
EPIC-VIEW: A FULLY INTEGRATED SPATIAL

TOOL FOR MODELING SOIL EROSION

AND AGRICULTURAL CROP

PRODUCTIVITY

By

ANOOPGOVIL

Bachelor of Engineering

Bangalore University

Karnataka, India

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1996

EPIC-VIEW: A FULLY INTEGRATED SPATIAL

TOOL FOR MODELING SOIL EROSION

AND AGRICULTURAL CROP

PRODUCTIVITY

Thesis Approved:

Thesis Adviser

Dean ofthe Graduate College

11

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major adviser, Dr. Mitchell L. Neilsen

for his guidance, supervision, encouragement and help for the completion of my thesis

work. His patience and constructive ideas helped me make this thesis work an enjoyable

and memorable experience. I consider it a privilege to have worked under his supervision.

I would like to express my sincere thanks to Dr. Blayne E. Mayfield and Dr. K.M.

George for serving on my graduate committee. Their support and invaluable suggestions,

have helped me to improve the quality of this work. I would like to thank Dr. David A.

Waits, Department of Geography, for his constructive ideas and support which proved to

be vital during the development stages. I would like to thank Dr. Mitchell L. Neilsen and

the Computer Science Department for providing me with this research opportunity and

th~ir generous financial support.

My greatest appreciation, thanks and love to my parents Mr. M.L. Govil and Mrs. Sudha

Govil and Amit for all the love, support and inspiration that they have given me. Also,

thanks to all my friends for their support and much needed help.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

1.1 Problem Statement 2

II. 'LITERATURE REVIEW 5

2.1 Erosion/Productivity Impact Calculator (EPIC) 5
2.1.1 About the Model. 5
2.1.2 Model Components 6
2.1.3 Selected EPIC Applications 7
2.1.4 EPIC's Universal Text Integration Language (UTIL) .14

2.2 ArcView®, Version 2.1 15
2.2.1 About ArcView 15
2.2.2 ArcView Components 17
2.2.3 ArcView Scripting Language Avenue® 21

2.3 Visual Basic®, Version 4.0 22

III. DESIGN AND IMPLEMENTATION 24

3.1 Main Menu for EPIC-View 24
3.2 Description of Various Menu Options 25
3.3 Weather Data Too1 30
3.4 Soil Data Tool. 30
3.5 Constant Data Tool 30
3.6 Management Practices Tool 31
3.7 Spatial Data Tool 32
3.8 Output Options Tool 32
3.9 Run Simulator Tool 33
3.10 Map 33
3.11 Chart 33
3.12 Table 34
3.13 Remove Themes 34

IV. CONCLUSIONS AND RECOMMENDATIONS 35

4.1 Conclusions 35
4.2 Recommendations for Future Research 36

BIBLIOGRAPI-IY 37

APPENDiCES 39

IV

APPENDIX A: USING THE SYSTEM 39

APPENDIX B: DATA FLOW DIAGRAMS .43

B.I Data Flow Diagram for Weather Data Menu Option 44
B 2 Data FI D' & S'1 D MO'. ow lagram lor 01 ata enu ptlOn .44
B.3 Data Flow Diagram for Constant Data Menu Option .45
B.4 Data Flow Diagram for Management Practices Menu Option .46
B.5 Data Flow Diagram for Spatial Data Menu Option .47
B.6 Data Flow Diagram for Output Options Menu Option .47
B.7 Data Flow Diagram for Run Simulator Menu Option .48

APPENDIX C: SCREEN FORMATS .49

C.1 Screen Format for Weather Data Entry 50
e.2 Screen Format for Soil & Curve Number Data Entry 50
e.3 Screen Format for Constant Data Tool. 51
C.4 Screen Format for Constant Data Tool (Cont.) 52
e.5 Screen Format for Management Practices Data Entry 53
e.6 Screen Format for Management Practices Data Entry (Cont.) 53
e.7 Screen Format for Management Practices Data Entry (Cont.) 53
e.S Screen Format for Management Practices Data Entry (Cont.) 54
e.9 Screen Format for Management Practices Data Entry (Cont.) 54
C.IO Screen Format for Management Practices Data Entry (Cont.) 54
e.l t Screen Format for Management Practices Data Entry (Cont.) 55
e.I2 Screen Format for Management Practices Data Entry (Cont.) 55
C.13 Screen Format for Management Practices Data Entry (Cont.) 55
C.14 Screen Format for Management Practices Data Entry (Cont.) 56
C.15 Screen Format for Managment Practices Variables 56
C.16 Screen Format for Output Options Data Entry 57
e.17 EPIC-View Screen Display With Field View and Selected Cells 58
e.I8 EPIC-View Screen Displaying Final Results with New Themes 59
e.19 EPIC-View Screen Displaying the Parsed Output Table 60
C.20 EPIC-View Screen Displaying Chart Based on Output Table 61
e.21 Multi Input Screen to Store Various Directory Paths 62

APPENDIXD:DATA VARIABLES FROM EPIC INPUT DATASET 63

D.1 Constant Data Tool 64
D.2 Weather Data TooL 65
D.3 Spatial Data Tool 66
D.4 Output Options Tool 67
0.5 Management Tool 68

APPENDIX E: FORMAT OF VARIOUS OUTPUT FILES 71

E.1 A Sample EPIC Input Dataset (Form#.dat) 72
E.2 A Sample Management Practices Batch File (Mgrnt#.utl) 74
E.3 A Sample Spatial Data Batch File (Form#.utl) 75

v

E.4 A Sample Constant Data Batch File (Const.ud) 76
E.5 A Sample Output Options Batch File (Pmt.utl) 77
E.6 A Sample Batch File for Completion of Datasets (create. bat) 78
E.7 A Sample Batch File for Running EPIC & Parsing (runepic.bat) 78

APPENDIX F: CODE FOR EACH USER INTERFACE SCREEN 79

APPENDIX G: AVENUE® CODE FOR INTERFACING 128

Vl

VB

1. Main Menu for EPIC-View 24

Figure
LIST OF FIGURES

Page

CHAPTER I

INTRODUCTION

Geographic information systems (GIS) have the potential to aid agricultural

producers in determining cause and effect relationships between management and

production, to project production, and to account for spatial and temporal differences

within specific agricultural fields. Currently, only a few producers are utilizing the true

analytical power of GIS and computer simulation models, partly because the software

developed to date loosely links the GIS with the simulation software. This makes usage

of the software more labor intensive. A need exists for a fully integrated, user-friendly

GIS-modeling system that allows producers to efficiently simulate soil erosion, plant

growth and related process, and economic components for assessing the cost of erosion

and comparative results of using different management techniques.

GIS is emerging as an important tool in modeling. An important feature of

envirorunental modeling is that all basic units (water, soil, and chemicals) have spatial

distributions, and thus can be linked with the GIS. GIS software has been developed to

capture, manipulate, process, and display spatial or georeferenced data. GIS linkage to a

model varies from a loose coupling to a complex integration (which is highly desirable).

GIS is frequently used to prepare spatially distributed input data which is then passed to

the linked model which processes it, and to display and probably analyze model results.

Integration of a GIS with a model minimizes the problems of data management, as most

1

of the data can directly be extracted from the GIS itself, and offers the capability to

integrate spatial and modeling process into a single interactive system.

In this thesis we develop a single interactive system called EPIC-View, that fully

integrates the impact calculator EPIC with ArcView Version 2.1 (Environmental

Systems Research Institute, 1994b). There are numerous benefits of using this type of

fully integrated tool. The system is easy to use and more efficient (as all the operations

are automated); spatial data is extracted directly from the existing GIS; and spatial output

is displayed using the same tools by which the input data is displayed spatially. EPIC is

tightly integrated with ArcView; the user is able to execute EPIC and display spatial

output data using ArcView.

1.1 Problem Statement

The objective is to develop a single interactive system, called EPIC-View, that

fully integrates the ErosionIProductivity Impact Calculator (EPIC) (Sharpley and

Williams, 1990) with ArcView®, Version 2.1 (Environment Systems Research

Institute®, 1994b). The steps to be completed are outlined below:

1. The EPIC model requires both spatial and farm management-related data as input.

Data required for modeling, originated from following sources :

Within the Fort Cobb Reservoir watershed, two quarter-sections located in Caddo

County, Oklahoma, was selected as the study area for this project. A GIS-oriented

database was developed to incorporate data needed for modeling. Site-specific data

2

required by the model was procured from an already identified producer's field records.

These include soil fertility, crop rotation practices, conservation program, farm chemicals

application, and tillage systems. Additional model input parameters were compiled from

public domain data sets. Some of these datasets include soils, elevation, slope, water

bodies (streams, water holes, etc.). Derived coverages from the primary GIS coverages

were also developed.

The resultant data, which is used for modeling, consists of gridded coverages,

which are overlaid homogeneous units consisting of GIS attributes, such as soil, crop,

elevation, slope, etc. Most of the data required for the EPIC input form can be derived

directly from the GIS. A graphical user interface, based on Visual Basic®, Version 4.0

(Microsoft® Corp.) is developed for entering other data that cannot be derived from the

GIS.

2. The EPIC model is linked to ArcView using ArcView's scripting language called

Avenue® (Environmental Systems Research Institute, 1994a). Avenue scripts provide a

customized interface, other scripts are associated with various controls such as buttons,

menu options, etc. In this way, the EPIC model is invoked directly from ArcView. A

user can delineate management zones on the field coverage and enter management

practices through the user interface. The GIS attributes arc extracted from the existing

GIS database. Finally EPIC is invoked after specifying the output options (described in

3

Section 4.1.3) for EPIC output files. All steps are automated by invoking associated

scripts.

3. Spatial output results from the EPIC model are also linked with the GIS, by

parsing the output, generated by EPIC, into ArcView readable formats. This output is

loaded back into the GIS. In this way, the user is able to visualize some of the tabular

output data as spatial graph using ArcView and consequently make better

recommendations based on that data.

4. Finally, the new interactive modeling tool is tested by running the model on the

homogeneous units, created as a result of overlaying various GIS attributes.

4

CHAPTER II

LITERATURE REVIEW

2.1 Erosion/Productivity Impact Calculator (EPIC)

2.1.1 About the Model

In the early 1980's, teams of USDA Agriculture Research Service (ARS), Soil

Conservation Service(SCS), and Economic Research Service (ERS) scientists developed

EPIC to quantify the costs of soil erosion, and the benefits of soil erosion research and

control in the United States. Led by Dr. lR. Williams, ARS scientists were responsible

for model development. SCS and ERS staff collaborated on the model development and

took leading roles in soil and weather dataset development, validation, and interface

creation for economic models.

In the late 1980's, Texas Agricultural Experiment Station scientists became

involved in the model support, documentation, database development and technology

transfer.

EPIC is designed to be:

• capable of simulating the relevant biophysical processes simultaneously, as well as

realistically, using readily available inputs and, where possible, accepted

methodologies;

5

• capable of simulating cropping systems for hundreds of years because erosion can be

a relatively slow process;

• applicable to a wide range of soils, climates and crops;

• efficient, convenient to use, and capable of simulating the particular effects of

management on soil erosion and productivity in specific environments.

The model uses a daily time step to simulate weather, hydrology, soil temperature,

erosion-sedimentation, nutrient cycling, tillage, crop management and growth, pesticide

and nutrient movement with water and sediment, and field-scale costs and returns.

2.1.2 Model Components

In EPIC the major biophysical processes simulated are called components. EPIC

consists of following ten major components:

Weather: Daily rain, snow, maximum and minimum temperatures, solar radiation, wind

and relative humidity can be based on measured data and/or generated stochastically.

Hydrology: Runoff, percolation, lateral subsurface flow, and snow melt are simulated.

Anyone of four methods can be used to estimate potential evapotranspiration.

Erosion: EPIC simulates soil erosion caused by wind and water. Sheet and rill

erosion/sedimentation result from runoff from rainfall, snow melt, and irrigation.

Nutrient Cycling: The model simulates nitrogen and phosphorus fertilization,

transformations, crop uptake and nutrient movement. Nutrients can be applied as mineral

fertilizers, in irrigation water, or as animal manures.

6

Pesticide Fate: The model simulates pesticide movement with water and sediment as

well as degradation on foliage and in the soil.

Soil Temperature: Soil temperature responds to weather, soil water content, and bulk

density. It is computed daily in each soil layer.

Tillage: Tillage equipment affects soil hydrology and nutrient cycling. The user may

change the characteristics of simulated tillage equipment, if needed.

Crop Growth: A single crop model capable of simulating major agronomic crops,

pastures, and trees is used. Crop-specific parameters are available for most crops. The

user may adjust or create new sets of parameters as needed. The model can also simulate

crops grown in complex rotations and, in certain cases, in mixtures.

Crop and Soil Management: The EPIC model is capable of simulating a variety of

cropping variables, management practices and naturally occurring processes. These

include different crop characteristics, plant populations, dates of planting harvest,

fertilization, irrigation, artificial drainage systems, tillage, runoff control with furrow

dikes and other methods, liming, and pest control. The model can also gauge the effects

of such varied management practices, as whether the crop is harvested for grain or fodder

or if it is grazed or burned.

Economics: A simple accounting package is included to calculate the cost of inputs and

the value of returns.

7

2.1.3 Selected EPIC Applications

Agricultural systems typically evolve over long periods of time in response to

climate, soils, agricultural technology, socio-economic conditions and other factors.

Long-term sustainability of such systems requires that they:

• be economically sound in the local socio-economic context,

• conserve and/or protect crucial soil and water resources, and

• be capable of adapting to the changing social, economic, and natural

environments.

EPIC is designed to help decision makers analyze alternative cropping systems

and project their socioeconomic and environmental sustainability. This section highlights

several studies in which the model has been used to evaluate crop productivity, risk of

crop failure, degradation of the soil resource, impacts on water quality, response to

different input levels and management practices, response to spatial variation in climate

and soils, and long-term changes in climate.

Accurate simulations of crops yields are necessary for most applications of

models like EPIC. Studies like those which follow typically contain preliminary activities

to test model sensitivity. In addition, model developers continually monitor the effects of

model improvements on simulation of yields and other important outputs.

8

Crop Productivity: Dr. J.R. Williams (1989) evaluated EPIC's ability to simulate yields

of maize, wheat, rice, sunflower, barley and soybeans using a total of 227 measured

yields reported by independent research groups around the world. For these crops, mean

simulated yields were always within 7% of mean measured yields. For 118 comparisons

of measured and simulated maize yields, mean measured yield and its standard deviation

were 103 bushels per acre and 49 bushels per acre, respectively. The measured and

simulated means were not significantly different at the 95% confidence level. He also

demonstrated that EPIC can accurately simulate maize responsed to irrigation at locations

in the western USA and to fertilizer nitrogen in Hawaii.

Soil Degradation: EPIC was originally designed to estimate the loss of crop production

due to soil erosion. For the RCA analysis, EPIC simulation runs of 100 years were made

for each of over 13,000 combinations of crops, soils, climates, tillages, and conservation

practices. Simulation results were used by a large linear programming model to assess the

impacts of soil conservation practices and erosion on agricultural production of the USA.

EPIC was also used to demonstrate that, even though the effects of soil erosion on crop

productivity may be small for long period, high rates of erosion can drastically shorten

the productive life of soils.

Input Levels and Management Practices: Cabelguenne, et a1. (1988, 1990) used EPIC

in southern France to simulate growth and yield of corn, grain sorghum, sunflower,

soybean, and wheat grown in rotations over a five-year period. Each crop had three levels

of fertilizer, irrigation, and tillage. The root mean square error of simulated grain yields

ranged from 15 bushels per acre for sunflower to 26 bushels per acre for corn. Mean

9

simulated yields were not significantly different than mean measured yields for summer

crops, and for individual plots, simulated and measured yields were within 20% of each

other for 81 % of comparisons.

Dyke, et aI.(1990) compared simulated and measured yields for a total of 204

treatment years for the Southern Coastal Plain and Southern High Plains of Texas. Crops

included maize, grain sorghum, and cotton. Tillage systems, irrigation, and crop rotations

also varied. Simulated yields were within 20% of mean measured yields for 70 and 90%

of treatment-years for the Coastal Plain and High Plains, respectively. Simulated yields

were within the 95% confidence interval of measured yields for 69 and 88% of the

treatment-years for the two sites. AUSCANE, a version of EPIC adapted to Australian

sugarcane (Jones, et aI., 1989), was used to demonstrate the importance of irrigation in

reducing the risks in sugarcane production near Mackay, Queensland.

Segarra (1989) used EPIC to evaluate optimum nitrogen fertilizer rates for cotton

in the Southern High Plains of Texas. Nitrogen and cotton prices were found to affect

optimum fertilizer rates, so the use of decision rules based on these prices could improve

the cash flow of producers.

Because it can simulate a variety of important agricultural practices, the model

has also been used successfully to estimate crop fertilizer requirements, nutrient transport

in runoff, soil and fertilizer phosphorus dynamics, the effect of furrow diking on crop

yields, and low-input legume-based crop rotations.

10

Recent addition of pesticide components enable the model to simulate movement

of pesticides and nutrients toward ground and surface waters, both in solution, and, as

appropriate, attached to sediments. This capability provides agricultural managers and

policy makers with a powerful, comprehensive tool to assess simultaneously the impacts

of management and soil on crop production, risks, and soil and water resources.

Response to Climates and Soils: Arnold and Jones (1987) evaluated EPIC's sensitivity

to soil, climate and rotation effects on crop (maize, soybean, wheat, barley, peanut, and

hay) productivity and fertilizer nitrogen requirements. They concluded that EPIC can be

used to evaluate previously untested combinations of soil, climate, and crop management,

thereby reducing the amount of site-specific research needed to assess improved

agricultural technology.

Jones, et al.(1989) demonstrated that the AUSCANE verSIOn of EPIC can

accurately simulate the effect of different climates and management practices on

sugarcane yields and sugar concentrations throughout Australia's sugar-growing areas.

EPIC has been widely used by agricultural economists and others to simulate the

effects of weather, climate, and crop management practices on the crop productivity, risk,

and degradation of the soil resource. For example, Lee and Lacewell (1990) used it to

optimize selection of irrigated crops and associated withdrawal of groundwater of the

Texas Southern High Plains, with and without fanner participation in government farm

programs. They concluded that strategies that reduce risk would also reduce irrigated area

and groundwater extraction. In contrast, participation in fann programs would increase

extraction rate.

11

Lee and Lacewell (1989) used EPIC to simulate yields, wind erosion, and net

returns in the Texas Southern High Plains for several cropping systems and irrigation

options, with and without participation in government farm programs. Results from EPIC

were analyzed with a farm-level economic optimization model. The study indicated that

compliance with the base acreage provisions of the farm program limits adoption of

profitable, soil conserving cropping systems.

They also used EPIC to evaluate crop yield, erosion and net returns for twelve

alternative dryland crop rotations in the Southern High Plains of Texas, with and without

participation in federal fann programs. They concluded that, with participation, cotton is

an essential part of profitable dryland farming systems. However, cotton is associated

with high rates of soils erosion and, thus, requires rotation with wheat to reduce the

amount of erosion and comply with the farm program. Continuous cotton planted after a

winter wheat cover crop terminated with herbicide late in winter appears to be a viable

cropping system.

Vicien (1989) used EPIC to construct production functions for wheat grown in

Argentina and France. Such functions could then be used to optimize management

practices considering the interacting effects of soils, climates, possible production

practices, input costs and commodity prices.

Climate Change: In addition to regional and farm-scale economic analysis, EPIC has

been used to assess the effects of short and long-tenn climatic changes. The U.S.

Department of Agriculture used it during the summer of 1988 to predict the effects of that

year's severe drought on u.s. crop production.

12

EPIC and SOYGRO(a soybean growth model) were used to predict the effects of

war-induced "nuclear winter" on crop growth and yields in the United States (Jones et al.

1988). Four timing scenarios and three severity scenarios were simulated. Similar results

were obtained with the two models for effects on soybean yields, suggesting that EPIC

behaves comparably to a more complex physiological model of soybean growth and

development under extreme conditions of temperature and solar radiation.

Robertson et al. (1987, 1990) used EPIC to predict the impacts of C02 and

climate change scenarios on crop yields, soil erosion, and fann management for the U.S.

Great Plains, Corm Bdt, and. Southeast. Recent model improvements permit more

accurate simulation of the effects of C02 and climate change on hydrology and crop

growth.

Resources for the Future used EPIC to simulate the effects of changing C02 and

climate on crop yields and farm profitability in Missouri, Iowa, Nebraska, and Kansas. In

that study, the warmer and drier weather of the 1930s was used as a surrogate for future

climate (Easterling III, et. al., 1991).

Water Quality: Some of the most recent improvements in EPIC have enhanced its

ability to simulate the impacts of cropping systems on water quality. Components of the

GLEAMS (Groundwater Leaching Effects on Agricultural Management Systems) model

have been added to permit EPIC to simulate degradation and movement of pesticides in

the soil. The fertilization and nutrient cycling components have also been improved to

enable simulation of a variety of animal manures, fertigation, and contamination of

irrigation water with mineral nitrogen. The model is now being used in the United States

13

and Europe to assess the impacts of "best management practices" on parameters of

surface and ground water quality.

These EPIC applications could have far reaching effects on global agricultural

practices. The flexibility of the model permits farm managers, policy makers and

scientists from all over the world to tailor their cropping systems to particular

combinations of natural resources, socioeconomic conditions, and management

possibilities. It allows environmental quality to be considered, as well as productivity,

cost and profitability.

2.1.4 EPIC's Universal Text Inte~ration Lan~ua~e (UTIL)

UTIL is an on-line, input dataset editor which comes along with EPIC. UTIL is a

companion interface program that helps users build EPIC data sets, execute the model,

and display the results. UTIL has its standalone environment. It facilitates data entry for

creation of EPIC input dataset. It provides on-line description of each data variable, its

legal ranges, although a user is allowed to enter value outside the legal ranges. EPIC

requires that each data variable in the input dataset have a particular position in the input

dataset which is a text file with an extension ".dat". UTIL facilitates this by automatically

placing each variable value in its respective place. UTIL has both interactive mode and

batch mode of creating dataset. UTIL supports the use of a batch file with an extension

".utl" which can contain UTIL commands recognized by UTIL and also variable

abbreviations recognized by UTIL along with their values spaces by atleast one space.

This is a powerful feature of UTIL as it places the value of each variable in its respective

14

position in the dataset though it is read from the "batch" file. A user does not have to

worry about the placement of variables' values as UTIL takes care of that which

eliminates any possibility of input dataset with a wrong format. UTIL also has features of

displaying the output files, generated by EPIC, such as ".epy", ".epm", ".epy" files

depending upon what output option a user selected. These files give summary of various

variables' values every day/month/year (as selected by the user). UTIL serves as an

editor to display these files and also provide on-line help for each of the variables found

in these files. All the driver files accompanied by EPIC can be edited by UTIL. Hence

UTIL provides a total data entry/maintenance environment for EPIC.

