
STABILITY OF STRUCTURES SUBJECTED TO

ECCENTRIC LOAD IMPERFECTIONS

By

JAMES ALAN HOFFMAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1994

Submitted to the Faculty ofthe
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 1996



STABILITY OF STRUCTURES SUBJECTED TO

ECCENTRIC LOAD IMPERFECTIONS

Thesis Approved:

Dean of the Graduate College

11



ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Bjong Veigh for his seemingly

inexhaustible patience, good humor, insights, and guidance as I struggled through the

mathematics, potential energy formulation, and the many tiring hours of computer

simulation. I was constantly amazed at his capacity to tackle great volumes and varieties

ofwork at the same time and still be able to crack ajoke.

I would also like to thank Edward Sturm (OSU '58), and Sturm Engineering

Company, for their support, encouragement, interest, and especially their tolerance. Over

the last two years, my work schedule was in a constant state of chaos and I know it was

often impossible to keep track of me.

Finally, and most important of all, I would like to thank my beautiful and loving

wife Stacy (OSU '94). She has put up with me through the whole process. She knows

how hard it was to always keep me motivated when the going got tough. This thesis is

more the result of her efforts than of mine.

III



1

TABLE OF CONTENTS

iv

Bibliography 58

Appendix 60

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Critical Imperfection Magnitude Method and Imperfection Simulation 9

III. Beam on Elastic Foundation 21

IV. Numerical Results 34

V. Conclusions 56

PageChapter



Table

LIST OF TABLES

Page

AI. Eccentricities With the Same Sign: ERMS (eccentricity) as a function of the

normalized load ratio 61

A.2. Eccentricities With Opposite Signs: ERMS (eccentricity) as a function of the

normalized load ratio 61

A3. Eccentricities With the Same Sign: £RMS (eccentricity and bending rigidity)

as a function ofthe nonnalized load ratio 62

AA. Eccentricities With Opposite Signs: ERMS (eccentricity and bending rigidity)

as a function of the normalized load ratio 62

AS. Eccentricities With the Same Sign: ERMS (eccentricity and foundation stiffness)

as a function of the nonnalized load ratio 63

A6. Eccentricities With Opposite Signs: £RMS (eccentricity and foundation stiffness)

as a function of the nonnalized load ratio 63

A7. Eccentricities With the Same Sign: ERM (eccentricity and shape) as a function

of the nonnalized load ratio 64

A8. Eccentricities With Opposite Signs:£RMs (eccentricity and shape) as a function

of the nonnalized load ratio 64

v



A9. Eccentricities With the Same Sign: ERMS (eccentricity, bending rigidity and

foundation stiffness) as a function of the normalized load ratio 65

AIO. Eccentricities With Opposite Signs: ERMS (eccentricity, bending rigidity and

foundation stiffness) as a function of the nonnalized load ratio 65

All. Eccentricities With the Same Sign: ERMS (eccentricity, bending rigidity and

shape) as a function of the nonnalized load ratio 66

A12. Eccentricities With Opposite Signs: ERMS (eccentricity, bending rigidity and

shape) as a function of the nonnalized load ratio 66

A.13. Eccentricities With the Same Sign: ERMS (eccentricity, foundation stiffness

and shape) as a function of the normalized load ratio 67

A14. Eccentricities With Opposite Signs: ERMS (eccentricity, foundation stiffness

and shape) as a function of the nonnalized load ratio 67

AlS. Eccentricities With the Same Sign: ERMS (eccentricity, bending rigidity,

foundation stiffness and shape) as a function of the normalized load ratio 68

A.16. Eccentricities With Opposite Signs: ERMS (eccentricity, bending rigidity,

foundation stiffness and shape) as a function of the normalized load ratio 68

VI



LIST OF FIGURES

PageFigure

4.5. T"lSAME:

4.6. Ylopp:

4.7. i1SAME:

4.8. TJopp:

4.9. l1sAME:

4.10. l1opp:

4.11. 11 SAME:

1.1. Buckling response of imperfection insensitive structure .4

1.2. Buckling response of imperfection sensitive structure 5

2.1. Load-displacement diagram 14

3.1. Beam on elastic foundation 22

3.2. Deflected X-coordinate of the beam on elastic foundation 25

4.1. Convergence of mean ERMS 39

4.2. Histogram ofERMs, 40

4.3. Direct comparison ofTJsAME' e, k, and h .44

4.4. Direct comparison ofilopp, e, k, and h 45

Effects on eccentricity ET) RMS 46

Effects on eccentricity E"RMS 47

Effects on eccentricity E\MS 48

Effects on eccentricity E\MS 49

Effects on initial shape EhRMS 50

Effects of initial shape E
hRMS 51

Effects on bending rigidity E
e
RMS ..............•........•.......52

4.12. l1opp: Effects on bending rigitity E
e

RMS 53

va



4.13. T'lSAME: Effects on foundation stiffuess f:;kRMS ••......••.......••••..•••.. 54

4.14. TJopp: Effects on foundation stiffuess f:;kRMS ..••.•••......••....•.••.••. 55

Vlll



A

E

EI

(EI)o

K

<p

L

Gfofo

Rfofo

p

V

NOMENCLATURE

cross-section area

elastic modulus

bending rigidity

bending rigidity (mean value)

foundation stiffness

non-dimensional foundation stiffness

non-dimensional foundation stiffness (mean value)

beam length

modified beam length

number ofgeneralized coordinates

number of imperfection modes

one-sided power spectral density function

non-dimensional one-sided power spectral density function

autocorrelation function

non-dimensional autocorrelation function

applied axial load

total potential energy function

ix



v

w

w

x

x

x·

a, b, c, d

br (f= e, k, h)

bro (f= e, k, h)

e(x)

h(x)

•h (x)

k(x)

j, k, 1, m

q

r

t

y

non-dimensional total potential energy function

lateral deflection

non-dimensional lateral deflection

non-dimensional initial shape defonnity

axial coordinate

non-dimensional axial coordinate

fixed spatial coordinate

coefficients of the potential energy expansion

depth of the beam

correlation distance

non-dimensional correlation distance

amplitude of imperfection pattern

bending rigidity imperfection pattern

shape imperfection pattern

shape imperfection pattern fitted to boundary conditions

foundation stiffuess imperfection pattern

mode order subscripts

generalized coordinates

inverse geometric stiffuess matrix

radius of gyration

coefficient of the eigenvalue problem

Kronecker Delta

virtual change in the generalized coordinate q

x



8V

K

p

Pel

crf (f= e, k, h)

crfo (f= e, k, h)

first variation ofthe potential energy

non-dimensional first variation of the potential energy

second variation of the potential energy

non-dimensional second variation of the potential energy

universal imperfection magnitude

critical imperfection magnitude

root mean square critical imperfection magnitude

eccentricity in the applied load

wavenumber

upper cut off wave number

non-dimensional upper cut off wave number

maximum magnitude of shape imperfection

non-dimensional buckling load of the actual struc e

non-dimensional classical buckling load of the actual

structure

standard deviation for f(x)

non-dimensional standard deviation for f(x)

non-dimensional standard deviation for T]

random phase angle

Xl



Over the years, little has been done beyond extending and refining Euler's work.

By 1926, when the first edition of the AISC Manual of Steel Construction was published,

no less than 20 different variants of the Euler column buckling formula were in general

use among steel designers alone. These were all given as examples by the Manual,

merely as suggestions from which to choose [AISe 1926]. These, and other buckling

formulations based on the Euler equation had some rational consideration for the

One of the last fundamental frontiers that remains to be fully explored in structural

engineering is the phenomenon of buckling in slender, imperfect columns. Generally,

columns are any element in a structure that transfer compressive loads. Unlike tension

and flexural members that fail when the applied loads cause stresses that exceed certain

material limitations, slender columns most often fail by buckling. Furthermore, column

buckling does not depend on the proportional limit of the member. Buckling is a

complex failure mechanism that is often catastrophic with little or no warning. It depends

not only on the material and section properties of the column, but also on the

contributions and interactions of its length, end support conditions, lateral supports, and

location of the applied load.

For many years, the prediction of the buckling load in columns has been based on

classical stability analysis [Timoshenko and Gere 1961, Thompson and Hunt 1973 and

1984]. The current stability theory is actually developed largely from the work of

Leonhard Euler who first analytically investigated the column buckling phenomenon in

1744.

