
TRAINING MODULAR NEURAL NETWORKS

WITH MARQUARDT-LEVENBERG

ALGORITHM

By

MENG HOCK FUN

Bachelor of Engineering

Oklahoma State University

Stillwater, Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1996

TRAINING MODULAR NEURAL NETWORKS

WITH MARQUARDT-LEVENBERG

ALGORITHM

Thesis Approved:

ean of Graduate College

II

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my major adviser, Dr. Martin

Hagan for his brilliant ideas, intelligent supervision, guidance, support,

encouragement and friendship. My achievement today would not be possible

without his generous help. I would like to thank Texas Instrument and

Department of Electrical Engineering for providing me with this research

opportunity and their generous financial support. In addition, I would like to thank

other committee members, Dr. Ramakumar and Dr. Acton, for giving invaluable

helps in correcting my thesis.

Moreover, I would like to express my special appreciation to my girlfriend,

Amelia Lor, for her strong encouragement at times of difficulty, love, and

understanding. Thanks also go to my mother, my beloved father, my sisters and

brother for their encouragement and support.

III

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION , I

II. MULTILAYER NEURAL NETWORKS 4

Biological Neuron 4
Biological Neuron to Artificial Neuron Mode!.. 6
Activation Function of a Neuron 9
Multilayer Networks Architecture 10
Single Layer Perceptron , to
Multilayer Perceptron 12
Multilayer Networks as Function Approximators 14

III. MODULAR NEURAL NETWORKS 15

Modular Network Architecture 16
Expert Networks 19
Gating Network 20

Modular Neural Network versus Fully Connected Network 21
Problems with Finding the Gradient in a Fully Connected Network 21
lllustration of Crosstalk Problem , 22
Problems with Local and Global Methods 26

Modular Network for Discontinuity Function 27
Illustration of Modularity 28

IV. MODULAR NETWORK LEARNING RULES 33

Statistical Interpretation of Learning Algorithm in Modular Network 34
Performance Optimization 37
Steepest Ascent Algorithm 40
Adapting the Modular Network using Steepest Ascent 42

Posterior Probability 44
Adapting the Expert Networks , 44

Backpropagation in the Expert Network 46
Adapting the Gating Network 49

Backpropagation in the Gating Network 51

V. MARQUARDT-LEVENBERG OPTIMiZATION 63

Marquardt-Levenberg in Multilayer Network 63

IV

Chapter Page

Marquardt-Levenberg Technique 63
Marquardt-Levenberg Modification to Modular Network 66

Gradient Calculation 67
Hessian Matrix Computation 73
Marquardt-Levenberg Modification to Approximated Newton's Method 80

VI. MODULAR NETWORK ALGORITHMS COMPARISON 81

Comparison of Learning Algorithms for the Modular Network 81
Resilient Backpropagation (Rprop) Algorithm 8]
Evaluation Methods 83
Training Set 84
Problem #1 85
Problem #2, Increasing the Size of the Gating Network 87
Problem #3, Increasing the Size of the Expert Network 89
Problem #4, Increasing the Size of both Expert and Gating Networks 91
Problem #5 92

Summary 94

VII. MODULAR NEYWORK PERFORMANCE 96

Test #1 Comparison of Multilayer Networks and Modular Network 97
Test Function: Absolute Value Function 97

Test #2 Sine Wave Testing 1 99
Test Function: Two-Cycled Sine Wave 99

Test #3 Failure in Training 1O0
Test Function: Four-Cycled Sine Wave 100

Test #4 The What and Where Modular Network 102
Test Function: Absolute Value 102

Advantages of Using What and Where Modular Network 104
Disadvantages of Using What and Where Modular Network 104

Test #5: Weight Initialization Method 105
Test Function: Absolute Value Function 105

Test #6 Friction Model Approximation 1.. 108
Test Function: Coulomb Friction Model 108

Test #7 Friction Model Approximation IT 109
Test Function: Classical Friction Model 109

Test #8 Identification: Plant Modeling I 10
Data Sets 112
Evaluation Methods 113
Modular Network and Multilayer Network for Plant Modeling 115
Model Testing 117

Summary]2]

VIII. CONCLUSION 122

v

Chapter Page

REFERENCES 125

APPENDiXES: 126

A) Pre-steps 127
(}J

A-I) Calculate dyj 127

aJ
A-II) Calculate ::l""" 128

aUi

A-Ill) Calculate the ah, 129
dyk

agjA - IV) Calculate the :t. .. 13 1
aUk

ah
A-V) Calculate the -' term 132au j

B) Gradient Calculation in Modular Network 134
B-1) Gradient Calculation in Expert Networks 135
B-II) Gradient Calculation in the Gating Network 137
B-1I1) Total Gradient in Modular Network 138

C) Hessian Matrix Calculation 138

a2 J
C-I) The -- term 139

dr;dr j

a2 J
C-II) The Jz2 term 142

a2 J
C-Ill) The -- tenn 143

dzdr;

a2 J
The -- tenn 145

drkJz

C-V) Compute the ~. (:,Jtenn 145

C-VI) Compute the ~(aJJterm 147aUj au;

C-VII) Compute the ~(aJ Jterm 147
dy j au;

C-VIII) Compute the ~(aJ Jterm 148au j l dy;

C-IX) Summary 149

VI

Table

LIST OF TABLES

Page

6 - 1. First Stage Algorithms Comparison for Problem #1 85

6 - 2. Second Stage Algorithms Comparison for Problem #1 86

6 - 3. First Stage Algorithms comparison for Problem #2 87

6 - 4. Second Stage Algorithms Comparison for Problem #2 88

6 - 5. First Stage Algorithms Comparison for Problem #3 89

6 - 6. Second Stage Algorithms Comparison for Problem #3 90

6 - 7. First Stage Algorithms Comparison for Problem #4 91

6 - 8. Second Stage Algorithms Comparison for Problem #4 91

6 - 9. Algorithms Comparison for Problem V 93

7 - 1. Comparison of Multilayer and Modular Networks 99

7 - 2. Comparison Table of 3 Different Modular Architectures 104

VII

Figure

LIST OF FIGURES

Page

2 - 1. Two Neurons 5

2 - 2. Artificial Neuron: Imitation of Biological Neuron 6

2 - 3 Three Typical Activation Functions 9

2 - 4. A single Layered Neural Networks with S Neurons 11

2 - 5. Two Layer Neural Network 13

3 - 1. Block Diagram of a Modular Network 16

3 - 2. The What and Where Modular Network 18

3 - 3. The Expert Network Architecture 19

3 - 4. The Gating Network Architecture 20

3 - 5. The Absolute Value 24

3 - 6. The Modular Network with 2 Single Layer Experts, and 1 Single Layer Gating 24

3 - 7. Test of Crosstalk Problem in Multilayer Network 25

3 - 8. Test of Crosstalk Problem in Modular Network 25

3 - 9. A discontinuous (piecewise linear) function and its approximation 27

3 - 10. Effect of Parameter Changes on Network Response 1.. 29

3 - 11. Effect of Parameter Changes on Network Response II 31

3 - 12. Effect of Parameter Changes on Network Response ill 31

4 - 1. The i1h Expert Network 46

Vlll

Figure Page

4 - 2 A Two Layered Gating Network 51

4 - 3 The Modular Network with Two 1-2-1 Experts, and 1-2 Gating 54

6 - I. Comparison of ML and Rprop algorithms 86

6 - 2. Comparison of ML and Rprop Algorithms for Problem II 88

6 - 3 Comparison of ML and Rprop Algorithms for Problem m 90

6 - 4. Comparison of ML and Rprop Algorithms for Problem IV 92

6 - 5. Approximating the Sawtooth Function 94

7 - 1. Learning Curve of 3 Two-layered Network and a Modular Network 98

7 - 2. Two-cycle Sine Wave Testing 100

7 - 3. Four Cycles Sine Wave Testing 10 I

7 - 4. The What and Where Modular Network Architecture 102

7 - 5. Learning Curve Comparison of 3 modular networks 103

7 - 6. Learning Curve of a Modular Network with and without weight initialization on
gating network.. 107

