
-

HOMOGENEOUS BED ION EXCHANGE COLUMN

MODELS FOR ULTRAPURE WATER APPLICATIO S

AND SIMULATIO OF ION EXCHANGE BEDS

fN SERIES

By

ASHWIN P GRAMOPADHYE

Bachelor of Engineering

University of Pune

Maharashtra, India

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1996



HOMOGENEOUS BED fO EXCH GE COL

MODELS FOR ULTRAPURE WATER APPUC TIO S

AND SIMLTLATIO OF 10 EXCHANGE BEDS

IN SERIES

Thesis Approved

Dean of Graduate College

11



PREFACE

This thesis deals with modeling of homogeneous-bed ion exchange under

conditions of film-diffusion control for a multicomponent system of ions. A computer

program to simulate ion-exchange columns in series is developed and. used to compare the

performance of homogeneous-bed trains with a mixed bed for equal ion-exchange

capacltles.

I am grateful to my advisor, Dr. Gary L. Foutch for his guidance, patience and

inspiration throughout my study at Oklahoma State University I would also like thank

Dr Arland H. Johannes and Dr. Randy Lewis for serving on my committee. I am indebted

to Dr J D Carlson (Department of Biosystems and Agricultural Engineering) for his

encouragement and the interest he has shown in my well-being and progress. Working

under Dr. 1. D. Carlson and Dr. M. A. Kizer has been a great pleasure and has given me

exposure to research in Agricultural Engineering -- a field new to me. Financial support

from the School of Chemical Engineering and the Department of Biosystems and

Agricultural Engineering is gratefully appreciated.

Special mention is due to my sister Chitra and parents Prabhakar and Geeta

Gramopadhye for their love and emotional support. This study would not have been

possible without their motivation and help. I also want to thank my friends Ram, Tara,

Parag and Mandy for their encouragement and backing.

111



Chapter

1.

TABLE OF CONTENTS

Page

INTRODUCTION . . . .. . . . . . . .. . . . . .. . . . . .. . . . . . .

II

Ultrapure Water -- Role of Mixed Bed Ion Exchangers and
Homogeneous Bed Ion Exchangers .

Objective ._. .. . . . . . . . . . . . . . . . . .

LITERATURE REVIEW '" .

2
4

6

Applications of Homogeneous Bed Ion Exchangers..... 6
Classification of Ion-Exchange Processes and Modeling

Approaches _ _.. _... ..... .. 7
Mechanism for Ion-Exchange Processes Involving Reactions II
Models for Homogeneous Bed Ion Exchange at Low Solution

Concentrations .. . .. . . . . . . . .. .... . . . .. .. .. 12

III

IV.

HOMOGENEOUS BED ION EXCHANGE MODEL .

Introduction.. .. . .
Assumptions . _.. _.. .. . .
Ion-Exchange Equilibria . . .
Flux Expressions for Liquid-Film Diffusion .
Material Balance Equation for the Column .
Calculation of Temperature Dependent Parameters .
Comparison of Material Balance Equations in MBIE and

HEIE.... .. ..
Simulation of Homogeneous Beds in Series... . '"

HOMOGENEOUS BEDS VERSUS MIXED BEDS .

Abstract . . .. . . .
Introduction . . .. . .
Feed Water Conditions, Resin Properties and Bed Parameters
Results and Discussion ._ .. _. . . . . . . . . . . . .. . ..
Discussion on Breakthrough Curves .. _.. ...... _..... ..
Discussion on pH of Effluents.. .. .. .. . .. .. .. . .. .
Conclusions _. .. ' ..

IV

17

17
18
21

23
26
27

29
'0

32

--.?J_

32

36
37
50
60



BIBLIOGRAPHy................................................................ 62

APPENDICES. .. .. 65

APPENDIX A - INTERFACIAL CO CENTRATIONS AND
ION-EXCHANGE EQUILIBRIA. .. . .. .. . .. . . .. ... .. . . . . 65

APPENDIX B - MODEL EQUATIONS............................ 68
APPENDIX C - MATERJAL BALANCE EQUATIONS 77
APPENDIX D - NUMERICAL METHODS 82
APPENDIX E - SIMULATION OF HOMOGENEOUS BEDS

IN SERlES .. 84
APPENDIX F - COMPUTER CODE... .. 86

v



Table

I.

II

III.

IV

V.

VI.

VII.

VIII.

IX.

x.

LIST OF TABLES

Classification of Ion-Exchange Processes Based on Nature of Interacting
Resin and Electrolyte . . . . . . . .. .. . , .. . . . .

Classification of Ion-Exchange Processes Involving Reactions .

Assumptions for Derivation ofNemst-Planck Equation from 1\1axwell-
Stefan Equation ,.. . . o'

Assumptions Made in the HBIE Model... .. .. ..

Algorithm for Interfacial Concentrations and Rates of Film Diffusion .,.

Water Viscosity and Water Dissociation ...

Conductance as Function of Temperature .

Bed Parameters , ..

Resin Properties ..

Feed-Water Condition used in the Simulations..................... ,... .......

VI

Page

8

10

20

25

27

28

35

35

36



Figure

2

...
-'.

4

5.

6.

7.

8.

9.

10.

11.

12.

13

14

15.

16.

LIST OF FIGURES

Solution Strategies for Differential Material Balance......... .

Schematic Diagram of Homogeneous Beds in Series and Mixed Bed .

Sodium Breakthrough for ACB, CAB and !\.1B (High Concentrations) ....

Calcium Breakthrough for ACB, CAB and MB (High Concentrations) ...

Sodium Breakthrough for ACB, CAB and MB (Low Concentrations) ......

Calcium Breakthrough for ACB, CAB and ME (Low Concentrations) ....

Chloride Breakthrough for ACB, CAB and Iv1B (High Concentrations) "

Sulfate Breakthrough for ACB, CAB and Iv1B (High Concentrations)

Chloride Breakthrough for ACB, CAB and MB (Low Concentrations) ....

Sulfate Breakthrough for ACB, CAB and MB (Low Concentrations) .

pH of Effluent for ACB, CAB and Iv1B (High Concentrations) .

pH History for ACB (High Concentrations) .

pH History for CAB (High Concentrations) .

pH of Effluent for ACB, CAB and Iv1B (Low Concentrations) .

pH History for ACB (Low Concentrations) .

pH History for CAB (Low Concentrations) .

VIl

Page

30

34

38

40

42

43

45

46

47

48

5 J

53

54

56

58

59



NOMENCLATURE

as surface area per unit volume ofresin (L-1
)

B; any parameter B related to ionic species i

Cj concentration of ionic species i (meqlL~)

Ci ' concentration of ionic species i at the resin-liquid interface (meq/L·')

CO concentration of ionic species i in bulk liquid (meq/L~)

C r total equivalent concentration (meqlL3)

dp particle diameter (L)

Oi self-diffusivity of ionic species i (L2/T)

Dc effective diffusivity (L2/T)

F Faraday's constant (Coulombs/mole)

FR volumetric flowrate (L3/T)

FAR fraction of anionic resin in a mixed bed of ion exchange resin

FeR fraction of cationic resin in a mixed bed of ion exchange resin

Ji flux of ionic species i in the liquid film (meq/T L2)

k mass transfer coefficient (LIT)

KAB selectivity coefficient for ion A in resin replaced by B from solution

Kw equilibrium constant for water dissociation

m number of coions

N j relative valence of counterion i
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n number of counterions

P an exponent derived from solution of the flux expressions

qi concentration of ionic species i in the resin (meq/L')

Q total capacity of resin (meqlL')

R universal gas constant

Re Reynolds number

Sc Schmidt number

T Temperature (K)

time (T)

u,

v

Xi

y,

Zj

Z·J

p

superficial fluid velocity of bulk liquid (LIT)

volume of resin in resin bed (L3)

fractional concentration of ionic species i in solution phase

fractional concentration of ionic species i in resin phase

charge (valence) on counterion i

charge (valence) on coion j

mean valence of coion i

GREEK LETTERS

thickness of liquid film surrounding resin bead (L)

void fraction in the resin bed

electric potential (ergs/coulomb)

conductance (Sm/mole)

viscosity of water (cp)

density (MIL')
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A

B

r

over bar--

>I<

f

o

dimensionless time coordinate

parameter set to +1 for cations and -1 for anions

dimensionless space coordinate

SUBSCRIPTS

ion leaving resin phase

ion entering the resin phase

counterions

cOlons

reference ion

SUPERSCRIPTS

any quantity related to species in the resin phase

any quantity at the interface between resin and liquid

any quantity in the feed

any quantity in the bulk liquid

x



CHAPTER I

INTRODUCTION

Ion exchange is the partition of charged species between different phases of a

system. It is a stoichiometric process. Every ion removed from one phase is replaced by

an equivalent amount of another ionic species resulting in an exchange of equal charges

between the two phases. Each phase maintains its electroneutrality.

Ion exchange shares traits with other methods of separation as illustrated by the

similarity between the methods used to quantify and study ion-exchange phenomena and

the methods used in other separation sciences. For example, equilibrium curves can be

used to calculate distribution between phases for ion exchange in a fashion similar to

liquid-liquid extraction. Blumberg (1984) examined the application by analogy of

concepts from liquid-liquid extraction to resin-liquid systems.

Ion-exchange materials may be classified on the basis of the matrix that carries

the fixed charges. Thus we have the following types (Helfferich, 1962):

1. Mineral ion exchangers, e.g. zeolites,

2. Ion-exchange resins, e.g. phenol sulfonic resins,

3. Ion-exchange coals -- they can be used as cation exchangers due to the

carboxylic acid groups. Some coals can be sulfonated into cation exchangers.



4. Liquid ion exchangers, where two immiscible liquids exchange ions, e.g. long

chain aliphatic amines dissolved in liquid xylene can act as an anion exchanger

when the solvent is dispersed in aqueous phase having exchangeable ions.

5. Other materials with ion exchange properties, e.g. keratin, alumina, etc. Some

substances such as nut shell and olive pits can be sulfonated to make cation

exchangers.

Ion-exchange resins consist of a crosslinked hydrocarbon matrix, Vvith bonded

acidic or basic groups. The matrix can be fonned by polycondensation or addition

polymerization reaction and the fixed ionic groups can be introduced in the monomer or

in the polymer after crosslinking. Ion-exchange resins are used more often than the other

materials listed above, due to their superior chemical and mechanical stability, higher ion­

exchange capacity and higher rate of ion exchange as compared to the other materials.

Ultrapure Water -- Role of Mixed Bed Ion Exchangers and Homogeneous Bed Ion

Exchangers

The term 'Ultrapure Water' denotes water with I ppb or less of ionic

contaminants (Sadler, 1993). Equally low levels of particulate and microbial impurities

are expected. Such water is required by power plants (Harfst, 1995), paper and pulp

manufacturers, petroleum refineries, dialysis units in hospitals, phannaceutical

manufacturers (Golden, 1986), compact disc manufacturers, semiconductor

manufacturing industry, etc. (Okouchi et aI., 1994).
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Mixed bed ion exchange (MBIE) uses a mixture of cation-exchange resin and

anion-exchange resin. A fixed bed of such a mixture, with the aqueous phase flowing

down the bed, has been the favorite method in industry for achieving ultrapurity. In this

mode, cations and anions are removed simultaneously. The alternative is to use

homogeneous bed ion exchange (HBIE) where beds of cation and anion exchange resins

are separate stages.

The ad","antage ofMBIE over HBIE is that MBIE provides more separation zones

in less volume -- very similar to having several stages of homogeneous cation and anion

exchange beds of very small depth alternating with each other in series. The cation and

anion resins replace the cations and anions, with hydrogen ions and hydroxide ions

respectively, which then combine to form water. The simultaneous removal of cations

and anions leads to a net reduction in ionic concentration in the bulk solution. Thus,

there is a localized equilibrium within the bed, and consequently we get a very high

separation efficiency. The net reduction in ionic concentration offers a distinctive

advantage over HBIE where demineralization becomes progressively difficult with the

removal ofjust cations or anions in a bed. For example, consider a cation-exchange bed

followed by an anion-exchange bed. The effluent from the cation-exchange bed is acidic

and goes to the anion-exchange bed. Anion exchange is thus highly favorable at the inlet.

