EPIC-VIEW: A FULLY INTEGRATED SPATIAL
TOOL FOR MODELING SOIL EROSION
AND AGRICULTURAL CROP

PRODUCTIVITY

By
ANOOP GOVIL
Bachelor of Engineering
Bangalore University
Karnataka, India

1992

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1996

EPIC-VIEW: A FULLY INTEGRATED SPATIAL
TOOL FOR MODELING SOIL EROSION
AND AGRICULTURAL CROP

PRODUCTIVITY

Thesis Approved:

%Lﬁ%‘h/sis Advi
Thomas . Colling

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major adviser, Dr. Mitchell L. Neilsen
for his guidance, supervision, encouragement and help for the completion of my thesis
work. His patience and constructive ideas helped me make this thesis work an enjoyable
and memorable experience. | consider it a privilege to have worked under his supervision.
I would like to express my sincere thanks to Dr. Blayne E. Mayfield and Dr. K.M.
George for serving on my graduate committee. Their support and invaluable suggestions,
have helped me to improve the quality of this work. I would like to thank Dr. David A.
Waits, Department of Geography, for his constructive ideas and support which proved to
be vital during the development stages. T would like to thank Dr. Mitchell L. Neilsen and
the Computer Science Department for providing me with this research opportunity and
their generous financial support.

My greatest appreciation, thanks and love to my parents Mr. M.L. Govil and Mrs. Sudha
Govil and Amit for all the love, support and inspiration that they have given me. Also,

thanks to all my friends for their support and much needed help.

il

TABLE OF CONTENTS

Chapter Page
o b L L b I e——— 1
1.1 Problem Statement...............cccoeruemrnnen..
1. LITERATURE REVHEW oommsmmssismmnis

2
2.1 Erosion/Productivity Impact Calculator (EPIC)........ccovieriiiiiienienienneninniesnciennsd
2.1 1. About (e MOdBL.....cuumismims i yeis 5
2.1.2 Model Components... A A SR R SRR s e D)
2.1.3 Selected EPIC Apphcatlons I
2.1.4 EPIC’s Universal Text Integratlon Language (UTIL) SRR
2.2 AreViewB), VErsion 2.1 o st o s s 15
2.2.1 About ArcView ... U S P SRS URENI, /.
2.2.2 ArcView Components S SRS SRV ORI | |
2.2.3 ArcView Scripting Language Avenue@ O RUOOUPRUSPRTPPORPRRORROY. |
2.3 Visual Basic®, Version 4.0 . retermeeeeeare et et et aneeeernesaaesrnneaaesraaenraennnensnee DD

. DESIGN AND IMPLEMENTATION....vuiusamssmsnmssnissomnssasmmussissmaimm 24

3.1 Main Menu for EPIC-View ... ey I e L
3.2 Description of Various Menu Optlons R R e D)
3.3 Weather Data Tool... 30
3.4 Soil Data ToolSU
3.5 Constant Data TOOL........cccoeevueeiie e i srn e sessne e e essesens e ensssaness 30
3.6 Management Practices Tool «isamnamunissar S e anssismiwna L
3.7 Spatia] DER TO0] i iosisimr e s S A
3.8 Outpiit Options TO0L .. umsmsismmmmisessmsosissmississsosassisssiammssimssermmm s b
3.9 Run Simulator TOOLcccvvviveviriiieiiiiiier e es s ssssisassssss s siss s ceses 33
B0 AR cnnspmeressmsinensminemmsarssmssssmesmmmmismmnsnien b L L S AT
[- T IS . .
B T2 TR BB wissusaisiissmsins s o s sivisies a8 5 A A A S A AR Ay BT
3.13 REMOVE THEMESevvvveeeieveeeeeseveeeeecisieseaeasssisssssse s ennssesesasesssnesesssesasssenssssnssns S

[V. CONCLUSIONS AND RECOMMENDATIONS........ccccoevcummmniemnirimininiensisasensesens 33

4.1 Conclusions .. T TTIOR.
4.2 Recommendatlons for I-uture Research S s s

I\

APPENDIEXA: USING THE SYSTEM. ..o sassmmanssasmmasiimmmsia 39
APPENDLX. B: DATA FLOW DIAGRAMS ...
B.1 Data Flow Diagram for Weather Data Menu Option..........................44
B.2 Data Flow Diagram for Soil Data Menu Option..................... .44
B.3 Data Flow Diagram for Constant Data Menu Option. .. siwsansiidD
B.4 Data Flow Diagram for Management Practices Menu Option.46
B.5 Data Flow Diagram for Spatial Data Menu Option.47
B.6 Data Flow Diagram for Output Options Menu Option........................47
B.7 Data Flow Diagram for Run Simulator Menu Option.48
APPENDIX C: SCREEN FORMATS........ccccooieeieecrrcreerennn. ... 49
C.1 Screen Format for Weather Data Entry.... R UTRRN——. ¢ |
C.2 Screen Format for Soil & Curve Number Data Entry vererieeennnn 90
C.3 Screen Format for Constant Data Tool. .. W |
C.4 Screen Format for Constant Data Tool (Cont) Finad
C.5 Screen Format for Management Practices Data Entry PPTTIITIN. &
C.6 Screen Format for Management Practices Data Entry (Cont). W
C.7 Screen Format for Management Practices Data Entry (Cont.).53
C.8 Screen Format for Management Practices Data Entry (Cont.).54
C.9 Screen Format for Management Practices Data Entry (Cont.).54
C.10 Screen Format for Management Practices Data Entry (Cont.).54
C.11 Screen Format for Management Practices Data Entry (Cont.).55
C.12 Screen Format for Management Practices Data Entry (Cont.).55
C.13 Screen Format for Management Practices Data Entry (Cont.). 55
C.14 Screen Format for Management Practices Data Enlry (Cont.). BsI0
C.15 Screen Format for Managment Practices Variables... -
C.16 Screen Format for Output Options Data Entry. .. s .
C.17 EPIC-View Screen Display With Field View ancl Selected Cells .58
C.18 EPIC-View Screen Displaying Final Results with New Themes.59
C.19 EPIC-View Screen Displaying the Parsed Output Table..................60
C.20 EPIC-View Screen Displaying Chart Based on Output Table.......... 61
C.21 Multi Input Screen to Store Various Directory Paths.62
APPENDIX D: DATA VARIABLES FROM EPIC INPUT DATASET63
D.1 Constant Data TOOl.........ccccevuieiiienicieieieeereeneecnarseneseeenensennens 04
D2 Wenther Dt Toolimsemmmmanmrmsmmasinrimms sl
D3 Spatial Data Toolvssismsvsmannnissinnansiisssssssa 00
D4 Output Optons Tool cu.wnwmnismssmismsimaansssosmsinssasvoaisdOf
D.5 Management Tool..........68
APPENDIX E: FORMAT OF VARIOUS OUTPUT FILES..........cccovvuennn 71
E.1 A Sample EPIC Input Dataset (Form#.dat).... T N
E.2 A Sample Management Practices Batch File (Mgmt# utl) SO L
E.3 A Sample Spatial Data Batch File (Form#.utl). .. ceeee 13

E.4 A Sample Constant Data Batch File (Const.utl).cocovviiviinineieninans 76

E.5 A Sample Output Options Batch File (Prat.utl).cc.ccccoveiiiieniennnne. 77
E.6 A Sample Batch File for Completion of Datasets (create.bat)........... 78
E.7 A Sample Batch File for Running EPIC & Parsing (runepic.bat).......78
APPENDIX F: CODE FOR EACH USER INTERFACE SCREEN.............. 79
APPENDIX G: AVENUE® CODE FOR INTERFACING........ccooveriiirinnas 128

vi

LIST OF FIGURES
Figure Page

I. Main Menu fOor EPIC-VIEW ..ooovvviiiiiieivieieieerereseessssseesssesssesssssesssssessseseseeeesns 28

vii

CHAPTER I

INTRODUCTION

Geographic information systems (GIS) have the potential to aid agricultural
producers in determining cause and effect relationships between management and
production, to project production, and to account for spatial and temporal differences
within specific agricultural fields. Currently, only a few producers are utilizing the true
analytical power of GIS and computer simulation models, partly because the software
developed to date loosely links the GIS with the simulation software. This makes usage
of the software more labor intensive. A need exists for a fully integrated, user-friendly
GIS-modeling system that allows producers to efficiently simulate soil erosion, plant
growth and related process, and economic components for assessing the cost of erosion

and comparative results of using different management techniques.

GIS is emerging as an important tool in modeling. An important feature of
environmental modeling is that all basic units (water, soil, and chemicals) have spatial
distributions, and thus can be linked with the GIS. GIS software has been developed to
capture, manipulate, process, and display spatial or georeferenced data. GIS linkage to a
model varies from a loose coupling to a complex integration (which is highly desirable).
GIS is frequently used to prepare spatially distributed input data which is then passed to
the linked model which processes it, and to display and probably analyze model results.

Integration of a GIS with a model minimizes the problems of data management, as most

of the data can directly be extracted from the GIS itself, and offers the capability to

integrate spatial and modeling process into a single interactive system.

In this thesis we develop a single interactive system, called EPIC-View, that fully
integrates the impact calculator EPIC with ArcView, Version 2.1 (Environmental
Systems Research Institute, 1994b). There are numerous benefits of using this type of
fully integrated tool. The system is easy to use and more efficient (as all the operations
are automated); spatial data is extracted directly from the existing GIS; and spatial output
is displayed using the same tools by which the input data is displayed spatially. EPIC is
tightly integrated with ArcView; the user is able to execute EPIC and display spatial

output data using ArcView.

1.1 Problem Statement

The objective is to develop a single interactive system, called EPIC-View, that
fully integrates the Erosion/Productivity Impact Calculator (EPIC) (Sharpley and
Williams, 1990) with ArcView®, Version 2.1 (Environment Systems Research

Institute®, 1994b). The steps to be completed are outlined below:

1. The EPIC model requires both spatial and farm management-related data as input.

Data required for modeling, originated from following sources :

Within the Fort Cobb Reservoir watershed, two quarter-sections located in Caddo
County, Oklahoma, was selected as the study area for this project. A GIS-oriented

database was developed to incorporate data needed for modeling. Site-specific data

required by the model was procured from an already identified producer’s field records.
These include soil fertility, crop rotation practices, conservation program, farm chemicals
application, and tillage systems. Additional model input parameters were compiled from
public domain data sets. Some of these datasets include soils, elevation, slope, water
bodies (streams, water holes, etc.). Derived coverages from the primary GIS coverages

were also developed.

The resultant data, which is used for modeling, consists of gridded coverages,
which are overlaid homogeneous units consisting of GIS attributes, such as soil, crop,
elevation, slope, etc. Most of the data required for the EPIC input form can be derived
directly from the GIS. A graphical user interface, based on Visual Basic®, Version 4.0
(Microsoft® Corp.) is developed for entering other data that cannot be derived from the

GIS.

2. The EPIC model is linked to ArcView using ArcView’s scripting language called
Avenue® (Environmental Systems Research Institute, 1994a). Avenue scripts provide a
customized interface, other scripts are associated with various controls such as buttons,
menu options, etc. In this way, the EPIC model is invoked directly from ArcView. A
user can delineate management zones on the field coverage and enter management
practices through the user interface. The GIS attributes arc extracted from the existing

GIS database. Finally EPIC is invoked after specifying the output options (described in

Section 4.1.3) for EPIC output files. All steps are automated by invoking associated

scripts.

3. Spatial output results from the EPIC model are also linked with the GIS, by
parsing the output, generated by EPIC, into ArcView readable formats. This output is
loaded back into the GIS. In this way, the user is able to visualize some of the tabular
output data as spatial graph using ArcView and consequently make better

recommendations based on that data.

4. Finally, the new interactive modeling tool is tested by running the model on the

homogeneous units, created as a result of overlaying various GIS attributes.

CHAPTER II

LITERATURE REVIEW

2.1 Erosion/Productivity Impact Calculator (EPIC)

2.1.1 About the Model

In the early 1980’s, teams of USDA Agriculture Research Service (ARS), Soil
Conservation Service(SCS), and Economic Research Service (ERS) scientists developed
EPIC to quantify the costs of soil erosion, and the benefits of soil erosion research and
control in the United States. Led by Dr. J.R. Williams, ARS scientists were responsible
for model development. SCS and ERS staff collaborated on the model development and
took leading roles in soil and weather dataset development, validation, and interface

creation for economic models.

In the late 1980’s, Texas Agricultural Experiment Station scientists became
involved in the model support, documentation, database development and technology

transfer.
EPIC is designed to be:

e capable of simulating the relevant biophysical processes simultaneously, as well as
realistically, using readily available inputs and, where possible, accepted

methodologies;

* capable of simulating cropping systems for hundreds of years because erosion can be

a relatively slow process;
* applicable to a wide range of soils, climates and crops;
* efficient, convenient to use, and capable of simulating the particular effects of

management on soil erosion and productivity in specific environments.

The model uses a daily time step to simulate weather, hydrology, soil temperature,
erosion-sedimentation, nutrient cycling, tillage, crop management and growth, pesticide

and nutrient movement with water and sediment, and field-scale costs and returns.

2.1.2 Model Components

In EPIC the major biophysical processes simulated are called components. EPIC

consists of following ten major components:

Weather: Daily rain, snow, maximum and minimum temperatures, solar radiation, wind

and relative humidity can be based on measured data and/or generated stochastically.

Hydrology: Runoff, percolation, lateral subsurface flow, and snow melt are simulated.

Any one of four methods can be used to estimate potential evapotranspiration.

Erosion: EPIC simulates soil erosion caused by wind and water. Sheet and rill

erosion/sedimentation result from runoff from rainfall, snow melt, and irrigation.

Nutrient Cycling: The model simulates nitrogen and phosphorus fertilization,
transformations, crop uptake and nutrient movement. Nutrients can be applied as mineral

fertilizers, in irrigation water, or as animal manures.

Pesticide Fate: The model simulates pesticide movement with water and sediment as

well as degradation on foliage and in the soil.

Soil Temperature: Soil temperature responds to weather, soil water content, and bulk

density. It is computed daily in each soil layer.

Tillage: Tillage equipment affects soil hydrology and nutrient cycling. The user may

change the characteristics of simulated tillage equipment, if needed.

Crop Growth: A single crop model capable of simulating major agronomic crops,
pastures, and trees is used. Crop-specific parameters are available for most crops. The
user may adjust or create new sets of parameters as needed. The model can also simulate

crops grown in complex rotations and, in certain cases, in mixtures.

Crop and Soil Management: The EPIC model is capable of simulating a variety of
cropping variables, management practices and naturally occurring processes. These
include different crop characteristics, plant populations, dates of planting harvest,
fertilization, irrigation, artificial drainage systems, tillage, runoff control with furrow
dikes and other methods, liming, and pest control. The model can also gauge the effects
of such varied management practices, as whether the crop is harvested for grain or fodder

or if it is grazed or burned.

Economics: A simple accounting package is included to calculate the cost of inputs and

the value of returns.

2.1.3 Selected EPIC Applications

Agricultural systems typically evolve over long periods of time in response to
climate, soils, agricultural technology, socio-economic conditions and other factors.

Long-term sustainability of such systems requires that they:

e be economically sound in the local socio-economic context,
e conserve and/or protect crucial soil and water resources, and

e be capable of adapting to the changing social, economic, and natural

environments.

EPIC is designed to help decision makers analyze alternative cropping systems
and project their socioeconomic and environmental sustainability. This section highlights
several studies in which the model has been used to evaluate crop productivity, risk of
crop failure, degradation of the soil resource, impacts on water quality, response to
different input levels and management practices, response to spatial variation in climate

and soils, and long-term changes in climate.

Accurate simulations of crops yields are necessary for most applications of
models like EPIC. Studies like those which follow typically contain preliminary activities
to test model sensitivity. In addition, model developers continually monitor the effects of

model improvements on simulation of yields and other important outputs.

Crop Productivity: Dr. J.R. Williams (1989) evaluated EPIC’s ability to simulate yields
of maize, wheat, rice, sunflower, barley and soybeans using a total of 227 measured
yields reported by independent research groups around the world. For these crops, mean
simulated yields were always within 7% of mean measured yields. For 118 comparisons
of measured and simulated maize yields, mean measured yield and its standard deviation
were 103 bushels per acre and 49 bushels per acre, respectively. The measured and
simulated means were not significantly different at the 95% confidence level. He also
demonstrated that EPIC can accurately simulate maize responsed to irrigation at locations

in the western USA and to fertilizer nitrogen in Hawaii.

Soil Degradation: EPIC was originally designed to estimate the loss of crop production
due to soil erosion. For the RCA analysis, EPIC simulation runs of 100 years were made
for each of over 13,000 combinations of crops, soils, climates, tillages, and conservation
practices. Simulation results were used by a large linear programming model to assess the
impacts of soil conservation practices and erosion on agricultural production of the USA.
EPIC was also used to demonstrate that, even though the effects of soil erosion on crop
productivity may be small for long period, high rates of erosion can drastically shorten

the productive life of soils.

Input Levels and Management Practices: Cabelguenne, et al. (1988, 1990) used EPIC
in southern France to simulate growth and yield of corn, grain sorghum, sunflower,
soybean, and wheat grown in rotations over a five-year period. Each crop had three levels
of fertilizer, irrigation, and tillage. The root mean square error of simulated grain yields

ranged from 15 bushels per acre for sunflower to 26 bushels per acre for corn. Mean

simulated yields were not significantly different than mean measured yields for summer
crops, and for individual plots, simulated and measured yields were within 20% of each

other for 81% of comparisons.

Dyke, et al.(1990) compared simulated and measured yields for a total of 204
treatment years for the Southern Coastal Plain and Southern High Plains of Texas. Crops
included maize, grain sorghum, and cotton. Tillage systems, irrigation, and crop rotations
also varied. Simulated yields were within 20% of mean measured yields for 70 and 90%
of treatment-years for the Coastal Plain and High Plains, respectively. Simulated yields
were within the 95% confidence interval of measured yields for 69 and 88% of the
treatment-years for the two sites. AUSCANE, a version of EPIC adapted to Australian
sugarcane (Jones, et al., 1989), was used to demonstrate the importance of irrigation in

reducing the risks in sugarcane production near Mackay, Queensland.

Segarra (1989) used EPIC to evaluate optimum nitrogen fertilizer rates for cotton
in the Southern High Plains of Texas. Nitrogen and cotton prices were found to affect
optimum fertilizer rates, so the use of decision rules based on these prices could improve

the cash flow of producers.

Because it can simulate a variety of important agricultural practices, the model
has also been used successfully to estimate crop fertilizer requirements, nutrient transport
in runoff, soil and fertilizer phosphorus dynamics, the effect of furrow diking on crop

yields, and low-input legume-based crop rotations.

10

Recent addition of pesticide components enable the model to simulate movement
of pesticides and nutrients toward ground and surface waters, both in solution, and, as
appropriate, attached to sediments. This capability provides agricultural managers and
policy makers with a powerful, comprehensive tool to assess simultaneously the impacts

of management and soil on crop production, risks, and soil and water resources.

Response to Climates and Soils: Arnold and Jones (1987) evaluated EPIC’s sensitivity
to soil, climate and rotation effects on crop (maize, soybean, wheat, barley, peanut, and
hay) productivity and fertilizer nitrogen requirements. They concluded that EPIC can be
used to evaluate previously untested combinations of soil, climate, and crop management,
thereby reducing the amount of site-specific research needed to assess improved

agricultural technology.

Jones, et al.(1989) demonstrated that the AUSCANE version of EPIC can
accurately simulate the effect of different climates and management practices on

sugarcane yields and sugar concentrations throughout Australia’s sugar-growing areas.

EPIC has been widely used by agricultural economists and others to simulate the
effects of weather, climate, and crop management practices on the crop productivity, risk,
and degradation of the soil resource. For example, Lee and Lacewell (1990) used it to
optimize selection of irrigated crops and associated withdrawal of groundwater of the
Texas Southern High Plains, with and without farmer participation in government farm
programs. They concluded that strategies that reduce risk would also reduce irrigated area
and groundwater extraction. In contrast, participation in farm programs would increase

extraction rate.

11

Lee and Lacewell (1989) used EPIC to simulate yields, wind erosion, and net
returns in the Texas Southen High Plains for several cropping systems and irrigation
options, with and without participation in government farm programs. Results from EPIC
were analyzed with a farm-level economic optimization model. The study indicated that
compliance with the base acreage provisions of the farm program limits adoption of

profitable, soil conserving cropping systems.

They also used EPIC to evaluate crop yield, erosion and net returns for twelve
alternative dryland crop rotations in the Southern High Plains of Texas, with and without
participation in federal farm programs. They concluded that, with participation, cotton is
an essential part of profitable dryland farming systems. However, cotton is associated
with high rates of soils erosion and, thus, requires rotation with wheat to reduce the
amount of erosion and comply with the farm program. Continuous cotton planted after a
winter wheat cover crop terminated with herbicide late in winter appears to be a viable

cropping system.

Vicien (1989) used EPIC to construct production functions for wheat grown in
Argentina and France. Such functions could then be used to optimize management
practices considering the interacting effects of soils, climates, possible production

practices, input costs and commodity prices.

Climate Change: In addition to regional and farm-scale economic analysis, EPIC has
been used to assess the effects of short and long-term climatic changes. The U.S.
Department of Agriculture used it during the summer of 1988 to predict the effects of that

year’s severe drought on U.S. crop production.

12

EPIC and SOYGRO(a soybean growth model) were used to predict the effects of
war-induced “nuclear winter” on crop growth and yields in the United States (Jones et al.
1988). Four timing scenarios and three severity scenarios were simulated. Similar results
were obtained with the two models for effects on soybean yields, suggesting that EPIC
behaves comparably to a more complex physiological model of soybean growth and

development under extreme conditions of temperature and solar radiation.

Robertson et al. (1987, 1990) used EPIC to predict the impacts of CO2 and
climate change scenarios on crop yields, soil erosion, and farm management for the U.S.
Great Plains, Corm Belt, and Southeast. Recent model improvements permit more
accurate simulation of the effects of CO2 and climate change on hydrology and crop

growth.

Resources for the Future used EPIC to simulate the effects of changing CO2 and
climate on crop yields and farm profitability in Missouri, lowa, Nebraska, and Kansas. In
that study, the warmer and drier weather of the 1930s was used as a surrogate for future

climate (Easterling III, et. al., 1991).

Water Quality: Some of the most recent improvements in EPIC have enhanced its
ability to simulate the impacts of cropping systems on water quality. Components of the
GLEAMS (Groundwater Leaching Effects on Agricultural Management Systems) model
have been added to permit EPIC to simulate degradation and movement of pesticides in
the soil. The fertilization and nutrient cycling components have also been improved to
enable simulation of a variety of animal manures, fertigation, and contamination of

irrigation water with mineral nitrogen. The model is now being used in the United States

13

and Europe to assess the impacts of “best management practices” on parameters of

surface and ground water quality.