CHAPTER I. Introduction
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behavior of the material in question. They all perform empirically well for ideal columns

with concentric loads, and models that are not unusually sensitive to imperfections.

However, everything is imperfect, and structures are no exception. Structural

imperfections are defined as any small, unavoidable deviations from the perfect structure.

These deviations include those of shape (i.e., initial curvature), material properties,

section properties, support mechanisms, and the geometric configuration of the applied

load such as accidental eccentricity. In other words, the "perfect" structure IS

differentiated from the "actual" structure in that it has no imperfections of any kind.

While not all structures are sensitive to imperfections, experience and

experimentation have shown that the buckling load of some structures are quite sensitive

to structural imperfections [Wilson and Newmark 1933]. Currently, imperfections are

usually dealt with in design work by increased factors of safety, which are known to

engineers as "factors of ignorance." As with any blind factor of safety (i.e., a safety

factor used to account for reasons that can not be analyzed in a rational or known way),

the result is more often than not excessive overdesign and waste. This is because until

only quite recently there have been no reliable tools or methods to determine to what

degree imperfections affect buckling loads.

For the most part, engineers approach imperfections by using some rational means

to determine the stresses in a column that are caused by the imperfection, and then

checking this against the Euler load, possibly with an added safety factor. That is, the

stresses caused by imperfections are calculated first, and then the capacity of the column

without imperfections is computed. Finally, a safety factor is assigned based on the

analyst's experience, rule-of-thumb, and common sense. However, safety factors on the

2
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where crmax is the maximum stress in the column, P is the applied load, A is the cross

sectional area, L is the column length, E is Young's Modulus, t is the radius of gyration, c

imperfections, engineers have occasionally resorted to the methods that involve the secant

(1.1 )

~c
2

1+ t

P (L)2
1- 7[2 EA t

p
cr max = A

Euler load are not a rational answer to imperfection sensitive buckling (especially if one

For example, in an attempt to more accurately analyze the effect of shape

formula in order to capture the effects of the imperfection [Timoshenko and Gere 1984].

is unable to determine how sensitive the structure is to imperfections in the fIrst place).

The modifIed secant formula for shape imperfections is:

is the distance from the centroid to the extreme fIber (on the concave side) and ~ is the

While the secant formula will give good results for the stresses in a column with

whether or not the column has survived up to the classical buckling load. Furthermore, it

detennination of the buckling load, the secant formula is quite useless. The formula

The term ~c is known as the
t

2

imperfections, it is not a buckling formula. It is a strength formula. For the

maximum magnitude of the shape imperfection.

gives an excellent estimate of the stress in the column, but it does not and cannot predict

imperfection ratio.

does not say if the structure is sensitive to imperfections.

If a structure is insensitive to imperfections, stable equilibrium exists at the critical

load [Timoshenko and Gere 1961]. See Figure J.1. All neighboring equilibria exist for

3



loads equal to the critical load (in the case of Figure 1.1), and greater than the critical

load in the more general case.

LOAD

------------------- --------------------

Euler CO/limn

DISPLACEMENT

Figure 1.1: Buckling response of imperfection insensitive structure.

Examples of structures that are insensitive to imperfections are simply supported beams,

Euler columns, the elastica, etc.

However, if a structure is sensitive to imperfections, an unstable equilibrium exists

at the critical load, and it is possible for neighboring equilibria to exist at loads less than

the critical load. The structure may experience structural "softening" as it nears the

critical load and consequently less load is required to produce more deflection [Bazant

and Cedolin 1991]. See Figure 1.2. After the critical load is reached, less load is

required to produce additional deflection. This implies that once buckling is initiated,

there is very little, if anything, that can be done to prevent a complete structural collapse

4



DISPLACEMENT

LOAD

structural imperfections can be as much as 50 percent [Veigh 1995].

... ",

"' ...

"''''''''' ...... ......
~ ............. ..... .....

"""" ....
Beam on Elastic

Foundation

Figure 1.2: Buckling response of imperfection sensitive structure

removed. It also means that structural failure may occur at loads less than the classical

of the system. The collapse continues to progress unabated even if some of the load is

buckling load. In some cases, the reduction in load capacity due to even relatively small

frames, thin-walled beams, arches, and laterally supported columns such as the beam on

Examples of structures that are sensitive to structural imperfections are thin shells, space

elastic foundation (BEF), as shown in Figure 1.2.

Much research has been employed in developing methods of deterministic analysis

for imperfection sensitive structures. However, gross assumptions must be made about

the location and magnitude of the imperfections. More realistically, some researchers

have considered the stochastic approach toward imperfections [Shinozuka and Astill
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1971, Amazigo 1974, Elishakoff 1985 and 1988, Palassopoulos 1992, Ivanova and

Trendafilova 1992]. The resulting analysis methods from these researchers treat the

imperfections as random variables and attempt to determine the aggregate mean effect on

the buckling stability. Unfortunately, these methods are also quite mathematically and

analytically complicated. They consequently tend to be so abstract that they detract from

a meaningful understanding of the physics that are involved in the buckling phenomenon.

Over the last 50 years, the developments in imperfection sensitive stability analysis

have been largely incremental improvements to Koiter's dissertation. Koiter's theory

approaches stability in a continuum form of an energy analysis [Koiter 1945]. However,

due to various modeling assumptions and simplifications, its application is limited to

shape imperfections only. At the time Koiter wrote his dissertation, only shape

imperfections were considered to be significant in the classical buckling mode. Thus, if

the classical buckling mode is the fourth mode, only the fourth imperfection mode can be

considered. A further limitation is that Koiter's theory cannot consider any non-shape

imperfections in non-classical buckling modes.

Many researchers have added to and expanded the application of Koiter's theory

and many of these still consider only shape imperfections [Song and Simitses 1992,

Sridharan 1994]. In addition, some work has been completed using the differential

equations approach on shape imperfections [Elishakoff 1985]. These researchers are

aware that other imperfections can affect the buckling stability of their structures, but

have only been able to intuitively guess that shape imperfections should be dominant.

Since Koiter's theory (and hence all methods that are developed from it) cannot consider

non-shape imperfections, they have been unable to verify this assumption.

6
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Finally, a breakthrough in stability analysis occurred in 1993 when Palassopoulos

proposed the Critical Imperfection Magnitude (CIM) Method. This theory overcame

many of the limitations and solved many of the problems associated with Koiter's theory.

It is a very graceful, regular perturbation method based on the potential energy expansion

of the corresponding perfect structure. Furthermore, it does not contain any limitations

on the number or type of imperfections that can be considered. Consequently, the effects

on buckling stability as a result of the interactions between different imperfections can

now be analyzed. In his dissertation, Veigh (1995) was the first to apply stochastic

methods and CIM to study the effects and interactions of imperfections in shape, bending

rigidity, and foundation stiffness.

This thesis will consider eccentricities in the applied loads among the imperfections

to be modeled. The eccentricities of the applied load will vary over the sample size

according to a Gaussian distribution with a zero mean.

The Gaussian distribution is meant to serve as a model for eccentric loads that are

unintended, deviating from the case of the concentrically loaded beam. Here, the load is

applied so as to cause no moments. But practically, it would not be possible to apply a

concentric load without some deviation. According to the Central Limit Theorem, as the

number of attempts to apply the load to the centerline increase, the eccentricities will

asymptotically approach a Gaussian distribution.

Since ClM will playa central role in this thesis, it would be prudent to first give a

brief development and description of its more salient features. It is also important to

obtain an understanding of the methods that will be used to simulate the stochastic

7
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imperfection patterns on the beam. elM and simulation methods will be the subject of

the next chapter.
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CHAPTER II. Critical Imperfection Magnitude Method, and

Imperfection Simulation

Palassopoulos first introduced the Critical Imperfection Magnitude Method (CIM)

in 1993. CIM is a very powerful and robust regular perturbation method that effectively

replaces Koiter's Theory, which has been the premier imperfection sensitive buckling

theory since 1945. Unfortunately, Koiter's Theory is very limited in the scope of its

application. Perhaps its primary handicap is its inability to consider any imperfections

other than those of shape.

