Check if index_num<index_num_one_freq ==> return flip_pt_rating=O & exit */

130



if (index_num<index_num_one_freq) {
printf(" ERROR IN CODE!!! Index Number < Dead Zone (Number of points of

one period of freq) \n ");
fl ip_Pcrating=O:
return(flip_Pcrating);

1* Call the membership functions */

1* sum_errocone_freq & index_num_one_freq are set by the values of each */
/* variable at one complete period of the natural frequency of signal (sensor noise) */

mu_sum_errocsm = mu_sum_errocsm_fun(sum_error, sUffi_error_one_freq);
ffiu_sum_error_med = mu_sum_errocmed_fun(sum_error, sum_errocone_freq);
mu_sum_error_lg = mu_sum_error_lgjun(suID_error, sUffi_error_one_freq);

/*
printf(" mu sum error sm = %If\n", ffiu_sum_errocsm);
printf(" mu sum error med = %If\o", mu_suffi_error_med);
printf(" mu sum error Ig = %If\o'', mu_sum_error_lg);
printf(" \n");
*/

mu_index_num_med = mu_index_num_med_fun(index_num, index_num_one_freq);
mu_index_num_mhigh = mu_index_num_mhigh_fun(index_num,
index_num_onejreq);
mu_index_num_high = mu_index_num_high_fun(index_num, index_num_one_freq);

/*
printf(" mu index num med = %If\n", mu_index_num_med);
printf(" mu index nurn mhigh = %If\n", mu_index_num_mhigh);
printf(" mu index nurn high = %If\n'', mu_index_num_high);
printf(" \n ");
*/

/*initialize all mu_flip_pt_* to 0 */
mu_flip_Pcbad=O;
mu_flip_PCok=O;
mu_fl ip_PCgood=O;
mu_fl ip_pt_exc=O;

/* Each rule calls the rule base function */
/* max-min inference func: returns max(min(mu_suffi_errof_*,

mu_index_num_*),mu_flip_PC*) for each rule in rule base */

131



J* pare1=rnin(mu_sum_erroc*, mu_index_num_*) for Mamdani's rule of implication;
max-min inference; */
J* the max( ·parc1, mu_fl ip_pt_*) fOT the else (union) to pick largest mu_flip_pC* for
each * *J

1* RULE ONE */
if (mu_sum_erroT_sm>O && mu_index_nuffi_med>O) (

mu_flip_pcexc=ffiu_flip_PCfun(mu_suffi_errocsm,mu_index_num_med,mu_fli
p_pCexc);

I

/* RULE TWO */
if (mu_sum_errocsm>O && mu_index_num_mh1gh>O) {

mu_flip_pcok=mu_flip_pCfun(mu_sum_error_sm,mu_index_num_mhigh.mu_fl
ip_Pcok);
}

/* RULE THREE */
if (mu_sum_error_sm>O && mu_index_num_high>O){

mu_flip_PCbad=mu_flip_PCfun(mu_sum_errocsm,mu_index_num_high,mu_flip_PCb
ad);
}

/* RULE FOUR */
if (mu_sum_error_med>O && mu_index_num_med>O){

mu_fIip_pt--£;ood=mu_flip_pt_fun(mu_suffi_erroT_med,mu_index_num_med.mu_flip_pt
_good);
}

/* RULE FIVE */
if (mu_sum_errocmed>O && mu_index_num_mhigh>O){

mu_tlip_Pcok=mu_tlip_PCfun(mu_sum_error_med,mu_index_num_mhigh,mu_flip_pt
_ok);
}

/* RULE SIX */
if (mu_sum_error_med>O && mu_index_num_high>O){

mu_tlip_PCbad=mu_tlip_pt_fun(mu_sum_error_med,mu_index_num_high.mu_flip_pC
bad);

I

132



/* RULE SEVEN */
if (mu_sum_error_lg>O && mu_index_num_med>O){

mu_flip_pt_ok=mu_flip_PCfun(mu_sum_erroclg,mu_index_num_med,mu_flip_PCok);
}

/* RULE EIGHT */
if (mu_sum_erroclg>O && mu_index_num_mhigh>O){

mu_flip_PCbad=mu_flip_pCfun(mu_sum_error_lg,mu_index_num_mhigh,mu_tlip_PCb
ad);
}

/* RULE NINE */
if (mu_sum_erroclg>O && mu_index_num_high>O){

mu_flip_PCbad=mu_f1ip_pCfun(mu_sum_error_lg,mu_index_num_high,mu_flip_Pcba
d);
}

/*
printf(" mu_flip_pt_bad = %If\n", mu_flip_pt_bad);
printf(" mu_flip_Pcok = %If\n", mu_flip_pt_ok);
printf(" mu_flip_PCgood = %If\n", mu_flip_pt~ood);
printf(" mu_flip_pcexc = %If\n", mu_flip_pt_exc);
printf(" \n");
*/