7 - 7. Modeling Coulumb Friction Model 108

7 - 8. Modeling Classical Friction Model 109

7 - 9. The Single Linked Pendulum with Coulomb Friction II J

7 - 10. System Identification of a Plant.. J 12

7 - 1L. Series-Parallel Test 113

7 - 12. Parallel Test 114

7 - 13. Modular Network Architecture 115

7 -]4. Modular Networks Learning Curve 116

IX

Figure Page

7 - 15. Feedforward Neural Network Learning Curve 117

7 - 16. Seri~s Parallel Test on a trained feedforward network 118

7 - 17. Serial Parallel Test on a trained modular network 119

7 - 18. Parallel Test on a trained feedforward network 120

7 - 19. Parallel Test on a Trained Modular Network 120

x

LIST OF SYMBOLS

(S), (v), and (m) represent scalar, vector and matrix respectively.

a

m
a·

} i

a

a~,

b

bm
}

bl."
J,

b

b'"

B(x)

the output of a single neuron. (s)

the jth element of the network output of a single layer network. (s)

the lh element at mth layer of the network output of a multilayer network.
(s)

the /h element at mth layer of the i th expert network output. (s)

the output vector of a single layer network. (v)

the m1h layer network output vector. (v)

the mth layer output vector of the i th expert network. (v)

the Hessian matrix of lex). (m)

the scalar bias. (s)

the /h element of the bias vector. (s)

the l element of the mth layer bias vector. (s)

thep element of the m1h layer bias vector of the i1h expert network. ()

the bias vector of a single layer network. (v)

the mth layer bias vector. (v)

the m1h layer bias vector of the i1h expert network. (v)

the second derivative of the gating network's weights and biases. (m)

the gradient vector of lex). (v)

Xl

d k the eigenvectors. (v)

e the scalar net input of the gating network. (s)

e, the lh element of the net input vector of the gating network. (s)

e;' the zth element of the mth layer net input vector of the gating network. (s)

em the mth layer net input vector of the gating network. (v)

e j the error at j'h expert network.

f the activation function. (s)

f the activation function vector. (v)

fm the activation function vector at mth layer. (v)

fill the activation function vector at mth layer of the i1h expert network. (v),

gj the activation of the i 1h output of the gating network. (s)

gi.q the activation of the i1h output of the gating network at qth data. (5)

G the maximum number of expert plus one; N + I. ()

Gk the Marquardt-Levenberg modification to the Hessian matrix A k • (m)

h; the i1h element of the posterior probability. (5)

H(x) the second derivative of all the expert networks' weights and biases. (m)

I the identity matrix. (m)

j the performance index vector of all the input data. (v)

J, the performance index. (5)
J(x)
Jq the performance index at qth data (a scalar term). (s)

K j Jacobian matrix for the i1h expert network. (m)

K Jacobian matrix for the i1h expert network with t row and d column. (m)
(t .d) i

XII

K(',d) G Jacobian matrix for the gating network with t row and d column. (m)

rn the total output of the networks. (v)

rnq the total output of the network for the qth input data. (v)

n the net input to the activation function. (s)

nj the jth element of the net input. (5)

n~l the /' element at mth layer of the net input. (5)
j

n~1 the lh element at m tlJ .layer of the ith expert network net input. (5)
j,

n"! the l' element at mlh layer of tbe ith expert network net input at qlh data. (s)
Ji.J/

n the net input vector of a single layer network. (v)

om the mth layer net input vector. (v)

om the mth layer net input vector of the i tlJ expert network. (v)
r

N the maximum number of expert networks. (s)

P scalar input to a neural network. (5)

P j the /h element of the input vector. (s)

P input vector to a neural network or actual task. (v)

p classes of each task. (v)

Pk the direction vector. (v)

q lh element of data.

q, the [Ih element of the gating network bias vector. (s)

q;' the [th element at the m1h layer of the gating network bias vector. (s)

q the gating network bias vector. (v)

qm the mlh layer of the gating network bias vector. (v)

Q the maximum number of data.

XIII

r.
't

R

s".'
J,I,

sUI.
J.I G

s

s.'"I

k.
Ui,q

u

the weights and biases of the ith expert network that arrange in a column
th.at form a vector (v)

the i th expert network's weights and biases at klb iteration. (v)

the number of inputs to a neural network. (s)

the sensitivity of the tth element of the last layer output to a change in the
net input of unitj in layer m of the jib expert network. (s)

the sensitivity of the tth element of the last layer output to a change in the
net input of unitj in layer m of the ilh expert network at qlb data. (s)

the sensitivity of the tlb element of the last layer output to a change in the
net input of unit j in layer m of the gating network. (s)

the sensitivity of the lh element of the last layer output to a change in the
net input of unitj in layer m of the gating network at lh data. (s)

the maximum number of neuron. (s)

the maximum number of neuron in mth layer. (s)

the maximum number of neurons in mth layer of ilb expert network(s)

the mlh layer sensitivity matrix of the i th expert network. (v)

the lth element of the output vector of the gating network. ()

the lth element of the mCh layer gating network output vector. ()

the Ilh element at the qlb data of the gating network output vector. (s)

the zth element at the qth data and kth layer of the gating network output
vector. (5)

the output vector of the gating network. (v)

the output vector at the mth layer gating network. (v)

the output vector of the gating network at qlh data. (v)

the l, j element of the gating network's weights(s)

xiv

v

W

m
Wj,k

w

wm,

x

..
x

Xo

Y

Ym ,

v. m t.q

the i, j element of the m1b layer gating network' weight ()

the gating weight matrix. (m)

the mth layer gating network's weight. (m)

the scalar weight. (s)

the j, k element of the weight. (s)

the j, k element at the m1h layer of the weight. (s)

the j, k element at the m1h layer of the weight of the i1h expert network. (s)

the i 1b expert network weight matrix that arrange in a column vector. (v)

the weight matrix. (m)

the m1h layer weight matrix. (m)

the mth layer weight matrix of the i 1h expert network. (m)

the jth element of vector x. (s)

a parameter vector represents all the weights and biases in a modular
network. (v)
the nominal point of x. (v)

the initial value of x. (v)

the value of x at time step k. (v)

the value of x at time step k+ 1. (v)

Xk+l - Xk (v)

the scalar output of the modular network. (s)

the scalar output of the i1h expert network. (s)

the m1h element of the output of the ith expert network. (s)

the mth element of the output of the i1h expert network that correspond to
qth data. (s)

xv

k

Yml,q

y

Yi

Y"q

•y

z

f3

L1 .., ,J

L1 max

r(

1]

the mth element at ktt.! layer of the output of the lh expert network that
correspond to qth data. (s)

the output vector of the modular network, (v)

the output vector of the i th expert network. (v)

the output vector of the i th expert network at qlh data. (v)

the target vector. (v)

the target vector at qth data. (v)

the weights and biases of the gating network that arrange in a column that
form a vector (v)

the gating network's weights and biases at krh iteration. (v)

the learning rate. (s)

the increasing and decreasing factor.

the Gaussian random vector with zero mean and covariance matrix dI,
where I is the identity matrix and d- is the variance of the input vector, p.
(v)

the i,j element of the update value. Use in Rprop algorithm.

the initial value of L1 . Use in Rprop algorithm.

the maximum value of L1. Use on Rprop algorithm,

the gradient vector. (v)

the Hessian matrix. (m)

the eigenvalues. (s)

the increasing factor. Use i.n Rprop algorithm.

the decreasing factor. Use in Rprop algorithm.

the increasing and decreasing parameter for Marquardt-Levenberg method.
(s)

xvi

1

CHAPTER I

INTRODUCTION

This research studies a particular architecture of neural network called the

modular neural network. This neural network architecture is capable of performing

piecewise control strategies and implementing discontinuous functions; in other words, it

can partition a plant's parameter space into several regions and assign different neural

networks to learn separate control laws in each region.