However, with progressing anion exchange, equilibrium becomes limiting and exchange

is less favorable. Thus, the separation factor decreases sharply with progressive anion

exchange.
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Net reduction in ionic charge was the primary justification for use of MBIE as

opposed to HBIE in ultrapure-water facilities in industry. However, resin regeneration

presents two problems for MBIE, namely,

1. separation of cation exchange resin from anion exchange resin prior to

regeneration and

2. remixing the resins unifonnly after regeneration.

No such separation and remixing are required in HBIE. This represents one of the

biggest advantages of HBlE over MBIE. The other problem encountered in MBIE is

deterioration of anion exchange resin due to organic [oulants in the feed water (Fisher,

1993). Cation resin is less susceptible to organic fouling as compared with anion resin

and the cation resin can adsorb organic foulants without affecting resin perfonnance

drastically. Thus, the problem of anion resin fouling by organics in feed water can be

ameliorated in HBIE by installing the cation resin bed ahead of the anion bed. These

advantages have stimulated redevelopment of homogeneous bed techniques where cation-

anion-cation beds are used. A model that can predict the perfonnance of such a

homogeneous bed train will be an important tool in design and operation of water

treatment units for ultrapure water, and will complement MBIE programs in use.

Objective

The purpose of this thesis is to develop a model that can predict the breakthrough

for a homogeneous bed of resin at very low ionic concentrations. The model for MBIE at

very low ionic concentrations developed by Haub and Foutch (1986 a,b) considered the

4



-

effect of water dissociation, the ratio ofcationic to anionic resin, differing resin exchange

rates and differing resin exchange capacities. Temperature effects on resin selectivity

coefficients, ionic diffusion coefficients, ionization constant for water and viscosity of

bulk solution were also accounted for (Divekar et al., 1987). Capability and complexity

of the model were increased through subsequent efforts by Zecchini (1990), Pondugula

(1994) and Bulusu (1994). The model is now capable of handling a multicomponent

system of ions having arbitrary valences in a mixed bed. This model will be used as a

foundation for the current endeavor. The model developed in this thesis will be used to

simulate a train of homogeneous beds. Performance of the homogeneous bed train will

be compared to that of a mixed bed.

5



CHAPTER II

LITERATURE REVIEW

A thorough literature review of ion exchange in general, mixed bed ion exchange

modeling and homogeneous bed ion exchange modeling (for weak electrolytes) has been

perfonned by Haub (1984), Yoon (1990), Zecchini (1990), Lou (1993) and Chowdiah

(1996). This chapter will focus on previous efforts in modeling of homogeneous bed ion

exchange at low concentrations (around 10-3 M).

Applications of Homogeneous Bed Ion Exchange

Homogeneous bed ion exchange (HBIE) may find use in a wide variety of

operations. For example, anion resin in hydroxide form is used to catalyze the reaction of

oxygen scavengers such as hydrazine (N2H4) and carbohydrazide ((N2HJ)2CO) with

oxygen at ambient temperature (Cutler and Covey, 1995). Golden (1986) lists other uses

like color removal from organic solutions, chromatographic separations and 'controlled

release.' The concept oecontrolled release' is used to administer macronutrients and

trace elements in hydrocultures and to administer drugs at correct levels in medicine.

6



Homogeneous beds of ion-exchange resins are also used in industry for

demineralization of water. Besides homogeneous bed ion exchange, several methods are

available for demineralization of water. Design of an ultrapure water facility will be

guided by the economics and applicability of these methods with respect to their strengths

and weaknesses. Beardsley et al. (1995) compared the following systems for

demineralization of water:

1. three bed ion exchange (anion-cation-mixed bed)

2. double pass Reverse Osmosis (RO)

3. RO followed by mixed bed ion exchange

As total dissolved solids (TDS) in feed go up, cost of demineralization increases for all

three systems. However, there is a breakpoint below which the ion-exchange system is

cheaper. This breakpoint was found to be at 75 ppm ofTDS as calcium carbonate in

1987. The breakpoint rose to 130 ppm ofTDS as calcium carbonate in the year 1994.

Though most waters demineralized in the USA are still above this level, the results of

Beardsley et al. (1995) indicate that ion-exchange systems are becoming more

economical than RO systems.

Classification of Ion-Exchange Processes and Modeling Approaches

A survey of modeling efforts in ion exchange is incomplete without reference to

the classification of ion-exchange processes. As borne out by the following discussion,

classification is an integral part of ion-exchange modeling. The assumptions made in

7



developing the models, their limitations and their applications will also be studied in this

survey.

Classification Based on Nature of Interacting Resin and Electrolyte

Ion-exchange processes can be classified on the basis of the nature of interacting

resin and the nature of electrolyte. Based on this approach, we can have eight different

cases (see Table I). Lou (1993) developed a model capable of handling cases IV and

VIII. His model simulated sorption of boric acid at very low inlet concentration, when

film diffusion becomes the rate controlling step.

Table I

Classification Based on Nature of Interacting Resin and Electrolyte.

Case Number Resin Type Electrolyte Type

I Strong Base Resin Strong Acid

II Strong Base Resin Weak. Acid

III Weak. Base Resin Strong Acid

IV Weak Base Resin Weak Acid

V Strong Acid Resin Strong Base

VI Strong Acid Resin Weak Base

VII Weak Acid Resin Strong Base

VIII Weak Acid Resin Weak Base

8



Classification Based on Rate Determining Step

Typically, the rate-determining step for ion-exchange processes is diffusion of

counter ions. The chemical reaction is instantaneous compared with the rate of ionic

diffusion. An exception occurs in resins with chelating groups, which form reaction

complexes that react very slowly (Helfferich, 1962). The rate determining step also

depends on the concentration of the electrolyte in the bulk solution and either particle or

film diffusion can be rate determining depending on the solution concentration.

Helfferich (1962) gives the following criterion for identifying the rate determining step:

affect the rate of ion exchange

film diffusion is controlling

particle diffusion is controlling

in the intennediate range, particle as well as film diffusion

where,

Q = resin phase concentration of ions

C = bulk phase concentration of ions

o = diffusivity of ions in liquid film

9



D = diffusivity of ions in resin phase

ro= radius of the resin bead

8 = film thickness

U BA = resin selectivity

The scope of this thesis is limited to ultrapure water applications (ionic

concentrations in the range of ppm or less). The above criterion indicates that,

controlling mechanism for such applications is film diffusion, because of very low values

of ionic concentrations involved.

Classification Based on the Nature of Reaction between Participating Ions and Coions

Helfferich (1965) classified ion-exchange processes involving reactions into four

types (see Table II). Helfferich also proposed rate laws for each type of process, under

conditions of both film and particle-diffusion control. Blickenstaffet al. (1967a)

provided experimental evidence to support Helfferich's model for Type I, under

conditions of film-diffusion control. Their study (B lickenstaff et aI., 1967b) of Type I,

with particle-diffusion controlled neutralization, gave verification of Helfferich's model

for this case too, but only under the condition that the concentration of the exchanging

electrolyte in the solution phase does not fall with time.

10
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Table II

Classification of Ion-Exchange Processes Involving Reactions

Number Process Description

I Counterions from the ion exchanger react with coions from the solution

II Counterions from the solution react with fixed ionic groups of the ion

exchanger

III Undissociated fixed ionic groups of the ion exchanger react with coions from

the solution and form salts that can dissociate into ions

IV Undissociated fixed ionic groups of the ion exchanger react with counterions

from the solution and form new unclssociated ionic groups

Mechanism for Ion-Exchange Processes Involving Reactions

The re::tction between weak base anion exchanger and acid proceeds via

protonation of the ionic sites of the resin by the acid (Helfferich and Hwang, 1985,

Bhandari et al., 1992 a,b). Helfferich and Hwang (1985) studied the kinetics of acid

sorption by weak base anion exchangers and they assumed that the acid sorption by most

weak base resins is irreversible under most conditions. They applied the shrinking core

model along with this assumption to describe the above process. However, Bhandari et

al. (1992a) hold that neither the shrinking core model nor the assumption of irreversible

sorption is valid for most conditions, especially so at lower concentrations than those

studied by Helfferich and Hwang (1985) and when the reacting resin has a lower basicity

than the ones studied by Helfferich and Hwang (1985). Bhandari et al. (1992a) propose

11



the existence of a '"charged double layer" at the pore walls in the resin. Their reversible

sorption model for sorption of strong acids on weak base resins yields a concentration

profile in the bead which is similar to the one given by the shrinking core model, but the

boundary between reacted shell and wrreaeted core is diffused.

Bhandari et al. (1992b) extended the "double layer theory" to sorption of weak

acids on weak base resins and found that :

1. for weak acids like fonnie acid, the contribution of undissociated acid to net

flux of acid into the resin is higher than the contribution of ionic fluxes, and the

rate controlling model of Helfferich and Hwang (1985) is valid only in this case

2. for stronger acids, contribution of ionic flux to net flux of acid into the resin is

higher

The "double layer theory" postulates a much weaker Donnan exclusion of coions

than that assumed by the rate controlling model. However, Bhandari et al. (1993) found

that the results from the "double layer theory" applied to the sorption of dibasic acid on

weak base resin agree very well with those from the shrinking core model proposed by

Helfferich and Hwang (1985). Bhandari et al. (1993) postulate that, reversibility of

sorption is much lower for dibasic acids than monobasic acids. Bhandari et al. (1993) also

postulate that, hydrogen coions in a solution of dibasic acid have more access to the resin

pores than in the case of monobasic acids. The increased access for hydrogen coions, to

resin pores in a solution of dibasic acid, is due to weaker Donnan exclusion in dibasic

acids as compared to monobasic acids. A weaker Donnan exclusion ofcoions in dibasic

acids, as compared to monobasic acids, is in tum attributed to stronger sorption of

divalent anions by neutralization with two sites in anion resin pores. Thus, both the

12



"double layer theory" and shrinking core model predict more access for hydrogen coions,

to anion resin pores, when bulk solution has polybasic acids. Both models also agree on

irreversibility of sorption of polybasic acids on weak base resins.

Models for Homogeneous Bed Ion Exchange at Low Solution Concentrations

All the HBIE models found in the course of this literature survey apply to solution

concentrations of 0.001 M or more. Kraaijeveld and Wesselingh (1992) studied ion

exchange under conditions of film-diffusion control. Their experiments (at solution

concentrations of 0.001 M to 0.1 M) show that under conditions of film diffusion control,

the ion-exchange processes between sodium - hydrogen and calcium - hydrogen are faster

when the hydrogen ion moves from solution to the resin than the case where hydrogen

ion moves from resin to solution. They conclude that under the conditions studied by

them ion-exchange kinetics depend upon the direction in which exchange is taking place.

Petruzzelli, Liberti et al. (1987) studied binary ion exchange (chloride - sulfate) in

the forward and reverse directions and isotopic exchange for sulfate. They concluded that

film and particle diffusion both played a role in the exchange kinetics at the concentration

range (0.006 M chloride and 0.003 M sulfate) studied by them. The results from their

computer simulation combining film and particle diffusion resistance yielded results

close to pure film diffusion up to a fractional approach to equilibrium of 0.4. The results

were close to pure particle-diffusion control only when complete equilibrium was

approached.

13
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Investigation by Liberti, Petruzzelli et al. (1987) into chloride - sulfate exchange

at high concentration (0.9 M sulfate, 1.8 M chloride) show that kinetics of ion exchange

is particle-diffusion controlled at those concentrations. They also evaluated the results

obtained by using Nernst-Planck equations to model the kinetics at high concentration.

They found that actual rates at low conversion of the resin were lower than those

predicted and the actual rates at high conversion were greater than those predicted. At

low conversions, the authors regard retardation by film diffusion as the cause for model

inaccuracy and at high conversion, they attribute the inaccuracy to an appreciable change

in swelling of the acrylate based resin.

