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Chapter 1

INTRODUCTION

Automated real-time process monitoring which provides "experienced-operator

level monitoring" is a major need in the chemical process industries. Work at Oklahoma

State University is being performed to meet this need and is focusing on monitoring

sensor patterns or trends. on digital computers, by using artificial neural networks

[Whiteley, 1989; Whiteley, 1990a & 1991 b]. The techniques under study are highly

dependent on the pattern-based information content of sensor data. A trend plot for a

typical plant sensor is shown in Figure 1.1. Pattern-based monitoring techniques require

extraction of the fundamental trend and compact representation of the extracted trend in

order to achieve the computational efficiency necessary for real-time application.

Sensor data is contaminated by noise which masks the fundamental trend

followed by the signal. A compact representation of the fundamental trend can be

obtained by smoothing the signal so as to remove only the noise, and then sampling the

smoothed signal at an appropriate sampling frequency. Figure 1.1 shows a very noisy

signal consisting of 1024 data points, and a smoothed representation of the fundamental

trend over the time period Twindow. By sampling the smoothed representation at an

interval of T~, the original signal consisting of 1024 data points can be compactly

represented by [(TwindowlTs) + 1] points (9 points as shown in Figure 1.1).
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Figure 1.1. Typical sensor signal and its smoothed approximation
which represents the fundamental trend.

2



3

Sampling the sensor signal is the most obvious method for compact representation

of sensor data. However, unless the signal is first smoothed, such a sampled version does

not capture the true trend of a signal. This is illustrated in Figure 1.2. Various techniques

can be used depending on the quality of trend resolution required, e.g., direct methods,

digital filters, Fourier transform etc. However, as shown in the next chapter, these

conventional methods typically fail to retain abrupt changes in the fundamental trend of

the sensor signal. Consequently, these conventional techniques are unacceptable for the

pattern-based methods being developed at Oklahoma State University.

Mr. Vinod Raghavan previously proposed the use of wavelet transforms for

extracting the fundamental trends from noisy signals [Raghavan 1994]. Using wavelet

transforms, various smoothed representations of a noisy sensor signal can be obtained by

varying a parameter that represents the degree of smoothing. Figure 1.3 shows a noisy

sensor signal and its smoothed representations using two different levels of wavelet

smoothing. Different degrees of smoothing beyond those shown in Figure 1.3 are

possible. The degree of smoothing is application dependent, and generalJy tied to the

length of the window used for monitoring the process.

The features embedded in the patterns are used to trigger pattern recognition.

This is achieved by comparing the patterns being monitored with those patterns that have

been previously observed and classified. The degree of smoothing obviously affects these

features. Previously, the degree of smoothing was determined manually [Raghavan,

1994]. This work is an extension of the work previously done by Raghavan. The

purpose of this work is to automatically determine the desired degree of smoothing of a

sensor signal using the characteristics of the signal and the length of the window used for
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process monitoring. Our goal at. Oklahoma State University is to develop au er-friendly

system which allows an operator to construct his or her own pattern-based monitoring

application for any plant problem, based on his or her expertise.

1.1 Thesis Outline

The organization of this thesis is as follows:

• Chapter 2 describes digital signal representation and sampling. This chapter describes

the performance of some of t.he conventional signal processing methods, emphasizing

their inability t.o extract the fundamental trends from noisy sensor signals. This

chapter lays the groundwork for the next chapter by concluding with a brief

comparison of essential features of the Fourier transform, Short-Time Fourier

transform, and the wavelet transform.

• Chapter 3 discusses the general mathematical details of the discrete Fourier series and

time-frequency relationships. This chapter introduces the concept of t.ime-frequency

localization and discusses the inability of the Fourier transform to capture both the

time and frequency content of a signal simultaneously. This chapter introduces

wavelets as the alternative for time-frequency localization and describes the general

mathematical details of the wavelet transform with a brief mention of the Daubechies

wavelet family. This chapter concludes by demonstrating wavelet smoothing of

sensor signals, with the degree of smoothing decided manually by trial and error.

• Chapter 4 constitutes the main part of thi work. This chapter discusses the need for

automated trend extraction and presents a novel method to automatically determine



the desired degree of smoothing of a noisy sensor signal. This chapter describes the

cumulative power spectrum which is used to determine the fundamental frequencie

and eliminate noise.

• Chapler 5 presents the performance of the automated trend extraction algorithm with

case studies, for a set of signals with different characteristics.

• Conclusions of this work are presented in Chapter 6 along with recommendations for

future study.

7
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Chapter 2

CONVENTIONAL SIGNAL PROCESSING TECHNIQUES

2.1 Digital signal representation and sampling

Sensor signals correspond to recorded measurements of process variables such as

temperature, pressure, flow, etc. A discrete signal is " a function defined on only a

discrete set of time values to, tJ, t2, " [Seborg et al, 1989]. A digital signal is obtained

from the analog (continuous) signal by analog to digital (AID) converters. The

continuous signal yet) is sampled at discrete points in time, tOJ tj, t2• ....... to obtain the

sampled data, y(tk), k = O. 1,2, 3, .... , or the digital signal. Figure 2.l.shows the sampling

of an analog signal to form the digital signal. The sampling action of the sampler is

repeated every seconds. The action of the sampler is such that during the kth sampling

interval, the sampler output/(t) takes the valuef(t =tk)' Thus the complete sampled

function/OJ is a train of impulses whose values match that of the continuous function

ollly at the sampling point. and remain at zero elsewhere. A single sampler output at time

tk is most conveniently represented or modeled by the ideal delta (impulse) function as

o

1,+£

f*Ct k )= ffCt)O(t-tk)dt

The property of the delta function for any arbitrary function is as shown below:

1+£ {X(8); t = 8Lx(t)8(t - 8)df = 0; t ;I; 8

8

(I)

(2)
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(c) Sampled signal.

Figure 2.1. Peroidic sampling of an analog signal.
[From Seborg (1989), page 531. ]



The function((t) can be represented as:

I(t) = /(to) +l(t/) + /(t2) + +I(tk) + . (3)

10

.....

Each entity indicated in the above sum remains at zero until t equals the argument in the

parenthesis. When t equals the argument in the parenthesis, it instantaneou Iy takes the

indicated value and thereafter it returns to zero. The digital signal in Figure 2.1 is

localized in time as it is expressed as a series of impulses in time.

One of the most important issues while sampling a continuous signal is choosing

ilt, the sampling interval. Obviously, sampling too rapidly increases data storage

requirements. On the other hand, by sampling too slowly, storage space may be saved but

the sampled signal may not resemble the original signal. The optimum sampling time

must lie between these two extremes. There are no hard and fast rules in choosing L1t. A

judicious choice would be to chose a value small enough to assure that no significant

information is lost in sampling and at the same time would not overload the data storage

requirements. If the maximum frequency that needs to be captured, W"uu: is known, then

the sampling frequency, O1.~ should be at least 2wf/lw: or 2711,11. This means that if an

"event" in the signal occurs every t seconds, then to capture this "event", the signal needs

to be sampled at least every l/2 seconds. For any sampling frequency (()s, the largest

frequency that can be captured is called the Nyquist frequency WN, and is given by

o

(J)N =01./2 = 711ilt

The choice of L1t depends very much on the application of interest.

(4)
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2.2 Motivation for signal filtering

The analog representation of the measurement is usually not the true measurement

because of errors introduced by the process, measurement device, and the signal

transmission equipment. Process induced noise could be attributed to variations in

mixing, turbulence, and non-uniform multiphase flows. Electrical noise is introduced

because of improper shielding and grounding of cables. The error or noise introduced by

the measurement device is specified by the vendor and is usually of the order of 0.25 -

I%. Further, the sampling techniques also introduce some error. The error introduced by

all these sources is referred to as noise. Noise masks the actual trend of the digital signal.

Therefore a certain degree of conditioning or filtering of the sampled signal is required to

eliminate the noise and extract the actual trend before it could be used by a process

monitoring technique. Various techniques are available to perform this conditioning or

filtering. However, the effectiveness of a signal processing technique depends on the

nature of the signals involved and the manner in which the processed signal will be used.

The following section describes some of the conventional techniques for signaJ

processing and demonstrates their ineffectiveness for pattern-based monitoring.

2.3 Conventional signal processing techniques

The main objective of the signal processing techniques described in this section is to

eliminate high frequency noise, while retaining the fundamental trend of the original

signal. Several conventional signal processing methods are described in detail in this

section. Performance of these techniques are compared with that of the wavelet
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transform. The results presented indicate that the wavelet tran form i a more effective

trend extraction technique for pattern-based monitoring. Actual plant data is used for all

performance evaluations.

2.3.1 The Direct methods

The boxcar, backward slope and the combination box car and backward slope method

[Hale and Sellars 1982] were used for data compression in the I980s to 'ave computer

disk space. These techniques require two choices be made for each process variable to be

included in the data archive: a recording limit and an algorithm to make the recording

decision. The recording limit is most often selected to match the transducer's inherent

accuracy, e.g., 1% of span or O.soC for thermocouples. For normalized sensor values this

means that the recording limit is 0.01. These algorithms have been in use in the industry

for several years. These methods record a particular value (of the sensor) only if the

subsequent point fails a test determined by the algorithm, which varies for different

methods. The test hinges on a pre-specified value of the recording limit.

2.3.1.1 Boxcar algorithm

This is a technique which uses straight line interpolation for data compression. In this

algorithm the current value of a variable is compared to the last recorded value of the

same variable. If the difference is greater than or equal to the recording limit of that

variable, the previous input value processed is recorded, not the current value which
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triggered the recording. The recording limit is a hard coded value which is set by the

user. The recorded value is initialized to the last "current value" on the previous

processing cycle or the starting value of the variable being processed. The performance

of this algorithm is obviously dependent on the value set for the recording limit. The

principle of the box. car algorithm is shown in Figure 2.2.

The Matlab dri ver program for running the boxcar algorithm is included in the

Appendix. The driver program is called boxcar.m and the heart of the code is a function

called car.m.

Figure 2.3 illustrates the performance of the box car algorithm for various

recording limits of 0.005,0.0095, 0.015, 0.02. From these figures it is evident that for

smaJl values of the recording limit, e.g. 0.0095, though a substantial amount of the high

frequency part of the signal is eliminated, a small but appreciable amount of high

frequency is still retained. Moreover, the processed signal obtained is not smooth; it

retains the shape of a spl ine. For a high value of the recording limit, above 0.0 15, the

basic trend of the signal is distorted. In all four cases, it would not be possible to ex.tract

the true trend of the signal from a small number of samples of the boxcar approximation.

2.3.1.2 Backward slope algorithm

The backward slope algorithm uses the last two recorded values to predict the trend of the

variable in the future. Figure 2.4 shows this algorithm. It is to be noted that any two

recorded values need not necessarily be at consecutive time intervals. If the current value

processed differs from the predicted value by a value greater than the recording limit, the
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X RECORDER VALUE o LAST RECORDED VALUE

• UNRECORDED VALUE * VALUE CAUSING RECORDING o

RECONSTRUCTED HISTORY
~

*

•
•

••

------•

•

•

c:1 X

RECORDING LIMIT
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Time

Figure 2.2. Boxcar algorithm. [From Hale (1981), page 38.]
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Figure 2.4. Backward slope algorithm. [From Hale (1981), page 39.]
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previous value processed is recorded, not the current value re ponsible for triggering the

recordi.ng. The first two recorded values are initialized to the first two input values in this

case.

The notation to describe this algorithm mathematically is as shown below:

V
T

current value ofthe variable

current time

most recent recorded value

tim,e corresponding to the most recent recording

recorded value immediately prior to VR

tin-ze corresponding to recording of VL

s slope defined as

predicted value defined as

H recording limit

If the current value of the variable differs from the above projected value by an amount

greater than or equal to H, then the previous value processed is recorded. The test

condition is given by

IV-VIII~ H (5)

The performance of the backward slope algorithm for various recording limits is

shown in Figure 2.5. The performance of the backward slope algorithm is almost the

same as that of the boxcar algorithm. An appreciable amount of the high frequency

content of the sensor signal is still retained for small values of the recording limit like



0.70

0.60

18

0.50 '----------------------

Recording limit 0.005.

0.70

0.60

0.50

Recording limit 0.0095.

0.70

0.60
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Recording limit 0.02.

Figure 2.5. Performance of Backward Slope algorithm for a typical sensor signal.



19

0.005 and 0.0095. For high values of 0.015,0.02 and above the .fundamental trend of the

processed signal tends to get distorted. The processed signal resembles a higher order

spline and is not smooth.

The Matlab code, backslope.m for running the backward slope algorithm is

included in the Appendix. The heart of the code is a function called slope.m.

The backward slope method is much more sensitive to noise. For such cases, the

boxcar algorithm remains the best choice. The best algorithm to be used depends on the

variable being studied and could even vary at different points in time. The obvious

choice would be to make the computer decide dynamically on the type of algorithm for

each variable at any point in time. This resulted in the combination boxcar and backward

slope algorithm.

2.3.1.3 Combination boxcar and backward slope algorithm

This algorithm combines the two previous algorithms by using an adaptive

parameter, P. P is initialized to zero and remains unchanged as long as both the boxcar

and backward slope test conditions are satisfied. If the backward slope test is not

satisfied but the boxcar test is, P is set to one, and the algorithm reverts to the boxcar

method until a recording is made. After this recording, the combination algorithm is

reinitialized by setting P to zero. If the boxcar test is not satisfied but the backward slope

test is, P is set to two, and the algorithm reverts to the backward slope method until a

recording is made. After this recording, the combination algorithm is again reinitialized

by setting P to zero. If both test conditions are not satisfied, P retains the value zero and

c

~
o

.....
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recording is not performed. The principle of the combination algorithm i illustrated in

Figure 2.6.

The Matlab code for the combination boxcar and backward slope algorithm,

comb.m is included in the Appendix.

Figure 2.7 shows the perfonnance of the combination algorithm for various

recording limits. The performance of the combination algorithm for the signal under

consideration is almost the same as that of the boxcar algorithm or the backward slope

algorithm. An appreciable amount of the high frequency content of the sensor signal is

still retained for small values of the recording limit, e.g., 0.005 and 0.0095. For larger

recording limits such as 0.02 and above the fundamental trend of the processed signal

tends to get distorted. The processed signal resembles a high order spline and is not

smooth.

The direct methods described previously are not suitable for pattern-based trend

extraction for two reasons:

()) Approximations are not smooth but piecewise conti nuous. A sparsely sampled

pattern would not be representative of true trend.

(2) They require specification of a hard-coded limit which complicates rapid application

development and lacks flexibility to accommodate changes in the level of noise which

can occur.
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Figure 2.6. Combination Backward slope and Boxcar algorithm.
[From Hale (1981), page 40.]
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2.3.2 Digital filters

Digital filters represent an alternate approach to the data compression methods described

previously. A digital filter can be visualized as a device that removes specific frequency

components from a signal. Several popular digital filters designed to eliminate high

frequency effects are considered in this section [Seborg, 1989]. A more comprehensive

treatment of digital filtering and signal processing is available in [Oppenheim, 1975].

2.3.2.1 Single exponential filter

This filter is a digital version of the analog exponential filter which is often used to damp

Ollt high-frequency osci Ilations due to electrical noise; hence it is called a low-pass filter.

The operation of this filter is described by a first order differential equation,

(6)

where x is the raw sensor value which is the input to the filter, y is the filtered value, and

'rF is the time constant of the filter.

For the digital version of the exponential filter, samples of the sensor signal are

denoted as XIl , X'l"" .. and the corresponding filtered values as YtI, YII'], where n refers to the

current sampling instant. .1t is defined as the sampling interval i.e., the duration between

any two sampling instants. The derivative in (6) can be approximated by the backward

difference formula

dy = Yn - YII_I
dl - ~t

(7)
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included in the Appendix. Figures 2.8a, 2.8b, 2.8c and 2.8d show two signals with

current measurement XII and the filtered value at the previous sampling instant, YfI-!' The

(10)

(9)

(8)

No filtering (the filtered output is the raw sensor value) as 1'1' -? 0

The measurement is ignored as 1'F ---700

)II/ = (a)x" + (I - a) YIJ-I

I
a=---

r F I D..t + I

D..t l'F
Y = t + Y

II l' + D..t -" l' + D..t ,,-I
F F

a= 1:

a~O:

of the averaging effect. This performance is undesirable. For relatively high values of a,

rearranging the following equation is obtained

where 0 < a ~ I, equation (9) becomes

signal are found to occur much later than their occurrence in the original signal because

entirely different from that of the original signal. The "events" or trends in the smoothed

limiting cases for a are

smoothing obtained may be desirable, but the fundamental trend of the smoothed signal is

the value of a used, the filtered signal may be smooth at the expense of preserving the

Defining

fundamental trend of the original signal, or it may retain noise. For low values of a the

different characteristics, and their filtered signals for different values of a. Depending on

Equation (10) indicates that the filtered value of the raw signal is a weighted sum of the

The action of this filter is performed by the Matlab code singexpfil.m, a copy of which is

Substituting (7) in (6) and replacing yet) and x(t) by Yn and XII> respectively, and on



(d) Higher value of recording limit, 0.05. High frequency noise is retained.
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(a) Low value of alpha, 0.01. Smoothing desirable, fundamental
trend of the original signal is not preserved.