The main focus of this research is to develop a fast training algorithm, which i

called the Marquardt-Levenberg (ML) algorithm, for the modular network. The need for

this algorithm is inspired from the slow convergence rate of the conventional Steepe t

Ascent training method (SA) [9] [11] for the modular network. To compare the

performances of this newly developed algorithm, two other gradient methods, Resilient

Backpropagation (Rprop) and Steepest Ascent (SA) algorithms, are developed for the

modular network. These comparison results are discussed in Chapter VI.

In addition, we have also investigated two methods to improve the training time:

the what and where modular network architecture and the gating weights' initialization.

We have also included several possible applications using the modular networks to model

friction.

2

This document contains eight chapters. Starting from the basic neural network

building block -- an artificial neuron model, the feedforward multilayer network is

derived and described in the Chapter II.

Using the feedforward multilayer network as each of the modules in modular

network, we will introduce the modular network architecture in Chapter m. One ection

of this Chapter III is devoted to compare the modular network and the multilayer network.

This is followed by a section discussing how the modular network work .

In Chapter IV, we will present the modular network's learning rules. In the fir t

part of this Chapter, we will discuss how the modular network is formulated from a

statistical point of view. In the second part, we will present the SA method and use it in

the training of the modular network.

Chapter V discusses a faster training algorithm -- the ML algorithm, and shows

how it can be incorporated into the modular network. In this section, we will give a brief

introduction of the Marquardt-Levenberg algorithm. Then, we formulate this algorithm

for the modular networks. Details of each equation are presented in Appendices A to C.

In Chapter VI, we will apply the ML training for the modular network and will

compare it to the SA method and the Rprop method. Several test problems are simulated

and the results are compared and summarized at the end of this Chapter.

In Chapter VII, we will first compare the modular network with the multilayer

network. Then, we will investigate two methods to speed up the training. These methods

are the modular network with prior knowledge versus the modular network without prior

3

knowledge and the gating weight's initialization. In addition, everaj test are performed

to model the friction.

Finally, Chapter VIII summaries the important results and some future research

that can be done on this Marquardt-Levenberg training method for the modular network.

In conclusion, we also summarize some possible applications in modeling and controlling

a system that contains friction dynamics.

CHAPTER II

MULTilAYER NEURAL NETWORKS

The works on multilayer neural networks are motivated right from the studies of

how the human brain processes infonnation. To understand how the multilayer neural

network works, we must study how the human brain processes information; and most

important, the infonnation processing nerve cell -- the neuron.

Biological Neuron
The struggle to understand how the brain operates owes much to the pioneering

work of Ramon and Cajal [1], who first introduced the idea of neurons. There are

approximately 1011 neurons in the brain, and each neuron has approximately 104

connections with adjacent neurons.

4

5

--
Axon

Synapses

Figure 2 - 1. Two Neurons

There are 4 important parts in a neuron: synapses, dendrites, cell body (soma) and

axons. The junction points between the axons and the dendrites are the synapses. The

inputs, which are electrical signals, transmit through the synaptic junctions from the

axons of adjacent neurons to the dendrites. These inputs are modulated or weighted by

the complex chemical process in the synapses, which the biologists call synaptic weights,

and are carried away by the dendrites into the cell body (soma). The cell body urns and

threshold these modulated incoming electrical signals and passes them to the axon. The

axon, a single long fiber, then carries the outgoing electrical signal from the cell body to

the other neurons. Figure 2 - 1 shows a simplified biological neuron that i$ connected

with another biological neuron.

Typically, biological neurons are 5 to 6 orders of magnitude slower than silicon

logic gates (10-3 seconds compare to 10-9 seconds). However, brain makes up for the

relatively slow rate of operation by having massive interconnections and massive parallel

structure between neurons. Because of these massive interconnections and parallel

6

structure, all neurons can operate at the same time and enable the brain to perform many

tasks faster than any conventional computer.

Artificial neural networks, however, do not have the massive complexity of the

brain. They resemble biological neural networks in three ways. First, artificial neural

networks acquire knowledge through a learning process. Second, artificial neural

networks are made up of simple building blocks, where these building blocks imitate

simple neurons and are highly interconnected. Lastly, artificial neurons al 0 have artificial

weights, which imitate the synaptic weights, to store knowledge.

Biological Neuron to Artificial Neuron Model

To imitate the biological neurons, engineers and mathematicians have developed

an artificial neuron model of the biological neuron, called a perceptron. It has an input

(electrical signal), artificial weight, bias (synaptic weights), connection between weight

and summer (dendrite), a summer, an activation function (cell body) and an output

(axon). Figure 2 - 2 shows a perceptron in symbolic representation.

p

...... ,,/'

- -~--- - ;;,;tivllt<.on
/ fu' ,I.surruner nctiOn \

I . \

I
J
I

I
/

/

'"_/

Figure 2 • 2. Artificial Neuron: Imitation of Biological Neuron

7

The input, p, is multiplied by a scalar artificial weight, w, to form w x p J which

imitates the modulated electrical signal of the synaptic weight in the biological neuron.

Then, the weighted input, w x p , is sent to a summer, which imitates the modulated

electrical signal carried by the dendrite and sent to the cell body. The summer and

activation function closely resemble the cell body, which has the effect of summing and

thresholding the modulated electrical signal. After the weighted input, w x p , is

processed by the summer and activation function, it is sent to the output, which is

represented by the electrical signal carried to the axon in the biological neuron. The

artificial neuron model shown in Figure 2 - 2, also included an externally applied bias that

has the effect of increasing or decreasing the net input of the activation function. Without

the bias, the neuron could not perform an affine transfonnation. The following example

shows the importance of the bias.

Example

Assume that we have an artificial neuron that has no bias and uses a Linear
activation function. Given p =0 we want an output of J. Can the artificial neuron achieve
this task?

Ans.: No, any scalar weight, w, multiplied by p is O.

8

Typically, the bias, b, is considered to be part of the weight, except that it ha a

constant 1 as an input. There are some artiflcial neural network which u e no bia, uch

as the Kohonen and Hebbian Network Architectures, but the e network are beyond the

discussion of this research. Also, from this point on, we will refer only to artificial neural

networks and not to biological neural networks.

The equations that describe an artificial neuron are:

n= wp+b and a = fen)

The objective of neural network training is to adjust the wand b in each artificial

neuron so that the input and output relationship meets some specific goals.