/* print only for diagnostic checking */
/*
printf(" mu_flip_Pcbad_slope = %If \n", mu_f1ip_Pcbad_slope);
printf(" mu_flip_pt_ok_slope = %If\n'', mu_flip_pCok_slope);
printf(" mu_flip_PCgood_slope = %If\n", mu_flip_pt_good_slope);
printf(" mu_flip_PCexc_slope = %If \n", mu_flip_pt_exc_slope);
*/

/* for loop for summing up centroid areas of output membership functions */
/* output member func is split into three segments: (bad,ok),(ok,good),(good,exc)*/
/* for each part of the for loop, the centroid_defuzz_fun is called to calculate */
/* the max {min(mu_flip_PC*I_slope, mu_flip_PC*1), min(mu_flip_PC*2_slope,
mu_flip_pt_*2)} */
/* the resulting max (mu_value_acflip_PCx) is calculated into the centroid
defuzzification method */

tl ip_pcx=-O.142857;

133



for (flip_pcx=-O.142857: flip_pcx<=1.142857;) {

if (flip_pt_x<=O.2857){ /* the first part of the ouput membership functions *1
mu_fhp_PCbad_slope = mu_flip_PCbad_fun(flip_PCx);
mu_flip_PCok_slope = mu_flip_Pcok_fun(flip_pt_x);
mu_value_aCflip_pt_x = centroid_defuzz_fun(mu_flip_PCbad,

mu_flip_pt_bad_slope, mu_flip_pt_ok, mu_flip_PCok_slope);
sum_mu_times_x = mu_value_at_flip_pCx * flip_PCx +

sum_mu_times_x;
sum_mu = mu_value_acflip_PCx + sum_mu;

if (flip_pt_x>=O.2857 && flip_pcx<=O.7143){ /* the second part of the ouput
membership functions */

mu_flip_PCok_s1ope = mu_flip_pt_ok_fun(flip_pCx);
mu_flip_pt~ood_slope = mu_fl ip_pt~ood_fun(fl ip_PCx);
mu_val ue_acfl ip_pcx = centroid_defuzz_fun(mu3lip_pcok,

mu_flip_PCok_slope, mu_flip_pCgood, mu_flip_pcgood_slope);
sum_mu_times_x = mu_value_acflip_pcx * flip_pcx +

sum_mu_times_x;
sum_mu = mu_value_aCflip_PCx + sum_mu;

if (flip_pcx>=O.7143 && flip_pcx<=1.142837){ /* the third part of the ouput
membership functions */

mu_flip_pt~ood_slope= mu_flip_pt~ood_fun(flip_pcx);

mu_flip_PCexc_slope:;:: mu_flip_pCexc_fun(flip_pCx);
mu_value_at_flip_PCx =centroid_defuzz_fun(mu_flip_pt_exc,

mu_flip_pt_exc_slope, mu_flip_PCgood, mu_fl ip_pCgood_sJope);
sum_mu_times_x = mu_value_at_flip_pt_x * flip_pt_x +

sum_mu_times_x;
sum_mu = mu_value_at_fl ip_pt_x + sum_mu;

}
flip_pt_x:;::flip_pt_x+O.OO 1;

/* end of for loop summing all the centroid areas */
}

1*
printf(" sum_mu_times_x:;:: %lf AND sum_mu = %lf\n", sum_mu_times_x,
sum_mu);

134



printf(" flip point rating = %If (from weightfuzz function) \n", flip_PCrating);
*/

if (sum_mu_times_x<O.OO]){ /* Error Check of sum_mu_times_x */
printf(It ERROR IN CALCULAnON: Deffuzification Error with Sum of (mu

multiplied by x) \n");
flip_pcrating=O;
return(flip_pcrating);

if (sum_mu<=O.OOl){ /* Error Check of sum_mu */
printf(" ERROR IN CALCULATION: Deffuzification Error with Sum ofmu

\nil);

flip_pt_rating=O;
return(flip_Pcrating);

retum(flip_pcrating);
/* end of newfwave.c function called to calculate rating of flip point */
}

/****************************** THE MEMBERSHIP FUNCTIONS
*****************************/
/*******the mu_sum_error membership functions *******/
/* For all the mu_sum_error membership functions are adjusted back to
sum_error_one_period */
/* which is the sum_error @ one period of freq. */

/******* mu_sum_error_sm_fun *********** sum_error_small decreases linearly such
that */
/* the mu=] (max value) is sum_error=(4/5)*sum_error_one_per, and mu=O (min value)
is (9/5)*sum_error_one_period */

double mu_sum_errocslTI_fun(double x, double sUTn_errocone_period)
(

double slope= I/(sum_errocone_period);
double mu, x_intercept_down=slope*(9*sum_errocone_period/5);
/* x_intercepcdown=the x-intercept of the membership function with x-axis */

if(x<4*sum_errocone_period/5) mu = ];