(c) Low value of alpha, 0.01. Fundamental trend of original signal
preserved with slight delay.

(b) Relatively higher value of alpha, 0.05. Ability to catch up with
abrupt changes poor.

Figure 2.8. Performance of the Single Exponential filter for typical sensor signals.
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(14)

(13)

(12)

(11 )

y;' = (y)(a)x lI +y(l- a) YIJ-I + (I - y) Y;'_I

Y' = a 2x + 2( I - a)y' - (I - a)2 Y'/I" II-I 1'1-2

Writing the filter equation (II) for the previous sampling instant yields

The advantage of the double exponential filter over the single exponential filter is that it

Solving for Yn-J from ( 13), substituting in (12), rearranging, and selecting y = a gives

The Matlab code for this filter is dubexpfil.m and is included in the Appendix.

provides better filtering of high frequency noise, especially if y =ex.

removing high frequency noise. This is a second order filter which is essentially

from the exponential filter in (10). The second filter can be expressed a'i

equivalent to two first order filters in series where the second filter treats the output signal

because of the averaging effect of a. The of performance of this filter is not acceptable

2.3.2.2 Double exponential filter

The double exponential filter is an improvement over the single exponential filter for

the trend in the original signal are recorded at a much later time in the smoothed signal

for real-time pattern-based process monitoring.

the algorithm to record abrupt changes in the smoothed signal is limited. The changes in

retains some high frequency noise and is not smooth enough. Further, the capability of

the trend of the smoothed signal is closer to the trend. However, the smoothed signal till



27

Figures 2.9a, 2.9b, 2.9c and 2.9d show two signals with different characteristics

and their filtered signals, for different values of a. Depending on the value of a u ed, the

filtered signal may be smooth at the expense of preserving the fundamental trend of the

original signal, or it may retain noise. For low values of a the smoothing obtained may

be desirable, but the initial response of the filter is in the opposite direction and the

fundamental trend of the filtered signal is totally distorted. This could be explained by

equation (14). The processed value at any instant of time is dependent on the weighted

sum of the value of the original signal at that time and the processed values at the

previous two instants of time. This inverse response performance could lead to a wrong

diagnosis of the plant situation if the filtered signal were used for process monitoring

purposes. For a relatively higher value of a, the filtered signal retains some high

frequency noise and is unacceptable for pattern-based process monitoring purposes.

2.3.2.3 Moving average fitter

This filter averages a specified number of past data points, by giving equal weight to each

data point. The moving-average fHter is usually less effective than the exponential filter,

which gives more weight to the most recent data.

The moving-average filter can be expressed as

1 n

y =- Lx
• 1/ J i=n-J+J I

( 15)

where J is the number of past data points that are being averaged. The previous fiitered

value Yfl-J can be expressed as
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(a) Low value of alpha, 0.01. Smoothing desirable but fundamental
trend of original signal totally distorted.

Figure 2.9. Performance of the Double Exponential filter for various values of alpha.
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(d) Low value of alpha, 0.01. Fundamental trend of filtered signal
preserved but delayed in time.

0.55

(c) Higher value of alpha, 0.25. High frequency noise retained.

0.60

(b) Relatiively higher value of alpha, 0.1. Initial trend of filtered signal in
0.70 opposite direction and ability to catch up with abrupt changes is poor.
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signal. These regions are indicated by the dotted circle in Figure 2.10. For higher values

low values of J, the high frequency noise of the original signal is retained. The response

above reasons make the filtered signals obtained using this filter unacceptable for pattern-
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( 17)

(16)
In-I

y =- ~ x
. II-I J L.i ;

;=n-J

I
)'" = )'n-I +j(X" -Xn-J)

The Matlab code for this filter is mov_ave...fil.m, a copy of which is included in

If a noisy measurement changes suddenly by a large amount and then returns to the

preserving the fundamental trend of the original signal, or it may retain noise. Further,

original value at the next sampling instant, or close to it, a noise spike is said to have

2.3.2.4 Rate of change (Noise spike) filter

occurred. This filter is designed to eliminate such noise spikes. These filters are used to

the first J values of the filtered signal are the same as that of the original signal. The

Depending on the value of J used, the filtered signal may be smooth at the expense of

based monitoring purposes.

the Appendix. The performance of this filter is shown for various values of J in Figure

signals with different characteristics, and their filtered signals for different values of 1.

2.10. The first J data points of the original signal are initialized as filtered values. For

of J, the fundamental trend gets distorted. Figures 2.1 Oa, 2. lOb and 2. IOc show two

of this filter is too slow to accurately capture abrupt changes in the trend of the original

Subtracting (16) from (IS) gives the recursive form of the moving-average filter:
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Fi gure 2.10. Performance of the Moving Average filter.

(a) Past data points used for averaging, J =25. Filtered signal not very smooth.

,
\

(c) Past data points used for averaging, J = 100. High frequency noise retained.

0.50 .1..- _

(b) Past data points used for averaging, J =35. Filtered signal smooth,
fundamental trend of original signal not preserved.
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limit how much the filtered output is pennitted to change from one sampling instant to

the next. If L1x is the maximum allowable change, the noise spike filter can be written as

{ x.
if Ix" - YII_I! ~ ~.x

Y/, = Yn-l - tu: if Y"-l - xlI)tu: (18)

YII_I +tu: if Y
II

_ 1 - XII (-tu:

If a large change in the measurement occurs, the filter replaces the measurement by the

previous filter output plus (or minus) the maximum aIJowable change.

The Matlab code for this filter is rate_of_chJil.m, a copy of which is included in

the Appendix.

The performance of this filter for two signals with different characteristics is

shown in Figure 2.11. The first signal and its overlapped filtered output are shown in

Figures 2.lla and 2.11 b for ~x equal to 0.0005 and 0.00075 respectively. The second

signal and its overlapped filtered output are shown in Figures 2.1 Ic and 2.1 Id for ~x

equal to 0.00009 and 0.002 respectively. Depending on the value of ~x used, the filtered

signal may be smooth at the expense of preserving the fundamental trend of the original

signal, or it may retain noise. A smoothed signal preserving the fundamental trend of the

original signal is not obtained using this filter. Consequently, this filter is not acceptable

for smoothing signals for pattern-based data analysis.

2.4 Performance using wavelets

The basic problem with conventional methods described previously is the inability to

reject high frequency noise while simultaneously retaining the ability to capture abrupt
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0.50 L- _

(a) Low value of Delta x =0.0005. Fundamental trend of original signal
not preserved.0.70

0.60

/

Low value of Delta x =0.00009. Fundamental trend of original signal
not preserved.

0.50

(b) Delta x =0.00075, ability to catch up with abrupt changes poor.

0.60

0.55

0.50

(c)

0.60

0.55

0.50

(d) Delta x =0.002, high frequency noise retained.

Figure 2.11. Performance of the Rate of Change filter.
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changes, which are genuine. Wavelets can achieve this. For demonstration purposes

Figure 2.12 shows the same signals considered in the above techniques smoothed using

wavelets. The technical discussion on wavelets is presented in the foHowing chapter.

The intent here is to simply show the reader that a superior technique exists and to offer

visual proof.

Summary of this chapter

This chapter presented an overview of the conventional methods of signal processing and

explains why they are not suitable for accurate pattern-based process monitoring.

Moreover, the conventional techniques involve the use of parameters that need to be

hard-coded by the user. Further experimentation is needed to find the optimum values of

these parameters which give as close to the desired performance as possible.

UIlfortunately, even when optimum values of these parameters are selected, the

conventional techniques do not perform as well as wavelet smoothing. Signal processing

using wavelets is highly desirable because of the high quality of resolution obtained.

Moreover, this method does not involve hard coded filter constants or recording limits.

The degree of smoothing can be adjusted by simply altering the number of levels of

decomposition of the signal. The next chapter describes the mechanics of wavelet

smoothing, with a brief introduction to the Fourier transform.



Figure 2.12. Performance of sixth order Daubechies wavelets.

Original signal and smoothed approximation obtained using sixth order
Daubechies wavelets at the fifth level of decomposition.

34

Original signal and its smoothed approximation obtained using sixth order
Daubechies wavelets at the seventh level of decomposition.
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Chapter 3

THE FOURIER AND WAVELET TRANSFORMS

This chapter describes the fundamentals associated with two different signal processing

techniques which we propose to use at OSU for automated trend extraction. The first

technique employs a Fourier or frequency-domain decomposition of a time-domain

signal. The material covered serves two purposes. The first is to describe the analytic

approach used to characterize a time-domain signal. The second is to provide an

introduction to the primary signal processing technique that we use for automated trend

extraction, wavelet signal decomposition. This chapter lays the foundation for the

automated trend extraction procedure proposed in the following chapter.

3.1 Digital Signal analysis and processing

The study of a signal as a function of time is called time analysis. Such an analysis can

provide information about the source and medium of propagation. However, if other

properties of the signal are to be studied, it would be better to study the signal using a

different representation. One of the most powerful representations is the spectral

representation, which is generated using a frequency-domain analysis. For stationary

signals, i.e., signals whose properties are statistically invariant over time, the most

common method to perform a frequency analysis is the Fourier transform. The Fourier

transform coefficients give a clear picture of the frequency content of the signal. This

35
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method works well when the signal is fundamentally composed of a few periodic

components. However, if the signal is non-stationary, i.e., exhibits abrupt changes due to

unexpected transient events, a Fourier decomposition yields a wide range of frequency

components as analytically required to reproduce abrupt changes of the signal in time.

Many of the frequency components are not representative of the process which is

generating the signal but are simply analytical artifacts required to approximate sharp

transitions. Therefore an analysis of non-stationary signals requires more than the Fourier

transform.

Two techniques commonly employed for analysis of non-stationary signals

include wavelets decomposition and the Short-Time Fourier transform. The latter

analyzes a signal in (data) windows of fixed length, using the Fourier transform, to

determine the dominant frequencies prevalent in the signaL. A recently developed

technique is the wavelet transform [Rioul, 1991]. The Short-Time Fourier transform uses

a single analysis window whereas the wavelet transform uses short windows (contraction)

at high frequencies and long windows (dilation) at low frequencies. The contractions and

dilations are called scalings. The notion of scale in wavelet transform could be envisaged

as an alternative to frequency in Short-Time Fourier transform. This effectively means

that a signal is mapped into a time-scale plane in wavelet transform as compared to the

time-frequency plane in the Short-Time Fourier transform. The most attractive feature of

the wavelet transform is that a signal can be analyzed at various scales and resolutions.

Thus, an explicit representation of the temporal features of a signal in a joint time

frequency plane can be obtained.

.......
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3.2 The Fourier transform

respectively.

(19)JCt) = L,gkUk(t)+ L,hk~k(t)
k k

the decomposition coefficients associated with the basis functions aCt) and ~(t)

sine functions, the Fourier series representation is obtained. The Fourier transform, when

magnitude for each of the frequencies covered. The original signal can be perfectly

applied to any signal, decomposes the signal into sine and cosine coefficients of various

When the basis functions of equation (19) are represented by the traditional cosine and

Here, k is the index defining the length of the signal. Various basis functions could be

adopted depending on the nature of the problem at hand. In equation (19), gk and hk are

weighted responses to each of the basis functions. Generally, a signal can be decomposed

into the sum of a pair of basis functions aCt) and pet).

way of solving many engineering problems. Fourier and wavelet decompositions both

utilize this approach. When a decomposed signal is input to a linear, time invariant

system, then superposition theory can be applied and the output obtained by adding up the

3.1.1 Signal Decomposition

Decomposition of a given signal into a weighted sum of basis functions i a conveni.ent

-

reconstructed by using all the sine and cosine coefficients in equation (19).

In this section, the Fourier series expansion for continuous-time periodic signals is

reviewed, followed by a discussion of the Fourier series expansion for discrete-time

signals. Next, the definition and properties of the discrete Fourier transform (DFT) using

.......
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using the DFf to perform linear convolution, which is the basic filtering operation.

(20a)

(20)for all t
k=oo

f(t) = I Fkejklrlo

k=~

by the following equations:

representation of a continuous-time periodic signalf(t). Here, the complex term e jkrOu

implicitly represents the sine and cosine basis functions by virtue of the definition

where j is the complex variable with the property f = -1. In equation (20), Fk are the

coefficients of the expansion, and Qo, the fundamental frequency. They are determined

way [Ludeman, 1986].

The expansion given by equation (20) is called the exponential Fourier series

A periodic, continuous time signal f( t) with period T can be expressed as a weighted sum

of a countable number of complex exponential continuous time functions in the following

interpreting DFf results in terms of frequency content of discrete-time signals and by

transform, are discussed. Linear filtering and spectral analysis are addressed by

the fast Fourier transform, an efficient method for computing the discrete Fourier

3.2.1 Continuous-time Fourier series

(21 )

Qo =21rJT (2Ia)
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A convenient trigonometric representation of equation (21) in terms of a weighted sum of

sine and cosine basis functions is

..
f(t) = a o + L{aA cosknot +bk sinkQot)

k=1

where the constants ao, ({k, and bl< can be determined as

(22)

1 T

an =- Jf(t)dt
To

(23a)

2 T

ak =- Jf(t)cosknotdt k = 1,2, 00

To
(23b)

2 T

hk = - Jf(t)sin knot dt k = 1,2, 00

To
(23c)

of complex exponential sequences. By virtue of the fact that sinusoidal sequences are

A real, periodic discrete-time signal x(n) of period N can be expressed as a weighted sum

(24c)

(24b)

(24a)

k=l, 2, .

Clo=Fo

The constants ak, and bk• of the trigonometric fonn, and Fk, of the complex exponential

form are related as follows:

3.2.2 Discrete-time Fourier series

unique only for digital frequencies from 0 to 27[, the expansion contains only a finite

number of complex exponentials as follows:



where the coefficients of the expansion X(k) and the fundamental digital frequency ~ are

IN-I

x(n) = -L X(k)eikWoJ'
N k=O

given by

(25)
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N-I

X(k) = Lx(n)e-ikWnn
11=0

for all k (26a)

An alternative form of the discrete Fourier series, for a periodic discrete-time

Equations (25) and (26a) are called the discrete Fourier transform series (DFS).

(26d)

(26b)

(26c)
N-I

X(k) = Lx(n)W~N
11=0

~ = 2rrIN

equations, for odd and even N.

This is called the trigonometric form of the Fourier series and is represented by two

signal in terms of the si ne and cosine basis functions can be written as shown below.

for a periodic discrete-time signal. Equation (26) is sometimes written in the following

equivalent form:

The expression given in (25) is referred to as the exponential form of the Fourier series

EvenN

N/2-1 21t NI2-I 2n: N
x(n) = A(O) + L A(k)cos(k-n) + L B(k)sin(k-n) + A(-)cosll1t (27)

k=1 N k=l N 2

The 1ast term contains cos nn:, which is just (-1t, and is associated with the highest

frequency possible.

......
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The coefficientA(O), is the most dominant Fourier coefficient and represents the

The relationships between the A(k), B(k) of the trigonometric form, and the X(k) of

(29c)

(28)

(29d)

(29a)

(29b)

k=/,2, ,(NI2)-1

k=l,2, ,(NI2)-l

IN-I

A(N /2) =- L.x(n)cosn1t
N 11=0

1 N-l

A(O) =-L.X(II)
N 11=0

2 N-I 21t
A(k) =-L.x(n)cos(k---n),

N n=O N

2 N-I 21t
B(k) = N L.x(n)sin(k---n),

,,=() N

(N-l)12 21t (N-I)/2 21t
x(ll) = A(O)+ L. A(k)cos(k--n) + L. B(k)sin(k-n)

k=1 N k=1 N

the discrete Fourier coefficients for a real x(n) with an even N are given by

average value of the original signal. The coefficientA(O) can also be considered to be the

OddN

The constants A(O), A(k), and B(k) for even N can be shown to be

If N is odd, equations (29a -c) apply but A(NI2) =0.

coefficient at k =0 is zero and hence is not considered.

cosine coefficient at frequency index zero (i.e., atk =0). Note that B(O), the sine

A(O) =X(O)/N (30a)

A(k) = [X(k) + X(N - k)]/N,

B(k) = j[X(k) - X(N - k)]/N,

k = 1,2, ....... , (N/2)-1

k = 1,2, ....... , (NI2)-l

(30b)

(30c)

A(NI2) =X(N/2)/N (30d)

......
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Again, if N is odd, equations (30a - c) apply and A(NI2) =O. The following example

illustrates the complex exponentials and the trigonometric forms of the discrete Fourier

representation. From Figure 3.1, x(n) is [J 2 3 4J

x(n)

4- r-

- r-3

- r-

I
...., r- Periodic

-4 -3 -2 -I 0 I 2 3 n

Figure 3.1. Example problem

The exponential form of the Fourier series is specified once the X(k) are calculated from

equation (26a). Before carrying out these calculations using equation (26a), the powers of

WN must be determined for N =4. Here, N =4 because the period associated with this

signal is 4. WI is given by

W
4

= e- j (2rr/4) = cos(7t /2) - j sin(n /2) =-j

The other powers of W.; are easily seen to be

W4
2 =W4

1
• W4

1 =(- j)(- j) =-I

W;' =W4
2

• W4
1 = (-1)(- j) = j

W4
4 = W4

3
• W4

1 =(j)( - j) = I

Using these powers of W.;, the X(k) for k =0, I, 2, 3 are calcluated as follows:
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4-1

X (0) = L x(n)W40
11 = X(O) + x(l) + x(2) + x(3)

=1+2+3+4=10

4-1

X (1) =L x(n)W4
11l =X(O)W40 + X(l)W4

1 + X(2)W4
2 + X(3)W4

3

1/=0

=1( I) + 2(- j) + 3(-1) + 4(j) =- 2 + 2 j

4-1

X (2) =L x(n)W/ol/ = x(O)W40 + x(l)W4
2 + X(2)W4

4 + X(3)W4
6

11=0

= 1(1) + 2( -1) + 3(1) + 4(-1) =-2

4-1

X (3) =L x(n)W4
3o
/l = x(O)W40 + x(1)W4

3 + X(2)W4
6 + x(3)W4l)

1/=0

= 1(1) + 2(j) + 3(-1) + 4(- j) =-2 - 2j

Now, the trigonometric coefficients are calculated from the exponential coefficients as

shown below, using equation (30). As N = 4, the number of cosine coefficients would be

(N/2 +/) =3 and the number of sine coefficients would be (N/2 -/) =1.