These EPIC applications could have far reaching effects on global agricultural
practices. The flexibility of the model permits farm managers, policy makers and
scientists from all over the world to tailor their cropping systems to particular
combinations of natural resources, socioeconomic conditions, and management
possibilities. It allows environmental quality to be considered, as well as productivity,

cost and profitability.

2.1.4 EPIC’s Universal Text Integration Language (UTIL)

UTIL is an on-line, input dataset editor which comes along with EPIC. UTIL is a
companion interface program that helps users build EPIC data sets, execute the model,
and display the results. UTIL has its standalone environment. It facilitates data entry for
creation of EPIC input dataset. It provides on-line description of each data variable, its
legal ranges, although a user is allowed to enter value outside the legal ranges. EPIC
requires that each data variable in the input dataset have a particular position in the input
dataset which is a text file with an extension “.dat”. UTIL facilitates this by automatically
placing each variable value in its respective place. UTIL has both interactive mode and
batch mode of creating dataset. UTIL supports the use of a batch file with an extension
“utl” which can contain UTIL commands recognized by UTIL and also variable
abbreviations recognized by UTIL along with their values spaces by atleast one space.

This is a powerful feature of UTIL as it places the value of each variable in its respective

14

1
?
5
i
JI |
ii’
f

position in the dataset though it is read from the “batch” file. A user does not have to
worry about the placement of variables’ values as UTIL takes care of that, which
eliminates any possibility of input dataset with a wrong format. UTIL also has features of
displaying the output files, generated by EPIC, such as “.epy”, “.epm”, “.epy” files
depending upon what output option a user selected. These files give summary of various
variables’ values every day/month/year (as selected by the user). UTIL serves as an
editor to display these files and also provide on-line help for each of the variables found
in these files. All the driver files accompanied by EPIC can be edited by UTIL. Hence

UTIL provides a total data entry/maintenance environment for EPIC.

2.2 ArcView®, Version 2.1 (Environmental Systems Research Institute®, 1994b)

2.2.1 About ArcView

ArcView is a powerful, easy-to-use tool that brings geographic information to the
desktop. ArcView gives users the power to visualize, explore, query and analyze data
spatially. ArcView comes with a useful set of ready-to-use sample data. If data in the
ARC/INFO® format is available, a user will be able to use ArcView to access all of this

data, including vector coverages, map libraries, grids, images and event data.

Working spatially:
ArcView can be used to work spatially. Tabular data, such as dBASE files and
data from database servers, can be loaded into ArcView so that a user can display, query,

summarize, and organize this data geographically.

15

Views:

With ArcView a user works with geographic data in interactive maps called
views. Every view features a geographic ‘Table of Contents’, making it easy to

understand and control what’s displayed.

Tables:

[f a user clicks on features on a view, their records highlight in the table showing
him their attributes, or selects records in the table, the features they represent highlight on
the view. Tables also have a full range of features for obtaining summary statistics,

sorting and querying.

Charts:

Charts offer a powerful business graphics and data visualization capability that is
fully integrated into the geographic environment. A user can click on features on a view
to add them to the chart. ArcView allows a user to work simultaneously with geographic,

tabular and chart representations of his data.

Layouts:

Layouts allow a user to create high quality, full color maps by first arranging the
various graphic elements on-screen the way he wants them. Layouts have a live link to
the data they represent. When a user prints a layout, any changes to the data are

automatically included, so everything on his map will be up-to-date.

16

Scripts:

ArcView scripts are macros written in Avenue, ArcView’s programming language
and development environment. With Avenue a user can customize almost every aspect of
ArcView, from adding a new button to run a script a user writes, to creating an entire

custom application that he can distribute.

Projects:
All the components of a user’s ArcView session: views, tables, charts, layouts,
and scripts are stored in one file called a project. ArcView’s Project window shows a

user, the contents of his project and makes it easy to manage all his work.

2.2.2 ArcView Components

1. View:
A view is an interactive map that lets user display, explore, query and analyze

geographic data in ArcView.

A view defines the geographic data that will be used and how it will be displayed,
but it doesn’t contain the geographic data files themselves. Instead, a view references
these source data files. Thus, a view is dynamic, because it reflects the current status of
the source data. If the source data changes, a view that uses this data will reflect the

change the next time the view redraws.

The same data can be displayed on more than one view. Different users may have
different views on the same data. A different view of the data can be created for each

application a user has.

17

A user can use existing views or create new ones. Views can be modified as the
needs change. Views can also be created for others to use, in which case some or all of
the views’ contents might be locked so they can’t be modified. With Avenue a user can

create custom functions, user interfaces and applications based on views.

A view is actually a collection of themes. A theme represents a distinct set of
geographic features in a particular geographic data source. For example, a view of a
country might have one theme representing cities, one theme representing roads, one

representing rivers, etc.

A view is displayed inside a window. A user can resize a view’s window and

zoom in or out on a view to display a particular area or extent.

View’s window contains ‘Table of Contents’. A view’s Table of Contents lists the themes
in the view and lets user control how the themes are displayed and the order in which

they are drawn. A user can turn individual themes on or off, if needed.

2. Table:

A table lets a user work with data from various tabular data sources in ArcView.
A user can display, query and analyze data in tables. Records can be highlighted in tables
by selecting geographic features displayed on views, and vice versa. Tables can be
displayed on a view to reveal the geography of the data. Charts can be created from

tables to visualize trends, patterns and distributions.

An ArcView table references the tabular data source it represents, but doesn’t

contain the tabular data itself, hence tables are dynamic, because they reflect the current

18

status of the source data they are based on. If the source data changes, a table based on
this data will reflect the change the next time a user opens the project containing this
table. A user can also refresh the table at any time to see the current state of their source

data.

Some tables can also be edited, depending on the data source for user’s table. All

edits are written back to the source data file.

Spatial data sources such as ARC/INFO coverages have attribute tables containing
descriptive information about the geographic features they contain. A user can use a view
containing themes that represent these spatial data sources and have access to their
attribute tables. ArcView manages the relationship between themes and their attribute

tables, these tables do not need to be loaded into ArcView separately.

A user can add dBASE, INFO, and tab or comma delimited text files into

ArcView as tables.

From within ArcView a user can connect to a database server, such as Oracle or
Sybase, and run an SQL query to retrieve records from it as a table. ArcView stores the

definition of the SQL query, the user used, rather than the records themselves.

3. Chart:
A chart is a graphic presentation of tabular data that provides an additional visual
representation of the attributes associated with geographic features. A user can use a chart

to display, compare, and query geographic and tabular data effectively.

19

A chart references tabular data in an existing ArcView table in the user’s project,
and defines how it will be displayed. Charts are also dynamic because they reflect the
current status of the data in the table. If there is a change in the source data on which the
table is based, this change will automatically be reflected in both the table and the chart
the next time a user opens the project that contains them. If the table is edited, the chart

will reflect the edit.

A chart can represent all or a selected subset of records in a table. Records can be
selected from the table, and also, if the table is an attribute table belonging to a theme, by
selecting the theme’s features on a view. If the selected set of records changes, the chart

will reflect the new selection.
The same tabular data can be displayed on more than one chart.

4. Layout:
A layout is a map that lets a user display views, charts, tables, imported graphics,
and graphic primitives. The layout is used to prepare these graphics for output from

ArcView.

A layout defines what data will be used for output and how they will be displayed.
A layout is dynamic because it allows user to make specific graphics which reflects the

current status of the data. If the data in a view changes, the layout reflects the change.

Different layouts can be created based on same data. Each layout can be
considered a different way of presenting the data. Using Avenue a user can create custom

functions, user interfaces and cartographic templates that will assist in creating output.

20

Layout provides standard graphics and operations. These graphics are drawn

using the Draw tool and include points, lines, polygons, polylines, rectangles, and circles.

Layout also contains objects specific to the ArcView environment, including frames
containing ArcView views, charts, and tables, and ancillary objects such as legends and

scale bars.

S. Scripts:
A script is the component of an ArcView project that contains Avenue code.
ArcView scripts group together the means to accomplish three general objectives:

automate tasks, add new capabilities to ArcView, and build complete applications.

All of ArcView can be considered a collection of scripts. Every control that a user
uses in ArcView, has an associated internal or system script. A user can see the names of
the scripts associated with a control in the Customize dialog box and can examine the

contents of a system script by loading a system script into a new script.

ArcView has a Script Editor where a user can create a script. If a user uses other
text editor, once he has written the code, he must load it into a project’s script. A user can

compile, debug, and run the script from within the Script Manager.

A user can use ArcView’s customization environment to associate a compiled

script with a control or with an event, such as starting up or shutting down a project.

21

2.2.3 ArcView Scripting L.anguage Avenue®

Avenue is the programming language and development environment that’s part of
ArcView. Avenue is fully integrated with ArcView and the work, a user does, will run on
any of the platforms for which ArcView is available. There are many uses for Avenue: a
user can use Avenue to customize working with ArcView; or direct ArcView to perform
a specific task that needs to be done; or a complete application can be developed, that

works along with ArcView’s graphical user interface.

ArcView provides the necessary customization and language environment so a
user can work with Avenue. A user can create the graphical user interface as per the
requirements, establish some initial properties for the graphical controls that a user will
interact with, fine tune the behavior and appearance of those controls, and write Avenue
code that responds to what goes on in the interface, created. In addition, scripts written in

Avenue, can be linked to events such as starting up and shutting down a project.

2.3 Visual Basic®, Version 4.0 (Microsoft® Corp.)

Microsoft Visual Basic allows a user to create quick applications for Microsoft
Windows operating systems. The Visual Basic programming system allows a user to

create useful applications that fully make use of the graphical user interface (GUI).

Visual Basic provides a user, appropriate tools for the different aspects of GUI
development. A user can create a graphical user interface for different applications by

drawing objects in a graphical way and set properties on these objects to refine their

22

appearance and behavior. Generated interface can react to a user by the attached code that

responds to events that occur in the interface.

A user can create, full-featured applications. Different features of Visual Basic,

are as follows:

e Data access features allow a user to create databases and front-end applications for
popular database formats.

e OLE allows a user to use the functionality provided by other applications, such as
Microsoft Word® for Windows word processor, Microsoft Excel® spreadsheet, and
Microsoft Project® business project planning system.

e User’s finished application is a “.EXE” file that uses a run-time dynamic-link library

(DLL).

23

CHAPTER III

DESIGN AND IMPLEMENTATION

3.1 Main Menu for EPIC-View

The main menu of EPIC-View has options as shown in figure 1.

| FILE | APPLICATION | PROJECT | WINDOW | HELP|

EXTENT TOOL | DATA INPUT TOOL | MODELING TOOLI DISPLAY TOOL

|—-| Define Extentl r—b|Weather Datal Output Option?l
—.[Soil & Curve No. | Run Simulator I

—-rConstant Data I
—-| Management Data | —-| Remove Themes |

Spatial Data

Figure 1. Main Menu for EPIC-View.

Various data variables identified from EPIC input dataset are classified, as per different

tools shown above (as shown in Appendix D).

24

3.2 Description of Various Menu Options

1. Extent Tool

This menu has following option:
Define Extent:

This menu option opens the field view designated by a user and activates the main
theme as shown in Appendix C.17.

2. Data Input Tool

This menu provides various options required to create the EPIC input dataset. It
consists of following options:
Weather Data:

This option displays a Visual Basic screen which provides a user with two
choices, whether a user has weather files for the field or EPIC generated weather file is to
be loaded. In former case, a user has to enter the weather file name with complete path
and in the later case, a user has to enter the latitudes and longitudes of the field, and EPIC
will automatically load the weather file from the weather station nearest to the user’s
field. As a result a file “const.utl” is created and a line is written to it, depending upon the
user’s choice, e.g., “@<path><file name>* or “LOCWEAT <latitude> <longitude>* for
former and latter cases respectively. The Weather data screen is shown in Appendix C.1.
The data flow diagram is shown in Appendix B.1. A typical “const.utl” file is shown in

Appendix E.4.

25

Soil Data:

This option is enabled if a user does not have field specific soil data. In that case,
a soil from this option can be selected which becomes generic for the whole field. This
option displays a Visual Basic screen which provides a user with a list of soils, provided
by EPIC. A user can also select the Run off Curve Number based upon the soil selected.
The Soil data screen is shown in Appendix C.2. The data flow diagram is shown in
Appendix B.2. Lines, e.g., “GETSOIL <soil code>* and “CN2 <curve number>“ are
written to “const.utl”. A typical “const.utl” file is shown in Appendix E.4.

nt D

Data that remains constant for the entire field is entered (at one time only) and
replicated for all the existing cells in the gridded field. The constant data option is
enabled only when a user has entered weather data (and soil data). This menu options
presents a Visual Basic screen which displays default values of all the variables, required
by EPIC, which remain constant. A user can make required modifications and save these
variables in a constant dataset which is replicated for all the cells in the grid. Various
lines, one for each constant variable, are written to “const.utl” and then a constant data
set, e.g., “const.dat™ is created from “const.utl” using UTIL. Then, this constant dataset is
replicated for all the cells in the grid. The Constant data screen is shown in Appendix C.3
& C.4. The data flow diagram is shown in Appendix B.3. A typical “const.utl” file is

shown in Appendix E.4.

26

Management Data:

This tool allows a user to enter management practices, carried out in the field. A
user has choice to make a set of management practices generic for the whole field, in that
case, all the management practices, a user enters, become applicable to all the cells in the
gridded field. In other case, a user can select a set of cells and then select this tool to enter
these cells specific management practices, which are applicable to all selected cells. A
Visual Basic screen is presented with a list of EPIC supported management practices
along with a list of all months and days to select the date of operation. Upon selecting a
management operation, a user is presented with another screen which displays further
choices to be made, e.g., upon choosing “FERTILIZE” as management operation, a user
is presented with another screen showing a list of fertilizers to choose from, fertilizer
application rate, etc. (as shown in Appendix C.8). Upon choosing “OK”, the operation is
written to cell specific files, e.g., “mgmtCellld#.utl”, for all selected cells. These files will
be loaded to the cells’ input data set at the time of running EPIC on these cells. . The
Management data screen is shown in Appendix C.5. The data flow diagram is shown in
Appendix B.4. A typical “mgmtCellld#.utl” file is shown in Appendix E.2.

Spatial Data:

This option extracts the spatial attributes from all selected cells, selected by a user

to run EPIC. Spatial attributes, such as soil, crop, elevation, area, slope, etc. are stored in

cell specific files, e.g., “formCellld#.utl”, which are loaded when running the EPIC

27

model on individual selected cells. The data flow diagram is shown in Appendix B.5. A
typical “formCellld#.utl” is shown in Appendix E.3.
3. Modeling Tool

The modeling tool is also an interactive tool. This consists of two following
options :

Output Options Tool:

This options allows a user to specify the variables which are desired to be
monitored as the output from EPIC. A Visual Basic screen is displayed with a list of
EPIC supported output variables. A user can select more than one variables. EPIC sets a
limit of 30 variables which can be chosen as output. A user also has a choice of selecting
daily, monthly, yearly, annual, or all output files options which allows EPIC to generate
these files while running on individual cells’ input datasets. These variables are then
written to a “prnt.utl” file which is later loaded to the “prnt5300.dat” file at the time of
running EPIC of selected cells. The data flow diagram is shown in Appendix B.6 and the
Output options screen is shown in Appendix C.15. A typical “prnt.utl” file is shown in
Appendix E.S.

On selecting this tool, a Visual Basic waitshell is executed to run UTIL and EPIC
model on each individual cell’s input datafile. Then, the corresponding output files are
parsed to create a comma delimited file which can be retrieved in ArcView as a table. The

dataflow diagram is shown in Appendix B.7.

28

4. Display Tool

This menu remains disabled until Run Simulator is invoked which runs EPIC on
the selected cells. It consists of following options:
Map:

This option adds the parsed output (from EPIC) as a table and joins it with the
attribute table of the main theme. New themes are created corresponding to each variable
in the parsed table. The variables’ values are shown in the corresponding themes in the
form of equal intervals. Thus a user can monitor the effects on each variable, as analyzed
by EPIC, in a spatial manner and can make better comparison. The screen after displaying
results is shown in Appendix C.18.

Table:

This option displays the parsed table, added to ArcView. A user can monitor
values of different variables visually in a tabular form. A typical table is shown in
Appendix C.19.

Chart:

This option displays a selected variable, from the list of variables in parsed table,
in the form of percentage of values falling in each of the equal intervals. This provides a
comprehensive summary in terms of whether the values fall within allowable ranges or
not. A typical chart is shown in Appendix C.20.

Remove Themes:
This option allows a user to remove all added themes, as a result of EPIC run. The

main theme remains active.

29

3.3 Weather Data Tool

Weather data tool provides a user with a screen which provides two choices. A
user can either choose to user EPIC provided weather file by entering the latitudes and
longitudes of the field or if a specific weather file is available, its path can be specified,
which will be loaded to the constant dataset. If former option is chosen, EPIC loads the
weather file from a weather station nearest to the field. This information is stored in a file
“const.utl”. The data flow diagram is shown in Appendix B.1.

3.4 Soil Data Tool

This option is enabled only if a user does not have his own soil file. This tool
presents a screen as shown in Appendix C.2 where a user has a choice of soil and run off
curve number. The selected soil becomes generic for the whole field. This information is
appended in a file “const.utl”. The list of soils is created from a file soil.lst. The data flow
diagram is shown in Appendix B.2.

3.5 Constant Data Tool

Constant data tool allows a user to modify various variables which remain
constant for the whole field. These variables are loaded into a constant dataset which is
then replicated for all cells in the gridded coverage. The tool presents a user with a screen
as shown in Appendix C.16. Various variables’ values are written out into a file
“const.utl” which is then loaded to constant dataset “const.dat” using the UTIL. The data

flow diagram is shown in Appendix B.3.

30

3.6 Management Practices Tool

Management practices are entered as soon as management zone is delineated. A
user is prompted with a Visual Basic screen as shown in Appendix C.5 to enter various
operations and also to delineate more management zones if he chooses to. The data flow
diagram is shown in Appendix B.4.

The user can select the month and date of operation. A management operation
can be selected from a list of operations, provided, which is available in a file
Mgmtoper.dat. Month and date are stored in EPIC input variables MON and DAY
respectively. Operation code, corresponding to the operation, the user selects, is
automatically looked up from the file and stored in the variable COD. Depending upon
the operation code a different Visual Basic screen pops up as shown in Appendix C.6-
G155

Here, e.g. if a user chose Fertilize as the operation, the screen shown in Appendix
C.8 presents a list of fertilizers, available in the file Fertdata.dat. A user can select a
fertilizer, the corresponding fertilizer 1d# is stored in variable FN. The user needs to enter
values for Fertilizer Application rate(FAP), Heat Unit scheduling(HUSC). These values
are then loaded in all the cells’ input datasets, which fall under this management zone.

Similarly, the user can enter another operation and so on. In case a crop rotation
occurred, the user can enter new set of management practices, thus can have different sets
of management practices for different crops. The user can also delineate a new
management zone, by marking out a new zone on the field view, and enter management

practices for it in a similar way. A user can also make one set of management practices as

31

generic, i.e. they apply to the whole field. In this case, all cells’ input dataset have
common management practices. Management related variables are provided to a user to
be modified if chosen to, as shown in Appendix C.15.

There is an option to view a summary of management operations entered, which
provides a list of all operations entered, per management zone.
Following lookup files are required for management practices operations:
Usdacrop.txt - for crop selection and extracting crop code.
Usdapest.dat - for pesticide selection and extracting pesticide code.
Mgmtoper.dat - for management operation selection and extracting operation code.
Fertdata.dat - for fertilizer selection and extracting fertilizer code.

3.7 Spatial Data Tool

This tool extracts various attributes from the field’s main theme table. The attributes are
crop, elevation, slope, soil, run off curve number, watershed area, etc. These attributes are
stored in the cell specific files (form#.utl, # - cell Id.). These will later be loaded in the
cell specific datasets at the time of running EPIC on selected cells. The data flow
diagram is shown in Appendix B.5.

3.8 Output Options Tool

This tool presents a screen where a user can choose the variables desired to be
monitored as a result of running EPIC on selected cells. The EPIC output will be
displayed in terms of these variables. A user can choose at most 30 variables as a limit

provided by EPIC. A user can also select so that EPIC generates daily, monthly, yearly,

32

annual, or all these output files. These options, selected by a user are stored in a file
“pmt.utl” which are later loaded into “pmt5300.dat™ at the time of running EPIC on
selected cells. The list of output variables is created from a file opvarlst.dat. The data
flow diagram is shown in Appendix B.6.

3.9 Run Simulator Tool

This menu option creates various batch files which are needed to complete the cell
specific input datasets and also invoking EPIC on all these datasets and finally parsing
the EPIC output into a comma delimited file. Various files created are “create.bat”
(shown in Appendix E.6) and “runepic.bat” (shown in Appendix E.7). The data flow
diagram is shown in Appendix B.7.

3.10 Map

This menu option in the Display Tool, allows a user to load the parsed file as a
table and join it to the field theme’s attribute table and also create new themes, for each
output variable selected by a user, which are then added to the main field view providing
a powerful visual representation of the model run on the selected cells. As shown in
Appendix C.18.

3.11 Chart

This menu option in the Display Tool, allows a user to display a chart in the form
of a bar graph or a pie chart for output variables selected by a user. . As shown in

Appendix C.20.

33

3.12 Table

This menu option in the Display Tool, allows a user to display the added table
created as a result of parsing EPIC output. . As shown in Appendix C.19.

3.13 Remove Themes

This menu option in the Display Tool, allows a user to remove all added themes
as a result of choosing the Map menu option from Display Tool. As a result only the main

theme remains in the field view.

34

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

This work has dealt with the design and implementation of an interactive system
which integrates ArcView with EPIC model. The interface developed automates the task
of entering management practices for a specific part of field and also in creation of input
datasets for running EPIC model. EPIC is then invoked on the specified part of the field
and the results are parsed into ArcView readable format so that they can be loaded in the
form of table and displayed spatially on the field view to provide recommendations to a
user. Following are specific conclusions and recommendations which can be made based
on this work.

4.1 Conclusions

1. EPIC-View was developed by making use of ArcView’s development environment
language Avenue and the user interface data entry screens were developed in Visual
Basic.

2. EPIC-View is capable of allowing a user to enter management practices for different
management zones at a time. Also, a user can overlap different management zones to
enter different management practices, i.e., a user can select some zones (cells) and enter a
set of management practices and then selects some other zones and enter different
management practices, so that some zones(cells) are common and receive both the sets of

management practices.