Applicability ofNernst-Planck Equation and Applicability of Complete Donnan

Exclusion at Low Solution Concentrations

The Nernst-Planck equation is a special case of the Maxwell-Stefan equation and

the former can be derived form the latter by making assumptions listed in Table III. The

Nernst-Planck equation neglects all the terms except the term for friction between the

solvent and the ions, and the term for resistance to mass transfer by electrical gradient

(Kraaijeveld and Wesselingh, 1992). Kraaijeveld and Wesselingh (1992) modeled the

ion-exchange process using Maxwell-Stefan transport equations and used the film

thickness as the fitting parameter. Even at the concentration range (0.001 M - 0.1 M)

studied by them, the difference in film thickness fitted for Maxwell-Stefan and Nemst-

Planck equations was found to be less than three percent. The difference between the

14



predictions made by Maxwell-Stefan and Nemst-Planck ,equations is expected to reduce

further at the low concentration ranges encountered in ultrapure water applications.

Therefore, use of Nemst-Planck equations instead of Maxwell-Stefan equations is

justified for work at these concentrations.

Table III

Assumptions for Derivation of Nemst-Planck Equation from Maxwell-Stefan Equation

Assumptions

1. Constant coefficient of diffusion for each ion.

2. All activity coefficients equal unity.

3. No convection (diffusion across a static film).

4. No gradients of temperature and pressure.

5. Electric potential changes only in the radial direction for the resin bead and liquid

film.

Complete Donnan exclusion of coions from an ion-exchange resin at low solution

concentrations is a well knoVlIl and widely accepted principal. However, complete

Donnan exclusion of COlons from the resin does not occur at high solution concentrations

and some accumulation of coions is observed in the resin at these conditions (Femandez

et al., 1994). Fernandez et al. (1994) have studied the kinetics and equilibrium of the

phenomenon.

Fernandez et al. (1995) have evaluated the pore diffusion model and unreacted

core model for chelating ion exchange and cationic exchange under conditions of

15



reaction control. Helfferich (1984) described a new approach to modeling of

multicomponent ion exchange which differs from the usual theoretical approach

involving differential material balances and flux equations. The new approach is

intended for application to columns with variable feed conditions so as to yield

predictions with little calculation effort. The concentration variations along the length of

the column are viewed as "waves" and the disturbances created by variations in feed

concentrations are compared to interference between waves.

16
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CHAPTER III

Homogeneous Bed Ion Exchange Model

Introduction

This chapter deals with the development of a model for muiticomponent,

homogeneous bed ion exchange at very low solution concentrations (film diffusion

controlling). The mixed bed ion exchange (MBIE) model (Bulusu, 1994) is modified for

homogeneous bed ion exchange (HBIE) when either cation or anion exchange resins are

used.

There are very few studies of ion-exchange kinetics at very low solution

concentrations (Jess than 10-4 M) available in the literature. Experimental as well as

modeling efforts in ion exchange have traditionally focused on operations at higher

concentrations for homogeneous beds as well as mixed beds. Haub and Foutch (I 986a,b)

and other workers (mentioned in Chapter I) developed simulation tools for

demineralization plants employing mixed bed ion exchange at ultrapure water

concentrations and filled the gap. The current model is intended to be an extension of

this work into the area of HBIE. Minimization of the computational cost of the

17
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simulation is also of high priority in the current effort. The model development will

follow the sequence and nomenclature described by Bulusu (1994).

Asswnptions

Table IV lists the assumptions made in this model. These asswnptions have been

used and justified by earlier workers in MBIE with success. In the course of the literature

review (chapter II) new studies were found which have bearing on some of these

assumptions and these assumptions will be discussed here. Those assumptions, which

have special bearing on HBIE modeling (as opposed to the MBIE models for which these

have been justified and tested), will be also discussed.

L Bulk-Phase Neutralization

Consider a bed of cation-exchange resin followed by a bed of anion-exchange

resm. The effluent from the cationic bed has an acidic pH and this effluent is fed to the

anionic bed. In the anionic bed, the pH of the solution increases from an acidic pH at the

inlet to a basic pH at the exit. Thus, at the inlet the reaction plane for the neutralization

reaction will be close to the surface of the resin bead in the liquid film surrounding the

bead. The reaction plane will shift away from the resin bead and towards the bulk liquid

as the pH increases down the column. Thus, bulk phase neutralization may not be a good

assumption for all the conditions encountered in HBlE. However, complexity of the

problem increases greatly if liquid-film neutralization is assumed (Haub and Foutch,
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1986a). Haub and Foutch (1986a) also conclude that the reaction plane approaches the

bulk phase as the ionic concentrations fall to 1x10-7 M (at 25°C). Therefore, a small error

is expected due to the assumption of bulk phase neutralization at the concentration levels

encountered in ultrapure water applications. In keeping with the objective to minimize

model complexity and consequently the computational effort, the assumption of bulk

phase neutralization is justified.

2. Liquid-Film Diffusion is Rate Controlling

Resistance from particle diffusion is negligible compared with film diffusion.

Haub and Foutch (1986a) first justified and successfully applied this assumption under

the conditions of high flow rate and low ionic concentrations encountered in the

demineralization plants. Petruzzelli et a1. (1987) combined particle and film diffusion in

their model for binary exchange of ions. Their results indicate that the solution for

combined resistance coincides with that for film diffusion up to 40% conversion of resin

at concentration of 0.006 M and particle diffusion becomes important only after 75%

fractional approach to equilibrium. Studies by Kataoka et al. (1976) indicate that particle

diffusion becomes important only after 80% conversion is reached in the resin at

concentration of 0.0025 M. Thus, fi 1m diffusion resistance remains the controlling

resistance for high conversion of the resin at low solution concentrations.
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Table IV

Asswnptions Made in the HBIE Model

1. Bulk phase neutralization

2. Liquid-film diffusion is rate controlling

3. Nemst-Planck equation is adequate to model all the interactions between the

diffusing ions

4. Pseudo steady state ion exchange

5. Local equilibrium at solid-liquid interface

6. Total Donnan exclusion of coions from the resin beads (no coion flux across the

particle surface)

7. No net coion flux in the liquid film

8. No net current flow

9. Electroneutrality is always maintained in the resin, film and bulk liquid

10. Selectivity coefficients are constant throughout the column, and with temperature

11. Binary selectivity coefficients can be applied to multicomponent ion exchange

12. Reaction step is instantaneous when compared to the rate offilm diffusion

13. Particle diffusion resistance is negligible

14. Uniform bulk and resin phase compositions

15. Curvature of the liquid film is negligible

16. Activity coefficients are always unity

17. Plug flow, negligible axial dispersion

18. Isothermal, Isobaric operation
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An ion-exchange resin placed in an electrolyte solution will take up ions from the

demineralization can be achieved with a given ion-exchange resin bed. Consider an ion-

"

(3-2)

(3-1 )

entity with over bar signifies that ion is in resin phase

ZA and ZB are charges on ion A and B

KBA= resin selectivity for ion A in resin phase replaced by ion B from bulk phase

Ion-Exchange Equilibria

solution in exchange for counterions from its own ionic groups embedded in the

hydrocarbon matrix. After equilibrium is reached, no net exchange of ions is possible

between the resin and the solution phases. This equilibrium represents the limit to which

where,

exchange reaction,

The law of mass action for this reaction is written as

where,

qA and ~ are resin phase concentrations of A and B respectively

CA' and CB' are interfacial concentrations of A and B respectively

The equilibrium constant for the ion-exchange reaction is called the selectivity

coefficient. Assumption of local equilibrium at the resin - liquid interface lets us write
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the equilibriwn relationship in terms of resin phase concentration and interfacial ionic

concentrations. The selectivity can be written in terms of equivalent fractions as,

where, we know initial resin loadings YB and YA> the resin capacity Q and selectivity

independent equations for equilibria. The material balance at the resin - liquid interface

(3-3)

(3-4)

If there are a total of n counterions involved in exchange, we can write n-l such

YA and YB are resin-phase fractional concentrations of A and B respectively

XA' and xB' are interfacial fractional concentrations of A and B respectively

Cr' is total interfacial ionic concentration

Q is total resin-phase ionic concentration (resin capacity)

where,

The interfacial equivalent fraction of an ionic species B can now be -written as,

coefficient (properties of the resin determined by experiment or known from

manufacturer's specification).

is the nIh equation,

n

LX~ -1 = 0
i=l

(3-5)

Substitute the n-1 equilibrium equations (for n-l counterions, of form identical to

Equation 3-4) into the material balance (Equation 3-5) to obtain a polynomial in terms of
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described here.

find the correct value by iterations.

Flux Expressions for Liquid-Film Diffusion

(3-6)dC,
I - J-d-t- - - i as

polynomial can be evaluated and the polynomial can be solved to obtain the interfacial

The ion-exchange equilibrium is a function of total interfacial concentration

We have assumed that liquid-film diffusion is the rate-controlling step for the ion-

which is unknown and must be found from the ionic flux rates (as shown in the following

XA •• If the total interfacial concentration CT· is known, then the coefficients of the

equivalent fractions. Refer to Appendix A for a detailed discussion on the methods

discussion). The flux rates in turn depend on the interfacial and bulk concentrations.

Thus, we must start with a guess value for the total interfacial ionic concentration and

exchange process. Therefore, the rate of change of concentration of an ionic species in

the resin is same as the rate of diffusion of that species of ion throu'gh the liquid film.

Thus,

where,

as = surface area of resin beads per unit volume

J j = flux of ionic species in the liquid film

C j = resin phase concentration of ions i
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The term for gradient in electrical potential (d~/dr) in the Nernst-Planck equation is

The flux expressions are then integrated with appropriate boundary conditions to find a

(3-7)

(3-8)

R = universal gas constant

<I> = electric potential

F = Faraday's constant

r = radial distance

where,

the ions in the resin yields

In order to find the rate of resin loading, the flux of counterions across the liquid

Replacing the resin-phase concentration of ions in Equation 3-6 by equivalent fraction of

film Ji must be known. Ji is modeled by the Nernst-Planck equation as :

gradient in electrical potential is replaced by a function of total equivalent concentration.

eliminated because the gradient in electrical potential is difficult to evaluate. The

relation between the total equivalent concentration CT and the individual ionic

concentration C j • The method proposed by Franzreb et al. (1993) is used for this

purpose. This method yields an exact solution of the flux expression for the special case

of counterions with equal valences and yields an approximation for the case of arbitrary

counterion valences (Refer Appendix B for a detailed derivation of the methods described
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here). The total interfacial concentration of ions (on the resin-liquid interface) is given

P = a parameter in the solution of the flux expression and Pis detennined by

(3-9)

coion valence) and

c~=

N j = the relative valence for ion i (ratio of valence of ion i to the average value of

by,

where,

integration of the flux expression between appropriate boundary conditions.

CT
D = total bulk-phase concentration of ions

Ionic concentrations within the liquid film are expressed in terms of

concentrations at the resin-liquid interface and the bulk concentrations. Ionic flux rates

(JJ for each species of counterions in the liquid film are then given by,

(3-10)

This expression for Jj is valid for any arbitrary number of counterions and coions with

arbitrary valences. The film thickness in Equation 3-10 is substituted by

8 = De
k

(3-1 I)
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and k is calculated by the correlation of Dwivedi and Upadhyay (1977). The rate at

which ions load on the resin is found by substituting value of J j from Equation 3-10 into

-

The effective diffusivity Dc in Equation 3-11 is given by,

n

L:ILO!
D e = _.:....i=..;..1__-

f Ic; - c~1
1=1

Equation 3-7 as described earlier.

(3-12)

Algorithm to Calculate Interfacial Concentrations and Flux Rates As described earlier.

the total interfacial concentration must be found by iteration. For this purpose the

strategy outlined in Table V is adopted.

Table V

Algoritlun for Interfacial Concentrations and Rates of Film Diffusion

1.

2. Evaluate the coefficients for the polynomial obtained by substituting Equations 3-4

3.

into Equation 3-5

Solve the polynomial for xA ' and calculate < 's from the equilibrium Equations 3-4
!o

4. Find the value of CT' using Equation 3.9.

5. Compare old value of CT' with new value. Return to 2 and iterate till CT' has

converged to a value within the desired tolerance.