10 5
A(O) = X(O)/ N =-=

4 2

A(l) = [X(l)+ X(4-1)]/4= [(-2+2)+(-2-2)]/4=-1

B(l) = j[X (I) - X (4 -1)]/ 4 = i[(-2 + 2j) - (-2 - 2j)]/ 4 = -I

4
A(2) = X(-) = X (2) /4 =-1/ 2

2

Now, x(n) can be determined using these trigonometric coefficients as shown, using

equation. (20) for even N.

......



(412)-1 21t
x(O) = A(O) + L A(k) cos(k -0)

Ie=l 4
(412)-1 2n

+ L B(k)sin(k-O)+ A(4/2)cos(07t)
1e=1 4

= A(O) + A(1) cos(07t) + BO) sin(On)

=(512) + (-1)1 + 0 + (-112)

=1

Similarly,

(412)-1 2n:
xCI) = A(O) + L A(k) cos(k-1)

Ie=! 4
(412)-1 2n:

+ ~ B(k)sin(k 4 I) + A(4/2)cos(1n:)

= A(O) + A(l)cos(n /2) +B(l) sin(n /2) + A(2)cos(ln)

= (512) + (-1)0 + (-1)1 + (-112)(-1)

=2

(412)-1 2n:
x(2) = A(O) + L A(k) cos(k -2)

1e=1 4
(4/2)-1 2n:

+ L B(k)sin(k-2)+A(4/2)cos(2n)
k=! 4

=A(O) + A(l)cosn +B(l) sinn + A(2)cos2n:

= (512) + (-1)(-1) + (-1)0 + (-112)/

=3

(412)-1 2n:
x(3) = A(O) + :L A(k) cos(k - 3)

k=1 4
(4/2)-1 2n:

+ :L B(k)sin(k-3) + A(4/ 2)cos(3n:)
Ie=l 4

44
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= A(O) + A(1) cos(37t /2) + B(1) sin(ll: /2) + A(2) cos(ll:)

=(512) + (-1)0 + (-1)(-1) + (-112)(-1)

=4

From the above calculations it is apparent that the X(k)'s can be written in matrix form a

follows:

X(O) WO WO WO WO x(O)4 4 4 4

X(l) WO Wi W 2 W3 x(l)4 4 4 4= WO (31 )
X(2) W2 WO W2 x(2)4 4 4 4

X(3) WO W3 W 2 WI x(3)4 4 4 4

The entries in the coefficient matrix have been reduced in powers of W4 by using the fact

that W4
4 = 1. Fast ways of making the calculations above can be shown to be equivalent

to decomposing the square matrix into products of relatively sparse matrices. This idea is

exploited further in the fast Fourier transform.

The Fourier transform is an excellent tool to determine the frequency content of a

signal. Figure 3.2 shows a raw sensor signal and its Fourier decomposed sine and cosine

coefficients. Figure 3.2u shows the sensor signal in the time domain i.e., the magnitude

of the parameter measured at various instants of time. Figures 3.2b and 3.2c show the

same signal transformed to the frequency domain by the Fourier transform. The cosine

and sine coefficients obtained by performing the Fourier transform operation on the time

domain representation of the sensor signal are a measure of the contribution from the

different frequencies which make up the original signal.

The magnitude of the average value of the signal (cosine coefficient at frequency

index zero), A(O), is 0.5977. The sine coefficient, B(O), at frequency index zero is zero.

The cosine and sine coefficients have not been drawn to the same scale so that the reader

.....
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(b) Cosine coefficients against frequency index. Most dominant
Fourier coefficient, A(O) =0.5977. is not shown in plot.
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(c) Sine coefficients against frequency index.

Figure 3.2. Original signal decomposed into cosine and sine components.
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can appreciate the difference in their magnitude. From Figures 3.2b and 3.2c, it can be

observed that the first few coefficients are relatively large in magnitude. These

coefficients capture the amplitude and frequency of the main body of the signal. The

other relatively small coefficients represent the amplitude and frequency of sensor noise

introduced in the signal. Thus, the Fourier transfonn gi ves a complete picture of the

frequency content of the signal.

The Fourier transform is an excellent tool that could be used to alternate between

the time and frequency domains of a signal representation. However, it fails to provide

infonnation about the time and frequency domains of a signal simultaneously i.e., the

Fourier transfonn gives infonnation of the different frequencies that existed for the total

duration of the signal but not the frequencies which exist at a particular time.

Simultaneous information on the time and frequency domains of a sensor signal

representation is known as time-frequency localization and is explained in the following

section.

3.3 Time-frequency localization

The need for a simultaneous time-frequency analysis is discussed below by considering a

progression of examples. If a simple sine wave that lasts forever is considered, then to

describe it completely it would suffice to say that it is a sine wave of fixed magnitude for

a particular frequency for all time. The time-frequency description would show only one

particular frequency at all times. Now, if the sum of three sine waves that last forever,

with different frequencies are considered, the time-frequency spectrum would show three

different frequencies present for all times. Thus time has played a passive role since

.......
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whatever is occurring, occurs for all time, and the standard amplitude-time spectrum

provides a satisfactory description [Cohen, 1995].

Figure 3.3a illustrates the case where the signal is formed by concatenating three

different sinusoidal components. To fully describe such a situation, the frequencies for

each time ought to be given. The time-frequency plot for this illustration (top left) shows

three different frequencies and their duration. The power spectrum shown just below the

time-frequency plot shows the frequencies 1, 2, and 3 but does not tell when they existed.

Figure 3.3b is an extension of the previous illustration. This time-frequency plot shows

that there are times when all the three frequencies coexist (time index 4 to 6.5), only two

of the frequencies exist (time index 2 to 4 and 6.5 to 8.5), and only one of the three

frequencies exists (time index 0 t02 and 8.5 to 10.5). This information cannot be

extracted from the power spectrum only. Figures 3.3c and 3.3d illustrate this idea further.

Note that the power spectrum is roughly the same in all four parts of Figure 3.3 and

indicates the different frequencies exist.ing but does not give any idea when the different

frequency components were present.

A technique that gives a good time-frequency description is needed. The Fourier

transform is only capable of identifying the frequencies present over the total duration of

the signal and not the frequencies that exist at a particular time. This is where the beauty

of the wavelet transform comes into play. Wavelet transforms provide for good-time

frequency localization. The next section describes briefly the mathematical basis of the

wavelet transform, construction of simple wavelets, multi-resolution analysis, and signal

decomposition and reconstruction.
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Figure 3.3. The schematic time-frequency localization plots of finite duration sine
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waves. A time-frequency plot clearly shows the frequencies existing for each time.
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3.4 The wavelet transform

decomposition, the basi' functions are the sine and cosine functions. As indicated

The wavelet transform is analogous to the Fourier transform. In the Fourier signal

previously, a discrete signalf(t) can be represented as foHows:

f (t) =I g k cos(rk) +I 17 k sin(tk)
k k

(32)

difference between the basis functions of the Fourier transform and the wavelet tran form

is that the scaling and wavelet basis functions are complex functions which are derived

scaling function. An introduction to the discrete wavelet transfolln is given below in

(33)f(t)= Ig'(Xk(t)+ Ih,~,(t)
k Ir.

Here, a and ~ are the scaling and wavelet basis functions, k is the index which defines the

length of the signal, and Rk and hk are the decomposition coefficients. An important

and do not occur naturally. Furthermore, the wavelet basis function is derived from the

function and the wavelet function.

In a similar fashion, the Wavelet series representation has two basis functions, the scaling

which the scaling and wavelet functions are discussed in more detail.

3.4.1 Discrete wavelet transforms

The discrete wavelet transform, like the fast Fourier transform, is a fast, linear operation

that operates on a data vector whose length is an integer power of two, transforming it

into a numerically different vector of the same length. The wavelet transform, like the

fast Fourier transform is invertible and, in fact, orthogonal [Press, 1992]. The inverse

transform, when applied as a matrix, is simply the tran pose of the transform matrix

-
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[Strang, 1993, 1989]. Unlike the Fourier transform which is uniquely defined by ine and

cosine basis functions, there is not one single unique set of basis functions for the wavelet

transform; in fact, there an infinite number of possible basis functions. Each of these

scaling and wavelet basis functions has a unique representation over a definite interval

and vanish outside this interval. In wavelet mathematics, different scaling and wavelet

functions are obtained by specifying the family and order of the wavelet. A brief

explanation of the scaling and wavelet functions is given below.

3.4.1.1 Scaling functions and wavelet functions

Scaling functions and wavelet functions are represented by special types of equations

called dilation equations. The general form of a dilation equation is as follows:

(34)

Here,l/( is a vector of dilation function coefficients. The factor two provides for the

dilation, i.e., expansion or contraction whereas the factor k provides for translation.

Thus, frequency and time localization can both be achieved. The general equation of a

scaling function is given by

(35)

Here, c/( is the scaling function coefficient. The factor j provides for dilation and k

provides for translation. A very important point to note here is that the scaling function is

expressed as a sum of dilations and translations of the scaling function itself.

The wavelet equati~m is derived from the scaling function by taking "differences"

as shown



Daubechies wavelets are a distinct family of wavelets. These wavelets are orthogonal and

Motard, 1994]. A very brief introduction to the Daubechies family of wavelet is given in

[Daubechies 1992, 1993].
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(36)W(x) =Ldk <!>(2x-k)
k

There are many different wavelet families; a discussion of which is beyond the

the following section. For more information, the interested reader may refer to

are compactly supported. Support. is defined as the span of the scaling or wavelet

Here, the wavelet coefficients are given by dk• Wavelets are defined as functions of the

function over which the function has a non-zero value. They are constructed in the

purview of this work. The interested reader may refer to [Kaiser, 1994; Walter, 1994;

scaling functions because the decomposition basis functions have to be interdependent.

3.4.2 The Daubechies Family

-

frequency domain where it is easy to handle the dilation and translation parameters.

Certain constraints are imposed on the construction of the scaling and wavelet functions

depending on the properlies of the wavelet desired. These constraints are ultimately

reflected in the respective sets of coefficients, Ck and d/;. For the Daubechies family, the

constraints are orthonormality and orthogonality as explained below. Note that the

following is a summary overview of the material presented in [Daubechies 1992, 1993].

A function <I>(t) is said to be orthogonal if the following relation is satisfied:

(37)
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unity.

where c is a constant. The function is said to be orthonormal when c take the value of

For the Daubechies family, the following two conditions are imposed. The

(38)J<!>(x) = I

scaling function, must be orthonormal.

The wavelet functions must satisfy the condition

JW(x)dx = 0

Integrating equation (35) and applying the orthonormality condition equation (38)

Similarly, integrating equation (36) with the condition described by equation (39)

(39)

(40)

(41 )

(42)

(43)

The conditions for a wavelet to be both orthogonal and orthonormal are that the

sum of it's scaling function coefficients should be two and the sum of its wavelet function

coefficients should be zero. When the scaling function and the wavelet function are

quadrature mirror filters of each other [Akansu, 1993; Cohen, 1992a; Daubechies, 1988]

the relationship between their coefficients is given by

(44)
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This implies that the wavelet coefficients are obtained directly from the scaling function

coefficients by reversing the order and changing the sign on every alternate coefficient.

Thus the tedious process of calculating them separately is avoided.

A brief description of the construction of first order Daubechies wavelets is given

in the following section. A very detailed treatment on this topic is available in [Akansu,

1993; Chui, 1992a; Daubechies, 1992; Haykin, 1991; Strang, 1989].

3.4.2.1 Construction of first order Daubechies wavelet

The first step in the construction of wavelets involves the computation of the scaling

function and wavelet function coefficients. Once these coefficients are computed, the

actual scaling and wavelet functions are then determined. The following describes the

least complicated of the Daubechies family of wavelets. The first order wavelet,

commonly referred to as the Haar wavelet, is constructed below.

The scaling function is a simple box function given by

{
I O~x~1

(x) =
<P 0 otherwise

II

Figure 3.4a. The box function

The scaling function then becomes

(45)

------------
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is the sum of two half sized boxes of uniform dilation and one of the boxes is translated

(47)

(46)

W(x) =Ldk <j>(2x-k)
k

W(x) = do <j>(2x) - d} q>(2x- J)

The wavelet equation is given by

As k has two values 0 and 1, W(x) reduces to

by a unit value.

Equations (35) and (39) are both satisfied when do = I and d} =-I. So,

as x lies between 0.5 and I. Substituting the orthogonality property in the above

between zero and one i.e., x lies between zero and 0.5. Similarly, <j>(2x-l) exists as long

This is where the beauty of orthogonality comes into play. The translates of the dilation

equation, the values of both Co and c} are obtained as I. This shows that the box function

equation are orthogonal. <j>(2x) and $(2x-1) are orthogonal. q>(2x) exists as long as 2x lies

W(x) =<j>(2x) -<j>(2x-1) (48)

The wavelet function takes the following values

{

I, 0 S; x S; I /2

W(x)= -I, 1/2$x$1

0, otherwise
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wavelet function is shown below.

I~ L- -
0-

0 0 () .
I 112 112 I I,

-J
""-

-I - -

coefficients in two different vectors a and b are considered, then the coefficients of the

is the multiplication of the coefficients of polynomials. If two polynomials with their

polynomial obtained by convolving these two polynomials is represented by a vector c,

(49)length( a) + lellJ{th( b ) -1

Figure 3.4b. The Haar wavelet and its dilated and translated versions

the length of which is given by

Mathematically, signal filtering is performed by the convolution operation. Convolution

3.5 Signal filtering using scaling and wavelet functions

The k-th element of the convolution product of c is given by

Ck =La(j)b(k + 1- j) (50)

The sum is over all the values of j, which is from 1 to (length( a) + length( b ) -1). When

both vectors a and b are of the same length, n

c( 1) = a(l )b(1)

c(2) = a(l )b(2) + a(2)b( 1)

e(3) = a(/ )b(3) + a(2)b(2) + a(3)b(l)



58

c(k) =a(l )b(k) + a(2)b(k-l) + + a(n)b(l)

c(2n-2) = a(n-J )b(n) + a(n) b(n-l)

c(2n-J) = a(n)h(n)

Wavelet decomposition is performed by convolving the signal with the scaling

and wavelet function coefficients. The scaling and wavelet function coefficients are also

known as filter coefficients. The resulting signal after convolution is dyadically sampled

i.e., every alternate sample is taken into consideration.

Iff is the signal, Hand G are the low pass and high pass filters respectively, then

the signal is decomposed as follows

A high pass filter retains the low frequency part and allows the high frequency parl of the

signal to pass through. Similarly, the low pass filter retains only the high frequency part

of the signal and allows low frequency part of the signal to pass through. Here, H is the

filter containing the scaling function coefficients and G is the filter containing the wavelet

function coefficients. The blurred signal contains the low frequency part of the original

signal and the detail signal retains the high frequency part of the signal. The notation "*,,

represents the convolution operation followed by downsampling in which every alternate

value is retained. The information content of the blurred and the detail signals is

mutually exclusive, and the original signal at any level of decomposition can be obtained

(51 )

(52)

Blurred signal =H*f

Detail signal =G*f
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principle of orthogonality.

The original signal is reconstructed by reversing the decomposition operation.

(53)HT"(Blurred signal) + CT"(Detail signal) =original signal

by the combination of the blurred and detail signals at that level. This results from the

HT
and CT

are the transpose of Hand G. The notation "",, represents the upsampling

representation of the decomposition and reconstruction of a signal.

signal by inserting zeros between each value. Figure 3.5 illustrates the basic

Reconstructed
Signal

G

H

Original Signal

operation and convolution with the signal. Upsampling is doubling the length of the

Figure 3.5. Basic decomposition and reconstruction representation

Consider a signalfhaving n samples at its original resolution which is represented

in the time domain as the vector aD. At the original resolution, the elements of the vector

aO (the digitally sampled signal) are the values of the signal itself. At the first level of

decomposition, the decomposition coefficients are given by

j = 1, n/2; k = I, n (54)

_ ............



equally into blurred and detail signals). At any level of signal decomposition the values

constant Y2 is the normalization constant (this takes into account that the signal is divided
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(55)j =1 1112; k =1, n

Here, Ck and dk are the scaling and wavelet function coefficients respectively. The

of a and h are computed by recursion from their values at the previous level. It is to be

noted that a signal can only be decomposed nI2 levels because at the nl2 tll level, the

blurred and detail signal would contain only one coefficient each.