CIM considers all types of imperfections. A new interpretation for ClM was given

by Yeigh (1995) by approaching the analysis from either the load or the imperfection

magnitude directions. That is, like Koiter's Theory which is only capable of determining

the buckling load given a fixed magnitude of imperfection, CIM is also able to determine

the magnitude of imperfection that corresponds to a given buckling load. Hence the

name "Critical Imperfection Magnitude Method." In design work, engineers know what

buckling load is required and would like to know what is the permissible magnitude of

the many possible imperfections. CIM can be used to solve for these answers in a direct,

one-time analysis.

For purposes ofclarity, Palassopoulos presented his theory with only those terms

up to the fourth order in the generalized coordinates, while noting that higher order terms

can readily be obtained. Fortunately, most structures encountered in engineering require

no more than the fourth order expansion. Also, as the number of orders is increased, the

9



analysis and resulting numerical computations become very complicated and

mathematically ponderous. For the inextensional beam on elastic foundation (BEF) that

will be considered in this study, only a second order expansion is required. What follows

is a brief development of CIM. The reader is referred to Palassopoulos (1993) for a

complete description of his method.

discretized:

(2.1)

(2.4)

(2.3)

(2.2)

The fust step in the application of CIM is to expand the potential energy of the

Next, the potential energy of the "actual" structure (i.e., with imperfections), V is

coordinates (e.g., buckling modes of the perfect or actual structure).

The subscript, zero, indicates the perfect structure; and the coefficients ~.), b(.), c(.), and

dO depend on the applied load, material properties, and geometric configuration of the

structure. Repeated indices imply summation unless noted otherwise.

= 1, 2, ... , M. The variable % is any kinematically admissible set of generalized

"perfect" structure (i.e. no imperfections), Vo, in tenns of the generalized coordinates qj, j

The universal imperfection magnitude parameter, E is a measure of the magnitude of

deviation in material and structural properties from the perfect structure. In this way,

imperfections can be modeled as deviations. In general, any structural or material

property F can be modeled as F(x) = Fo[1 + Ef(x)] with a mean value of Fo and an

imperfection pattern [(x).

10
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When E = 0, the structure is reduced to the perfect structure. However, the product

of the imperfection being considered and the critical imperfection magnitude Ecr must be

sufficiently small «0.35) in order for the power series expansion to converge. Therefore,

the "actual structure" (as defined by the imperfection patterns) is never actually

encountered in CIM. In short, the approach used by CIM is to set a given load, use

imperfection patterns to define the "actual structure," and solve for the smallest E that

causes buckling at the given load. The engineer can then check the true actual structure

against the CIM "actual structure" and the critical imperfection magnitude.

Most of the imperfection patterns in this study will be simulated by spectral

representation. This concept will be developed briefly at the end of this chapter. The end

load eccentricities will be modeled as imperfections described by Gaussian distributions.

This will be discussed in detail in Chapter III.

(2.5)

2V = (vo+ 8Vj + E V2 + ...)

more general form:

Continuing the development of CIM, Equation 2.2 can be rewritten in the following

The equilibrium and stability criteria of the actual structure may be derived from

the first and second variations of the potential energy, V. Readers unfamiliar with energy

methods and variational principles are referred to Langhaar (1989) and Bazant and

Cedolin (1991) for details and mathematical proofs.

11
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Although the coefficients ~.), b(.), c(.), and ~.) need not be symmetric, they can

always be selected to be symmetric with respect to any permutation of their indices in

order to take advantage of the numerical efficiency of CIM. The variational equations,

after grouping the coefficients for the appropriate generalized coordinates, are:

tJ.V (2.6)

where

(2.7)

tJ.V

(2.8)

qP>qk) + qk(S%) + (S%)(Sqk)

tJ.(qjqkql)= [qj(Sqj)][qk(Sqk)][ql(Sq,)] - (qj,qkql)

q8k(Sq,) + q\qj(SqJ + qkq,(Sq) + qj(Sqk)(8ql)

+ q,(&q¥8qk) + qk(Sqj)(8qj) + (&qj)(8qJ(8q\)

(2.9)

(2.10)

12
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(2.11 )

+ qk(Oqj)(Oql)(OqrJ + qlqm(oq)(oqk)

+ qJ(Oq)(Oqk)(OqrJ +qm(oq)(oqJ(oql)

+ (0<lj)(oqk)(oql)(oqm) - %qkq,qm

The first and second variational equations for the potential energy of the actual structure

may be obtained by combining Equations 2.6-2.11:

2 . 2
o v= {2(bojk + Eb1jk + 8 b2jk + ... )

(2.12)

2
+ 6(Cojkl + EC1jkl + 8 C2jkl + ... )qj (2.13)

Equations 2.12 and 2.13 represent the potential energy expansion of the actual

structure. There is a second expansion in elM which is taken around the pre-buckling

equilibrium state qOj of the perfect structure. Then, the pre-buckling equilibrium state qj

of the actual structure are expanded around this point.

j = 1,2, ... , M (2.14)

13
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Equations 2.12 and 2.13 establishes the pre-buckling equilibrium path. This is illustrated

(2.15)

(2.17)

(2.16)

infinitesimal error into the formulation. Substitution of Equations 2.14-2.17 into

of a structure. Expansion around the pre-buckling point therefore will introduce only

smoothly varying imperfections have very little effect on the initial pre-buckling response

This expansion is made possible due to the fact that experiments have shown small,

in Figure 2.1. The structure buckles at the bifurcation point which is the lowest point of

instability on the path. Mathematically, this is the point where f}V goes from positive

definite to positive semi-definite for the first time.

BIFURCATION POINT

DISPLACEMENT

i
&=o

.... , .... ..... .....

L- ---+ q.
J

....P 1-----=_.- -.. - __

--(............. _--
&=ECR

LOAD

Pc!

Figure 2.1: Load-Displacement Diagram

The central idea behind the development of elM is to fonnulate a generalized

eigenvalue problem in terms of f: for a given load p. Thus, the smallest f: that provides a

14



non-trivial solution of the eigenvalue problem represents the critical imperfection

magnitude, Ecr' Also, physically Ecr represents the bifurcation point.

The numerical efficiency of elM can be brought into play by the use of incremental

coordinates and orthogonal displacement modes. A significant simplification can be

made by using generalized coordinates that are measured incrementally from the perfect

structure reference state, qOj' That is, q"j = qj - qOj' For the beam on elastic foundation

that will be considered in this thesis, qOj = O. The previously mentioned coefficients ~')'

b(.), c(.), and do are transfonned to be symmetric with respect to any permutation of their

indices.

The geometric stiffness matrix, bOjk of the perfect structure is always positive

definite up to the classical buckling load and for the prebuckling range of imperfection-

sensitive structures. Therefore, its inverse always exists. For more efficient numerical

calculation, the generalized coordinates are chosen such that bojk is diagonal. This can be

accomplished by the use of Kronecker's delta, Ojk such that rjkbOjk = 0jk' The transformed

• ••generalized coordinates now take the form qj = rj,ql .

The eigenvalue problem can now be simplified by taking the Hermitian fonn in the

new generalized coordinates, ~.", j =1, 2, ... , M, where M is the number of buckling

modes to be considered in the problem. As demonstrated by Palassopoulos (1993), the

following condition leads to instability in a structure:

j = 1, 2, .." M (2.18)

VOjk = 2bojk

15
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fonn of the characteristic equation:

(2.22)

(2.24)

(2.23)_ 1 [ 3COjklall]
Yljk - Jb b -b 1jk + 2b

Oij Okk 011

Substituting Equations 2.19-2.21 into Equation 2.18 gives the Hermitian (symmetric)

Equation 2.22 is the generalized eigenvalue problem. This eigenvalue problem

includes both symmetric bifurcation (e.g. beam on elastic foundation, Euler columns,

identically to zero, the generalized eigenvalue problem becomes unstable symmetric,

which is the special case corresponding to the symmetric bifurcation buckling of Koiter's

(2.25)

(2.26)

Theory. When COjkl vanishes, Equations 2.23 and 2.24 can be simplified to :

plates, etc.) and asymmetric bifurcation (e.g. thin cylindrical shells). When Cojkl vanishes

The matrix fonn of the second-order eigenvalue problem, which will be used in this

thesis, can be written as shown in Equation 2.27 with submatrices Y, I, and 0 where "I" is

the identity matrix and "0" is the null matrix. The size of the matrix y is equal to the

16



order of buckling modes M. Thus, there are M eigenvalues, E. It is not an overly

complicated matter to extend Equation 2.27 to higher value orders ifrequired.