2.2 ArcView®, Version 2.1 (Environmental Systems Research Institute®, 1994b)

2.2.1 About ArcView

ArcView is a powerful, easy-to-use tool that brings geographic information to the

desktop. ArcView gives users the power to visualize, explore, query and analyze data

spatially. ArcView comes with a useful set of ready-to-use sample data. If data in the

ARC/INFO® format is available, a user will be able to use ArcView to access all of this

data, including vector coverages, map libraries, grids, images and event data.

Working spatially:

ArcView can be used to work spatially. Tabular data, such as dBASE files and

data from database servers, can be loaded into ArcView so that a user can display, query,

summarize, and organize this data geographically.

15

Views:

With ArcView a user works with geographic data in interactive maps called

Views. Every view features a geographic ''fable of Contents', making it easy to

understand and control what's displayed.

Tables:

If a user clicks on features on a view, their records highlight in the table showing

him their attributes, or selects records in the table, the features they represent highlight on

the view. Tables also have a full range of features for obtaining summary statistics,

sorting and querying.

Charts:

Charts offer a powerful business graphics and data visualization capability that is

fully integrated into the geographic environment. A user can click on features on a view

to add them to the chart. ArcView allows a user to work simultaneously with geographic,

tabular and chart representations of his data.

Layouts:

Layouts allow a user to create high quality, full color maps by first arranging the

various graphic elements on-screen the way he wants them. Layouts have a live link to

the data they represent. When a user prints a layout, any changes to the data are

automatically included, so everything on his map will be up-to-date.

16

Scripts:

ArcYiew scripts are macros written in Avenue, ArcYiew's programming language

and development environment. With Avenue a user can customize almost every aspect of

ArcYiew, from adding a new button to run a script a user writes, to creating an entire

custom application that he can distribute.

Projects:

All the components of a user's ArcView session: views, tables, charts, layouts,

and scripts are stored in one file called a project. ArcView's Project window shows a

user, the contents of his project and makes it easy to manage all his work.

2.2.2 ArcView Components

I. View:

A view is an interactive map that lets user display, explore, query and analyze

geographic data in ArcView.

A view defines the geographic data that will be used and how it will be displayed,

but it doesn't contain the geographic data files themselves. Instead, a view references

these source data files. Thus, a view is dynamic, because it reflects the current status of

the source data. If the source data changes, a view that uses this data will reflect the

change the next time the view redraws.

The same data can be displayed on more than one view. Different users may have

different views on the same data. A different view of the data can be created for each

application a user has.

17

A user can use existing views or create new ones. Views can be modified as the

needs change. Views can also be created for others to use, in which case some or all of

the views' contents might be locked so they can't be modified. With Avenue a user can

create custom functions, user interfaces and applications based on views.

A view is actually a collection of themes. A theme represents a distinct set of

geographic features in a particular geographic data source. For example, a view of a

country might have one theme representing cities, one theme representing roads, one

representing rivers, etc.

A view is displayed inside a window. A user can resize a view's window and

zoom in or out on a view to display a particular area or extent.

View's window contains 'Table of Contents'. A view's Table of Contents lists the themes

in the view and lets user control how the themes are displayed and the order in which

they are drawn. A user can tum individual themes on or off, if needed.

2. Table:

A table lets a user work with data from various tabular data sources in ArcView.

A user can display, query and analyze data in tables. Records can be highlighted in tables

by selecting geographic features displayed on views, and vice versa. Tables can be

displayed on a view to reveal the geography of the data. Charts can be created from

tables to visualize trends, patterns and distributions.

An ArcView table references the tabular data source it represents, but doesn't

contain the tabular data itself, hence tables are dynamic, because they reflect the current

18

status of the source data they are based on. If the source data changes, a table based on

this data will reflect the change the next time a user opens the project containing this

table. A user can also refresh the table at any time to see the current state of their source

data.

Some tables can also be edited, depending on the data source for user's table. All

edits are written back to the source data file.

Spatial data sources such as ARCIINFO coverages have attribute tables containing

descriptive infonnation about the geographic features they contain. A user can use a view

containing themes that represent these spatial data sources and have access to their

attribute tables. ArcView manages the relationship between themes and their attribute

tables, these tables do not need to be loaded into ArcView separately.

A user can add dBASE, INFO, and tab or comma delimited text files into

ArcView as tables.

From within ArcView a user can connect to a database server, such as Oracle or

Sybase, and run an SQL query to retrieve records from it as a table. ArcView stores the

definition of the SQL query, the user used, rather than the records themselves.

3. Chart:

A chart is a graphic presentation of tabular data that provides an additional visual

representation of the attributes associated with geographic features. A user can use a chart

to display, compare, and query geographic and tabular data effectively.

19

-

A chart references tabular data in an existing ArcView table in the user's project,

and defines how it will be displayed. Charts are also dynamic because they reflect the

current status of the data in the table. If there is a change in the source data on which the

table is based, this change will automatically be reflected in both the table and the chart

the next time a user opens the project that contains them. If the table is edited, the chart

will reflect the edit.

A chart can represent all or a selected subset of records in a table. Records can be

selected from the table, and also, if the table is an attribute table belonging to a theme, by

selecting the theme's features on a view. If the selected set of records changes, the chart

will reflect the new selection.

The same tabular data can be displayed on more than one chart.

4. Layout:

A layout is a map that lets a user display views, charts, tables, imported graphics,

and graphic primitives. The layout is used to prepare these graphics for output from

ArcView.

A layout defines what data will be used for output and how they will be displayed.

A layout is dynamic because it allows user to make specific graphics which reflects the

current status of the data. If the data in a view changes, the layout reflects the change.

Different layouts can be created based on same data. Each layout can be

considered a different way of presenting the data. Using Avenue a user can create custom

functions, user interfaces and cartographic templates that will assist in creating output.

20

Layout provides standard graphics and operations. These graphics are drawn

using the Draw tool and include points, lines, polygons, polylines, rectangles, and circles.

Layout also contains objects specific to the ArcView environment, including frames

containing ArcView views, charts, and tables, and ancillary objects such as legends and

scale bars.

5. Scripts:

A script is the component of an ArcView project that contains Avenue code.

ArcView scripts group together the means to accomplish three general objectives:

automate tasks, add new capabilities to ArcView, and build complete applications.

All of ArcView can be considered a collection of scripts. Every control that a user

uses in ArcView, has an associated internal or system script. A user can see the names of

the scripts associated with a control in the Customize dialog box and can examine the

contents of a system script by loading a system script into a new script.

ArcView has a Script Editor where a user can create a script. If a user uses other

text editor, once he has written the code, he must load it into a project's script. A user can

compile, debug, and run the script from within the Script Manager.

A user can use ArcView's customization environment to associate a compiled

script with a control or with an event, such as starting up or shutting down a project.

21

2.2.3 ArcView Scriptin~ Lan2"ua2"e AVenue®

Avenue is the programming language and development environment that's part of

ArcView. Avenue is fully integrated with ArcView and the work, a user does, will run on

any of the platforms for which ArcView is available. There are many uses for Avenue: a

user can use Avenue to customize working with ArcView; or direct ArcView to perform

a specific task that needs to be done; or a complete application can be developed, that

works along with ArcView's graphical user interface.

ArcView provides the necessary customization and language environment so a

user can work with Avenue. A user can create the graphical user interface as per the

requirements, establish some initial properties for the graphical controls that a user will

interact with, fine tune the behavior and appearance of those controls, and write Avenue

code that responds to what goes on in the interface, created. In addition, scripts written in

Avenue, can be linked to events such as starting up and shutting down a project.

2.3 Visual Basic®, Version 4.0 (Microsoft® Corp.)

Microsoft Visual Basic alJows a user to create quick applications for Microsoft

Windows operating systems. The Visual Basic programming system allows a user to

create useful applications that fully make use of the graphical user interface (OUI).

Visual Basic provides a user, appropriate tools for the different aspects of GUI

development. A user can create a graphical user interface for different applications by

drawing objects in a graphical way and set properties on these objects to refine their

22

-

appearance and behavior. Generated interface can react to a user by the attached code that

responds to events that occur in the interface.

A user can create, full-featured applications. Different features of Visual Basic,

are as follows:

• Data access features allow a user to create databases and front-end applications for

popular database fonnats.

• OLE allows a user to use the functionality provided by other applications, such as

Microsoft Word® for Windows word processor, Microsoft Excel® spreadsheet, and

Microsoft Project® business project planning system.

• User's finished application is a ".EXE" file that uses a run-time dynamic-link library

(DLL).

23

Remove Themes

Run Simulator

Output Options

PROJECT , WINnOW

Management Data

CHAPTER III

Figure I. Main Menu for EPIC-View.

24

Soil & Cu rye No.

3.1 Main Menu for EPIC-View

DESIGN AND IMPLEMENTATION

Constant Data

Spatial Data

Weather Data

EPIC-View

DATA INPUT TOOL MODELING TOOL DISPLAY TOOL

The main menu of EPIC-View has options as shown in figure 1.

Various data variables identified from EPIC input dataset are classified, as per different

tools shown above (as shown in Appendix D).

3.2 Description of Various Menu Options

1. Extent Tool

This menu has following option:

Define Extent:

This menu option opens the field view designated by a user and activates the main

theme as shown in Appendix C.l 7.

2. Data Input Tool

This menu provides various options required to create the EPIC input dataset. It

consists of following options:

Weather Data:

This option displays a Visual Basic screen which provides a user with two

choices, whether a user has weather files for the field or EPIC generated weather file is to

be loaded. In former case, a user has to enter the weather file name with complete path

and in the later case, a user has to enter the latitudes and longitudes of the field, and EPIC

will automatically load the weather file from the weather station nearest to the user's

field. As a result a file "const.utl" is created and a line is written to it, depending upon the

user's choice, e.g., "@<path><file name>" or "LOCWEAT <latitude> <longitude>" for

former and latter cases respectively. The Weather data screen is shown in Appendix C.] .

The data flow diagram is shown in Appendix B.l. A typical "const.utl" file is shown in

Appendix EA.

25

SQil Data:

This QptiQn is enabled if a user does not have field specific soil data. In that case,

a SQil from this option can be selected which becomes generic for the whole field. This

option displays a Visual Basic screen which provides a user with a list of soils, provided

by EPIC. A user can also select the Run off Curve Number based upon the soil selected.

The Soil data screen is shown in Appendix C.2. The data flow diagram is shown in

Appendix B.2. Lines, e.g., "GETSOIL <soil code>" and "CN2 <curve number>" are

written to "const.utl". A typical "const.utl" file is shQwn in Appendix EA.

Constant Data:

Data that remains constant for the entire field is entered (at one time only) and

replicated for all the existing cells in the gridded field. The constant data option is

enabled only when a user has entered weather data (and soil data). This menu options

presents a Visual Basic screen which displays default values of all the variables, required

by EPIC, which remain constant. A user can make required modifications and save these

variables in a constant dataset which is replicated for all the cells in the grid. Various

lines, one for each constant variable, are written to "const.utl" and then a CQnstant data

set, e.g., "cQnst.dat" is created from "const.utI" using UTIL. Then, this constant dataset is

replicated fQr all the cells in the grid. The Constant data screen is shown in Appendix C.3

& CA. The data flow diagram is shown in Appendix B.3. A typical "const.utI" file is

shown in Appendix EA.

26

Mana2ement Data:

This tool allows a user to enter management practices, carried out in the field. A

user has choice to make a set of management practices generic for the whole field, in that

case, all the management practices, a user enters, become applicable to all the cells in the

gridded field. In other case, a user can select a set of cells and then select this tool to enter

these cells specific management practices, which are applicable to all selected cells. A

Visual Basic screen is presented with a list of EPIC supported management practices

along with a list of all months and days to select the date of operation. Upon selecting a

management operation, a user is presented with another screen which displays further

choices to be made, e.g., upon choosing "FERTILIZE" as management operation, a user

is presented with another screen showing a list of fertilizers to choose from, fertilizer

application rate, etc. (as shown in Appendix C.8). Upon choosing "OK", the operation is

written to cell specific files, e.g., "mgmtCellId#.utl", for all selected cells. These files will

be loaded to the cells input data set at the time of running EPIC on these cells.. The

Management data screen is shown in Appendix C.S. The data flow diagram is shown in

Appendix BA. A typical "mgmtCellId#.utl" file is shown in Appendix E.2.

Spatial Data:

This option extracts the spatial attributes from all selected cells, selected by a user

to run EPIC. Spatial attributes, such as soil, crop, elevation, area, slope, etc. are stored in

cell specific files, e.g., "formCellId#.utl", which are loaded when running the EPIC

27

model on individual selected cells. The data flow diagram is shown in Appendix B.5. A

typical "formCellId#.utl" is shown in Appendix E.3.

3. Modeling Tool

The modeling tool is also an interactive tool. This consists of two following

options:

Output Options Tool:

This options allows a user to specify the variables which are desired to be

monitored as the output from EPIC. A Visual Basic screen is displayed with a list of

EPIC supported output variables. A user can select more than one variables. EPIC sets a

limit of 30 variables which can be chosen as output. A user also has a choice of selecting

daily, monthly, yearly, annual, or all output files options which allows EPIC to generate

these files while running on individual cells' input datasets. These variables are then

written to a "pmt.utl" file which is later loaded to the "pmtS300.dat" file at the time of

running EPIC of selected cells. The data flow diagram is shown in Appendix B.6 and the

Output options screen is shown in Appendix C.IS. A typical "prnt.utl" file is shown in

Appendix E.5.

Run Simulator:

On selecting this tool, a Visual Basic waitshell is executed to run UTIL and EPIC

model on each individual cell's input datafile. Then, the corresponding output files are

parsed to create a comma delimited file which can be retrieved in ArcView as a table. The

dataflow diagram is shown in Appendix 8.7.

28

4. Display Tool

This menu remains disabled until Run Simulator is invoked which runs EPIC on

the selected cells. It consists of following options:

Map:

This option adds the parsed output (from EPIC) as a table and joins it with the

attribute table of the main theme. New themes are created corresponding to each variable

in the parsed table. The variables' values are shown in the corresponding themes in the

form of equal intervals. Thus a user can monitor the effects on each variable, as analyzed

by EPIC, in a spatial manner and can make better comparison. The screen after displaying

results is shown in Appendix C.18.

Thb.k:

This option displays the parsed table, added to ArcView. A user can monitor

values of different variables visually in a tabular fonn. A typical table is shown in

Appendix C.19.

Chart:

This option displays a selected variable, from the list of variables in parsed table,

in the form of percentage of values falling in each of the equal intervals. This provides a

comprehensive summary in terms of whether the values fall within allowable ranges or

not. A typical chart is shown in Appendix C.20.

Remove Themes:

This option allows a user to remove all added themes, as a result of EPIC run. The

main theme remains active.

29

.1
I

3.3 Weather Data Tool

Weather data tool provides a user with a screen which provides two choices. A

user can either choose to user EPIC provided weather file by entering the latitudes and

longitudes of the field or if a specific weather file is available, its path can be specified,

which will be loaded to the constant dataset. If fonner option is chosen, EPIC loads the

weather file from a weather station nearest to the field. This infonnation is stored in a file

"const.utl". The data flow diagram is shown in Appendix B.l.

3.4 Soil Data Tool

This option is enabled only if a user does not have his own soil file. This tool

presents a screen as shown in Appendix C.2 where a user has a choice of soil and run off

curve number. The selected soil becomes generic for the whole field. This information is

appended in a file "const.utl". The list of soils is created from a file soil.lst. The data flow

diagram is shown in Appendix B.2.

3.5 Constant Data Tool

Constant data tool allows a user to modify vanous variables which remam

constant for the whole field. These variables are loaded into a constant dataset which is

then replicated for all cells in the gridded coverage. The tool presents a user with a screen

as shown in Appendix C.l6. Various variables' values are written out into a file

"const.utl" which is then loaded to constant dataset "const.dat" using the UTIL. The data

flow diagram is shown in Appendix B.3.

30

-

3.6 Management Practices Tool

Management practices are entered as soon as management zone is delineated. A

user is prompted with a Visual Basic screen as shown in Appendix C.5 to enter various

operations and also to delineate more management zones if he chooses to. The data flow

diagram is shown in Appendix BA.

The user can select the month and date of operation. A management operation

can be selected from a list of operations, provided, which is available in a file

Mgrntoper.dat. Month and date are stored in EPIC input variables MON and DAY

respectively. Operation code, corresponding to the operation, the user selects, is

automatically looked up from the file and stored in the variable COD. Depending upon

the operation code a different Visual Basic screen pops up as shown in Appendix C.6-

C.IS.

Here, e.g. if a user chose Fertilize as the operation, the screen shown in Appendix

C.8 presents a list of fertilizers, available in the file Fertdata.dat. A user can select a

fertilizer, the corresponding fertilizer Id# is stored in variable FN. The user needs to enter

values for Fertilizer Application rate(FAP), Heat Unit scheduling(HUSC). These values

are then loaded in all the cells' input datasets, which fall under this management zone.

Similarly, the user can enter another operation and so on. In case a crop rotation

occurred, the user can enter new set of management practices, thus can have different sets

of management practices for different crops. The user can also delineate a new

management zone, by marking out a new zone on the field view, and enter management

practices for it in a similar way. A user can also make one set of management practices as

31

generic, l.e. they apply to the whole field. In this case, all cells' input dataset have

common management practices. Management related variables are provided to a user to

be modified if chosen to, as shown in Appendix C.IS.

There is an option to view a summary of management operations entered, which

provides a list of all operations entered, per management zone.

Following lookup files are required for management practices operations:

Usdacrop.txt - for crop selection and extracting crop code.

Usdapest.dat - for pesticide selection and extracting pesticide code.

Mgmtoper.dat - for management operation selection and extracting operation code.

Fertdata.dat - for fertilizer selection and extracting fertilizer code.

3.7 Spatial Data Tool

This tool extracts various attributes from the field's main theme table. The attributes are

crop, elevation, slope, soil, run off curve number, watershed area, etc. These attributes are

stored in the cell specific files (form#.utl, # - cell Id.). These will later be loaded in the

cell specific datasets at the time of running EPIC on selected cells. The data flow

diagram is shown in Appendix B.S.

3.8 Output Options Tool

This tool presents a screen where a user can choose the variables desired to be

monitored as a result of running EPIC on selected cells. The EPIC output will be

displayed in temlS of these variables. A user can choose at most 30 variables as a limit

provided by EPIC. A user can also select so that EPIC generates daily, monthly, yearly,

32

annual, or all these output files. These options, selected by a user are stored in a file

"pmt.utl" which are later loaded into "pmt5300.dat" at the time of running EPIC on

selected cells. The list of output variables is created from a file opvarlst.dat. The data

flow diagram is shown in Appendix B.6.

3.9 Run Simulator Tool

This menu option creates various batch files which are needed to complete the cell

specific input datasets and also invoking EPIC on all these datasets and finally parsing

the EPIC output into a comma delimited file. Various files created are "create.bat"

(shown in Appendix E.6) and "runepic.bat" (shown in Appendix E.7). The data flow

diagram is shown in Appendix 8.7.

3.10 Map

This menu option in the Display Tool, allows a user to load the parsed file as a

table and join it to the field theme's attribute table and also create new themes, for each

output variable selected by a user, which are then added to the main field view providing

a powerful visual representation of the model run on the selected cells. As shown in

Appendix C.18.

3.11 Chart

This menu option in the Display Tool, allows a user to display a chart in the form

of a bar graph or a pie chart for output variables selected by a user. . As shown in

Appendix C.20.

33

3.12 Table

This menu option in the Display Tool, allows a user to display the added table

created as a result of parsing EPIC output. . As shown in Appendix C.19.

3.13 Remove Themes

This menu option in the Display Tool, allows a user to remove all added themes

as a result of choosing the Map menu option from Display Tool. As a result only the main

theme remains in the field view.

34

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

This work has dealt with the design and implementation of an interactive system

which integrates ArcView with EPIC model. The interface developed automates the task

of entering management practices for a specific part of field and also in creation of input

datasets for running EPIC model. EPIC is then invoked on the specified part of the field

and the results are parsed into ArcView readable format so that they can be loaded in the

form of table and displayed spatially on the field view to provide recommendations to a

user. Following are specific conclusions and recommendations which can be made based

on this work.

4.1 Conclusions

1. EPIC-View was developed by making use of ArcView's development environment

language Avenue and the user interface data entry screens were developed in Visual

Basic.

2. EPIC-View is capable of allowing a user to enter management practices for different

management zones at a time. Also, a user can overlap different management zones to

enter different management practices, i.e., a user can select some zones (cells) and enter a

set of management practices and then selects some other zones and enter different

management practices, so that some zones(cells) are common and receive both the sets of

management practices.

35

3. EPIC-View was successfully able to create input datasets for each cell (management

zone) and able to run EPIC on the selected cells. This process eliminates the need to

manually create input datasets for each management zone and run the EPIC model on

these datasets and then pull the results back to ArcView.

4. The results generated were tested to be correct and provided visual representation of

the result of different management practices carried out on the selected zones.

4.2 Recommendations for Future Research

1. The interface developed assumes that the field view available to it is already gridded.

An addition to it could be to allow a user to open his field view and grid the field using

the gridding tool which will be available in the new version of ArcView.

2. The display tool can be made more powerful to be able to display various comparison

results after multiple runs of the model.

3. EPIC's daily, monthly, yearly, annual outputs can also be made use of in showing the

results spatially. These files are generated with extensions .epd, .epm, .epy and .epa

respectively.

4. Capability to store the results of different runs could be incorporated so that

comparisons between different runs could be made.

5. In the Management Practices Tool can be enhanced so that it is able to summarize all

the management practices entered so far and also allows a user to modify already entered

management practices.

36

BIBLIOGRAPHY

ArcView, Version 2.1 (ESRI) User's Manual.

Arnold, J.O., Engel, B.A., and Srinivasan, R. (1993). Continuous time, grid cell
watershed model. Application of Advanced Information Technologies: Effective
Management of Natural Resources. ASAE Publication 04-93. pp. 267-278.

Arnold, lG., Williams, lR., Nicks, A.D., and Sanunons, N.B. (1990). Basin scale
simulation model for soil and water resources management. College Station, TX:
Texas A&M Univ. Press.

Environmental Systems Research Institute, Inc. (1994a). Avenue - Customization and
Application Development for ArcView.

Environmental Systems Research Institute, Inc. (1994b). ArcView - The Geographic
Information System for Everyone.

Jankowski, P., and Haddock, G. (1993). Integrated nonpoint -source pollution modelling
system. In Second International Conference/Workshop on integrating GIS and
Environmental Modeling. Breckenridge, Colorado. 26-30 Sept. 1993.

Jones, lW., and Ritchie, IT. (1991). Crop growth models. In GJ. Hoffman, T.A.
Howell, and K.H. Solomon (Eds.). Management ofFann Irrigation Systems.
Amer. Soc. Agricultural Engineering, St. Joseph, MI. pp. 63-89.

Knisel, W.O., Jr. (1980). "A field Scale Model for Chemicals, Runoff and Erosion from
Agricultural Management Systems." Cons. Res. Rpt. No. 26. USDA. 640.

Onstad, c.A., and Foster, G.R. (1975). Erosion modeling on a watershed.
TRANSACTIONS of the ASAE 18(2):288-292.