The decomposition procedure is illustrated below using the Haar wavelet and a

short signal so as to give the reader a good feel of this subject. The Haar scaling

coefficients [co CJ] are [J I] and the Haar wavelet coefficients [do d l ] are [1 -1]. The

signal is given by [1 234]. The decomposition coefficients are given by

The blurred signal at the first level is a l = [3/2712] and the detail signal at the first level

is hi =[1/2 112]. Reconstruction is performed as follows:

af = L..a~C2j_k + L..b;d2i- k
j j

j = J, nJ2. (56)

For this example,

- ---
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a~ = [1 x 3/2 + () x 7 / 2] + [-1 x 1/2 + 0 x -I] = I

a~ = [1 x 3/ 2 + 0 x 7 / 2] + [l x 11 2 +0 x I /2] = 2

a~ = [Ox3/2+ Ix7/2]+[Ox-l+ 1I2x-I]= 3

{l~ =[Ox3/2+lx7/2]+[OX-l+lxI/2]=4

This recreates the original signal aO =[J 2 3 4].

The above example illustrates perfect reconstruction. For smoothing purposes,

pelfect reconstruction is not used. Instead, the high frequency part of the signal i'

removed. If the high frequency part is to be removed, the detail signal coefficients are

made zero and the signal reconstructed from the blurred signal coefficients and the zeroed

detail coefficients. In the above example, the level of decomposition is one. However, a

signal could be decomposed to more levels than one and viewed at each level of

decomposition (resolution). The process can be repeated until a single blurred non-zero

coefficient is obtained.

For smoothing purposes, the key is determining how many levels of

decomposition should be performed. The most straightforward approach is as follows.

First the signal is decomposed one level, setting the detail signal coefficients to zero (this

eliminates the high frequency part), and reconstructing the signal and checking the degree

of smoothing. If the reconstructed signal still contains some high frequency noise, the

blurred signal at the first level is decomposed again. The detail coefficients at the second

level are again made zero and the signal reconstructed from the blurred and detail signals

at the second level. This process is repeated until the desired degree of smoothing is
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achieved. This process of viewing the signal at multiple resolutions is called multi-

resolution analysis. A brief description of multi-resolution analysis is given below.

3.6 Multi-resolution analysis

As explained above, the process of decomposing a signal to various levels is known as

multi-resolution analysis. The detail and blurred signal coefficients at any level are

computed by recursion from the results at the previous level. At any level, the blurred or

the detail signals are considered to be an averaged version of the signal (blurred or detail)

at the previous level. The frequency of the signals is twice that of the frequency at the

previous level (also known as a scale twice as large). If the blurred signal at any level is

considered the averaged version of the blurred signal at the previous level, then the detail

signal is obtained from the difference between the signal at the previous level and the

blurred signal generated at the current level, i.e., the infonnation present in the original

signal but filtered out in the averaged version. In other words, the blurred signal at any

level j is obtained by the combination of the blurred and detail signals at the next lower

level j+ / and the detail signal at level j from the difference between the blurred signals at

level j and level j- J.

The basic idea behind multi-resolution analysis can be summarized by Figure 3.6.

.....



Detail signal at level 3

Blurred signal at level 3

G

H

Detail signal at level 2

H

G

G

Original
Signal(level 0)

Figure 3.6. Basic representation of the multi-resolution algorithm

Application of multi-resolution analysis to an actual plant signal is illustarted in

63

H

Detail signal at level I

level is the sum of the detail and blurred signals at the previous or next higher level.

Figure 3.6 shows a signal decomposed three levels. It is evident that the signal at any

-

Figure 3.7. The original signal is decomposed into blurred (low frequency) and detail

(high frequency) signals at the first level. It can be seen that the low frequency or blurred

signal basically follows the fundamental trend of the original signal with magnitude

almost the same as that of the original signal. However, the high frequency part of the

original signal does not follow any particular trend relative to the trend of the original

signal and is of magnitude substantially lesser than that of the original signal. Subsequent

results after two, three, four, five and seven levels of decomposition are presented in

Figure 3.7.

The reconstructed signal with the detail coefficient zeroed is superimposed on the

original signal is presented in Figure 3.8. From Figure 3.8, it can be seen that the

......
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Original signaL.

0.02
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-0.02

Detail coefficients at first leveL.
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Blurred coefficients at first level.
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Detai I coefficients at second level. Blurred coefficients at second level.
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Detail coefficients at third level. Blurred coefficients at third level.

Figure 3.7. Detail and blurred coefficients for the ffrst four levels of decomposition
using sixth order Daubechies wavelets.
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. ,

Detail coefficients at fourh level.
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Detail coefficients at fifth level.

Blmred coefficients at fourth level.
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Blurred coefficients at fifth level.
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-0.02

0.70

0.60
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Detail coefficients at seventh level. Blurred coefficients at seventh level.

Figure 3.7. (contd.) Detail and blurred coefficients for fourth, fifth, and seventh
levels of decomposition using sixth order Daubechies wavelets.
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First level of decomposition.

Second level of decomposition.

Third level of decomposition.

Figure 3.8. Smoothed signal obtained (with detail coefficients set to zero)
using sixth order Daubechies wavelets, superimposed on original signal for
various levels of decomposition.
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Figure 3.8. (contd.) Smoothed signal obtained (with detail coefficients set to zero)
using sixth order Daubechies wavelets, superimposed on original signal for various
levels of decomposition.
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smoothed signal obtained from reconstruction at the fourth level of decomposition is an

excellent representation of the raw sensor signal. Further, it can be seen that as the level

of decomposition increases beyond the optimum level of decomposition, the capacity of

the smoothed signal to retain the fundamental trend of the original raw signal is reduced.

The smoothed signals reconstructed from beyond the fifth level of decomposition prove

this beyond doubt.

Multi - resolution analysis [Cohen, 1992b; Daubechies, 199]; Mallat, 1989a;

Mallat, 1989b; Mallat, 1989cl is a very powerful tool for trend extraction and pattern

recognition. Accurate representation of the fundamental trend of the original sensor

signal can be obtained from decomposition of the signal followed by reconstruction

without the detail coefficients. However, increasing the number of levels of

decomposition also increases the degree of smoothing; so an optimum level must be

selected so that a smoothed representation is obtained without sacrificing the fundamental

trend of the original signal. The optimum level of decomposition was previously

determined by trial and error, i.e., by experimenting the signal with various levels of

decomposition and finding the level of decomposition which best smoothes the raw

sensor signal.

The optimum level of decomposition has previously been determined by

experimentation and depends on the pattern recognition problem being addressed. This

can be avoided and the optimum level or the level very near to the optimum level of

decomposition can be determined automatically. The next chapter presents our proposed

method for automated trend extraction.
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Chapter 4

AUTOMATED TREND EXTRACTION

4.1 Need for automated trend extraction

In Chapter 3 the desired level of smoothing of signals is achieved empirically by trial and

error. Experimentally determining the optimum level of smoothing of a raw sensor signal

is not suitable for real-time applications.

An automated approach is needed if we expect to provide a stand alone system

which allows operators to create their own process monitoring applications. Furthermore,

different signals may require different degrees of smoothing depending on the

characteristics (e.g., noise content) of individual sensors. Ideally, we would like to have a

system which analyzes the characteristics of the monitoring application as well as the

sensor signals and recommends the appropriate degree of smoothing for each signal. The

system would graphically illustrate the recommended degree of smoothing and allow the

user (operator) to either accept the recommendation or specify more or less smoothing.

There is no a priori correct level of smoothing, as the desired degree of smoothing

is application dependent. We have empirically determined that the degree of smoothing

for pattern-based analysis is usually determined by the length of the data window used for

observing and monitoring a process. Typically, it suffices to provide sufficient smoothi ng

so that approximately four blurred coefficients are used over the span of the window

length after decomposition and before reconstruction. The reconstructed signal can then

69
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be sampled as desired to obtain a compact repre entation, as de cribed in Chapter 1. In

other words, the "correct" number of levels of decomposition normally depends on the

number of blurred coefficients after decomposition that are fixed over the window length

used for process monitoring.

4.2 Determination of the degree of smoothing from the user input window length

The smoothing obtained for a typical sensor signal fixing four blurred coefficients

after decomposition, over a 45 minute window of observation is shown in Figure 4.1.

The number of levels of decomposition of the raw signal is back calculated from the

window length used for process monitoring, the sampling period of the raw data, and the

desired number of blurred coefficients over the window of observation, after

decomposition.

The window length for process monitoring is problem specific and left to the

discretion of the operator (user). Nevertheless, a minimum window length required for

monitoring purposes can be helpful in providing insight when specifying the actual

window length. Determination of the minimum window length for process monitoring is

described later in the chapter. The following discussion describes how the recommended

degree of smoothing is determined from the window length.

The user input window length, winx (units of time) is first converted to the

associated number of data points with the aid of the signal sampling period, Ts and this

value is checked to see if it is less than half the length of the original signal, N. If the

user input window length is less than NI2, then winx is used to calculate the number of

levels of wavelet decomposition, otherwise the user is prompted to enter a window of

.....
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length less than N*T.J2 units of time. Figure 4. I illustrates how the desired number of

levels of decomposition are determined so that there are approximately four points

spanning the window length. Analytically, the number of levels of decomposition,

aceLevels can be calculated according to the following formula,

act_levels = Log2(winx/4*T.rJ (57)

It is to be noted here that, for a specific problem, winx is a constant and acelevels

depends only on the sampling frequency. The number of levels of wavelet decomposition

obtained, acelevels, gives the best estimate of the optimum degree of smoothing.

Nevertheless, the user must verify this result and be given the option of specifying more

or Jess smoothing if deemed necessary.

The algorithm is built around the Matlab smoothing module first proposed by Mr.

V. Raghavan [Raghavan, 1994]. This smoothing module uses sixth order Daubechies

wavelets. The following discussion documents the Matlab m-files which are utilized.

The scaling and wavelet function coefficients are determined by the function

daub.m. All smoothing techniques involve convolution which tend to distort the trend of

the smoothed signal towards the ends. Distortion of the smoothed signal towards the end

is unacceptable for pattern-based process monitoring purposes. To avoid trend distortion,

the original signal is padded on either side by half its length by the function net.m

[Raghavan, 1994]. The padded signal is then decomposed to aceLeveLs number of levels

by the functionJwt.m and reconstructed with the blurred coefficients at this level. All

detail coefficients are set to zero. Signal reconstruction is then performed by the function

ifwt.m. The extensions to the signal are then removed to obtain the smoothed

representation of the original signal. The user is then prompted if the smoothed

..
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representation is satisfactory, too smooth, or still needs to be smoothed. Depending on

the input of the user, appropriate action is taken.

4.3 Determination of the minimum degree of smoothing from raw signal

characteristics

The number of levels of decomposition obtained from the user input window length

generally produces the desired level of smoothing. However, in special cases where the

signal contains a steady, low frequency oscillation produced from control system

interactions, more smoothing may be required. In this situation, it is necessary to identify

the dominant low frequency component and ensure that the signal is decomposed beyond

this level.

The frequency spectrum of the original signal is useful for identifying the

dominant low frequency component. In this work, the term "cut-off' frequency is

introduced to differentiate the first few low frequencies of large magnitude that are of

interest, and other frequencies of smaller magnitude that are not of interest. For our

work, we assume that the cut-off frequency is the dominant frequency and the two terms

can be used interchangeably.

In this work, the term frequency index is often used. This is just another way of

representing frequency [Ludemann, 1992]. Referring to equation (29b) in Chapter 3, we

note that the frequency index k corresponds to the frequency "k2n IN" in a Fourier

decomposition.

..
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4.3.1 Dominant frequency identification

This section describes how we quantify the cut-off frequency and use this information to

determine the minimum amount of decomposition required to smooth through low level,

steady oscillations.

As described in Chapter 3, the discrete Fourier transform (OFf) can be applied to

split a signal to obtain the frequencies associated with the signal in terms of cosine and

sine coefficients of various amplitudes and frequencies. We utilize the properties of the

discrete Fourier transform to determine the cut-off frequency index.

Figure 3.2 in the previous chapter shows the cosine and sine coefficients plotted

against their respective frequency indices for a representative time domain signal. By

visual inspection of Figure 3.2, it can be seen that the first few cosine coefficients are of

relatively large magnitude. The cosine coefficients around the frequency index forty and

above are of smaller magnitude and can be categorized as noise for purposes of

determining the cut-off frequency. The maximum sine coefficient occurs at frequency

index one. Sine coefficients from two to four are comparable to the maximum value but

coefficients above frequency index four can be ignored. This is an illustrative example

where the sine and cosine coefficients do not drop off at the same frequency index.

The question that arises now is the basis on which the cut-off frequency index is

to be determined, i.e., to select the sine or the cosine cut-off frequency index. Also, there

may be a few coefficients well within the cut-off frequency that are of very small

magnitude. This questions the validity of the cut-off frequency index itself. An

alternative approach, the cumulative power spectrum, gives a fairly good idea of the cut-

off frequency index. The next subsection addresses this topic.
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4.3.2 The CumuJative power spectrum

The power spectra of a signal is determined from the output of a Fourier decomposition.

The value of the power of a signal (consisting of real values) at any frequency is

determined by taking the sum of the squares of the real and imaginary parts of the Fourier

coefficient obtained at that frequency and dividing it by the length of the signal. The

cumulative power is determined by adding the values of the power at each ucceeding

frequency. This is demonstrated by the following example.

The Fourier coefficients of the signal shown in Figure 3.1 of the previous chapter,

x(n) =[1 23 4J. are given by

X(O) = 10, X( 1) = -2+2j, X(2) = -2, X(3) = -2-2j

The power at each of these points is determined as shown:

pro) = (101/4 =25

P( /) = [(-21 + (2/1/4 = (4 + 4)/4 =2

P(2) = (-21/4 = 4/4 =1

p(J) = [(-21 + (-211/4 = (4 + 4)/4 = 2

The cumulative power at each of these points is determined as shown below:

prO) =25

P(I) = prO) + P(I) = 25 + 2 = 27

P(2) = prO) + P(l) + P(2) = 25 + 2 +1 = 28

P(3) = prO) + P( 1) +P(2) +P(3) = 25 + 2 +1 +2 = 30

The cumulative power spectrum for the above signal is {25 2728 30}.

In a similar manner, the cumulative power spectrum of any signal can be

determined. However, the cumulative power spectrum obtained by this method is not

..
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very smooth but is characterized by small changes in magnitude at some points. A

smoother estimate of the power could be obtained by using Welch's averaged

periodogram method. The signal is divided into overlapping sections, each of which is

detrended and windowed by a Hanning window [Oppenheim, 1975]. The adjacent

records of the power are averaged so as to obtain more reliable spectral estimates. All the

values thus obtained are in a confidence interval of 95%. The cumulative power

spectrum obtained by this method, and the source signal are shown in Figure 4.2.

As shown in Figure 4.2, the cumulative power spectrum increases steadily and

then flattens. The reason for the initial steep increase is that the first few values of the

power are relatively large due to the large magnitude of the first few low frequency cosine

and sine coefficients. Subsequent coefficients are of relatively smaller magnitude and

contribute less power. This effect is reflected by the fI attening of the cumulative power

spectrum after the first few low frequency coefficients. For our purposes, we define the

frequency index where the cumulative power spectrum "bends" as the cut-off or dominant

frequency index. The cut-off frequency index is a key parameter because it is used to

detelmine two important parameters,

(J) the minimum number of levels of decomposition of the signal so as to retain

the dominant frequencies and

(2) the minimum window length required for effective process monitoring, which

can be used as a basis for selecting the actual window length for process monitoring.

The cut-off frequency is determined by the examination of the second derivative

of the CPS. The interested reader may refer to the documentation in the function

delecl.m, a copy of which is included in the Appendix.
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4.3.3 Determination of the minimum number of levels of signal decomposition from

the cut-off frequency index

Figure 4.3 lays the foundation for understanding how the cut-off frequency index

determines the minimum number of levels of wavelet signal decomposition.

Original Signal 211

Blurred Coefficients
2n_1

FirST level

Detail Coefficients
2n-!

Detail Coefficients
2n-2

Detai t Coefficients
211 -;

Blurred Coefficients
2',-2

Second level

Blurred Coefficients
2n-;

ilh level

nih level

Blurred Coefficients
J

Derail Coefficients
I

Figure 4.3. Multi resolution tree analysis for a signal of length N = 2/j

Consider a signal of some finite length N, where N is equal to 2/1. After

petforrning the fast Fourier transform on this signal, the number of cosine and sine

coefficients obtained are (NI2J+ I and (N/2)-1 respectively. Now if the original signal is

decomposed fully to n levels of decomposition using the wavelet transform, one blurred

and a total of N-l detail coefficients would be obtained. The blurred and detail

coefficients at the nth level approximate the original signal with scaling and wavelet
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functions which can be characterized by the lowest non-zero Fourier frequency. From the

definitions in Chapter 3, the lowest non-zero Fourier frequency corresponds to (1(21t1N))

and is associated with the a] coefficient. Therefore, a frequency index of I (equal to i)

corresponds to a wavelet signal decomposition of n levels.