135



else if(x>=4*sum_error_one_period/5 && x<=9*sum_error_one_period/5) mu =
slope*x + x_intercept_down;
else mu=O;

return(mu);
/* end of mu_sum_error_smjun */

I

/******* mu_sum_error_med_fun ******* sum_error_med increase & decreases
linearly such that */
/* the mu=O (min value-left) is (4/5)*sum_errocone_period */
/* and mu=l (max value) is (9/5)*sum_errocone_period */
/* the mu=O (min value-right) is (l4/5)*sum_errocone_period */

double mu_sum_error_med_fun(double x, double sum_error_one_period)
{

double slope=lI(sum_errocone_period);
double mu, x_intercepcup=slope*(4*sum_error_one_period/5);
double x_intercept_dow n=slope*( 14*sum_error_one_period/5);
/* x_intercepcup=the x-intercept of the increasing membership function with x-axis */
/* x_intercepcdown=the x-intercept of the decreasing membership function with x-axis
*/

if (x>4*sum_error_one_period/5 && x<=9*sum_errocone_period/5) mu=slope*x
x_intercepcup;
else if (x>9*sum_errocone_period/5 && x<=14*sum_errocone_period/5) mu=
slope*x+x_intercept_down;
else mu=O;

return(mu);
/* end of mu_sum_error_med_fun */

/******* mu_sum_error_lg_fun ******* sum_error_lg increases as 1-l/(x/xO) */
/* the mu=O (min value) is (9/5)*sum_errocone_period;
xO=(9/5)*sum_errocone_period */
/* the function is 1-1I(x/xo) which increases quadratic to infinity */

double mu_sum_error_lg_fun(double x, double sum_error_one_period)
{
double mu;

if(x>9*sum_errocone_period/5) mu= 1-1/(x/(9*sum_errocone_period/5»;
else mu=O;

136



return(mu);
/* end of mu_sum_error_lg_fun *1
}

/****************** The mu_index_num_ membership functions
*******************1
1* starCindex_num is the index at one period of freg *1

1******** mu_index_num_med_fun ******** linearly decreasing membership function
*/
/* linearly decreasing membership function such that *1
1* the mu= 1 (max value-right) is starCindex_num; the mu=O (min value-left) is
1.33*num_points one period */

double mu_index_num_med_fun(double x, double starCindex_num)
{
double mu, slope_oCline=l/(O.333*starCindex_num); /* slope of line: slope of
membership func *1
double x_intercepcdown=slope_oCline*( 1.333*start_index_num);
/* x-axis intercept for decreasing (right) side of trapazoid membership func */

if (x>=starcindex_num && x<= 1.333*starCindex_num) mu = 
slope_oCline*x+x_intercepCdown;
else mu=O;

return(mu);
1* end of mu_index_num_med_fun *1
}

1******** mu_index_num_mhigh_fun ******** triangle membership function */
1* the mu=O (min value-left) is I.O*start_lndex_num, and mu=l (max value-middle) is
1.33*starCindex_num */
1* the rnu=O (min value-right) is 1.667*starCindex_num Triangle membership function
*1

double rnu_index_num_mhigh_fun(double x, double start_index_num)
{
double mu, slope_oCline= 1/(O.333*starCindex_num); /* slope of line: slope of
membership func *1
double x_intercept_up=slope_oCline*( I.OO*start_index_num);
dOllble x_intercepCdown=slope_oCline*( 1.667*start_index_num);

137



/* x-axis intercept for increasing (left) and decreasing (right) side of triangle membership
func */

if (x>=1.00*starCindex_num && x<=1.333*starcindex_num) mu = slope_oCline*x
x_intercepcup;
else if(x> 1.333*starCindex_num && x<= 1.667*starCindex_num) mu = 
slope_oCline*x+x_intercepCdown;
else mu=O;

return(mu);

/* end of mu_index_num_mhigh_fun */
}

/******* mu_index_nuffi_high_fun ******* mu_index_num_high_fun increases as 1
l/sqrt(x-xO) */
/* period = starCindex_num; the mu=O (min value) is 1.333*starCindex_num; */
/* x=2.0*starCindex_num-l (move the index to left by one) */
/* the function is l-l/(x-xo) which increases quadraticly to infinity */

double mu_index_num_high_fun(double x, double starcindex_num)
{
double mu, dummy_var= 1.333*starCindex_num-l ;
/* dummy_var=xO which adjust so mu=O @ x=1.333*start_index_num */

if(x> 1.333*starcindex_num) mu = l-l/sqrt(x-dummy_var);
else mu=O;

return(mu);