Rewerts, C.C., and Engel, B.A. (1991). ANSWERS on GRASS: Integrating a watershed
simulation with a GIS. ASAE Paper No. 91-2621.

Richardson, C. W. (1982b). A wind simulation model for wind erosion estimation. ASAE
Paper No. 82-2576, ASAE, St. Joseph, MI 49085.

Shanholtz, v.a., Desai, C.J., Zhang, N., Kleene, J.W., Metz, C.D., and Flagg, J.M.
(1990). Hydrologic/water quality modeling in a GIS environment. ASAE Paper
No. 0-3033. ASAE, St. Joseph, MI.

37

Sharpley, A. N., and Williams, J.R. (Eds). (1990). EPIC - Erosion/Productivity Impact
Calculator. Model documentation. U.S. Department of Agriculture Technical
Bulletin No. 1768.

The U.S. Department of Agriculture Agricultural Research Service at Temple, Texas
EPIC User's Guide - Draft.

Visual Basic, Version 4.0 (Microsoft Corp.) User's Manual.

Williams, J.R., Dyke, P.T., and Jones, C.A. (1983). EPIC- A model for assessing the
effects of erosion on soil productivity. Proceedings Third International
Conference on State-of-Art in Ecological Modelling, Colarado State University,
May 24-28, 1982.

Williams, J.R., Jones, c.A., and Dyke, P.T. (1984). A Modeling Approach to
Determining the Relationship Between Erosion and Soil Productivity.
Transactions of the ASAE.

Yoon, J., Padmanabhan, G., and Woodbury, L.H. (1993). Linking agricultural nonpoint
pollution model (AGNPS) to a geographic information system (GIS). Proceedings
of the symposium on Geographic Information Systems and Water Resources.
AWRA. pp. 79-87.

38

APPENDICES

APPENDIX A

USING THE SYSTEM

39

EPIC-View can be used by opening the project file under ArcView 2.1. The

project file is named under EPICView.apr. Initially at the time of installation, a multiple

input entry screen is displayed where a user can enter different directory paths as shown

in Appendix C.21. These paths are written to a file EVPaths.txt which is created under

C:\. Here it is assumed that a user has already created his field view which has overlaid

layers of spatial attributes in the form of a grid. Path to this view polygon needs to be

specified here.

Subsequent openings of this project file will read various paths from this file and

thus the multiple entry screen is not displayed every time. Once, the project is opened, a

user can view his gridded field by selecting Define Extent menu option. This option

opens the field view as shown in Appendix C.l7. Now a user can select the weather data

(described in Section 3.3) menu option to specify his weather file or enter the latitudes

and longitudes of the field. If a user had specified soil and runoff curve number in the

field view's main theme's attribute table, the soil and curve number is directly extracted

while running Spatial Data tool (described in Section 3.7) otherwise Soil Data

(described in Section 3.4) menu option needs to be selected where a list of EPIC

supported soils is presented and run off curve number can be selected. Now constant data

set for the whole field can be created by selecting Constant Data tool (described in

Section 3.5), where a user can modify variables that remain constant for the whole field.

These variables will be loaded to a constant dataset which will be replicated for all the

cells in the gridded field. Now a user can select Management Data tool (described in

40

Section 3.6) where he can enter management practices for the field either by making one

set of management practices generic for the whole field or by selecting an area of field

and entering management practices for the same. The Management Data tool provides a

screen where a user can select management operations from a list and enter them in cell

specific files. All the above operations are done one time only. Ofcourse, management

practices might be entered on a regular basis but constant data tool need not be invoked

until a user wishes to change some of the constant variables' values. Now to run the

model, a user needs to select a portion of the field by highlighting those cells, either by

using the highlighting tool button or using query builder. The highlighted cells are

displayed by a yellow color (Shown in Appendix C.1?). Now a user can select the

Spatial Data tool (described in Section 3.7), which extracts the spatial attributes from

the main attribute table for all selected cells. Now a user can select the Output Options

tool (described in Section 3.8) to select the output variables he is interested to monitor

after running EPIC. After that, the Run Simulator menu option (described in Section

3.9) can be invoked which executes batch files and invokes UTIL, EPIC and finally the

Parser to parse the output generated by EPIC into a comma delimited file.

After the user returns back to ArcView, he can select the Map

(described in Section 3.10) menu option from Display tool and view the results of model

run, spatially. This is done by adding more themes for each output variable, a user

selected, into the main field view as shown in Appendix C.18. A user can also generate

charts by selecting Chart from Display tool as shown in Appendix C.20 and also view

the results table form.prs by selecting Table from Display tool as shown in Appendix

41

C.19. A user can remove the newly added themes by selecting the Remove Themes

menu option which deletes all but the main theme. Similarly, a user can select a different

portion of field view and run model on it and monitor the results.

Recommended directories:

EPIC5300 model files.

Various files needed to run the model are as follows:

-- The constant data user interface.
-- The model running wait shell.
-- The output options user interface.
-- The management practices user interface.
-- The parser.
-- The weather data user interface.

-- The soil data user interface.

[t is recommended that a user makes a copy of the EPICView.apr file and user the copy
so that the original project file is not altered.

Curvenum.dat -- The data file containing a list of runoff curve numbers.
Fertdata.dat -- The data file containing a list of fertilizers.
Mgmtoper.dat -- The data file containing a list of management operations.
Opvarlst.dat -- The data file containing a list of output variables.

EPICView.apr -- The main ArcView project file.

Create a directory EPICView under C:\. Create a directory EPIC5300 under C:\ to store
the EPIC5300 files. Create following directories under C:\EPICView :

Constdat.exe
Dsetmake.exe
Outputop.exe
Mgmt.exe
Parse.exe
Weather.en
Soil.exe

Project -- To keep the EPICView.apr project file.
Temp -- To keep all the created files.
Weather -- To keep weather file if a user has his own weather file (with .utl extension).
Soil -- To keep soil files if a user has his own soil files (with .utI extension).
EXEDir -- To keep all the executable files descri.bed above.
Field -- To keep the files of the field view including the database table.

42

APPENDIX B

DATA FLOW DIAGRAMS

LEGEND:

--------~ Comments.

----t.~ Data Flow.
-----I~~ Control Flow.

_~~I Module.

D File.

-- Cell Id Number.
Specified Tools -- Data entry screens.

43

B.1 Data Flow Diagram for Weather Data Menu Option.

Text File
(canst.utl)

D

Creates a file - "consi.utI" and
writes a line "LOCWEAT<lat>
<long> " or "@<path><weather file
name>" to it.

,---'"
I,

I
I,

I
I

I,
I

I,

ArcView
2.1

•

soil code>
number>

wing lines to fileWrites folior- --..

ArcView I "const.utl" -I

2.1
I

I
I

I GETSOIL<I

•
I CN2 <curveI

I
I

~
ISoil Data Tool I

1 !
IUser I

Text File
(canst.utl)

B.2 Data FLow Diagram for Soil Data Menu Option.

44

B.3 Data Flow Diagram for Constant Data Menu Option.

Text Files
(FORM#.DAT)

8

7

Replicates the
const.dat file for
a II cell specific
files, e.g.,
FORM#.DAT.
- Cell [d. +-,,

\
\

1 1 91 \
\IConstant Data Tool:....---....~

,-//-'!2 4 3~ j6
5,: ! UTIL~J,.:..

I \
I \

,: Text File \ Text File
: (canst.utl) \ (const.dat)
I I

+J __ ~ Creates a
constant dataset
with values of
constant variab
les, stored in
"const.utl" file.

ArcView
2.1

•
IUser I

Writes values of
constant variables to
file "const.utl".

45

ArcView
2.1

.-..~
.. Each management

operation writes to
files "mgmt#.utl"
for all selected cells.
- Cell Id.

Text Files
(MGMT#.UTL)

BA Data Flow Diagram for Management Practices Menu Option.

46

B.5 Data Flow Diagram for Spatial Data Menu Option.

Writes the output variables,
user, into file

which will be
NT5300. OAT"
running the
n selected cells.

Cell Jd.

@<path><soil file>
Curve Number
Elevation
Slope
Water Shed Area
Slope Length
@<path><MGMT#.UTL>

Text File
(pmt.utl)

_. Writes following lines to files
"FORM#.UTL" -

-----+

(fonn#.utl)

I

I

ArcView
I

I
I

2.1
I

I
I

I
I

•
I

I
I,

I
I,

I

...

1
IUser I Text Files

I
I selected by a .

I

AreView ,
"PRNT.UTL",

2.1
,

loaded to "PRI,
I at the time ofI

•
,

EPIC model 0I
I

I,
I

~IOutput Options Tool I
1 1

1User I

B.6 Data Flow Diagram for Output Options Menu Option.

47

:4.Th~-EPICo~t~t files are-r~;d by th~ -p~~8~r --:
:which generates Comma delimited text liIes wllieh :
:ean be loaded into AreView. :

~--------------------------- I

D. Selected cells'
input dataset files.
(Formll.Dat).
- Cellld.

2, Batcb file invokes
UTIL which compi
les tbe input dataset
by loading tbe corr
esponding variables
in the cell's .UTL
file.

B. ~ ben the option
to run simulator is
selected, batch files
are cruted which
invoke UTIL &
EPIC for eacb
selected Cell.

', __.- 1. Wben u er selects
Run Simulator from
Modeling Tool

s

Bat&
c.Bat)
----------+
Reads
IQII.Utl file for
b cell and

mpletes the
responding
ut data-set.
rm#.Dat)
Cell Id.

---~

----------- ..

(Form#.Dat)
II-Cell Ill.

fed to parser to
create ArcView
readable files.
H. The Comma de·
limited liIes are
read back by
ArcView.

Text Files
(EPIC output files

e.g. • .epy, • .epd,
• .epm, etc.)

ArcView
2.1 I-

I
I

I

•
I

I
I

I
I

I
I

I

~ A~ B~
,,
1

IUser LJ j

H Text Files C !.Batch Files

I l Text File (e.g. FORM#.UTL, (e.g. Create.
(Comma FORM#.DAT, 2 RunEpi

tG
delimited file, MGMT#.UTL, --------

FORM.PRS.) PRNT.UTL, etc.) ----+ C.

S I-- UN

IPARSER I D eac

UTIL I co
cor

--- Inp--- (Fo4 ------ 11-
EPIC I

J ---F • \ ---I \ ----------
" E

,
\

\ \
\ E. EPIC generates \ J. The batch file
\~

,-- ..
user selected output runEpic.Bat
files, e.g. per invokes EPIC for
day/month/year. caeh selected cell'
F. These files are input dataset.

f---------------------------------,
IS. The Comma delimited liIes generated by the I

:parsu are loaded back into ArcView as tables and :
:the user can then select the Display Tool and view :
:the results spatially. :

8.7 Data Flow Diagram for Run Simulator Menu Option.

48

APPENDIX C

SCREEN FORMATS

49

C.l Screen Format for Weather Data Entry.

C.2 Screen Format for Soil & Curve Number Data Entry.

50

C.3 Screen Format for Constant Data Tool.

51

C.4 Screen Format for Constant Data Tool(cont.).

C.5 Screen Format for Management Practioes Data Entry.

52

C.6 Screen Fonnat for Management Practices Data Entry(Cont.).

C.7 Screen Fonnat for Management Practices Data Entry(Cont.).

C.8 Screen Format for Management Practices Data Entry (Cont.).

53

C.9 Screen Format for Management Practices Data Entry (Cont.).

C.lO Screen Format for Management Practices Data Entry (Cont.).

C.ll Screen Format for Management Practices Data Entry (Cont.).

54

C.12 Screen Format for Management Practices Data Entry (Cont.).

C.l3 Screen Format for Management Practices Data Entry (Cont.).

C.14 Screen Format for Management Practices (Cont.).

55

C.I5 Screen format for Management Practices variables.

56

C.16 Screen Format for Output Options Data Entry.

57

C.l? EPICView Screen Display With the Field View and Selected Cells.

58

C.t8 EPICView Screen Displaying the Final Results in the Fonn ofNew Themes.

59

24 ~ 93 ~ 6·4-96 i O.OOOO! 0.0000 i 360.6385 i 680.4854! 0.0000 I 27.2520!...: _ _-.- __ __.·····..········~·· ..···_·_·-+ ···_·_--_·······-i--·----_··~···_··-----r·

25: 93 : 6-4·96 i O.OOOO! O.OOOO! 394.44691 681.8483 ! 0.0000 ! 57.2436 I

····· ..·· ..··ZS·;·····..·····93·T"6·...4:9S· ··· ..····..r·b~OOOOr-O'OOOOr ..-·393·.911·oi-..·-682.97331"'-O:OooOr-'"5"T335ST
····················0····················.············ _ _.: _ _ _.__ __.._._.,_ __ _::.J.._.__..-.... __. _.._._.._.._1..

38: 93: 6·4-96 i 0.0000 i 0.0000 i 360.1925 i 682.5391! 0.0000 I 27.4688!

::::::::::)~I::.::::::::~T~:I~:~::::.:::::::::I~:::::~=q9,Q[t=Q:Q.~.gj ..__~:@.I~?~~J_ ..l'.??:~??r·'O:-~:c=~]3]~:
40! 93: 6-4·96 ~ O.OOOO! O.OOOO! 395.2284! 683.2385! 0.0000! 56.21221

·.. ··5i;·..·..·······93·;..S:4:9·S ..·.. ··· T......iioooo!---iiooooT'-'"376jj77E;l"-641 :9921"r-'O~OoooT"-i1':457sT

..·..·..·····53·;· ..······..··93·;··6·:4:9·S·.. ··..·· ·..r ..·-O.'OOOOr-o.OOOO !-378.42431-·"-63'i:'1;"64-1·'·UOOOO·r·'···7o:·sssoT
:::::.·:·:::::${L:::::::j~J:~:I~I::::::.~.·::::::L:::::Q;9.Q.QQt=§:QQ9Q:t=::~!.~·:~9.W.qI~~~§~I~~t~:~Q;]Q.~1f[}I?r.~~.J.

C.19 EPICView Screen Displaying the Parsed Output Table.

60

C.20 EPICView Screen Displaying Chart Based on Output Table.

61

Globals Initialization:

Cell Dataset Directory: I tI.1lGli'l't'!t'Mi4l1iW
Epic Output Director}': I c:\EPICView\Temp\

SDil Data Directory: I c:\EPICView\Soil\

EPIC Director}': ,--I.;:;.c::..;\;.;:e..o:;p.:.:ic:.,:5:.,:3;.;:O..;:;O....;\ ---'

EXE Directory Name: 1 c:\EPICView\EXEDir\

Base Dataset Name: I~c::.;o::.:ns=t::.::.d:.:a:.:.t -'

Cell Jd Field Name: IL..:.:H.:.:lu:.:2~

Results Table Name:1.:..:fo::..::r.:.:.m:.:..;.p<:.:l;.;:s ---'

Main Attribute Table Name: I Attributes 01 Hlu2

Main Field View Name: 1 Botchlet 1/4 section

Main Theme Name: LI.:..:H~ru::.:2==-- --,

Main Theme Path: I c:\EPICView\Hru

C.21 Multi Input Screen to Store Various Directory Paths.

62

APPENDIX D

DATA VARIABLES FROM EPIC INPUT DATASET

63

.' ...,
:;...:'.·" ,·.....
~~I
• I,

I,

~a·.~
~S,
'_1
.' ~I

:~.
• •'. ..-.
:r.~· ,

!
I

D.1 Constant Data Tool

No. Variable .Description Value
1. ACW Wind erosion adjustment factor 1

0, wind erosion shut off; 1, normal wind erosion
considered

2. BUS (1-4) Four Parameter estimates for MUSI erosion °equation *
3. C02* Carbon-dioxide cone. in the atmosphere 350

Default to 350 ppm (current level)
4. CSALT* Cone. of salt in irrigation water 0

For future use in salinity submodel. Default to O.
5. DRV Equation for water erosion 2

Options [0-5]; Refer User's Guide for equations
Default 2 for USLE

6. IDA Beginning day of simulation 1
7. lET Potential Evapotranspiration equation * 0

Options [0-4], Refer User's guide for equations.
Default 0 for Penman-Monteith equation

8. IGRAF Graphic display on/off 0
0, display off; 1, display on

9. lHUS Automatic heat unit scheduling 0
0, Normal operation; 1, automatic heat unit
scheduling

10. IMO Beginning month of simulation 1
11. ISCN Stochastic CN Estimator code* 0
12. ISTA Static soil code* 0

0, Varying soil profile; 1, static soil
13. ITYP Peak rate estimation code* 0

Options [0-4], Refer User's guide

14. IYR Beginning Year of simulation 1
15. LPYR Leap year considered* I 0

0, consider; 1, ignore

16. NBYR Number of years of simulation duration 5

17. PEe Erosion control practice factor 1 I

0, Total erosion control; 1, no erosion control
practices

18. RTN* Number of years of cultivation before simulation 100
starts
Values over 100 years result in little change in N
values

• May be left blank or zero If unknown

64

D.2 Weather Data Tool

No. Variable Description Value
1. CF* Climatic factor for wind erosion 0

Refer wind erosion component
(EPIC manual, Yol. I) for values

2. IGN Number of times the random 0
number generator cycles*

3. IGSD* Day weather stops generating the 0
same weather

4. Lat Long UTIL command - LOCWEAT <
lat long>; for EPIC supplied
weather data

5. NGN Weather input code 0
Options [0-5, 23, 2345] Refer
User's guide
0, generates all weather; 2345
read all weather

6. RCN* Average concentration of N in 0.8
rainfall

7. SNO* · Water content of snow at start of 0
· simuIation

8. SWy* Power of modified exponential 0.5
distribution of wind speed.
Range (0.3 -0.5). Default to 0.5

· as recommended

65

-

D.3 Spatial Data Tool

No. Variable Description Value
1. ANG* Clockwise angle of field length 0

from north (deg.)
2. APM* Peak runoff rate - Rainfall 1

energy adjustment factor
Value of 1 gives satisfactory

I results. Default to 1
3. CHD Channel Depth 0.1
4. CHL* Distance from outlet to most 0

distant point on watershed
5. CHN* Channel roughness factor 0

(Manning's N)
6. CHS* Average channel slope 0
7. CN2 Runoff curve number

(antecedent moisture condition
2(moist))
Help: Present the hydrologic groups existing in
the management zones. And list the Runoff
Curve Numbers for Hydrologic soil-cover
complexes of Appd. E.2.A in User's Guide I

8. ELEV Average watershed elevation I

Need to pull the value from
the elevation field of the I

attribute table of elevation
!

coverage ,

9. FL* Field length (Km or miles) '0

10. FW* Field width 0
11. S Slope steepness (%)

Need to pull the value from the
slope field of the attribute table
of the coverage

12. SL Slope length
Run for sensitivity using ~2

resolution, 2 resolution,
resolution values

13. SN* Surface roughness factor 0
(Manning's N). Refer User's
guide for suggested values.

66

II.,
il

. '

~

-

14. SOIL" Prompt for <EPIC> dataset and
use UIIL command GETSOIL #
(# refers to soil ID from Appd.
E.4).
Or prompt for <User> dataset.
Pull the soil series name from
the attribute table and lookup the
file containing the data (Soils 5
database).

15. STD* Standing dead crop residue (TIha
or tJac)

16. WSA Watershed drainage area (ha)
WSA = resolution 2 / 10000 I

17. YLT Latitude of watershed (degrees);
,

for daylength estimation
• May be left blank or zero Ifunknown
1\ Not an EPIC variable

D.4 Output Options Tool

No. Variable Description Value
1. ICODE Output Conversion Code 2 I

0, Metric (default); 1, Metric; 2, English I

2. IPD The print code to select type of output 5
Range (1-9], Refer EPIC User's Guide

3. NIPD Printout interval 0
0, allows output every day or year with

management operations.
1, allows output every day or year, but will not

allow management operations to be printed as they
occur.

• May be left blank or zero If unknown

67

-

0.5 Management Tool

(i) Management Options Tool

No. Variable Description Value
1. ARMN* Minimum single application for 0

automatic irrigation
If unknown or rigid irrigation selected
(NIRR= 1), set ARMN =0

2. ARMX* Maximum single application volume 20
for automatic irrigation (mm)
This is the amount applied if rigid
automatic irrigation is selected. 0 if
unknown

3. BFT N stress factor to trigger automatic 0
fertilizer

4. BIR Water stress factor to trigger irrigation 0.85
automatically.
0.85 means that irrigation will be
triggered when the biomass production
on that day is less than 85% of the
potential biomass that could have been
produced had water been available

5. ORT Time required for drainage system to
reduce plant stress
0, if drainage not considered

6. EFI Irrigation runoff ratio 0
7. FMX Maximum annual N fertilizer 0

application
0, defaults to 200kg/ha

8. FNP Amount of fertilizer (10FT) per 0
automatically scheduled application
0, for manual fertilizer option

9. 10FT Fertilizer 10 # for fertigation or 0
automatic fertilization
0, no automatic fertilization or
fertigation

10. IOR* Drainage code °11. IFA* Manual fertilizer application interval °12. IFO* Furrow dike code 0
13. IFFR* Automatic fertilizer rigidity code 0

68

14. IRI* Minimum application interval for 3
automatic irrigation.
Center pivot system - 3 days

15. IRR* Irrigation code 1
Options 0-3. Botchlet has center pivot
sprinkler, 1

16. LM* Liming code 0
17. NIRR Rigidity of irrigation code 1

0, flexible application; 1. rigid
application

18. NRO Crop rotation duration 1
Range (1-30 years)

19. VIMX* Maximum irrigation volume for each 600
crop
24 inches (600mm) assumed to be
applied for each crop per year

* May be left blank or zero If unknown

69

-

(ii) Management Operations Data Tool

No. Variable Description Value
1. COD Management operation code

Specify type of tillage, field
equipment characteristics stored in
EPIC's tillage file (Classtill.dat).
Refer User's guide (Section 0.3)

2. CRP Crop 10 #
Specify type of crop from EPIC's
crop file (Clascrop.dat)

3. DAY Day of the operation
4. FAP Fertilizer application rate (kglha)
5. FN Fertilizer 10 #
6. GRZ Grazing duration in days
7. HUSe Heat unit scheduling. Time of this

operation as a fraction of the
growing season or of the year. If no
crop is growing; fraction of annual
heat units accumulated using 0° as
the base temperature

8. IIA Irrigation volume (mm)
II Specify for manual irrigation

9. liMON Month of the operation
10. PAR Pesticide application rate(kg/ha of

active ingredient)
11. PCF Pest control factor I

Default to 1
12. PHU Potential heat units
13. PST ' Pesticide 10 #

Specify pesticide type from EPIC's
file (pest5300.dat)

14. WSF Plant stress factor 0.85

II

0.85, usually turned on for automatic
irrigation at planting time

70

APPENDIX E

FORMAT OF VARlOUS OUTPUT FILES

71

-

E.1 A Sample EPIC Input Dataset (Form#.dat).

! Input dataset with different variable values.
! Title.
CADDO 21 :06 4jun96
Field3
! Different variable values.