If the wavelet signal decomposition is performed n-1 levels. two blurred and a

total of N-2 detail coefficients are obtained. The coefficients at the (n-l) level of

decomposition are associated with scaling and wavelet functions which span half the

original signal and can be thought of as having the same frequency as thea2 and b2

Fourier coefficients with frequency equal to (2(2rrJN)). In other words, a Fourier

frequency index of 2 (equal to i) corresponds to a wavelet signal decomposition of n-I

levels.

Likewise, if the wavelet signal decomposition is performed n-2 levels, four

blurred and a total of (N-4) detail coefficients would be obtained. The coefficients at

level (n-2) can be visualized as having the same frequencies as the a4 and b4 Fourier

coefficients corresponding to frequency equal to (4(2rrJN)). In other words, a cut-off

frequency of 4 (equal to 22
) corresponds to a wavelet signal decomposition of n-2 levels.

Similarly. for a wavelet signal decomposition of n-i levels, i blurred and a total of

(N-2i) detail coefficients would be obtained. The coefficients at the (n-i) level can be

visualized as having the same frequencies as the Fourier coefficients a2
i

and b/ In other

words, a Fourier frequency index of i corresponds to a wavelet signal decomposition of

n-i levels. The following table gives the relation between the cut-off frequency index and

the corresponding levels of wavelet decomposition.
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Table 4.1.

The number of levels of wavelet decomposition for various cut-off indices

Frequency Corresponding level of
index decomposi tion

2°=1 n

2'=2 n-l

22=4 n-2

23=8. n-3.

2; n-l

2"-'=NI2 0

From Table 4.1, we deduce that the minimum number of levels of decomposition,

min_levels, can be calculated from the dominant frequency index by the following

formula:

min_levels = logicut-offfrequency index) (58)

From the above discussion, it is evident that for the number of levels of decomposition to

be an integer value, the cut-off frequency index needs to be a power of two. However,

the cut-off frequency obtained in practice mayor may not be a power of two. When not

---
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an integer, the calculated minimum number of levels of wavelet decomposition is

incremented to the next integer. In doing so, a few of the low frequencies are di carded.

The number of levels of decomposition thus obtained min_levels, gives the

minimum number of levels of decomposition which retain all the dominant frequencies.

The smoothed signal thus obtained generally requires additional smoothing as discussed

previously.

The concept of a dominant frequency is further illustrated in Figure 4.4. A signal

with a strong periodic component is shown in Figure 4.4a. The cumulative power

spectrum obtained using the first 64 samples of the signal is presented in Figure 4.4b.

The cut-off frequency index is determined to be 8. The minimum number of levels of

decomposition is therefore 3. The original signal smoothed 3 levels using sixth order

Daubechies wavelets is shown in Figure 4.4c. From Figure 4.4c, it can be confirmed that

the smoothed signal still retains the periodic swings in the original signal. Figure 4.4d

verifies that decomposing the signal one level beyond this level yields a smoothed

approximation without the dominant low frequency oscillation.

4.3.4 Determination of the minimum window length required for process

monitoring

A minimum suggested window length for pattern-based data analysis can be determined

from the cut-off frequency index by an empirical algorithm a described below. We

recommend that the minimum window length should be long enough to capture four

cycles of all the contain four cycles of all the frequencies below the cut-off, inclusive of

the cut-off.
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Figure 4.4: Representation of the dominant frequencies inherent in
a signal and the need to smooth beyond these frequencies.
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This is an empirical recommendation and is intended to ensure that a sufficient portion of

the signal is used to determine the fundamental trend. The cut-off frequency index,

ji-eq_index, is first converted to its value in radians per unit time, using the sampling

interval of the data, T., and the length (number of data points) of the signal considered for

fast Fourier transform computation, N1, by the relation

This value of the minimum window size in time is displayed and the user prompted to

input the length of window of observation in time.

W =(freq_index) *(2rt)/(N I *T.~)

The value of W in cycles per unit time is given by

W = (freq_index)/N1*T.~

Then, the length of the minimum window in units of time is given by

min_win =4*(N I *T~)/(ji-eq_index)

(59)

(60)

(61 )

4.4 Automated Trend Extraction algorithm

Our proposed automated trend extraction (ATE) algorithm is described in this ection. A

now sheet that shows the various functions involved in the code, and the key variables is

included. The algorithm incorporates all the concepts described in this chapter.



FLOW OF CONTROL IN THE AUTOMATED TREND
EXTRACTION ALGORITHM

The raw sensor signal of length N, a
power of 2, that needs to be smoothed
is read from a data file and the raw

signal displayed. Here, N = 2n.

+
The raw sensor signal is input to the function di!)play.m where a steady part of
the raw sensor signal is chosen by the user for performing the fast Fourier
transform calculations. The length of this data window, winx needs to be a
power of 2. The length of winx is usually sleceted to be 64. For very noisy'
signals, a larger window size of 256 would be helpful. Once the length of winx
is selected, a window of length of winx is moved through the entire raw signal
so as to facilitate the user in selecting a steady part of the signal.

The data contained in winx is input to the function !asf.m, where the
Fourier coefficients of all the data points in winx are determined, the

I power at each data point calculated, and the cumulative power at each
point is obtained.

The cumulative power spectrum is used to determine the cut-off
frequency index. The cut-off frequency is a measure of the fundamental
frequency and other dominant frequencies. Frequencies beyond the
cut-off are not considered. The cut-off frequency index is detected by
the function detect.m.

2
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The cut-off frequency index is input to the function window.m
to determine the minimum data window size required for
effective pattern recognition. The decision on the minimum
window size is based on the period of occurrence of all
frequencies till the cut-off. Four times the period is taken as a
judicious estimate of the length of the minimum window size
required for "effective pattern recognition".

The user is prompted to input a data window size
greater than the minimum window size, in the function
window.m. The size of this window, say x, is problem
specific and is left to the discretion of the user.

The user input window size is used to determine the
number of levels of wavelet signal decomposition, based
on an empirical algorithm given by

no levels2 = log2(N) -log2(4+N*Tlx)

Minimum levels of
decomposition 1S

determined from the
cut-off frequency
index by the relation

no levels] =
log2(length(winx))-log20)

no levels

Level ofsmoothing decided
by the Cumulative power
spectrum

Number of levels of wavelet signal decomposition
used for smoothing is given by
This is done in the function decide.m

no levels = no_levels1

..



Number of levels of wavelet signal decomposition
4 used for smoothing is given by

no levels = no levels2- -
This is done b the function decide.m.

86

The raw sensor signal is smoothed with the
3 number of levels obtained. Smoothing by wavelets

is done by the function power.m.

Smoothing less. Need to
get beyond the dominant
frequencies

Smooth one
more level

STOP

t
Smoothing more than
desirable

Desmooth
one level

...
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AUTOMATED TREND EXTRACTION CODE

START

di!)play.m

eruneh.m

no levels'>----tI..-
= no levels-l

Smoothing More

decide.m
no levels

deleet.m
j,no_levels]

window.m
min_win,no_levels2

no levels

no levels+

..
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Chapter Summary

This chapter described the bases for an Automated Trend Extraction algorithm. The

algorithm utilizes information concerning the monitoring application (user specified

window size) and the characteristics of the signal to be smoothed to generate a

recommendation for the appropriate degree of wavelet smoothing. Application of the

ATE algorithm is illustrated in the next chapter.

88
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Chapter 5

CASE STUDIES

5.1 Introduction

To evaluate the performance of the ATE algorithm, a set of signals with different

characteristics and noise content were considered. Plant data from temperature, pressure

and flow sensors was used. In every case, a window length of 45 minutes was selected

for process monitoring. Table 5.1 summarises the results obtained by the automated trend

extraction algorithm for all case studies. The foJ lowing section presents an analysis of all

test cases considered.

89



Table 5. t

Summary of the results obtained by the ATE code

90

Case Figure Signal Tf in freq. min_levels Window
I

acClevels
length m1OS. index length in mins.

. .
actualmInImum

I 5.1 1024 I 8 3 32 45 4

2 5.2 1024 1 ] 1 2.54 24 45 4

3 5.3 1024 I 9 2.83 29 45 4

3a 5.4 512 ) 8 3 32 45 4 I

4 5.5 8192 1/6 5 3.67 9 45 7

4a 5.6 2048 2/3 11 2.54 ]6 45 5
I

I

8 74b 5.7 4096 ]/6 6 3.42 45

4c 5.8 2048 1/6 6 3.68 9 45 7

5 5.9 8192 1/6 15 2.09 3 45 7

5a 5.10 4096 1/6 6 3.42 8 45 7

5b 5.11 1024 1/6 6 3.42 9 45 7

•
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5.2 Individual Case Studies

5.2.1 Case I-Figure 5.1: The signal considered in this case is characterized by periodic

swings of high frequency. The minimum number of levels of wavelet signal

decomposition obtained from the cut-off frequency index, min_levels, is 3. The number

of levels of wavelet signal decomposition determined from the user input process

monitoring window length, act_levels, is 3.49. As the number of levels of decomposition

needs to be an integer, the actual number of levels of decomposition, acelevels is

incremented to the next integer value 4. The smoothed signal representation obtained by

smoothing four levels using sixth order Daubechies wavelets is shown in Figure 5.1 d.

5.2.2 Case 2-Figure 5.2: A signal with different characteristics is considered in this

case. Although this signal also appears to contain a highly periodic component, the

amplitude is much smaller and the frequency BlUCh higher than Case ~. The minimum

number of levels of wavelet signal decomposition obtained from the cut-off frequency

index, min_levels, is 2.54. The number of levels of wavelet signal decomposition

determined from the user input window size, acelevels. is 3.49, and is incremented to 4.

The smoothed signal is shown in Figure 5.2d. The smoothed signal approximation

clearly captures the true trend of the signal.

5.2.3 Case 3-Figure 5.3: In this case, a signal characterized by moderately large, abrupt

changes in its fundamental trend is considered. The number of levels of wavelet signal

decomposition obtained from the cut-off frequency index, min_levels, is 2.83. The
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Figure 5.1. (a) original signal with periodic swings (b) First 64 data points of the
original signal for obtaining the CPS (c) Cumulative power spectrum

(d) Smoothed representation of the original signal using sixth order Daubechies
and decomposing four levels.



---
93

0.40

0.35

0.30

0.25

0.20

200 400 600 800 1000
(a) ..)

0.36
!~~

0.34 )I;'"

:[~

0.32
.0 ;).....!:,.
!,"

0.30
I"
.~J

0.28 ;~i..
10 20 30

J~
40 50 60 .of

(b)
.,
~~ ~.-
"i
,~ ::f

0.0006 ./ ::1'0:
.~

0.0004 d~

0.0002

3 5 8 10 13 15 I8 20 23 25 28 30
(c)

0.40

0.35

0.30

0.25

0.20

200 400 600 800 1000
(d)
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0.60

0.50

0040

0.30

0.20

94

0048

0046

0044

0042

0040

0.00100

0.00075

0.00050

0.00025

10

200

(

'i-

20

400
(a)

30
(b)

600

40

800

50

1000

60

3 5 8 10 13 15 I8 20 23 25 28 30
(c)

0.60

0.50

0040

0.30

0.20

200 400
Cd)

600 800 1000
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order Daubechies wavelets.
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number of levels of wavelet signal decomposition determined from the user input window

size, acelevels, is 3.49, and is incremented to 4. The smoothed signal representation

obtained by smoothing four levels using sixth order Daubechies wavelets is shown in

Figure S.3d. Excellent performance is again noted.

5.2.3a Case3a-Figure 5.4: The second half of the signal in Figure S.3a is considered

separately to verify that the smoothing algorithm is independent of signal length. The

algorithm is expected to provide the same degree of smoothing as in Figure S.3d as the

noise content in both these signals is the same. The calculated minimum number of

levels of wavelet signal decomposition obtained from the cut-off frequency index,

min_levels, is 3.0. The number of levels of wavelet signal decomposition detennined

from the user input window size, acelevels is 3.49, and is incremented to 4. The

smoothed signal representation is shown in Figure 5.4d. To compare the smoothing

obtained in Figure S.4d with that of Figure 5.3d, the second half of the original and

smoothed :ignals in S.3d is shown in Figure SAe. From figures SAd and 5.4 e, it is

observed that the degree of smoothing obtained is the same in both the cases, and the

smoothed patterns are identical.

5.2.4 Case 4-Figure 5.5: The signal considered in this case is sampled at a rate (Ts =

0.167 min.) which is six times higher than the sampling rate of the signals considered to

this point (Ts = 1 min.). As a consequence, the high frequency content of the signal is

observed to be very prominent. Further, the signal is also characterized by sharp changes

.-,e:

..'
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Figure 5.4. (a) original signal, last 512 samples of the signal in Figure 5.3 (a)
(b) First 64 data points of tthe signal in (a) for obtaining the cumulative
power spectrum (c) cumulative power spectrum (d) smoothed representation

of the signal in (a), smoothed four levels, using sixth order Daubechies wavelets
(e) last 512 samples of the original and smoothed signal in Figure 5.3(d).
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Figure 5.5. (a) original signal (b) First 64 data points of the original signal taken
for obtaining the cumulative power spectrum (c) cumulative power spectrum
(d) Smoothed representation of the original signal, smoothed seven levels

using sixth order Daubechies wavelets.
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in its fundamental trend. As the sampling interval is much smaller compared to the

previous cases, the number of levels of decomposition in this ca e should be relatively

high. The number of levels of wavelet signal decomposition obtained from the cut-off

frequency index, min_levels, is 3.67. The number of levels of wavelet signal

decomposition determined from the user input window size, acClevels, is 6.08, and is

incremented to 7. The smoothed signal representation obtained by smoothing seven

levels using sixth order Daubechies wavelets is shown in Figure 5.5d. Excellent

performance is again noted.

5.2.4a Case 4a-Figure 5.6: For this case study, the previous signal was sampled at a

rate four times slower (To = 0.667 min. as compared to 0.167 min.). The purpose of this

case study is to demonstrate that smoothing performance is dependent on the sampling

rate. As compared to the signal in Figure 5.5a, the high frequency content of signal in

Figure 5.6a is reduced due to the longer sampling interval (0.667 min. against 0.167

min.). Consequently, the number of levels of decomposition based on the process

monitoring window should be two less than in Case 4.

The minimum number of levels of decomposition obtained from the cut-off

frequency index is 2.54. The number of levels of decomposition obtained from the user

input window length is 4.08 as expected. Figure 5.5d shows the original and smoothed

signals. The degree of smoothing is the same as produced in Case 4. This case study

demonstrates that the automated trend extraction code is adaptive and achieves a degree

of smoothing that is dependent only on the length of the pattern recognition window or

;'"
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~::>

"II","
, :>
; ~..
;J
:: ,



Figure 5.6. (a) original signal, signal sampled every 40 seconds (b) First 64
data points of the signal in (a) for obtaining the cumulative power spectrum

(c) cumulative power spectrum (d) Smoothed representation of the original
signal, smoothed five levels using sixth order Daubechies wavelets.
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the frequency content of the signal, irrespective of the length of the signal.

5.2.4b Case 4b-Figure 5.7: For this case study, the second half of the signal in Figure

5.5a is considered. The purpose of this case is to again demonstrate that smoothing

performance is independent of the length of the signal. The noise content of this signal is

the same as that in the signal shown in Figure 5.5a; therefore the same degree of

smoothing is anticipated. The number of levels of decomposition obtained from the cut-

off frequency index, min_levels, is 3.42. The number of levels of decomposition from the

process monitoring window size, acelevels, is 6.08, and is incremented to 7 levels. The

signal in Figure 5.7a smoothed seven levels using sixth order Daubechies wavelets is

shown in Figure 5.7d. To compare the smoothing obtained in Figure 5.7d with that of

Figure 5.5d, the second half of the original and smoothed signals in 5.5d are shown in

Figure 5.7e. From figures 5.7d and 5.7e, it is observed that the degree of smoothing

obtained is the same in both the cases, and the smoothed patterns are identical.

5.2.4c Case 4c-Figure 5.8: A signal consisting of the last 2048 samples of the signal in

Figure 5.5a is considered to demonstrate again that the smoothing algorithm is

independent of the length of the signal. The number of levels of decomposition obtained

from the cut-off frequency index, min_levels, is 3.68. The number of levels of

decomposition obtained from the user input process monitoring window size is 6.08, and

is incremented to 7. The signal in Figure 5a smoothed seven levels using sixth order

Daubechies wavelets is shown in Figure 5.8d. The last 2048 samples of the original and

smoothed signals in Figure 5.5d are shown in Figure 5.8e for comparing the degree of

·,: ~·.·
•;.·~••
"·.; 3·.; l

; f··.··:

c



0.60

0.58

0.56

0.54

102

0.52 ---l.- --,- ,-- -----. -----...--

.,
'04

:~
....,....,

J'"
.~

••

•



103
0.60

0.58

0.56

0.54

0.52

4097 5097 6097
(e)

7097 8097

.:

Figure 5.7. (a) original signal, 4096 samples, second half of the signal in Figure 5.5(a)
(b) First 64 data points of the signal in (a) for obtaining the cumulative power spectrum
(c) cumulative power spectrum Cd) Smoothed representation of the signal in (a), smoothed
seven levels using sixth order Daubechies wavelets (e) second half of the original and
smoothed signal in Figure 5.5(d).
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Figure 5.8. (a) original signal, last 2048 samples of signal in Figure 5.5 (a)
(b) First 64 samples of signal in (a) for obtaining the cumulative power spectrum
(c) cumulative power spectrum (d) smoothed representation of the signal in (a),
smoothed seven levels using sixth order Daubechies wavelet (e) last 2048
samples of the original and smoothed signal in Figure 5.5(d).
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smoothing obtained in Figure 5.8d. From both these figures it can be observed that the

degree of smoothing obtained is the same in both cases, and the smoothed patterns are

identical in nature. The above two case studies demonstrate that the degree of smoothing

obtained is the same for signals of the same frequency content, even though they may be

of different lengths, when the process monitoring window length employed is the same.