Y2 ]{ 8q } _ 1 { 8q }
o E8q E E8q

(2.27)

There are many types of structural imperfections. However, the four main types of

imperfections occur in (1) shape, (2) material properties, (3) geometry, and (4) the

applied load. Palassopoulos (1993) classified shape imperfections (i.e., imperfections

that relate to curvature in the beam) as Type I and all others as Type II.

Eccentricity in the applied load when modeled as an imperfection is of Type I

because the resulting end moments induce curvature into the beam. Qualitatively, for the

beam on elastic foundation the a;j term is an indication of Type I (shape) imperfections.

As will be demonstrated in Chapter Ill, the alj term is the only term in the characteristic

equation that is affected by the eccentricity imperfections.

Many researchers have modeled imperfections through a deterministic approach.

However, the resulting mathematical complexity is often only a source of frustration,

serving only to obscure the physics of the problem. However, structural imperfections

are actually stochastic in the sense that their specific nature cannot be prescribed. In

recent years, advancements in stochastic mechanics and computers have made it possible

to simulate imperfections as random variables with some ease.

As with any theory or idea, there are limitations to CIM. One of these is that the

quantitative application of CIM requires detailed measurement of the imperfections.

Quite likely, it would be an expensive and time consuming task to measure a structure for

all small imperfections. Instead, Palassopoulos (1993) suggested a stochastic approach

17
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which would combine reliability engineering with eIM to get around this problem. This

was the approach used by Veigh (1995) in his work, and it is the approach that will be

used in this thesis.

The three imperfection patterns that will be used in this thesis are (1) bending

rigidity e(x), (2) foundation stiffness k(x), and (3) shape hex). The varying components

of bending rigidity and foundation stiffness are normalized by their respective expected

values. The shape of the beam is non-dimensionalized by the modified beam length Lp,

where Lp = Lin = Span Length L divided by n. As it will later become evident, this

substitution will enable more efficient numerical solution of the coefficients in the

characteristic equation. As it was already mentioned, the eccentricity imperfections TJ 1

and 'll2 will be modeled as single-value random variables.

The imperfection patterns are assumed to be one-dimensional, homogenous,

Gaussian random fields. Due to the Central Limit Theorem, the simulated imperfection

fields are asymptotically Gaussian as N approaches infinity. Using the cosine series

formula [Shinozuka and Deodatis 1991], the spectral representation method has proven to

be very computationally efficient. Also, the ensemble average power spectral density

function (PSD) approaches the corresponding target function with increasing sample size.

In general, the structural property F(x) varies as a function of the non-dimensional

axial coordinate x, since the imperfection pattern it represents is assumed to be a one-

dimensional, univariate, (lD-l V) homogeneous, Gaussian stochastic field:

F(x) = Fo[1 +d(x)] (2.28)

Where F0 is the expected value of F(x), and E is the perturbation parameter. The function

f(x) represents the imperfection pattern which is a ID-l V, homogeneous, Gaussian

18
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stochastic field with a zero mean. F(x) may be written in terms of the cosine series with a

deterministic amplitude An' and a random phase angle Cfln'

N

f(x) =.fi IAn COS(KnX+Cfln)

n=l

(2.29)

(2.30)

K
K n = n~K = n N n = 1,2, ... , N (2.31)

In Equations 2.29-2.31, K is the wave number and K u is the fixed upper cut-off wave

number. The value of K u is chosen such that above it, the corresponding one-sided power

spectral density Grt<:K) is zero or negligibly small. This is done either for mathematical or

physical reasons. The following power spectral density function and corresponding

autocorrelation function are used:

because they have been shown to give good results in previous work [Yeigh 1995].

(2.33)

(2.32)

These equations are used primarily because they are general, simple, versatile, and

The correlation distance, bro, is chosen to best match the PSD to the expected

degree of fluctuation in the imperfections. For long values of bro, the PSD more or less

slowly undulates, and its difference in magnitude at two neighboring regions may not be

very significant. For short bfo , the PSD varies sharply and rapidly down the axis of the
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beam. The correlation distance corresponding to Equations 2.32-2.33 used in tbis study

is 1.50. This is a reasonable, average, and realistic choice that will more accurately

reflect an actual beam with imperfections. As the correlation distance goes above 1.50,

the shape imperfections tend to have less and less effect because of the reduced

magnitude of the initial curvature changes [Yeigh 1995]. On the other hand, when bfo is

less than 1.50, the PSD becomes sharply ')agged" and the shape imperfections

overwhelmingly dominate the buckling of the beam.

A possible extension of this thesis would of course be through the use of different

power spectral density functions, appropriate autocorrelation functions, and various

correlation distances. The reader is referred to Shinozuka (1987) for more details.
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CHAPTER III. Beam on Elastic Foundation

The beam on elastic foundation (BEF) with imperfections in initial shape, bending

rigidity, foundation stiffness, and eccentric end loads will be considered in this thesis. The

addition of eccentric loads into the ensemble of imperfections is an extension of the work

completed by Yeigh (1995). He was the first to apply stochastic methods and elM to study

the interactions of various imperfections other than, and including, those of initial shape.

The BEF provides a simple, one-dimensional platform to model other more

complicated structures, and is capable of demonstrating varying degrees of imperfection

sensitivity [Palassopoulos 1993]. The BEF is a prototypical model which may be extended

to higher dimensions such as plates, frames, trusses, and cylindrical shells. Examples of the

BEF include, among others: drilled piers, strip footings, pavement, shear waH columns, and

even ice sheets floating on water.

The first step in the fOTIlmlation of any analytical model is, of course, to define the

coordinate system that will be used. The coordinate system for this thesis is the standard

right-hand system with positive X-axis pointing to the right, positive Y-axis pointing down,

and all moments and rotations positive clockwise.

Next, consider a simply supported beam on a linear elastic foundation. See Figure 3.1.

The axial compressive load is denoted by P, the length is L, the elastic foundation stiffness is

K, and the axial coordinate is X. The beam has a lateral displacement W, and bending

rigidity EI, and eccentricity of load Zl (on the left) and Z2 (on the right) which are not

shown. The beam also has a depth, de. The variable de does not explicitly enter the potential

energy formulation. However, in order to model the distribution of the end eccentricities, the
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depth must be physically defined. This can be achieved by relating de to L by means of a

span-to-depth ratio. For this study, a commonly used engineering span-to-depth ratio of 20 is

used.

p

L

r p

Figure 3.1. Beam on elastic foundation

For generality, the dimensional coordinates will be non-dimensionalized. This will

also make the resulting formulation more readily suitable for analytic calculation. For this

problem, the most convenient approach to a non-dimensional form is to divide the length

variables by the modified span length, Lp = L / n. Also, if the mean value of the bending

rigidity EI is (EI)Q, the other variables can be made non-dimensional as well.

(3.1 )

w = W = rcW
L p L
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L4
4

<.p=-P-K= L K
(EI)O 1t

4 (EI)O

(3.4)

(3.5)

(3.6)

For completeness, the potential energy of the system that will be derived, Y, can also be

made non-dimensional at this point.

Lp L
v = (EI)o Y = 1t(EIh Y (3.7)

Next, the imperfections that will be considered are defined in tenns of their respective

imperfection patterns. In elM, all imperfections and their combinations can be considered.