35

i
'tz .

= =y

3. EPIC-View was successfully able to create input datasets for each cell (management
zone) and able to run EPIC on the selected cells. This process eliminates the need to
manually create input datasets for each management zone and run the EPIC model on
these datasets and then pull the results back to ArcView.

4. The results generated were tested to be correct and provided visual representation of

the result of different management practices carried out on the selected zones.

4.2 Recommendations for Future Research

1. The interface developed assumes that the field view available to it is already gridded.
An addition to it could be to allow a user to open his field view and grid the field using
the gridding tool which will be available in the new version of ArcView.

2. The display tool can be made more powerful to be able to display various comparison
results after multiple runs of the model.

3. EPIC’s daily, monthly, yearly, annual outputs can also be made use of in showing the
results spatially. These files are generated with extensions .epd, .epm, .epy and .epa
respectively.

4. Capability to store the results of different runs could be incorporated so that
comparisons between different runs could be made.

5. In the Management Practices Tool can be enhanced so that it is able to summarize all
the management practices entered so far and also allows a user to modify already entered

management practices.

36

d
g

NLT ATTry

BIBLIOGRAPHY

ArcView, Version 2.1(ESRI) User’s Manual.

Amold, J.G., Engel, B.A., and Srinivasan, R. (1993). Continuous time, grid cell
watershed model. Application of Advanced Information Technologies: Effective
Management of Natural Resources. ASAE Publication 04-93. pp. 267-278.

Arnold, J.G., Williams, J.R., Nicks, A.D., and Sammons, N.B. (1990). Basin scale
simulation model for soil and water resources management. College Station, TX:
Texas A&M Univ. Press.

Environmental Systems Research Institute, Inc. (1994a). Avenue - Customization and
Application Development for ArcView.

Environmental Systems Research Institute, Inc. (1994b). ArcView - The Geographic
Information System for Everyone.

Jankowski, P., and Haddock, G. (1993). Integrated nonpoint -source pollution modelling
system. /n Second International Conference/Workshop on integrating GIS and
Environmental Modeling. Breckenridge, Colorado. 26-30 Sept. 1993.

Jones, J.W., and Ritchie, J.T. (1991). Crop growth models. In G.J. Hoffman, T.A.
Howell, and K.H. Solomon (Eds.). Management of Farm Irrigation Systems.
Amer. Soc. Agricultural Engineering, St. Joseph, MI. pp. 63-89.

Knisel, W.G., Jr. (1980). “A field Scale Model for Chemicals, Runoff and Erosion from
Agricultural Management Systems.” Cons. Res. Rpt. No. 26. USDA. 640.

Onstad, C.A., and Foster, G.R. (1975). Erosion modeling on a watershed.
TRANSACTIONS of the ASAE 18(2):288-292.

Rewerts, C.C., and Engel, B.A. (1991). ANSWERS on GRASS: Integrating a watershed
simulation with a GIS. ASAE Paper No. 91-2621.

Richardson, C.W. (1982b). A wind simulation model for wind erosion estimation. ASAE
Paper No. 82-2576, ASAE, St. Joseph, MI 49085.

Shanholtz, V.O., Desai, C.J., Zhang, N., Kleene, J.W., Metz, C.D., and Flagg, J.M.

(1990). Hydrologic/water quality modeling in a GIS environment. ASAE Paper
No. ()-3033. ASAE, St. Joseph, MLI.

37

Sharpley, A. N., and Williams, J.R. (Eds). (1990). EPIC - Erosion/Productivity Impact
Calculator. Model documentation. U.S. Department of Agriculture Technical
Bulletin No. 1768.

The U.S. Department of Agriculture Agricultural Research Service at Temple, Texas
EPIC User’s Guide - Draft.

Visual Basic, Version 4.0 (Microsoft Corp.) User’s Manual.

Williams, J.R., Dyke, P.T., and Jones, C.A. (1983). EPIC- A model for assessing the
effects of erosion on soil productivity. Proceedings Third International
Conference on State-of-Art in Ecological Modelling, Colarado State University,
May 24-28, 1982.

Williams, J.R., Jones, C.A., and Dyke, P.T. (1984). A Modeling Approach to
Determining the Relationship Between Erosion and Soil Productivity.
Transactions of the ASAE.

Yoon, J., Padmanabhan, G., and Woodbury, L.H. (1993). Linking agricultural nonpoint
pollution model (AGNPS) to a geographic information system (GIS). Proceedings
of the symposium on Geographic Information Systems and Water Resources.
AWRA. pp. 79-87.

38

APPENDICES

APPENDIX A

USING THE SYSTEM

39

-

EPIC-View can be used by opening the project file under ArcView 2.1. The
project file is named under EPICView.apr. Initially at the time of installation, a multiple
input entry screen is displayed where a user can enter different directory paths as shown
in Appendix C.21. These paths are written to a file EVPaths.txt which is created under
C:\. Here it is assumed that a user has already created his field view which has overlaid
layers of spatial attributes in the form of a grid. Path to this view polygon needs to be
specified here.

Subsequent openings of this project file will read various paths from this file and
thus the multiple entry screen is not displayed every time. Once, the project is opened, a
user can view his gridded field by selecting Define Extent menu option. This option
opens the field view as shown in Appendix C.17. Now a user can select the weather data
(described in Section 3.3) menu option to specify his weather file or enter the latitudes
and longitudes of the field. If a user had specified soil and runoff curve number in the
field view’s main theme’s attribute table, the soil and curve number is directly extracted
while running Spatial Data tool (described in Section 3.7) otherwise Soil Data
(described in Section 3.4) menu option needs to be selected where a list of EPIC
supported soils is presented and run off curve number can be selected. Now constant data
set for the whole field can be created by selecting Constant Data tool (described in
Section 3.5), where a user can modify variables that remain constant for the whole field.
These variables will be loaded to a constant dataset which will be replicated for all the

cells in the gridded field. Now a user can select Management Data tool (described in

40

Section 3.6) where he can enter management practices for the field either by making one
set of management practices generic for the whole field or by selecting an area of field
and entering management practices for the same. The Management Data tool provides a
screen where a user can select management operations from a list and enter them in cell
specific files. All the above operations are done one time only. Ofcourse, management
practices might be entered on a regular basis but constant data tool need not be invoked
until a user wishes to change some of the constant variables’ values. Now to run the
model, a user needs to select a portion of the field by highlighting those cells, either by
using the highlighting tool button or using query builder. The highlighted cells are
displayed by a yellow color (Shown in Appendix C.17). Now a user can select the
Spatial Data tool (described in Section 3.7), which extracts the spatial attributes from
the main attribute table for all selected cells. Now a user can select the Output Options
tool (described in Section 3.8) to select the output variables he is interested to monitor
after running EPIC. After that, the Run Simulator menu option (described in Section
3.9) can be invoked which executes batch files and invokes UTIL, EPIC and finally the
Parser to parse the output generated by EPIC into a comma delimited file.

After the wuser returns back to ArcView, he can select the Map
(described in Section 3.10) menu option from Display tool and view the results of model
run, spatially. This is done by adding more themes for each output variable, a user
selected, into the main field view as shown in Appendix C.18. A user can also generate
charts by selecting Chart from Display tool as shown in Appendix C.20 and also view

the results table form.prs by selecting Table from Display tool as shown in Appendix

41

|

;:
1
B
:
E
%
£
£
s
e

|
:
-
2|
:Ei
E
§

-

C.19. A user can remove the newly added themes by selecting the Remove Themes
menu option which deletes all but the main theme. Similarly, a user can select a different

portion of field view and run model on it and monitor the results.

Various files needed to run the model are as follows:
EPICView.apr -- The main ArcView project file.
Constdat.exe -- The constant data user interface.

Dsetmake.exe -- The model running wait shell.
Outputop.exe -- The output options user interface.

Mgmt.exe -- The management practices user interface.
Parse.exe -- The parser.

Weather.exe -- The weather data user interface.

Soil.exe -- The soil data user interface.

Curvenum.dat -- The data file containing a list of runoff curve numbers.

Fertdata.dat -- The data file containing a list of fertilizers.
Mgmtoper.dat -- The data file containing a list of management operations.
Opvarlst.dat -- The data file containing a list of output variables.

EPIC5300 model files.

Recommended directories:

Create a directory EPICView under C:\. Create a directory EPIC5300 under C:\ to store
the EPIC5300 files. Create following directories under C:\EPICView :

Project -- To keep the EPICView.apr project file.

Temp -- To keep all the created files.

Weather -- To keep weather file if a user has his own weather file (with .utl extension).
Soil -- To keep soil files if a user has his own soil files (with .utl extension).
EXEDir -- To keep all the executable files described above.

Field -- To keep the files of the field view including the database table.

[t is recommended that a user makes a copy of the EPICView.apr file and user the copy
so that the original project file is not altered.

42

APPENDIX B

DATA FLOW DIAGRAMS

LEGEND:

-===--—-p Comments .
———————p Data Flow.
» Control Flow.

-- Cell Id Number.
Specified Tools -- Data entry screens.

43

ArcView

2.1

,---» Creates a file - “const.utl” and

4 writes a line “LOCWEAT<lat>
<long> “ or “@<path><weather file
name>* to it.

—

User

}

Weather Data Tool

!

Text File
(const.utl)

B.1 Data Flow Diagram for Weather Data Menu Option.

ArcView

2.1

.———» Writes following lines to file
i

“const.utl” -

GETSOIL <soil code>
CN2 <curve number>

—

User

y
Soil Data Tool

Text File
{const.utl)

B.2 Data Flow Diagram for Soil Data Menu Option.

44

Replicates the

const.dat file for

Areyicty all cell specific
2.1 files, e.g.,
FORM#.DAT.
- Cell Id. !

a

1 L 9 ¢ 8
Constant Data Tool A = \
e

/‘]2 3¢ 6 7
- v

r 4 5 Text Files
Wi ," »| UTIL — (FORM#.DAT)

[} \
! A

Writes values of rr' Text File \\I Text File

constant variables to I (const.utl) ‘,l (const.dat)

" " I
file “const.utl”. i "‘.._.. Creates a

constant dataset
with values of
constant variab-
les, stored in
“const.utl” file.

B.3 Data Flow Diagram for Constant Data Menu Option.

45

ArcView
701 |

A

v

Management Practices Tool |
; y l ;“~_ | » Each management

________ operation writes to
User s DER= OFR-= files “mgmt#.utl”

Text Files
(MGMT#.UTL)

B.4 Data Flow Diagram for Management Practices Menu Option.

46

for all selected cells.
l l ‘ # - Cell Id.

—

e

ArcView

2.1

—

User

B.5 Data Flow Diagram for Spatial Data Menu Option.

ArcView

2.1

Text Files
(form#.utl)

» Writes following lines to files

“FORM#.UTL” -

@<path><soil file>

Curve Number

Elevation

Slope

Water Shed Area

Slope Length
@<path><MGMTHUTL>

Cell 1d.

_____ » Writes the output variables,

selected by a user, into file
“PRNT.UTL” which will be
loaded to “PRNT5300.DAT”
at the time of running the
EPIC model on selected cells.

User

B.6 Data Flow Diagram for OQutput Options Menu Option.

/

Output Options Tool

Text File

(prat.utl)

47

2.1

ArcView

B. When the option
to run simulator is
selected, batch files

are created which
invoke UTIL &
EPIC for each
selected Cell.

User x

H
Text File
(Comma

delimited file,
tG FORM.PRS.)

5

PARSER

] EFIC

Text Files
(e.g. FORM#.UTL,
FORM#.DAT,
MGMT#H.UTL,
PRNT.UTL, etc.)

C

' \‘.-_

Text Files
(EPIC output files
c.g. *.epy, *.epd,
*.epm, elc.)

E. EPIC generates
user selected output
files, e.g. per
day/month/year.

F. These files are
fed to parser to
create ArcView
readable files.

H. The Comma de-
limited files are
read back by
ArcVYiew.

/

Batch Files

(e.g. Create.Bat &
2 RunEpic.Bal)

C. Reads
UNIQ#.Utl file for
each cell and
completes the
corresponding
input data-set.
(Form#.Dat)

- Cell Id.

% 3. The batch file

runEpic.Bat

invokes EPIC for
each selected cell’s

input dataset.

(Form#.Dat)
- Cell 1d.

{which generates Comma delimited text files which

jcan be loaded into ArcView.

R 1. When user selects
Run Simulator from
Modeling Tool

2. Batch file invokes
UTIL which compi-
les the input dataset
by loading the corr-
esponding variables
in the cell's .UTL
file.

D. Selected celis’
input dataset files.
(Form#.Dat).

- Cell Id.

|5. The Comma delimited files generated by the |
iparser are loaded back into ArcView as tables and |
Ithe user can then select the Display Tool and view |
1
1

{the results spatially.

B.7 Data Flow Diagram for Run Simulator Menu Option.

48

L

- —— T e

T T U S s T TR . Z e ST O e
e T TR et~ T AR BA N A AR B0t P i P

APPENDIX C
SCREEN FORMATS

49

m EPICYiew - Weather Data

C.1 Screen Format for Weather Data Entry.

| m EPICView - Soil & Curve Number

C.2 Screen Format for Soil & Curve Number Data Entry.

50

NET ATYNvas .

UDLATINA N TA TR LIV

m EPICView - Constant data

CADDO COUNTY, OK, SHERRY/BOTCHLET |

C.3 Screen Format for Constant Data Tool.

2

- '+
?s §
|
Hl
£ i

m EPICView - Constant data

T

— 5
b |

- e E%
o g8 !
——— i

C.5 Screen Format for Management Practices Data Entry.

52

m EPICView - Chisel

C.6 Screen Format for Management Practices Data Entry(Cont.).

| m EPICView - Disk

m EPICView - Fertilizer

C.8 Screen Format for Management Practices Data Entry (Cont.).

53

s rvrv= eAYTU R ISNIL X

L‘.‘-‘!K.’.f.‘ LINEY Eaw-T

| m EPICView - Harvest

C.9 Screen Format for Management Practices Data Entry (Cont.).

| m EPICView - Hoe

C.11 Screen Format for Management Practices Data Entry (Cont.).

54

TRYTU/ 'S L 2
JIN Y anens ==

hd
L

>

JWE ATX

m EPICView - Rowplanter

C.14 Screen Format for Management Practices (Cont.).

35

e s i ?*'“'-‘-EE-._'——"'*A

£

AW RIF

m EPICView - Management related Vanables

C.15 Screen format for Management Practices variables.

56

TRTTR/G ™I £ £
NIy aws—"

(s an s BB 4
W U

m EPICView - Output Dptions

ce

newee
|
!

AOF Onstac-Foster MUSLE =

AVOL N volatized =

C Ciop Cover factor :

CM SCS Cuiver Number

C.16 Screen Format for Output Options Data Entry.

57

[4
AicView l

C.17 EPICView Screen Display With the Field View and Selected Cells.

58

AicYiew

BN EEACREE] L
TN S

Bolchlet 1/4 section

C.18 EPICView Screen Displaying the Final Results in the Form of New Themes.

59

=

4

" ¥ AN L Ya
Unisiugma

ArcYiew

form.pis

_[—F—li ﬁl— I Fl

C.19 EPICView Screen Displaying the Parsed Output Table.

60

TRl MY A A

L

A WYY . r

—— it B

FIUIVIA NTAT R LINLY Eae="

~

& vk @

AicView

C.20 EPICView Screen Displaying Chart Based on Output Table.

61

el S THE A &

EPICView

Globals Initialization:

Cell Dataset Directory: | PR RIRG AN |

Epic Output Directory: | c:\EPICView\Temp\

Soil Data Directory: | c:\EPICView\Soil\

EPIC Directory: | c:\epic5300\

EXE Directory Name: | c:\EPICView\EXEDir\

Base Dataset Name: | const.dat

Cell id Field Name: | Hiu2

Results Table Name: | form.prs

Main Attribute Table Name: | Attributes of Hru2

Main Field View Name: | Botchlet 1/4 section

Main Theme Name: | Hiu?2

Main Theme Path: | c:\EPICView\Hru

BESHEyEIE RNl EEE

C.21 Multi Input Screen to Store Various Directory Paths.

APPENDIX D

DATA VARIABLES FROM EPIC INPUT DATASET

63

Sr e Y A -

:&j!{ _‘_J‘f..‘.j ¥ Lawer=—

&
!
&

- wea m;n_mn

St g

o o T T
A — e B S g g B # o 4 g et

g | ———

D.1 Constant Data Tool

starts
Values over 100 years result in little change in N
values

No. | Variable | Description Value

1. ACW Wind erosion adjustment factor 1
0, wind erosion shut off; 1, normal wind erosion
considered

2. BUS (1-4) | Four Parameter estimates for MUSI erosion 0
equation *

3. CO2Z* Carbon-dioxide conc. in the atmosphere 350
Default to 350 ppm (current level)

4. CSALT* | Conc. of salt in irrigation water 0
For future use in salinity submodel. Default to 0.

S. DRV Equation for water erosion 2
Options [0-5]; Refer User’s Guide for equations
Default 2 for USLE

6. IDA Beginning day of simulation 1

A IET Potential Evapotranspiration equation * 0
Options [0-4], Refer User’s guide for equations.
Default 0 for Penman-Monteith equation

8. IGRAF Graphic display on/off 0
0, display off; 1, display on

9. [HUS Automatic heat unit scheduling 0
0, Normal operation; 1, automatic heat unit
scheduling

10. | IMO Beginning month of simulation 1

11. [ISCN Stochastic CN Estimator code* 0

12. | ISTA Static soil code* 0
0, Varying soil profile; 1, static soil

13. |ITYP Peak rate estimation code* 0
Options [0-4], Refer User’s guide

14. |IYR Beginning Year of simulation 1

15. [LPYR Leap year constdered* 0
0, consider; 1, ignore

16. | NBYR Number of years of simulation duration 5

17. | PEC Erosion control practice factor]
0, Total erosion control; 1. no erosion control
practices

18. | RTN* Number of years of cultivation before simulation | 100

* May be left blank or zero if unknown

64

ipw

U

L
g Vi

Fi i

U

D.2 Weather Data Tool

No.

Variable

Description

Value

CF*

Climatic factor for wind erosion
Refer wind erosion component
(EPIC manual, Vol.]) for values

IGN

Number of times the random
number generator cycles*

IGSD*

Day weather stops generating the
same weather

Lat Long

UTIL command - LOCWEAT <
lat long>; for EPIC supplied
weather data

NGN

Weather input code

Options [0-5, 23, 2345] Refer
User’s guide

0, generates all weather ; 2345
read all weather

RCN*

Average concentration of N in
rainfall

0.8

SNO*

Water content of snow at start of
simulation

SWVv*

Power of modified exponential
distribution of wind speed.
Range (0.3 -0.5). Default to 0.5
as recommended

0.5

65

187 82 5 ot

'
4+ B74

D.3 Spatial Data Tool

No.

Variable

Description

Value

ANG*

Clockwise angle of field length
from north (deg.)

0

APM*

Peak runoff rate - Rainfall
energy adjustment factor
Value of 1 gives satisfactory
results. Default to 1

(¥%)

CHD

Channel Depth

CHL*

Distance from outlet to most
distant point on watershed

CHN*

Channel roughness factor
(Manning’s N)

CHS*

Average channel slope

SACTR I I s
A1'R L1[¥2 V&

CN2

Runoff curve number
(antecedent moisture condition
2(moist))

Help: Present the hydrologic groups existing in
the management zones. And list the Runoff
Curve Numbers for Hydrologic soil-cover
complexes of Appd. E.2.A in User’s Guide

URLADIUMA N1

ELEV

Average watershed elevation

Need to pull the value from
the elevation field of the
attribute table of elevation
coverage

FLX

Field length (Km or miles)

10.

Fw*

Field width

11.

Slope steepness (%)

Need to pull the value from the
slope field of the attribute table
of the coverage

12.

SL

Slope length

Run for sensitivity using V2
resolution, 2 resolution,
resolution values

13.

SN*

Surface roughness factor
(Manning’s N). Refer User’s
guide for suggested values.

66

—— -

i

14. | SOIL" Prompt for <EPIC> dataset and
use UTIL command GETSOIL #
(# refers to soil ID from Appd.
E.4).

Or prompt for <User> dataset.
Pull the soil series name from
the attribute table and lookup the
file containing the data (Soils 5

database).

15. | STD* Standing dead crop residue (T/ha
or t/ac)

16. | WSA Watershed drainage area (ha)
WSA = resolution * / 10000

17.. | YLT Latitude of watershed (degrees);

for daylength estimation

* May be left blank or zero if unknown
~Not an EPIC variable

D.4 Output Options Tool

No. | Variable Description Value
1.| ICODE Output Conversion Code 2
0, Metric (default); 1, Metric; 2, English
2.| IPD The print code to select type of output 5

Range [1-9], Refer EPIC User’s Guide

3.| NIPD Printout interval 0
0, allows output every day or year with
management operations.
1, allows output every day or year, but will not
allow management operations to be printed as they
occur.

* May be left blank or zero if unknown

67

A s =

v
(Y2

UnLAITUMA NTA'TR L

4
- a—

-

D.5 Management Tool

(i) Management Options Tool

No.

Variable

Description

Value

ARMN*

Minimum single application for
automatic irrigation

[f unknown or rigid irrigation selected
(NIRR= 1), set ARMN =0

ARMX*

Maximum single application volume
for automatic irrigation (mm)

This is the amount applied if rigid
automatic irrigation is selected. 0 if
unknown

20

BFT

N stress factor to trigger automatic
fertilizer

BIR

Water stress factor to trigger irrigation
automatically.

0.85 means that irrigation will be
triggered when the biomass production
on that day is less than 85% of the
potential biomass that could have been
produced had water been available

0.85

DRT

Time required for drainage system to
reduce plant stress
0, if drainage not considered

EFI

Irrigation runoff ratio

FMX

Maximum annual N fertilizer
application
0, defaults to 200kg/ha

FNP

Amount of fertilizer (IDFT) per
automatically scheduled application
0, for manual fertilizer option

IDFT

Fertilizer 1D # for fertigation or
automatic fertilization

0, no automatic fertilization or
fertigation

10.

[DR*

Drainage code

1.

IFA*

Manual fertilizer application interval

12.