5.3 Discussion

In all the test cases, the smoothing obtained is as desired and the smoothed representation

preserves the fundamental trend of the original signal. All the above cases show clearly

that the degree of smoothing obtained is dependent on the pattern recognition window

length and is independent of the length of the original signal, for a fixed sampling rate.

We note, however, that the length of the signal should be sufficiently large so as to

provide more available levels of decomposition than required to smooth the signal.

The accuracy of the cut-off frequency index is critical in determining the

minimum level of smoothing, as the actual window length used for process monitoring is

indirectly dependent on the value of the cut-off frequency obtained. In all the above

cases, the cumulative power spectrum obtained is well defined and the cut-off frequency

index obtained is accurate. However, if the cumulative power spectrum is not well

defined, determination of the cut-off frequency is difficult and the degree of smoothing

obtained would depend entirely dependent on the discretion of the user in selecting the

window length for process monitoring. The following case presents such an example.

,"..-J
.\
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5.3.1 Case 5: The signal considered in this case is characterized by a large amount of

high frequency content distributed unevenly, as can be seen from Figure 5.9a. The

cumulative power spectrum obtained is shown in Figure 5.9c. It can be observed that the

cumulative power spectrum does not increase steadily and level off. It increases in smaH

steps. Consequently, a single striking bend is not observed as in all the previous cases.

In such cases where the cumulative power spectrum continues to increase steadily without

leveling off, determining the cut-off frequency index accurately becomes extremely

difficult. In this case, the cut-off frequency index is determined to be 15. The number of

levels of wavelet signal decomposition obtained from the cut-off frequency index

min_levels, is 2.09.

The accuracy of the minimum window length required for process monitoring

depends on how accurately the cut-off frequency index is determined. In such cases, the

minimum window size required may be lesser or greater than the actual window size the

user expects to input based on his experience. If the minimum window size required is

less than the window size anticipated by the user, and if the user input window size is

judiciously selected, appropriate smoothing is expected. However, if the minimum

window size required is greater than the window size anticipated by the user, the user will

have to compromise and input a larger window size than really desired. This may bring

about greater smoothing than desired (refer equation 57).

In this specific case, a user input window size of 45 minutes is greater than the

minimum obtained from the ATE code, so the degree of smoothing obtained is as desired.

The number of levels of wavelet signal decomposition determined from the user input

window size, ace/eve/s, is 6.08, which is incremented to 7. The smoothed signal
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Figure 5.9. (a) original signal (b) First 64 data points of the original signal taken for obtaining
the cumulative power spectrum (c) cumulative power specctrum (d) Smoothed representation
of the original signal, smoothed seven levels using sixth order Daubechies wavelets.
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representation obtained by smoothing seven levels using sixth order Daubechies wavelets

is shown in Figure 5.9d. From this figure, it can be observed that the degree of

smoothing is as desired. However the desirable degree of smoothing obtained is entirely

dependent on the process monitoring window size as the cut-off frequency index obtained

is not accurate.

The presence of large quantity of noise distributed unevenly does not yield a well

behaved cumulative power spectrum. In such cases, using a larger window size for the

fast Fourier transform may yield a cumulative power spectrum that increases steeply

initially and then levels off.

Figure 5. lOa shows the first 128 data points of the signal in Figure 5.9a. The

associated cumulative power spectrum is shown in Figure 5.lOb. Figure 5.1 Dc and 5.1 Od

show the first 256 data points of the original signal in Figure 5.9a, and the resulting

cumulative power spectrum obtained. Tn both cases, the cumulative power spectrum

obtained is not as desired. However, when a data window of the first 512 points of the

signal in Figure 5.9a is used for obtaining the cumulative power spectrum, the cumulative

power spectrum obtained is defined much better as seen in Figure 5.1 Of. The cut-off

frequency index obtained is 15.

The second set of 512 data points of the original signal is considered and the

resulting cumulative power spectrum is shown in Figure 5.1 Oh. The cut-off frequency

obtained from this cumulative power spectrum is 19. All these results show that for a

signal with non-uniform noise, selecting a relatively larger window size for performing

the fast Fourier transform results in a well behaved cumulative power spectrum.
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(b) cumulative power spectrum for the data in (a) (c) First 256 data
points of the signal in Figure 6.9a (d) cumulative power spectrum

for the data in (c).



1I 1

0.45

0.40

0.35

100 200
(e)

300 400 500

0.10

0.08

0.05

0.03

20 40 60 80 100 120 140 ]60 ]80 200 220 240
(f)

0.50

0.45

0.40

0.35

0.30

100 200 300 400 500
(g)

0.150
0.125
0.100
0.075
0.050
0.025

20 40 60 80 100 120 140 ]60 180 200 220 240
(h)

Figure 5.10. (contd.) (e) First 5]2 data points of signal in Figure 6.9a.
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5.4 Chapter Summary

Various signals with different characteristics have been studied to evaluate the

performance of the automated trend extraction algorithm. The important observations are

listed below:

(I) The smoothed representation obtained is normally determined by the user

input window length for process monitoring. The number of levels of decomposition

obtained from the cut-off frequency, min_levels, only gives the minimum number of

levels to be decomposed so as to retain the dominant frequencies present in the original

signal. To obtain a smoothed representation of the original signal, smoothing should be

performed beyond the dominant frequencies.

(2) The window length for process monitoring is determined by the user based on

experience with the problem at hand. The user input window length determines the

number of levels of decomposition beyond the dominant frequencies and results in the

desired degree of smoothing. The minimum window length required for process

monitoring is directly dependent on how accurately the cut-off frequency index is

determi ned.

(3) Accurate determination of the cut-off frequency index depends on the

behavior of the cumulative power spectrum. If the cumulative power spectrum is not well

defined, the cut-off frequency index determined may not be accurate. In such a situation,

the smoothed representation obtained depends totally on the discretion of the user in

selecting the window length for process monitoring.



(4) If the cumulati ve power spectrum is well defined, the required degree of

smoothing is the same for signals with the same frequency content, irrespective of the

length of the signal, for the same process monitoring window length.

L13
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Chapter 6

CONCLUSIONS

Wavelets provide a much better alternative for trend extraction than conventional

methods of signal processing such as the direct method, digital filters, and the Fourier

transform. Wavelets possess the ability to extract essential trends from process ignals

thus helping to provide compact representation which is imperative for efficient real-time

pattern-based monitoring and control.

This work presented an automated approach to obtain the desired degree of

smoothing as required for real-time pattern-based monitoring applications. The

properties of the wavelet and fast Fourier transforms are exploited to achieve this

purpose. Our automated trend extraction system can be used as a standalone system

which helps operators create their own process monitoring applications.

The automatic trend extraction algorithm automatically recommends an

appropriate degree of smoothing by utilizing information concerning the monitoring

application (user specified window size) and the characteristics of the signal to be

smoothed. The minimum degree of smoothing is determined from the characteristics of

the signal and is dependent on how accurately the cut-off frequency index i determined.

The cut-off frequency is determined from the cumulative power spectrum, which is

determined by performing the fast Fourier transform operation on a selected part of the

114
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original signal. In some cases, when the cumulative power spectrum is not be well

defined, the minimum window size determined would be inaccurate may even be greater

than the actual window size anticipated by the user. In such cases, the user wiJI have to

compromise and input a larger window size resulting in less smoothing than desired.

Performance of the automated trend extraction algorithm is independent of signal

length for a fixed sampljng rate. Consequently, the algorithm is suitable for widespread

application without constraint.

Recommendations and future work

The approach adopted for most of the work done is basically empirical in nature. This

work needs to be consolidated with a theoretical background. Most of the relations and

parameters used in this work are based purely on experience and knowledge of sensor

signal behavior. This empirical work needs to be supported by a more generalized

mathematical basis. Following are some of the recommendations

• The relations used to convert the cut-off frequency index and the user input

window size to the number of levels of wavelet signal decomposition are empirical.

These relations need to be given a strong theoretical basis .

• This work uses window lengths of 64, 128,256 and 512. For most signals with

uniformly distributed noise, a window length of 64 for fast Fourier transform computation

suffices. However, for signals with high frequency content distributed non-uniformly, a

large window length for Fourier decomposition in order to obtain a well behaved

cumulative power spectrum. A robust relation between the characteristics of the signal

r
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and the length of the data window chosen for fast Fourier transform computation needs to

be developed .

• In this work, sixth order Daubechies wavelets have been used exclusively. The

wavelet order could be adaptively modified with the level of wavelet signal

decomposition, to potentially provide better decomposition. Higher order wavelets could

be used at the lower levels of decomposition and vice versa. This techrlique would

minimize distortions due to convolution .

• In this work, wavelets belonging to the Daubechies family were used. Other

wavelets families should be studied and used for this purpose. A generalized technique

for determining the most appropriate wavelet family for a particular signal would be

desirable.

-
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% boxcar.rn

% Written by Ganti S. Srinivas on February 15, 1996
% This is a code for data compression by the Box Car algorithm
% The original authors are J.c. Hale and H.L. Sellars

% This algorithm reads the input vector and the recording limit from
% the user and passes the input vector and the recording limit to the
% function car.m where recording takes place.

% For the entire length of the input vector, each value is compared with the
% previously recorded alue. If the difference is more than a prespecified
% limit, the previous input value processed is recorded, not the input value
% which triggered the recording.

% The first recorded value is initialized to the first input value.

clear

fpri ntf(' BOXCAR ALGORITHM IS BEINGRUN\n');

%freak=l;

%whi le(freak== I )

fi le_namea=input(' Enter the input file you want :',' s');
[fida]=fopen(file_namea,' r');

file_namec=inputCEnter the name of the file to be generated; This file contains the
smoothed values of the Sensors :' ,'s');

H=inputCEnter the recording limit parameter ');

fprintf(\n\n' );

X=fscanf(fida,' %f '~nf):

[y.t,N]=car(X,H); % Record the appropriate input values and return them

M=length(y);

DCR=( l-(MIN»;

i21
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fprintf(['DATA COMPRESSION OBTAINED IS ' ,num2str(DCR)]);
fprintf(\n\n ,).

plot(X);
hold on
plot(t,y,'g');
xlabelCTime index')
ylabelCNonnalized value')

fprintf('Click the mouse on the graph for the recording limit to be displayed');

gtext(['Recording limit is ' ,num2str(H»));
fprintfCHit any key to continue after the recording limit is displayed');
hold off

pause

title('Boxcar version of the original signal');
%print -Pps407en

plot(t,y,'g');
xlabelCTime index')
ylabelCNormalized value')
titleC Boxcar version of the original signal');
fprintf('Click the mouse on the graph for the recording limit to be displayed');
gtext(['Recording limit is ',num2str(H)));
fprintf('Hit any key to continue after the recording limit is displayed');
%print -Pps407en

fopen(file_namec,' w');

for i=l:M
fprintf(file_namec, 'O/Od o/cf\n', tQ), y(i»;
end
fcloseC all');

%freak=input('Enter I if you want to try the whole loop again, else 0 : ');

%end
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%car.m

% Written by Ganti S. Srinivas on February 15, 1996
% This i a code for data compression by the Box Car algorithm
% This function takes input vector and the recording limit from
% the boxcar algorithm and returns the recorded vector and the
% times at wich recording took place

function [rec_vee,t,N] = slope(inp_vee ,H)

N=length(inp_vee);

j=l;

% For the entire length of the input vector, each value is compared with the
% previously recorded value. If the difference is more than a prespecified
% limit, the previous input value processed is recorded, not the input value
% which triggered the recording.

% The first recorded value is initialized to the first input value.

fori=I:N

if(i>l)

if(abs(inp_vec(i)-rec_vec(j-l ))>=H)

rec_vec(j)=inp_vec(i-l); % previous input value recorded
t(j)=i; % recording time
j=j+ I;

else

end % end of second if-loop

else
rec_vec(j)=inp_vec(i); % initialization for first rec. value

tU)=i;
j=j+l;

end % end of first if-loop

end % end of for-loop

---------------



% backslope.m

% Written by Ganti S. Srinivas on February 25,1996
% This is a code for data compression by the Backward Slope algorithm

% This algorithm takes input vector and the recording limit from
% the user and passes them to the function slope.m where the processing takes
% place. The recorded values and times are then returned to this algorithm
% The heart of this algorithm is the function slope.m. For more details please
% refer to it.

clear

fprintfCBACKWARD SLOPE ALGORITHM IS BEINGRUN\n');

%freak== I;

%while(freak==== I)

file_namea==input('Enter the input file you want : ','s');
[fida]==fopen(file_namea, 'r');

file_namec==inputCEnter the name of the file to be generated; This fil.e contains the
smoothed values of the Sensors:' ,'s');

H==input('Enter the recording limit parameter ');
fpri ntf(\I1\n');

X==fscanf(fida,' %f'inf):

[y,t,N] == slope(X,H); 1'0 input vector and recording limit being passed and
% the recorded values and times being returned

M==lengtb(y);
DCR==( l-(MJN));

fprintf([' OATA COMPRESSION OBTAINED IS ' ,num2str(DCR)]);

fprintf(\n\n' );

plot(X);
hold on
p]ot(t,y,'g');
xlabel('Time index')
ylabel('Normalized value')
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fprintf('C1ick the mouse on the graph for the recording limit to be displayed'):

gtext(['Recording limit is ' ,num2str(H)]);
fprintf('Hit any key to continue after the recording limit is displayed');
hold off

pause

title('Backslope version of the original signa!');
%print -Pps407en

plot(t,y,'g');
xlabel('Time index')
ylabel('Normalized value')
title('Backslope version of the original signal');
fprintf('Click the mouse on the graph for the recording limit to be displayed');
gtext(['Recording limit is ' ,num2str(H)]);
fprintf('Hit any key to continue after the recording limit is displayed');
%print -Pps407en

fopen(fiJe_namec, 'w');
for i=I:M
fprintf(file_namec, '%d o/d\n',t6), y(i));
end
fclo eCall');

%freak=inputCEnter I if you want to try the whole loop again, else 0: ');

%end

l25
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% slope.m

% Written by Ganti S. Srinivas on February 25, 1996
~ This is a code for data compression by the Backward Slope algorithm

% This function takes input vector and the recording limit from
% the backward slope algorithm and returns the recorded vector and the
% times at wich recording took place

% [n this case, the decision to record is based on a projection defined
% by the last recorded value and the one immediately prior to that
% The input value at this point in time is then predicted using the last
% recorded value and the slope ( or projection ). This predicted input value
% is then compared to the ACTUAL input value really obtained. If the
% difference is greater than or equal to the prespecified recording
% limit, the previous input value processed is recorded, not the input value
% which triggered the recording.

% In this case the first two recorded values are initialized to the first two

% input values.

function [rec_val,t,N] = slope(inp_vec,H)

126

% fiJe_namea=input(' Enler the input file you want
% [fida]=fopen(file_namea);
% inp_vec=fscanf(fida.' %f '\nf);
% H=O.OI;

N=length(inp_vec);

j=l:

for i=I:N

. , 's')'., ,

if(i>2)
% Calculationtion of slope or projection

S(i)=«rec_valU- ] )-rec_val(j-2))/(t(j-l )-t(j-2»));

% Checking the test condition

k(i)=abs( inp_vec(i)-(rec_valU-1 )-S(i)*(i-tU-I ))));

if(k(i) >= H)

-



rec_valU )=inp_vec(i-I); % Recording of previous input
% value done

lU) = i; % Recording of time
j=j+l;

else % for second if-loop

end % end of second if-loop

else % for first if-loop

127

rec_valU )=inp_vec(i);
to)=i;
j=j+l;

end % end of first if-loop

end % end of for-loop

% Initialization of recorded values
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comb.m

% Written by Ganti S. Srinivas on February 27, 1996
% This is a code for data compression by the combination of Backward Slope
% and Box Car algorithm

% The original authors are le. Hale and H.L. Sellars

% This method combines the abovementioned two methods by using an adaptive
% parameter P. P is initialized to 1 and remains at 1 as long as both the
% boxcar and backward slope test conditions are satisfied. If the backward
% slope test condition is not satisfied, but the Boxcar test condition is, then
% P is set to 2, and the method reverts to the Boxcar until a recording is made.% Once a
recording is made, the algorithm is reinitialized by setting P to 1.
% If the Boxcar test condition is not satisfied, but the Boxcar test condition
% is, then P is set to 3, and the method reverts to the Backward Slope until a
% recording is made. Once a recording is made, the algorithm is reinitialized
% by setting P to 1. If both the test conditions are not satisfied P retains
% the value 1 and recording is not done.