Wea: 22 OK WEATHERFORD wi: 22 OK WEATHERFORD
3 91 1 I 05 0 0 0 0 0 0 0 I 0 0 0

.34 67.0 1,0 35.12 236.2 .0
.8 100.0 350,0 .0 .100

82.0 .0160 1.00 2.
.00 ,00 8.00

! Weather data begins.
8.97 12.12 17,08 23.13 27.43 32.42 35.2634.67 30.12 24.27 16.0 I 10.73

-3,99 -1.34 2.62 8.83 13.73 18.7521.1320.2816.05 9.86 2.87 -1.97
7.53 7.34 7.14 5.66 4.73 4.09 3.58 3.63 5.02 5.48 6.23 6,68
5.82 5.46 5.54 5.12 4.16 3.32 2.44 2.70 4.23 4.86 5.29 5.21
18.9 24.9 40.2 51.3126.2102.8 64.2 71.6 72.0 70.7 33.5 19.2
7.1 7.6 9.4 10.7 21.3 20.3 14.5 15.2 19.3 22.1 10.2 8.4
.89 .81 .66 .97 2.81 3.24 1.39 1.57 2.60 2.01 1.25 1.77

.080.100.130 .150 .220 .200 .150 .180 .140 .110 .100 .090

.280 .360 .290 .370 .410 .370 .340 .250 .310 .350 .350 .240
3.10 3.92 4.80 5.77 8.42 7.23 5.74 6.00 5.06 4.49 4.00 3.28
7.6 7.1 19,6 28.2 36.3 49.3 41.4 30.2 27.9 18.8 21.3 L3,0

257. 327. 420. 514, 558. 636. 629. 586. 498. 377. 296. 244.
.63 .63 .50 .53 ,64 .60 .55 .54 .56 .56 .56 .61

.00 .00 .00 ,00

.50 .00 1.00
5.72 6.00 6,76 6.60 6.35 6.09 5.14 5.01 5.23 5.32 5.42 5.62
16.0 14.0 11.0 lO.O 7.0 4.0 3.0 3.0 6.0 9.0 12.0 14,0
8.0 9.0 7.0 7.0 6.0 3.0 3.0 4.0 6,0 7.0 8.0 8.0
5.0 6.0 5,0 5.0 4.0 3.0 4.0 5,0 6,0 5.0 4.0 5.0
3.0 3.0 4,0 5.0 4.0 3.0 4.0 4.0 5,0 3.0 3.0 3.0
3.0 4.0 4,0 5.0 6.0 5.0 7.0 6.0 5.0 3.0 3.0 2.0
1.0 3.0 3,0 3.0 4.0 5.0 5.0 4.0 3.0 2.0 2.0 1.0
2.0 4.0 4,0 5.0 7.0 9.0 9.0 8.0 7.0 3.0 3.0 2.0
4.0 7.0 8,0 9.0 13.0 18.0 14.0 14,0 13.0 10,0 7.0 6.0
18.0 16.0 19.0 20.0 27.0 31.0 27.0 28.0 28.0 27.0 20.0 18,0
12.0 9.0 9.0 9.0 8.0 10.0 13.0 12.0 9.0 13.0 13.0 12.0
7.0 5.0 4.0 4.0 3.0 3.0 5.0 5.0 4.0 5.0 7.0 6.0
4.0 3.0 3.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0
3,0 3.0 3.0 3.0 2.0 1.0 1.0 1.0 1.0 2.0 3.0 4.0
2.0 3.0 3.0 2.0 1,0 1,0 1.0 1.0 1.0 2.0 3.0 4.0
4,0 5.0 5.0 4.0 3,0 1.0 1.0 1.0 2.0 2.0 4,0 6,0
8.0 8.0 8.0 5,0 3,0 2.0 1.0 1.0 2.0 5,0 6,0 7,0

.20
I Soil data begins.

.0 I0 ,660 1.067] .372 1.778
1.655 1.655 1.609 1.623 J .641
.054 ,054 .164 .130 .067
.139 .139 .260 .221 .164

72

•

50.00 50.00 1.]7 3.14 20.42

1.68 1.68 1.74 1.72 1.67

1.00

502.57 1290.32
1500.00

125.64 J290.32

81.8 81.8 58.7 65.8 70.9
12.4 12.4)7.3 15.7 20.6

5.8 5.8 5.8 5.8 6.2

.44 .44 .15 .06 .06

5.7 5.7 15.2 11.4 5.2
.5 .5 3.1 3.1 3.1

! Crop rotation parameters.
I II 3 0 0 0 0 0
.85 .00 600.00 .00 20.00 .00 .00 .0 .00 .00

! Management practices begin.
3 25 33
4 8 71 52
4 10 2 2
5 12 71 63
9 15 51
9 IS 41
9 16 28

! Comments are not allowed in the input dataset. They are put here to facilitate
! readability.

73

-

E.2 A Sample Management Practices Batch File (Mgmt#.utl).

! Cell specific Management Practices batcb file which will be loaded to cell's input dataset
! at the time of running model on tbe cell's dataset.
! 7 1
! Above line stores total operations entered and total crop rotations.
! Set of management operations.

MON(l) 3
DAY(l) 25
COD(1) 33
MON(2) 4
DAY(2) 8
COD(2) 71
FN(2) 52
FAP(2) 448.36E
FDP(2) 50.80E
HUSC(2) 0
MON(3) 4
DAY(3) 10
COD(3) 2
CRP(3) 2
GRZ(3) 2
PHU(3) 1500
MON(4) 5
DAY(4) 12
COD(4) 71
FN(4) 63
FAP(4) 112.09E
FDP(4) 50.80E
HUSC(4) 0
MON(5) 9
DAY(5) 15
COD(5) 51
HUSC(5) 1.0
MON(6) 9
DAY(6) 15
COD(6) 41
MON(7) 9
DAY(7) 16
COD(7) 28
! Default management related variables.

NRO 1
NIRR 1
IRR I
IRI 3
IFA 0
LM a
lFD a
lOR 0
IFFR a
10FT 0
BIR .85

74

•
~..

-

EFI 0
VIMX 600
ARMN 0
ARMX 20
8FT 0
FNP 0
FMX 0
DRT 0
FDSF 0
! Comments are allowed in this file.
! Comments start with" !".

E.3 A Sample Spatial Data Batch File (Fonn#.utl).

! This File contains the spatial attributes of each cell. This is loaded into the cell's input
! dataset at the time of running the model on the cell.
! Following line provides the path for the user specified soil files.

@c:\EPICView\Soil\DoB.utl
ELEV 236.2
S 0.016
WSA 0.3364
CN2 67
SL 82.0244
! Following line provides the path for the cell specific management practices batch file.

@c:\EPICView\Temp\mgmt25.utl
! Comments are allowed in this file.

7S

-

E.4 A Sample Constant Data Batch File (Const.utl).

~ Written by Weather Tool.
LOCWEAT 35.1298.35
YLT 35.12
! Written by Constant Data Tool.

TITLE(l) CADDO COUNTY, OK, SHERRY/BOTCHLET
TlTLE(2) Field
NBYR 3
IYR 91
IMO 1
IDA I

NIPD °
IPD 5
NON 0
ION 0
IOSD 0
LPYR 0
lET 0
ISeN 0
IORAF 0
lCODE I
ITYP 0
ISTA 0
IHUS 0
CHL 0
CHS 0
CHN 0
SN 0
APM I
SNO 0
RCN 0,8
RTN 100
C02 350
CSALT 0
CHD 0.1
PEC 1
DRV 2
BUS(l) 0
BUS(2) 0
BUS(3) 0
8US(4) 0
FL 0
FW 0
ANO 0
STO 0
ACW 1

76

E.5 A Sample Output Options Batch File (Prot.utl).

! Initialize KD(I) and KM(I) with 0 so that EPIC dumps default variables in ",epd" and
! ".epm" files respectively, if a user chooses to get these output files from Output Options
! Tool.

KD(I) 0
KM(l) 0
! Yearly variables are set as per those selected by a user. The remaining are set to O.
! A user can choose atmost 30 variables at one time.

KY(I) 46
KY(2) 47
KY(3) 12
KY(4) II
KY(5) 56
KY(6) 41
KY(7) 50
KY(8) 31
KY(9) 16
KY(10) 40
KY(lI) 51
KY(12) 39
KY(13) 23
KY(14) 38
KY(l5) 0
KY(16) 0
KY(17) 0
KY(18) 0
KY(l9) 0
KY(20) 0
KY(21) 0
KY(22) 0
KY(23) 0
KY(24) 0
KY(25) 0
KY(26) 0
KY(27) 0
KY(28) 0
KY(29) 0
KY(30) 0

77

I

~..
1II•
~I...
.. I

E.6 A Sample Batch File for Completion of Datasets (create.bat).

c:\epic5300\util epic c:\EPICView\Temp\fonn24.dat @c:\EPICView\Temp\fonn24.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn25.dat @c:\EPICView\Temp\fonn25.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn26.dat @c:\EPICView\Temp\fonn26.utI
c:\epic5300\util epic c:\EPICView\Temp\fonn38.dat @c:\EPICView\Temp\fonn38.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn39.dat @c:\EPICView\Temp\fonn39.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn40.dat @c:\EPICView\Temp\fonn40.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn52.dat @c:\EPICView\Temp\fonn52.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn53.dat @c:\EPICView\Temp\fonn53.utl
c:\epic5300\util epic c:\EPICView\Temp\fonn54.dat @c:\EPICView\Temp\fonn54.utl
c:\epic5300\util pmt pmt5300.dat @c:\EPICView\Temp\pmt.utJ
c:\EPICView\Temp\runepic.bat

E.7 A Sample Batch File for Running EPIC and Parsing output (runepic.bat).

c:\epic5300\ewq c:\EPICView\Temp\form24 c:\EPICView\Temp\
c:\epic5300\ewq c:\EprCView\Temp\fonn25 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\fonn26 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\form38 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPlCView\Temp\fonn39 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPJCView\Temp\form40 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\fonn52 c:\EPICView\Temp\
c:\epic5300\ewq c:\EPICView\Temp\fonn53 c:\EPJCView\Temp\
c:\epicS300\ewq c:\EPICView\Temp\formS4 c:\EPJCView\Temp\
c:\EPICView\EXEDir\parse.exe

78

-

APPENDIX F

CODE FOR EACH USER INTERFACE SCREEN

79

-

'Weatber.frm
, This form allows a user to enter the latitudes and longitudes of the field or specify the
, path of the weather file. This infonnation is stored in "const.utl" file.

Option Explicit

Dim cellDatasetDir As String
Dim epicDir As String
Dim soilDir As String
Dim epicOutputDi.r As String
Dim exeDir As String
Dim fileNum As Integer
Dim fileName As String
Dim Latitude As Single
Dim Longitude As Single

Dim validateText As String 'To use as a buffer for validation.

Private Sub cmdCanceJ_ClickO
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
lfresp = vbYes Then

End
End If

End Sub

Private Sub cmdOk_ClickO
Dim resp As Integel

'Store values if a user chooses to.
resp = MsgBox("Do you wish to store?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
Ifresp = vbYes Then

If optEPICFile(O).Value = True Then
If ((txtLat.Text <> '''') And (txtLong.Text <> ""» Then

fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Output As fiJeNum
Print #fileNum, "LOCWEAT "+ txtLat.Text + " " + txtLong.Text
Print #fiIeNum, "YLT " + txtLat.Text
Close fileN urn
End

End If
ElseIf optMyFile(1).Value = True Then

If (txtPath.Text <> "") Then
fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Output As fileNum
Print #fileNum, "@" + txtPath.Text
Close fileNum
End

End If

80

.,
=,
~,

).

•,
I

-

--

End If
End If

End Sub

Private Sub Fonn_LoadO
'Get directory paths.
fileNum = FreeFile

Open "c:\EVPaths.txt" For Input As fileNum

Input #fi1eNum, cellDatasetDir, epicOutputDir, soilDir, epicDir, exeDir
Close fileNum

End Sub

Private Sub optEPICFile_CI ick(lndex As Integer)
txtLat.Visible = True
txtLong.VisibJe = True
txtPath.Visible = False
IblLat.Visible = True
IblLong.Visible = True
IblPath.Visible = False

End Sub

Private Sub optMyFile_Cl ick(lndex As Integer)
txtLat.Visible = False
txtLong.Visible = False
txtPath.Visible = True
IblLat.Visible = False
IblLong.Visible = False
IblPath. Visible = True

End Sub

, ValidateData
, Author: Anoop Govil
, Date: June 12, 1996

, validateData Subroutine:
, - Validates the value entered by a user so
, - that it lies in the range of real numbers.

Public Sub validateDataO
Dim length As Integer
Dim resp As Integer
Dim start As Integer
Dim alreadyDecimal As Integer
Dim chr As String
chr = 0
length = J
alreadyDecimal = 0

Do

81

:~'.C·..'.:)
'4

:1
1,
).
4

I

I
I
I

-

chr = Mid(validateText, length, 1)
, If character other than a Dumber or a decimal.
If (chr <> "," And chr <> "0" And chr <> "1" And chr <> "2" And chr <> "3" And chr <> "4"

And chr <> "5" And chr <> "6" And chr <> "7" And chr <> "8" And chr <> "9") Then
Beep
If (length = I) Then

start = 2
Else

start = I
End If
If (Len(validateText) > 0) Then

validateText = Mid(validateText, start, Len(validateText) - I)
End If
Exit Do

, Tf character is a decimal.
ElseIf(chr = "." And alreadyDecimal = 0) Then

alreadyDecimal = 1
, If character is a second decimal point.
Elself(chr = "." And alreadyDecimal = 1) Then

Beep
If (length = I) Then

start = 2
Else

start = 1
End If
If (Len(validateText) > 0) Then

validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do

End If
length = length + I

Loop While (length <= Len(validateText»
End Sub

Private Sub txtLat_ChangeO
validateText = txtLat.Text
validateData
txtLat.Text = validateText

End Sub

Private Sub txtLong_ChangeO
validateText = txtLong.Text
validateData
txtLong.Text = validateText

End Sub

82

-

-

'Soil.frm

, This form allows a user to select a soil which becomes generic for the whole field and
, also select the run off curve number. This information is slored in the "const.utl" file.

Option Explicit

Dim soilNames(lOOO) As String
Dim soiICodes(lOOO) As Integer
Dim landUse(20) As String
Dim coverTrtmnt(5) As String
Dim hydCondition(5) As String
Dim hydSoiIGrp(5) As String
Dim curveNumber(O To 11,0 To 3, 0 To 3, 0 To 4) As Integer
Dim fileNum As Integer
Dim cellDatasetDir As String
Dim epicOutputDir As String
Dim soilDir As String
Dim epicDir As String
Dim ctrl As Integer
Dim ctr2 As Integer
Dim ctr3 As Integer
Dim ctr4 As Integer

Private Sub cboCoverTrtmnt_ChangeO
Dim Counter As Integer
Counter = 0
'Get the index for selected cover treatment.
Do

If (coverTrtmnt(Counter) = eboCoverTrtmnt.Text) Then
Exit Do

End If
Counter = Counter + I

Loop While (Counter < 5)
If Counter < 5 Then

ctr2 = Counter
'Set curve number.
txtCurveNumber.Text = curveNumber(ctrl, crr2, ctr3, ctr4)

End If
End Sub

Private Sub cboCoverTrtmnt_ClickO
'Get the index for selected cover treatment.
ctr2 = cboCoverTrtmnt. Listlndex
'Set curve number.
txtCurveNumber.Text = eurveNumber(ctrl, ctr2, etr3, ctr4)

End Sub

Private Sub cboHydCondition_ChangeO
Dim Counter As Integer
Counter = 0
'Get the index for selected hydrologic condition.
Do

If (hydCondition(Counter) = cboHydCondition.Text) Then

83

Exit Do
Endlf
Counter = Counter + I

Loop While (Counter < 5)
If Counter < 5 Then

ctr3 = Counter
'Set the curve number.
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctr4)

End If
End Sub

Private Sub cboHydCondition_ClickO
'Get the index for selected hydrologic condition.
ctr3 = cboHydCondition.Listlndex
'Set the curve number.
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ct(4)

End Sub

Private Su b cboHydSoilGrp_ChangeO
Dim Counter As [nteger
Counter = 0
'Get the index for selected hydrologic soil group.
Do
If (hydSoilGrp(Counter) = cboHydSoiIGrp.Text) Then

Exit Do
End If
Counter = Counter + I
Loop While (Counter < 5)
If Counter < 5 Then

ctr4 = Counter
'Set the curve number.
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctr4)

End If
End Sub

Private Sub cboHydSoilGrp_ClickO
'Get the index for selected hydrologic soil group.
ctr4 = cboHydSoilGrp.Listlndex
'Set the curve number.
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctr4)

End Sub

Private Sub cboLandUse_ChangeO
Dim Counter As [nteger
Counter = 0
'Get the index for 3elected land use.
Do

If (landUse(Counter) = cboLandUse.Text) Then
Exit Do

End If
Counter = Counter + I

Loop While (Counter < 5)
If Counter < 5 Then

ctr I = Counter

84

":,
:~

••4•'.:)
I

:/
"),

-

..

'Set the curve number.
txtCurveNumber.Text = curveNumber(ctrl, ctr2, ctr3, ctr4)

End If
End Sub

Private Sub cboLandUse_ClickO
'Get the index for selected land use.
ctrl = cboLandUse.ListIndex
'Set the curve number.
txtCurveNumber.Text = curveNumber(ctr I, ctr2, ctr3, ctr4)

End Sub

Private Sub cmdCancel_ClickO
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
Ifresp = vbYes Then

End
End If

End Sub

Private Sub cmdOK_ClickO
Dim Counter As Integer
Dim resp As Integer

'Get the soil code.
Counter = 0
Do

If (UCase(cboSoiINames.Text) = soiINames(Counter» Then
Exit Do

End If
Counter = Counter + I

Loop While Counter < IDOl

'Store the soil code and curve num ber if a user chooses to.
If (Counter < 1001) Then

resp = MsgBox("Do you wish to store?", vbYesNo + vbCritical + vbOefaultBUtlon2, "EPIC-View")
[fresp = vbYes Then

fileNum = FreeFi1e
Open cellDatasetDir + "const.utl" For Append As fileNum
Print #fiJeNum, "GETSOJL "+ Str(soiICodes(Counter»
Print #fiIeNum, "CN2 " + txtCurveNumber,Text
Close fileNum
End

End If
EndJf

End Sub

Private Sub FOrTTl_LoadO
Djm Counter As Integer
Dim fi.leName As String
Dim soilCode As Integer

85

,
••..•),
I

Dim soilName As String
Dim c I As Integer
Dim c2 As Integer
Dim c3 As Integer
Dim c4 As Integer
Dim ctl As Integer
Dim ct2 As Integer
Dim cn As Integer
Dim ct4 As Integer
Dim value As Integer

'Get directory paths.
fileNum = FreeFile
Open "c:\EVPaths.txt" For Input As fileNum
Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir
Close fileNum

'Open the soil file and create a soil names list
fileNum = FreeFile
fileName = epicDir + "so il.lis"
Open fileName For Input As fiI·eNum
Counter = 0
Do

Input #fileNum, soiICodes(Counter), soiINames(Counter)
cboSoilNames.Addltem

soilNames(Counter)
Counter = Counter + I

Loop While Not (EOF(fileNum) Or (Counter> 1000))
cboSoilNames.Listfndex = 641
Close fileNum

'Open the curve number file and create various supporting lists.
fileNum = FreeFile
fileName = epicDir + "curvenum.dat"
Open fileName For Input As fileNum
ctrl = 0
'Create land use list.
Do

Input #fileNum, landUse(ctrl)
If(landUse(clrl) <> "") Then
cboLandUse.Addltem

landUse(ctrl)
Else: Exit Do
End If
ctrl = ctrl + 1

Loop While Not (EOF(fileNum) And (ctrl > 20»
ctl = clrl
cboLandUse.Listlndex = 0

'Create cover treatment list.
ctr2 = 0
Do

Input #fileNum, coverTrtmnt(clr2)
If (coverTrtmnt(ctr2) <> "") Then

86

,
•....•)
•,

""'""

cboCoverTrtmnt.AddItem
coverTrtmnt(ctr2)

Else: Exit Do
End If
ctr2 = ctr2 + I

Loop While Not (EOF(fileNum) And (etr2 > 5»
et2 = ctr2

cboCoverTrtmnt.ListIndex = 0

'Create hydrologic condition list.
ctr3 = 0
Do

Input #fileNum, hydCondition(ctr3)
If(hydCondition(ctr3) <> nn) Then
cboHydCondition.Addltern _

hydCondition(etr3)
Else: Exit Do
End If
etr3 = ctr3 + I

Loop While Not (EOF(fiIeNum) And (etr3 > 5»
ct3 = ctr3
cboHydCondition.Listlndex = 0

'Create hydrologic soil group list.
ctr4 = 0
Do

Input #fiIeNum, hydSoiIGrp(ctr4)
[f (hydSoilGrp(ctr4) <> '''') Then
cboHydSoilGrp.Addltem _

hydSoiIGrp(ctr4)
Else: Exit Do
End[f

ctr4 = ctr4 + I
Loop While Not (EOF(fiIeNum) And (ctr4 5»
ct4 = ctr4
cboHydSoilGrp.Listlndex = 0
cI = 0
c2 = 0
c3 = 0
c4 = 0

'Load the values in the curve number array.
Do

[f(cl = ctI) Then

Exit Do
End If
c2 =0
Do

If (c2 = c12) Then
Exit Do

End If
c3 = 0
Do

If (c3 = ct3) Then

87

pz
I

Exit Do
End If
c4 = 0
Do

If(c4 = ct4) Then
Exit Do
End If
Input #fileNum, value
cUfveNumber(cl, c2, c3, c4) = value
c4=c4+1

Loop While Not (EOF(fiIeNum) And (c4 < ct4))
c3 = c3 + I

Loop White Not (EOF(fiIeNum) And (c3 < ct3»
c2=e2+l

Loop While Not (EOF(fileNum) And (e2 < et2»
cl=el+1

Loop While Not (EOF(fileNum) And (el < ctI»
Close fileNum
txtCurveNumber.Text = curveNumber(etrl, ctr2, ctr3, ctr4)

End Sub

88

-

'constdat.bas
, This fonn allows a user to modify the values of variables which remain constant for the
, whole field. They are stored in the file "cons1.utl" and later a constant EPIC input
, dataset "const.dat" is created and replicated for all the cells present in the gridded
, coverage.

Option Expl icit

I directory paths.
Global cellDatasetDir As String
Global epicOutputDir As String
Global soiLDir As String
Global epicDir As String

Global totalCells As Integer
Global validateText As String 'To use as a buffer for validation.

Declare Function GetModuleUsage% Lib "Kernel" (ByVal hModule%)

I WaitSheLl
I Author: Anoop Govil
I Date: May 2 I, 1996

I WaitShelI Subroutine:
I _ Makes a synchronous call.