6. Calculate the flux rates for ions in the liquid film with Equation 3-10

26



-

Material Balance Equation for the Column

In order to predict the effluent concentration with time, a material balance for the

column must be setup. A differential material balance can be applied to a very small slice

of the resin column. The net increase in the amount of an ionic species present in the

slice equals the difference between the influx and efflux of the ionic species. In a film

diffusion controlled rate model, the net rate of accumulation (or exhaustion) of an ion in

the slice equals the rate of ion transport through the film. The material balance equation

for exchange of ions between the resin bed and the solution phase is written as,

Us aCi + aCi + (1-~) aqj = 0
~ az at f: at

where,

Us = superficial fluid velocity of bulk liquid

£ = void fraction in the resin bed

Z = bed depth

(3-13)

With dimensionless distance (~) and dimensionless time (T), this equation can be

reduced to the following fonn (refer to Appendix C for definition of dimensionless

variables and derivation of the equation)

ax- ay.__'+ __1=0
a~ Or:

The material balance for the column is integrated using the method of

(3-14)

characteristics (Haub, 1984). Appendix 0 discusses the approach used for solution of the

material balance equations and lists the numerical methods applied for the integration.
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Calculation of Temperature Dependent Parameters

The HBIE model uses the following temperature sensitive parameters:

1. Viscosity of water. The viscosity of water is estimated at the desired temperature

with the relation given in Table VI.

2. Equilibriwn Coefficients. Water dissociation equilibrium is a weak. function of

temperature (see Table VI). The model assumes the ion selectivities are constant with

temperature on account oflack of data to compute the temperature effects on this

parameter.

Table VI

water viscosity

water dissociation

Water Viscosity and Water Dissociation

!J. =1.43123 + (T - 273.15)[0.000127065(T - 273.15) - 0.0241537]

pK
w

= 4470.99 _ 6.0875 + 0.0176T
(T)

3. Diffusion Coefficients The diffusion coefficients and electrical conductivitie of ions

are interrelated (Helfferich, 1962). If the conductivities (AoJ are available as a

function of temperature, diffusion coefficients can be calculated at the desired

temperature with the use of Nemst equation,

28
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Table VII lists the conductivities as functions of temperature (Divekar et al.,

1987). The conductivities estimated by these relationships are used for calculation of

diffusion coefficients in this model.

Table VII

Conductance as Function of Temperature

Ion Conductance

Hydrogen ).°H =221.7134+5.52964T-0.OI4445T1

Sodium ).°Na =23.00498+1.06416T+0.0033196T2

Calcium /..0Ca =(23.27+ 1.575T)/2.0

Hydroxide /..°OH =1.0474113+3.807544T

Chloride /..°Cl =39.6493+1.39176T+O.0033196T2

Sulfate ).°504 =(35.76+2.079T)/2.0

Comparison of Material Balance Equations in MBIE and HBlE

So far, the treatment for HBIE modeling has been the same as MBIE with the

exception of material balance equations used to describe the column. The material

balance used in the MBIE model (Bulusu, 1994) reduces to the following fonn after

applying the dimensionless time and distance variables:

~-

29

(3-16)

......



-

The derivatives in Equation 3-16 are with respect to dimensionless variables defined for a

common reference ion. In both the models, HBrE as well as MBIE, the column is

divided into infinitesimal slices (perpendicular to the column axis) and integration of the

column material balance is carried out by finite difference methods. In the HBrE

simulation program, effluent from one slice forms the feed for the next slice. A

subroutine carries out the algorithm described in Table V for each slice and returns the

flux rates to the main program which carries out the task of integrating the column

material balance.

Figure I

Solution Strategies For Differential Material Balance

Homogeneous Bed

Water In

~

Water Out

+-Slice ofbed -.

Mixed Bed
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The solution strategy used in the MBIE model, to solve the colwnn material

balance, is different from the solution strategy used in HBIE. The MBIE model further

divides each slice into four zones ofcationic and anionic resins alternating with one

another (see Figure l). The HBIE strategy does not require this division. In the MBIE

model, each zone is treated like a slice of homogeneous resin bed and calculation of flux

rates, interfacial concentrations, etc. is carried out for each zone. Thus, effluent from the

first zone of cationic resin forms the feed for the next zone of anionic resin and so on.

This alternating pattern of homogeneous sub-slices is used to simulate a mixed bed in

MBIE.

Simulation of Homoger:eous Beds in Series

The HBIE model can be adapted for simulation of homogeneous ion-exchange

beds in series. For this purpose, the integration of the column material balance forthe

second column must be done under the condition of variable feed concentration. The step

sizes in time used for integration of column material balances for two columns in series

must be equal.

Ion-exchange trains consisting of one cationic-resin bed and one anionic-resin bed

in series are simulated and the effect of the order of the beds on the effluent water quality

is studied. The performance of a mixed bed unit (predicted by MBlE model) is also

compared with the performance of homogeneous beds in series. The procedure used for

these simulations is outlined in Appendix E.
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CHAPTER IV

HOMOGENEOUS BEDS VS. MIXED BEDS

Abstract

The perfonnance of a mixed bed is compared with that of two homogeneous beds

in series for different configurations. Simulations are run for feed water having ionic

contaminants at two levels, namely, at concentrations equivalent to city water (several

ppm) and at lower concentrations (several ppb). The order of the beds in the

homogeneous-bed train is found to affect the effluent pH and the ionic concentration in

the effluent.

Introduction

An ultrapure water facility may employ a train of ion-exchange beds consisting of

two homogeneous beds followed by a mixed bed (it may also have other units like

reverse osmosis included in this train). The order in which the ion-exchange beds are

placed in such a train will be decided by feed-water chemistry and the effects of the order

of the beds on effluent quality, bed performance and resin life. For instance, consider
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feed water contaminated by calcium salts. Calcium hydroxide tends to precipitate on the

ion-exchange resin beads at high pH. Therefore, the cation bed must be placed upstream

of the anion bed to remove the calcium cations before the water reaches a high pH in the

anion bed. If the anion bed is placed upstream for a feed contaminated by calcium, then

the calcium ions will precipitate on the resin beads at the high pH encountered in the

anion beds. On the other hand, if the cation bed is placed before the anion bed, the cation

bed will "slough" off benzene sulfonic acids. These products are fonned due to

degradation of the cation resin with the passage of time, and can foul the anion-exchange

resins in the following bed (Fisher, 1993). If city water is being used as feed, chloride

radicals from the city water will decrosslink. resins by oxidizing the bonds (Fisher, 1993).

In this case, if we have an anion-exchange bed in the lead, then chloride ions can be

removed from the feed before they decrosslink resins in subsequent beds.

Thus. feed water chemistry, desired effluent composition, etc., will decide the

order in which beds should be placed. Therefore, it is desirable to predict the effect of the

order of the beds on effluent quality. How will a mixed bed unit compare with a cationic

bed followed by anionic bed or anionic bed followed by cationic bed, if resins in all the

beds have the same exchange capacity and resin properties?

Feed Water Conditions, Resin Properties and Bed Parameters

In this chapter, the bed configurations sho'Ml in Figure 2 are compared with

respect to their effluent quality. The configurations will be referred to by the

abbreviations -- ACB for anion bed followed by cation bed, CAB for cation bed followed

33



-

by anion bed and MB for mixed bed. Same anion and same cation resin is used in all the

configurations. Resin properties are listed in Table IX. The volume of cation resin in all

the configurations is same and so is the anion-resin volume. Thus, the total ion-exchange

capacity of the anion resin in the ACB, CAB and MB configurations is same. Similarly,

total ion-exchange capacity of cation resin in all the configurations is also equal. The bed

parameters are listed in Table VIII. Cation-exchange capacity is not equal to anion-

exchange capacity in any configuration.

Figure 2

Schematic Diagram of Homogeneous Beds in Series and Mixed Bed

(White for Anion Bed, Black for Cation Bed, Gray for Mixed Bed)

. /.~.

""

MBCABACB

-
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Table VIII

-

Bed Height

Bed Parameters

Bed Diameter Void Fraction

ACB

CAB

MB

46.84 em each bed 152 cm

46.84 em each bed 152 cm

93.68 em (cation/anion volwne = 1: I) 152 cm

0.35 in each bed

0.35 in each bed

0.35

Table IX

Resin Properties

Cation Resin Anion Resin )1'1

~:.c

Dowex Monosphere 650C Dowex Monosphere 550A ~
:>...

Diameter of Resin Bead 0.0625 cm 0.055 cm 2:
::>

Capacity of Resin 1.9 1.1 ~
Initial Resin Loading 1 % for all ions in feed 1% for all ions in feed ~

~Resin Selectivity: sodium 1.61 chloride 22

~calcium 41.44 sulfate 60
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Table X

Feed-Water Condition used in the Simulations

Case - I Case-II

sodium 37 ppm 20.24 ppb

calcium 10 ppm 22.4 ppb

chloride 13 ppm 31.24ppb

sulfate 83 ppm 53.76 ppb

Temperature 25°C 25 °c

Feed Rate 6lxlO3 eels 61 xlO> eels

The performance of different bed configurations is studied at two levels of ionic

concentrations, namely, at concentrations equivalent to city water (several ppm) and at

lower concentrations (several ppb). The feed water compositions, feed rates and

temperatures for both cases are given in Table X.

Results and Discussion

In a mixed-bed ion-exchange column, cations and anions are removed

simultaneously and replaced with hydrogen and hydroxide ions, respectively, which then

combine to form water. Now consider a homogeneous cation-exchange bed. Here, with

progressing cation exchange the hydrogen-ion concentration increases down the bed.

Thus, the simultaneous removal of cations and anions in a mixed bed facilitates

immediate neutralization and the pH in the mixed bed remains closer to neutral than the
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homogeneous bed. In the homogeneous cation bed, pH turns extremely acidic (or basic

in an anion bed) down the bed from the inlet to the outlet. Thus, the equilibrium becomes

adverse to the ion-exchange process in the homogeneous bed. Consequently, we expect a

higher separation efficiency in a mixed bed than a homogeneous bed.

Discussion on Breakthrough Curves

Figure 3 shows sodium breakthrough curves for the case of higher feed

concentrations, for all the bed configurations studied. ACB (anion followed by cation

bed) gives a sharp breakthrough for sodium, very similar to the MB (mixed bed), while

CAB (cation followed by anion bed) gives a comparatively gradual breakthrough.

Effluent sodium concentrations before breakthrough are higher for the CAB than the MB

and ACB. These differences may be explained by the effect of pH and removal of

coions.

Effect of pH. In the ACB configuration, basic effluent of the anion bed is fed to the

cation bed. With progressing cation exchange, the pH of the bulk solution in the cation

bed of ACB turns increasingly acidic. In the mixed bed, the simultaneous removal of

cations and anions facilitates immediate neutralization and the pH in the mixed bed

remains closer to neutral than the homogeneous bed. Thus, the pH of the bulk solution in

the mixed bed is close to neutral and it changes from basic to acidic in the cation bed of

the ACB configuration. These pH conditions are more favorable for cation exchange

than the pH in the lead cation-resin bed of the CAB configuration, where the feed is
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neutral and turns acidic from inlet to outlet with progressing cation exchange. An acidic

pH in the lead cation bed of CAB results in an unfavorable equilibrium for cation

exchange. Consequently, the effluent cation concentration before breakthrough is higher

than ACB and MB.

Removal of coions. The anion concentration is constant with time for any fixed point in

the cation bed of CAB, while in the other two cases, i.e., MB and ACB the anion

concentration is changing with time at any given distance in the bed. However, the effect

of coion removal I is expected to be very weak (Franzreb, 1993).

Figure 4 shows calcium breakthrough for ACB, CAB and MB for higher feed

concentration. The calcium leakage for CAB again stands apart from the ACB and MB,

but the differences are ~ess pronounced for calcium as compared to those for sodium

(Figure 3). The difference in performance of CAS as compared to ACB and MB may be

attributed to an unfavorable pH (unfavorable equilibrium) and the effect of coion removal

as in the case of sodium.