Activation Function of a Neuron

9

Since the actual output depends on .a particular activation function, it is important

for a designer to select a suitable activation function to suit a particular task. There are

several varieties of activation functions. Three of the most common activation functions

are hyperbolic tangent sigmoid, hard limiter, and linear. Figure 2 - 3 shows these typical

activation functions:

n -IIe -e
a=---­

en +e-n

a =tansig(n)

a ={+l if n ~ 0
o if n < 0

a = hardlim(n)

a=n

a = purelin(n)

Figure 2 • 3 Three Typical Activation Functions

The left side of Figure 2 - 3 shows a hyperbolic tangent activation function. This

activation function is used most commonly in backpropagation networks because it is a

monotonically increasing function and it is differentiable.

In the center, we have the hard-limiting activation function. Neurons that use this

activation function are commonly referred to as McCulloch-Pitts neurons. The output of

such a neuron always has a value of 1 or O. Typically, it is used for binary classification.

10

On the right, Figure 2 - 3 shows a linear activation function. Such activation

functions are most commonly used in the last layer of a multilayer perceptron when used

for function approximation.

There are many other activation functions. A list of other activation function can

be found in "Neural Network Design" page 2-6. [2].

Multilayer Networks Architecture
In order to solve complex problems, many neurons can be combined together to

fonn multilayer perceptrons or multilayer neural networks. The main idea behind this

multilayer perceptrons are the "layer". It allows each neuron within a layer to operate in

parallel with other neurons.

Single Layer Perceptron

We will examine a one layer perceptrons in this section and then will expand to

multilayer networks in the next section. Assume that we have R inputs and S neurons in a

layer of perceptrons, then a layer of perceptrons is shown in Figure 2 - 4.

•••
PR

•••

11

Figure 2 - 4. A single Layered Neural Networks with S Neurons

It seem rather complicated to calculate the output of the neural network as hown

above. Fortunately, we can express the output of the one layer neural network using

vectors and matrices. The output of the single layer neural network is given in vector

form as

(2 - l)

The weights are expressed in matrix form, W, and the inputs (p) and biases (b) in

vector form. Taken together, the Wp+b forms the net input vector n .The activation

function, f(.), then processes the net input vector n element by element and forms the

output vector a.

12

Wl,l W,,2 WI.R PI bl

a=f
W 2,I W 2,2 W 2,R P2

+
b2 (2 - 2)

WS,l W S,2 WS,R PR bR
''-vJ '-vJ

W P b

In the weight matrix, the row indices indicate the number of neurons, S, and the column

indices indicate the number of inputs, R, to a layer of neurons. The total number of

weights (included biases) in a layer is given by S x R + R.

Multilayer Perceptron
Now that we have defined what we mean by a layer of neurons, we can easily

cascade several layers of neurons to form a multilayer neural network. Each layer has its

own weight matrix W, its own bias vector b, a net input vector n, and an output vector a.

To distinguish between layers, we will use superscripts to identify the layer number. For

example, Wi is the weight matrix for the first layer and a3 is the output vector for the

third layer.

Figure 2 - 5 shows a two layer neural network and the notation is used thoroughly.

13

2Q 2

P2

• •• •• •
a 2

s'
PR

'-v-' '-----...r-
Inputs First Layer

--~v---~

Second Layer

Figure 2 - 5. Two Layer Neural Network

The above network shows R inputs, Sl neurons in the first layer and S2 neurons in the

second layer. S' and S2 can be of different values. However, the last layer of the neurons

must correspond to the number of outputs, which in this case is S2. The last layer is al 0

called the output layer. A notation used to describe the layered architecture is

R x SiX S2 X ... and so on. For ex.ample, 5-8-2 indicates a two layer network with 5

inputs, 8 neurons in the first layer and 2 outputs. Usually, if a network has more than 2

layers, we called the layer in between the input and output layer as the hidden layer.

A mathematical equation that describes the total output of the multilayer network is given

by

(2 - 3)

l4

Multilayer Networks as Function Approximators

During recent years, neural networks have been widely used in many applications.

In general, we can think of neural networks either as classifiers (in pattern recognition,

voice recognition) or as function approxirnators (in control ystems, signal processing).

Since the main focus of this research is in control systems, we are mainly interested in the

function approximation areas.

It has been proven by Hornik [3] that a two layer neural network is a nonlinear

parametric model and can approximate any continuous function. Consequently, an

interesting notion is to use multilayer network as each of the modules in modular

network. We will see in Chapter III that by using multilayer networks in each of the

modules of a modular network, we can achieve modularity and improve several aspects of

multilayer networks.

l5

CHAPTER III

MODULAR NEURAL NETWORKS

The modular neural network was first presented by Robert A. Jacob and Michael

1. Jordan [4] [9]. This network was designed from the statistical point of view; and it is

capable of decomposing each task into several sub-tasks. Accordingly, this neural

network architecture is well suited to perform piecewise control strategies; in other

words, it can partition a plant's parameter space into different regions and select a

different neural network to learn a separate control law in each region. For this reason, the

modular network is capable of implementing discontinuous function. Also, due to its

architecture, it is susceptible to the crosstalk problem. In the following, we will present

the modular network architecture and compare the modular network with the multilayer

neural network. Then, we will present the modular network's learning rules together with

some preliminary simulation results.

l6

Modular Network Architecture

The modular neural network consists of two kinds of sub-networks: the expert

networks and a gating network. The expert networks are networks that compete to learn

the input training patterns. There is more than one expert network in a modular network.

The integrating unit is called the gating network; it is a network that mediates the

competition of the expert networks.

Expert
f-----~ Network N

Ex.pert
.....----f4 Network 1

Expert
1-----+1 Network 2

••·•••

p

Gating
Network

Figure 3 • 1. Block Diagram of a Modular Network

Figure 3 - 1 shows the modular network architecture. This architecture is

composed of N expert networks and an integrating unit called the gating network. The

total output of the modular network is calculated as follows. First, each expert network's

17

output is weighted by the gating network. Then, these weighted outputs are summ d to

give the total modular network output:

N

Y= LgiYi
i=1

where

Y is the output vector of the modular network,

Yi is the output vector of the ith expert network,

gi is the activation of the jth output of the gating network and

N is the number of expert networks.

(3 - 1)

The modular network works in the following way. When a task is fed into the

modular network, the expert and gating networks will receive that task simultaneously.

The gating network receives the task and learns how to divide that task into several sub-

tasks and assign each sub-task to an expert network. Meanwhile each expert network will

learn to complete a target in that sub-task that is assigned by the gating network. The e

sub-tasks are combined together using equation (3 - 1). In other words, we can think of

the gating network as a supervisor and each expert network as a worker. The supervisor

divides the task into sub-tasks and assigns each sub-task to a worker. Then, each worker

gets to work on one sub-task and they are combined at the end. In this scheme we assume

that we do not know how to divide the task into sub-tasks.

18

Expert
,....-----t! Network I

Expert
r----tf Network 2

Expert
'-----t! Network N

••·••·

p

p
-----------~

Gating
Network

Figure 3 - 2. The What and Where Modular Network

If we have the information, P I of how the task should be divided, then we can use

the modular network architecture as shown in Figure 3 - 2. This modular network

architecture is caJIed a what and where modular network, because each expert receive

the actual tasks, p, (the what tasks) while the gating receives the classes of each ta k, p,

(the where tasks). Typically, the inputs to the gating network are binary pattern. This

architecture is also much easier to train as we wiJl see in Chapter VII. Now, we would

discuss the notation. Since we use a subscript to denote an expert network, there is a little

different in denoting all the symbols of the expert network. When a symbol contains

subscript, then the subscript is denotes the i1h expert network. When a symbol contains

sub-subscript, then the sub-subscript denotes the jth expert network. For example,

19

W j denotes the weight matrix for the i th expert network.