[FD*

Furrow dike code

18

IFFR*

Automatic fertilizer rigidity code

o|o|o|O

68

Y Lawer—

g
([FIra L

'

wRr'Al'N
FF_BEL
—

4
L

LA TIUIN A

vn

crop
24 inches (600mm) assumed to be
applied for each crop per year

14, IRI* Minimum application interval for 3
automatic irrigation.
Center pivot system - 3 days

15. IRR* [rrigation code 1
Options 0-3. Botchlet has center pivot
sprinkler, 1

16. LM* Liming code 0

17. NIRR Rigidity of irrigation code 1
0, flexible application; 1. rigid
application

18. NRO Crop rotation duration 1
Range (1-30 years)

19. VIMX* | Maximum irrigation volume for each 600

* May be lefi blank or zero if unknown

69

(11) Management Operations Data Tool

0.85, usually turned on for automatic
irrigation at planting time

No. Variable Description Value

1. COD Management operation code
Specify type of tillage, field
equipment characteristics stored in
EPIC’s tillage file (Classtill.dat).
Refer User’s guide (Section D.3)

2. CRP CropID #
Specify type of crop from EPIC’s
crop file (Clascrop.dat)

3. DAY Day of the operation

4, FAP Fertilizer application rate (kg/ha)

2. FN Fertilizer ID #

6. GRZ Grazing duration in days

7. HUSC Heat unit scheduling. Time of this
operation as a fraction of the
growing season or of the year. If no
crop is growing; fraction of annual
heat units accumulated using 0° as
the base temperature

8. IA [rrigation volume {mm)
Specify for manual irrigation

9. MON Month of the operation

10. PAR Pesticide application rate(kg/ha of
active ingredient)

11. PCF Pest control factor 1
Default to 1

12. PHU Potential heat units

i PST Pesticide ID #
Specify pesticide type from EPIC’s
file (pest5300.dat)

14. WSF Plant stress factor 0.85

70

PN W AR
JIYE ¥ &/

w"rnrs
™M ¥ 1%

— e

"2 [It Fi a2
bt Sl A LIV 4

v

APPENDIX E

FORMAT OF VARIOUS OUTPUT FILES

71

e
=l
e |
X
Sy

)

VRIS,

E i

E.1 A Sample EPIC Input Dataset (Form#.dat).

! Input dataset with different variable values.
! Title.

CADDO 21:06 4jun96
Field3

! Different variable values.

Wea: 22 OK WEATHERFORD wi: 22 OK WEATHERFORD

391 110500000001 00°0

34 67.0 1.0 35.12 2362 .0
.8 100.0 350.0 0 .100

82.0 .0160 1.00 2.

.00 .00 8.00

! Weather data begins.

8.9712.12 17.08 23.13 27.43 32.42 35.26 34.67 30.12 24.27 16.01 10.73
-399-1.34 2.62 8.83 13.73 18.7521.13 20.28 16.05 9.86 2.87-1.97
7.53 7.34 7.14 5.66 4.73 4.09 3.58 3.63 5.02 5.48 6.23 6.68
5.82 546 5.54 5.12 4.16 3.32 2.44 2.70 423 4.86 529 521
18.9 249 402 51.3126.2102.8 64.2 71.6 72.0 70.7 33.5 19.2
7.1 7.6 94 10.7 21.3 20.3 14.5 152 19.3 22.1 10.2 84
.89 Bl .66 .97 2.81 3.24 1.39 1.57 2.60 2.01 1.25 1.77
.080 .100 .130 .150 .220 .200 .150 .180 .140 .110 .100 .090
.280 .360 .290 370 .410 .370 .340 .250 .310 .350 .350 .240
3.10 3.92 4.80 5.77 8.42 7.23 5.74 6.00 5.06 4.49 4.00 3.28
7.6 7.1 19.6 282 36.3 49.3 41.4 30.2 27.9 18.8 21.3 13.0
257. 327. 420. 514, 558. 636. 629. 586. 498. 377. 296. 244.
63 63 50 .53 64 60 55 54 .56 .56 .56 .61

.00 .00 .00 .00

S0 .00 1.00
5.72 6.00 6.76 6.60 6.35 6.09 5.14 5.01 5.23 5.32 542 5.62
16.0 140 11.0 10.0 7.0 4.0 3.0 3.0 6.0 9.0 12.0 14.0
8.0 9.0 70 7.0 6.0 3.0 3.0 40 6.0 7.0 8.0 8.0

50 6.0 50 50 4.0 3.0 40 50 6.0 50 4.0 5.0

30 3.0 40 50 40 3.0 40 40 50 3.0 3.0 3.0

3.0 40 40 50 6.0 50 7.0 6.0 50 3.0 3.0 20

1.0 3.0 3.0 3.0 40 50 50 40 3.0 20 2.0 1.0

20 40 40 50 7.0 9.0 9.0 80 7.0 3.0 3.0 2.0

4.0 7.0 80 9.0 13.0 8.0 14.0 14.0 13.0 10.0 7.0 6.0
18.0 16.0 19.0 20.0 27.0 31.0 27.0 28.0 28.0 27.0 20.0 18.0
12.0 9.0 9.0 9.0 8.0 10.0 13.0 12.0 9.0 13.0 13.0 12.0
7.0 50 40 4.0 3.0 3.0 50 50 4.0 50 7.0 6.0

40 30 3.0 20 20 1.0 2.0 20 20 2.0 3.0 3.0

30 30 30 30 20 1.0 1.0 1.0 1.0 2.0 3.0 4.0

20 30 3.0 20 1.0 1.0 1.0 1.0 1.0 2.0 3.0 4.0

40 50 50 40 30 1.0 1.0 1.0 20 2.0 40 6.0

80 8.0 80 50 30 20 1.0 1.0 20 50 6.0 7.0

20
! Soil data begins.

010 660 1.067 1.372 1.778

1.655 1.655 1.609 1.623 1.641

054 054 .164 .130 .067

439 139 260 221 .164

72

¥ asaw

YR ¥
s

81.8 81.8 587 658 709
124 124 173 157 206

58 58 58 58 6.2
44 44 15 06 .06

57 57 152 114 52
2 B 3l 3] 3

168 1.68 1.74 1.72 167

50.00 50.00 1.17 3.14 20.42

! Crop rotation parameters.

111 300000

.85 .00 600.00 .00 20.00 00 .00 .0 .00 .00
! Management practices begin.

32533

4 871 52 502.57 1290.32

410 2 2 1500.00

51271 63 125.64 1290.32

9 15 51 1.00
9 15 41

9 16 28

! Comments are not allowed in the input dataset. They are put here to facilitate
! readability.

73

E.2 A Sample Management Practices Batch File (Mgmt#.utl).

! Cell specific Management Practices batch file which will be loaded to cell’s input dataset
| at the time of running model on the cell’s dataset.

L 3 1

I Above line stores total operations entered and total crop rotations.

| Set of management operations.

-y

MON(1) 3
DAY(l) 25
con(l) 33
MON(2) 4
DAY(2) 8
CcoD(2) 71
FN(2) 52
FAP(2) 448.36E
FDP(2) 50.80E
HUSC(2) 0
MON(3) 4
DAY(3) 10
CcoD(3) 2
CRP(3) 2
GRZ(3) 2
PHU(3) 1500
MON(4) $
DAY(#) 12
coD() 71
FN(4) 63
FAP(4) 112.09E
FDP(4) 50.80E
HUSC(4) 0
MON(5) 9
DAY(5) 15
CoD(5) 51
HUSC(5) 1.0
MON(6) 9
DAY(6) 15
COD(6) 41
MON(7) 9
DAY(7) 16
coD(7) 28

! Default management related variables.

NRO !
NIRR 1
IRR 1
RI 3
IFA
LM
IFD
IDR
IFFR 0
IDFT 0
BIR .85

oo ©

74

2

4

LALL AL IRSLY

EFl 0

VIMX 600

ARMN 0

ARMX 20

BFT 0

FNP 0

FMX 0

DRT 0

FDSF 0

! Comments are allowed in this file.
! Comments start with “ 1",

E.3 A Sample Spatial Data Batch File (Form#.utl).

! This File contains the spatial attributes of each cell. This is loaded into the cell’s input

! dataset at the time of running the model on the cell.

! Following line provides the path for the user specified soil files.

@c:\EPICView\Soil\DoB.utl

ELEV 236.2

S 0.016
WSA 0.3364
CN2 67

SL 82.0244

! Following line provides the path for the cell specific management practices batch file.

@c:\EPICView\Temp\mgmt25.utl
! Comments are allowed in this file.

75

R Al AT

1 |

!

E.4 A Sample Constant Data Batch File (Const.utl).

! Written by Weather Tool.
LOCWEAT 35.1298.35
YLT 3512
! Written by Constant Data Tool.
TITLE(1) CADDO COUNTY, OK, SHERRY/BOTCHLET
TITLE(2) Field
NBYR 3
I'YR 9]
IMO 1
IDA
NIPD
IPD
NGN
IGN

IGSD
LPYR
IET
ISCN

re' i 3

ICODE
ITYP
ISTA
IHUS
CHL
CHS
CHN
SN
APM
SNO 0
RCN 08
RTN 100
Co2 350
CSALT 0
CHD ©
PEC 1
DRV 2
BUS(1) 0
BUS(2) 0
BUS(3) 0
0
0
0
0
0

!
0
5
0
0
0
0
0
0
IGRAF 0
|
0
0
0
0
0
0
0
I

.

BUS(4)

FL

FW

ANG

STD

ACW |

76

e ald diFay

E.5 A Sample Output Options Batch File (Pmt.utl).

! Initialize KD(1) and KM(1) with 0 so that EPIC dumps default variables in “.epd” and
! “.epm” files respectively, if a user chooses to get these output files from Output Options

! Tool.
KD(1) ©
KM(1) 0

! Yearly variables are set as per those selected by a user. The remaining are set to 0.

! A user can choose atmost 30 variables at one time.

KY(1)

KY(2)

KY(3)

KY(4)

KY(5)

KY(6)

KY(7)

KY(8)

KY(9)

KY(10)
KY(11)
KY(12)
KY(13)
KY(14)
KY(15)
KY(16)
KY(17)
KY(18)
KY(19)
KY(20)
KYQ1)
KY(22)
KY(23)
KY(24)
KY(25)
KY(26)
KY(27)
KY(28)
KY(29)
KY(30)

46
47
12
11
56
4]
50
31
16
40
51
39
23

[==]

CO0C0CO0OSOOODOOODOOC,,

i

bt B A I

-

E.6 A Sample Batch File for Completion of Datasets (create.bat).

c:\epic5300\util epic c:\EPICView\Temp\form24.dat @c:\EPICView\Temp\form24.utl
c:\epic5300\util epic c:\EPICView\Temp\form25.dat @c:\EPICView\Temp\form25.utl
c:\epic5300\util epic c:\EPICView\Temp\form26.dat @c:\EPICView\Temp\form26.utl
c:\epic5300\util epic c:\EPICView\Temp\form38.dat @c:\EPICView\Temp\form38.utl
c:\epic5300\util epic c:AEPICView\Temp\form39.dat @c:\EPICView\Temp\form39.utl
c:\epic5300\util epic c:\EPICView\Temp\form40.dat @c:\EPICView\Temp\form40.utl
c:\epic5300\util epic c:\EPICView\Temp\form52.dat @c:\EPIC View\Temp\form52.utl
c:\epic5300\util epic c:\EPICView\Temp\form53.dat @c:\EPICView\Temp\form53.utl
c:\epic5300\util epic c\EPICView\Temp\form54.dat @c:\EPICView\Temp\form54.utl
c:\epic5300\util prat prmt5300.dat @c\EPICView\Temp'\prnt.utl
c\EPICView\Temp\runepic.bat

E.7 A Sample Batch File for Running EPIC and Parsing output (runepic.bat).

c:\epic5300\ewq c:\EPICView\Temp\form24 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form25 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form26 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form38 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form39 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form40 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form52 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form53 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form54 c:\EPICView\Temp\
c:\EPICView\EXEDir\parse.exe

78

APPENDIX F

CODE FOR EACH USER INTERFACE SCREEN

79

-

‘Weather.frm

* This form allows a user to enter the latitudes and longitudes of the field or specify the
‘ path of the weather file. This information is stored in “const.utl” file.

Option Explicit

Dim cellDatasetDir As String
Dim epicDir As String

Dim soilDir As String

Dim epicOutputDir As String
Dim exeDir As String

Dim fileNum As Integer '
Dim fileName As String
Dim Latitude As Single
Dim Longitude As Single

Dim validateText As String 'To use as a buffer for validation.

Private Sub cmdCancel_Click() 2
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View") [
If resp = vbYes Then |
End :
End If
End Sub

Private Sub cmdOk_Click()
Dim resp As Intege

‘Store values if a user chooses to.
resp = MsgBox("Do you wish to store?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
If resp = vbYes Then
If optEPICFile(0).Value = True Then
If ({txtLat. Text <> "") And (txtLong.Text <= "")) Then
fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Output As fileNum
Print #fileNum, "LOCWEAT " + txtLat. Text + " " + txtLong.Text
Print #fileNum, "YLT "+ (xtLat. Text
Close fileNum
End
End If
Elself optMyFile(1).Value = True Then
If (txtPath.Text <> "") Then
fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Output As fileNum
Print #fileNum, "@" + txtPath.Text
Close fileNum
End
End If

80

End If
End If
End Sub

Private Sub Form_Load()
'Get directory paths.
fileNum = FreeFile
Open "c:\EVPaths.txt" For Input As fileNum
Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir, exeDir
Close fileNum
End Sub

Private Sub optEPICFile_Click(Index As Integer)
txtLat.Visible = True
txtLong.Visible = True
txtPath.Visible = False
IbILat.Visible = True
IblLong.Visible = True
IblPath.Visible = False
End Sub

B i it -

— - e e

Private Sub optMyFile_Click(Index As Integer)
txtLat.Visible = False
txtLong.Visible = False
txtPath.Visible = True)
lblLat.Visible = False
IblLong.Visible = False
1blPath.Visible = True

End Sub

'ValidateData
' Author: Anoop Govil
' Date: June 12, 1996

L

' validateData Subroutine:
' - Validates the value entered by a user so
' - that it lies in the range of real numbers.
Public Sub validateData()

Dim length As Integer

Dim resp As Integer

Dim start As Integer

Dim alreadyDecimal As Integer

Dim chr As String

chr=0

length = |

alreadyDecimal = 0

Do

81

chr = Mid(validateText, length, 1)

" If character other than a number or a decimal.

If (chr < "." And chr <> "0" And chr <> "1" And chr <> "2" And chr <> "3" And chr <> "4" _
And chr <> "S" And chr <> "6" And chr <> "7" And chr <> "8" And chr <> "9") Then
Beep
If (length = 1) Then

start =2
Else
start = |
End If
If (Len(validateText) > 0) Then
validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do

' If character is a decimal.

Elself (chr = "." And alreadyDecimal = 0) Then
alreadyDecimal = |

' If character is a second decimal point.

Elself (chr = "." And alreadyDecimal = 1) Then
Beep
If (length = 1) Then

start =2
Else
start = 1
End If
If (Len(validateText) > 0) Then
validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do
End If
length = length + 1
Loop While (length <= Len(validateText))
End Sub

Private Sub txtLat Change()
validateText = txtLat. Text
validateData
txtLat. Text = validateText

End Sub

Private Sub txtLong_Change()
validateText = txtLong.Text
validateData
txtLong.Text = validateText

End Sub

82

S St e e e

‘Soil.frm

* This form allows a user to select a soil which becomes generic for the whole field and
* also select the run off curve number. This information is stored in the “const.utl” file.

Option Explicit

Dim soilNames(1000) As String

Dim soilCedes(1000) As Integer

Dim landUse(20) As String

Dim coverTrtmnt(5) As String

Dim hydCondition(5) As String

Dim hydSoilGrp(5) As String

Dim curveNumber(0 To 11,0 To 3, 0 To 3, 0 To 4) As Integer
Dim fileNum As Integer

Dim cellDatasetDir As String

Dim epicOutputDir As String

Dim soilDir As String fn
Dim epicDir As String
Dim ctrl As Integer
Dim ctr2 As Integer
Dim ctr3 As Integer
Dim ctr4 As Integer

— W e i

Private Sub cboCoverTrtmnt_Change()
Dim Counter As Integer
Counter=0
'Get the index for selected cover treatment.
Do
If (coverTrtmnt(Counter) = cboCoverTrtmnt. Text) Then
Exit Do
End If
Counter = Counter + 1
Loop While (Counter < 5)
If Counter < 5 Then
ctr2 = Counter
'Set curve number.
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctrd)
End If
End Sub

Private Sub cboCoverTrtmnt_Click()

'Get the index for selected cover treatment.

ctr2 = cboCoverTrtmnt. ListIndex

'Set curve number.

txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctrd)
End Sub

Private Sub cboHydCondition_Change()
Dim Counter As Integer

Counter =0
'Get the index for selected hydrologic condition.
Do

If (hydCondition(Counter) = cboHydCondition.Text) Then

83

Exit Do
End If
Counter = Counter + |
Loop While (Counter < 5)
If Counter <5 Then
ctr3 = Counter
'Set the curve number.

txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctrd)
End If

End Sub

Private Sub cboHydCondition_Click()

‘Get the index for selected hydrologic condition.

ctr3 = cboHydCondition.ListIndex

'Set the curve number.

txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctr4)
End Sub

Private Sub cboHydSoilGrp_Change()
Dim Counter As [nteger
Counter =0
'Get the index for selected hydrologic soil group.
Do
If (hydSoilGrp(Counter) = cboHydSoilGrp.Text) Then
Exit Do
End If
Counter = Counter + 1
Loop While (Counter < 5)
If Counter < 5 Then
ctr4 = Counter
'Set the curve number.
txtCurveNumber.Text = curveNumber{ctrl, ctr2, ctr3, ctr4)
End If
End Sub

Private Sub cboHydSoilGrp_Click()

'Get the index for selected hydrologic soil group.

ctr4 = cboHydSoilGrp.ListIndex

'Set the curve number.

txtCurveNumber. Text = curveNumber(ctrl, ctr2, ctr3, ctr4)
End Sub

Private Sub cboLandUse_Change()
Dim Counter As Integer

Counter =0
'Get the index for selected land use.
Do
If (JandUse(Counter) = cboLandUse.Text) Then
Exit Do
End If

Counter = Counter +]
Loop While (Counter < 5)
If Counter < 5 Then

ctrl = Counter

84

—— ek B

'Set the curve number.
txtCurveNumber. Text = curveNumber(ctr1, ctr2, ctr3, ctr4)
End If
End Sub

Private Sub cboLandUse_Click()

'Get the index for selected land use.

ctrl = cboLandUse.ListIndex

'Set the curve number.

txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctr4)
End Sub

Private Sub cmdCancel_Click()
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View") .
If resp = vbYes Then 1
End .

End If
End Sub

— e b

Private Sub cmdOK_Click()
Dim Counter As Integer
Dim resp As Integer

'Get the soil code.
Counter =0
Do
If (UCase(cboSoilNames.Text) = soilNames(Counter)) Then
Exit Do
End If
Counter = Counter + 1
Loop While Counter < 1001

‘Store the soil code and curve number if a user chooses to.
If (Counter < 1001) Then
resp = MsgBox("Do you wish to store?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
[f resp=vbYes Then
fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Append As fileNum
Print #fileNum, "GETSOIL " + Str(soilCodes(Counter))
Print #fileNum, "CN2 "+ txtCurveNumber. Text
Close fileNum
End
End If
End If
End Sub

Private Sub Form_Load()
Dim Counter As Integer
Dim fileName As String
Dim soilCode As Integer

85

Dim soilName As String
Dim cl As Integer

Dim c2 As Integer

Dim ¢3 As Integer

Dim c4 As Integer

Dim ctl As Integer

Dim ct2 As Integer

Dim ct3 As Integer

Dim ctd4 As Integer

Dim value As Integer

'Get directory paths.

fileNum = FreeFile

Open "c\EVPaths.txt" For Input As fileNum

Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir
Close fileNum

'Open the soil file and create a soil names list.
fileNum = FreeFile
fileName = epicDir + "soil.lis"
Open fileName For Input As fileNum
Counter =0
Do
Input #fileNum, soilCodes(Counter), soilNames{Counter)
cboSoilNames.Addltem
soilNames(Counter)
Counter = Counter + |
Loop While Not (EOF(fileNum) Or (Counter > 1000))
cboSoilNames.ListIndex = 641
Close fileNum

'Open the curve number file and create various supporting lists.
fileNum = FreeFile

fileName = epicDir + "curvenum.dat”

Open fileName For Input As fileNum

ctrl =0
'Create land use list.
Do

[nput #fileNum, landUse(ctrl)

If (landUse(ctr1) <= "") Then

cboLandUse.Addltem _

landUse(ctrl)

Else: Exit Do

End If

ctrl =ctrl + 1
Loop While Not (EOF(fileNum) And (ctr1 > 20))
ctl =ctrl
cboLandUse.ListIndex =0

'Create cover treatment list.

ctr2=0

Do
Input #fileNum, coverTrtmnt(ctr2)
If (coverTrtmnt(ctr2) <> "") Then

86

cboCoverTrtmnt. Addltem _
coverTrtmnt(ctr2)

Else: Exit Do

End If

ctr2 =ctr2 + |
Loop While Not (EOF(fileNum) And (ctr2 > 5))
ct2 = ctr2
cboCoverTrtmnt.ListIndex = 0

‘Create hydrologic condition list.
ctr3=0
Do
Input #fileNum, hydCondition(ctr3)
If (hydCondition(ctr3) <> ") Then
cboHydCondition.AddItem _
hydCondition(ctr3)
Else: Exit Do
End If
ctr3 =ctr3 + 1
Loop While Not (EOF(fileNum) And (ctr3 > 5))
ct3 = ctr3
cboHydCondition.ListIndex = 0

'Create hydrologic soil group list.
ctrd =0
Do
Input #fileNum, hydSoilGrp(ctr4)
If (hydSoilGrp(ctrd) < "") Then
cboHydSoilGrp.Addltem _
hydSoilGrp(ctr4)
Else: Exit Do
End If
ctrd = ctrd + 1
Loop While Not (EOF(fileNum) And (ctr4 > 5))
ctd = ctrd
cboHydSoilGrp.Listindex =0
cl=0
c2=0
c3=0
c4=0

'Load the values in the curve number array.
Do
[f (c1 =ctl) Then
Exit Do
End [f
c2=0
Do
If (c2 = ct2) Then
Exit Do
End If
c3=0
Do
If (¢3 = c¢t3) Then

87

- -

Exit Do
End [f
cd=0
Do
If (c4 = ct4) Then
Exit Do
End If
Input #fileNum, value
curveNumber(cl, c2, c3, c4) = value
cd=cd +1
Loop While Not (EOF(fileNum) And (c4 < ct4))
c3=ci+l
Loop While Not (EOF(fileNum) And (c3 < ct3))
c2=c2+1
Loop While Not (EOF(fileNum) And (c2 < ct2))
cl=cl+1
Loop While Not (EOF(fileNum) And {c1 <ctl))
Close fileNum
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctrd)
End Sub

88

‘constdat.bas
* This form allows a user to modify the values of variables which remain constant for the
‘ whole field. They are stored in the file “const.utl” and later a constant EPIC input

* dataset “const.dat” is created and replicated for all the cells present in the gridded
‘ coverage.