Public Sub WaitSheLl(ByVal AppName As String)
Dim hMod As Integer
hMod = ShelI(AppName, I)
If (Abs(hMod) > 32) Then

While (GetModuleUsage(hMod»
DoEvents

Wend
Else

Debug.Print "Unable to start" & AppName
EndIf

End Sub

t ValidateData
I Author: Anoop Govil
I Date: June 12, 1996
I .. _ __

. validateData Subroutine:
I _ Validates the value entered by a user so
, - that it lies in the range ofreal numbers.

Public Sub validateDataO
Dim length As Integer
Dim resp As Integer
Dim start As Integer
Dim alreadyDecirnal As Integer

89

Dim chr As String
chr= 0
length = 1
alreadyDecimal = 0

Do
chr = Mid(validateText, length, I)
. If character other than a number or a decimal.
[f (ehr <> "." And chr <> "0" And chr <> "I" And chr <> "2" And chr <> "3" And chr <> "4"

And chr <> "5" And chr <> "6" And chr <> "7" And chr <> "8" And chr <> "9") Then
Beep
I f (length = I) Then

start = 2
Else

start = I
End If
If (Len(validateText) > 0) Then

validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do

• If character is a decimal.
Elself (chr = "." And alreadyDecimal = 0) Then

alreadyDecimal = 1
I If character is a second decimal point.
Elself(chr = "." And alreadyDecimaJ = 1) Then

Beep
If (length = 1) Then

start = 2
Else

start = 1
End If
If (Len(validateText) > 0) Then

validateText = Mid(validateText, start, Len(validateText) - I)
End If
Exit Do

End If
length = length + 1

Loop While (length <= Len(validateText))
End Sub

90

,ConstdaUrm
, This fOIDl allows a user to modify the values of variables which remain constant for the
, whole fiel.d. They are stored in the file "const.utl" and later a constant EPIC input
, dataset "const.dat" is created and replicated for all the cells present in the gridded
, coverage.

Option Expl.icit

Dim fileNum As Integer

Private Sub cmdCancel_ClickO
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
Ifresp = vbYes Then

End
End If

End Sub

Private Sub cmdHelp_ClickO
fnnConstDatl Hlp.Show

End Sub

Private Sub cmdMore_ClickO
fnnConstDatMore.Show

End Sub

Private Sub cmdOk_ClickO
Dim resp As Integer
Dim runCommand As String
Dim fileName As String
Dim Counter As Integer

. Write data to file if a user chooses to.
resp = MsgBox("Do you wish to load constant variables in the datasets?", vbYesNo + vbCritical +

vbDefaultButton2, "EPIC-View")
Ifresp = vbYes Then

Hide
fileNum = FreeFile
Open cellDatasetDir + "const.utl" For Append As fileNum

Print #fiJeNum, "TITLE(l) "+ txtTitie I Text
Print #fileNum, "TJTLE(2) Field"
Print #fileNum, "NBYR
Print #fileNum, "IYR
Print #fiIeNum, "IMO
Print #fileNum, "IDA
Print #fileNum, "NJPD
Print #fileNum, "IPD
Print #fileNum, "NON
Print #fiIeNum, "JON
Print #fiIeNum, "IGSD
Print #fiIeNum, "LPYR
Print #fiIeNum, "lET
Print #fileNum, "ISCN

" + txtNBYR.Text
" + txtlYR.Text
" + txtIMO.Text
" + txtlDA.Text
" + txtNIPD.Text

" + txtlPD.Text
" + txtNON.Text

" + frmConstDatMore.txtIGN.Text
" + frmConstDatMore.txtlGSD.Text
" + txtLPYR.Text

" + txtlET.Text
" + fnnConstDatMore.txtlSCN Text

91

Print #fileNum, "IGRAF " + fnnConstDatMore.txtlGRAF.Text
Print #fileNum, "ICODE " + txtlCODE.Text
Print #fileNum, "ITYP " + fimConstDatMore.txtITYP.Text
Print #fiIeNum, "ISTA "+ frmConstDatMore.txtISTA.Text
Print #fileNum, "IHUS " + txtfHUS.Text
Print #fileNum, "CHL " + frrnConstDatMore.txtCHL.Text
Print #fileNum, lOCHS "+ fimConstDatMore.txtCHS.Text
Print #fiIeNum, "CHN " + fnnConstDatMore.txtCHN.Text
Print #fileNum, "SN " + frrnConstDatMore.txtSN.Text
Print #fiIeNum, "APM " + frmConstDatMore.txtAPM.Text
Print #fiIeNum, "SNO " + frmConstDatMore.txtSNO.Text
Print #fiIeNum, "RCN " + frrnConstDatMore.txtRCN.Text
Print #fiIeNum, "RTN " + frrnConstDatMore.txtRTN.Text
Print #fileNum, "C02 " + frmConstDatMore.txtC02.Text
Print #fileNum, "CSALT " + frmConstDatMore.txtCSALT.Text
Print #fiIeNum, "CHD " + frrnConstDatMore.txtCHD.Text
Print #fiIeNum, "PEC " + txtPEC.Text
Print #fileNum, "DRV " + txtDRV.Text
Print #fileNum, "BUS(l) "+ frmConstDatMore.txtBUSI.Text
Print #fiIeNum, "BUS(2) "+ frmConstDatMore.txtBUS2.Text
Print #fiIeNum, "BUS(3) "+ frrnConstDatMore.txtBUS3.Text
Print #fiIeNum, "BUS(4) "+ frrnConstDatMore.txtBUS4.Text
Print #fileNum, "FL " + frmConstDatMore.txtFL.Text
Print #fiIeNum, "FW " + frmConstDatMore.txtFW.Text
Print #fileNum, "ANG "+ frrnConstDatMore.txtANG.Text
Print #fileNum, "STD " + frmConstDatMore.txtSTD.Text
Print #fileNum, "ACW " + txtACW.Text

Close fileNum
fileNum = FreeFile
fileName = cellDatasetDir + "const.dat"
Open fileName For Output As fileNum
Close fileNum
, Load the constant variables' values to the const.dat.
runCommand = epicDir + "util epic" + cellDatasetDir + "const.dat @" + ceJlDatasetDir -I- "const.utl"
WaitShell (runCommand)
, Replicate the const.dat file for all the cells' dataset files.
resp = MsgBox("Creating datasets for all the cells.", vbCritical, "EPIC-View")
Counter = I
Do

fileName = cell DatasetDir + "form" + Trim(Str(Counter» + ".dat"
FileCopy cellDatasetDir + "const.dat", fileName
Counter = Counter + 1

Loop While Counter <= totalCells
resp = MsgBox("Datasets have been created.", vblnformation, "EPIC-View")

End
End If

End Sub

Private Sub Forrn_Load()
, Get all directory paths.
fileNum = FreeFile
Open "c:\EVPaths.txt" For Input As fileNum
Input #fiIeNum, celiDatasetDir, epicOutputDir, soilDir, epicDir

92

Close fileNum
fileNum = FreeFile
I Get total number of cells in the gridded coverage.
Open cellDatasetDir + "selected.cll" For Input As fileNum
Input #fileNum, totalCells
Close fileNum

End Sub

Private Sub txtACW_Change{)
validateText = txtACWText
validateData
txtACW.Text = validateText

End Sub

Private Sub txtDRV_Change{)
validateText = txtDRV.Text
validateData
txtDRV.Text = validateText

End Sub

Private Sub txtICODE_ChangeO
vaIidateText = txtICODE.Text
validateData
txtICODE.Text = vaJidateText

End Sub

Private Sub txtIDA_Change()
validateText = txtlDA.Text
validateData
txtIDA.Text = validateText

End Sub

Private Sub txtlET_ChangeO
validateText = txtlET.Text
validateData
txtIET.Text = validateText

End Sub

Private Sub txtlHUS_ChangeO
validateText = txtIHUS.Text
validateData
txtIHUS.Text = validateText

End Sub

Private Sub txtrMO_ChangeO
validateText = txtlMO.Text
validateData
txtlMOText = validateText

End Sub

Private Sub txtIPD_ChangeO
validateText = txtlPDText
validateData

93

F"

txtIPD.Text = validateText
End Sub

Private Sub txtIYR_ChangeO
validateText = txtIYR.Text
validateData
txtIYR.Text = validateText

End Sub

Private Sub txtLPYR_ChangeO
validateText = txtLPYR.Text
validateData
txtLPYR.Text = validateText

End Sub

Private Sub txtNBYR_ChangeO
validateText = txtNBYR.Text
validateData
txtNBYR.Text = validateText

End Sub

Private Sub txtNGN_ChangeO
validateText = txtNGN.Text
validateData
txtNGN.Text = validateText

End Sub

Private Sub txtNIPD_ChangeO
validateText = txtNIPD.Text
validateData
txtNIPD.Text =validateText

End Sub

Private Sub txtPEC_ChangeO
validateText = txtPEC.Text
validateData
txtPEC.Text = validateText

End Sub

94

'Constmore.frm
, This fonn aUows a user to modify the values of variables which remain constant for the
, whole field. They are stored in the file "const.utI" and later a constant EPIC input
, dataset "const.datU is created and replicated for all the cells present In. the gridded
, coverage.

Private Sub cmdHelp_ClickO
frmConstDat2Hlp.Show

End Sub

Private Sub cmdOk_ClickO
Hide

End Sub

Private Sub txtANG_ChangeO
validateText = txtANG.Text
vaLidateData
txtANG.Text = vaHdateText

End Sub

Private Sub txtAPM_ChangeO
validateText = txtAPM.Text
validateData
txtAPM.Text = validateText

End Sub

Private Sub txtBUS I ChangeO
validateText = txtBUSl.Text
validateData
txtBUS 1.Text = validateText

End Sub

Private Sub txtBUS2_ChangeO
validateText = txtBUS2.Text
validateData
txtBUS2.Text = validateText

End Sub

Private Sub txtBUS3_ChangeO
validateText = txtBUS3.Text
validateData
txtBUS3.Text = validateText

End Sub

Private Sub txtBUS4 ChangeO
validateText = txtBUS4.Text
validateData
txtBUS4.Text = validateText

End Sub

Private Sub txtCF_ChangeO
validateText = txtCF.Text
validateData
txtCF.Text = validateText

95

End Sub

Private Sub txtCHD_ChangeO
validateText = txtCHD.Text
validateData
txtCHD.Text = validateText

End Sub

Private Sub txtCHL_ChangeO
vaJidateText = txtCHL.Text
validateData
txtCHL.Text = validateText

End Sub

Private Sub txtCHN_ChangeO
validateText = txtCHN.Text
validateData
txtCHN.Text = validateText

End Sub

Private Sub txtCHS_Change()
validateText = txtCHS.Text
validateData
txtCHS.Text = validateText

End Sub

Private Sub txtC02_ChangeO
validateText = txtC02.Text
validateData
txtC02.Text = validateText

End Sub

Private Sub txtCSALT_ChangeO
validateText = txtCSALT.Text
validateData
txtCSALT.Text = validateText

End Sub

Private Sub txtFL_ChangeO
validateText = txtFL.Text
validateData
txtFL.Text = validateText

End Sub

Private Sub txtFW_ChangeO
validateText = txtFW.Text
validateData
txtFW.Text = validateText

End Sub

Private Sub txtIGN_ChangeO
validateText = txtIGN.Text
validateData
txtlGN.Text = validateText

96

End Sub

Private Sub txtIGRAF_ChangeD
validateText = txtIGRAF.Text
validateData
txtIGRAF.Text = validateText

End Sub

Private Sub txtIGSD_ChangeO
validateText = txtIGSD.Text
validateData
txtIGSD.Text = validateText

End Sub

Private Sub txtJSCN_ChangeO
validateText = txtISCN.Text
validateData
txtlSCN.Text = validateText

End Sub

Private Sub txtISTA_ChangeO
validateText = txtlSTA.Text
validateData
txtlSTA.Text = validateText

End Sub

Private Sub txtlTYP_ChangeO
validateText = txtlTYP.Text
validateData
txtITYP.Text = validateText

End Sub

Private Sub txtRCN_ChangeO
validateText = txtRCN.Text
validateData
txtRCN.Text = validateText

End Sub

Private Sub txtRTN_ChangeO
validateText = txtRTN.Text
validateData
txtRTN.Text = validateText

End Sub

Private Sub txtSN_ChangeO
validateText = txtSN.Text
validateData
txtSN.Text = validateText

End Sub

Private Sub txtSNO_ChangeO
validateText = txtSNO.Text
validateData
txtSNO.Text = validateText

97

End Sub

Private Sub txtSTD_ChangeO
validateText = txtSTD.Text
validateData
txtSTD.Text = validateText

End Sub

Private Sub txtSWV_ChangeO
validateText = txtSWV.Text
validateData
txtSWV.Text = validateText

End Sub "

I'

98

-

'Mgmt.bas
, This form allows a user to enter management practices for selected cells or for the whole
, field as chosen by a user. Different operations can be selected and the operations are
, stored in the cell specific "mgmt.utl" file.

Option Explicit

Global monthSel As Integer 'For selected month.
Global daySel As Integer 'For selected day.
Global unitType(O To 2) As String 'For selected unidt type.
Global operationCode As Integer 'For selected management operation.
Global cellFilesO As Integer 'To maintain different cell files' pointers.
Global cellIndex(} As Integer 'To maintain d.ifferent cell indexes.
Global cellExistO As Integer 'To maintain different flags if cell file exists.
Global selectedCells(I To 1000) As String 'To store number of selected cells.
Global moO As Integer 'To maintain different cells' NRO values.
Global totCellsSel As Integer
Global didCropRotation As Integer
Global currentCell As Integer
Global justDidCropRotation As Integer
Global validateText As String 'To use as a buffer for validation.

, Directory paths.
Global cellDatasetDir As String
Global epicOutputDir As String
Global soilDir As String
Global epicDir As String

I Management related variables.
Global armn As Single
Global armx As Single
Global btl: As Single
Global bir As Single
Global drt As Single
Global efi As Single
Global fdsf As Single
Global fmx As Single
Global fup As Single
Global idft As Single
Global idr As Single
Global ifa As Single
Global ifd As Single
Global iffr As Single
Global iri As Single
Global irr As Single
Global 1m As Single
Global nirr As Single
Global vimx As Single

, ValidateData
I Author: Anoop Govil
, Date: June 12, 1996
..----_ .._.. -- -_ .._.. ----- - _.. ---_.. - ---_ .. -- --_ .. -----

99

-

I vaLidateData Subroutine:
I _ Validates the value entered by a user so
I _ that it lies in the range of real numbers.
1 _

Public Sub validateDataO
Dim length As Integer
Dim resp As Integer
Dim start As Integer
Dim alreadyDecimal As Integer
Dim chr As String
chr = 0
length = 1
alreadyDecimal = 0

Do
ehr = Mid(validateText, length, I)
I Tf character other than a number or a decimal.
If (chr <> "," And chr <> "0" And chr <> "I" And chr <> "2" And chr <> "3" And chr <> "4" _

And chr <> "5" And chr <> "6" And chr <> "7" And chr <> "8" And chr <> "9") Then
Beep
If (length = 1) Then

start = 2
Else

start = I
End If
If (Len(validateText) > 0) Then

validateText = Mid(validateText, start, Len(validateText) - 1)
End If
Exit Do

, If character is a decimal.
ElseI f (chr = "," And alreadyDecimal = 0) Then

alreadyDecimal = 1
, If character is a second decimal point.
Elself(chr = "," And alreadyDecimaJ = 1) Then

Beep
Tf(length = 1) Then

start = 2
Else

start = I
End If
If (Len(validateText) > 0) Then

validateText = Mid(vaIidateText, start, Len(validateText) - I)
End If
Exit Do

End If
length = length + 1

Loop While (length <= Len(validateText»
End Sub

100

'MgmUrm
, This fonn allows a user to enter management practices for selected cells or for the wbol.e
I Held as chosen by a user. Different operations can be selected and the operations are
, stored in the cell specific "mgmt.utl" fLle.

Option Explicit

Dim month(l To 12) As String
Dim day(1 To 31) As Integer
Dim operation(l To 100) As String
Dim operCode(1 To 100) As Integer
Dim fileNum As Integer
Dim ftrstTime As Integer

Private Sub cboDay_ChangeO
Dim Counter As Integer
Counter = 1
Do

If (day(Counter) = cboDay.Text) Then
Exit Do

End If
Counter = Counter + I

Loop While Counter < 32
[f Counter < 32 Then

daySel = Counter I Store to global variable.
End If

End Sub

Private Sub cboDay_ClickO
Dim Counter As Integer
Counter = 1
Do

If (day(Counter) = cboDay.Text) Then
Exit Do

End If
Counter = Counter + 1

Loop While Counter < 32
daySel = Counter I Store to global variable.

End Sub

Private Sub cboMonth_ChangeO
Dim Counter As Integer
Counter = 1
Do

If (UCase(month(Counter» = UCase(cboMonth.Text» Then
Exit Do

End If
Counter = Counter + 1

Loop While Counter < 13
If Counter < 13 Then

monthSel = Counter I Store to global variable.

End If
End Sub

101

Private Sub cboMonth_ClickO
Dim Counter As Integer
Coun.ter = 1
Do

If (UCase(month(Counter» = UCase(cboMonth.Text» Then
Exit Do

End If
Counter = Counter + I

Loop While Counter < 13
monthSel = Counter' Store to global variable.

End Sub

Private Sub cboOper_ChangeO
addOperation

End Sub

Private Sub cboOper_ClickO
addOperation

End Sub

Private Sub cmdAddOper_ClickO
addOperation

End Sub

Private Sub cmdCancel_ClickO
Dim Counter As Integer
Dim resp As Integer

resp = MsgBox("Do you wish to cl.ose?", vbYesNo + vbCritical + vbDefaultButton2, "EPIC-View")
Ifresp = vbYes Then

End
End If

End Sub

Private Sub cmdClose_ClickO
Dim Counter As Integer
Dim index As String
Dim moVal As String
Dim resp As Integer
Dim fileName As String

, Store the values if a user chooses to.
resp = MsgBox("Do you wish load this set of management practices and close?", vbYesNo + vbCritical

+ vbDefaultButton2, "EPIC-View")
Ifresp = vbYes Then

Counter = I
Do

ceIlFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As celiFiles(Counter)
'Store all management practices related variables (one time only).
If ceIlExist(Counter) = 0 Then

Print #ceIlFiles(Counter), "NRO "+ Str(nro(Counter»

102

Print #cellFiles(Counter), "NIRR "+ Str(nirr)
Print #ceUFiles(Counter), "IRR "+ Str(irr)
Print #cellFiles(Counter), ''IRl "+ Str(iri)
Print #cellFiles(Counter), ".lFA "+ Str(ifa)
Print #ceUFiles(Counter), "LM "+ Str(lm)
Print #cellFiles(Counter), "IFD "+ Str(ifd)
Print #cellFiles(Counter), "IDR II + Str(idr)
Print #cellFiles(Counter), "IFFR II + Str(ifIr)
Print #cellFiles(Counter), "IDFT "+ Str(idft)
Print #cellFiles(Counter), "BIR "+ Str(bir)
Print #ceIlFiles(Counter), "EFI "+ Str(efi)
Print #cellFiles(Counter), "VIMX "+ Str(virnx)
Print #ceIIFiles(Counter), llARMN "+ Str(armn)
Print #cellFiles(Counter), "ARMX "+ Str(armx)
Print #ceIlFiles(Counter), "BFT "+ Str(bft)
Print #ceIlFiles(Counter), "FNP "+ Str(fnp)
Print #ceIlFiles(Counter), "FMX "+ Str(fmx)
Pri.nt #cellFiles(Counter), "DRT "+ Str(drt)
Print #ceIlFiles(Counter), "FDSF "+ Str(fdst)

Elself(didCropRotation = I) Then
Print #ceIIFiles(Counter), "NRO "+ Str(nro(Counter»

End If
Close cellFiles(Counter)
cellFiles(Counter) = FreeFile
• Rewrite the current number of operations and current NRO value.
Open cellDatasetDir + fileName For Binary As ceIlFiles(Counter)
index = Space(4 - Len(Str(cellIndex(Counter»»
nroVal = Space(4 - Len(Str(nro(Counter»»
index = index + Str(cellIndex(Counter»
moVal = moVal + Str(nro(Counter»
Put #celiFiles(Counter), 4, index
Put #cellFiles(Counter), 10, nroVal
Close cellFiles(Counter)
Counter = Counter + I

Loop While Counter <= totCellsSel . Loop for all selected cells.
End

End If
End Sub

Private Sub cmdHelp_Click()
fnnMgmtHelp.Show

End Sub

Private Sub cmdMore_Click()
fnnMgmtDefa. Show

End Sub

Private Sub cmdNewCrop_ClickO
Dim Counter As Integer
Dim resp As Integer
• Provide phenomenon for crop rotation if a user chooses to.
IfjustDidCropRotation = 0 Then' To avoid consicutive crop rotations.

resp = MsgBox("Do you wish to add new crop rotation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")

103

Ifresp = vbYes Then
justDidCropRotation = 1
Counter = I
Do

If (celllndex(Counter) > 0) Then
celllndex(Counter) = celLlndex(Counter) + I 'Increment no. of operations.
nro(Counter) = nro(Counter) + I 'Increment NRO value.

End If
Counter = Counter + I

Loop While Counter <= totCellsSel 'Loop for all selected cells.
didCropRotation = I
End If

Else 'If a user attempted consecutive crop rotations.
resp = MsgBox("Please enter an operation before another crop rotation.", vblnfonnation, "EPIC

View")
End If

End Sub

Private Sub Form_LoadO
Dim Counter As Integer
Dim fileName As String
Dim oper As String
Dim opCode As Integer
Dim path As String
Dim strl As String
Dim resp As Integer
Dim totCells As Integer
Dim genericFlag As String

'Store months.
month(l) = "JANUARY"
month(2) = "FEBRUARY"
month(3) = "MARCH"
month(4) = "APRIL"
month(5) = "MAY"
month(6) = "JUNE"
month(7) = "JULY"
month(8) = "AUGUST"
month(9) = "SEPTEMBER"
month(IO) = "OCTOBER"
month(ll) = "NOVEMBER"
month(l2) = "DECEMBER"

'Store units type.
unitType(O) = "ENGLISH"
unitType(1) = "METRIC"

'Create months list.
Counter = 1
Do

cboMonth. Addltem month(Counter)
Counter = Counter + 1

Loop While Counter < 13

104

eboMonth.Listindex = 0

'Create days list.
Counter = I
Do

day(Counter) = Str(Counter)
cboDay.Addltem day(Counter)
Counter = Counter + I

Loop While Counter < 32
cboDay.Listlndex = 0

'Get directory paths.
fileNum = FreeFile
Open "c:\EVPaths.txt" for Input As fileNum
Input #fileNum, cellDatasetDir, epicOutputDir, soilDir, epicDir
Close fil.eNum

'Check if this set is generic for whole field.
fileNum = FreeFile
fileName = cellDatasetDir + "selected.ell"
Open fileName For Input As fileNum
Input #fiIeNum, path, totCells, genericFlag
Counter = I
totCellsSel = 0
IfUCase(genericFlag) = "FALSE" Then 'For selected cells only.