W j •kj denotes the j, k element of the weight for the i th expert network.

A complete notation table is given in List of Symbols.

Expert Networks

0
2
I,

a '2,

P2

• •• •· •

PR
a;1

~ '--------y-----' '--------y-----'
Inputs First Layer Second Layer

Figure 3 • 3. The Expert Network Architecture

The expert networks are networks that compete to learn the input pattern . Each

expert network can operate in a different region to avoid crosstalk between other expert

network. Typically, expert networks can be any kind of neural network, such as recurrent,

multilayer perceptron or Kohonen. However, we will use multilayer neural networks as

shown in Figure 3 - 3. There are two reasons why we use multilayer perceptron instead

of other networks. First, multilayer networks are conveniently trained by the

backpropagation algorithm. By using multilayer network as expert networks, we have a

systematic way of updating the weights and biases. Second, the multilayer networks are

20

universal approximators [3]. They are very good in olving regres ion problem, and

therefore they are suitable for control applications.

Gating Network

2

•••
R

•••

Figure 3 - 4. The Gating Network Architecture

The general architecture of the gating network is the same as the expert network,

as shown in Figure 3 - 4 (any multilayer network would work). However, the gating

network differs from the expert networks in two respects.

• The gating network has N output neurons, which is equal to the number of expert

networks, whereas each expert network has R output neurons, which is equal to the

dimension of the target output vector y•.

• In the final layer, the gating network uses a softmax activation function.

21

The softmax function is required to be the activation function for the gating

network, because the gi are interpreted as a priori probabilitie [5] [6]. The interpretation

of gi generally requires the output of the gating network to satisfy two requirements:

o~ gj ~ 1 for all i. and (3 - 2)

To fulfill both constraints on the equation (3 - 2), we may use the softmax function:

(3 - 3)

To distinguish the gating network from the expert networks, we use a different

notation in the gating network. The V and q represent the gating's weights and biases.

respectively. The u and g represents the gating's net input vector and total output vector,

respectively.

Modular Neural Network versus Fully Connected Network

Problems with Finding the Gradient in a Fully Connected Network

A multilayer neural network often has difficulty in learning any function from a

finite amount of data. A particular case of this problem, as identified by Sutton[7], is

called temporal crosstalk. [8] This phenomenon happens when a fully connected

network is trained to learn one task and then switched to learn another task that is

incompatible with the first. As a result, the network takes a longer time to learn the first

22

task after it has learned the second task. Although it may eventually learn both task, it'

learning speed and generalization ability are affected by the incompatible training data.

Another problem with a fully connected neural network is spatial crosstalk[9].

Many weights in a multilayer network affect the network response, even if the input

range over only a small region of the input space. The network response is spread out

over all of the elements of the network.

With the modular neural network architectures, the temporal crosstalk and spatial

crosstalk problems are easily handled. If a block of incompatible data is presented, a

modular network tends to allocate different networks to different blocks. Consequently,

each network is immune to temporal crosstalk and spatial crosstalk since it only receives

the data from a single task.

Furthermore, the modular networks can be structured more easily than a

multilayer network, because it can contain a variety of types of network module

(networks with different topologies) that are appropriate for particular tasks.

Illustration of the Crosstalk Problem

In the following, a multilayer network and a modular network are used to train an

absolute value function as shown in Figure 3 - 5. Both networks are trained until they

achieve a sum of square error less than 10-3
. The multilayer network has a 1-10- I

architecture, and the modular network has the architecture that is shown in Figure 3 - 6.

For faster convergence, both networks utilize the Marquardt-Levenberg algorithm during

the training.

23

After both networks are trained, the input data in Figure 3 - 6 i split into two data

sets, one set taken from the interval [-1,0] and the other set taken from the interval [0,1],

Using the steepest descent al.gorithm on the multilayer network and the steepest ascent

algorithm on the modular network, feed both networks alternately with the two data ets,

where each data set trains for ten epochs. The purpose of training tbe network for ten

epochs on each data set is to see whether the network will forget the econd data while

training on the first data. Hence, we measure the sum of square error of the whole data

range, from [-1,1] . The learning rates in both networks are varied with 0.0 1,0.00 I,

0,0001 and 0.00001.

Figure 3 - 7 shows the learning curve of the multilayer network showing the sum

of squared error of the whole data set. As seen in Figure 3 - 7, the multilayer network

suffers the crosstalk phenomena. It learns one set of data and forgetts the other. This

raises the sum of squared error for a learning rate of 0.0 1. When the learning rate

decreases, the crosstalk phenomena is less, but it does not learn. Meanwhile, Figure 3 - 8

shows the learning curve of the modular network. As seen in the plot, the sum of squared

errors are decreasing and show no sign of crosstalk. Hence, the modular network is not

as susceptible to the crosstalk problem as the multilayer network.

24

-1 -0.5 o 0.5 1

p

Figure 3 - 5. The Absolute Value

E~pert Network # 1

Figure 3 - 6. The Modular Network with 2 Single Layer Experts, and 1 Single Layer Gating

25

Test of Crosstalk Problem in Multilayer NetworkX 10.3
1.08r----,-----,.---,----,----r----,-----,.---.,-----,

1.06

1.04

Ir=O.OO

1r=0.01

_~ ~-~------- Ir=O.OO
0.98

0.96J.L-__== ----'-lr==0.oo 01

g
Q)

Q) 1.02
«;
='
0­en
'0
E
='en

0.940'----1-'0-0---2--'0-0---:-3-'-0-0---40.....0---5-0L O---6-'0-0---7--'0-0---8-'-0-0--9-'00

Epochs

Figure 3 - 7. Test of Crosstalk Problem in Multilayer Network

Test of Crosstalk Problem in Modular NetworkX 10.4

7.25r-~---,--------r----;--------.-----,----,-----.,

~

e 7.1
Cii

~
5-7.05
en
'0
E
~ 7

6.95

Ir=0.0001

6.9
Ir=0.01

200 400 600 800
Epochs

1000 1200 1400

Figure 3 - 8. Test of Crosstalk Problem in Modular Network

26

Problems with Local and Global Methods

If we use a neural network as a universal approximator for any function, then an

approximation of a prescribed input-output mapping may be realized using a local

method or a global method.

A local method can capture the underlying local structure of the mapping. A

model for this type of neural network would be the radial basis network, in which only a

few neurons respond to anyone input. This kind of realization method offers the

advantage of fast learning, which requires very few training periods and offers an ability

to operate in real-time. However, the disadvantage of local method is that they tend to be

memory intensive and only capture the local structure, therefore they do not generalize

well.

In contrast, a global method can capture the underlying global structure of the

mapping. An example for this kind of neural network would be the multilayer perceptron.

This kind of realization offers the advantage of better generalization performance and

smaller storage requirements, but it has a relatively slow convergence and it is very

difficult to interpret its representation.

The modular network provides a compromise between local and global methods,

as it can capture an intermediate granularity.