% This algorithm captures the advantages of both the techniques into a single
% algorithm which dynamically selects the technique to be applied to the next
% data point. This algorithm works better than either the Boxcar or Backward
% Slope methods, but requires more comput.ation.

clear

fprintf('COMBlNATION OF BOXCAR AND BACKWARD SLOPE ALGORITHMS

BEING RUN\n');

% freak=l;

% while(freak== 1)

file_namea=input('Enter the input file you want: ' ,'s');
[fida]=fopen(file_namea);

file_namec=input('Enter the name of the file to be generated; This file contains the

smoothed values of the Sensors :' ,'s');

H=input('Enter the recording limit parameter');
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X=fscanf(fida,' %f \nf):
N=length(X);
P=I;
j=l;

for i=I:N

if(i>2) ~ first if-loop

a(i)=abs(X(i)-yU-l ));
S(i)=«y(j-l )-y(j-2»/(tU-l )-tU-2»);
b(i)=abs( X(i)-(y(j-l )-S(i)*(i-tU -1» »);

if(P==' ) % second if-loop

% if both boxcar and backslope tests are passed

if(a(i) >= H & b(i) >= H) % third if-loop
fprintfCBoth Boxcar and Backward slope test conditions are satisfied, recording is

done \n');
YO )=X(i-I);
tU)=i;
j=j+1;
P=1;

elseif(a(i) < H & b(i) >= H) % if boxcar
% test fails

fprintfCBoxcar l~st failed, recording done using Backward slope algorithm \n'):

P=3;

elseif(b(i) < H & a(i) >= H) % if backslope
% test fails

fprintfCBackward slope test failed, recording done using Boxcar algorithm \n');

P=2;

elseif(a(i) < H & b(i) < H) % if both boxcar and
% backslope tests fail

fprintfCBoth Boxcar and Backward slope test conditions are not satisfied,

recording is not done \n');

P=I;

----------------
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else

nd % end of third if-loop

else

end % end of second if-loop

% if the backslope test fails, use the boxcar algo.

if(P==2) % fourth if-loop

if(a(i»=H & j-=j+ 1.)

yU)=X(i-l);
tG)=i;
j=j+ I;

else
P=l;

end

else
end % end of fourth if-loop

% if the boxcar test fails, use the backslope algo.

if(P==3) % fifth if-loop

if(b(i»=H & j-=j+ I)

yG)=X(i-) );

tG)=i;
j=j+l;

else
p=) ;

end

-------------
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else

end % end of fifth if-loop

else ~ for first if-loop

yU)=X(i):
t(j)=i;
j=j+ 1;

end % end of first if-loop

end % end of for-loop

M=length(y);
DCR=( l-(MIN»;
fprintf(['DATA COMPRESSION OBTAINED IS ' ,num2str(DCR)]);
fprintf(\n\n' );

plot(X);
hold on
plot(t,y,'g');
xlabelCTime index')
ylabel('Normalized value')

fprintf('Click the mouse on the graph for the recording limit to be displayed');

gtext(['Recording limit is ' ,num2str(H»));
rprintfCHit any key to continue after the recording limit is displayed');
hold off

pause

title('Performance of combination of boxcar and backward slope algorithm');

%print -Pps407en

plot(t,y,' g');
xlabelCTime index')

------------
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ylabel('Normalized value)
title( 'Performance of combination of boxcar and backward slope algorithm');
fprintf('Click the mouse on the graph for the recording limit to be displayed');
gtext(['Recording limit is ',num2str(H)]);
fprintf('Hit any key to continue after the recording limit is displayed');
%print -Pps407en

fopen(file_namec, 'w');
for i=l:M
fprintf(file_namec, '%d o/J\n' ,t~), yO»;
end
fclose(' all');

%freak=input('Enter 1 if you want to try the whole loop again. else 0: ');

%end

---------------



% singexpfll.m

% This code is written for the single exponential filter
% Written by Ganti S. Srinivas on March 25, 1996

clear

file_namea=inputCEnter the input file you want : ' ,'s');
[fida]=fopen(file_namea,' r');

X=fscanf(fida,' %f' ,inf):
fclose(fida);

N=length(X);
alpha = inputCEnter the value of alpha, O<alpha<1 ');

for i=l:N

if(i>l)
Y(i) = alpha*X(i) + (l-alpha)*Y(i-I);
else
Y(i)=X(i);
end

Z(i)=X(i)-Y(i);
end

plot(X,'y' )
hold on
plotCY,'r' )
hold off

file_narneb=inputCEnter the name of the output file' ,'s');
[fidbl=fopen(file_nameh,' w');

for i=l:N
fprintf(fidb, '%f %f\n' ,Xl i),Y(i»;
end

fclose(fidb);
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% dubexpfIl.m

% This is the code for the double exponential filter
% Written by Ganti S. Srinivas on March 25, 1996

clear

fiJe_narnea=input('Enter the input file you want: ' ,'s');
[fida]=fopen(file_namea,'r');

fi le_nameb=input(' Enter the name of the output file' ,'s');

X=fscanf(fida,' %f '~nf):

N=length(X);
alpha = input('Enter the value of alpha, O<alpha<l ');

for i=]:N

if(i>2)
Y(i) = (alphaA 2)*X(i) + 2*(l-alpha)*Y(i-1 ) - «(I-alpha)"2)*Y(i-2);

else
Y(i)=X(i);
end

Z(i)=X(i)-Y(i);
end

plot(X,'y' );
hold on
plot(Y,'r');
hold off
titleCDouble Exponential filter');
xlabel([' Alpha = ' ,num2str(alpha)]);
print -Pps407en

[fidb]=fopen(file_nameh, 'w');

for i=l:N
fprintf(fidb, '%£\n',Y(1»);

end
fcloseCall');
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% This code is written for the moving average filter
% Written by Ganti S. Srinivas on March 25, 1996

clear

fiJe_namea=inputCEnter the input file you want
[fida]=fopen(file_namea,'r');
X=fscanf(fida,' %f '~nf):

fclose(fida);

. , 's")'., ,

N=length(X);
J=inputCEnter the number of pastdatapoints to be averaged');

for i=l:N

if O>=J)
sum = 0;

for j=(i-J+ I ):i
sum =sum + XU);
end

YO) =sum/J;
Z(i)=X(i)-Y(i);

else
Y(i)=X(i);

end
end

plot(X,'y' )
hold on
plot(Y,'r')
hold off

filc_nameb=inputCEntcr the name of the output file' ,'s');
[fidbl= fopen(file_namcb,'w');
for i= I:N
fprintf(fidb, '%f\n' ,Y(!):
end
fclose(fidb);

----------------



% This code is written for the rate of change filter
% Written by Ganti S. Srinivas on March 25, 1996

clear
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file_namea=inputCEnter the input file you want
[fidaJ=fopen(file_namea, 'f');

X=fscanf(fida,' %f ,\nf);
fclose(fida);

. , 's')·. " ,

N=length(X);

delx = inputCEnter the value of the limiting parameter');

for i=I:N

if(i>l)

if(abs(X(i)-Y(i-l») <= delx)
Y(i)=X(i);

%fprintf{ 'abs. difference <= delx\n');

elseif(Y(i-1 )-X(i) > delx)
Y(i)=Y(i-1 )-delx;

%fprintf('Y(i-l) is> XV) by delx\n');

elseif(Y(i-1 )-X(i) < (-del x))
Y(i)=Y(i-1 )+delx;

%fprintf('Y(i-l) is < X6) by -delx\n');

else

end

else

Y(i)=X(i);

end



Z(i)=X(i)-YO);
end

plot(X,'y' )
hold on
plot(Y,' r')
hold off

file_nameb=inputCEnter the name of the output file' ,'s');
[fidbJ=fopen(file_nameb, 'w');

for i=l:N
fprintf(fidb, '%t\n' ,Y(I));
end

fclose(fidb);
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% Reading the above file to a vector
% Closes the file after reading
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% Written by Ganti S. Srinivas on June 5, 1996

0/0**********************************************************************
% This is a code for automated trend extraction. This code takes a raw sensor %
% signal as input, processes this signal and outputs the smoothed signal %
% directly. The user is then prompted if he's satisfied with the smoothing
%%********************************************************************

clear
format long

file_namea=input('Enter the input file you want: ' ,'s');
[fida]=fopen(file_namea,'r'); % Opens the above file for reading

X=fscanf(fida,' %f \nf");
fcJose(fida);
elf;
plot(X,'c');
title(' Original sensor signal ');
fprintf(\nHit any key to continue\n');
pause

N = length(X);

flag = I;
while (flag == I)
%**********************************************************************

% This function displays the window of choice for performing the FFT

[winx,index] = display(X,N);

file_nameb = input('Enter the file name forwinx: ','s');

[fidb] = fopen(file_nameb,'w');
for i= I :Iength(wi.nx)
fprintf(fidb,'%f\n' ,winxO);

end
fclose(fidb);
%**********************************************************************
figure( I)
set(gcf,' Nextplot' " add'):
clf;
plot(index,winx,'c ');

7
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titleCSelected window from original signaJ for determining the CPS');
grid
% print -Pps407en

0/0**********************************************************************

% This function performs the FFf calculates the cumulative power spectrum and
% the cumulative power spectrum (CPS).

[P,N I ,x] = fast(winx);

0/0**********************************************************************
figure(2)
set(gcf, ,Nextplot' " add');
elf;
plot(P,'g');
grid

% hold on
% plot(x,'r');
title('Cumulative power spectrum (CPS)');
% hold off

% print -Pps407en

file_namec = inputCEnter the file name for CPS: ','s');
[fide] =fopen(fiJe_namec,'w');
for i= I :length(P)
fprintf(fidc,'%f\n' ,PO);
end
fclose(fidc);

%**********************************************************************

% This function determines the slope and the rate of change of slope for all
% the data points in the CPS.

[freg,no_levels I,deIP] = detect(P,N I ,N);
if (freg == [])

errorCNull cut-off frequency index');
break;

end

%**********************************************************************
[va/,ind] =sort(deIP):
figure(3)
set(gcf, , Nextplot' ,'add');
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elf;
plot(delP,'r');
grid;
titleCRate of change of slope');

%**********************************************************************

% This i' a function to determine the minimum window size required for
% "effective" pattern based data analysis. Then it prompts the user to input
% a window size greater than the minimum. Based on this user-input window size
% the no. of levels of decomposition are determined. The no. of levels thus
% obtained are compared to that obtained from detect.m

[no_levels2, min_win] = window(N, N I, [reg);

0/0**********************************************************************

% This part of the code compares the no. of levels obtained from detect.m and
% window.m and increments them by 1

[no_levels,levels I ,1evels2] = decide(no_levels 1,no_levels2);

%**********************************************************************

% This part of the code uses the no. of levels obtained from the above
% calculations to smooth the raw signal.

[f,fl ,no_levels] = power(X,no_levels, min_win);

m***************************************************** *****************-/0 .

flle_named = inputCEnter the name of the file for f and fl :' ,'s');
[ficld]=fopen(file_named,'w'); % Opens the above file for reading

for i= 1: length(fl)
fprintf(fidc,'%f o/d\n', f(l), neil);

end

fclose(fidd);

flag = inputCEnter I if you want to continue with this file, else enter 0');

end

--------------
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% display.m

% This code was written by Ganti Srinivas, dated July 10, 1996

0/0**********************************************************************
% This part of the code runs the FFf and displays the cumulative power spectrum.
% For running the FFf a data window size of 256 is used. The window is selected
% over a steady part of the signal. This window is chosen at the discretion of
% the user.
%**********************************************************************

function [winx,x] =display(X,N)

W =inputCEnter the no. of data points (should be a power of 2) for the FFf');

tlagl=l;

while (flag I == 1)
j=O;
f1agl
for i=1:(NIW)

J
x = (W*j+l):(W*i);
plot(x,X((W*j+ 1):(W*i»,' c');

fprintf(\nEnter I if this plot is steady and i satisfactory for FFT

computation, else enter 0\0');

flag = input(");

while (flag -=0 & flag -=)

fprintf(\nEnter 1 if this plot is steady and is satisfactory for FFf

computation, else enter 0\0');

flag = input(")

end

if (flag == 1)
winx =X((w*j+l):(W*i»;
flagl=O;
break;

else

-------------



end

end

flag I = 1;
end

j=j+l;
fprintf('Hit any key to view the next data window');
pause;
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% fast.m

% This code was written by Ganti srinivas on June 5, 1996

0/0**********************************************************************
% This code computes the fast Fourier transform and the cumulative power %
% spectrum. Then it calls another function regre s.m which regresses data in %
% the power spectrum. This regressed data is then used to determine the %
% cut-off frequency. %
0/0**********************************************************************

function(P,N I ,x] = fast(winx)

NI =length(winx);
P=spectrum(winx,N 1)

% Y=(l/NJ)*fft(winx);
% P=Y.*conj(Y)

for i= 1:(N] /2)-1
P(i+ 1)=P(i)+P(i+ I); % Cumulative power spectrum

% We consider only the first half of P because the other half is symmetric
% and a mirror image of the first half

end
P=P( 1:N 112)

0/0**********************************************************************
% This part of the code runs the regression on the data from the FFf window %

% [xl = regress(P,N I);

0/0**********************************************************************

--------------
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detect.m

% This code was written by Ganti Srinivas, dated June 5, 1996

0/0**********************************************************************
% This part of the code decides automatically where the cut-off frequency is.
% All the frequencies below this cut-off frequency index are considered to be
% frequencies inherent in the signal. The frequencies above the cut-offfreq
% -uency are considered to be noise. By a pre determined relation, the cut-ff
% frequency index is used directly calculate the optimum number of levels for
% smoothing.

0/0**********************************************************************

function U,no_levels,deIP] =detect(P,N,n)

% N is the FFf data window size
% n is the length of the original signal
% The CPS length is N/2

fprintfCThe CPS length is o/d\n', N);
fprintfCThe signal length is o/J\n', n);

%****************FFT and CPS deterrnination*****************%

% The CPS of length N is symmetrical about N/2. So, only the first half of the
% CPS is considered to determine the cut-off frequency index

for i=2:(N/2)-1

deIP(i)=P(i+ l)-2*P(i)+P(i-l); % Rate of change of slope

end % end of for loop

N I =length(deIP) % This is the length of the second derivative vector

% For signals of any length and any size of the FFf data window, consider only
% the first half of the CPS for detecting the bending point. The other half of
% the CPS is ignored because it is assumed that the CPS bends much before half
% it's length i.e., before N/4. Moreover, a bending point beyond half the
% length would yield only two levels of smoothing which is almost equivalen~ to
% the original signal. Thus, we always obtain more than two levels of smoothmg.

delP =deJP(l:«N/4)-I)
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delP
[y I,i I] =sort(deIP);
i I

0/0**********************************************************************

% If the index of the minimum most value of delP is just one index before the
% last value of delP, select the values of delP between I and (i 1(1 )-1) to find
% the bending point of the CPS.

if«(il(1)+I) == «N/4)-I» I (il(l) == «N/4)-1»)

fprintf(\nThe x index of the most minimum value occurs just before half the
length of the CPS\n');

fprintf(\nThis means that the CPS does not bend before half itslength; it goes
011 increasing steadily\n');

delPl( 1:(i I(l )-1» =delP( I:(i I( I)-1»;

else
% Else, consider the values of delP between i I(1) and NI2. Note that the CPS is
% expected to bend much before half its length. AIso,it has been observed that
% it bends much after the most minimum value of delP. So, the points in between
% the x index of the minimum most value of delP and N/2 are considered to
% determine the bending point of the CPS more accuartely.

delP I«i 1(I )+ I):«N/4)-1» =delP«i 1(1)+ I):«N/4)-1 »;

end

end % End of outer if loop

0/0**********************************************************************

[y2,i2] =sort(deIPI);
i2

% This part of the code determines how many indices after the index of the
% minimum most value the code needs to skip, to find the bending point of the

% CPS accuaretly.

-------------
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if (N==32) % N is the length of the FFf data window
buff =0:

elseif (N==64)
buff =2;

elseif (N==128)
buff = 3:

elseif (N==256)
buff = 4;

elseif (N==5l2)
buff = 5;

else

error('Tbe length of the FFf data window should be >= 32 and <= 512');
break;

end

%*********************************%

% If the x index of the minimum most value of i2 > the x index of the
% minimum most value of delP, then i2( 1) is chosen as the bending point of the
% CPS.

if (i2( 1) > (i I(I )+buff))
j =i2(1)

% Else, for any length of the original signal and any length of the FFf data
% window, if the x index of the most minimum value of delPI occurs close to the
% Nl2th index, the x index of the second most minimum value of delP I is taken
% as the bending point of the CPS. This is a very special case.

elseif (i2( 1) == max(i2))
j = i2(2);

% Else, for any length of the original signal and any length of the FFf data
% window, if the maximum value of the "x index of the most minimum value of
% delP I" is less than the x index of the most minimum value of delP, i.e.,i I (l)
% the x index of the second most minimum value of delP I is taken
% as the bending point of the CPS. This is again a possibility if the x index
% of the most minimum value of the second derivative lies very close to NI2.
% This is a very special case.

elseif (max(i2) < i1(1))
j = i2(1):

---------------_.~



% Else, the x index of the minimum value of the second derivative "buff'
% indices after the most minimum value is determined as the bending point of
% the CPS.

else
index = 1;

while (i2(index) <= (i I(L)+buff))

j = i2(index+ 1)
index =index +1;

end % End of while loop

end % End of if loop

J

no_levels =(log2(N)-log2(j);

L47
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%window.m

% Code written by Ganti Srinivas; July 9,1996

% This is a function to determine the number of levels to go down while smooth
% -ing, based on the user provided information on the window size. Here, it is
% taken that 4 cycles of the cut-off frequency obtained should be considered
% in obtaining the minimum window size for "effective" pattern based data
% analysis. The number 4 is empirical and was suggested by Dr. Whiteley, based
% on the experience of observing the ARDS data.