Do
If (EOF(fileNum» Then

Exit Do
End If
Input #fileNum, selectedCells(Counter)
Counter = Counter + I
totCellsSel = totCellsSel + I

Loop While Not EOF(fileNum)
resp = 0

Else 'Generic for the field.
Do

selectedCells(Counter) = Counter
Counter = Counter + I
totCellsSel =' totCellsSel + I

Loop While Counter <= totCells
resp = vbYes

End If
Close fileNum

'Resize all arrays.
ReOim cellFiles(J To totCellsSel)
ReOim celI1ndex(l To totCellsSel)
ReOim celIExist(I To totCellsSel)
ReOim openMode(J To totCellsSel)
ReOim nroO To totCellsSel)

I Initialize NRO array with 1.
Counter = 1
Do

105

nro(Counter) = I
Counter = Counter + I

Loop While Counter <= totCellsSel
Counter = 1
, Open all selected cells' mgmt#.utl files for w:riting/appending.
Do

fileName = tlmgmt" + selectedCells(Counter) + tI.utI"
path = Dir(cellDatasetDir + fileName)
If path = UCase(fileName) Then

currentCell = selectedCells(Counter)
If (resp = 0) Then

resp = MsgBox(tlOverwrite all previously existing management files?tI, vbYesNo + vbQuestion +
vbDefaultButton2, "EPIC-View")

End If
If (resp = vbNo) Then

cellFiles(Counter) = FreeFile
, Read the previous index and NRO values.
Open celiDatasetDir + fileName For Input As cellFiles(Counter)
strl = Input(2, cellFiles(Counter»)
fnput #cellFiles(Counter), cellIndex(Counter), nro(CouDter)
Close cellFiles(Counter)
If (celIIndex(Counter) > 0) Then

cellExist(Counter) = 1
Else

ceIlExist(Counter) = 0
End If

Eiself(resp = vbYes) Then
ceIiFiles(Counter) = FreeFile
Open cellDatasetDir + fileName For Output As cellFiles(Counter)
Print #ceIlFiles(Counler), "! 0 1tI 'Write initial index on this line."
Close ceIlFiles(Counter)

End If
Else

cellFiles(Counter) = FreeFiJe
Open cellDatasetDir + fileName For Output As cellFiles(Counter)
Print #cellFiles(Counter), "! 0]" 'Write initial index on this line.
Close ceIIFiles(Counter)

End If
Counter = Counter + I

Loop While Counter <= totCellsSel

'Open the management operation file and create a list of
'management operations.
fileNum = FreeFile
fileName = epicDir + "mgmtoper.dat"
Open fileName For Input As fileNum
Counter = I
Do

If (EOF(fileNum» Then
Exit Do

End If
Input #fileNum, opCode
operCode(Counter) = opCode
Input #fileNum, operation(Counter)

106

cboOper.Addltem operation(Counter)
Counter = Counter + I

Loop While Not (EOF(fiIeNum) Or (Counter> 100))
ftrstTime = 0
cboOper.Listlndex = 0 'Set highlight to first item in list.
Close ftIeNum
initMgrntVars 'Initialize management related variabl.es.
frrstTime = I

End Sub

, InitMgmtVars
, Author: Anoop Govil
, Date: May 19, 1996

, initMgmtVars Subroutine:
, - Initializes all global variables.

Public Sub initMgmtVarsO
annn = Val(frmMgmtDefa.txtARMN.Text)
arrnx = Val(frrnMgmtDefa.txtARMX.Text)
bft = Val(frrnMgrntDefa.txtBFT.Text)
bir = Val(frmMgmtDefa.txtBJR.Text)
drt = Val(fnnMgmtDefa.txtDRT.Text)
eft = Val(frrnMgmtDefa.txtEFl.Text)
fdsf= Val(frrnMgmtDefa.txtFDSF.Text)
frnx = Val(frmMgmtDefa.txtFMX.Text)
fop = Val(frrnMgmtDefa.txtFNP.Text)
idft = Val(frmMgmtDefa.txtIDFT.Text)
idr = Val(frrnMgmtDefa.txtIDR.Text)
ifa = Val(frmMgmtDefa.txtlFA.Text)
ifd = Val(frrnMgmtDefa.txtlFD.Text)
ifft = Val(frrnMgrntDefa.txtlFFR.Text)
iri = Val(frmMgmtDefa.txtIRI.Text)
iIT = Val(frrnMgmtDefa.txtIRR.Text)
I.m = Val(frrnMgmtDefa.txtLM.Text)
nirr = Val(fnnMgmtDefa.txtNIRR.Text)
didCropRotation = 0
justDidCropRotation = 0
vimx = Val(frrnMgmtDefa.txtVIMX.Text)

End Sub

, AddOperation
I Author: Anoop Govil
I Date: May 19, 1996

I addOperation Subroutine:
, - Checks for the operation code selected by
, - a user and calls appropriate form to enter
I _ remaining data.

Public Sub addOperationO
Dim Counter As Integer

107

Dim resp As Integer
Dim choice As Integer
Dim fileName As String

Counter = 1
Do

If (operation(Counter) = UCase(cboOper.Text» Then
Exit Do

End If
Counter = Counter + I

Loop While Counter < 1.00
If Counter < 100 Then

operationCode = operCode(Counter)
If firstTime <> 0 Then

choice = operationCode
If choice = 71 Then I Fertilize

justDidCropRotation = 0
frmFert.Show

ElseIf choice = 11 Then I Sprayer.
justDidCropRotation = 0
frmPest.Show

Elself choice = 2 Then I Row Planter.
justDidCropRotation = 0
frmRowPlntr.Show

Eiself choice = 72 Then' Irrigation.
justDidCropRotation = 0
frm Lrrig. Show

Eiself (choice = 19 Or choice = 21 Or choice = 23 Or choice = 29 _
Or choice = 30 Or choice = 51) Then

justDidCropRotation = 0
fnnCultivate.Show

Eiself (choice = 41 Or choice = 28 Or choice = 33) Then
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical +

vbDefaultButton2, "EPrC-View")
lfresp = vbYes Then

justDidCropRotation = 0
Counter = 1
Do

cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As cellFDes(Counter)
celUndex(Counter) = cellIndex(Counter) + I
Print #ceIlFiles(Counter), "MON(" + Trim(Str(celllndex(Counter))) + ") "+ Str(monthSel)
Print #ceIlFiles(Counter), "DAY(" + Trim(Str(cellIndex(Counter») + ") "+ Str(daySel)
Print #cellFiJes(Counter), "COD(" + Trim(Str(celJIndex(Counter»)) + ") "+

Str(operationCode)
Close ceIlFiles(Counter)
Counter = Counter + I

Loop While Counter <= totCellsSel
End If

End If
End If

End If
End Sub

108

,Mgmtdefa.frm
, This fonn allows a user to enter management related variables for selected c-eHs or for
, the whole field as chosen by a user. These are stored in the cell specific "mgmt.utl" file.

Private Sub cmdHelp_ClickO
frmMgmDefl-llp.Show

End Sub

Private Sub cmdOk_ClickO
'Set global variables.
annn = Val(txtARMN.Text)
armx = Val(txtARMX.Text)
bft = Val(txtBFT.Text)
bir = Val(txtBIR.Text)
drt = Val(txtDRT.Text)
efi = Val(txtEFI.Text)
fdsf= Val(txtFDSF.Text)
fmx = Val(txtFMX.Text)
fnp = Val(txtFNP.Text)
idft = Val(txtIDFT.Text)
idr = Val(txtlDR.Text)
ifa = Val(txtIFA.Text)
ifd = Val(txtIFD.Text)
iffr = Val(txtIFFR.Text)
iri = Val(txtIRl.Text)
irr = Val(txtlRR.Text)
1m = Val(txtLM.Text)
nirr = Val(txtNIRR.Text)
vimx = Val(txtVJMX.Text)

Hide
End Sub

Private Sub txtARMN_ChangeO
validateText = txtARMN.Text
validateData
txtARMN.Text = validateText

End Sub

Private Sub txtARMX_ChangeO
validateText = txtARMX.Text
validateData
txtARMX.Text = validateText

End Sub

Private Sub txtBFT_ChangeO
validateText = txtBFT.Text
validateData
txtBFT.Text = validateText

End Sub

109

Private Sub txtBIR_ChangeO
validateText = txtBIR.Text
validateData
txtBIR.Text = validateText

End Sub

Private Sub txtDRT_ChangeO
validateText = txtDRT.Text
validateData
txtDRT.Text = validateText

End Sub

Private Sub txtEFCChangeO
validateText = txtEFl.Text
validateData
txtEFl.Text = vaLidateText

End Sub

Private Sub txtFDSF_ChangeO
validateText = txtFDSF.Text
validateData
txtFDSF.Text = validateText

End Sub

Private Sub txtFMX_ChangeO
validateText = txtFMX.Text
validateData
txtFMX.Text = validateText

End Sub

Private Sub txtFNP_ChangeO
validateText = txtFNP.Text
validateData
txtFNP.Text = validateText

End Sub

Private Sub txtIDFT_ChangeO
validateText = txtlDFT.Text
validateData
txtlDFT.Text = validateText

End Sub

Private Sub txtlDR_ChangeO
validateText = txtlDR.Text
validateData
txtIDR.Text = validateText

End Sub

110

Private Sub txtlFA_ChangeO
validateText = txtlFA.Text
validateData
txtlFA.Text = validateText

End Sub

Private Sub txtIFD_ChangeO
validateText = txtlFD.Text
validateData
txtlFD.Text = validateText

End Sub

Private Sub txtIFFR_ChangeO
vaJidateText = txtlFFR.Text
validateData
txtlFFR.Text = validateText

End Sub

Private Sub txtIRI_ChangeO
validateText = txtlRl.Text
validateData
txtIRI.Text = validateText

End Sub

Private Sub txtIRR_ChangeO
validateText = txtIRR.Text
validateData
txtIRR.Text = validateText

End Sub

Private Sub txtLM_ChangeO
validateText = txtLM.Text
validateData
txtLM.Text = validateText

End Sub

Private Sub txtNIRR_ChangeO
validateText = txtNIRR.Text
validateData
txtNIRR.Text = validateText

End Sub

Private Sub txtVIMX_ChangeO
validateText =txtVIMX.Text
validateData

111

txtVIMX,Text = validateText
End Sub

112

'FerUrm

, This fonn allows a user to select a fertilizer from a list of fertilizers and other variable
, values related to fertilize operation and store them in the cell specific "mgmt.utl" files.

Option Explicit

Dim fertilizer(l To 100) As String
Dim fileNum As Integer

Private Sub cmdCancel_ClickO
Hide

End Sub

Private Sub cmdOk_ClickO
Dim Counter As Integer
Dim ind As Integer
Dim resp As Integer
Dim addStr As String
Dim fileName As String

'Get the fertilizer code for selected fertilizer.
ind = I
Do

Iffertilizer(ind) = cboFert.Text Then
Exit Do

End If
ind = ind + 1

Loop While ind < 100

'Store the management operation if a user chooses 10.

Counter = I
[f(ind < 100) Then

resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,
"EPIC-View")

Ifresp = vbYes Then
If (UCase(cboUnit.Text) = "ENGLlSH") Then

addStr = "E"
Else

addStr = ''''
End If
Do

ceIlFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As ceIlFiles(Counter)
celJIndex(Counter) = cellJndex(Counter) + I
Print #ceIlFiles(Counter), "MON(" + Trim(Str(celllndex(Counter») + ") "+ Str(monthSel)
Print #ceIlFiles(Counter), "DAY(" + Trim(Str(ceHIndex(Counter») + ") "+ Str(daySel)
Print #cellFiles(Counter), "COD(" + Trim(Str(cellIndex(Counter))) + ") II + Str(operationCode)
Print #cellFiles(Counter), "FN(" + Trim(Str(celllndex(Counter))) + ") "+ Str(ind)
Print #ceIlFiles(Counter), "FAP(" + Trim(Str(celllndex(Counler))) + ") II + txtAppRate.Text +

addStr
Print #cellFiles(Counter), "FDP(" + Trim(Str(cellIndex(Counter») + ") "+ txtFertDepth.Text +

addStr
Print #ceIlFiles(Counter), "HUSC(" + Trirn(Str(cellIndex(Counter») + ") II + txtHUSched.Text

113

Close ceILFiles(Counter)
Counter = Counter + I

Loop While Counter <= totCelLsSel'Loop for all selected cells.
Hide
End If

End If
End Sub

Private Sub Fonn_LoadO
Dim Counter As Integer
Dim fileName As String
Dim code As Integer

'Open fertilizer file and create fertilizer list.
fileNum = FreeFile
fileName = epicDir + "fertdata.dat"
Open fileName For Input As fileNum
Counter = 1
Do

If EOF(fileNum) Then
Exit Do

End If
Input #fileNum, code
'These codes do not have any operations.
If «code < 6 Or code> 10) And (code < 16 Or code> 20)_

And code <> 25 And (code < 27 Or code> 30) And code <> 35 _
And code <> 37 And code <> 39 And code <> 40 And (code < 42 Or code> 49» Then

Input #fileNum, fertilizer(Counter)
cboFert.AddItem fertilizer(Counter)

End If
Counter = Counter + I

Loop While Not (EOF(fileNum) And Counter> 100)
cboFert.Listlndex = 0
Close fileNum
cboUnit.AddItem unitType(O)
cboUnit.Addltem unitType(I)
cboUnit.Listlndex = 0

End Sub

Private Sub txtAppRate_ChangeO
validateText = txtAppRateText
vaJidateData
txtAppRate.Text = validateText

End Sub

Private Sub txtFertDepth_Change()
validateText = txtFertDepth.Text
vaJidateData
txtFertDepth.Text = validateText

End Sub

114

Private Sub txtHUSched_ChangeO
validateText = txtHUSched.Text
validateData
txtHUSched.Text = validateText

End Sub

lI5

, frmculvt.frm
, This form allows a user to select enter variable values related to cultivation operation
, and store them in the cell specific "mgmt.utl" files.

Private Sub cmdCancel_ClickO
Hide

End Sub

Private Sub cmdOk_ClickO
Dim Counter As Integer
Dim resp As Integer
Dim fileName As String

'Store the management operation of a user chooses to.
Counter = I
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")
Ifresp = vbYes Then

Do
cellFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open ceIJDatasetDir + fileName For Append As ceIlFiles(Counter)
ceUlndex(Counter) = cellIndex(Counter) + I
Print #ceIlFiles(Counter), "MON(" + Trim(Str(cellIndex(Counter») + ") "+ Str(monthSel)
Print #ceIlFiles(Counter), "DAY(" + Trim(Str(celllndex(Counter))) + ") II + Str(daySel)
Print #ceIJFiles(Counter), "CODC" + Trim(Str(cellIndex(Counter))) + ") II + Str(operationCode)
Print #cellFiles(Counter), "HUSC(" + Trim(Str(celllndex(Counter») + ") "+ txtHUSC.Text
Close cellFiles(Counter)
Counter = Counter + I

Loop While Counter <= totCellsSel'Loop for all selected cells.
Hide
End If

End Sub

Private Sub Form_ActivateO
activateForrn

End Sub

Private Sub Form_LoadO
activateForm

End Sub

, ActivateForm
, Author: Anoop Govil
I Date: May 22, 1996

, activateForm Subroutine:
I _ Activates the form with a particular title
, - so that same form can be Llsed for more than
, - one management operation.

Public Sub activateFormO

116

If operationCode = 19 Then
frmCultivate.Caption = "EPIC-View - Row Cultivator"

Eiself operationCode = 21 Then
fnnCultivate.Caption = "EPIC-View - Hoe"

Elself operationCode = 23 Then
fnnCultivate,Caption = "EPIC-View - Sweep"

Elself operationCode = 29 Then
frrnCultivate.Caption = "EPIC-View - Disk"

Elself operationCode = 30 Then
fnnCultivate.Caption = "EPIC-View - Chisel"

Eiself operationCode = 51 Then
fnnCultivate.Caption = "EPIC-View - Harvest"

End If
End Sub

Private Sub txtHUSC_ChangeO
validateText = txtHUSC.Text
validateData
txtHUSC.Text = validateText

End Sub

]I7

'Irrig.frm
, This fonn allows a user to enter values for variables related to irrigate operation and
, store the values in the cell specific "mgmt.utl" files.

Option Explicit

Private Sub cmdCancel_ClickO
Hide

End Sub

Private Sub cmdOk_ClickO
Dim Counter As Integer
Dim resp As Integer
Dim addStr As String
Dim fileName As String

'Store the operation if a user chooses to.
Counter = I
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")
Ifresp = vbYes Then

If (UCase(cboUnit.Text) = "ENGLISH") Then
addStr = "E"

Else
addStr = ''''

End If
Do

ceIlFiJes(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".ut!"
Open ceflDatasetDir + fileName For Append As ceIlFiles(Counter)
celIIndex(Counter) = celllndex(Counter) + I
Print #cellFiles(Counter), "MON(" + Trim(Str(cellIndex(Counter») + ") "+ Str(monthSel)
Print #ceIlFiles(Counter), "DAY(" + Trim(Str(cellIndex(Counter») + ") "+ Str(daySel)
Print #ceIlFiles(Counter), "COD(" + Trim(Str(celllndex(Counter») + ") "+ Str(operationCode)
Print #ceIlFiles(Counter), "IA(" + Trirn(Str(cellIndex(Counter))) + ") "+ txtJA.Text + addStr
Print #ceIiFiles(Counter), "QVOL(" + Trim(Str(celllndex(Counter») + ") "+ txtQVol.Text
Close ceIlFiles(Counter)
Counter = Counter + I

Loop While Counter <= totCellsSe! 'Loop for all selected cells.
Hide
End If

End Sub

Private Sub Form_LoadO
cboUnit.Addltern unitType(O)
cboUnit.AddItem unitType(1)
cboUnit.Listlndex = 0

End Sub

Private Sub txtIA_ChangeO
validateText = txtIA.Text
validateData

118

txtlA.Text = validateText
End Sub

Private Sub txtQVol_ChangeO
validateText = txtQVol.Text
validateData
txtQVol.Text = validateText

End Sub

119

'Pestfrm
, This fOIlll allows a user to select a pesticide from a list of pesticides and other variable
I values related to sprayer operation and store them in the cell specific "mgmt.utl" fues.

Option Explicit

Dim pesticide(l To 300) As String
Dim fileNum As Integer

Private Sub cmdCancel_ClickO
Hide

End Sub

Private Sub cmdOk_ClickO
Dim Counter As Integer
Dim ind As Integer
Dim resp As Integer
Dim addStr As String
Dim fileName As String

'Get the pesticide code.
ind= I
Do

[fpesticide(ind) = cboPest.Text Then
Exit Do

End If
ind = ind + I

Loop While ind < 100
Counter = 1
If (ind < 100) Then

'Store the operation if a user chooses to.
resp = MsgBox("Do you wish to store this operation?", vbYesNo + vbCritical + vbDefaultButton2,

"EPIC-View")
Ifresp = vbYes Then

Jf(UCase(cboUnit.Text) = "ENGLISH") Then
addStr = "E"

Else
addStr = ""

End If
Do

ceIlFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As ceIlFiles(Counter)
celllndex(Counter) = celllndex(Counter) + I
Print #ceIlFiles(Counter), "MON(" + Trim(str(cellIndex(Counter))) + ") "+ str(monthSel)
Print #ceIlFiles(Counter), "DAY(" + Trim(str(celllndex(Counter») + ") "+ str(daySel)
Print #cellFiles(Counter), "COD(" + Trim(str(cellIndex(Counter») + ") "+ str(operationCode)
Print #ceIlFiles(Counter), "PST(" + Trim(str(cellIndex(Counter») + ") "+ str(ind)
Print #cellFiles{Counter), "PCF(" + Trim(str(cel1fndex(Counter») + ") "+ txtPCF.Text
Print #ceIlFiles(Counter), "PAR(" + Trim(str(celHndex(Counter))) + ") "+ txtAppRate.Text +

addStr
Close cellFiles(Counter)
Counter = Counter + 1

Loop While Counter <= totCellsSel'Loop for all selected cells.

120

Hide
End If

End If
End Sub

Private Sub Fonn_LoadO
Dim Counter As Integer
Dim fileName As String
Dim pest As String
Dim str As String

'Open pesticide file and create a list of pesticides.
fileNum = FreeFile
fileName = epicDir + "usdapest.dat"
Open fileName For Input As fileNum
Counter = I
Do

If EOF(fiIeNum) Then
Exit Do

End If
pest = Input(16, fileNum)
pesticide(Counter) = pest
cboPest.Addltem pesticide(Counter)
Input #fileNum, str
Counter = Counter + I

Loop While Not (EOF(fiIeNum) And Counter> 300)
cboPest.Listlndex = 0
Close fileNum
cboUnit.AddItem unitType(O)
cboUnit.Addltem unitType(1)
cboUnit.Listlndex = 0

End Sub

Private Sub txtAppRate_ChangeO
validateText = txtAppRate.Text
va IidateData
txtAppRate.Text = validateText

End Sub

Private Sub txtPCF_ChangeO
validateText = txtPCF.Text
validateData
txtPCF.Text = validateText

End Sub

121

,Rowplntr.frm
, This form allows a user to select a crop from a list of crops and other variable
, values related to rowplanter operation and store them in the cell specific "mgmt.utl" file.

Option Explicit

Dim Crop(l To 100) As String
Dim fileNum As Integer

Private Sub cmdCancel_ClickO
Hide

End Sub

Private Sub cmdOk_ClickO
Dim Counter As Integer
Dim ind As Integer
Dim resp As Integer
Dim fileName As String

'Get the crop code.
ind = 1
Do

If Crop(ind) = cboCrop.Text Then
Exit Do

End If
ind = ind + I

Loop While ind < 100

'Store the operation if a user chooses to.
Counter = I
If (ind < 100) Then

resp = MsgBox("Do you wish 10 store this operation?", vbYesNo + vbCrilical + vbDefauitButton2,
"EPIC-View")

Ifresp = vbYes Then
Do

ceIIFiles(Counter) = FreeFile
fileName = "mgmt" + selectedCells(Counter) + ".utl"
Open cellDatasetDir + fileName For Append As ceIlFiles(Counter)
celIIndex(Counter) = celllndex(Counter) + 1
Print #ceII Files(Counter), "MON(" + Trim(Str(celllndex(Counter») + ") "+ Str(monthSel)
Print #ceIlFiles(Counter), "DAY(" + Trim(Str(cellIndex(Counter») + ") "+ Str(daySel)
Print #ceIlFiles(Counter), "COD(" + Trim(Str(celllndex(Counter») + ") "+ Str(operationCode)
Print #ceIlFiles(Counter), "CRP(" + Trim(Str(celllndex(Counter») + ") "+ Str(ind)
Print #ceIlFiles(Counter), "GRZ(" + Trim(Str(celllndex(Counter») + ") "+ Str(ind)
Print #ceIlFiles(Counter), "PHU(" + Trim(Str(celllndex(Counter») + ") "+ txtPHU.Text
Close ceIlFiles(Counter)
Counter = Counter + I

Loop While Counter <= totCellsSel'Loop for all selected cells.
Hide

End If
End If

End Sub

Private Sub Form LoadO

122

Dim Counter As Integer
Dim fileName As String
Dim code As Integer
Dim crpCode As String
Dim crp As String

'Open the crop file and create the crops list.
fileNum = FreeFile
fileName = epicDir + "usdacrop.txt"
Open fileName For Input As fileNum
Counter = I
Do

If EOF(fiIeNum) Then
Exit Do

End If
Input #fiIeNum, code
If (code <> 9 And code <> 29) Then

crpCode = Input(4, fileNum)
Input #fiIeNum, crp
Crop(Counter) = crp
cboCrop.Additem Crop(Counter)

Else
Input #fiIeNum, crp

End If
Counter = Counter + 1

Loop While Not (EOF(fiIeNum) And Counter> 100)
cboCrop.Listlndex = 0
Close fileNum

End Sub

Private Sub txtPHU_ChangeO
validateText = txtPHU.Text
validateData
txtPHU.Text = validateText

End Sub

123

'Outputop.frm

, This form allows a user to select a list of variables to be monitored as a result of running
, EPIC on the selected cells. These can be selected from a list of output variables
, provided. Also a user can opt to select daily, monthly, yearly, annual or all these output
, files to be generated by EPIC. These are stored into "prot.utl" file which are later loaded
, into "pmt5300.dat" file.