I This effect of coion concentration, on the rate of ion exchange, is incorporated in

the model through the use of Franzreb's (1993) method to solve the Nemst-Planck

equation for the ionic flux in the static film assumed to exist around a resin bead. This

method uses the coion concentrations to find the mean value of the coion valences. The

mean coion valence is used to find the relative valence of the counterions for the solution

of the Nemst-Planck equation.
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The discontinuities in the breakthrough curves (Figure 3 and Figure 4) are

ascribed to the following factors:

Change in the Cation being Replaced from the Cation Bed. Sodium breakthrough for

ACB, CAB and MB occurs between 10 and 50 days (Figure 3). The sodium

breakthrough signifies that all hydrogen in the cation bed has been exhausted. Coincident

with the sodium breakthrough, effluent calcium concentration also rises sharply for all the

configurations because the calciwn now begins to replace sodium in the bed instead of

hydrogen. Sodium has higher selectivity than hydrogen, which makes the former more

difficult to replace than hydrogen.

Log-scale on the V-axis of the plot. The concentrations in the figures are plotted on

logarithmic scale. This magnifies small changes in the effluent concentration. These

small changes in effluent concentrations may occur on account of:

1. changes in feed pH and coion concentrations (when the cation bed is

downstream of anion bed -- ACB configuration),

2. instability in the numerical integration.

Figure 5 shows that, even at lower concentrations (several ppb), sodium leakage

from the CAB is higher than ACB and MB. Calcium leakage (Figure 6), however, does

not show pronounced differences for different configurations, at lower concentrations.

These differences between the breakthrough curves for different configurations at higher

concentrations (Figures 3 and 4) were explained on the basis of effect of pH and removal
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of coions. At lower concentrations, these factors are expected to have a smaller effect

because the magnitude of changes (in pH as well as coion concentrations) is smaller at

lower concentrations. Moreover, coion removal is expected to have a smaller effect, as

the concentrations approach the ideal case of infinite dilution (at infinite dilution the

coions will have no effect at all on the exchange of counterions).

The initial leakage of chloride anions for different configurations is shown in

Figure 7 for the case of higher feed concentrations. In this case, the ACB configuration is

seen to have the highest chloride leakage before breakthrollgh. MB gives the least

chloride leakage, while CAB gives an initial chloride leakage intermediate to ACB and

MB. The high leakage of chloride from ACB can be explained in a manner similar to the

higher leakage of sodium from CAB, that is, on the basis of the pH and the effect of coion

removal.

Effect of pH. Th~ pH conditions in the mixed bed and in the anion bed of the CAB

configuration are more favorable than the pH in the lead anion resin bed in the ACB

configuration for anion exchange. An adverse pH (basic) in the lead anion bed of ACE

results in an unfavorable equilibrium and consequently a higher effluent anion

concentration before breakthrough.

Removal ofcoions. The cation (coion) concentration is constant with time for any fixed

point in the anion bed of ACB, while in the other two cases, i.e., MB and CAB the cation

(coion) concentration is changing with time at any given distance in the bed. As stated

earlier, the effect of coion removal is expected to be very weak (Franzreb, 1993).
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Figure 9 shows the history of chloride concentration in the effluents for the three

configurations for lower feed concentrations. At lower concentrations (several ppb) also,

chloride leakage from the ACB is higher than CAB and MB. A small dip is seen between

200 days and 400 days in the chloride throw from MB. This dip is attributed to

instability in the numerical integration of the column material balance.

The sulfate leakages from the beds (for higher feed concentration) are shown in

figure 8. Sulfate leakage from ACB is not higher than sulfate leakage from CAB, as one

would expect after studying chloride leakages. MB gives the lowest sulfate leakage of all

three configurations. The same observations are valid for sulfate leakages at lower feed

concentrations (Figure 10), namely, sulfate leakage from ACB is not higher than sulfate

leakage from CAB and, MB gives the lowest sulfate leakage of all three configurations.

This difference between chloride and sulfate leakages may be due to the binary charge on

the sulfate ion (as opposed to the unit charge on the chloride radical). Consequently, the

effect of feed pH on the sulfate breakthrough is not similar to the effect of feed pH on

chloride breakthrough.

The question now is: How can the effect of feed pH on monovalent-ion

breakthrough be different from the effect of feed pH on divalent-ion breakthrough? The

answer to this question may lie in the effect of the feed pH on the mass-transfer

coefficients of the counterions. The mass-transfer coefficient of the counterions is a weak

function of the bulk-phase pH. The feed pH may have different effects on mass-transfer

rates of monovalent and divalent ions and may thus affect their breakthrough.

Leakages of calcium from MB and ACB are lower than those from CAB (figures

4 and 6). The calcium breakthrough curves are similar to those of sodium though the
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calcium is a divalent cation while sodium is monovalent. Thus, feed pH does not seem

affect the calcium breakthrough (and mass-transfer coefficient) to the same extent as it

affects the sulfate breakthrough.

Discussion on pH of Effluents

Figures 11 to 16 show pH histories of the effluents for different configurations at

high and low feed concentration levels studied here. The pH ofthe effluent from

different configurations shows roughly similar trends at low as well as high feed

concentrations, with the difference that, the magnitude of changes in effluent pH (with

time) is smaller at lower feed concentrations for all configurations.

As seen in Figure 11, the pH of effluent from MB is close to neutral for a neutral

feed, before breakthrough is reached. The effluent pH is acidic for the ACB and basic for

the CAB, before any breakthrough is reached. Thus, for ACB or CAB, before either

cation or anion breakthrough is reached, the effluent pH depends on which bed is placed

at the end of the ion-exchange train.

A comparison of breakthrough curves for cations and anions at higher feed

concentrations (Figure 4 and Figure 8) shows that the anion resin reaches saturation at

approximately 80 minutes while cation resin reaches saturation at 250 minutes. Thus,

anion resin reaches saturation before the cation resin. This leads to a fall in effluent pH

for ail the configurations (Figure 11) after the anion breakthrough has started at around 55

minutes. At 80 minutes, anion resin has reached saturation and effluent pH is at a

minimum, because the anion resin no longer exchanges anions while the cation resin
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continues to replace cations in the solution with hydrogen ions leading to an acidic

effluent. As the cation breakthrough occurs, the effluent pH rises and reaches a peak

(around 170 minutes). This peak can be attributed to sodium throw from the cation bed

as follows:

The effluent pH, is a function of the charge balance in the bulk solution. If the

cation concentration (sodium plus calcium) is greater than the anion concentration

(chloride and sulfate), effluent pH will be basic. Thus, a rise in cation

concentration (sodium plus calcium) results in a rise in effluent pH.

As the throw of sodium decreases, the charge balance favors a lower pH and the effluent

pH falls again. At approximately 250 minutes, the cation bed is saturated with calcium

(Figure 4) and the effluent pH reaches the same value as the feed pH.

Figure 12 and 13 show the history of effluent pH for the ACB and CAB

configurations respectively. The intennediate stream between two beds of an ion-

exchange train is shown as a broken line, while the final effluent from the train is shown

as an unbroken line in both figures.

Refer to Figure 12 for the following discussion. The anion-bed effluent has a very

high pH till the anion-exchange bed is replacing anions with hydroxide ions. But, once

the anion bed reaches saturation (at 80 minutes), the effluent from anion bed is same as

the feed to the anion bed. Thus, in Figure 13 also, after 80 minutes, the effluent from

CAB is sarne as the effluent from the cation bed (the first bed in the CAB train).

Compare Figure 13 with Figure 12. We observe a fall in the pH of the effluent from

ACB as well as CAB after the anion bed gets saturated. The history of effluent pH from

the ACB, CAB and MB are same after this point. As the cation breakthrough occurs, the
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effluent pH rises and reaches a peak (around 170 minutes). This peak can be attributed,

to sodium throw from the cation bed, as follows:

The effluent pH, is a function of the charge balance in the bulk solution. If the

cation concentration (sodium plus calcium) is greater than the anion concentration

(chloride and sulfate), effluent pH will be basic. Thus, a rise in cation

concentration (sodium plus calcium) results in a rise in effluent pH.

As the throw of sodium decreases, the charge balance favors a lower pH and the effluent

pH falls again. At approximately 250 minutes, the cation bed is saturated with calcium

(Figure 4) and the effluent pH reaches the same value as the feed pH.

Refer to Figure 14 for the pH history of effluents from ACB, CAB and MB at

lower feed concentrations. The pH changes involved in this case are smaller than those at

higher feed concentrations. Also, for very low feed concentrations, the differences in

effluent pH between ACB, CAB and MB are less prominent than at higher feed

concentrations. As seen in Figure 14 the pH of effluents from ACB, CAB and MB are

close to neutral for a neutral feed, before breakthrough is reached. The effluent pH, is a

function of the charge balance in the bulk solution. Therefore, at about 400 days, the pH

of the effluent from all the configurations begins to fall as the anion beds approach

saturation and anion breakthrough begins. This trend continues up to 600 days of column

operation and the pH of the effluents reaches a minimum value of6.63 (approximately) at

600 days. The effluent pH begins to rise after 600 days due to cation breakthrough and

sodium throw from the cation bed. At 1000 days of column operation, the throw of

sodium from Cation bed reaches a peak and stabilizes at that value till 1600 days. This

results in a constant pH of the effluent during this period (1000 days to 1600 days). After
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the sodium throw from Cation bed falls to feed concentrations, the Cation bed can be said

to be saturated with calcium and the effluent pH rises as calcium concentration in the

effluent rises to feed concentration of calcium. At 2000 days the effluent pH is same as

feed pH because both beds are now saturated.

Figure 15 and Figure 16 show the history ofeffluent pH for the ACB and CAB

configurations respectively. The intermediate stream between two beds of an ion-

exchange train is shown as a broken line, while the tinal effluent from the train is show as

an unbroken line in both figures. The anion breakthrough (Figure 15) begins first as seen

from the drop in pH of the anion-bed effluent after 400 days of operation. Comparison of

Figure 9 with Figure 15 reveals that the throw of chloride ions from anion bed stabilizes

at 600 days to a peak value. This leads to a stable effluent pH (for anion bed, seen as

broken line) from 600 days till the cWoride throw stops (anion bed saturated with sulfate)

at 1000 days and the effluent pH falls again to stabilize at feed pH. The anion bed is

saturated with sulfate (at 1000 days) before the cation bed is saturated with calcium (at

approximately 2000 days). Comparison of Figure 16 with Figure 9 similarly reveals that

anion breakthrough begins at 400 days and this leads to a drop in pH of the CAB effluent

till it reaches a minimum at 600 days. Thereafter. it follows the same curve as the pH of

effluent from the cation bed. We observe that the pH histories of effluents from ACB,

CAB and MB follow identical paths after this point (600 days) and have identical

interpretation (given in discussion on Figure 14).
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The step changes in pH at low feed concentrations are attributed to the following :

1. increased resolution of changes in concentration (of Hydrogen ion) when

these changes are viewed on the log-scale (pH is negative logarithm of

Hydrogen ion concentration to base 10).

2. changes in pH get further magnified because a small range of pH values is

stretched over a large area in the Y direction (in other words, the minimum

and maximum pH values on the Y axis differ by only 0.45 or 0.8).

Conclusions

Before breakthrough, effluent concentrations of monovalent ions from the mixed

bed are lower than the effluent concentrations of monovalent ions from any configuration

of homogeneous beds studied. The results seem to indicate that, in the case of

monovalent cOll..'1terions, performance close to the mixed-bed perfonnance is achieved if

the ion-exchange bed exchanging the counterions in question is placed downstream from

the bed that exchanges ions of opposite charge. For instance, in the case of sodium,

initial leakages as low as those from mixed-bed are achieved if the cation-exchange bed is

placed down stream of the anion-exchange bed. Similarly, in the case of chloride, initial

leakage as low as that from mixed-bed are achieved if anion-exchange bed is placed

down stream of cation-exchange bed. However, the same cannot be said of calcium or

sulfate ions.