This thesis will concentrate on imperfections of shape (Type I), bending rigidity (Type II),

foundation stiffness (Type II), and eccentricity of load (Type I). Imperfections in shape

detennine the initial shape (or "crookedness") of the beam along the x-axis. Imperfections in

bending rigidity and foundation stiffness detennine how Young's Modulus, the moment of

inertia, and the elasticity of the foundation vary along the beam, respectively. Imperfections

in eccentricity detennine how the eccentricity of the applied load vary on the ends of the

beam. The various structural and geometric properties that are affected by imperfections may

be defined as:

EI(x) = (EI)o[1 + Ee(x)]

<rex) = <.po[I + Ek(x)]

Wo = Eh(x)

23
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K(x) = ~[l + Ek(x)]

(3.12)

(3.13)

(3.14)

In Equations 3.8-3.12, E is a perturbation parameter that is known in elM as the universal

imperfection magnitude. The functions e(x), k(x), and hex) are the imperfection patterns

(stochastic fields) for the beam to be used on the bending rigidity, foundation stiffness, and

initial shape respectively. The terms f11 and f12 are independent random variables. For the

case of a Gaussian distribution, fI is distributed normally with zero mean and standard

deviation O'T]'

For physical reasons, the distributions for fI are truncated at the top and bottom edges

of the beam. The central idea is that the eccentricities are accidental. That is, they are

imperfections with a zero mean. Therefore, the loads must at least be on the beam.

There are many distributions one could use to model different situations and intentions.

For example, the beta distribution has been suggested as a possible model because it has been

shown to fit certain observed phenomena. Also, the uniform distribution could be used for

the case of completely unknown eccentricities such as "unifonnly" loaded piles, or drilled

piers. In these cases, the only information known is that the centroid of the applied load is

somewhere on the end of the beam (maintaining the limitation that it must actually be on the

beam).

The Gaussian distribution was chosen here because of its widespread application. It

can be used without losing any generality. The standard deviation that will be used in the

Gaussian distribution is 5% of the beam depth. This value was chosen to more realistically
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reflect the situation of unintentional eccentricity because any eccentricity that so develops

will have a very strong central tendency. The use of other distributions and statistical

parameters would certainly be capable of producing a deeper physical insight into the

mechanics of eccentric load imperfection buckling and would be an excellent means to

extend this thesis.

This thesis is concerned with the inextensional case of the BEF. That is, the beam does

not undergo any axial defonnation prior to buckling. The x-coordinate is defined to be the

line through the gravity center of the beam, and it deflects with the beam. After the beam

•deflects, the fixed spatial coordinate is designated X. See Figure 3.2.

1
L-AL

I
AL

I... X'"

~'x-
7

I".",------ .---
Figure 3.2. Deflected X-coordinate ofthe beam on elastic foundation

. ..·2 2 2 IIUsmg the Pythagorean Fonnula, It can readIly be seen that dX = dX + dW . After a sma

amount of algebraic manipulation, boL can be solved:

,/

.....••
~

L

boL =L- J~l- W,2 dX
o
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It is desired to have positively defined end moments M1 and M2 in the formulation of

VM. In order for M) to be positive, Zj must be negative. The reverse is true for M2. Here, a

positive Zz gives a positive M2• The fonnulations for the positive-value end moments are:

(3.16)

(3.17)

The potential energy of the system may now be derived. First, the potential energy of

the perfect structure will be formulated. Then, after introducing the appropriate

imperfections, the potential energy of the actual structure will be developed. Finally, the

non-dimensional fonn of V will be derived.

There are four contributing components to the potential energy of the BEF: (1) VB' the

strain energy of bending due to change in curvature, (2) VK, the strain energy of the

perfect system is:

foundation, (3) Vp, the potential energy of the applied load, and (4) VM, the potential energy

(3.20)

(3.19)

(3.18)

L

VK = ~ fKW2dX
o

of the moments resulting from the accidental eccentricities. The potential energy of the

(3.21)

(3.22)
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Now, introduction of the imperfections from Equations 3.8-3.12, and dividing by

7t(EI)O
L leads to the development of the non-dimensional form of the potential energy for the

actual structure:

(3.23)

1 7t 2
v K ="2 f<Pa(1 + Ek)(w - Eh) dx

o
(3.24)

(3.25)

affect the solution of the characteristic equation.

The primes represent differentiation with respect to the non-dimensional axial coordinate x.

(3.26)

(3.27)

Now, substitute the Taylor series expansions for ~1- W,2, and ~ I , into the
1 ,2-w

simplification. Inspection of Equations 2.22-2.24 will show that the deleted terms do not

potential energy and delete all terms with En, n ~ 3, and Will, m ~ 5. This is a feasible

(3.28)

The potential energy may now be expressed as:
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1 7t
vB =2" fl(h,,2 -2eh"w"-eh"w"w,2)f:2

a

7t
V K ~ ~ l[('Poh ' - 2'Pokhw),' + (-2'Pohw + k'Pow'). + ('Pow' )]dx

7t( )1 ,2 1 ,4
V P = -p7t + Pf 1- - W - - W dx

a 2 8

(3.29)

(3.30)

(3.3] )

In order to prepare the potential energy equation for the appropriate substitutions into the

characteristic equation of the eigenvalue problem, all terms containing £3 and wb are

collected into v3,b equations.

.f..
·f
;l
~

Yo,) =a

VO,3 = 0

7t( )1 2 2 1 4
V = f -w" w' --pw' dx

0,4 2 8

°

7t
V1,1 = E f(-h"w" - <Pohw)dx + EPlll w'(O) - EpT12 w'(7t)

°
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(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

---



7t

V 2,l = 8
2 f(-eh" W II -CPokhw)dx

o

v = 8
2

7tf(-.!eh ll W llw,2)dX
2,3 2

o

(3.39)

(3.40)

(3.41 )

(3.42)

(3.43)

(3.44)

(3.45)
of.,.,
~
~

(3.46)

Equation 3.37 verifies the original hypothesis that the beam on elastic foundation

fonnulation is a symmetric bifurcation model. The BEF is also an unstable bifurcation and

imperfection sensitive model [Bazant and Cedolin 1991]. Also, as it was mentioned i.n

Chapter II, when COjk vanishes identically to zero, the generalized eigenvalue problem is

unstable symmetrically.

Before proceeding with the development of the coefficients in the characteristic

equation, the spectral representations for e(x), k(x), and hex) must be developed and

substituted into Equations 3.32-3.46.
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N

e(x) = IejCOS(KjX+<I>j)
j=1

N

k(x) = I k j COS(K ~x + <I>~)
j=1

(3.47)

(3.48)

Unfortunately, a direct representation for hex) similar to Equations 3.47 and 3.48 is not

possible. The cosine series will not work because the forced end conditions require zero end

displacements. However, Yeigh (1995) developed a route around this problem. In effect, his

method was to first generate the shape imperfection field using the spectral representation

method, and then rotating and translating the field to meet the required boundary conditions.

This fitting procedure is described as follows:

• •and, realizing that h (0) = h (n) = 0,

N

h' (x) = Lh;Sin(jx)
j=1

hen) - h(O)
c = ----:...---'---.:........:....

n

[

n n
h: = ~ - Jcx sin(jx)dx - Jh(O) sin(jx)dx

n 0 0

(3.49)

(3.50)

(3.51 )

(3.52)

,
·4
f'
.~

.>
~~.",'".......
')

f"
.~
J~

l,..,.
~

Finally, the coefficients of the eigenvalue problem a(.), b(.), c('), and do can be solved

from Equations 3.34-3.48:

30



-

b n 04 .Ojk = 4 -PJ+<Po)

dOjklrn = -i pjklmY\jklm + 1~ jklm(jkYzjklm + jrnYZjmkl

+k1YZkljm + kmYZkmjl + hnYzlmjk)

11: ( .4 )..( j)a tj =- 2 J +q>o h j +PJ 11l-YJz(-l)

b\jk = J2±q>ok J {co<'(<1>~)Y. k - sin(<1>~)Y. k}2 '\ 3]1oc1 4 jkK11=1

(3.53)

(3.54)

(3.55)

(3.56)

where:

11:

Yljklm = fcos(jx) cos(k.x) cos(lx) cos(rnx)dx

o

= ![SiD(j - k + 1+ rn)n + sin(j - k + 1- rn)n
8 j-k+1+rn j-k+l-rn

sin(j - k -1 + rn)1I: sin(j - k - 1- m)n+ + ---=---------:..-
j-k-1+m j-k-1-m

sin(j + k + 1+ rn)n sin(j + k + 1- m)n
+ +-...::::-._------..:..-

j+k+l+m j+k+l-m

sin(j + k - I + m)n sin(j + k - L- m)n]+ + ---=---------:..-
j+k-l+m j+k-I-m
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n