Option Explicit

Dim fileNum As Integer
Dim cellDatasetDir As String
Dim epicOutputDir As String
Dim sollDic As String
Dim epicDir As String
Dim outputVars(l To 150) As String
Dim totVarsSel As Integer

Private Sub cmdCancel_ClickO
Dim resp As Integer

resp = MsgBox("Do you wish to close?", vbYesNo + vbQuestion, "EPIC-View")
If resp = vbYes Then

End
End If

End Sub

Private Sub cmdOk_ClickO
Dim Counter As Integer
Dim ctr As Integer
Dim resp As Integer
Dim outputStr As String

Counter = 0
totVarsSeJ = I
outputStr = ""
'Restore old settings/store new settings as choosen by a user.
If (IstOpVars.SelCount > 0 Or optOldVal.Value = True) Then

resp = MsgBox("Do you wish to close?", vbYesNo + vbQuestion, "EPIC-View")
Ifresp = vbYes Then

If optNewVal.Value = True Then
fileNum = FreeFile
'Writing a string for output files depending upon user choice.
Open cellDatasetDir + "outfiles.dat" For Output As fileNum
If Not (optDaily.YaJue = False And optMonthly.Value = False And optYearly = False_

And optAnnuaJ.Value = False And optAIIFiles.Yalue = False) Then
If optDaily.Value = True Then 'For daily output.

outputStr = " -epd "
ElseJf optMonthly. Value = True Then 'For monthly output.

outputStr = " -epm "
ElselfoptYearly.Value = True Then 'For yearly output.

outputStr = " -epy "
Elself optAnnual.Value = True Then 'For annual output.

outputStr = " -epa"

124

Elself optAUFiJes.Yalue =True Then
outputStr = " -ep " 'For all above outputs.

End If
Print #fileNum. outputStr

Else 'For none of above outputs.
Print #fileNum, "NONE"

End If
Close fileNum
fileNum = FreeFile
'Creating the output variables file.
Open cellDatasetDir + "pmt.utl" For Output As fileNum
'Writing for default values of daily and monthly outputs.
Print #fileNum, "K.D(I) 0"
Print #fileNum, "KM(l) 0"
'Writing the codes for all output variables selected.
Do
If IstOpYars.Selected(Counter) = True Then

ctr = I
'Loop to get the variable's code.
Do

If outputVars(ctr) = IstOpYars.List(Counter) Then
Exit Do

End If
ctr = ctr + I

Loop While ctr < 150
If ctr < 1SO Then

Print #fileNum, "KY(" + Trim(Str(totVarsSel» + It) II + Str(ctr)
totVarsSel = totVarsSel + I

End If
End If
Counter = Counter + I
Loop While (Counter < IstOpYars.ListCount And totVarsSel < 30)
'Jf less than 30 variables were selected, write '0' for all
, remaining variable places.
IftotVarsSel < 30 Then

Do
Print #fileNum, "KY(" + Trim(Str(totVarsSel» + ") 0"
totVarsSel = totYarsSei + I

Loop While totYarsSel <= 30
End If
Close fileNum

End Jf
End

End If
Else 'In case, no variable is selected.

If optNewVaI.Value = True Then
resp = MsgBox("The output variables are not selected!", vb.Jnfonnation, "EPIC-View")

End If
End If

End Sub

Private Sub FOnTI_LoadO

Dim Counter As Integer

125

Dim fileName As String
Dim ctr As Integer

'Get directory paths.
fileNwn = FreeFile
Open "c:\EVPaths.txt" For Input As fileNum
lnput #fileNum, cellDatasetDir, epicOutputDir, soiLDir, epicDir
Close fileNum

'Open output variables file and create a list of output variables.
fileNum = FreeFile
fileName = epicDir + "opvarlst.dat"
Open fileName For Input As fileNum
Counter = I
totVarsSel = 0
txtTotSel.Text = Str(lstOpVars.SelCount)
Do

If EOF(fileNum) Then
Exit Do

End If
Input #fileNum, ctr, outputVars(Counter)
IstOpVars.Addltem outputVars(Counter)
Counter = Counter + L

Loop While Not (EOF(fileNum) And Counter> 150)
Close fileNum

End Sub

Private Sub IstOpVars_CI ickO
Dim resp As Integer

txtTotSeJ.Text = (]stOpVars.SeICount)
If IstOpVars.SelCount > 30 Then

resp = MsgBox("More than 30 output variable(s) have been selected! Last selected variable(s) will
be ignored.", vbCritical, "EPIC-View")

End If
End Sub

Private Sub IstOpVars_DblClickO
Dim resp As Integer

txtTotSel.Text = (lstOpVars.SeICount)
lf1stOpVars.SelCount> 30 Then

resp = MsgBox("More than 30 output variable(s) have been selected! Last selected variable(s) will be
ignored.", vbCritical, "EPIC-View")

End If
End Sub

Private Sub optNewVal_ClickO
optDaily.Enabled = True
optMonthly.Enabled = True

126

optYearly.Enabled = True
optAnnual.Enabled = True
optAIlFiles.Enabled = True
IblOpVars.Enabled = True
IblTotSel.Enabled = True
IstOpVars.Enabled = True
Frame2.Enabled = True

End Sub

Private Sub optOldVal_ClickO
optDaily.Enabled = False
optMonthly.EnabJed = False
optYearly.Enabled = False
optAnnual.Enabled = False
optAJlFiles.Enabled = False
IblOpVars.Enabled = False
IblTotSel.Enabled = False
IstOpVars.Enabled = False
Frame2.Enabled = False

End Sub

127

APPENDIX G

AVENUE® CODE FOR INTERFACING

128

I Epic.constantData
, This Script writes total number of cells, available in the gridded
, coverage, to file "selected.cll" and then invokes the constant data
, entry user interface.
, Prepared by Anoop Govil
, Dated 5/19/96

selectedCell=CceIIDatasetDir.AsString+"selected.ell").AsFi leName
selectedFile = TextFile.Make(selectedCell, #FILE]ERM_WRITE)
selectedFiIe. WriteCtotalCells.AsString, _totalCells. AsString.Count)
selectedFile.WriteEltCnewLineChar)
selectedFile.Close
_epicDir.AsFileName.setCWD
command = exeDir+"constdat.exe"
system.execute(command)
I Disable the Constant Data menu option.
_constEnableFlag = 0

, Epic.DispChart
, This Script displays Chart as per user choices.
, Prepared by Anoop Govil
, Dated 5/19/96

, Create an output variables list.
outputVarList = List.Make
theTable = av.GetProject.FindDocCmainTable)
resTable = av .GetProject.FindDocCresultsTable)
for each afield in resTable.GetVTab.GetFields

if((aField.GetAlias <> _cellIdFld) And (aField.GetAlias <> "")
And (aField.GetAlias <> "Years") And (aField.GetAlias <> "Botch.da"))then

outputVarList.Add(aField.GetAlias)
end

end
'for each item in outputVarList
, MsgBox.Info(item, "EPIC-View")
'end
'userList = MsgBox.Multilnput("", "EPIC-View",

, Display the chart properties option.

aChart = Chart.MakeUsingDialog(resTable.GetVTab)
if(aChart <> nil) then

aChart.GetWin.Open
end

129

, Epic.displayMap
, This Script loads the results table, created as a result of parsing the
I EPIC output, to the project, joins it with the main theme's attribute
, table and creates new themes depending upon the output variables selected
, by a user and displays the themes in the current field view in different
I colors.
I Prepared by Anoop Govi I
I Dated 5/1 4/96

I Add the comma delemited file created by parser as a new table in the project and join it with
I the main attribute table on Cell Id.

theTable = av.GetProject.FindDocLmainTable)
theTableWin=theTable.GetWin

1 Removes any fields joined to the current table

theVTab = theTable.GetVTab
if (theVTab.lsBase.Not) then
av.GetProject. SetModified(true)

end
theVTab.UnjoinAlI

resTable = av.GetProject.FindDocLresultsTable)
if(resTable = nil) then

f=LepicOutputDir+_resultsTable).AsFileName
v = VTab.Make(f, FALSE, FALSE)
if (v. HasError) then
MsgBox.Error("The file '" + f.GetBaseName + "' is not valid.", "")

else
t = Table.Make(v)
t.SetName(v.GetName)
tField = t.GetVTab.FindFieJdLcellIdFJd)
t.SetActiveField(tField)
tableField = theTable.GetVTab.FindFieldLcellIdFld)
theTable.SetActiveField(tableField)
theTable.GetVTabJoin(tableField,t.GetVTab,tField)

end
else

resFiel.d = resTable.GetVTab.FindFieldLcellldFld)
resTable.SetActiveField(resField)
tableField = theTable.GetVTab.FindFieldLcellldFld)
theTable.SetActiveField(tableField)
theTable.GetVTabJoin(tableField,resTable.GetVTab,resField)

end

, Replicate main theme into new themes depending upon
, output variables selected by a user.

epicProject=av.getProject
fieldView=epicProject.FindDocl.mainView)

, To make sure that only main theme is active.

130

for each aTheme in fieldView.GetThemes
if(aTheme.GetName = _mainTheme) then
aTheme.SetActive(True)

else
aTherne.SetActive(False)

end
end
fieldView.CopyThemes

resTable = av.GetProjecLFindDocLresultsTable)
, Initialize theme colors.
rl = 200
gl = 200
bl = 250
r2 = 250
g2 = 150
b2 = 150
for each aField in theTable.GetVTab.GetFields

fieldExists = resTable.GetVTab.FindField(aField.GetAlias)
if((fieldExists <> nil) And (fieldExists.GetAlias <> _cellIdFld) And (fieldExists.GetAlias <> '"')

And (fieldExists.GetAlias <> "Years") And (fieldExists.GetAlias <> "field"))then
fieldView.Paste
for each aTheme in fieldView.GetThemes

if(aTheme.GetName = _mainTheme) then
aTheme.SetActive(True)

else
aTbeme.SetActive(False)

end
end
resultTheme = fieldView.FindThemeLmainTheme)
resultTheme.SetName(aField.GetAlias)
resultLegend = resultTheme.GetLegend
resField = resultTherne.GetFTab.FindField(aField.GetAlias)
resuItLegend.lnterval(resultTheme.GetFTab, resField, 5)

, resultLegend.Quantile(resuItTheme.GetFTab, resField, 5)
resu It Legend.SetField(resField)
startColor = Color.Make
endColor = Color.Make
startColor.SetRgbList({rl, g I, b I}) '200, 200, 250
endColor.SetRgbList({r2, g2, b2}) '250, 150, 150
resultLegend.RampColors(startColor, endColor)
, Change colors for the next theme.
rl=rl+30
bl = bl + 20
gI=gI+IO
if (ri > 255) then

rl = 0 + (ri - 255)
end
if (b 1 > 255) then
bI=0+(bl-255)

end
if(gl > 255) then

131

gl = 0 + (gl - 255)
end
r2 = r2 + 70
b2 = b2 + 60
g2 = g2 + 50
if (r2 > 255) then

r2 = 0 + (r2 - 255)
end
if (b2 > 255) then
b2 = 0 + (b2 - 255)

end
if (g2 > 255) then

g2 = 0 + (g2 - 255)
end
resu ItTheme.SetV is ible(False)
if (resultTheme.ls(FTHEME)) then
sel = resultTheme.GetFTab.GetSelection
sel.ClearAll'Clear all selections of added themes.
resultTheme.GetFTab.UpdateSelection

end
end

end

I Epic.displayTable
I Opens and displays the results table.
I Prepared by Anoop Govil
I Dated 5/23/96

epicProject=av.getProject
resTable=epicProject.FindDocLresultsTable)
resWin=resTable.GetWin
if (resWin.lsOpen.Not)then

resWin.Open
else

resWin.Activate
end

132

, Epic.getGISData
, This script retrieves elev slope, crop, soil series
, field values of the selected records from the theme's table
, Prepared by Anoop Govil
, Dated 2/27/96

, Reset any previously existing selectCells list.
totFiles=_selectCellsList.Count
index = totFiles - I
while (index >= 0)
_selectCellsList.Remove(index)
index = index - I

end
theTable = av.GetProject.FindDocCmainTable)
if(nil=theTable)then

MsgBox.Error("The table: "+_mainTable+", not found.", "Epic")
exit

end
theTableWin=theTable.GetWin
if (theTableWin.IsOpen.Not)then
theTableWin.Open

else
theTableWin.Actiyate

end
theTableWin.Minimize

theVTab = theTable.GetVTab
myVTab = theVTab.GetSelection
if (O=theVTab.GetSelection.Count) then
MsgBox.Error("There are no cells selected to extract spatial attributes.","EPT -View")
exit

end

soilField = theVTab.FindField("Series rl
)

sortField = theVTab.FindFieldCcellldFld)
theTable.Sort(sortField, False)

'Show status bar
av.ShowMsg("creating files ... ")
canceled = False
'aY.ShowStopButton
statuslndex = 0
'aY.SetStatus (statusfndex)
selRecords=theVTab.GetNumSeIRecords
statuslncrement = 100/ selRecords

for each rec in myVTab
cellIdField = theVTab.FindFieldCceJlldFld)
cellId = theVTab.RetumValueString(eellIdField, ree)
aFileNarne=CceIIDatasetDir+"form"+cellld+".utl").AsFileName
aTextFile = TextFile.Make(aFileName, #FILE]ERM_WRITE)
_selectCellsList.Add(cellTd)

133

'Get soil series
ifLuserSoilJsAbsent = False)then
soilSeries = theVTab.ReturnValueString(soiIField, ree)
soilSeries = "@"+_soilDir+soiISeries+".utJ"
aTextFile.Write(soiISeries, soiISeries.Count)
aTextFile. WriteEltLnewLineChar)

end

'Get elevation value
elevField = theVTab.FindField("Elev")
elev = theVTab.RetumValueNumber(elevField, rec)
elev = "ELEV "+elev.AsStriJlg
'Write to the text file
aTextFile. Write(elev.AsString, elev.AsString.Count)
aTextFile. WriteEltLnewLineChar)

'Get slope value
slopeField = theVTab.FindField("Slope")
slope = theVTab.RetumValueNumber(slopeField, rec)
slope = slope / 100
slope="S "+slope.AsString
'Write to the text file
aTextFile. Write(slope, slope.AsString.Count)
aTextFile. WriteEltLnewLineChar)

'Get area value
areaField = theVTab. FindField("Area")
area = tbeVTab.RetumValueNumber(areaField, ree)
area = area / 10000
areaStr="WSA "+area.AsString
'Write to the text file
aTextFile.Write(areaStr, areaStr.AsString.Count)
aTextFile.WriteEltLnewLineChar)

'Get Runoff Curve number value(if user specified
'soil is absent).
ifLuserSoilIsAbsent = False)then
cNumField = theVTab.FindFieJd("Cn2")
cNum = theVTab.RetumValueNumber(cNumField, ree)
cNum="CN2 "+eNum.AsString
'Write to the text ftle
aTextFile.Write(cNum, eNum.AsString.Count)
aTextFile.WriteEltLnewLineChar)

end

'Store slope length after calculating it.
area = area * 10000
side = area.Sqrt
SL = side * 2.Sqrt
SLStr = "SL " + SL.AsString
aTextFile. Write(SLStr, SLStr.Count)
aTextFile. WriteEltLnewLineChar)

134

'Store pointer to cell's corresponding mgmt file.
mgmtFile = 1@1+_ceIlDatasetDir+lmgrnt"+cellld+l.utl"
aTextFile.Write(mgmtFile, mgmtFile.Count)
aTextFile.WriteEltCnewLineCbar)

aTextFile.Close

, statuslndex = statusIndex + statuslncrement
, continued = av.SetStatus (statuslndex)
, if(Not continued) then
, canceled = true
, break
, end

end

if(canceled) then
av.ShowMsg("Process interrupted. ")

else
MsgBox.lnfo("Extracted Spatial data from selected cells.", "Epic")

end

, Enable the Output Options and Run Simulator menu options.
_opOptionEnableFlag = I
JunEpicEnableFlag = True

I Epic.mgmtData
, This Script provides a user with choices to make a set of management practices
, generic or select specific cells and enter management practices for
, those cells by invoking Management Practices data entry user interface.
, Prepared by Anoop Govil
, Dated 5/23/96

, Reset the selectedCells list.

totFiles= selectCellsList.Count
index = totFiles - 1
while (index >= 0)

_selectCellsList.Remove(index)
index = index - I

end
theTable = av.GetProject.FindDocLmainTable)
if(nil=theTable)then

MsgBox.Error("The table: "+_mainTable+", not found. ", "Epic")
exit

end
theTableWin=theTable.GetWin
if (theTableWin.JsOpen.Not)then

theTableWin.Open
elsc

theTableWin.Activate

135

end
theTableWin.Minimize

genericFlag = false
theVTab = theTable.GetVTab
myVTab = theVTab.GetSelection

I Jf no cells are selected, give user a choice to make management practices generic.
I

if (O=theVTab.GetSelection.Count) then
genericFlag = MsgBox.YesNo("Do you wish to make this set of management practices generic for the

whole field?", "EPIC-View", False)
if(genericFlag. Not)then

MsgBox.Error("ln that case, please select the cells for entering management practices. If,"EPIC-View")
exit

end
end

sortField = theVTab.FindFieldLcellIdFld)
theTable.Sort(sortField, False)

, If cells are selected, build the selectedCells list.

for each rec in myVTab
cellIdField = theVTab.FindFieldLcellIdFld)
cellld = theVTab.RetumValueString(cellldField, rec)
_selectCellsList.Add(cell Id)

end

I Write selected cells ids to file selected.cll.

selectedCell=LceIIDatasetDir.AsString+"selected.cll").AsFileName
selectedFile = TextFile.Make(selectedCell, #FILE]ERM_WRITE)
path=_epicOutputDir
selectedFile.Write(path, path .Count)
selectedFi Ie. WriteEltLnewLineChar)
selectedFi Ie. WriteLtotaICells.AsString, _totaICells.AsString.Count)
selectedFile.WriteEltLnewLineChar)
selectedFi Ie.Write(genericFlag.AsString, genericFlag.AsString.Count)
selectedFi Ie. WriteEltLnewLineChar)

if (genericFlag.Not) then
for each cellId in _selectCellsList

selectedFile.Write(cellId, cellld.Count)
selectedFi Ie.WriteEltLnewLineChar)

end
end
selectedFile.Close
'Run Visual Basic management data entry screen.
command = _exeDir+"mgmt.exe"
system.execute(command)

136

I Epic.OlltputOptions
I This Script allows a user to enter output options to be monitored
I by providing an Output Options data entry user interface.
I Prepared by Anoop Govil
I Dated 5/24/96

command = _exeDir+"outputop.exe"
system.execute(command)
I Disable Output Options menu option and enable Run Simulator menu option.
_opOptionEnableFlag = 0
JunEpicEnableFlag = 1

, Epic.removeThemes
, This Script removes the added themes (except the main theme), if
, a user chooses to do so.
, Prepared by Anoop Govil
, Dated 5/12/96

epicProject=av.getProject
fieldView=epicProject.FindDocLmainView)
if(fieldView.GetThemes.Count> 1) then
dolt = MsgBox.YesNo("Do you wish to delete all the added themes?", "EPIC-View", TRUE)
if(doll) then
totalThemes = fieldView.GetThemes.Count
while(totaIThemes> 1)

themesList = fieldView.GetThemes
for each aTheme in themesList

if(aTheme.GetName <> _mainTheme) then
fieldView.DeleteTheme(aTheme)
totalThemes = totalThemes - I
break

end
end

end
end

end
I Activate main theme.
for each aTheme in fieldView.GetThemes

if(aTheme.GetName = _mainTheme) then
aTheme.SetActive(True)

else
aTheme.SetActive(False)

end
end

137

, Epic.runEpic
, This Script creates various batch files to complete the cell specifie
, input datasets and then invoke EPIC on all of selected cells' input
, datasets and fmally invoke the parser to create a comma delimited
, file from the EPIC output files.
, Prepared by Anoop Govil
I Dated 2/28/96

I Check if any cells are selected to run EPIC.

cellsSelected=_selectCellsList.Count
if(O=cellsSelected)then

MsgBox.Error("There are no cells selected to run the model.", "EPIC-View")
exit

end

theTable = av.GetProject.FindDocCmainTable)
theTableWin=theTable.GetWin
theVTab = theTable.GetVTab
myVTab = theVTab.GetSelection
if (O=theVTab.GetSelection.Count) then
MsgBox.Error("There are no cells selected.", "EPIC-View")
exit

end

I Removes any fields joined to the current table

if (theVTab.IsBase.Not) then
av.GetProject.SetModified(true)

end
theVTab. UnjoinAll

'Removes the added table "form.prs" from project.

theProject = av.GetProject
theTable = theProject.FindDocCresultsTable)
if(nil <> theTable) then

theProject. RemoveDoc(theTable)
end

, Removes the added themes.

epicProject=av.getProject
fieldView=epicProject.Find DocLmainVjew)
if(fieldView.GetThemes.Count> 1) then

totalThemes = fieldView,GetThemes.Count
while(totaIThemes> I)

themesList = fieldView.GetThemes
for each aTheme in themesList

if(aTheme.GetName <> _mainTheme) then
fieldView.DeleteTheme(aTheme)
totalThemes = totalThemes - 1
break

138

end
end

end
end

I If a user selected to have daily, monthly, yearly, annual of all of these
I EPIC output files, a string is written to a file "outfiles.dat" which
I is read here and appropriate command to run EPIC is fonnulated.,

userString=""
userPreference=LcellDatasetDj r+ 11outfiles.datil).AsFiIeName
if(File.Exists(userPreference» then
stringFile=TextFile.Make(userPreference, #FlLE]ERM_READ)
while(stringFile.IsAtEnd.Not)

listChar = stringFile.ReadEIt
if(listChar = IO.AsChar.AsString) then

break
else

userString = userString + listChar
end

end
if (userString = "NONE") then' If no output file is required.