Option Explicit

' directory paths.

Global cellDatasetDir As String
Global epicOutputDir As String
Global soilDir As String

Global epicDir As String

Global totalCells As Integer
Global validateText As String 'To use as a buffer for validation.

Declare Function GetModuleUsage% Lib "Kernel" (ByVal hModule%)

' WaitShell
' Author: Anoop Govil
' Date: May 21, 1996

' WaitSheil Subroutine:
' - Makes a synchronous call.
Public Sub WaitShell(ByVal AppName As String)
Dim hMod As Integer
hMod = Shell(AppName, 1)
If (Abs(hMod) > 32) Then
While (GetModuleUsage(hMod))
DoEvents
Wend
Else
Debug.Print "Unable to start " & AppName
End If

End Sub

' ValidateData
' Author: Anoop Govil
' Date: June 12, 1996

' validateData Subroutine:
' - Validates the value entered by a user so
' - that it lies in the range of real numbers.
Public Sub validateData()

Dim length As Integer

Dim resp As Integer

Dim start As Integer

Dim alreadyDecimal As Integer

89

ayy

Dim chr As String
chr=0

length = 1
alreadyDecimal = 0

Do

chr = Mid(validateText, length, 1)

"If character other than a number or a decimal.

[f (chr < "." And chr <> "0" And chr <> "1" And chr <> "2" And chr <> "3" And chr <> "4" _
And chr <> "5" And chr <> "6" And chr <> "7" And chr <> "8" And chr <> "9") Then
Beep
If (length = 1) Then

start =2
Else
start = 1
End If
If (Len(validateText) > 0) Then
validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do

' [f character is a decimal.

Elself (chr ="." And alreadyDecimal = 0) Then
alreadyDecimal = 1

' [f character is a second decimal point.

Elself (chr = "." And alreadyDecimal = 1) Then
Beep
If (length = 1) Then

start =2
Else
start = 1
End If
If (Len(validateText) > 0) Then
validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do
End If
length = length + 1
Loop While (length <= Len(validateText))
End Sub

90

‘Constdat.frm

* This form allows a user to modify the values of variables which remain constant for the
* whole field. They are stored in the file “const.utl” and later a constant EPIC input

* dataset “const.dat” is created and replicated for all the cells present in the gridded
‘ coverage.

Option Explicit
Dim fileNum As Integer

Private Sub cmdCancel Click()
Dim resp As Integer
resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
If resp = vbYes Then
End
End If
End Sub

Private Sub cmdHelp Click()
frmConstDat1HIp.Show
End Sub

Private Sub cmdMore Click()
frmConstDatMore.Show
End Sub

Private Sub cmdOk_Click()
Dim resp As Integer
Dim runCommand As String
Dim fileName As String
Dim Counter As Integer

' Write data to file if a user chooses to.
resp = MsgBox("Do you wish to load constant variables in the datasets?", vbYesNo + vbCritical +
vbDefaultButton2, "EPIC-View")
If resp = vbYes Then
Hide
fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Append As fileNum

Print #fileNum, "TITLE(1) " + txtTitlel.Text

Print #fileNum, "TITLE(2) Field"

Print #fileNum, "NBYR "+ txtNBYR.Text

Print #fileNum, "I'YR "+ txtIYR.Text

Print #fileNum, "IMO " + txtIMO.Text

Print #fileNum, "IDA "+ txtIDA. Text

Print #fileNum, "NIPD " + txtNIPD.Text

Print #fileNum, "[PD " + txtIPD.Text

Print #fileNum, "NGN "+ txtNGN. Text

Print #fileNum, "IGN " + frmConstDatMore.txtIGN.Text
Print #fileNum, "IGSD " + frmConstDatMore.txtIGSD.Text
Print #fileNum, "LPYR "+ txtLPYR.Text

Print #fileNum, "IET "+ xtIET. Text

Print #fileNum, "ISCN " + frmConstDatMore.txtISCN.Text

91

Print #fileNum, "IGRAF " + frmConstDatMore.txtiIGRAF.Text
Print #fileNum, "ICODE " + txtICODE.Text

Print #fileNum, "ITYP " + frmConstDatMore.txtITYP. Text
Print #fileNum, "ISTA " + frmConstDatMore.txtISTA.Text
Print #fileNum, "IHUS " + txtIHUS. Text

Print #fileNum, "CHL " + frmConstDatMore.txtCHL. Text
Print #fileNum, "CHS " + frmConstDatMore.txtCHS. Text
Print #fileNum, "CHN " + frmConstDatMore.txtCHN. Text
Print #fileNum, "SN " + frmConstDatMore.txtSN. Text
Print #fileNum, "APM " + frmConstDatMore.txtAPM. Text
Print #fileNum, "SNO " + frmConstDatMore.txtSNO, Text
Print #fileNum, "RCN " + frmConstDatMore.txtRCN. Text
Print #fileNum, "RTN " + frmConstDatMore.txtRTN.Text
Print #fileNum, "CO2 " + frmConstDatMore.txtCO2.Text
Print #fileNum, "CSALT " + frmConstDatMore.txtCSALT.Text
Print #fileNum, "CHD " + frmConstDatMore.txtCHD. Text
Print #fileNum, "PEC " + txtPEC.Text

Print #fileNum, "DRV "+ txtDRV.Text

Print #fileNum, "BUS(1) "+ frmConstDatMore.txtBUS1 . Text
Print #fileNum, "BUS(2) "+ frmConstDatMore.txtBUS2.Text
Print #fileNum, "BUS(3) "+ frmConstDatMore.txtBUS3. Text
Print #fileNum, "BUS(4) " + frmConstDatMore.txtBUS4.Text
Print #fileNum, "FL " + frmConstDatMore.txtFL.Text

Print #fileNum, "FW "+ frmConstDatMore. txtFW.Text
Print #fileNum, "ANG " + frmConstDatMore.txtANG. Text
Print #fileNum, "STD " + frmConstDatMore.txtSTD.Text
Print #fileNum, "ACW " + txtACW.Text

Close fileNum
fileNum = FreeFile
fileName = cellDatasetDir + "const.dat"
Open fileName For QOutput As fileNum
Close fileNum
' Load the constant variables' values to the const.dat.
runCommand = epicDir + "util epic " + cellDatasetDir + "const.dat @" + cellDatasetDir -+ "const.utl"
WaitShell (runCommand)
' Replicate the const.dat file for all the cells' dataset files.
resp = MsgBox("Creating datasets for all the cells.", vbCritical, "EPIC-View")
Counter = |
Do
fileName = cellDatasetDir + "form" + Trim(Str(Counter)) + ".dat"
FileCopy cellDatasetDir + "const.dat", fileName
Counter = Counter + |
Loop While Counter <= totalCells
resp = MsgBox("Datasets have been created.", vbinformation, "EPIC-View")
End
End If
End Sub

Private Sub Form_Load()
' Get all directory paths.
fileNum = FreeFile
Open "c:\EVPaths.txt" For Input As fileNum
Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir

92

Close fileNum
fileNum = FreeFile
' Get total number of cells in the gridded coverage.
Open cellDatasetDir + "selected.cll” For Input As fileNum
Input #fileNum, totalCells
Close fileNum
End Sub

Private Sub txtACW _Change()
validateText = txtACW Text
validateData
txtACW.Text = validateText

End Sub

Private Sub txtDRV_Change()
validateText = txtDRV.Text
validateData
txtDRV.Text = validateText

End Sub

Private Sub txtICODE_Change()
validateText = txtICODE.Text
validateData
txtICODE.Text = validateText

End Sub

Private Sub txtIDA_Change()
validateText = txtIDA.Text
validateData
txtIDA.Text = validateText

End Sub

Private Sub txtIET Change()
validateText = txtIET. Text
validateData
txtIET. Text = validateText

End Sub

Private Sub txtIHUS_Change()
validateText = txtIHUS. Text
validateData
txtIHUS. Text = validateText

End Sub

Private Sub txtIMO_Change()
validateText = txtIMO.Text
validateData
txtIMO.Text = validate Text

1:nd Sub

Private Sub txtIPD_Change()
validate Text = txtIPD. Text
validateData

93

txtIPD.Text = validate Text
End Sub

Private Sub txtlYR_Change()
validateText = txt[YR.Text
validateData
txtl'YR.Text = validateText

End Sub

Private Sub txtLPYR_Change()
validateText = txtLPYR.Text
validateData
txtLPYR.Text = validateText

End Sub

Private Sub txtNBYR_Change()
validateText = txtNBYR.Text
validateData
tXtINBYR.Text = validate Text

End Sub

Private Sub txtNGN_Change()
validateText = txtNGN.Text
validateData
txtNGN.Text = validateText

End Sub

Private Sub txtNIPD_Change()
validateText = txtNIPD.Text
validateData
txtNIPD.Text = validateText

End Sub

Private Sub txtPEC_Change()
validateText = txtPEC. Text
validateData
txtPEC.Text = validateText

End Sub

94

‘Constmore.frm

‘ This form allows a user to modify the values of variables which remain constant for the
‘ whole field. They are stored in the file “const.utl” and later a constant EPIC input

‘ dataset “const.dat” is created and replicated for all the cells present in the gridded
‘ coverage.

Private Sub cmdHelp_Click()
frmConstDat2HIp.Show
End Sub

Private Sub cmdOk_Click()
Hide
End Sub

Private Sub txtANG_Change()
validateText = txt ANG.Text
validateData
txtANG.Text = validateText

End Sub

Private Sub txtAPM_Change()
validateText = txtAPM.Text
validateData
txtAPM.Text = validateText

End Sub

Private Sub txtBUS1_Change()
validateText = txtBUS1.Text
validateData
txtBUS1.Text = validateText

End Sub

Private Sub txtBUS2_Change()
validateText = txtBUS2.Text
validateData
txtBUS2.Text = validateText

End Sub

Private Sub txtBUS3 Change()
validateText = txtBUS3.Text
validateData
txtBUS3.Text = validateText

End Sub

Private Sub txtBUS4_Change()
validateText = txtBUS4. Text
validateData
txtBUS4.Text = validateText

End Sub

Private Sub txtCF_Change()
validateText = txtCF.Text
validateData
txtCF.Text = validateText

95

End Sub

Private Sub txtCHD_Change()
validateText = txtCHD.Text
validateData
txtCHD.Text = validateText

End Sub

Private Sub txtCHL_Change()
validateText = txtCHL.Text
validateData
txtCHL.Text = validate Text

End Sub

Private Sub txtCHN_Change()
validateText = txtCHN.Text
validateData
txtCHN.Text = validateText

End Sub

Private Sub txtCHS_Change()
validateText = txtCHS.Text
validateData
txtCHS.Text = validateText

End Sub

Private Sub txtCO2_Change()
validateText = txtCO2.Text
validateData
txtCO2.Text = validateText

End Sub

Private Sub txtCSALT_ Change()
validateText = txtCSALT.Text
validateData
txtCSALT.Text = validateText

End Sub

Private Sub txtFL Change()
validateText = txtFL.Text
validateData
txtFL.Text = validateText

End Sub

Private Sub txtFW_Change()
validateText = txiFW.Text
validateData
txtFW.Text = validateText

End Sub

Private Sub txtIGN_Change()
validateText = txtIGN.Text
validateData
txtIGN.Text = validateText

96

“y

T

End Sub

Private Sub txtiIGRAF_Change()

validateText = txtIGRAF.Text

validateData

txtIGRAF.Text = validateText

End Sub

Private Sub txtIGSD_Change()
validateText = txtIGSD.Text
validateData
txtIGSD.Text = validateText

End Sub

Private Sub txtISCN_Change()
validateText = txtISCN.Text
validateData
txtISCN.Text = validateText

End Sub

Private Sub txtISTA_Change()
validateText = txtISTA. Text
validateData
txtISTA.Text = validateText

End Sub

Private Sub txtITYP_Change()
validateText = txtITYP.Text
validateData
txtITYP.Text = validateText

End Sub

Private Sub txtRCN_Change()
validateText = txtRCN.Text
validateData
txtRCN.Text = validateText

End Sub

Private Sub txtRTN_Change()
validateText = txtRTN.Text
validateData
txtRTN.Text = validateText

End Sub

Private Sub txtSN_Change()
validateText = txtSN.Text
validateData
txtSN.Text = validateText

End Sub

Private Sub txtSNO_Change()
validateText = txtSNO. Text
validateData
txtSNO. Text = validateText

97

e = e =

End Sub
0 #nter meingement practices for selected cells or for the whals
Private Sub txtSTD_Changl)ffcren: cn-rativns can he selocted ane the operstions are
validateText = txtSTD.Text
validateData
xtSTD.Text = validateText
End Sub

Private Sub txtSWV_Change()
validateText = txtSWV.Text
validateData ;
xtSWV.Text = validateText

End Sub

98

‘Mgmt.bas
* This form allows a user to enter management practices for selected cells or for the whole

‘ field as chosen by a user. Different operations can be selected and the operations are
* stored in the cell specific “mgmt.utl” file.

Option Explicit

Global monthSel As Integer 'For selected month.

Global daySel As Integer 'For selected day.

Global unitType(0 To 2) As String 'For selected unidt type.

Global operationCode As Integer 'For selected management operation.
Global cellFiles() As Integer 'To maintain different cell files' pointers.
Global celllndex()} As Integer 'To maintain different cell indexes.

Global cellExist() As Integer 'To maintain different flags if cell file exists.
Global selectedCells(1 To 1000) As String 'To store number of selected cells.
Global nro() As Integer 'To maintain different cells' NRO values.

Global totCellsSel As Integer

Global didCropRotation As Integer

Global currentCell As Integer

Global justDidCropRotation As Integer

Global validateText As String 'To use as a buffer for validation.

' Directory paths.

Global cellDatasetDir As String
Global epicOutputDir As String
Global soilDir As String
Global epicDir As String

' Management related variables.
Global armn As Single
Global armx As Single
Global bft As Single
Global bir As Single
Global drt As Single
Global efi As Single
Global fdsf As Single
Global fmx As Single
Global fnp As Single
Global idft As Single
Global idr As Single
Global ifa As Single
Global ifd As Single
Global iffr As Single
Global iri As Single
Global irr As Single
Global Im As Single
Global nirr As Single
Global vimx As Single

' ValidateData
' Author: Anoop Govil
' Date: June 12, 1996

99

-

" validateData Subroutine:
' - Validates the value entered by a user so
' - that it lies in the range of real numbers.
Public Sub validateData()

Dim length As Integer

Dim resp As Integer

Dim start As Integer

Dim alreadyDecimal As Integer

Dim chr As String

chr=0

length = 1

alreadyDecimal = 0

Do

chr = Mid(validateText, length, 1)

" If character other than a number or a decimal.

If (chr < "." And chr < "0" And chr < "1" And chr <> "2" And chr <> "3" And chr <> "4" _
And chr <= "5" And chr < "6" And chr < "7" And chr <> "8" And chr <> "9") Then
Beep
If (length = 1) Then

start = 2
Else
start = |
End If
If (Len(validateText) > 0) Then
validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do

" If character is a decimal.

Elself (chr = "." And alreadyDecimal = 0) Then
alreadyDecimal = |

" If character is a second decimal point.

Elself (chr = "." And alreadyDecimal = 1) Then
Beep
If (Jength = 1) Then

start = 2
Else
start = |
End If
If (Len(validateText) > 0) Then
validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do
End If
length = length + 1
Loop While (length <= Len(validateText))
End Sub

100

‘Mgmt.frm

‘ This form allows a user to enter management practices for selected cells or for the whole
* field as chosen by a user. Different operations can be selected and the operations are

¢ stored in the cell specific “mgmt.utl” file.
Option Explicit

Dim month(1 To 12) As String

Dim day(l To 31) As Integer

Dim operation(l To 100) As String
Dim operCode(1 To 100) As Integer
Dim fileNum As Integer

Dim firstTime As Integer

Private Sub cboDay_Change()
Dim Counter As Integer
Counter = 1
Do
If (day(Counter) = cboDay.Text) Then
Exit Do
End If
Counter = Counter +]
Loop While Counter < 32

if Counter <32 Then
daySel = Counter ' Store to global variable.
End If
End Sub

Private Sub cboDay_Click()
Dim Counter As Integer
Counter = |
Do
If (day(Counter) = cboDay.Text) Then
Exit Do
End If
Counter = Counter + |
Loop While Counter < 32
daySel = Counter ' Store to global variable.
End Sub

Private Sub cboMonth_Change()
Dim Counter As Integer
Counter = 1
Do
If (UCase(month(Counter)) = UCase(cboMonth.Text)) Then
Exit Do
End If
Counter = Counter + |
Loop While Counter < 13
If Counter < 13 Then
monthSel = Counter ' Store to global variable.
End If
End Sub

101

i

Private Sub cboMonth_Click()
Dim Counter As Integer
Counter = 1
Do
If (UCase(month(Counter)) = UCase(cboMonth. Text)) Then
Exit Do
End If
Counter = Counter + |
Loop While Counter < 13
monthSel = Counter ' Store to global variable.
End Sub

Private Sub cboOper_Change()
addOperation
End Sub

Private Sub cboOper_Click()
addOperation
End Sub

Private Sub cmdAddOper_Click()
addOperation
End Sub

Private Sub cmdCancel Click()
Dim Counter As Integer
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
If resp = vbYes Then
End
End If
End Sub

Private Sub cmdClose_Click()
Dim Counter As Integer
Dim index As String
Dim nroVal As String
Dim resp As Integer
Dim fileName As String

' Store the values if a user chooses to.

resp = MsgBox("Do you wish load this set of management practices and close?", vbYesNo + vbCritical

+ vbDefaultButton2, "EPIC-View")
[f resp = vbYes Then

Counter = |

Do
cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As cellFiles(Counter)
'Store all management practices related variables (one time only).
If cellExist(Counter) = 0 Then

Print #cellFiles(Counter), "NRO " + Str(nro{Counter))

102

Print #cellFiles(Counter), "NIRR " + Str(nirr)
Print #cellFiles(Counter), "TRR " + Str(irr)
Print #cellFiles(Counter), "IRI " + Str(iri)
Print #cellFiles(Counter), "IFA " + Str(ifa)
Print #cellFiles(Counter), "LM = " + Str(Im)
Print #cellFiles(Counter), "IFD " + Str(ifd)
Print #cellFiles(Counter), "IDR " + Str(idr)
Print #cellFiles(Counter), "IFFR " + Str(iffr)
Print #cellFiles(Counter), "IDFT " + Str(idft)
Print #cellFiles(Counter), "BIR " + Str(bir)
Print #cellFiles(Counter), "EF1 " + Str(efi)
Print #cellFiles(Counter), "VIMX " + Str(vimx)
Print #cellFiles(Counter), "ARMN " + Str(armn)
Print #cellFiles(Counter), "ARMX " + Str(armx)
Print #cellFiles(Counter), "BFT " + Str(bft)
Print #cellFiles(Counter), "FNP " + Str(fnp)
Print #cellFiles(Counter), "FMX " + Str(fmx)
Print #cellFiles(Counter), "DRT " + Str(drt)
Print #cellFiles(Counter), "FDSF " + Str(fdsf)
Elself (didCropRotation = 1) Then
Print #celiFiles(Counter), "NRO " + Str(nro(Counter))
End If
Close cellFiles(Counter)
cellFiles(Counter) = FreeFile
' Rewrite the current number of operations and current NRO value.
Open cellDatasetDir + fileName For Binary As cellFiles(Counter)
index = Space(4 - Len(Str(cellindex(Counter))))
nroVal = Space(4 - Len(Str(nro(Counter))))
index = index + Str(cellIndex(Counter))
nroVal = nroVal + Str(nro(Counter))
Put #cellFiles(Counter), 4, index
Put #cellFiles(Counter), 10, nroVal
Close cellFiles(Counter)
Counter = Counter + 1
Loop While Counter <= totCellsSel ' Loop for all selected cells.
End
End If
End Sub

Private Sub cmdHelp_Click()
frmMgmtHelp.Show
End Sub

Private Sub cmdMore_Click()
frmMgmtDefa.Show
End Sub

Private Sub cmdNewCrop_Click()
Dim Counter As Integer
Dim resp As Integer
' Provide phenomenon for crop rotation if a user chooses to.
If justDidCropRotation = 0 Then ' To avoid consicutive crop rotations.

resp = MsgBox("Do you wish to add new crop rotation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")
103

[f resp = vbYes Then
JjustDidCropRotation = 1
Counter = |
Do
If (cellindex(Counter) > 0) Then
cellindex(Counter) = cellindex(Counter) + 1 'Increment no. of operations.
nro(Counter) = nro(Counter) + 1 'Increment NRO value.
End If
Counter = Counter + |
Loop While Counter <= totCellsSel 'Loop for all selected cells.
didCropRotation = |
End If
Else 'If a user attempted consecutive crop rotations.
resp = MsgBox("Please enter an operation before another crop rotation.", vbInformation, "EPIC-
View")
End If

End Sub

Private Sub Form_Load()
Dim Counter As Integer
Dim fileName As String
Dim oper As String
Dim opCode As Integer
Dim path As String
Dim str]l As String
Dim resp As Integer
Dim totCells As Integer
Dim genericFlag As String

'Store months.

month(1) = "JANUARY"
month(2) = "FEBRUARY"
month(3) = "MARCH"
month(4) = "APRIL"
month(5) = "MAY"
month(6) = "JUNE"
month(7) ="JULY"
month(8) = "AUGUST"
month(9) = "SEPTEMBER"
month(10) = "OCTOBER"
month(11) ="NOVEMBER"
month(12) = "DECEMBER"

'Store units type.
unitType(0) = "ENGLISH"
unitType(1) = "METRIC"

'Create months list.

Counter = |

Do
cboMonth.AddItem month{(Counter)
Counter = Counter + 1

Loop While Counter < 13

104

cboMonth.Listindex = 0

‘Create days list.
Counter = |
Do

day(Counter) = Str(Counter)
cboDay.AddItem day(Counter)
Counter = Counter + |
Loop While Counter < 32
cboDay.ListIlndex =0

'Get directory paths.

fileNum = FreeFile

Open "c:\EVPaths.txt" For [nput As fileNum

Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir
Close fileNum

'Check if this set is generic for whole field.
fileNum = FreeFile
fileName = cellDatasetDir + "selected.cll"
Open fileName For Input As fileNum
[nput #fileNum, path, totCells, genericFlag
Counter = |
totCellsSel = 0
[f UCase(genericFlag) = "FALSE" Then 'For selected cells only.
Do
If (EOF(fileNum)) Then
Exit Do
End If
[nput #fileNum, selectedCells(Counter)
Counter = Counter + |
totCellsSel = totCellsSel + |
Loop While Not EOF(fileNum)

resp=0
Else 'Generic for the field.
Do

selectedCells(Counter) = Counter

Counter = Counter + |

totCellsSel = totCellsSel + |
Loop While Counter <= totCells

resp = vbYes
End If
Close fileNum

'Resize all arrays.