27

Modular Network for Discontinuity Function

Consider the discontinuous function described by

F(x) ={1 x> 0,
-1 x~ 0

(3 - 4)

which is typical of the type of function that might be used to model coulomb friction. If

we were to use a multilayer perceptron to approximate this function, the approximation

may exhibit erratic behavior near the discontinuity. This erratic behavior is shown in

Figure 3 - 9 with the dashed line. In this situation, it would be preferable to split the input

function into two separate pieces and learn each piece separately. Hence, a modular

network will provide a much better fit in this situation because it can decompose the input

space into several sub-regions and then combine their individual solutions.

1.5,-------.-------..-------,---------,

"-

0.5

c 0
l..l...

-0.5

-1 I----~~-....-:-::_-_ -,,---__f--'
, , -

-1 ~iJ.2 -0.1 o
x

0.1 0.2

Figure 3 • 9. A discontinuous (piecewise linear) function and its approximation.

2

Illustration of Modularity

To illustrate how the modular network works, consider the modular network

architecture shown in Figure 3 - 6. This architecture consists of 2 experts, each with a

single layer linear transfer function, and a gating network. Suppose we want to

approximate the absolute value function shown in Figure 3 - 5, then the nominal values

for the weights and biases in the modular network are

v = [+100].-100 '

With these nominal weights, the output of the modular network will be an

accurate approximation of the absolute value function. Figure 3 - 10 ,Figure 3 -]] and

Figure 3 - 12 illustrate the effects of parameter changes on the modular network response.

Unless otherwise noted, all the plots on the left hand side of the these figure are the

gating network's output, gl, and all the plots on the right hand side of these figures are the

modular network's response. The U is varied with U=O.1 (dot line), I (dash-dot line), 10

(dash line), and 100 (solid line).

In Figure 3 - 10 (a) and (b), we vary the gating network's weights with v = [: ~J'

This figure shows how the network weights can be used to strengthen the allocation of

each region. In fact, the farther apart the +U and -U, the sharper the region is classified by

the gating network. It is noteworthy that because of the softmax function, the distance

between the +U and -U determines the strength to divide the region. For this reason, we

29

will have the same network response with gating network' weights of v = [2~] and

[+100]v = . In Figure 3 - 10 (c) and (d), the gating network's weights vary with
-100

v =[~~]. By changing the sign of the gating network's weights, the gating network

alternates its outputs and turns on the wrong expert network in each region.

Consequently, the network response is the mirror image of Figure 3 - 10 (a) and (b).

g1 outputs:Varying V=[U;-U] Modular Network Output

/

I -0.8 I 0.8
I /

,/ \ 1I /

0.6 ,/ 0.6 \ 1
/ .. , \

/
\ 1

0.4 ,/ 0.4 \ 1/ I,
I

0.2 I 0.2- I

0 / 0
-1 -0.5 0 0.5 11 -1 -0.5 0 0.5

(a) (b)

91 outputs:Varing V=[-U,U] Modular Network Output

"""
0

\ /,
"0.8 \ -0.2 I "" , 1 \

" \ \0.6 , -0.4
" 1 \.......

f

"0.4 , -0.6 1
\ " , ,I
\ "

0.2 \ -0.8
\

0 " -1
-1 -0.5 a 0.5 -1 -0.5 0 0.5

(c) (d)

Figure 3 - 10. Effect of Parameter Changes on Network Response I

30

[+10]In Figure 3 - 11 the gating network's weights are fixed at V = . In figure (a)-10

and (b), the gating network's biases are varied with q = [+OU], and in figure (c) and (d)

the gating network's biases are varied with q = [~]. By allowing the biases to change,

this shifts the gating network's output to the left and right. Consequently, the gating

network allows expert number 1 to gain more control in Figure (a) and (b) and to gain

less control in Figure (c) and (d). In fact, at U=lOO, the gating network activates only one

expert network. Due to the softmax function, the distance between the biases determines

the strength of shifting the gating network's outputs. Hence, only the distance between

the biases matters.

31

g1 gating outputs: Varying q=[U,O] Modular Network Output

-1 -0.5 0 0.5
(a)

g1 gating outputs: Varying q=[O,U]

0.5o
(b)

Modular Network Output

-1 "'--__~__~__~_ _J

-1 -0.5

'"~,

0.5 \ '.
\ "
\ '~.

o \ ">
\,

-0.5

" .'

I:

I :, :
j .=

I
1

1

I
I
J

J
I

I

I ,:

I
i :

/ .
Ol-'~-'-""""

0.4

0.2

0.8

0.6

1,.,..------~-----~

0.5

,/
/-?

/1
/ I

,.;'" f
;.' ,

1

"

-0.5
-1l.----------------:>I

-1

o

0.5

-0.5

•• ; < - -_. ,---
I

0.8 , I
I

I I0.6 f I

0.4 J 1

I I

0.2 I
I

i /

a "
-1 -0.5 a 0.5

(c)

Figure 3 • 11. Effect of Parameter Changes on Network Response II

"

Varying expert network # 1 bias

,
, ,

Modular Network Output

3,---~--~--~-~

a

0.5

-0.5l.---~--~--~----'

-1 -0.5 a 0.5
(b)

0.5

. ;...' ~ ..;.. ..
/,

I
I,

I
I

1

" o
(a)

Varying expert network # 1 weight
2,....------~--------",

g1 Gating Outputs: Varying V=[U,-U] fix q=[1 ;0]

1 II
P -.-

0.8

2

a -_. - ._.-
a

-1
,\

-1

.. .' .'
-2 -2

-1 -0.5 0 0.5 -1 -0.5 a 0.5
(c) (d)

Figure 3 • 12. Effect of Parameter Changes on Network Response III

32

[+1]In Figure 3 - 12 (a) and (b), the gating network's biases are fixed at q = ° ., and

the gating netwnrk's weights are varied with v = [: ~]. The figure in (al shows that with

increasing distances between the weights, the effects of shifting become Ie . Thi al 0

means that the weights in the gating also contribute to the shifting effects and results in

the network response as shown in figure (b).

In Figure 3 - 12 (c) and (d), we examine how the parameter changes in the expert

network affects the network response. Both figure (c) and (d) show the modular network

response. By varying the weights in expert number one by w1\ = -2,-1,0,1,2, we change

the slope of the network output response as shown in figure (c). However, this response

only occurs in the region where the gating network turns on expert number one.

In Figure 3 - 12 (d), the biases of expert number one vary with b; = -2,-1,1,2 . As
I

expected, the network output response shifts the slope up with positive biases and shifts

the slope down with negative biases. This motion only occurs in the region where the

gating network turns on expert number one.

33

CHAPTER IV

MODULAR NETWORK LEARNING RULES
The idea behind the modular network training is to allow both expert and gating

networks to be trained simultaneously using the backpropagation algorithm to maximize

the cost function--the log likelihood function. This cost function is formulated based on a

statistical point of view and it is shown below:

N 1(.)T (.)
J() 1

~ -"2 Y -Yi Y -Yi
X = n~ gj exp

;=1
(4 - 1)

x is a parameter vector, typically represents all the weights and biases in a

modular network.

Y
• is the target output vector.

Y; is the output vector of the i th expert network.

gi is the activation of the i1h output of the gating network.

N is the number of expert networks.

34

Statistica/lnterpretation of Learning A/gorithm in Modu/ar
Network

The objective of the learning algorithm in the modular network is to model the

probability distribution of the training set, the statistical relationship between the input

patterns p and the target patterns y•. It is assumed that the training patterns are generated

by a number of different regressive processes in the following way. Assume that an input

vector p is presented to the system that is being modeled, then the i1h expert network is

chosen from a probability distribution conditioned on the input vector. According to the

regressive process, the target output vector y. can be generated by the ith expert network:

(4 - 2)

where

• the target output vector with dimension of q.Y

.Ii (p) the deterministic vector valued function of the input vector p.