Y2jklm = Jsin(jx) sin(kx) cos(lx) cos(rnx)dx

o

= ~[Sin(j-k+l+m)n + sin(j-k+l-m)n
8 j-k+l+m j-k+l-m

sin(j - k - I + m)7t sin(j - k -1- m)7t+ + _.2.::..- -..:--

j-k-l+m j-k-l-m

sin(j + k + 1+ m)7t

j+k+l+m
sin(j + k + 1- m)n

j+k+l-m
(3.59)

_ sin(j + k - 1+ m)n _ sin(j + k - I - m)n ]

j+k-l+m j+k-l-m

7t
Y3jkl = Jsin(jx) sin(kx) cos(lx)dx

o

= ![Sin(j - k -1)7t + sin(j + k + 1)7t
4 j-k-l j+k+l

sinej + k -1)7t _ sin(j + k + l)n]
j+k-I j+k+l

7t
Y4jkl = Jsin(jx) sin(kx) sin(lx)dx

o

= ~[cos(j - k -l)n _ 1 _ cosej - k + 1)7t _ 1
4 j-k-l j-k-l j-k+1 j-k+l

_ cos(j + k - 1)7t _ 1 _ cosU + k + l)n _ 1 ]
j+k-I j+k-I j+k+l j+k+I

(3.60)

(3.61 )

"..
•
4
)

.~..
A......
'J
,"
~
,~

,~

i
lW

~

The integrals in Equations 3,58-3.61 are closed form. The indefinite forms that may

, 358 361 11 b I' SInffa l' COS71a 0 'appear In Equations , -, a ecome 1m = 7l or 1m = , Havmg
a~O a a~O a
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such easily calculated integrals is the primary benefit of non-dimensionalizing the variables.

This is a simple but significant improvement in the numerical efficiency of the model

because time can be spent chiefly on solving the eigenvalue problem instead of having to

numerically integrate the integrals as well.

The formulation is complete, and the coefficients to the characteristic equation are

defined. Chapter IV will present the methods and results of the numerical solution.
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CHAPTER IV. Numerical Results

Solving the eigenvalue problems can be a very complicated, time consuming affair.

This is especially true when the order of the characteristic equation is quadratic and

higher. In this thesis, the numerical solutions were obtained with a modified version of

the program BEF4, written by Professor Bjong Yeigh of Oklahoma State University. The

major modifications to the program were made in the computation of the alj term, and by

calling in the eccentric terms T] I and T]2 from an outside, independently-generated source

file. BEF4 is a FORTRAN driver containing several subroutines for stochastic CIM,

merged with an eigenvalue solver. The eigenvalue solver is the Linear Algebra

PACKage (LAPACK) which is available on the public domain.

For the correlation distances of the stochastic fields used in this thesis, previous

work [Yeigh 1995] indicates that 16 buckling modes are adequate to provide sufficiently

precise eigenvalues. In fact, for these correlation distances, the use of as many as 128

buckling modes refine the precision over the 16-mode case by no more than 1%.

The procedure for the operation of BEF4 is to first edit the input text files

ETA.DAT and TIMBER.DAT. For this study, ETA.DAT was generated by the program

ETAX. This program generates 2 sets of independent, normally distributed values by

means of the Box-Muller transformation [Press et.al. 1989] of univariate random

numbers. The file TIMBER.DAT contains the following values:

1. The order of the imperfections in the problem. This value directs BEF4 to proceed

with the most efficient solution to the problem by computing only what is necessary

(such as 11 in the case of Type II imperfections only). The possible values and the
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corresponding imperfections that are present are: 1 = h only; 21 = e only; 22 = k only;

23 = e and k; 31 = e and h; 32 = k and h; 33 = e and k and h; e, k , and h imply

imperfections in bending rigidity, foundation stiffuess, and shape imperfections,

respectively. Shape imperfections include accidental eccentric applied loads and

initial shape.

2. The sample size. In order for the convergence of the dominant eigenvalue to occur,

enough samples have to be taken. For the BEF being considered, convergence is

essentially complete around 10 to 15 samples. Fifty samples are therefore deemed

adequate. One hundred samples were taken to distinguish approximately half of each

sample size into pairs of TI 1 and Tl2 that were alike in sign, with the other half being

unalike in sign. Depending on the signs of the TIl and f]2 pairs, the sense of the

moments at the end of the beam due to the eccentric loads could be in the same

direction or in the opposite direction. Clearly, these two conditions are different load

cases. When the sense of the moments are not the same, the moments tend to force

the beam toward single curvature (i.e., Mode I). When they are the same, the beam is

directed toward double curvature (i.e., Mode II). Therefore, it was prudent to take

enough samples to afford the opportunity to discriminate between the two cases and

compare the results. For the sake of brevity in the remainder of this chapter, the case

of the TJS having the same sign will be designated "lSAME, and the converse will be

designated "lopp.

3. The size of the imperfection modes. For the power spectral density function and

correlation distance used in this thesis, previous work [Yeigh 1995] has shown that
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128 imperfection modes are sufficient to adequately capture the shape of the

imperfections being considered.

4. The size ofthe buckling modes. As discussed above, this value is set at 16.

5. The standard deviation of the bending rigidity. The standard deviation for all

imperfection patterns e, k, h· used in this study is 0.05. It is possible to enter these

values independently in order to enable the study of mixed imperfections with

different standard deviations.

6. The correlation distance for bending rigidity. The correlation distance used for all

imperfection patterns e, k, and h· in this study is 1.5.

7. The upper cut-offwave number for bending rigidity. The upper cut-off wave number

used for all imperfection patterns e, k, and h· in this study is 7.447.

8. A seed value to generate random phase angles for bending rigidity.

9. The standard deviation ofthe foundation stiffness.

10. The correlation distance for foundation stiffness.

11. The upper cut-offwave number for foundation stiffness.

12. A seed value to generate random phase angles for foundation stiffness.

13. The standard deviation ofthe initial shape.

14. The correlation distance for initial shape.

15. The upper cut-offwave numberfor initial shape.

16. A seed value to generate random phase angles for foundation stiffness.

17. The tolerance ofthe eigenvalue solution. The tolerance for this study is 0.001.
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18. Soil stiffness parameter. The nondimensionless soil stiffuess parameter used in this

study is 225. This value was chosen primarily to afford direct comparison with the

results of previous work [Yeigh 1995].

19. The level of the applied load, p below the classical level, Pel' For the BEF, the

classical load is the minimum value of (i' + ~) wherej ~ 1,2,3, ... , M. The value of

j is the dominant buckling mode. With cp = 225, the classical load is therefore

30.0625. The following applied loads were considered: 99%, 97%, 95%, 90%, 85%,

80%, and 75% of the classical load. The dominant buckling mode for this value of cp

is the fourth.

The following ensemble of imperfections and imperfection combinations were

. ...
conSidered: II alone; II + e; II + k; II + h ; II + e + k; II + e + h; II + k + h ; and II + e

+ k + h-. As a final step, the llSAME and llopp cases are separated and compared.

After the two input data text files have been generated and edited, the program

BEF4 can be initiated. The operating procedure ofBEF4 is as follows:

1. The equilibrium state qoj is computed.

2. The individual or mixed imperfection pattern(s), ii) (x), IIi) (x), and h -(i)(x) are

simulatedfor each sarrzple i =1, 2, 3, ... , N.

3. h(i) (x) is transformed into h -(I) (x).

4. The geometric stiffness matrix bOi) is computed.

5. bOJj is diagonalized.

6. The coefficients au, bu , c(-), and d(') are computed.

7. The coefficient matrix yis computed.
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8. The eigenvalue problem is solved.

9. ERMS is solved.

The solution of the eigenvalue problem for the ith sample imperfection pattern

yields the critical imperfection magnitude. For each imperfection parameter, the root

mean square (rrns) magnitude was then combined with the critical imperfection

magnitude, E~~) according to Equations 4.1-4.4 to yield the rms imperfection magnitudes,

-(i)T] (I)e (i)k d (i)h
E RMS ' E RMS ' ERMS ' an ERMS :

(i)e (i)
E RMS = E cr

(i)k (i)
E RMS = Ecr

(TJ~i)2 + (TJ~i)2

2 (4.1)

(4.2)

(4.3)

(i)h" _ (i) ! llJrh-(i) ( )]2 dE RMS - E cr X X
7t 0

(4.4)

Finally, the rms imperfection magnitudes are averaged over the sample size and the

results tabulated. These tables can be found in the Appendix.