ReDim cellFiles(! To totCellsSel)
ReDim celllndex(1 To totCellsSel)
ReDim cellExist(1 To totCellsSel)
ReDim openMode(1 To totCellsSel)
ReDim nro(1 To totCellsSel)

'Initialize NRO array with 1.
Counter = |
Do

105

nro(Counter) = 1
Counter = Counter + |
Loop While Counter <= totCellsSel

Counter = |
" Open all selected cells' mgmt#.utl files for writing/appending.
Do

fileName = "mgmt" + selectedCells(Counter) + ".utl"
path = Dir(cellDatasetDir + fileName)
If path = UCase(fileName) Then
currentCell = selectedCells(Counter)
If (resp = 0) Then
resp = MsgBox("Overwrite all previously existing management files?", vbYesNo + vbQuestion +
vbDefaultButton2, "EPIC-View")
End If
If (resp = vbNo) Then
cellFiles(Counter) = FreeFile
' Read the previous index and NRO values.
Open cellDatasetDir + fileName For Input As cellFiles(Counter)
strl = Input(2, cellFiles(Counter))
Input #cellFiles(Counter), celllndex(Counter), nro(Counter)
Close cellFiles(Counter)
If (cellindex(Counter) > 0) Then
cellExist{Counter) = 1
Else
cellExist(Counter) =0
End If
Elself (resp = vbYes) Then
cellFiles(Counter) = FreeFile
Open cellDatasetDir + fileName For Output As cellFiles(Counter)
Print #cellFiles(Counter), ! 0 1" "Write initial index on this line."
Close cellFiles(Counter)
End If
Else
cellFiles(Counter) = FreeFile
Open cellDatasetDir + fileName For Output As cellFiles(Counter)
Print #cellFiles(Counter), " ! 0 1" 'Write initial index on this line.
Close cellFiles(Counter)
End If
Counter = Counter + |
Loop While Counter <= totCellsSel

'Open the management operation file and create a list of
'management operations.
fileNum = FreeFile
fileName = epicDir + "mgmtoper.dat"
Open fileName For Input As fileNum
Counter = |
Do

[f (EOF(fileNum)) Then

Exit Do

End If

Input #fileNum, opCode

operCode(Counter) = opCode

Input #fileNum, operation(Counter)

106

e

¥

cboOper.AddItem operation(Counter)

Counter = Counter + |
Loop While Not (EOF(fileNum) Or (Counter > 100))
firstTime =0
cboOper.ListIndex = 0 'Set highlight to first item in list.
Close fileNum
initMgmtVars 'Initialize management related variables.
firstTime = |

End Sub

* InitMgmtVars
' Author: Anoop Govil
' Date: May 19, 1996

' initMgmtVars Subroutine:
' - Initializes all global variables.
Public Sub mnitMgmtVars()
armn = Val(frmMgmtDefa.txtARMN. Text)
armx = Val(frmMgmtDefa.txtARMX.Text)
bft = Val(frmMgmtDefa.txtBFT.Text)
bir = Val(frmMgmtDefa.txtBIR . Text)
drt = Val(frmMgmtDefa.txtDRT.Text)
efi = Val(frmMgmtDefa.txtEF1.Text)
fdsf = Val(frmMgmtDefa.txtFDSF. Text)
frmx = Val(frmMgmtDefa.txtFMX Text)
fnp = Val(frmMgmtDefa.txtFNP.Text)
idft = Val(frmMgmtDefa.txtIDFT.Text)
idr = Val(frmMgmtDefa.txtIDR.Text)
ifa = Val(frmMgmtDefa.txtIFA.Text)
ifd = Val(frmMgmtDefa.txtIFD.Text)
iffr = Val(frmMgmtDefa.txtIFFR.Text)
iri = Val(frmMgmtDefa.txtIRI.Text)
irr = Val(frmMgmtDefa.txtIRR. Text)
Im = Val(frmMgmtDefa.txtLM. Text)
nirr = Val(frmMgmtDefa.txtNIRR. Text)
didCropRotation = 0
justDidCropRotation = 0
vimx = Val(frmMgmtDefa.txtVIMX.Text)
End Sub

' AddOperation
' Author: Anoop Govil
' Date: May 19, 1996

* addOperation Subroutine:
' - Checks for the operation code selected by
' - auser and calls appropriate form tc enter
' - remaining data.
Public Sub addOperation()

Dim Counter As [nteger

107

Dim resp As Integer
Dim choice As Integer
Dim fileName As String

Counter = |
Do
If (operation(Counter) = UCase(cboOper.Text)) Then
Exit Do
End If
Counter = Counter + 1
Loop While Counter < 100
If Counter < 100 Then
operationCode = operCode(Counter)
If firstTime <> 0 Then
choice = operationCode
[f choice = 71 Then ' Fertilize
JjustDidCropRotation = 0
frmFert.Show
Elself choice = 11 Then ' Sprayer.
justDidCropRotation = 0
frmPest.Show
Elself choice = 2 Then ' Row Planter.
justDidCropRotation = 0
frmRowPIntr.Show
Elself choice = 72 Then ' Irrigation.
justDidCropRotation =0
frmlrrig.Show
Elself (choice = 19 Or choice = 21 Or choice = 23 Or choice =29 _
Or choice = 30 Or choice = 51) Then
JustDidCropRotation = 0
frmCultivate.Show
Elself (choice = 41 Or choice = 28 Or choice = 33) Then
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical +
vbDefaultButton2, "EPIC-View")
If resp = vbYes Then
JjustDidCropRotation = 0
Counter = |
Do
cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As cellFiles(Counter)
celllndex(Counter) = cellindex(Counter) + 1
Print #cellFiles(Counter), "MON(" + Trim(Str(cellindex(Counter))) + ") " + Str(monthSel)
Print #cellFiles(Counter), "DAY(" + Trim(Str(cellindex(Counter))) + "} " + Str(daySel)
Print #cellFiles(Counter), "COD(" + Trim(Str(celllndex(Counter))) + ") " +
Str(operationCode)
Close cellFiles(Counter)
Counter = Counter + |
Loop While Counter <= totCellsSel
End If
End If
End If
End If
End Sub

108

‘Mgmtdefa.frm
* This form allows a user to enter management related variables for selected cells or for
* the whole field as chosen by a user. These are stored in the cell specific “mgmt.utl” file.

Private Sub cmdHelp_Click()
frmMgmDefHIp.Show
End Sub

Private Sub cmdOk_Click()
‘Set global variables.
armn = Val(txtARMN.Text)
armx = Val(txtARMX.Text)
bft = Val(txtBFT.Text)
bir = Val(txtBIR.Text)
drt = Val(txtDRT.Text)
efi = Val(txtEFI. Text)
fdsf = Val(txtFDSF . Text)
fmx = Val(txtFMX.Text)
fnp = Val(txtFNP.Text)
idft = Val(txtIDFT.Text)
idr = Val(mxtIDR.Text)
ifa = Val(txtIFA.Text)
ifd = Val(txtIFD.Text)
iffr = Val(txtIFFR.Text)
iri = Val(txtIR1.Text)
irr = Val(txtIRR.Text)
Im = Val(txtLM.Text)
nirr = Val(txtNIRR. Text)
vimx = Val(txtVIMX.Text)

Hide
End Sub

Private Sub txtARMN_Change()
validateText = txt ARMN. Text
validateData
txtARMN.Text = validateText

End Sub

Private Sub txtARMX Change()
validateText = txtARMX.Text
validateData
txtARMX.Text = validateText

End Sub

Private Sub txtBFT_Change()
validateText = txtBFT.Text
validateData
txtBFT.Text = validateText

End Sub

109

Private Sub txtBIR_Change()
validateText = txtBIR. Text
validateData
txtBIR.Text = validate Text

End Sub

Private Sub txtDRT_Change()
validateText = txtDRT.Text
validateData
txtDRT.Text = validate Text

End Sub

Private Sub txtEFI_Change()
validateText = txtEF1. Text
validateData
txtEFI. Text = validate Text

End Sub

Private Sub txtFDSF_Change()
validateText = txtFDSF.Text
validateData
txtFDSF.Text = validateText

End Sub

Private Sub txtFMX_Change()
validateText = txtFMX.Text
validateData
txtFMX. Text = validateText

End Sub

Private Sub txtFNP_Change()
validateText = txtFNP.Text
validateData
txtFNP.Text = validateText

End Sub

Private Sub txtIDFT_Change()
validateText = txtIDFT.Text
validateData
txtIDFT.Text = validateText

End Sub

Private Sub txtIDR_Change()
validateText = txtIDR.Text
validateData
txtIDR.Text = validate Text

End Sub

110

Private Sub txtIFA_Change()
validateText = txtIFA.Text
validateData
txtIFA.Text = validate Text

End Sub

Private Sub txtIFD Change()
validateText = txtIFD.Text
validateData
txtIFD.Text = validateText

End Sub

Private Sub txtIFFR_Change()
validateText = txtIFFR.Text
validateData
txtIFFR.Text = validateText

End Sub

Private Sub txtIRI_Change()
validateText = txtIRI.Text
validateData
txtIR1.Text = validate Text

End Sub

Private Sub txtIRR_Change()
validateText = txtIRR.Text
validateData
txtIRR.Text = validateText

End Sub

Private Sub txtLM_Change()
validateText = txtLM.Text
validateData
txtLM.Text = validateText

End Sub

Private Sub txtNIRR_Change()
validateText = txtNIRR.Text
validateData
txtNIRR.Text = validateText

End Sub

Private Sub txtVIMX Change()
validateText = txtVIMX. Text
validateData

txtVIMX.Text = validateText
End Sub

112

‘Fert.frm
* This form allows a user to select a fertilizer from a list of fertilizers and other variable
* values related to fertilize operation and store them in the cell specific “mgmt.utl” files.

Option Explicit

Dim fertilizer(1 To 100) As String
Dim fileNum As Integer

Private Sub cmdCancel Click()

Hide
End Sub

Private Sub cmdOk_Click()
Dim Counter As Integer
Dim ind As Integer
Dim resp As Integer
Dim addStr As String
Dim fileName As String

'Get the fertilizer code for selected fertilizer.

ind=1
Do

If fertilizer(ind) = cboFert. Text Then
Exit Do
End If
ind =ind + |
Loop While ind < 100

'Store the management operation if a user chooses to.
Counter = |
[f (ind < 100) Then

resp

= MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")
[f resp = vbYes Then
If (UCase(cboUnit. Text) = "ENGLISH") Then

addStr = "E"

Else

addStr ="

End If
Do

addStr

addStr

cellFiles(Counter) = FreeFile

fileName = "mgmt" + selectedCells(Counter) + ".utl"

Open cellDatasetDir + fileName For Append As cellFiles(Counter)

cellindex(Counter) = cellIndex(Counter) + 1

Print #cellFiles(Counter), "MON(" + Trim(Str(celllndex(Counter))) + ") “ + Str(monthSel)
Print #cellFiles(Counter), "DAY(" + Trim(Str(cellIndex(Counter))) + ") " + Str(daySel)

Print #cellFiles(Counter), "COD(" + Trim(Str(celllndex(Counter))) + ") " + Str(operationCode)
Print #cellFiles(Counter), "FN(" + Trim(Str(cellindex(Counter))) + ") " + Str(ind)

Print #cellFiles(Counter), "FAP(" + Trim(Str(cellindex(Counter))) + ") " + txtAppRate.Text +

Print #cellFiles(Counter), "FDP(" + Trim(Str(celllndex(Counter))) + ") " + txtFertDepth.Text +
Print #cellFiles(Counter), "HUSC(" + Trim(Str(cellIndex(Counter))) + ") " + txtHUSched.Text

113

Close cellFiles(Counter)
Counter = Counter + 1
Loop While Counter <= totCellsSel 'Loop for all selected cells.
Hide
End If
End If
End Sub

Private Sub Form_ Load()
Dim Counter As Integer
Dim fileName As String
Dim code As Integer

'Open fertilizer file and create fertilizer list.
fileNum = FreeFile
fileName = epicDir + "fertdata.dat"
Open fileName For Input As fileNum
Counter = |
Do
If EOF(fileNum) Then
Exit Do
End If
Input #fileNum, code
'These codes do not have any operations.
[f ((code < 6 Or code > 10) And (code < 16 Or code > 20) _
And code <> 25 And (code <27 Or code > 30) And code < 35 _
And code <> 37 And code < 39 And code <= 40 And (code < 42 Or code > 49)) Then
Input #fileNum, fertilizer(Counter)
cboFert.AddItem fertilizer(Counter)
End If
Counter = Counter + |
Loop While Not (EOF(fileNum) And Counter > 100)
cboFert.Listindex =0
Close fileNum
cboUnit.AddItem unitType(0)
cboUnit.AddItem unitType(1)
cboUnit.Listlndex = 0
End Sub

Private Sub txtAppRate Change()
validateText = txtAppRate.Text
validateData
txtAppRate.Text = validateText

End Sub

Private Sub txtFertDepth Change()
validateText = txtFertDepth.Text
validateData
txtFertDepth.Text = validate Text

End Sub

114

Private Sub txtHUSched Change()
validateText = txtHUSched. Text
validateData
txtHUSched.Text = validateText

End Sub

115

‘frmculvt.frm

* This form allows a user to select enter variable values related to cultivation operation
* and store them in the cell specific “mgmt.utl” files.

Private Sub cmdCancel Click()
Hide
End Sub

Private Sub cmdOk_Click()
Dim Counter As Integer
Dim resp As Integer
Dim fileName As String

'Store the management operation of a user chooses to.

Counter =]

resp = MsgBox("Do you wish to store this operation?", vbYesNo + ybCritical + vbDefaultButton2,

"EPIC-View")
[f resp = vbYes Then
Do
cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As cellFiles(Counter)
celllndex(Counter) = cellIndex(Counter) + |
Print #cellFiles(Counter), "MON(" + Trim(Str(cellindex(Counter))) + ") " + Str(monthSel)
Print #cellFiles(Counter), "DAY(" + Trim(Str(celllndex(Counter))) + ") " + Str(daySel)
Print #cellFiles(Counter), "COD(" + Trim(Str(celllndex(Counter))) + ") " + Str(operationCode)
Print #cellFiles(Counter), "HUSC(" + Trim(Str(celllndex(Counter))) + ") " + txtHUSC.Text
Close cellFiles(Counter)
Counter = Counter + |
Loop While Counter <= totCellsSel 'Loop for all selected cells.
Hide
End If
End Sub

Private Sub Form_Activate()
activateForm
End Sub

Private Sub Form Load()
activateForm
End Sub

' ActivateForm
' Author: Anoop Govil
' Date: May 22, 1996

' activateForm Subroutine:

' - Activates the form with a particular title

' - so that same form can be used for more than
' - one management operation.

Public Sub activateForm()

116

If operationCode = 19 Then
frmCultivate.Caption = "EPIC-View - Row Cultivator"
Elself operationCode = 21 Then
frmCultivate.Caption = "EPIC-View - Hoe"
Elself operationCode = 23 Then
frmCultivate.Caption = "EPIC-View - Sweep"
Elself operationCode = 29 Then
frmCultivate.Caption = "EPIC-View - Disk"
Elself operationCode = 30 Then
frmCultivate.Caption = "EPIC-View - Chisel"
Elself operationCode = 51 Then
frmCultivate.Caption = "EPIC-View - Harvest"
End If
End Sub

Private Sub txtHUSC_Change()
validateText = txtHUSC.Text
validateData
txtHUSC.Text = validateText

End Sub

117

‘Irrig.frm
* This form allows a user to enter values for variables related to irrigate operation and
* store the values in the cell specific “mgmt.utl” files.

Option Explicit

Private Sub cmdCancel_Click()
Hide
End Sub

Private Sub emdOk_Click()
Dim Counter As Integer
Dim resp As Integer
Dim addStr As String
Dim fileName As String

'Store the operation if a user chooses to.
Counter = |
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,
"EPIC-View")
If resp = vbYes Then
If (UCase(cboUnit. Text) = "ENGLISH") Then
addStr="E"
Else
addStr=""
End If
Do
cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open celiDatasetDir + fileName For Append As cellFiles(Counter)
celllndex(Counter) = celllndex(Counter) + 1
Print #cellFiles(Counter), "MON(" + Trim(Str(cellIndex(Counter))) + ") " + Str(monthSel)
Print #cellFiles(Counter), "DAY(" + Trim(Str(cellIndex(Counter))) + ") " + Str(daySel)
Print #cellFiles(Counter), "COD(" + Trim(Str(cellindex(Counter))) + ") " + Str(operationCode)
Print #cellFiles(Counter), "lA(" + Trim(Str(cellindex(Counter))) + "} " + txtIA.Text + addStr
Print #cellFiles(Counter), "QVOL(" + Trim(Str(cellIndex(Counter))) + ") " + txtQVol. Text
Close cellFiles(Counter)
Counter = Counter + |
Loop While Counter <= totCellsSel 'Loop for all selected cells.
Hide
End If
End Sub

Private Sub Form_Load()
cboUnit. AddItem unitType(0)
cboUnit. AddItem unitType(1)
cboUnit.ListIndex =0

End Sub

Private Sub txtIA_Change()
validateText = txtIA.Text
validateData

118

txtlA.Text = validateText
End Sub

Private Sub txtQVol Change()
validateText = txtQVol.Text
validateData
txtQVol.Text = validateText

End Sub

119

‘Pest.frm

* This form allows a user to select a pesticide from a list of pesticides and other variable
* values related to sprayer operation and store them in the cell specific “mgmt.utl” files.

Option Explicit

Dim pest

icide(1 To 300) As String

Dim fileNum As Integer

Private Sub cmdCancel_Click()

Hide
End Sub

Private Sub cmdOk_Click()
Dim Counter As Integer
Dim ind As Integer
Dim resp As Integer
Dim addStr As String
Dim fileName As String

'Get the pesticide code.

ind=1
Do

[f pesticide(ind) = cboPest. Text Then
Exit Do

End

If

ind=ind + |
Loop While ind < 100
Counter = 1

If (ind

< 100) Then

'Store the operation if a user chooses to.

resp

= MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")
If resp = vbYes Then
If (UCase(cboUnit.Text) = "ENGLISH") Then

addStr ="E"

Else

addStr = "

End If
Do

addStr

cellFiles(Counter) = FreeFile

fileName = "mgmt" + selectedCells(Counter) + ".utl|"

Open cellDatasetDir + fileName For Append As cellFiles{(Counter)

celllndex({Counter) = cellindex(Counter) + 1

Print #cellFiles(Counter), "MON(" + Trim(str(cellIndex(Counter))) + ") " + str(monthSel)
Print #cellFiles(Counter), "DAY(" + Trim(str(celllndex(Counter))) + ") " + str(daySel)

Print #cellFiles(Counter), "COD(" + Trim(str(celllndex(Counter))) + ") " + str{operationCode)
Print #cellFiles(Counter), "PST(" + Trim(str(cellIndex(Counter))) + ") " + str(ind)

Print #cellFiles(Counter), "PCF(" + Trim(str(cellindex(Counter))) + ") " + txtPCF.Text

Print #cellFiles(Counter), "PAR(" + Trim(str(cellindex(Counter))) + ") " + txtAppRate.Text +

Close cellFiles(Counter)
Counter = Counter + |

Loop While Counter <= totCellsSel ‘Loop for all selected cells.

120

Hide
End If
End If
End Sub

Private Sub Form_Load()
Dim Counter As Integer
Dim fileName As String
Dim pest As String
Dim str As String

'Open pesticide file and create a list of pesticides.

fileNum = FreeFile
fileName = epicDir + "usdapest.dat”
Open fileName For Input As fileNum
Counter = 1
Do
If EOF(fileNum) Then
Exit Do
End If
pest = Input(16, fileNum)
pesticide(Counter) = pest
cboPest. AddItem pesticide(Counter)
Input #fileNum, str
Counter = Counter + 1

Loop While Not (EOF(fileNum) And Counter > 300)

cboPest.Listlndex =0
Close fileNum
cboUnit.AddItem unitType(0)
cboUnit.AddItem unitType(1)
cboUnit.ListIndex = 0

End Sub

Private Sub txtAppRate_Change()
validateText = txtAppRate. Text
validateData
txtAppRate. Text = validateText

End Sub

Private Sub txtPCF_Change()
validateText = txtPCF . Text
validateData
txtPCF.Text = validate Text

End Sub

121

‘Rowplntr.frm
* This form allows a user to select a crop from a list of crops and other variable
* values related to rowplanter operation and store them in the cell specific “mgmt.utl” file.

Option Explicit

Dim Crop(1 To 100) As String
Dim fileNum As Integer

Private Sub cmdCancel Click()
Hide
End Sub

Private Sub emdOk_Click()
Dim Counter As Integer
Dim ind As Integer
Dim resp As Integer
Dim fileName As String

'Get the crop code.
ind= 1|
Do
If Crop(ind) = cboCrop.Text Then
Exit Do
End If
ind=ind + 1
Loop While ind < 100

'Store the operation if a user chooses to.
Counter = |
If (ind < 100) Then
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,
"EPIC-View")
Ifresp = vbYes Then
Do
cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As cellFiles(Counter)
cellindex(Counter) = cellindex(Counter) + 1
Print #cellFiles(Counter), "MON(" + Trim(Str(cellindex(Counter))) + ") " + Str(monthSel)
Print #cellFiles(Counter), "DAY(" + Trim(Str(cellindex(Counter))) + ") " + Str(daySel)
Print #cellFiles(Counter), "COD(" + Trim(Str(cellindex(Counter))) + ") " + Str(operationCode)
Print #cellFiles(Counter), "CRP(" + Trim(Str(cellIndex(Counter))) + ") " + Str(ind)
Print #cellFiles(Counter), "GRZ(" + Trim(Str(cellIndex(Counter))) + ") " + Str(ind)
Print #cellFiles(Counter), "PHU(" + Trim(Str(celllndex(Counter))) + ") " + txtPHU.Text
Close cellFiles(Counter)
Counter = Counter + |
Loop While Counter <= totCellsSel 'Loop for all selected cells.
Hide
End If
End If
End Sub

Private Sub Form_Load()

122

Dim Counter As Integer
Dim fileName As String
Dim code As Integer
Dim crpCode As String
Dim crp As String

'Open the crop file and create the crops list.
fileNum = FreeFile
fileName = epicDir + "usdacrop.txt"
Open fileName For Input As fileNum
Counter = |
Do
[f EOF(fileNum) Then
Exit Do
End If
Input #fileNum, code
If (code <> 9 And code <> 29) Then
crpCode = Input(4, fileNum)
[nput #fileNum, crp
Crop(Counter) = crp
cboCrop.Addltem Crop(Counter)
Else
[nput #fileNum, crp
End If
Counter = Counter + |
Loop While Not (EOF(fileNum) And Counter > 100)
cboCrop.Listindex =0
Close fileNum

End Sub

Private Sub txtPHU_Change()
validateText = txtPHU. Text
validateData
txtPHU.Text = validateText

End Sub

123

‘Outputop.frm

* This form allows a user to select a list of variables to be monitored as a result of running
" EPIC on the selected cells. These can be selected from a list of output variables

* provided. Also a user can opt to select daily, monthly, yearly, annual or all these output
* files to be generated by EPIC. These are stored into “pmt.utl” file which are later loaded
* into “pmnt5300.dat” file.