Ei the Gaussian random vector with zero mean and covariance matrix

ell, where I is the identity matrix and d is the variance of the

input vector, p.

The output of each expert network Yi is viewed as a conditional mean of a

multivariate Gaussian distribution. Specifically, it is viewed as a conditional mean of the

desired response y. given the input vector p for the i th expert network.

35

(4 - 3)

As shown from Wilks [10], the multivariate Gaussian distribution of the desired

vector Y· given the input vector P at the i th expert network may be expressed as

(4-4)

vector. This multivariate Gaussian distribution is expressed as a conditional probability

density function so that it emphasis the assumption that for a given vector p, the lh expert

network is producing the closest match to the target vector y.,

Base on the above assumption, the probability distribution of the target vector y.

may be expressed as a mixture model which is called an associative Gaussian mixture

model.

N

f(Y·/p) = LgJi(Y·/P)
i=1

(4 - 5)

If one were to view the output vector Yi of the itb expert network as the synaptic

weight vector Wi and the output of the gating network gi as the activation of all the output

neurons, with both Wi and gi as the unknown free parameters, then the conditional

probability density functionj(y·/p) may be view as a likelihoodfunction. However, it is

36

preferable to work with natural logarithm ofj(y./p), since the logarithm is a monotonic

increasing function of its argument. Therefore, we may define the log-likelihood function

as follows:

(4 - 6)

By substituting equation (4-5) into equation (4-6) and ignoring the constant

term --In(2n')RJ2 , the log-likelihood function is equivalent to the performance index or

cost function of equation (4-1). By maximizing this objective cost function, the network

would yield the maximum-likelihood estimate of all the unknown free parameters -- Yi

and gj. Take note that since yiis depended on the expert's weights Wi, and the gj depends

on the gating weights v, the unknown free parameters can be viewed as all the weights

and biases in the gating and expert networks. Several interpretations of these unknown

free parameters have been given by Jacob and Jordan [9] [I]:

Yi expert networks' output vectors are the conditional mean of the

multivariate Gaussian distributions and

gj gating network's output vectors are the prior probabilities of the i1h

expert network generated by the current training patterns.

where all unknown parameters are conditioned on the input vector p.

The activation, gi, is selected such that the outputs of the gating network are

constrained to satisfy two requirements:

o~ gj ~ I for all i, and (4 - 7)

(4 - 8)

37

By satisfying these two constraints, we can interpret the activation, gi, as a prior

probability. To satisfy the constraints, we may define the activation, gi, of the ith output

neuron of the gating network as the softmax function [5]:

exp(uj)

gj = N

Lexp(uJ
j=J

where Uj is the /h output of the gating network.

(4 - 9)

Performance Optimization

To optimize the performance index lex) of equation (4-1), we will have to find

the value of x which optimizes the lex). In other words, we will have to maximize the

performance index with respects to all the weights and biases (x) in the modular network.

(4 - \0)

We will assume that the perfonnance index is analytical so that all the x derivatives

exist. Then, we can represent the performance index lex) using Taylor series expansion

about some nominal point x'.

We can also write the equation (4-11) into a matrix form as:

38

l(x) = l(x*) + Vl(xf!x=x' (x - x·)

+ ~(X-X*rV2l(X)lx=x'(X-X*)+ ...

where Vl(x) is the gradient, defined as:

(4 - 12)

[
a a

Vl(x) = a;- l(x) a;- l(x)
I 2

and V2 l(x) is the Hessian defined as:

a]Tax
M

l(x) (4-13)

a2 a2 a2 T

~l(x) lex) lex)ax 1ax2 ax1dx Mx,
d2

lex)
d2 d2

lex)v2 lex) = dx2ax1
JTl(x) dx2ax M

(4 - 14)x2

a2 a2 a2

ax ax lex) ax ax lex) J;2"l(X)
M I M 2 M

By using the concept of Taylor series expansion, we will develop optimization

techniques for the performance index on equation (4-1).

39

Since all optimization algorithms are iterative, we can begin with some initial

guess, xo, (usually randomly selected) and as the algorithm iterates, update OUI initial

guess in stages according to an equation of the fonn:

xo= initial guess (randomly selected), and

(4 - 15)

With equation (4-15), the Taylor series expansion can be rewritten to include iteration

as:

J(Xk+J) = J(xk)+ VJ(xnx=xt(LUk)

+ ~ (illc kt V
2 J(x)1 X=Xk (ffi(k) +

with

(4 - 16)

(4-17)

and

Based on the Taylor series expansion of equation (4-17), we will discuss two

optimization techniques, the steepest ascent algorithm and the Marquardt-Levenberg

algorithm. In the next section, we will discuss the steepest ascent algorithm and apply it

to the training of the modular network. Then, in chapter IV, we will discuss the

Marquardt-Levenberg techniques and incorporate them into the modular networks.

40

Steepest Ascent Algorithm

The steepest ascent algorithm is based on the first-order Taylor series expansion.

This algorithm is the same as steepest descent except that we want the function lex) to

increase instead of decrease at each iteration:

(4-18)

If we expand l(Xk +1) using Taylor series expansion, and consider I~kl to be small, then

the higher order tenus in the Taylor series expansion on equation (4-17), will be

negligible and the function can be approximated as:

(4-19)

where <is the gradient evaluated at the old guess xk :

(4 - 20)

For equation (4-18) to be true, we must satisfy the following equation:

(4-21)

If we select

(4 - 22)

then

(4 - 23)

If we select an a k that is greater than zero, then

41

(4-24)

The vector Pk is called a direction vector and the a k is called the learning rate. For any

vector Pk that satisfies equation (4-24), the equation yields an ascent direction. Hence, if

we take a small step in this ascent direction, the perfonnance index, lex), is guaranteed to

increase. However, the function increases most rapidly when equation (4-23) becomes

most positive, therefore, we have to find a vector Pk which makes equation (4-24) most

positive.

If we look at the inner product between the gradient and the direction vector,

c/Pk' we will notice that the c/Pk is most positive when the gradient, c/ ' has the

same sign of the direction vector, Pk . Hence,

(4 - 25)

Substitute this equation (4-25) into equation, (4-22) and (4-15), yields

(4 - 26)

Equation (4-26) is the steepest ascent algorithm. It is the simplest optimization

algorithm, but it can also be very slow. However, due to its simplicity, we can easily

incorporate this algorithm into the modular network to give us some insight as to how

well the modular network performs. In the next section, we will use this algorithm to

adapt the modular network.