At lower concentrations, the differences between the leakages from different

configurations observed for monovalent ions, are less pronounced as compared to the
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differences at high concentrations. For instance, at higher feed concentrations, the

sodium leakage from CAB is four orders of magnitude higher than the sodium leakage

from MB. Similarly, at higher concentrations, chloride leakage from ACB is four orders

of magnitude higher than the chloride leakage from MB. However, these differences are

not as pronounced for the case of lower feeds concentrations. This could be because of

the progressively reducing effect of the coions on the rate of ion exchange as the solution

reaches the ideal state of infinite dilution where the coions will have no effect at all on the

ion-exchange rate. The pH changes involved at low concentrations are also much smaller

than those at higher concentrations and therefore, are expected to have a smaller effect on

the equilibrium at low concentrations.

The order of the beds in the homogeneous-bed train affects the effluent pH also

(besides the effluent concentrations). Before breakthrough, the pH of the effluent from

the mixed bed is found to be closer to neutral than the pH of effluent from homogeneous-

bed trains.
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APPENDIX A

INTERFACI.AL CONCENTRATIONS AND ION-EXCHA.l\,fGE EQUILIBRlA

The assumption of local equilibrium at the solid-liquid interface allows us to apply

the law of mass action to resin-phase and interfacial concentrations. Thus, for an ion-

exchange reaction,

c

- -
ZsA+ ZA B <=> ZA B+ ZsA

the law of mass action is written as,

(A-I)

(A-2)

The equilibrium constant for the ion-exchange reaction is called the selectivity coefficient.

Define the resin-phase and interfacial ionic equivalent fractions for ion A as,

y. =
q.'.
Q

(A-3)
C....

.
=X.... CT

.

Writing Equation A-2 in terms of equivalent fractions gives,

(A-4)
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The interfacial equivalent fraction of an ionic species B can now be written as,

(A-5)

where, initial resin loadings YB and YA, the resin capacity Q and selectivity coefficient are

known (properties of the resin determined by experiment or known from manufacturer's

specification).

We can also write relations similar to Equation :\-5 for additional exchange

reactions. Consider the following reactions,

where, A is the counterion in the resin phase and counterions B, C, 0, E from the bulk

phase are exchanging with A. Then, selectivity relationships for these reactions will give,

[
.Jzn{, ( JI_(ZD~.\)

• = y (KE )-X, x... 7z -9. /z

X£ E A y.", C
r

66

(A-6)

(A-7)

(A-8)



For any counterion i exchanging with A,

..

Z

A = Y(K'J~'~(Y )~~i[_.Q.Jl- z.:
1 I'~ A CT

The material balance at the resin-liquid interface is,

n *I Xi -I =0
i=l

Thus, there are n-l equilibrium relations for n coumerions involved in the

(A-9)

(A-IO)

(A-l l)

exchange and one material balance equation. Substitute the n-l equilibrium equations

(Equations A-5 to A-8 in this case) into the material balance Equation A-9 to obtain a

polynomial in terms of XA:.

Ze Zc ZD ~E.

X: + AB(X:)z" + Ac(X:J z, + AD(X~ )ZA + AE(X:)ZA = I (A-12)

The coefficients of the terms of the polynomial are defined in Equation A-I O. If

the total interfacial concentration Cr· IS known, then the coefficients of the polynomial

can be evaluated and the polynomial can be solved to obtain the interi"acial equivalent

fractions. Ion-exchange equilibrium is a function of total interfacial concentration which is

unknown and must be found from the ionic flux rates. The flux rates in turn depend on

the interfacial concentration and bulk concentration (as shown in Appendix B). Thus, it is

necessary to start with a guess value for the total interfacial ionic concentration and find

the correct value by iteration (as described in Table V)
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A.PPENDIX B

MODEL EQUATIONS

We have assumed that liquid film diffusion is the rate controlling step for the ion

exchange process. Therefore, the rate of change of concentration of an ionic species in

the resin is same as the rate of diffusion of that species of ion through the liquid film.

Thus,

The equivalent fraction of ions in the resin is given by

V. = ZiCi
J 1 Q

(B-1)

(B-2)

Replacing the resin phase concentration of ions in Equation 8-1 by equivalent fraction of

the ions in the resin (Equation B-2) yields

d Y·
I
· JZj las= -..:-~..::..

dt Q
(B-3)

The flux of counterions across the liquid film J, is modeled by the Nernst-Planck

equation as :
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Assumption of pseudo steady state lets us use ordinary differentials instead of partial

differentials. Thus, the Nemst-Planck equation for the flux of counterions across the

liquid film is now written as

Similarly, for coion flux

J = - 0 (d Cj + CI zlF d¢J
I .1 dr RT dr

We can substitute the flux of counterions Ji in Equation B-3 by the Nernst-Planck

(B-5)

(B-6)

Equation (8-5) However, we first eliminate the term for gradient in electrical potential

(d¢/dr) in Equation 8-5.

Elimination of Term for Gradient in Electrical Potential

Assumption of electroneutrality in the liquid film gives equal concentration of

counterions and coions in the tilm:

n m

LZiC = Iz,c 1
i =1 j::l . .

Assumption of no coion flux in the liquid film yields

z·J = 0J J

(B-7)

(B-8)

Also, assumption of no net current flow in the film can be written mathematically as :

n m

Lzdi = I ZjJJ
i :: J j:: 1
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From Equation B-8 and Equation B-9,

n m

LZ,Ji = LzJJ j = 0
i=l j=]'

(B-I0)

Thus, the sum of equivalent fluxes of counterions and the sum of equivalent fluxes of

COlons IS zero. From Equation B-6 and Equation B-1 0, the gradient of electrical potential

IS

~ dCj
~Zl--

d<t> -RT j=l dr
=

dr F tz.2 C.
j= 1 J .I

(B-1 I)

The total equivalent concentration of counterions is equal to that of coions because

we assume eJectroneutrality in the liquid film The total equivalent concentration is given

by

n m

Cr =W LZiC I =W LZJC J
i = I J= 1

The mean value for coion valence is defined as .

(8-) 2)

Zv =

m 2
LZ C.1 J
i=l

In

LZjCj
j= I . .

From Equation 8-12 and Equation B-13

m

LZ/ Cj = zvC T
j=l
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Differentiating Equation B-12 with respect to distance in the film,

de m de­
_T =LZ--J

dr j=l J dr

Substitute Equations B-15 and B-14 into Equation B-l1 to get

d~ -RT deT-=---
dr Zy FeT dr

(B-15)

(B-16)

Now, the Nernst-Planck equation for counterion flux (Equation B-5) can be written as

(B-I7)

Thus, the term for the gradi,ent in electrical potential has been replaced by a

function of total equivalent concentration. In order to evaluate the ionic flux rates Jj • it is

now necessary to find a relation between the total equivalent concentration Cr and the

individual ionic concentration C;

Finding Relation between Total Equivalent Concentration and Individual Ionic

Concentrations

Define the relative valences for the counterions as

N =-~
I "4

Equation B-1 0 can be combined with Equation B-17 to get

n n d C
1

dC T 1 n _
LZ1Ji =LZiDl-d-+-d- C LZi Oi N,Ci - 0
i=l i=l r r Ti=]
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For the case of a monovalent system of ions involved in ion exchange this equation can be

integrated to obtain a relation between C j and CT However, integration is not possible in

the case of arbitrary valences. So we use the method of Franzreb et al. (1993) This

method yields a solution which is exact for the case of monovalent system of ions. The

solution given by this method (Franzreb et a!., 1993) for the case of counterions with

arbitrary valences is only approximate

Case I (Counterions having equal valences)

Differentiate Equation B-17 with respect to distance in the film, and substitute

Equation B-18. The flux of an ionic species does not change with distance in the film

because of mass balance and from our assumption that curvature of the film is negligible

Therefore. derivative of Ii with respect to distance in the film is zero

(8-20)

Summation of Equation B-20 for all counterions leads to the following equation

(B-21 )

On applying Equation B-12 and its derivatives, Equation B-20 reduces to

(8-22)
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From Equation B-22, we know that, the total equivalent concentration of ions in

the liquid film varies linearly with distance in the film for the case of counterions with

equal valences. Therefore,

dCr--=m
dr g

(B-23 )

where mg is a constant. We can now express the derivatives of Cj with respect to distance

in the film in terms of derivatives with respect to CT and we can write Equation 8-20 as

(B-24)

This expression is of the same form as Euler's differential equation and its solution is

(B-25)

where P is Nj for the case of equal valences of counterions. The values of the parameters

Ai and Bi in Equation B-25 are found by applying the boundary conditions for the liquid

film,

•at r := 0, CT =CT

at r := 8, CT = C~~

The values of Ai and Bi are,

(B-26)

(B-27)

From Equations 8-25 and B-27 we now know the individual ionic concentration

C; in terms of total equivalent concentration CT. Substitute C j and its derivative in the
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modified Nernst-Planck flux expression (Equation 8-17) with Equation 8-25 and its

derivative,

(B-28)

Substitute P by Ni in Equation 8-28 for the case of counterions with equal valences. For

case I, Franzreb has derived the expression for total equivalent concentration at the resin

surface to be,

*CT ::::
n *
IDiXi
i=1

1

P+l

(8-29)

Case II (Counterions having unequal valences)

In this case, the total equivalent concentration in the liquid film does not vary

linearly with distance in the film. We may still apply Equation 8-25 developed for the case

of equal coumerion valences, but, with a different value for P as given by Franzreb

Substitute Equation 8-28 into Equation B-1 0,

(8-30)

For Equation B-30 to be true, both the terms in the parentheses must be zero. Thus,

n

I(J + NJOiAi:::: °
i=l
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(B-32)

For case I (equal counterion valences), an equation similar to B-31 can be derived

(B-33)

Comparison of Equations B-3 1 and B-33 shows that (1 +N) D; in case II replaces Dj of

case I Therefore, we can replace D; with ( 1+ i) D j in the expression for total equivalent

concentration at the resin surface (Equation B-29) as follows:

n

I(l + Na Oi x~)
i=l

I

P+I

c~ (B-34)

.AJso, P for Case II is obtained by substituting for B, (Equation B-27) in Equation B-32,

n

I N l Di(x~ - x:J
)

p = ..:...i=....o.l _
n

I Oi (x~ - x~)
i=1

(B-35)

Similar to case 1, integration of the modified ernst-Planck Equation (B-] 7) with

boundary conditions (Equation B-26) and substitution of P (Equation 8-35) gives,

(8-36)

We now know the individual ionic flux rates in the liquid film (Ij) in terms of

interfacial and bulk liquid concentrations (Equation B-36). The liquid film thickness in

Equation B-36 is still an unknown and is eliminated as follows:
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Therefore,

where the effective diffusivity Dc is defined as,

n

:LIJj 61
D to: = -n---,ic-=,,--I--

Llc~- c~1
1=]

(B-37)

(B-38)

(B-39)

1

and the mass transfer coefficient k is given by the correlation of Dwivedi and Upadhyay

(1977),

k = (De SCi. 3 R[ 0.765 + 0.365 ]
. d f' ) (eRf82 (eR/· 386

(B-40)

The Ji for each species is found using Equations B-38 and 8-40 The rate ofloading of

the resin beads can then be evaluated from Equation 8-:1
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APPENDIX C

MATERIAL BALAJ'\jCE EQUAnONS

A material balance for the ion exchange column must be setup in order to predict

the effluent concentration with time The differential column material balance can be

viewed as a material balance applied to a very small slice of the resin column. The net

Increase or decrease in the amount of an ionic species present in the resin in the slice

equals the net influx or efflux of the ionic species from the bulk solution. The material

balance equation for exchange of ion i between the resin bed and the solution phase is

written as,

Us aCi + aCi + (1- £) aq\ = 0
soZ Or s Or

Define dimensionless variables for any ion i as,

1: = k l C~ l( t - EZJ
dpQ Us

and,
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In order to write the column material balance in terms ofdimensionless variables,

the differentials of ordinary variables must expressed in tenns of differentials of

dimensionless variables Differentiating the expressions in Equation C-2,

=az

Ol; =0
Ot:

(C-3)