Option Explicit

Dim fileNum As Integer

Dim cellDatasetDir As String

Dim epicOutputDir As String

Dim soilDir As String

Dim epicDir As String

Dim outputVars(1 To 150) As String
Dim totVarsSel As Integer

Private Sub emdCancel Click()
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbQuestion, "EPIC-View")
If resp = vbYes Then
End
End If
End Sub

Private Sub cmdOk Click()
Dim Counter As Integer
Dim ctr As Integer
Dim resp As Integer
Dim outputStr As String

Counter =0
totVarsSel = 1
outputStr =""
'Restore old settings/store new settings as choosen by a user.
[f (IstOpVars.SelCount > 0 Cr optOldVal.Value = True) Then
resp = MsgBox("Do you wish to close?", vbYesNo + vbQuestion, "EPIC-View")
If resp = vbYes Then
If optNewVal.Value = True Then
fileNum = FreeFile
'Writing a string for output files depending upon user choice.
Open cellDatasetDir + "outfiles.dat" For Output As fileNum
If Not (optDaily.Value = False And optMonthly.Value = False And optYearly = False _
And optAnnual.Value = False And optAllFiles.Value = False) Then
If optDaily.Value = True Then 'For daily output.
outputStr =" -epd "
Elself optMonthly.Value = True Then 'For monthly output.
outputStr =" -epm "
Elself optYearly.Value = True Then 'For yearly output.
outputStr =" -epy "
Elself optAnnual.Value = True Then 'For annual output.
outputStr =" -epa "

124

Elself optAllFiles.Value = True Then
outputStr = " -ep " 'For all above outputs.

End If

Print #fileNum, outputStr
Else 'For none of above outputs.

Print #fileNum, "NONE"
End If
Close fileNum
fileNum = FreeFile
'Creating the output variables file.
Open cellDatasetDir + "prt.utl" For Output As fileNum
‘Writing for default values of daily and monthly outputs.
Print #fileNum, "KD(1) 0"
Print #fileNum, "KM(1) 0"
‘Writing the codes for all output variables selected.

Do
If IstOpVars.Selected(Counter) = True Then
cr=1
'Loop to get the variable's code.
Do
If outputVars(ctr) = IstOpVars.List(Counter) Then
Exit Do
End If
ctr=ctr+ 1

Loop While ctr < 150
If ctr < 150 Then
Print #fileNum, "KY(* + Trim(Str(totVarsSel)) + ") "+ Str(ctr)
totVarsSel = totVarsSel + 1
End If
End If
Counter = Counter + |
Loop While (Counter < IstOpVars.ListCount And totVarsSel < 30)
'If less than 30 variables were selected, write '0' for all
' remaining variable places.
If totVarsSel < 30 Then

Do
Print #fileNum, "KY(" + Trim(Str(totVarsSel)) + ") 0"

totVarsSel = totVarsSel + 1
Loop While totVarsSel <= 30
End If
Close fileNum
End If
End

End If
Else 'In case, no variable is selected.
If optNewVal.Value = True Then

resp = MsgBox("The output variables are not selected!", vbInformation, "EPIC-View")

End If
End If
End Sub

Private Sub Form Load()

Dim Counter As Integer

125

Dim fileName As String
Dim ctr As Integer

'Get directory paths.

fileNum = FreeFile

Open "c\EVPaths.txt" For Input As fileNum

Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir
Close fileNum

'Open output variables file and create a list of output variables.
fileNum = FreeFile
fileName = epicDir + "opvarlst.dat"
Open fileName For Input As fileNum
Counter = |
totVarsSel =0
txtTotSel. Text = Str(IstOpVars.SelCount)
Do
If EOF(fileNum) Then
Exit Do
End If
Input #fileNum, ctr, outputVars{Counter)
IstOpVars.AddItem outputVars(Counter)
Counter = Counter + |
Loop While Not (EOF(fileNum) And Counter > 150)
Close fileNum

End Sub

Private Sub IstOpVars Click()
Dim resp As Integer

txtTotSel. Text = (IstOpVars.SelCount)
If IstOpVars.SelCount > 30 Then
resp = MsgBox("More than 30 output variable(s) have been selected! Last selected variable(s) will
be ignored.", vbCritical, "EPIC-View")
End If
End Sub

Private Sub IstOpVars_DbIClick()
Dim resp As Integer

txtTotSel. Text = (IstOpVars.SelCount)
If IstOpVars.SelCount > 30 Then
resp = MsgBox("More than 30 output variable(s) have been selected! Last selected variable(s) will be
ignored.", vbCritical, "EPIC-View")
End If
End Sub

Private Sub optNewVal Click()
optDaily.Enabled = True
optMonthly.Enabled = True

126

optYearly.Enabled = True
optAnnual.Enabled = True
optAllFiles.Enabled = True
1blOpVars.Enabled = True
1blTotSel.Enabled = True
IstOpVars.Enabled = True
Frame2.Enabled = True
End Sub

Private Sub optOldVal_Click{)
optDaily.Enabled = False
optMonthly.Enabled = False
optYearly.Enabled = False
optAnnual.Enabled = False
optAllFiles.Enabled = False
IblOpVars.Enabled = False
IblTotSel.Enabled = False
IstOpVars.Enabled = False
Frame2.Enabled = False

End Sub

127

APPENDIX G

AVENUE® CODE FOR INTERFACING

128

" Epic.constantData

' This Script writes total number of cells, available in the gridded

' coverage, to file "selected.cll" and then invokes the constant data

" entry user interface.

' Prepared by Anoop Govil

' Dated 5/19/96
selectedCell=(_cellDatasetDir.AsString+"selected.cll"). AsFileName
selectedFile = TextFile.Make(selectedCell, #FILE_ PERM_WRITE)
selectedFile. Write(_totalCells.AsString, _totalCells.AsString.Count)
selectedFile. WriteElt{_newLineChar)

selectedFile.Close

_epicDir.AsFileName.setCWD

command = _exeDir+"constdat.exe"

system.execute(command)

' Disable the Constant Data menu option.

_constEnableFlag =0

' Epic.DispChart

' This Script displays Chart as per user choices.
' Prepared by Anoop Govil

' Dated 5/19/96

' Create an output variables list.
outputVarList = List.Make
theTable = av.GetProject.FindDoc(_mainTable)
resTable = av.GetProject.FindDoc(_resultsTable)
for each aField in resTable.GetVTab.GetFields
if((aField.GetAlias <> cellldFld) And (aField.GetAlias <= "")
And (aField.GetAlias <> "Years") And (aField.GetAlias <> "Botch.da"))then
outputVarList.Add(aField.GetAlias)
end
end
'for each item in outputVarList
' MsgBox.Info(item, "EPIC-View")
'end
'userList = MsgBox.Multilnput("", "EPIC-View",

' Display the chart properties option.
aChart = Chart.MakeUsingDialog(resTable.GetVTab)
if(aChart <= nil) then
aChart.GetWin.Open
end

129

' Epic.displayMap

' This Script loads the results table, created as a result of parsing the

" EPIC output, to the project, joins it with the main theme's attribute

' table and creates new themes depending upon the output variables selected
' by a user and displays the themes in the current field view in different

' colors.

' Prepared by Anoop Govil

' Dated 5/14/96

' Add the comma delemited file created by parser as a new table in the project and join it with
' the main attribute table on Cell Id.

theTable = av.GetProject.FindDoc(_mainTable)

theTable Win=theTable.GetWin

' Removes any fields joined to the current table

theVTab = theTable.GetVTab

if (theVTab.IsBase.Not) then
av.GetProject.SetModified(true)

end

theVTab.UnjoinAll

resTable = av.GetProject.FindDoc(_resultsTable)
if(resTable = nil) then
f=(_epicOutputDir+_resultsTable). AsFileName
v = VTab.Make(f, FALSE, FALSE)
if (v.HasError) then
MsgBox.Error("The file "' + f.GetBaseName + " is not valid.", ")
else
t = Table.Make(v)
t.SetName(v.GetName)
tField = t.GetVTab.FindField(_cellldFid)
t.SetActiveField(tField)
tableField = theTable.GetVTab.FindField(_cellldFId)
theTable.SetActiveField(tableField)
theTable.GetVTab.Join(tableField,t. GetVTab,tField)
end
else
resField = resTable.GetVTab.FindField(_cellldFld)
resTable.SetActiveField(resField)
tableField = theTable.GetVTab.FindField(_cellldFid)
theTable.SetActiveField(tableField)
theTable.GetVTab.Join(tableField,resTable.GetVTab,resField)
end
' Replicate main theme into new themes depending upon
' output variables selected by a user.
epicProject=av.getProject
fieldView=epicProject.FindDoc(_mainView)

' To make sure that only main theme is active.

130

for each aTheme in fieldView.GetThemes

if(aTheme.GetName = _mainTheme) then
aTheme.SetActive(True)

else
aTheme.SetActive(False)

end

end
fieldView.CopyThemes

resTable = av.GetProject. FindDoc(_resultsTable)

Initialize theme colors.

ri =200
gl =200
bl =250
r2 =250
g2 =150
b2 =150

for each aField in theTable.GetVTab.GetFields

fieldExists = resTable.GetVTab.FindField(aField.GetAlias)
if((fieldExists <> nil) And (fieldExists.GetAlias <> _cellldFld) And (fieldExists.GetAlias <> ")
And (fieldExists.GetAlias < "Years") And (fieldExists.GetAlias <> "field"))then
fieldView.Paste
for each aTheme in fieldView.GetThemes
iffaTheme.GetName = _mainTheme) then
aTheme.SetActive(True)
else
aTheme.SetActive(False)
end
end
resultTheme = fieldView.FindTheme(_mainTheme)
resultTheme.SetName(aField.GetAlias)
resultLegend = resultTheme.GetLegend
resField = resultTheme.GetFTab.FindField(aField.GetAlias)
resultLegend.Interval(resultTheme.GetFTab, resField, 5)
resultLegend.Quantile(resultTheme.GetFTab, resField, 5)
resultLegend.SetField(resField)
startColor = Color.Make
endColor = Color.Make
startColor.SetRgbList({r1, gl, b1}) '200, 200, 250
endColor.SetRgbList({r2, g2, b2}) 250, 150, 150
resultLegend.RampColors(startColor, endColor)
' Change colors for the next theme.

rl=rl+30
bl =bl +20
gl=gl+10

if (r1 > 255) then
rl =0+(rl -255)
end
if (bl > 255) then
bl =0 + (bl - 255)
end
if (g1 > 255) then

131

gl =0+ (gl - 255)

end

2=r2+70

b2 =b2 + 60

g2 =g2+50

if (r2 > 255) then
r2=0+(r2-255)

end

if (b2 > 255) then
b2 =0 + (b2 - 255)

end

if (g2 > 255) then
g2 =0+ (g2-255)

end

resultTheme.SetVisible(False)
if (resultTheme.ls(FTHEME)) then
sel = resultTheme.GetFTab.GetSelection

sel.ClearAll 'Clear all selections of added themes.

resultTheme.GetFTab.UpdateSelection
end
end
end

' Epic.displayTable
' Opens and displays the results table.
' Prepared by Anoop Govil
' Dated 5/23/96
epicProject=av.getProject
resTable=epicProject. FindDoc(_resultsTable)
resWin=resTable.GetWin
if (resWin.lsOpen.Not)then
resWin.Open
else
resWin.Activate
end

132

' Epic.getGISData

' This script retrieves elev, slope, crop, soil series

' field values of the selected records from the theme's table
' Prepared by Anoop Govil

' Dated 2/27/96

' Reset any previously existing selectCells list.

totFiles=_selectCellsList.Count

index = totFiles - 1

while (index >= 0)
_selectCellsList.Remove(index)
index = index - |

end

theTable = av.GetProject.FindDoc(_mainTable)

if(nil=theTable)then
MsgBox.Error("The table: "+_mainTable+", not found.", "Epic")
exit

end

theTableWin=theTable.GetWin

if (theTableWin.IsOpen.Not)then
theTableWin.Open

else
theTableWin.Activate

end

theTableWin.Minimize

theVTab = theTable.GetVTab

myVTab = theVTab.GetSelection

if (0=theVTab.GetSelection.Count) then
MsgBox.Error("There are no cells selected to extract spatial attributes.”,"EPIC-View")
exit

end

1

soilField = theVTab.FindField("Series")
sortField = theVTab.FindField(cellldFid)
theTable.Sort(sortField, False)

'Show status bar

av.ShowMsg("creating files...")

canceled = False

‘av.ShowStopButton

statusindex =0

'av.SetStatus (statusIndex)

selRecords=theVTab.GetNumSelRecords

statusIncrement = 100 / selRecords

for each rec in myVTab
cellldField = theVTab.FindField(_cellldFid)
cellld = theVTab.ReturnValueString(cellldField, rec)
aFileName=(_cellDatasetDir+"form"+cellld+".utl").AsFileName
aTextFile = TextFile. Make(aFileName, #FILE PERM_WRITE)
_selectCellsList.Add(cellld)

133

'Get soil series

if(_userSoillsAbsent = False)then
soilSeries = theV Tab.ReturnValueString(soilField, rec)
soilSeries = "@"+_soilDir+soilSeries+".utl"
aTextFile. Write(soilSeries, soilSeries.Count)
aTextFile. WriteElt(_newLineChar)

end

'Get elevation value

elevField = theVTab.FindField("Elev")

elev = theVTab.RetumValueNumber(elevField, rec)
elev="ELEV "+elev.AsString

'Write to the text file

aTextFile. Write(elev.AsString, elev.AsString.Count)
aTextFile.WriteElt(_newLineChar)

‘Get slope value

slopeField = theVTab.FindField("Slope")

slope = theVTab.ReturnValueNumber(slopeField, rec)
slope = slope / 100

slope="S "+slope.AsString

'Write to the text file

aTextFile. Write(slope, slope.AsString.Count)
aTextFile. WriteElt(_newLineChar)

'Get area value

areaField = theV Tab.FindField("Area")

area = theVTab.ReturnValueNumber(areaField, rec)
area = area/ 10000

areaStr="WSA "+area.AsString

"Write to the text file

aTextFile.Write(areaStr, areaStr.AsString.Count)
aTextFile.WriteElt(_newLineChar)

'Get Runoff Curve number value(if user specified

'soil is absent).

if(_userSoillsAbsent = False)then
cNumField = theVTab.FindField("Cn2")
cNum = theV Tab.ReturnValueNumber(cNumField, rec)
cNum="CN2 "+cNum.AsString
'Write to the text file
aTextFile.Write(cNum, cNum.AsString.Count)
aTextFile. WriteElt(_newLineChar)

end

'Store slope length after calculating it.
area = area * 10000

side = area.Sqrt

SL = side * 2.5qrt

SLStr="SL "+ SL.AsString
aTextFile. Write(SLStr, SLStr.Count)
aTextFile. WriteElt{ newLineChar)

134

'Store pointer to cell's corresponding mgmt file.
mgmtFile = "@"+_cellDatasetDir+"mgmt"+cellld+" ut]"
aTextFile. Write(mgmtFile, mgmtFile.Count)

aTextFile. WriteElt(_newLineChar)

aTextFile.Close

t

statusIndex = statusIndex + statusIncrement
continued = av.SetStatus (statusindex)

" if(Not continued) then

' canceled = true

' break

' end

L

end
if(canceled) then
av.ShowMsg("Process interrupted.")
else
MsgBox.Info("Extracted Spatial data from selected cells.", "Epic")
end
" Enable the Output Options and Run Simulator menu options.
_opOptionEnableFlag = 1
_runEpicEnableFlag = True

' Epic.mgmitData

' This Script provides a user with choices to make a set of management practices
' generic or select specific cells and enter management practices for

' those cells by invoking Management Practices data entry user interface.

' Prepared by Anoop Govil

' Dated 5/23/96

' Reset the selectedCells list.

totFiles=_selectCellsList.Count

index = totFiles - 1

while (index >= 0)
_selectCellsList.Remove(index)
index = index - 1

end

theTable = av.GetProject.FindDoc(_mainTable)

if(nil=theTable)then
MsgBox.Error("The table: "+ _mainTable+", not found.", "Epic")
exit

end

theTableWin=theTable.GetWin

if (theTableWin.lsOpen.Not)then
theTableWin.Open

else
theTableWin.Activate

135

end
theTableWin.Minimize

genericFlag = false
theVTab = theTable.GetVTab
myVTab = theVTab.GetSelection

" If no cells are selected, give user a choice to make management practices generic.
if (0=theVTab.GetSelection.Count) then
genericFlag = MsgBox.YesNo("Do you wish to make this set of management practices generic for the
whole field?", "EPIC-View", False)
if(genericFlag.Not)then
MsgBox.Error("In that case, please select the cells for entering management practices.","EPIC-View")
exit
end
end
sortField = theVTab.FindField(_cellldFld)
theTable.Sort(sortField, False)

' If cells are selected, build the selectedCells list.

for each rec in myVTab
cellldField = theV Tab.FindField(_cellldFld)
cellld = theVTab.ReturnValueString(cellldField, rec)
_selectCellsList. Add(cellld)

end

1

' Write selected cells ids to file selected.cll.
selectedCell=(_cellDatasetDir.AsString+"selected.cll").AsFileName
selectedFile = TextFile.Make(selectedCell, #FILE_PERM_WRITE)
path=_epicOutputDir

selectedFile. Write(path, path.Count)

selectedFile. WriteElt(_newLineChar)

selectedFile. Write(_totalCells.AsString, _totalCells.AsString.Count)
selectedFile. WriteElt(_newLineChar)
selectedFile.Write(genericFlag.AsString, genericFlag. AsString.Count)
selectedFile.WriteElt(_newLineChar)

if (genericFlag.Not) then
for each cellld in _selectCellsList
selectedFile. Write(cellld, cellld.Count)
selectedFile.WriteElt(_newLineChar)
end
end
selectedFile.Close
'Run Visual Basic management data entry screen.
command = _exeDir+"mgmt.exe”
system.execute(command)

' Epic.outputOptions

' This Script allows a user to enter output options to be monitored
' by providing an Output Options data entry user interface.

' Prepared by Anoop Govil

' Dated 5/24/96

Ll

command = _exeDir+"outputop.exe"

system.execute(command)

' Disable Output Options menu option and enable Run Simulator menu option.
_opOptionEnableFlag = 0

_runEpicEnableFlag = 1

" Epic.removeThemes

' This Script removes the added themes (except the main theme), if
' a user chooses to do so.

' Prepared by Anoop Govil

' Dated 5/12/96

epicProject=av.getProject
fieldView=epicProject.FindDoc(_mainView)
if(fieldView.GetThemes.Count > 1) then
dolt = MsgBox.YesNo("Do you wish to delete all the added themes?", "EPIC-View", TRUE)
if(dolt) then
totalThemes = fieldView.GetThemes.Count
while(total Themes > 1)
themesList = fieldView.GetThemes
for each aTheme in themesList
if(aTheme.GetName <= _mainTheme) then
fieldView.DeleteTheme(aTheme)
totalThemes = totalThemes - |
break
end
end
end
end
end
' Activate main theme.
for each aTheme in fieldView.GetThemes
if(aTheme.GetName = _mainTheme) then
aTheme.SetActive(True)
else
aTheme.SetActive(False)
end
end

137

" Epic.runEpic

' This Script creates various batch files to complete the cell specifie
" input datasets and then invoke EPIC on all of selected cells' input
' datasets and finally invoke the parser to create a comma delimited
' file from the EPIC output files.

' Prepared by Anoop Govil

' Dated 2/28/96

' Check if any cells are selected to run EPIC.

cellsSelected=_selectCellsList.Count

if(0=cellsSelected)then
MsgBox.Error("There are no cells selected to run the model.", "EPIC-View")
exit

end

theTable = av.GetProject.FindDoc(_mainTable)

theTableWin=theTable.GetWin

theVTab = theTable.GetVTab

myVTab = theV Tab.GetSelection

if (0=theVTab.GetSelection.Count) then
MsgBox.Error("There are no cells selected.”, "EPIC-View")
exit

end

' Removes any fields joined to the current table

if (theVTab.IsBase.Not) then
av.GetProject.SetModified(true)

end

theVTab.UnjoinAll

'Removes the added table "form.prs" from project.

theProject = av.GetProject

theTable = theProject. FindDoc(_resultsTable)

if(nil <> theTable) then
theProject.RemoveDoc(theTable)

end

' Removes the added themes.
epicProject=av.getProject
fieldView=epicProject.FindDoc(_mainView)
if(fieldView.GetThemes.Count > 1) then
totalThemes = fieldView.GetThemes.Count
while(totalThemes > 1)
themesList = fieldView.GetThemes
for each aTheme in themesList
if(aTheme.GetName <> _mainTheme) then
fieldView.DeleteTheme(aTheme)
total Themes = totalThemes - 1
break

138

end
end
end
end
" If a user selected to have daily, monthly, yearly, annual of all of these
" EPIC output files, a string is written to a file "outfiles.dat" which
" is read here and appropriate command to run EPIC is formulated.
userString=""
userPreference=(_cellDatasetDir+"outfiles.dat"). AsFileName
if(File.Exists(userPreference)) then
stringFile=TextFile.Make(userPreference, #FILE_ PERM_READ)
while(stringFile.IsAtEnd.Not)
listChar = stringFile.ReadElt
if(listChar = 10.AsChar.AsString) then
break
else
userString = userString + listChar
end
end
if (userString = "NONE") then ' If no output file is required.
userString=""
end
end

' Creating various batch files for running.
makeDataset=(_cellDatasetDir.AsString+"create.bat").AsFileName
createFile = TextFile.Make(makeDataset, #FILE_PERM_WRITE)
runEpic=(_cellDatasetDir,AsString+"runepic.bat").AsFileName
runEpicFile = TextFile.Make(runEpic, #FILE_ PERM_WRITE)
selectedCell=(_cellDatasetDir.AsString+"selected.cll").AsFileName
selectedFile = TextFile.Make(selectedCell, #FILE_ PERM_WRITE)
path=_epicOutputDir

selectedFile. Write(path, path.Count)
selectedFile.WriteElt(_newLineChar)

'Show status bar
av.ShowMsg("creating files...")
canceled = False
av.ShowStopButton
statusindex =0

av.SetStatus (statusIndex)
totFiles= selectCellsList.Count
statusIincrement = 1C0 / totFiles

' Writing commands in the batch files.

for each cellld in _selectCellsList
command=_epicDir+"ewq "+userString+_cellDatasetDir+"form"+cellld+" "+ _epicOutputDir
selectedFile. Write{cellld, cellid.Count)
selectedFile. WriteElt(_newLineChar)
runEpicFile. Write(command, command.Count)

139

runEpicFile. WriteElt(_newLineChar)
command=_epicDir+"util epic "+_cellDatasetDir+"form"+cellld+".dat @"+
_cellDatasetDir+"form"+cellld+".utl"

createFile. Write(command, command.Count)
createFile. WriteElt(_newLineChar)
statusIndex = statusindex + statusIncrement
continued = av.SetStatus (statusindex)
if(Not continued) then

canceled = true

break
end

end
if(canceled) then
av.ShowMsg("Process interrupted.")
else
av.ShowMsg("Created command file for running simulator.")
end
outputOptionString=(_epicDir+"util prnt prt5300.dat @"+ cellDatasetDir+"prnt.utl"). AsFileName
if (File.Exists((_cellDatasetDir+"pmt.utl").AsFileName)) then
createFile. Write(outputOptionString. AsString, outputOptionString.AsString.Count)
createFile. WriteElt{ newLineChar)
end
createFile. Write(runEpic.AsString, runEpic. AsString.Count)
createFile, WriteElt(_newLineChar)
createFile.Close
command=_exeDir+"parse.exe"
runEpicFile. Write(command, command.Count)
runEpicFile. WriteElt(_newLineChar)
runEpicFile.Close
selectedFile.Close
_epicDir.AsFileName.setCWD

" Invoking a waitshell to run EPIC.

command = _exeDir+"DSETMAKE.EXE Beavis Epic.returnToAV"
system.execute(command)

' Disabling Run Simulator menu option.