(i)A

-On average, the scatter in the E RMS (where A implies ", e, k, and h) was

reasonably small with a coefficient of variation on the order of approximately 10%. This

is small enough to justify its use as an engineering measure of imperfections. Figure 4. J

illustrates an example of the convergence of ERMS over the sample size to the mean value,

and Figure 4.2 is the histogram.
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In the figures that follow (Figures 4.3-4.14), all axes are dimensionless. The

- ,1

vertical axis indicates the dimensionless nonnalized load ratio, which is the non-

dimensional applied load, P divided by the non-dimensional classical load, Pel' As

previously mentioned, these values range between 0.75 and 0.99. The horizontal axis

represents the appropriate cRMS being considered. In all of the figures, the 11SAME case is

shown first and the 1lopp case is shown second.

In Figures 4.3 and 4.4, the ERMS values for e alone, k alone, and h alone are shown

as dotted lines. These values were taken from Veigh (1995). They are included for

reference and were not computed in this research.

Three results are immediately apparent from an examination of the plots. Figures

4.3 and 4.4 show the direct comparison ofcRMS for 11 alone, e alone, k alone, and h alone.

The first and most important observation is that the eccentricity in the applied loads is an

even more dominant imperfection than that of initial shape. It was expected that

eccentricity would have a similar effect upon the BEF as does initial shape since it is also

a Type I imperfection. The reason eccentricity is dominant in this case is at least in part

due to the correlation distance that was used. An average, expected correlation distance

was used in this study, which may not always be the case in all situations. Shape

imperfections become more and more dominant as the correlation distance decreases

[Veigh 1995]. Therefore, the shape imperfections are not being modeled here in a way

that maximizes their dominating effects. On the other hand, the effects on eccentricity

imperfection sensitivity will be most pronounced when it is modeled as a random

variable, as it is in this case. Thus, the model used in this study maximizes the

dominance of the eccentricity imperfection; while holding the dominance of shape
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imperfections back to an average. This result is possibly not too surprising given the

examples to be learned from engineering experience. Engineers intuitively uknow" this

already. They know that a slightly dented column is not as dangerous as one with an

unintended eccentric load applied to it.

The second result is, of course, that eccentricity IS indeed a Type I (shape)

imperfection. The eRMS curves for fl are similar in shape, orientation (i.e., concave up),

and location as those for h. This result was expected, given that the entry point of the TJS

into the characteristic equation was in the a1j tenn. Again, the engineers already "knew"

this. Their experiences have shown that the two cases are somehow related. It will be

remembered from Chapter I that the secant fonnula is often used to model the stress in a

column with shape imperfections. That is, the shape imperfections in the column are

accounted for as eccentric loads !

The third result, which is perhaps more surprising to intuition than the first, is that

there is very little, if any, differences in eRMS between the l1SAME and flop!' cases. This

observation is supported somewhat consistently by all of the plots. Intuition would lead

one to expect that the TJSAME case would always be more detrimental than the flop!> case

since it would force the beam to tend toward Mode I buckling. However, this counter

intuitive phenomenon can be explained by realizing that the perfect BEF with the

prescribed foundation parameter <p = 225, has the fourth mode as its most dominant

mode. That is, the end rotations will have the same direction. Given this, the flSAME case

produces one moment that acts in the same direction as one end rotation, while the other

moment acts in the opposite direction of its respective end rotation. Therefore, this
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behavior may actually be forcing the beam to tend to a higher mode of buckling, not a

lower one.

There are actually some small differences in the various plots between the TJSAME

and TJopp cases, but these variations are quite small. The end result is that it appears to

matter little what the signs are on 'Ill and 'Il2 for this BEF. The only item of any tangible

consequence is their absolute magnitudes.

In Figures 4. 7-4.10, the ERMS plots of TJ and h are shown for the case when both

imperfections are present. Due to the very fine scale of the graphs, the variations in the

plots (i.e., their "randomness") are magnified to the extent that they actually become

visually obvious. The lines, which have a clearly general direction and tendency, cross

one another at various points.

Further study of Figures 4.7-4. J0 show, in the case of ERMS for 11 there is a

remarkable twentyfold increase in sensitivity when shape imperfections are present. In

the case of h, when eccentric loads are present, the sensitivity is increased even more, by

about 50 times. It is also obvious from these plots that any detrimental effects from the

addition of e and k imperfections are so minor as to be almost inconsequential in the face

of the overwhelming dominance of the two Type I imperfections working in conjunction.
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Foundation stiffness, <Po = 225 Sample size ~ 50
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CHAPTER V. Conclusions

There are several conclusions that can be drawn from the results of this study.

1. It has been demonstrated for the first time that eccentricity in the applied loads is the

most dominant imperfection when the eccentricities are modeled as random variables

and the correlation distances for the imperfections in initial shape, bending rigidity,

and foundation stiffness are set at reasonable, medium values.

2. It has also been shown that the eccentricity in the applied load is indeed a Type I

(shape) imperfection, and that it aggressively interacts with the other Type I

imperfection (initial shape) when it too is present.

3. A final result is the observation that there is very little, if any difference in the

respective effects of the 11 SAME and T)opp cases. That is, the absolute magnitude of the

end eccentricities are the only parameter of any tangible consequence.

As mentioned throughout this thesis, research on this problem could be extended in

a number ofways. Some of the many possible ways include:

1. Use of different power spectral density functions, autocorrelation functions, and

appropriate correlation distances.

2. Use of different distributions and statistical parameters for the end eccentricities, such

as the uniform and the beta distributions.

3. Remodel the problem using fixed value end eccentricities.

4. Modeling the extensional case of the BEF. This is the case of the BEF whose

centerline undergoes shortening (axial strain) prior to buckling.
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CIM is a new weapon in the engineer's arsenal. In fact, the exploration of

structural mechanics using ClM has only just begun. There is a long, promising road

ahead toward a deepening of our understanding of the buckling phenomenon (and it may

likely have a few stochastic "bumps" !). This thesis has merely taken a few small steps

down that road. With ClM, a great deal of research is now possible.
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ECCENTRICITIES WITH THE SAME SIGN

P I,
- - -

Pel ERMS 11 , ERMS EI ERMS K ERMS H

0.99 0.000570 - - -
0.97 0.002702 - - -
0.95 0.005864 - - -
0.90 0.016289 - - -
0.85 0.028881 - - -
0.80 0.043159 - - -
0.75 0.059420 - - -

Table A.I: ERMS (eccentricity) as a/unction o/the normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

P --
ERMSEI ERMSK ERMSH

Pel
ERMS 11

0.99 0.000478 - - -
0.97 0.002577 - - -
0.95 0.005669 - - -
0.90 0.016144 - - -
0.85 0.028976 - - -

!

0.80 0.043551 - - -
0.75 0.059954 - - I' -

Table A.2: ERMS (eccentricity) as a/unction o/the normalized load ratio

Foundation stiffuess: <Po = 225 Sample Size ~ 50

For eccentricity in the applied load: all = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

P --

Pcl tRMS 11 tRMS EI tRMsK tRMsH

0.99 0.000463 0.006451 - -
0.97 0.002321 0.044168 - -
0.95 0.004619 0.096359 - -
0.90 0.011522 0.226110 - -
0.85 0.018380 0.370480 - -
0.80 0.025982 0.502930 - -
0.75 0.031236 0.592930 - -

Table A.3: ERMS (eccentricity and bending rigidity) as afunction ofthe
normalized load ratio

ECCENTRICITIES WITH THE OPPOSITE SIGN

I

P --
tRMSEI tRMsK tRMS H

Pel tRMS II

0.99 0.000419 0.010520 - -
0.97 0.002137 0.047239 - -
0.95 0.004423 0.096790 - -
0.90 0.010737 0.243460 - -
0.85 0.018371 0.372610 - -
0.80 0.023717 0.506760 - -
0.75 0.033082 0.603000 - -

Table A.4: ERMS (eccentricity and bending rigidity) as afunction ofthe
normalized load ratio