Evaluate the differentials of ordinary variables in terms of differentials of dimensionless

variables using the chain rule and equations C-3,

DC l DC I ~ 8C j eTc
-=----+--
az a; az &r az

DC 1 = ac j (k] (1 - £ )J + ac j (_ ki Ct EJ
az a~ dpUs Ot dpQUs

DC i DC j oc, 8C j Ct
-=---+--
at o~ Ot: Ct at

DC] = 8C j (k l C~J
at 8L dpQ

oq 1 Bq i a~ oq j Ot
-=--+--
at o~Ot: mOt:

~' ~ a;. (~~~J
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Substitute the differentials of ordinary ariables Z and t in terms of differentials of or and ~

from equations C-4 to get,

(C-5)

Define equivalent fractions in resin and bulk phase as,

Substitute equivalent fractions for concentrations into Equation C-5.

ax Oy.
-_1+--1=0
at, Or

(C-6)

(C-7)

The material balance equation C-7 is written for any ion i Similar equations may

be written for all ions passing through the column However, solution of all the material

balance equations must proceed \vith the same step sizes in time and distance because the

flux expressions for all the ions are linked to the concentrations of other species and

determination of fluxes requires bulk concentration and resin loadings of all species of ions

at that time and depth in the column Therefore, it is necessary to write the material

balance equations for all the ions in terms of the same dimensionless variables L and~. A

reference ion is chosen for this purpose and the material balance equations are written in

terms of the dimensionJess variables defined for the reference ion. In this study, chloride

was chosen as the reference ion for the anion exchange bed and sodium was chosen for

cation exchange beds.
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Dimensionless variables for the reference ion rare,

1: r = k r C~ (t -ezJ
dpQ Us

and,

kr(l- E)Ze = .::..::.!...--'-------'----

r usd p

Writing the differentials for any ion i in terms of the dimensionless variables for the

reference ion r,

Th' .;, column material balance equation for the ion i is now,

Divide Equation C-l 0 by (kj ki),

~ cy
oX, + __i = 0
a~r C1: r

(C-8)

(C-9)

(C-10)

(C-) I)

Modification of Flux Expressions to Incorporate the Dimensionless Variables

The rate of resin loading for ion i is related to its flux across the liquid film as,

(C-12)

Substituting dimensionless variable for ion i,
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d y, =(_ zlaJ~
dT, Q dT,

d y, =(_ Z 1, aJ dp Q
dT, Q k,Cr '

Now. substitute dimensionless variable for reference ion r,

Nate that as dp = 6, jf we assume spherical resin beads Thus,

(C-13 )

(C-14)

(C-IS)

The flux of ions across the liquid film is evaluated and substituted into Equation C-

15 to find the rate of resin loading. The dimensionless material balance combined with

Equation C-15 wiH enable us to predict the effluent concentration histories and also the

profile of resin loading along the length of the column at any time.
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APPENDIX D

NUMERICAL METHODS

The column material balance equation must be applied to each ionic species in

order to obtain the effluent concentration history or the resin loading profile across the

length of the column. This requires integration of a system of partial differential equations

of the form,

ax av__' + _.1_, =0
or at'"::lr r

(D-I)

The differential equation involves two independent variables, land 1;. The methou

of characteristics is used to integrate the system of material balance equations. Thi

method involves integratlOn with respect to one variable, keeping the other variable

constant Thus, the partial differential equation is considered to be an ordinary differential

equation in terms of one variable and integrated while the other variable is being kept

constant. The integration of the material balance can be divided into two tasks:

1. integration to obtain liquid phase concentrations along the length of the column

at constant time

2. integration to obtain resin loading at the next step in time for the same depth in

the column
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Zechhini (1990) has conducted a thorough survey of numerical methods for

carrying out integration of the differential equations and Pondugula (1992) has justified

the choice of numerical methods used in the current model. The explicit Euler method is

used to predict resin loading in the HEIE model, and Gear's backward difference method

of fourth order is used for the liquid phase concentrations.
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.A.PPENDIX E

SIMULATION OF HOMOGENEOUS BEDS fN SERIES

The code for simulating HBIE can be adapted for simulation of ion-exchange beds in

series. Ion-exchange trains consisting of one cationic-resin bed and one anionic-resin bed

in series are simulated and the effect of the order of the beds on the etlluent water quality

is studied. The performance of a mixed-bed unit (predicted by rvrnrE model) is also

compared with the performance of homogeneous beds in series. The procedure used for

these simulations is outlined here.

For the simulation of beds in series, separate programs are run for each bed. The

history of effluent ionic concentrations predicted by the first program is written to an

interface file which is read by the second program In this regard, one has to keep in mind

the following points

1. The second program must be capable of handling a variable feed condition

because the output from one bed is being fed to the second bed.

2 The step sizes used to integrate the material balances for the two beds must be

the same in terms of time However, the step size in terms of distance can vary

between the two codes for beds in series.
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Thus, the time interval (delta t) between two consecutive effluent concentrations

generated by the first program must be the same as the step size in time used by the

second program. l The integration procedure is very sensitive to the step size. Therefore,

both programs must be run with a very sman step size in time.

! Note that the time mentioned here is not the program run time, but real time for the bed
runs.
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APPENDIX F

CONlPUTER CODE

*******************************************************************
*

*

*
*
*
*

THIS PROGRAM IS USED FOR PREDICTING THE EFFLUE T
CONCENTRATIONS FOR A MULTICOt\1PONENT SYSTEM OF
IONS EXCHANGING IN A HOMOGENeOUS BED OF ANION­
EXCHANGE RESIN

*
*
*
*
*

*
*
*
*

OUTPUT FROM THIS CODE GOES TO INTERFACE.DAT WHICH IS *
USED AS INPUT FOR CATIONIC RESIN BED. THE 2 BEDS ARE IN *
SERIES. *

*
*
*
*
*

DEVELOPED BY.
ASHWIN P G&
DR. GARY L. FOUTCH

*
*
*
*

*******************************************************************

*
*
*

C - PREFIX FOR CATONS; A - PREFIX FOR ANIONS
*
*
*

*******************************************************************

IMPLICIT INTEGER (I- ), REAL *8 (A-H,O-Z)

CO:MM:ON CBC(20), CBA(20)
CO:MM:ON TKC(20), TKA(20), DC(20), DA(20), lC(20), lA(20)
CO:MM:ON RC(20), RA(20), CF, QC, QA, DRC, ORA, SUMYC, SUMYA
COMJ..-10N DISS, CBH, CBOH, DH, DOH, Z1, Z2,NC,NA
REAL*8 RTC, RTA(20,4,6500), MC(20), MA(20),
1 CFC(20) CFA(20),YCO(20), YAO(20), COEC(20), COEA(20),
1 PPBC(20), PPBA(20),KREF, YACUR(20),
1 XACUR(20),YA{20,4,6500),XC(20),
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*
*
*

*

XA(20,4,6500)

Correlations- Dwivedi and Upadhyay

F2(DR,R,S) = (DRlPDA) * (S**(1.013.0» * R *
1 «0.765/«VD*R)**O.82» + (0 365/«VD*R)**OJ 86»)

READING THE DATA

OPEN(UNIT=9,FILE='animult.dat',STATUS = 'UNKNOWN')
OPEN(UNIT=8,FILE='interface.dat',STATUS='UNKNOWN')
READ(9, *)NC,NA,Z I ,Z2,DH,DOH
READ(9, *)KPBK, KPPR, THv1E
READ(9,*)PDA, VD
READ(9, *)FR, DIA, CHT
RE.t\D(9, *)TAU, XI, TMP
READ(9, *)DEN, QA

DO 2 II = I,NC
READ(9, *)YCOCH), CFC(II),ZC(U), MC(II), TKC(II)
WRITE(*, *)YCO(II),CFC(II),ZC(II),MC(II),TKC(II)

2 CONTINUE

DO 3 ]J = I,NA
READ(9, *)YAO(JJ),CFA(JJ),ZA(JJ),MA(JJ),TKA(JJ)
WRITE(*, *)YAO(JJ),CFA(JJ),ZA(JJ),MA(JJ),TKA(H)

3 CONTINUE

CP = I 43123+TMP*(0.OOOI27065*TMP-00241537)
ALOGKW = 447099/(TMP+27315)-60875+001706*(TrvtP+273 15)
DrSS = 10. **(-ALOGKW)

CALL EQB(CFC,CFA)
PH = 14.0 + LOGIO(CBOH)
WRITE (*,*) 'PH of inlet soin =', PH

CF = 0.0
D08JJ=I,NA

CF = CF + CFA(JJ)
8 CONTINUE

CF = CF+CBOH
WRITE (*,*) 'CF =',CF
RTF = (8.931D-IO)*(TMP+273.J6)
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C
C SELF DIFFUSIVITIES OF IONS
C
C DC(I) = SODIUM, DC(2) = CALCIUM
C DA(I) = CHLORIDE, DA(2) = SULFATE
C

dc(1) =(RTF)*(23 00498+ I.06416*TMP+0.0033196*TMP**2)
dc(2) =(RTF)*(23.27+ 1.575*TMP)/2.0
da(l) =(RTF)*(39.6493+1.39176*TMP+O.0033 I96*TMP**2)
da(2) =(RTF)*(35.76+2.079*TMP)/2.0

C
C kref is set to Cl ion.
C

kref= 0.01937466

AREA = 3.1415927*(DIA**2)/4.
VS = FRJAREA
RPA = PDA*IOO.*VS*DEN/«VD)*CP)
SCA = (CP/IOO.)/DENIDA(I)

*
>I< CALCULATE TOTAL NUMBER OF STEPS [N DISTANCE (NT) DOWN
* COLUMN:SLICES

*
CHTD = KREF*(l.-VD)*CHT/(VS*PDA) !distance dimensionless

T = CHTD/XI
WRITE (*, *)chtd.xi,nt

>I< SET INITIAL RESIN LOADING THROUGHOUT THE ENTIRE COLUMN
>I<

MT = NT + 1
DO 4 M=l,MT

D06JJ=1,NA
Y A(JJ, I,M) = YAO(JJ)

6 CONTINUE

4 CONTfNUE
>I<

>I< CALCULATE DIMENSIONLESS PROGRAM TIME LIMIT
* BASED ON INLET CONDITIONS (AT Z=O)

*
TMAX = 6.0*QA*3.142*(DIN2.)**2*CHT/(FR*CF*60.)
TAUMAX = KREF*CF*(TMAX*60)/(PDA*QA)
DMAX=TMAXl1440.
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WRITE(6,*)
WRITE(6,*)
WRITE(6,222)
WRITE(6,223 )DMAX
WRITE(6,224)

222 FORMATC PROGRAM RUN TIME IS BASED ON TOTAL RESIN CAPACITY')
223 FORMATC AJ'\ID FLOW CONDITIONS. THE PROGRAM WILL RUN
FOR',F12.1)
224 FORMATe DAYS OF COLUMN OPERATIO FOR THE CURRE T
CONDITIONS.')