% This code assumes that the sampling interval of the raw data,"T" is 1 min.
% If the sampling interval is not Imin. then:
% winx = (length of window in min. )/(sampling interval in min.);

function [no_levels2, min_win 1] = window(N, NI, freq)

% To determine the minimum window size, the maximum allowable i.e., the cut-off
% frequency is used. This frequency is used to compute the cut-off ANALOG
% frequency in cycles per minute. The relation between the digital frequency
% index "k", digital frequency "w", and analog frequency "W" is given by the

% following relation

%
%

w = k(2*pi)rT radians; W = k(2*pi)/(N I*T) radians per min.
W = (kIN I*T) cycles/min

% where NI is the total number of data points under consideration in FFf
% 2*pi radians is 1 cycle. One cycle occurs every (N I*T/k) minutes. 4 cycles

% occur in 4*(Nl*T/k) minutes.

%***************************** Code begins
**********************************0/0

T=inputCEnter the sampling interval of data in minutes');
min_win = ceil(4*(N I*T/freq»; % This is the size in minutes

fprintf(\n\nThe minimum window size is %fminutes\n' ,min_win);

fprintf('\n Please keep in mind the sampling frequency when the minimum

window size is displayed\n');

min win 1 = round (min_winff); % This is the size in data points.
- % This needs to be converted because the

-



% size of this window is used for plotting the smoothed and original signal
% values

fprintf(\nThe window size should be greater than the minimum window size\n');

%*****************Error checking section*************%

flag = I;

while (flag ==1 )

winx =inputCEnter the length of the window in minutes');

if (winx < min_win)

fprintf('Selected window size is smaller than the minimum required');
flag = I;

elseif (winx == [])
fprintf('NuJl window size selected; select again');
flag = I;

else
fprintf(\nSelected window size is greater than minimum required\n ');
flag =2;

end % end of if loop

end % end of while loop

%*********************************~)

% This part of the code checks to see if the user input window is greater than
% 1/4 of the original signal. We do not observe more than I/4 length of the
% original signal

whiJe «winxrn > NI2)

fprintf(\nSelected window is greater than one half of original signal\n');
fprintf(\nSELECT SMALLER WLNDOW\n ');
winx =inputCEnter the length of the window in minutes');

end

0/0*********************************0/0

% This part of the code makes use of the user input window size to determine
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% empirically the total number of levels to go down. It is seen how many
% windows of user-input size fit into the original signal of length N. The
% number obtained is then multiplied by a factor 4. This number was suggested
% by Dr. Whiteley and is based on experience.

% There need to be 4 points over a span of winx, after going down certain
% number of levels "n ", without reconstruction. Corresponding to a signal of
% length N, the number of points after going down the same number of levels,
% without reconstruction is x=(N/length(winx))*4. Then number of levels gone
% down is given by (log2(N)-10g2(x))

% Length of user input window is given by WlOX as the window size
% given by the user is already in minutes

x = (N/(winxfF))*4;

no_levels2 = (Iog2(N)-log2(x));

%********THE END*********%

---------------
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% decide.rn

% This part of the code compares the no. of levels obtained from detect.m and
% window.m and increments them as shown below

function [no_levels,no_levels I ,no_levels2] = decide(no_levels I ,no_levels2)

% if «no_levels I-f1oor(no_levels l) <= 0.2»
% no_levels I =floor(no_levelsl);

% This value is floored because it is closer to this power of 2

% else
no_levels I =ceil(no_levels l);

% This value is ceiled because it is closer to this power of 2

% end

% if «no_levels2-f1oor(no_levels2) <= 0.2»
% no_levels2 =floor(no_levels2);
% This value is floored because it is closer to this power of 2

% else
no_levels2 = ceil(no_levels2);

% This value is ceiled because it is closer to this power of 2

% end

% NOTE: The 1 added below accounts for padding the signal on either side by

% half its length.

if (no_levels] == no_levels2)
no_levels =(no_leve.ls 1) ;

elseif (no_levels 1 > no_levels2)
no_levels = (no_levels I) ;

errorCError in comparing no_levels I and no_levels2');

break;
end

elsei f (no_levels I < no_levels2)
no_levels = (no_levels2) ;

else
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% no_levels3 =no_levels3 + I; % The I added accounts for an extra length
% of the original signal formed by padding

% if (no_levels <= no_levels3)
% no_levels = no_levels;

% else
% fprintf(\nThe user inpu1 window length chosen is small\n');
% fprintf('\n OR\n');
%fprintf(\nThe cut-off frequency obtained from the CPS may not be accurate\n');%
pause;
% no_levels =no_levels3;

% end

----------------
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%power.m

% This function uses the function crunch to how the u er the level of mooth
% -ing. It also determines the final value of the number of levels to go down
% that the user finds satisfactory.

function [f,fl no_levels] = power(X,no_levels,min_win)

~**********************************************************************

% This part of the code smooths the raw sensor signal using wavelets

[f,fl] = crunch(X,no_levels,min_win);

0/0**********************************************************************

fprintf(\n\nIf the plot is not smooth enough, please enter I\n\n');
fprintfCIf the plot is too smooth, please enter 2\n\n');
fprintfCIf the plot is fine, please enter O\n\n');
flag = inputC ');

whi le(flag== Ilflag==2Iflag==0)
if(flag== 1)

no_levels = no_levels+1;
[f,fl] = crunch(X,no_levels,min_win);

elseif(flag==2)
no_levels = no_levels-I;

[f,fl] = crunch(X,no_levels,min_win);

elseif(flag==O)
break;

else
end

fprintf(' If the plot is not smooth enough, please enter I\n\n');
fprintfCIf the plot is too smooth, please enter 2\n\n');
fprintf('If the plot is fine, please enter O\n\n');

flag = inputC');
end

----------------
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% crunch.m

% This function was modified from fun.m by Ganti Srinivas on June 5, 1996

function[f,fIJ = crunch(f,J,min_win)

[h,gJ=daub(6);
N=length(f); %Check for the signal length
check=log(N)/log(2); %Check to see if it is a Power of 2.
if(floor(check)-=check),
errorCLENGTH OF THE SIGNAL IS NOT A POWER OF 2');
end

f=net(f); % This function extends the length of the vector f by half it's
% length on either side.

%**********************************************************************

[c,count,proxyJ=fwt(h,g,f,J ,3);

proxy=zeros(length(proxy),1 );

%Calculate the Detail and Blurred Coffs ..

[fl ]=ifwt(h,g,c,count,proxy); %Reconstruct the Signal from the Detail and
%Blurred Coffs from FWT.M

%Calculate the error of Reconstruction

fI =fl (NI2+ I: 1.5*N);
f=f(NI2+1: 1.5*N);

% fl=fl(N/4+1 :3*N/4);
% f=f(N/4+1 :3*N/4);
% err=f(:)-fl (:);err=sum(err.1\2)1N;err=sqrt(err)

%Plot the original and Reconstructed Signal for Comparison

figure(4);
set(gcf,'NextpJot' ,'add');

clf;
X= I:N;
subplot(2,1,1 );
plot(x,f(:),' y');
grid;
v=axis;



..

hold on
xlabel('Original signal versus Smoothed signal');
title(['No. of levels down is ' ,int2str(J)]);
plot(x,fl (:),' r');

% print -Pps407en

subplot(2, 1,2);
plot(x,fl (:),' g');
grid;
axis([v(l) v(2) v(3) v(4)]);
xlabel('Smoothed signal');

% print -Pps407en
hold off

figure(5);
set(gcf,'Nextplot',' add');

clf;
y=1 :min_win;
plot(y ,f«N/2):«N/2)+min_win-1 »,'w');
hold on
plot(y ,n «N/2):«N/2)+min_win-l »,'m');
hold off
xlabelCSmoothed signal overlapped on the original');
title('Pattern data analysis on window of minimum size');
hold off
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The references made here are from the second article.

FUNCTION [H,G]=DAUB(N)
Program Coded 19 June 1993
Modified 20 June 1993

VINOD K. RAGHAVAN
SCHOOL OF CHEMICAL ENGINEERING
OKLAHOMA STATE UNIVERSITY
STILLWATER, OK 74078

%daub.m

function [h,g]=daub(n)
%This code generates the filter coefficients for the Daubechies
%Family of Orthonormal group of Wavelets.
%The input to this subroutine is the order of the Wavelet and the
%output is the filter coefficients for both the Low pass filter and
%the Band pass filter.
%
%Ref: 1. Orthonormal Bases of Compactly Supported Wavelets by
% Ingrid Daubechies in Communications on Pure and Applied
% Mathematics ,(4 J) 1988 pp 909-996
% 2. Introduction to Wavelets by Charles K. Chui, pp 229-234
%
%
%
%
%
%
%
%
%
%
%

if nargin< 1,errorCPlease define the order of theWavelet. ');end

ifn>l,
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zcoff=[- 1/4,112,-114];
z=zcoff;
pk=l;
q=l;
for j= I :n-I ,
pk=pk*(n+j-I )/j;
q=[O,q,O] +z*pk;
z=conv(zcoff,z);
end

q=q*2;

r=roots(q);

r=r(find«abs(r)< I)));
[t I ,t2]=size(r);

%Generate the polynomial

%P_A(z)=( 112)*summation(aJzl*zl\(N=k) )

%find the roots of the Polynomial

%Pick the roots within the Unit Disk



=[1 -r(l)]/sqrt(r(1»;
for i=2:tl,
s=(conv(s,[l -rei)]) )/sqrt( r(i»;
end
s=s/sqrt(2);

f=[ 1 I ]/2;
for i=1 :n,
s=conv(s,t);
end

p=real(s);
h=sqrt(2)*p/sum(p);
else,
h=[ 1 I ]/sqrt(2);
end

g=qmf(h);
clc;

%Find S(z) using Theorem 7.17 p232-233

%P(z)=[« 1+z)I2)AN]*S(z)

%Only the real parts are considered
%Calculate the low pass coefficients

%Calculate the Band pass coefficients

157

-



%qmf.m

%this subroutine calculates the Band filter coefficients.
%the input is the Low pass filter coffs.The subroutine returns the
%Band pass filters that are the Quadrature Mirror Filters of the Jaw pass
%filters.The filter length is the same as that of the low pass filter.
%
%Working Version made on March 10 1993
%
% Vinod K. Raghavan
% School of Chemical Engineering
% Oklahoma State University.
% Stillwater,OK 74078

function g=qmf(h)
echo
i= I: length(h);
g(i )=((-I )/'(i-I)). *h(length(h)-i+ I);
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% net.m

function Y= net(x)

% this signal extension method is based on Dr.Whiteley's suggestions
% on 10/5/94
% modified 16/5/94
% modified again 12./21 ./94
% Vinod Raghavan 5/10/94

x=x(:);x=x';
N 1=Iength(x);
% this part has been added after discussion with Dr,White1ey
% on 5/16/94
%n 1=inputCEnter the number of points to calculate the mean:');
% this part was added on June 2, 1994
% diff means are being Llsed for LHS and RHS

K=cei1( 1.25*N J/1 00);
n l=net2a(x,K);
n2=net2b(x,K);

%extend the signal

%y=[2*mean(x(l :n2))-x(Nl/2+n2:-1 :n2+1),x,2*mean(x(N 1:-1 :Nl-n 1+ I))-x(Nl-n 1:
1:N 1/2-n 1+1)];
% the modification below was made on 27th June 1994
mean 1=mean(x( 1:n2));mean2=mean(x(N 1:-I:N I-n 1+ I));
y=[2*mean l-x(N 1/2:-1: I),x,2*mean2-x(N 1:-I:N 1/2+ 1)];

% end of modification

i I=find(y>1);i2=find(y<O);
% replace all the values> I to I
if Jength(i 1»0,

for i= 1:length( i I ),
y(i I 0»)= I;
end

end
% replace all the values <0 to 0
if length(i2»0

for i= I:]ength(i2),
y(i2(i))=0;
end

end
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% net2a.m

function n = net2a(x,K)

% programmed on 2 June 1994

i=[ceil(O.4*K):K];
y=x(length(x):-l :length( x)-K+ I);
mean_tmp=[];
for j= 1:length(i),
%calc the mean deviation
%mean_d=sum(abs(y-mean(y»)/Iength(y);
mean_d=std(y( 1:iO»);
mean_tmp=[rnean_tmp mean_d];
end
n=i(find(mean_tmp==min(mean_tmp»);
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% net2b.m

function n = net2b(x,K)

% programmed on 2 June] 994

i=[ceil(O.4*K):K];

rnean_trnp=[] ;
for j=l:length(i),
y=x( I :i(j»;
%calc the mean deviation
%mean_d=surn(abs(y-mean(y» )/Iength(y);
mean_d=std(y);
mean_trnp=[mean_trnp mean_d];
end
n=i (find(rnean_tmp==mi n(mean_trnp»);
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FUNCTION [F,B,COUNT]=FWT(H,G,F,J)

Working Version created on May 14,1993
Last modified on Dec 13,1993

VINOD K. RAGHAVAN
School of Chemical Engineering
Oklahoma State University
Stillwater, OK 74078

-

% fwt.In

%this subroutine is based on Stephane MaHat's article in IEEE
% Transactions on Pattern Recognition and Machine Intelligence
%This subroutine calculates the Blurred and Detail Coff for the Signal
% at each level.
%
%
%
%
%
%
%
%
%
%
%
%Ref:

function [f,count,proxy]=detblur(h,g,f,J,sign_menu)
clc;
N=length(f);Nll=NI2; %check for length of signal
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N I=max(length(h),length(g»; %check for length of filter

h=h(N 1:-1: ] );g=g(N I :-1 : I); %Flip the filter coffs to get their Conjugates

b=zeros( 1,N 11);
Ax I =[];Ax2=[];

%Initialize the Matrix b to contain detail coffs
%Initialize the Matrix to contain the coords

count=O;
for j= I:J, %Start the decomposition ...
count=counH 1;

%the signal has to be symmetric about n=O and n=N...
fl=f(N:-I:I);
f I(N+N 1)=0;
fori=l:Nl,
fl (i+N)=f1 (i);
end
fl =f1 (length(fI ):-1 :Iength(fl )-N 1+ I);
f(N+NI)=O;
for i= I:Nl,
f(i+N)=f(i);
end
f=[fl f);



d=filter(g, 1,f)/sqrt(2); %Calculate the Detail Coffs
f=filter(h,1,f)/sqrt(2); %Calculate the Blurred Coffs

%take only one out of every two samples(down sampling)....
d=d(N I*2:2:N+2*Nl-2):
f=f(Nl *2:2:N+2*N 1-2);

%save the vector
proxy=[d(:);proxy];
%Continue the grind if the user wants to go down further.
N=N/2;
end

%Next Iteration .. Halve the signal length
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VINOD K. RAGHAVAN
School of Chemical Engineering
Oklahoma State University
Stillwater, OK 74078

% ifwt.m

%this subroutine is based on Stephane Mallat's article in fEEE
% Transactions on Pattern Recognition and Machine Intelligence
%This subroutine takes in the Values from the FWT and Reconstructs the
% Signal at each Level.
% FUNCTION [F] =IFWT(H,G,F,B,count)
%
%Working Version created on May 14,1993
%Last modified on 7 July 29 1993
%
%
%
%
%

function [f]=ifwt(h,g,f,coun t,proxy)

N=length(f);Nl1=N; %check for length of signal

f=f(:);
N 1=max(length(h),length(g»; %check for length of filter
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for j= 1:count, %Start the Reconstruction ..

d=proxy( I:length(f)';
proxy=proxy(length(f)+ I:Iength(proxy»;

%
% upsample the signal by inserting a zero inbetweem every sample..

d=[d;zeros( 1,length(d»];d=d(:);
f=[f' ;zeros(1,Iength(f) ]f=f(:);

%
% Extend the length of the samples....

%periodize the signal... .....
ft =f(2*N:-1: I);d) =d(2*N:-I: 1);

f1 (2*N+Nl)=0;d) (2*N+NI )=0;

for i=I:NI,
f I(i+2*N)=fl (i);

d I(i+2*N)=d I(i):

end
fl =fl (length(fl ):-1 :length(fl)-N 1+ 1);

d I=d I(1ength(d 1):-1 :Iength(d I)-N 1+1);

f(2*N+N 1)=0;d(2*N+N 1)=0;

for i=l:Nl,
f(i+2*N)=f(i);

dCi+2*N)=d(i);



end
f=[f1 (:);f(:)]*sqrt(2);

d=[ dl(:);d(:)]*sqrt(2);

%convolve with the filters to obtain the original signal again ..

fb= fi Iter(h, 1,f) ;
fb=fb(N I + I :N I +2*N);
fd=filter(g, I,d);
fd=fd(Nl +1:N I+2*N);
f=fd+fb; %Keep the Coffs in our region of interest

N=N*2; %Next Iteration .. Double the signal length
end
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