Foundation stiffness: ero = 225 Sample Size ~ 50

For eccentricity in the applied load: all = 0.05

For all other imperfections:

Power spectral density function:

K uo = 7.449, bfo = 1.50, afo = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

P --
Pel ERMS 11 ERMS EI ERMSK ERMSH

0.99 0.000444 - 0.009337 -
0.97 0.022755 - 0.047256 -
0.95 0.004357 - 0.096852 -
0.90 0.011787 - 0.238930 -
0.85 0.020744 - 0.385010 -
0.80 0.029758 - 0.512430 -
0.75 0.036209 - 0.663800 -

Table A.5: GRMS (eccentricity and foundation stiffness) as afunction ofthe
normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

p --
E RMS EI ERMSK ERMS H

Pel
ERMS 11

0.99 0.000440 - 0.011346 -
0.97 0.002179 - 0.047153 -
0.95 0.004419 - 0.100220 -
0.90 0.10951 - i 0.230450 -
0.85 0.18495 - 0.373310 -
0.80 0.26075 - 0.546170 -
0.75 0.33239 - 0.675870 -

Table A. 6: GRMS (eccentricity and foundation stiffness) as a function ofthe
normalized load ratio

Foundation stiffness: <Po = 225 Sample Size ~ 50

For eccentricity in the applied load: <JT] = 0.05

For all other imperfections:

Power spectral density function:

K uo = 7.449, bfo = 1.50, <Jfo = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

p --
Pel ERMS 11 ERMS EI ERMSK ERMSH

0.99 0.000030 - - 0.000797
0.97 0.000170 - - 0.003867
0.95 0.000311 - - 0.006135

I
0.90 0.000793 - - 0.017387
0.85 0.001443 - - 0.034349I

0.80 0.002230 - - 0.049733
0.75 0.002886 - - 0.067470

Table A. 7: GRMS (eccentricity and shape) as a function 0/ the
normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

P - - --
ERMS EI ERMSK ERMSHPel ERMS 11

0.99 0.000028 - - 0.000680
0.97 0.000190 - - 0.003612
0.95 0.000292 - - 0.007052

0.90 0.000742 - - 0.019297

0.85 0.001476 - - 0.036353

0.80 0.002258 - - 0.055068

0.75 0.002750 - - 0.075804

Table A.8: cRMS (eccentricity and shape) as a/unction ofthe
normalized load ratio

Foundation stiffness: <Po = 225 Sample Size:::::.: 50

For eccentricity in the applied load: O"T] = 0.05

For all other imperfections:

Power spectral density function:

lCuo = 7.449, b fo = 1.50, O"fo = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

p
,

- -
Pel ERMS 11 ERMS EI ERMS K ERMSH

0.99 0.000438 0.009275 0.009020 -
0.97 0.002249 0.042398 0.044941 -
0.95 0.004282 0.082628 0.078859 -
0.90 0.010483 0.204490 0.194560 -
0.85 0.016071 0.321560 0.337900 -
0.80 0.022154 0.429940 0.437190 -
0.75 0.027526 0.565970 0.508020 -

I

Table A. 9: £RMS (eccentricity, bending rigidity, andfoundation stiffness)
as a function ofthe normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

p --
ERMS EI ERMS K ERMS HPel 6RMS 11

0.99 0.000423 0.010102 0.010171 -
0.97 0.002042 0.042061 0.047078

,

-
0.95 0.003953 0.089051 0.090854 -
0.90 0.009578 0.214770 0.212800 -
0.85 0.16029 0.329370 0.313850 -
0.80 0.020801 0.446230 0.425480 -
0.75 0.023660 0.486610 0.494460 -

Table A.I0: £RMS (eccentricity, bending rigidity, andfoundation stiffness)
as a function ofthe normalized load ratio

Foundation stiffness: <Po = 225 Sample Size:::; 50

For eccentricity in the applied load: aT] = 0.05

For all other imperfections:

Power spectral density function:

K uo = 7.449, bfo = 1.50, O'fo = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

P --
Pel ERMS TJ ERMS E1 ERMSK ERMSH

0.99 0.000031 0.000666 - 0.000886
0.97 0.000155 0.003358 - 0.003652
0.95 0.000247 0.004760 - 0.005788
0.90 0.000798 0.015696 - 0.017239
0.85 0.001316 0.029342 - 0.032533
0.80 0.001942 0.039546 - 0.043878
0.75 0.002956 0.064171 - 0.065212

Table A.II: &RMS (eccentricity, bending rigitity, and shape)
as a function ofthe normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

P --
ERMS E1 ERMSK ERMSH

Pel ERMS TJ

0.99 0.000029 0.000689 - 0.000679
0.97 0.000164 0.003601 - 0.004475
0.95 0.000238 0.005279 - 0.006295
0.90 0.000742 0.015152 - 0.019615
0.85 0.001361 0.030511 - 0.033860
0.80 0.001986 0.046695 - 0.045648

0.75 0.002816 0.064907 - 0.066776

Table A.12: &RMS (eccentricity, bending rigidity, and shape)
as a function ofthe normalized load ratio

Foundation stiffness: <Po = 225 Sample Size ~ 50

For eccentricity in the applied load: crll = 0.05

For all other imperfections:

Power spectral density function:

K uo = 7.449, bfo = 1.50, crfo = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

P - --
Pel ERMS 11 ERMS E1 ERMSK ERMSH

0.99 0.000028 - 0.000593 0.000654
0.97 0.000118 - 0.002298 0.002695
0.95 0.000427 - 0.008799 0.009739
0.90 0.000831 - 0.016805 0.015966
0.85 0.001657 - 0.034152 0.032286
0.80 0.002169 - 0.045416 0.048626
0.75 0.002740 - 0.055573 0.058996

Table A.I3: CRMS (eccentricity, foundation stiffness, and shape)
as a function ofthe normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

p --
ERMS El ERMS K ERMS H

Pel ERMS T]

0.99 0.000030 - 0.000812 0.000787

0.97 0.000123 - 0.002526 0.002744

0.95 0.000418 - 0.011215 0.010646

0.90 0.000769 - 0.019308 0.019249

0.85 0.001556 - 0.040041 0.038977

0.80 0.002071 - 0.053058 0.055579

0.75 0.002632 - 0.059405 0,064906

Table A.I4: CRMS (eccentricity, foundation stiffness, and shape)
as a function ofthe normalized load ratio

Foundation stiffness: Cf>o = 225 Sample Size ~ 50

For eccentricity in the applied load: all = 0.05

For all other imperfections:

Power spectral density function:

K uo = 7.449, bfo = 1.50, afo = 0.05
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ECCENTRICITIES WITH THE SAME SIGN

p --

Pel ERMS II ERMS EI ERMSK ERMS H

0.99 0.000029 0.000617 0.000652 0.000720
0.97 0.000142 0.002628 0.002772 0.002990
0.95 0.000309 0.006893 0.006292 0.006732

i 0.90 0.000688 0.013316 0.013772 0.016815I

0.85 0.001395 0.029300 0.029244 0.031053
0.80 0.001975 0.040900 0.042334 0.049591
0.75 0.002840 0.058591 0.060221 0.063173

Table A.I5: cRMS (eccentricity, bending rigidity, foundation stiffness, and shape)
as a function ofthe normalized load ratio

ECCENTRICITIES WITH OPPOSITE SIGNS

P - I-
ERMS EI ERMS K ERMSH

Pel ERMS II

0.99 0.000027 0.000755 0.000659 0.000763
I

0.97 0.000144 0.003203 0.003362 0.004523
0.95 0.000304 0.007017 0.007066 0.008172

0.90 0.000683 0.014678 0.015423 i 0.017433

0.85 0.001412 0.027097 0.035577 0.034545

0.80 0.001930 0.051241 0.043793 0.047989

0.75 0.002710 0.060895 0.058833 0.063419

Table A.I6: cRMS (eccentricity, bending rigidity, foundation stiffnes and shape)
as a function ofthe normalized load ratio

Foundation stiffness: <Po = 225 Sample Size ~ 50

For eccentricity in the applied load: <J"ll = 0.05

For all other imperfections:

Power spectral density function:

Kuo = 7.449, bfo = 1.50, <J"fo = 0.05
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