userString="ll
end

end

, Creating various batch files for running.

makeDataset=LceJIDatasetDir.AsString+"create. bat' ').AsFileNarne
createFiIe = TextFile.Make(makeDataset, #FTLE]ERM_WRITE)
runEpic=LcellDatasetDir.AsString+"runepic.bat").AsFi leName
runEpicFile = TextFile.Make(runEpic, #FILE]ERM_WRITE)
selectedCell=LceIIDatasetDir.AsString+"selected.cll").AsFileName
selectedFile = TextFile.Make(selectedCell, #Fl LE]ERM_WRITE)
path=_epicOutputDir
selectedFile.Write(path, path.Count)
selectedFile. WriteEltLnewLineChar)

'Show status bar
av.ShowMsg("creating files ... ")
canceled = False
av.ShowStopButton
statuslndex = 0
av.SetStatus (statusIndex)
totFiles= selectCeIlsList.Count
statusI ncrement = 100 / totFiles

, Writing commands in the batch files.

for each celUd in _selectCeIlsList
command=_epicDir+"ewq "+userString+_ceIlDatasetDir+lfonn"+cellld+" "+_epicOutputDir
selectedFile. Write(cellJd, ceJIld.Count)
selectedFile.WriteEltCnewLineChar)
runEpicFile. Write(command, command.Count)

139

runEpicFile.WriteEltLnewLineChar)
command=_epicDir+"utiL epic H+_celLDatasetDir+HformH+ceLlld+H.dat@"+

_cellDatasetDir+HformH+cellld+".utl"
createFile. Write(command, command.Count)
createFi leo WriteEltLnewLineChar)

statuslndex = statusIndex + statuslncrement
continued = av.SetStatus (statuslndex)
if(Not continued) then

canceled = true
break

end

end

if(canceled) then
av.ShowMsg("Process interrupted.")

else
av.ShowMsg("Created command file for running simulator.")

end

outputOptionString=LepicDir+Hutil pmt prnt5300.dat @H+_cellDatasetDir+Hpmt.utlH).AsFileName
if (File.Exists(LcellDatasetDir+Hpmt.utl").AsFileName)) then

createFile .Write(outputOptionString.AsString, outputOptionString.AsString.Count)
createFile. WriteEltLnewLineChar)

end
createFile. Write(runEpic.AsString, runEpic.AsString.Count)
createFile.WriteEItLnew LineChar)
createFile.Close
command=_exeDir+Hparse.exe"
runEpicFile.Write(command, command.Count)
runEpicFile.WriteEltLnewLineChar)
runEpicFile.Close
selectedFiJe.Close
_epicDir.AsFileName.setCWD

, Invoking a waitshell to run EPIC.

command = _exeDir+HDSETMAKE.EXE Beavis Epic.returnToAV"
system.execute(command)
, Disabling Run Simulator menu option.
_runEpicEnableFlag = False
, Enabling the Display Map menu option.
_displayEnableFlag=True

140

, Epic.sbowExtent
, This script opent the main view and activates the main theme.
, Prepared by Anoop Govil
, Dated 2/24/96

epicProject=av.getProject
fieJdView=epicProject. FindDocLmainView)
I

if(nil=fieldView) then
MsgBox.Error("Field View document does not exist", "EPIC-View")
exit

end

fieldViewWin=fieldView.GetWin
if(fieldViewWin.lsOpen.Not) then

fieldViewWin .Open
else

fieldViewWin.Activate
end

layersTheme=fieldView. FindThemeLmainTheme)

if(nil=layersTheme) then
MsgBox.Error("Theme: "+_mainTheme+" does not exist", "EPIC-View")
exit

end

if(layersTheme.lsVisible.Not) then
layersTheme.SetVisible(True)

end

cropTable=layersTheme.GetFTab
selected=cropTable.GetSelection
selected.ClearAII
cropTable.SetSeJection(seJected)

if(layersTheme.lsActive.Not) then
layersTheme.SetActive(True)

end

fieldView.GetDisplay.SetExtent(layersTheme.GetExtent.Scale(I. J))
'av.Run("View.SelectPoint", "")

141

I Epic.SoilData
I This Script loads soil and curve number to constant dataset by invoking
I a soil data entry user interface. This menu option is enabled only
, if a user does not haves his own soil files.
, Prepared by Anoop Govil
, Dated 5/18/96

command = _exeDir+"soil.exe"
system.execute(command)
_constEnableFlag = 2
_soilEnableFlag = False

, Epic.startUp
, This script creates global variables for various directory paths set by user.
, Prepared by Anoop Govil
, Dated 5/15/96

, Global variables used for enabling various menu options.
selectCellsList = List.Make
newLineChar = IO.AsChar

_displayEnableFlag = False
soilDatalsEnabled = False

_constEnableFlag = 0
_soilEnableFlag = False
JunEpicEnableFlag = 0
_opOptionEnableFlag = 0

userSoilisAbsent = True
totalCells = I

pathsFile = "c:\EVPaths.txt".AsFileName
if(File.Exists(pathsFile).Not) then

labelList = List.Make
labeIList.Add("Cell Dataset Directory:")
labeIList.Add("Epic Output Directory: ")
labeIList.Add("Soil Data Directory:")
labeIList.Add("EPlC Directory: ")
labeIList.Add("EXE Directory Name:")
labeIList.Add("Base Dataset Name:")
labeIList.Add("CelJ fd Field Name:")
labeIList.Add("Results Table Name: ")
labeIList.Add("Main Attribute Table Name:")
labeIList.Add("Main Field View Name:")
labeIList.Add("Main Theme Name:")
JabeIList.Add("Main Theme Path :")

defaultList = List.Make
defaultList.Add("c:\EPlCYiew\Temp\")
defaultList.Add("c:\EPlCYiew\Temp\")
defaultList.Add("c:\EPICYiew\Soil\")
defaultList.Add("c:\epic5300\")
defaultList.Add("c:\EPlCYiew\EXEDir\")
defaultList.Add("const.dat")
defaultList.Add("Hru2_")
defaultList.Add("form.prs")

142

defaultList.Add(tIAttributes of Hru2 t1
)

defaultList.Add(tlBotchlet 1/4 section tl)
defaultList.Add(lHru2")
defaultList.Add(lc:\EPICView\Hru")

userList=MsgBox.Multilnput("Globals Initialization:", "EPIC-View", labelList, defaultList)

if(userList = nil) then
_cellDatasetDir = defaultList.Get(O)
_epicOutputDir = defauItList.Get(I)
_soilDir = defaultList.Get(2)
_epicDir = defaultList.Get(3)
_exeDir = defaultList.Get(4)
_baseDataset = defaultList.Get(5)

I New additions
_cellldFld = defauItList.Get(6)
_resultsTable = defaultList.Get(7)
_mainTable = defaultList.Get(8)
_mainView = defaultList.Get(9)
_mainTheme = defauItList.Get(10)
_mainThemePath= defauItList.Get(ll)

else
_cellDatasetDir = userList.Get(O)
_epicOutputDir = userList.Get(I)
_soilDir = userList.Get(2)
_epicDir = userList.Get(3)
_exeDir = userList.Get(4)
_baseDataset = userList.Get(5)

I New additions
_cellIdFld = userList.Get(6)
_resultsTable = userList.Get(7)
_mainTable = userList.Get(8)
_mainView = userList.Get(9)
_mainTheme = userList.Get(lO)
_mainThemePath= userList.Get(I:I)

end
'write to paths file.

pathFile = TextFile.Make(pathsFile, #FILE_PERM_WRITE)
pathFile. WriteCcellDatasetDir, _cellDatasetDir.Count)
pathFile.WriteEltCnewLi.neChar)
pathFile.WriteCepicOutputDir, _epicOutputDir.Count)
pathFile. WriteEltCnewLineChar)
pathFile. WriteCsoilDir, _soiIDir.Count)
pathFile.WriteEltCnewLineChar)
pathFile.WriteLepicDir, _epicDir.Count)
path File. WriteEltCnewLineChar)
path File. WriteCexeDir, _exeDir.Count)
pathFi Ie. WriteEltCnewLineChar)
pathFile. WriteCbaseDataset, _baseDataset.Count)
path File.WriteEItLnewLineChar)
pathFile.WrileLcellldFld, _celJIdFld.Count)

143

pathFile.WriteEltLnewLineChar)
pathFile.WriteLresultsTable, JesultsTable.CoWlt)
pathFile.WriteEltLnewLineChar)
pathFile.WriteLmainTable, _mainTable.Count)
pathFile.WriteEltLnewLineChar)
pathFile.WriteLmainView, _mainView.Count)
pathFile.WriteEltLnewLineChar)
pathFile. WriteLmainTheme, _mainTheme.Count)
pathFile. WriteEltLnewLineChar)
pathFile.WriteLmainThemePath, _mainThemePath.Count)
pathFile. WriteEltLnewLineChar)
pathFile.Close
, Create a new view at the time of installation.
fi.eldView = View.Make
theSrcName = SrcName.Make(_mainThemePath+" polygon")
if (theSrcName = nil) then

msgbox.Error("Invalid SrcName", "")
exit

end
mainTheme = Theme.Make(theSrcName)
mainTheme.SetActive(True)
mainTheme.SetVisible(True)
mainThemeLegend = mainTheme.GetLegend
aField = mainTheme.GetFTab.FindField("Elev")
mainThemeLegend.Interval(mainTheme.GetFTab, aField, 5)
mainThemeLegend.SetField(aField)
mainThemeLegend.RampColors(Color.GetBlue, Color.GetCyan)
mainTheme.SetNameLmainTheme)
fieldView.AddTheme(mainTheme)
fieldView.SetNameLmainView)
epicProject = av.GetProject
epicProject.AddDoc(fieldView)
mainTheme.EditTable
av.GetProject.Save

else
eachltem=""
items=O
pathFile = TextFile.Make(pathsFile, #FILE]ERM_READ)
while(pathFile.IsAtEnd.Not)

aChar = pathFile.ReadElt
if(aChar = IO.AsChar.AsString) then
if(items = O)then

celIDatasetDir = eachItem
elseif(items = I)then

_epicOutputDir = eachItem
elseif(items = 2)then

soilDir = eachJtem
elseif(items = 3)then

_epicDir = eachJtem
elseif(items = 4)then

exeDir = eachItem
elsei f(items = 5)then

baseDataset = eachItem
elseif(items = 6)then

144

_cellIdFld = eachltem
elseif(items = 7)then
_resultsTable = eachItem

elseif(items = 8)then
_maioTable = eachltem

elseif(items = 9)then
_mainView = eachltem

elseif(items = lO)then
mainTheme = each Item

elseif(items = 11)then
mainThemePath = each Item

end
eachltem=""
items = items + I

else
eachItem = eachItem + aChar

end
end 'end of while loop

end I End of main if condition

I Check ifuser specified soil is present (used for update property
I of soil data tool option). Also calculate the total number of cells
I present in the gridded coverage.

theTable = av.GetProject.FindDocLmainTable)
if(nil=theTable)then

MsgBox.Error("The table: "+_mainTable+", not found. ", "Epic")
exit

end
theTableWin=theTable.GetWin
jf (theTableWin.lsOpen.Not)then
theTableWin.Open

else
theTableWin.Activate

end
theTableWin.Minimize

theVTab = theTable.GetVTab
soilField = theVTab.FindField("Series")
if(soilField <> nil)then
for each rec in theVTab

soilSeries = theVTab.RetumValueString(soiIField, rec)
if(soilSeries.lsNull.Not)then

userSoilJsAbsent = False
end

totalCells= totalCells+1
end

else
for each rec in theVTab

totalCells= totalCells+ I- -
end

end
theTableWin.Close

145

· Epic.updateConstData
, To enable Constant Data Tool menu option.
, Prepared by Anoop Govil
, Dated 5/22/96

if L constEnableFlag = 2)then
Self.SetEnabled(True)
exit

elseif L constEnableFlag = I And _userSoilIsAbsent.Not)then
Self.SetEnabled(True)
exit

else
Self.SetEnabled(False)
exit

end

, Epic.updateGISselection
, To update the menu option Spatial Data.
, Prepared by Anoop Govil
, Dated 2/27/96

epicProject=av.GetProject
fieldView=epicProject.FindDocLmainView)

if(nil=fieldView) then
Self.SetEnabled(False)
exit

elseif(fieldView.lsActive) then
layersTheme=fieldView.FindThemeLmainTheme)
if(nil=layersTheme) then

Self.SetEnabled(False)
Exit

elseif(layersTheme.lsVisible) then
Self.SetEnabled(True)
exit

else
Self.SetEnab led(False)
exit

end
else

Self.SetEnabled(False)
Exit

end

146

, Epic.updateRunEpic
I To enable Run Epic menu option.
I Prepared by Anoop Govil
I Dated 5/22/96

ifLrunEpicEnableFlag = I) then
Self.SetEnabled(True)
exit

else
SeIf. SetEnabled(False)
exit

end

, EpicoupdateDispChart
, To update the menu option Chart in Display
, Prepared by Anoop Govil
I Dated 5/22/96

epicProject=av.getProject
ResTable=epicProject.FindDocLresultsTable)
if(resTable <> nil) then

loadedResultsTable = True
else

loadedResultsTable = False
end
fieldView=epicProject.FindDocLmainView)
if((loadedResultsTable) And LdisplayEnableFlag)) then

Self.SetEnabled(True)
exit

else
Sel f.SetEnabled(False)
exit

end

, Epic.updateDispMap
I To update the menu option Map in Display
I Prepared by Anoop GoviJ
I Dated 5/22/96

epicProject=av.getProject
fieldView=epicProject.FindDocLmainView)
if((fieldView.GetThemes.Count = 1) And LdispJayEnableFlag» then
Self.SetEnabled(True)
exit

else
Self.SetEnabled(False)
exit

end

147

· Epic.updateDispTable
, To update the menu option Table in Display
, Prepared by Anoop Govil
, Dated 5/22/96

ep icProject=av.getProject
ResTable=epicProject.FindDocLresultsTable)
if(resTable <> nil) then

loadedResultsTable = True
else

loadedResultsTable = False
end
fieldView=epicProject.Find DocLmainView)
if((loadedResultsTable) And LdisplayEnableFlag» then

Self.SetEnabled(True)
exit

else
Self. SetEnabled(False)
exit

end

, Epic.updateOpOption
, To enable Output Options menu option.
I Prepared by Anoop Govil
, Dated 5/22/96

ifLopOptionEnableFlag = 1) then
Self.SetEnabled(True)
exit

else
Self.SetEnabled(False)
exit

end

, Epic.updateRemoveThm
, To updates the menu option Remove Themes in Display menu.
, Prepared by Anoop Govil
I Dated 5/22/96

epicProject=av.getProject
fieldView=epicProject.FindDocLmainView)
if((fieldView.GetThemes.Count > I) And LdisplayEnableFJag» then
Self.SetEnabled(True)
exit

else
Self. SetEnabled(False)
exit

end

148

I Epic.updateSoilData
, To enable Soil Data Tool menu option.
I Prepared by Anoop Govil
, Dated 5/22/96

ifCuserSoilIsAbsent And _soiIEnableFlag)then
SelfSetEnabled(True)

soillsEnabled=True
exit

else
SelfSetEnabled(False)
exit

end

, Epic.WeatherData
, This Script loads weather file to constant dataset by providing
, a weather data entry user interface.
, Prepared by Anoop Govil
, Dated 5/16/96

command = exeDir+"weather.exe"
system .execute(command)
I Enable Constant Data and Soil Data menu options.
_constEnableFlag = 1
_soilEnableFlag = True

149

II Parse.c
1***
*
*
*

This program creates a file with comma delemited records which can be loaded back into
ArcView as a table.

*
***1

#incJude <stdio.h>
#include <stdlib.h>
#include <string.h>

II Globals!!
char lastChar, CELL_TOJIELD[20], PRS_FILE[20];
long tilePosition=O;
int newLines=O, print=O, firstFiveFields= I, doubleQuotes=O;
int ignoreMoreSpaces=O, numOfCommas=O;
void insertComma(FlLE *, char);
int writeToFile(char *, char *, int);
void displayQuit(void);

void mainO
{

int flag=l, retVal;
FILE *fp, *fpath;
char path[80], fsel[80], id[10);
char ceIlDir[20), epicOutputDir[20), soiLDir[20], epicDir[20], exeDir[20], baseData[20];

strcpy(fsel, "c:\\EVPaths.txt");
if(!(fpath = fopen(fsel, "r")))
{

printf("File %s not found. Aborting...\n", fsel);
exit(O);

}
fscanf(fpath, "%s%s%s%s%s%s%s%s", celIDir, epieOutputDir, soilDir, epieDir, exeDir,

baseData, CELL_ID_FIELD, PRSJILE);
strepy(fsel, cellDir);
streat(fsel, "selected.ell");
if(!(fp = fopen(fsel, "r")))
{

printf("File %s not found. Aborting...\n", fsel);
exit(O);

}
fseanf(fp, "%s", path);

while(!feof(fp»
{

fseanf(fp, "%s", id);
if(strlen(id)==O)break;
retVal = writeToFile(path, id, flag);
if(retVal == -I)
{

printf("Error encountered while parsing. Interrupted in middle!\nAborting...\n");
displayQuitO;

150

fclose(fp);
fclose(fpath);
exi.t(O);

}
flag=O;
strcpy(id, '"');

}
printf("Successfully completed parsing.\n");
displayQuitO;
fclose(fp);
fclose(fpath);

writeToFi leO

*

/***

*

*
'"
*

This function creates single file with comma delimited records from file(s) created
by EPIC as output.

*******"'**"'**/

int writeToFile(char *path, char *cellld, int headerFlag)
{

int firstTime= I;
long pos=-2;
FILE "'fileln, *fileOut;
char ch=' " fin[80], fout[80];

sprintf(fin, "%sform%s..sum", path, cellld);
sprintf(fout, "%s%s", path, PRSJILE);
if(!(fileIn = fopen(fin, "r"»)

f
printf("File %s not found. Aborting...\n", fin);
exit(O);

if(headerFlag)
fileOut= fopen(fout, "w");

else
fileOut= fopen(fout, "a");

if(headerFJag)
fprintf(fiJeOut, "\"%5\",", CELL_IDJIELD);

else
{

while(fgetc(fileln) != '\n')
if(feof(fi Ie In»
{

printf("File %s is empty!\n", fin);
return -J;

}
newLines++;

}
whileO feof(fileln»

151

lastChar=ch;
fscanf(fileln, "%c", &ch);
if (firstTime && newLines)
{

fprintf(fileOut, "%d,", atoi(celLId));
firstTirne=O;
ungetc(ch, fileln.);
ch=' ';

}
else

insertComma(fileOut, ch); II Create a ',' delimited file.
if(ch = '\n') newLines++;

}
fclose(fileln);
fclose(fileOut);
return I;

insertCommaO

*

1***
*

*
*
*
*

This function processes each character read from the input file(s) and takes action
such as inserting ',', ignoring space, writing the character read, etc. depending upon
various factors such as the character read, previous read character, etc.

***1
void insertComma(FILE *out, char ch)
{

if(lastChar=='\n')llreset number of commas added.
numOfCommas=O;

if((doubleQuotes) && (ch !=' ')) Ilupdate fileptr if in middle of a quote.
filePosition--;

if((ch=="") && (doubleQuotes == 1)) II Inserting ','
{

ignoreMoreSpaces=O;
doubleQuotes=O;
fprintf(out "\",");
numOfCommas++;
filePosition=O;

}
else if((ch=="") && (doubleQuotes == 0)) II Register first ".
{

if(lastChar != '''' && lastChar != ' , && lastChar != '\0.')

{
ignoreMoreSpaces=O;
doubJeQuotes= 1;
fprintf(out, ",%c", ch);
filePosition=O;

}
else
{

ignoreMoreSpaces=O;

152

displayQuitO

doubleQuotes=l;
fprintf(out, "%C", ch);
fiLePosition=O;

}
else if((ch='\n') && (doubleQuotes = 1))/1 Missing second ".
{

ignoreMoreSpaces=O;
doubleQuotes=O;
filePosition--; Iidisplacement for an extra ',' added.
fseek(out, filePosition, SEEK_CUR);llwrap back and write \no
fprintf(out, "%C", ch);

}
else if((ch=='\n') && (doubleQuotes == 0) && (lastChar = 1111))11 To avoid writing ',' after last

II field.

ignoreMoreSpaces=O;
doubleQuotes=O;
filePosition--; Iidisplacement for an extra ',' added.
fseek(out, filePosition, SEEK_CUR);//wrap back and write \n.
fprintf(out, "%C", ch);

}
else if((ch ==' ') && 1·(newLines > 0) &&*1 (!ignoreMoreSpaces) Illnsert ',' for numerical fields.

&& (doubleQuotes==O) && (lastChar != '\n') && (lastChar != ' ') && (lastChar != ""))

ignoreMoreSpaces=l;
fprintf(out, ", ");
numOfCommas++;

}
else if(lastChar == ' , && ch == '.') II Add 0 if a float starts with a decimal pt only.
{

ignoreMoreSpaces=O;
fprintf(out, "O%c", ch);

}
else if(ch != I ') && !(ch == '\n' && lastChar = '\n')) II Ignore all other spaces.
f
I

ignoreMoreSpaces=O;
fprintf(out, "%c", ch);

;**••****.************************************••*.*.****•• *****.**•• ** •• **.** •••• ***.*

*
*
* This function displays a message on the screen to prompt the users to close the dos
* shell window.

*
**********.*******.***··********·**1
void displayQuit(void)
{

printf("\n\n
printf("

.**************************·***·******\n'1;
* *\0");

153

printf("
printf("
printf("
printf("
printf("

* PLEASE CLOSE THIS WINDOW BY • \nil);
'" *\n");
* CLICKING ON THE EXIT BUTTON. *\n");
* *\n");
*+*** ** **+* ***+ ***** ****+ ** ** **.**. *••\n");

154

VITA

Anoop Govil

Candidate for the Degree of

Master of Science

Thesis: EPIC-VIEW: A FULLY INTEGRATED SPATIAL TOOL FOR
MODELING SOIL EROSION AND AGRICULTURAL CROP
PRODUCTIVITY

Major Field: Computer Science

Biographical:

Personal Data: Born in Sawaimadhopur, Raj., India on December 10, 1969, the
son of M.L. Govil and Sudha Govil.

Education: Graduated from St. Xavier's High School, Jamnagar, Gujarat, India;
received Bachelor of Engineering degree in Electronics and Communication
Engineering from Bangalore University, BangaIore, India in July 1992;
completed requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in July 1996.

Professional Experience: Software Engineer, Quest Infotech (P) Ltd., New Delhi,
India, August 1993 to July 1994. Computer Programmer, Agronomy
Department, Oklahoma State University, September 1994 to August 1995.
Graduate Research Assistant, Computer Science Department, Oklahoma
State University, August 1995 to July 1996.