_runEpicEnableFlag = False

' Enabling the Display Map menu option.

_displayEnableFlag=True

140

' Epic.showExtent

' This script opent the main view and activates the main theme.
' Prepared by Anoop Govil

' Dated 2/24/96

epicProject=av.getProject
fieldView=epicProject.FindDoc(_mainView)

if(nil=fieldView) then
MsgBox.Error("Field View document does not exist", "EPIC-View")
exit

end

fieldViewWin=fieldView.GetWin
if(fieldViewWin.IsOpen.Not) then
fieldViewWin.Open
else
fieldViewWin.Activate
end

layersTheme=fieldView.FindTheme(_mainTheme)

if(nil=layersTheme) then
MsgBox.Error("Theme: "+ mainTheme+" does not exist", "EPIC-View")
exit

end

if(layersTheme.IsVisible.Not) then
layersTheme.SetVisible(True)

end

cropTable=layersTheme.GetFTab

selected=cropTable.GetSelection

selected.ClearAll

cropTable.SetSelection(selected)

if(layersTheme.IsActive.Not) then
layersTheme.SetActive(True)
end

fieldView.GetDisplay.SetExtent(layersTheme.GetExtent.Scale(1.1))
‘av.Run("View.SelectPoint", "")

141

' Epic.SoilData

' This Script loads soil and curve number to constant dataset by invoking
' a soil data entry user interface. This menu option is enabled only

" if a user does not haves his own soil files.

' Prepared by Anocop Govil

' Dated 5/18/96

command = _exeDir+"soil.exe"

system.execute(command)

_constEnableFlag = 2

_soilEnableFlag = False

' Epic.startUp

' This script creates global variables for various directory paths set by user.
' Prepared by Anoop Govil

' Dated 5/15/96

' Global variables used for enabling various menu options.
_selectCellsList = List.Make
_newLineChar = 10.AsChar
_displayEnableFlag = False
_soilDatalsEnabled = False
_constEnableFlag = 0
_soilEnableFlag = False
_runEpicEnableFlag = 0
_opOptionEnableFlag = 0
_userSoillsAbsent = True
_totalCells = |
pathsFile = "c:\EVPaths.txt".AsFileName
if(File.Exists(pathsFile).Not) then
labelList = List.Make
labelList.Add("Cell Dataset Directory:")
labelList. Add("Epic Output Directory:")
labelList.Add("Soil Data Directory:")
labelList. Add("EPIC Directory:")
labelList. Add("EXE Directory Name:")
labelList. Add("Base Dataset Name:")
labelList. Add("Cell Id Field Name:")
labelList. Add("Results Table Name:")
labelList. Add("Main Attribute Table Name:")
labelList. Add("Main Field View Name:")
labelList. Add("Main Theme Name:")
labelList. Add("Main Theme Path:")

defaultList = List.Make

defaultList. Add("c:\EPICView\Temp\")
defaultList. Add("c:\EPICView\Temp\")
defaultList. Add("c:\EPICView\Soil\")
defaultList. Add("c:\epic5300\")
defaultList. Add("c:\EPICView\EXEDir\")
defaultList. Add("const.dat")

defaultList. Add("Hru2 ")

defaultList. Add("form.prs")

142

defaultList. Add("Attributes of Hru2")
defaultList. Add("Botchlet 1/4 section")
defaultList. Add("Hru2")

defaultList. Add("c:\EPICView\Hru")

userList=MsgBox.Multilnput("Globals Initialization:", "EPIC-View", labelList, defaultList)

if(userList = nil) then
_cellDatasetDir = defaultList.Get(0)
_epicOutputDir = defaultList.Get(1)
_soilDir = defaultList.Get(2)
_epicDir = defaultList. Get(3)
_exeDir = defaultList.Get(4)
_baseDataset = defaultList. Get(5)

' New additions
_cellldFld = defaultList.Get(6)
_resultsTable = defaultList.Get(7)
_mainTable = defaultList.Get(8)
_mainView = defaultList.Get(9)
_mainTheme = defaultList.Get(10)
_mainThemePath= defaultList.Get(11)

else
_cellDatasetDir = userList.Get(0)
_epicOutputDir = userList.Get(1)
_soilDir = userList.Get(2)
_epicDir = userList.Get(3)
_exeDir = userList.Get(4)
_baseDataset = userList.Get(5)

' New additions

_cellldFld = userList.Get(6)

_resultsTable = userList.Get(7)

_mainTable = userList.Get(8)

~mainView = userList.Get(9)

_mainTheme = userList.Get(10)

_mainThemePath= userList.Get(11)
end

‘write to paths file.
pathFile = TextFile.Make(pathsFile, #FILE_PERM_WRITE)
pathFile. Write(_cellDatasetDir, _cellDatasetDir.Count)
pathFile. WriteElt(_newLineChar)
pathFile.Write(_epicOutputDir, _epicOutputDir.Count)
pathFile. WriteElt(_newLineChar)
pathFile. Write(_soilDir, _soilDir.Count)
pathFile.WriteElt(_newLineChar)
pathFile.Write(_epicDir, epicDir.Count)
pathFile.WriteElt(_newLineChar)
pathFile.Write(_exeDir, exeDir.Count)
pathFile. WriteElt(_newLineChar)
pathFile.Write(_baseDataset, _baseDataset.Count)
pathFile.WriteElt(_newLineChar)
pathFile.Write(_cellldFid, _cellldFld.Count)

143

pathFile. WriteElt(_newLineChar)
pathFile. Write(_resultsTable, _resultsTable.Count)
pathFile. WriteElt(_newLineChar)
pathFile.Write(_mainTable, _mainTable.Count)
pathFile. WriteElt(_newLineChar)
pathFile. Write(_mainView, mainView.Count)
pathFile. WriteElt(_newLineChar)
pathFile.Write(_mainTheme, mainTheme.Count)
pathFile. WriteElt(_newLineChar)
pathFile.Write(_mainThemePath, mainThemePath.Count)
pathFile. WriteElt(_newLineChar)
pathFile.Close
' Create a new view at the time of installation.
fieldView = View.Make
theSrcName = SrcName.Make(_mainThemePath+" polygon")
if (theSrcName = nil) then
msgbox.Error("Invalid SrcName"”, "")
exit
end
mainTheme = Theme.Make(theSrcName)
mainTheme.SetActive(True)
mainTheme.SetVisible(True)
mainThemeLegend = mainTheme.GetLegend
aField = mainTheme.GetFTab.FindField("Elev")
mainThemelLegend.Interval(mainTheme.GetFTab, aField, 5)
mainThemeLegend.SetField(aField)
mainThemeLegend.RampColors(Color.GetBlue, Color.GetCyan)
mainTheme.SetName(_mainTheme)
fieldView.AddTheme(mainTheme)
fieldView.SetName(_mainView)
epicProject = av.GetProject
epicProject. AddDoc(fieldView)
mainTheme.EditTable
av.GetProject.Save
else
eachltem=""
items=0
pathFile = TextFile.Make(pathsFile, #FILE_PERM_READ)
while(pathFile.IsAtEnd.Not)
aChar = pathFile.ReadElt
iftaChar = 10.AsChar.AsString) then
if(items = 0)then
_cellDatasetDir = eachltem
elseif(items = 1)then
_epicOutputDir = eachltem
elseif(items = 2)then
_soilDir = eachltem
elseif(items = 3)then
_epicDir = eachltem
elseif(items = 4)then
_exeDir = eachltem
elseif(items = 5)then
_baseDataset = eachltem
elseif(items = 6)then

144

_cellldFId = eachltem
elseif(items = 7)then
_resultsTable = eachltem
elseif(items = 8)then
_mainTable = eachltem
elseif(items = 9)then
_mainView = eachltem
elseif(items = 10)then
_mainTheme = eachltem
elseif(items = 11)then
_mainThemePath = eachltem

end

eachltem=""

items = items + 1
else

eachltem = eachltem + aChar
end

end 'end of while loop
end ' End of main if condition
' Check if user specified soil is present (used for update property
' of s0il data tool option). Also calculate the total number of cells
" present in the gridded coverage.
theTable = av.GetProject.FindDoc(_mainTable)
if(nil=theTable)then
MsgBox.Error("The table: "+_mainTable+", not found.", "Epic")
exit
end
theTableWin=theTable.GetWin
if (theTableWin.lsOpen.Not)then
theTableWin.Open
else
theTableWin.Activate
end
theTable Win.Minimize

theVTab = theTable.GetVTab
soilField = theVTab.FindField("Series")
if(soilField <= nil)then
for each rec in theVTab
soilSeries = theV Tab.ReturnVatueString(soilField, rec)
if(soilSeries.IsNull.Not)then
_userSoillsAbsent = False
end
_totalCells=_totalCells+1
end
else
for each rec in theVTab
_totalCells=_totalCells+]
end
end
theTableWin.Close

145

' Epic.updateConstData

' To enable Constant Data Tool menu option.
' Prepared by Anoop Govil

' Dated 5/22/96

if (_constEnableFlag = 2)then
Self.SetEnabled(True)
exit
elseif (_constEnableFlag = | And _userSoillsAbsent.Not)then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

' Epic.updateGIlSselection

' To update the menu option Spatial Data.
' Prepared by Anoop Govil

' Dated 2/27/96

epicProject=av.GetProject
fieldView=epicProject. FindDoc(_mainView)

if(nil=fieldView) then
Self.SetEnabled(False)
exit
elseif(fieldView.IsActive) then
layersTheme=fieldView.FindTheme(_mainTheme)
if(nil=layersTheme) then
Self.SetEnabled(False)
Exit
elseif(layersTheme.IsVisible) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end
else
Self.SetEnabled(False)
Exit
end

146

' Epic.updateRunEpic

' To enable Run Epic menu option.
' Prepared by Anoop Govil

' Dated 5/22/96

if(_runEpicEnableFlag = 1) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

' Epic.updateDispChart
' To update the menu option Chart in Display
' Prepared by Anoop Govil
" Dated 5/22/96
epicProject=av.getProject
ResTable=epicProject.FindDoc{_resultsTable)
if(resTable <> nil) then
loadedResultsTable = True
else
loadedResultsTable = False
end
fieldView=epicProject. FindDoc(_mainView)
if((loadedResultsTable) And (_displayEnableFlag)) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

" Epic.updateDispMap
' To update the menu option Map tn Display
' Prepared by Anoop Govil
' Dated 5/22/96
epicProject=av.getProject
fieldView=epicProject.FindDoc{ mainView)
if((fieldView.GetThemes.Count = 1) And (_displayEnableFlag)) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

147

' Epic.updateDispTable

' To update the menu option Table in Display
' Prepared by Anoop Govil

' Dated 5/22/96

epicProject=av.getProject
ResTable=epicProject.FindDoc(_resultsTable)
if(resTable <> nil) then
loadedResultsTable = True
else
loadedResultsTable = False
end
fieldView=epicProject.FindDoc(_mainView)
if{ (loadedResultsTable) And (_displayEnableFlag)) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

' Epic.updateOpOption
' To enable Output Options menu option.
' Prepared by Anoop Govil
' Dated 5/22/96
if(_opOptionEnableFlag = 1) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

' Epic.updateRemoveThm
' To updates the menu option Remove Themes in Display menu.
' Prepared by Anocop Govil
' Dated 5/22/96
epicProject=av.getProject
fieldView=epicProject.FindDoc(_mainView)
if((fieldView.GetThemes.Count > 1) And (_displayEnableFlag)) then
Self.SetEnabled(True)
exit
else
Self.SetEnabled(False)
exit
end

148

' Epic.updateSoilData

' To enable Soil Data Tool menu option.
' Prepared by Anoop Govil

' Dated 5/22/96

if(_userSoillsAbsent And _soilEnableFlag)then
Self.SetEnabled(True)
_soillsEnabled=True
exit
else
Self.SetEnabled(False)
exit
end

' Epic. WeatherData

' This Script loads weather file to constant dataset by providing
' a weather data entry user interface.

' Prepared by Anoop Govil

' Dated 5/16/96

command = _exeDir+"weather.exe"
system.execute(command)

' Enable Constant Data and Soil Data menu options.
_constEnableFlag = 1

_soilEnableFlag = True

149

// Parse.c
ftt**t*t*t***tt****‘**ttttttttttit*‘t*tttttt*#ttt*ttt#tt*ti*t*#t*ttt#ttttt*“!*t'ttt*t
*

% This program creates a file with comma delemited records which can be loaded back into

* ArcView as a table.
*

t#**tit*ttttit#*t**lit*#t*##*t*t‘*tl**t**‘*t*t*****t**F***0*.*ti*t*!l"‘***tt**#*#t#t/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Globals!!

char lastChar, CELL_1D FIELD[20], PRS FILE[20];

long filePosition=0;

int newLines=0, print=0, firstFiveFields=1, doubleQuotes=0;
int ignoreMoreSpaces=0, numOfCommas=0;

void insertComma(FILE *, char);

int writeToFile(char *, char *, int);

void displayQuit(void),

void main()
{
int flag=1, retVal;
FILE *fp, *fpath;
char path(80], fsel[80], id[10];
char cellDir[20], epicOutputDir[20], soilDir[20], epicDir[20], exeDir[20], baseData[20];

strepy(fsel, "c:\EVPaths.txt");

if(!(fpath = fopen(fsel, "r")))

{
printf("'File %s not found. Aborting...\n", fsel);
exit(0);

H

fscanf(fpath, "%s%s%s%s%s%s%s%s", cellDir, epicOutputDir, soilDir, epicDir, exeDir,
baseData, CELL ID FIELD, PRS FILE);

strepy(fsel, cellDir);

strcat(fsel, "selected.cll");

if(1{fp = fopen(fsel, "r")))

{
printf("File %s not found. Aborting...\n", fsel);
exit(0);

}

fscanf(fp, "%s", path);

while(!feof(fp))

{
fscanf(fp, "%s", id);
if(strlen(id)==0)break;
retVal = writeToFile(path, id, flag);
if(retVal ==-1)
{

printf("Error encountered while parsing. Interrupted in middle!\nAborting...\n");
displayQuit(),

150

fclose(fp);

fclose(fpath);
exit(0);
}
flag=0;
strepy(id, ");
}
printf("Successfully completed parsing.\n");
displayQuit();
fclose(fp);
fclose(fpath);

)

JRA ok ok kR koo kR ok kR R ok ok ok ok ok R Rk Rk Rk kR kR Rk kR Rk kR R Rk kR R R Rk Rk

writeToFile()

This function creates single file with comma delimited records from file(s) created
by EPIC as output.

* % % ¥ *

BRSO Rk AR KRR R OR R KRR R R R KRR O R A R R KRR R R AR KK R R R R R R R AR R R R R R RN KRR R A KRR

int writeToFile(char *path, char *cellld, int headerFlag)
{

int firstTime=1;

long pos=-2;

FILE *fileln, *fileQut;

char ch="", fin[80], fout[80];

sprintf(fin, "%sform%s.sum", path, cellld),
sprintf(fout, "%s%s", path, PRS_FILE);
if(!(fileln = fopen(fin, "r")))
{
printf("File %s not found. Aborting...\n", fin);

exit(0);
}
if(headerFlag)
fileOut= fopen(fout, "w");
else
fileQut= fopen(fout, "a");
if(headerFlag)
fprintf(fileOut, "\"%s\",", CELL_ID_FIELD),
else
{

while(fgete(fileln) !="\n")
if(feof(fileln))
{

printf("File %s is empty!\n", fin);
return -1;

}

newLines++;
}
while(!feof(fileln))

151

lastChar=ch;
fscanf(fileln, "%c", &ch);
if (firstTime && newLines)
{
fprintf(fileOut, "%d,", atoi(cellld));
firstTime=0;
ungetc(ch, fileln);
ch="";
}
else

insertComma(fileOut, ch); / Create a',' delimited file.
if(ch =="\n") newLines++;
}
fclose(fileln);
fclose(fileOut);
return |;

JRE R Rk kR Ok d ok R ROk SOk Rk ok kR ROk ok Ok SR dok ok SOk RoOR Rk oR Rk kR R Rk R R kR Rk kR kR Rk Rk Rk kR R kR

insertComma()

This function processes each character read from the input file(s) and takes action
such as inserting ',', ignoring space, writing the character read, etc. depending upon
various factors such as the character read, previous read character, etc.

* ¥ ¥ * ® *

HEERREEEE R R R R R R kR R R R R AR E RN R RN R R RN R E R RN Rk R R kR kR Rk

void insertComma(FILE *out, char ch)
{
if(lastChar=="n')//reset number of commas added.
numOfCommas=0;
if((doubleQuotes) && (ch !="")) //fupdate fileptr if in middle of a quole.

filePosition--;
if((ch=="") && (doubleQuotes == 1)) // Inserting ',
{
ignoreMoreSpaces=0;
doubleQuotes=0;
fprintf(out, "\",");
numOfCommas++;
filePosition=0;
)
else if((ch==""") && (doubleQuotes == 0)) // Register first ".
{
if(lastChar !="" && lastChar !="'"' && lastChar !="n")
{
ignoreMoreSpaces=0;
doubleQuotes=1;
fprintf(out, ",%c", ch);
filePosition=0;
}
else

ignoreMoreSpaces=0;

152

doubleQuotes=1;
fprintf(out, "%c", ch);

filePosition=0;
}
H
else if((ch=="\n") && (doubleQuotes == 1))// Missing second ".
{

ignoreMoreSpaces=0;
doubleQuotes=0:
filePosition--; //displacement for an extra ', added.
fseek(out, filePosition, SEEK_CUR)://wrap back and write \n.
fprintf{out, "%c", ch);
}
else if((ch=="\n") && (doubleQuotes == 0) && (lastChar == ""))// To avoid writing '," after last

/I field.

{

ignoreMoreSpaces=0;

doubleQuotes=0;

filePosition--; //displacement for an extra',’ added.

fseek(out, filePosition, SEEK_CUR);//wrap back and write \n.

fprintf(out, "%c", ch);
H

else if((ch =="") && /*(newLines > 0) &&*/ (!ignoreMoreSpaces) //Insert ', for numerical fields.
&& (doubleQuotes==0) && (lastChar !="\n') && (lastChar !="") && (lastChar !=""))

{
ignoreMoreSpaces=1;
fprintf(out, ",");
numOfCommas++;

H

else if(lastChar == "' && ch =="") // Add 0 if a float starts with a decimal pt only.
{

ignoreMoreSpaces=0;

fprintf(out, "0%c", ch);
)

else if((ch !="") && !(ch =="\n' && lastChar =="\n')) / Ignore all other spaces.

{

ignoreMoreSpaces=0;
fprintf(out, "%c", ch);

f***t**#t#*****#t#t*t**t*ttttt*tt#ttt*#tt*tt#ttttt**!#tt*t**tt*ttttttit##ti*t#t*t!tttt

displayQuit()

This function displays a message on the screen to prompt the users to close the dos
shell window.

o o e o o o o ok o o o R o o R o o oK o oK R ROK K R K Rk R K OR R OK O R R R R Rk ROk

void displayQuit(void)

: \ ok ok oo o o ek o kK R ok R ROk 1Y
pﬂﬂlﬂ"“ﬂﬂ 4ok ok Kok Kok \n");

printf(" . *\n");

153

printf("
printf("
printf("
printf("
printf("

*
*
*
*

PLEASE CLOSE THIS WINDOW BY
*\n");

CLICKING ON THE EXIT BUTTON.
“n");

‘)

n";

t**t***t****ttttt*ti***t!**tl*t*tt\n'l)-
3

154

VITA
Anoop Govil
Candidate for the Degree of

Master of Science

Thesis: EPIC-VIEW: A FULLY INTEGRATED SPATIAL TOOL FOR
MODELING SOIL EROSION AND AGRICULTURAL CROP
PRODUCTIVITY

Major Field: Computer Science
Biographical:

Personal Data: Born in Sawaimadhopur, Raj., India on December 10, 1969, the
son of M.L. Govil and Sudha Govil.

Education: Graduated from St. Xavier’s High School, Jamnagar, Gujarat, India;
received Bachelor of Engineering degree in Electronics and Communication
Engineering from Bangalore University, Bangalore, India in July 1992;
completed requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in July 1996.

Professional Experience: Software Engineer, Quest Infotech (P) Ltd., New Delhi,
India, August 1993 to July 1994. Computer Programmer, Agronomy
Department, Oklahoma State University, September 1994 to August 1995.
Graduate Research Assistant, Computer Science Department , Oklahoma
State University, August 1995 to July 1996.