* INITIALIZE VALVES PRIOR TO ITERATIVE LOOPS

*
J = 1

JK = 1
TAUTOT=O.
JFLAG = 0
KK= 1
KPRlNT = 100
CONS = -6./KREF/CF
Dtime = TAU*PDA*QA/(KREF*CF*60.)/1440.

write(8, *) Dtime ttirne in days between 2 consecutive output values

*
* TIME STEP LOOP WITHIN WHICH ALL COLUMN CALCULAnONS ARE
* IMPLErvtENTED TIME IS INCREMENTED AND OUTLET CONCENTRATION
* CHECKED

1 CO TINUE
IF (TAUTOT.GT.TAUMAX) GOTO 138

IF (J.EQ.4) THEN
ID= 1

ELSE
JO=J+1

ENDIF

*
* SET ll\TLET LIQUID PHASE FRACTIONAL CONCENTRATIO S FOR EACH
* SPECIES IN THE MATRIX

*

007II=1,NC
XC(II) = CFC(II)/CF

7 CONTINUE
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DO 10 JJ = I,NA
XA(JJ,J,l) = CFA(JJ)/CF

10 CONTINUE

*
;,< LOOP TO INCREIv1ENT DISTAi'\JCE (BED LENGTH) AT A FIXED TI1vfE

*
DO 400 K=I,(NT+4)

If (K. EQ 1) then
DO II II = I,NC
CBC(II)=XC(II)*CF

11 CONTINUE
Endif

DO 12 J] = ],NA
CBA(JJ)=XA(JJ,J,K)*CF

12 CONTINUE

*
* CALL ROUTINES TO CALCULATE RN, RB, C I, CBI(INTERFACIAL
CONCENTRATIONS
* & COEFFICIENTS)

*

DO 15 IJ = I,NC
RC(II) = 0.0

15 CO TINUE

SUMYA = 0.0
DO 1411 = 1, A
SUMYA = SUMYA+YA(JJ),K)

14 CO TTNUE

DO 29 JJ = I,NA
Y ACUR(JJ) = YA(11,J,K)

29 CONTINUE

DO 30 JJ = I,NA
XACUR(JJ) = XA(JJ,J,K)

30 CONTINUE

IF(SUMYA.LT. O. 999)THEN

CALL ANION(YACUR,XACUR,k)
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ELSE

DO 16 JJ = I NA
RA(JJ) = 00

16 CONTINUE

ENDIF

SCA = (cpn OO.)/OE /ORA
AKA = F2(DRA,RPA,SCA)

DO 17 II = I, C
RTC = 00

17 CONTINUE

DO 18 JJ = I,NA
RTA(JJ,J,K) = RA(JJ)*AKA*CONS

18 CONTINUE

DO 20 JJ = I,NA
YA(JJ,m,K) = YA(JJ,J,K)+TAU"RTA(JJ,J,K)

20 CONTINUE

" IMPLEME T ITvrPLlCIT PORTIO OF THE GEARS BACKWARD DIFFERENCE
J\t1ETHOD
* FROM THE PREVIOUS FUNCTlON VALUES. FOR THE FIRST THREE STEPS
* USE FOURTH-ORDER RUNGE KUTT A I'v1ETHOD

IF(1< LE. 3)THEN

D022JJ=I, A
XA(JJ,J,KT]) = XA(JJ,J,K)-(XI*RT A(1J,1,K»

22 CONTINUE

ELSE

DO 24 JJ = I,NA
COEA(JJ) = 3 *XA(JJ,J,K-3)/25.-16. *XA(JJ,J,K-2)/25. +

] 36*XA(JJ,J,K-l )/25. -48*XA(JJ,1,K)/25.
24 CONTINUE
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DO 26 JJ = 1, A
XA(JJ,J,K+I) = -XI*12*RTA(JJ,J,K)/25.-COEA(JJ)

26 CONTINUE

E:NUIF

*
* DETERMINE CONCENTRAnONS FOR THE DISTANCE STEP AND
RECALCULATE
* BULK PHASE EQUILIBRIA

*

DO 32 JJ = I,NA
CBA(JJ)=XA(JJ,J,K+ 1)*CF

32 CONTINUE

CALL EQB(CBC.CBA)

400 CONTINUE

*
* PRINT BREAKTHROUGH CURYES
*

IF (KPBK.NE.I) GO TO 450
DO 45 II = I,NC
PPBC(lI) = CBC(II)*MC(II)/I.E-6

45 CONTINUE

DO 46 JJ = I, A
PPBACJJ) = CBA(JJ)*MA(JJ)/l.E-6

46 CONTINUE

TAUTIM = TAUTOT* PDA*QA./(KREF*CF*60.)
PH = 14. + LOG1O(CBOH)

write(8,48)CBC( 1),CBC(2),CBH.CBA(1 ),CBA(2),CBOH.PH
48 FORMAT(1 x,E 12 7,2x,E 12.7,2x,E12. 7,2x,E12.7,2x,EI2.7,2x,E 127

1 ,2x,F5.2)

IF (KPRINT.NE. 100) GOTO 450
WRITE(*,47)TAUTIM,PPBC( I),PPBC(2),PPBA( 1),PPBA(2),PH
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47 FORMAT(lx,Fll.6,2X,E12.7,2X,E12.7,2X,E12.7,4X,E12.7,4XF5.2)

*
* STORE E"VERY TENTH ITERATIO TO THE PRINT FILE

*
KPRINT = 0

450 CONTINUE
KPRINT = KPRINT+ I
JK = J
IF (J.EQA) THEN
J = 1
ELSE
J = 1+1
ENDIF

*
* END OF LOOP RETURN TO BEGINNING AND STEP IN TIME

*
IF (JFLAG.EQ 1) STOP
TAUTOT = TAUTaT + TAU

GOIO I

138 STOP
END

SUBROUTINE EQB(CC,CA)

IIv1PLICIT INTEGER (l-N), REAL*8 (A-H,O-Z)

COMMON CBC(20), CBA(20)
COM:MON TKC(20), TKA(20), OC(20), OA(20), ZC(20), ZA(20)
COM:MON RC(20), RA.(20), CF, QC, QA, ORC, ORA, SUMYC, SUMYA
COM:MON DISS, CBH, CBOH, DH, DOH, Z1, Z2,NC,NA

REAL*8 CC(50),CA(50)

SUMC =00
DO I I1= I,NC
SUMC = SUMC + CC(I1)
CONTINUE

SUMA=OO
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DO 2 11= 1,NA
SUMA = SUMA+CA(11)

2 CONTINUE

VI = SUMC-SUMA
V2 = VI **2.+4. *OISS

CBOH =(VI +(V2**05»/2.
CBH = DISS/CBOH

RETlJRJ"J
END

SUBROUTINE ANIO '(YY,XX,k)

Il'v1PLICIT INTEGER (I-N), REAL*8 (A-H,O-Z)

COMMON CBC(20), CBA(20)
COMMON TKC(20), TKA(20), DC(20), DA(20), ZC(20), 2A(20)
COMMON RC(20), RA(20), CF, QC, QA, ORC, DRA, SUMYC, SUMYA
COMMON DISS, CBH, CBOH, OH, DOH, 21, Z2,NC NA

REAL*8 YY(50),XX(50),XXN(50),CCO(SO),N(50),LAM(50),XXI(50),
1 BB(50),AA{50),CBN(50),CI(50),R 1(SO),NOH

W= -10
YOH = 1 -SUMYA
CTO = 0.0
DO I II = 1, A
CTO = CTO+CBA(II)
CONTIl\;1JE
CTO = CTO+CBOH

DO 2 II = I,NA
XXN(Il) = XX(II)*CF/CTO

2 CONTINUE

SUMXB=O.O
DO 3 II = I,NA
SUMXB = SUMXB+XXN(II)

94



3 CONTINUE
XBOH = 1.- SUMXB

DO 4 JJ = I,NC
CCO(n) = CBC(JJ)/ABS(lC(JJ)

4 CONTINUE
CH = CBHlABS(ll)

SUMZN = 0.0
DO 5 11= I,NC
SUMZN = SUMZN+(ZC(JJ)**2.)*CCO(JJ)

5 CONTINUE
SUMZN = SUMZN + (ll **2)*CH

SUMZD = 0.0
DO 6 JJ = I,NC
SUMZD = SUMZD+(ZC(JJ)*CCO(JJ»

6 CONTINUE
SUMZD = SU1v1ZD + (Zl *CH)

Zy = SUMZN/SUMZD

D07II=1,NA
J (II) = -ZA(II)/lY

7 CONTINUE
. OH = -Z2/ZY

CTI = CTO
8 CO TrNUE

DO 9 II = I, A
LAM(II) = YY(II)*TKA(II)**(-I./ABS(Z2))*YOH**(-ZA(II)/Z2)

1 *(QNCTI)**(1.-lA(II)/Z2)
9 CONTINUE

C NEWTO -RAPHSON SOLVIR

EPS = I.E-07
X = XBOH
SUMFN = 0.0
DO 10 II = 1,NA
SUMFN = SUMFN + (LAM(II)*X**(ZA(II)/Z2»

10 CONTINUE
SUMFN = SUMFN+X-I.O
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SUMFD = 1,0
DO 11 II = 1,NA
SUMFD = SU1vlFO,(ZA(1I)/Z2)*LAM(II)*X**(ZA(II)/Z2-1 »

11 CONTINUE

XOHI = X-SUMF /SUMFD

DO WHILE «(ABS(XOHI-X)/XOHI)GT.EPS)

x = XOHI
SU1\1FN = 0.0
DO 12 II = 1,NA
Sillv1FN = SUMFN + (LAJ\.1(II)*X**(ZA(II)/Z2»

12 CONTINUE
Sillv1FN = SUMFN+X-l 0

SUMFD = 10
DO 13 II = I,NA
SU1vfFD = SUMFD+«ZA(II)/Z2)*L~\1(II)*X**(ZA(II)/Z2-1))

13 CONTINUE

XOHI = X-SU1\1FN/SLJTv1FD

END DO

DO 14 II = I,NA
XXI(II) = LAM(II)*(XOHI**(ZA(II)/Z2»)

14 CO TINUE

C CALCULATIO OF TOTAL INTERFACIAL CONCENTRATIO CTI

SUMPN = 0.0
DO 15 II = I,NA
SUMPN = SUMPN+ABS( (H)*DA(II)*(XXI(II)-XXN(II»)

15 CONTINUE
SUMPN = SU1v1PN + ABS(NOH*DOH*(XOHI-XBOH)

SUMPD = 0.0
DO 16 II = 1,NA
SUMPD = SUMPD+ABS(DA(II)"'(XXI(II)-XXN(II))

l6 CONTINUE
SUMPD = SUMPD + ABS(DOH*(XOHI-XBOH»
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P = SUMPN/SUMPD

SUMTN== 0.0
DO 17 II == l,NA
SUMTN = SUMTN + (l.+N(II»*DA(II)*XXN(II)

17 CONTINUE
SUMTN = SUMTN+(1+NOH)*DOH*XBOH

SUI\1TD =00
DO l8 II = I,NA
SUMTD == SUMTD + (1.+N(II»*DA(II)*XXI(II)

18 CONTINUE
SUI\1TD == SUMTD+(I +NOH)*DOH*XOHI

CTIN = (StJMTN/SUMTD)**(l./(P+l»*CTO
IF«ABS(CTIN-CTI)/CTIN).GTEPS)THEN
CTI=CTIN
GOT08

ELSE
CTI == CTIN
ENDIF

C CALCULATION OF Ri's OF THE IONS B, C, D, E.

DO 19 II = 1,NA
BB(II) == W*(XXI(II)-XXN(II»)/(CTI**(-P-l)-CTO**(-P- J »

19 CONTINlJE
BOH = W*(XOHI-XBOH)/(CTI**(-P-l.)-CTO**(-P-I »

DO 20 II = I,NA
CBN(II) == W*CBA(Il)/ZA(II)

20 CONTTj\;UE

DO 21 II = I,NA
AA(II) =(ZA(II)*CBN(II)-BB(II)*CTO**(-P»)/CTO

21 CONTINUE
AOH = (Z2*CBOH-BOH*CTO**(-P»/CTO

DO 22 II = I,NA
CI(ll) = W*XXI(ll)*CTVZA(II)

22 CONTINUE
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COHI = W*XOHI*CTIIZ2

DO 23 11= 1,NA
Rl(II) = DA(II)*«1.- (II)fP)*(CI(II)-CBN(II))

I +N(II)* (AA(Il)/ZA(II»)*( 1.+1./P)*(CTI-CTO»)
23 CONTINUE

ROHI = OOH*«1.-NOHIP)*(COHI-CBOH)+NOH*(AOHlZ2)*
1 (l.+l.fP)*(CTI-CTO))

SIGR = 0.0
DO 24 II = 1,NA
SIGR = SIGR + ABS(R I (II))

24 CONTINlTE
SIGR = SIGR + ABS(ROHl)

SIGO = 00
DO 25 II = 1,NA
SIGD = SIGO + ABS(CI(II)-CBN(II)

25 CONTINUE
SIGD = SIGD + ABS(COHI-CBOH)

DRA = SIGRlSIGD

DO 26 II = 1,NA
RA(II) = W*ZA(II)*R I(II)/DRA

26 CONTINUE

RETURN
END
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