/* end of mu_index_num_high_fun */
}

/******************* The flip_pt_membership functions *********/
double mu_flip_pcbad_fun(double x)
{
double mu;

if (x>=-O.142857 && x<=O.2857) mu =-7*x/3+0.666667;
else mu=O;

return(mu);
/* end of mu_flip_pt_bad_fun */
}

138



double mu_flip_pCok_fun(double x)
{
double mu;

if (x>=-O.142857 && x<=O.2857) mu=7*xl3+0.33333;
else if (x>=O.2857 && x<O.7142857) mu=-7*x/3+I.66667;
else mu=O;

return(mu);
/* end of mu_f1ip_Pcok_fun */
}

double mu_flip_Pcgood_fun(double x)
{
double mu;

if (x>=O.2857 && x<=O.7142857) mu=7*x/3-0.66667;
else if (x>=O.7142857 && x<=1.142857) mu=-7*x/3+2.66667;
else mu=O;

return(mu);
/* end of mu_flip_PCgood_fun */
}

double mu_flip_pcexc_fun(double x)
{
double mu;

if (x>=O.7142857 && x<=1.142857) mu=7*xJ3-1.66667;
else mu=O;

return(mu);
/* end of mu_flip_pcexc_fun */
}

/************** THE MAX-MIN INFRENCE ENGINE MAMDANI'S RULE OF
IMPLICATION *****************/
/* called from each of the nine rules in the main progrsm */
/* max(min(mu_sum_error, mu_indcx_num), mu_flip_pt)) */

double mu_flip_pCfun(double mu_sum_error, double mu_index_num, double
mujlip_pt)
{

139



if (mu_sum_error <= mu_index_num && mu_sum_error > mu_flip_pt) mu_flip_pt =
mu_sum_error;
if (mu_index_oum <= mu_sum_error && mu_index_num > mu_flip_pt) mu_flip_pt =
mu_i ndex_oum;
else mu_flip_pt = mu_flip_pt;

return(mu_flip_pt);

/* end of rule function */

/*************** Centroid Defuzzification Funtions ***************/
1* used in for loop, output member func is split into three segments */
1* decrease func is the member func sloping down while increase is sloping up. */
1* the mu_flip_decrease (or increase) is mu_value calculated from the fired rulebase. */
1* mu_flip_decrease_slope is calculated based on the membership rules */
/* for a particular value of flip_pt_x_values along the horizontal axis */
double centroid_defuzz_fun(double mu_flip_dec,double mu_flip_dec_sJope,doubJe
mu_flip_inc,doubJe mujlip_inc_slope)
{

double mu_value;

if (mu_flip_dec>=mu_flip_inc) mu_value=mu_flip_dec;
else if (mu_flip_inc>mu_flip_dec) mu_value=mu_flip_inc;

if (mu_flip_dec_slope>= mu_flip_inc) mu_value=mu_flip_dec_slope;
else if (mu_flip_inc>mu_flip_dec_slope) mu_value=mu_flip_inc;

if (mu_flip_dec>=mujlip_inc_slope) mu_value=mu_flip_dec;
else if (mu_flip_inc_sJope>mu_flip_dec) mu_value=mu_flip_inc_slope;

140



if (mu_flip_dec_slope>=mu_flip_inc_slope) mu_value=mu_flip_dec_slope;
else if (mu_flip_inc_slope>mu_flip_dec_slope) mu_value=mu_flip_inc_slope;

return (mu_value);
}

Return vector a[] with 1024 points - this is the extended signal.

141



,1

VITA

Jonathan Mark Hynson

Candidate for the Degree of

Master of Science

Thesis: IMPROVED SIGNAL EXTENSION METHODS FOR
WAVELET SMOOTHING

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Knoxville, Tennessee, on February 20, 1971; the son of
Larry and Kathy Hynson.

Education: Graduated from Stillwater High School, Stillwater, Oklahoma, In

May 1989. Received Bachelor of Science degree in Chemical
Engineering, Stillwater, Oklahoma in December, 1993. Completed the
requirements for the Master of Science degree in Chemical Engineering at
Oklahoma State University, Stillwater, Oklahoma in December 1996.

Professional Experience: Internships with Mobil Chemical Company, Beaumont,
Texas summer of 1991; Koch Refining Company, St. Paul, Minnesota,
summer of 1992; Southwest Refining Company (subsidiary of Kerr
McGee) Corpus Christi, Texas summer of 1993; Teaching Assistant at
Oklahoma State University, Stillwater, Oklahoma, January 1994
December 1994 and September 1995 - December 1995; Research
Assistant at Oklahoma State University, Stillwater, Oklahoma, January
1995 - August 1995.

Professional Memberships: Registered Engineer Intern in the State of Oklahoma;
American Institute of Chemical Engineers, Tau Beta Pi, Omega Chi
Epsilon.