42

Adapting the Modular Network using Steepest Ascent

Recall the log-likelihood performance index:

N I (.)T (.)
J() I

~ -2" y -y; y -y;
X = n L.J gi exp

i=1

Substituting the softmax equation, (4-9), into equation (4-1), we obtain

(4 - 27)

N

J(X) = In I
i=1

exp(Uj)

N

Iexp(ud
k=1

(4 - 28)

We would like to maximize this perfonnance index with respect to all the weights and

biases, x, in the modular network, where

r l

r2

X=

f N

Z

(4 - 29)

with N defined as the number of expert networks, ri defined as all the weights, Wi, and

biases, bi , in the ith expert network and z defined as all the weights, v, and biases, q, in

the gating network.

r j = [w~ I
Wi I bl b;,; w2 bs~,r ' (4 - 30)WSI R

.,. ., .
, , 1.2i , I

I; 1,1;

Z = [VI Vi v1 I 1 v2 q;Pr, (4-3))ql ql .. '

1,1 1.2 SI,R S 1,1

43

From equation (4-28), we can easily tell that the performance index is not a

direct function of the weights and biases, x, of the modular network; it is, however, a

direct function of the outputs of the expert networks, Yi> and gating network, Uj. Hence,

we can use the chain rule to relate the performance index with weights and biases of the

modular network in the following fashion:

()yN aJ au, aJ + ... + aUN aJ]. (4 _32)
OrN Oy N dz au! dz dUN

Take note that the above equation is not a matrix, it is one long vector. It would seem

rather complicated to compute the above equation, but really what we need to calculate

is

aJ _ dyi aJ for the i th expert network, and
Or; Or; Oy;

aJ -f au aJ f h' k- = L.J-'- or t e gatmg networ .
dz i=J dz au;

(4 - 33)

(4 - 34)

Computing equation (4-32) is equivalent to computing the gradient of the performance

index with respect to all weights and biases, x, in modular network. Once we have the

gradient of the performance index, we can use the steepest ascent algorithm to update the

modular network's weights and biases, x, in the following manner

where (4 - 35)

Equation (4-33) and (4-34) also indicate that we can adapt the expert networks and

gating network simultaneously using the following pair of weight update schemes:

44

and

(4 - 36)

(4 - 37)

In the following sections, we will show how to compute equation (4-33) and (4-34)

individually and update the weights using (4-36) and (4-37), respectively. However, to

help in formulating the learning algorithm of the modular network, we will define the

posterior probability.

Posterior Probability

The definition of the posterior probability associated with the ilh output of the

expert network is defined as

(4 - 38)

This probability is conditional on both the input vector, p, and the desired response vector

y•. Hence, the posterior probabilities are generated by the current training pattern.

Adapting the Expert Networks

As mentioned in the previous section, to adapt the expert networks, we need to

find the gradient of the performance index as:

dJ _ dy/ aJ
drj drj dy;

(4 - 39)

45

where

hi
I,

... hi
Sl, (4-40)

(4-41)

To find the second term of the equation (4-39), we will have to differentiate the

performance index, J, with respect to the output vectors, Yi> of the i th expert network. If

we do that, we will obtain the following partial derivative (see Appendix A-I for detail),

dJ (.)
dyi = h, Y - Yi . (4 - 42)

This equation implies that, during the training process, the weights in the i1h expert

network are updated in proportion to the posterior probability that it generated the current

training patterns. Next, by choosing the expert network as a multilayer neural network,

we can calculate the Jacobian term dy, using the backpropagation algorithm and update
dr,.

the weights using steepest ascent algorithm. If we call this Jacobian term K (I.d), ' then

~'t, ~'t, O;'t, dyl, 0>'1, a;\ ~'t,
awl awl aw~I.R, abl ab~I, aw" ab.;",l.I, l.2, 1, 1.1,

K =~=
Oy2, dy1, Oy1, dy2, ()Y1, dy1, Oy1/ .(4 - 43)awl awl aw~I,Ri ab J ab;" aw2

ab~,(I,d), ac I,lj l.1, I, 1.1,
I

OySM, dysM, ()y SM, OySM, ()y SM, OySM, dysM,
awl awl aw~I.R/ db l ab l aw 2 absM."1.1, 1,2, I; Sl, 1,1,

Take note that t has a dimension of S M in an i th expert network, and d has a dimension of

total number of weights and biases in i1h expert network,

46

Backpropagation in the Expert Networks

Consider Figure 4 - 1 as the ith expert network in a modular network. The basic

equations of the network are

o
Yi =P

m+1 fnl+l(W m+1 m b nl+l) 01 M 1Yi = i i Yi + i m = , ,... , -.

1---.'

(4-44)

'-v-'
Input

'------~v-------'
First Layer

v
Second Layer

Define

Figure 4 • 1. The jib Expert Network

m ()y/~
S ---

j,l i - dn~'
J,

(4 - 45)

as the sensitivity of the lh element of the last layer output to a change in the net input of

unitj in layer m of the i th expert network. Then, by using the chain rule, it can be shown

that:

()yM ()yM dn"!
__Ii _ = _1,_ X __J,_

awm
an~' awm

J,k, Ji J,ki

()yM ()yM an"!
,, = _1,_ X _J_, ,

abm dn ln abm

1; J; J,

(4 - 46)

(4 - 47)

The first term in each of these equations is the sensitivity. The second term in each of

these equations can be easily computed, since the net input to layer m is an explicit

function of the weights and bias in that layer:

47

m-l

m 1 III m-I bmn. = W·k.Yk + -11 J" I J,
k=1

Therefore,

(4 - 48)

an~l
__11_= y m- t
awm "-j

1 .k;

and
anm

1, = 1.
dbm

1,

(4 - 49)

Hence, we can compute the elements of the Jacobian using

()yM dyM anm
K =_-_1,-=_1,-, x __1,_= III X m-I

(I,d), awlll anIII awm Sj.l, Yk, '
1."-, 1; l·"-i

and

dylll dyM an~'

K t; I, 11 m------X---S
(I,d), - dbm- anm dbm - j,t;'

}; li Ji

(4 - 50)

(4-51)

By backpropagating the sensitivity, it also can be shown that the sensitivity satisfies the

following recurrence relation:

Sill = Fm(n~I)W.IIl+ITsm+1
f t t , i

where

(4 - 52)

48

and

o o o

(4 - 53)

(4 - 54)

To start this recurrence relation, a boundary condition is needed. This is obtained at the

last layer:

o o

o
o

(4 - 55)

It is interesting that the backpropagation on the expert network does not involve any error

term. The entire i th expert network is trained by the posterior probabilities generated by

the current training patterns.

After we have backpropagated through the i th expert network and obtained the

Jacobian, the next step is to multiply the Jacobian with the dJ term which we have
dy;

already calculated in equation (4-42). Hence, the gradient of the petforrnance index can

be expressed in the following pair of equations,

(4 - 56)

DJ{) - dy1i aJ _ In h (. M)
V X ---X--s· x. - .ab':' dy J,I, I Yl1 Y1i

Ii I,

(4 - 57)

49

Once we have the gradient, the weights and biases of the i th expert network can be

updated element by element using the following steepest ascent algorithm:

(4 - 58)

(4 - 59)

Adapting the Gating Network

Since the modular network requires the weights to be updated simultaneously in

both the expert and gating networks, the next step is to update the weights in the gating

network. By differentiating the log-likelihood function with respect to the output of the

gating network Ui, we obtained the following partial derivative (see Appendix A-II).

(4-60)

This equation implies that, during the training process, the weights of the ith

output neuron of the gating network gj moves toward the posterior probability hi and

allows the ith expert network generates the current training patterns. As with the expert

network, the gating network is also a multilayer network. The only exception is that the

transfer function on last layer of the gating network is a softmax function. Since a

multilayer network is used as gating network, the weights and biases in the network can

be easily updated using the backpropagation algorithm in the following fashion.

aJ _f au; aJ
--£.J--
dz ;=1 dz au;

If we express

U = [Ut ~ .,. UN Y,

then we can show that

aJ au. T aJ
=--

dz dz au

(4 - 61)

(4 - 62)

(4 - 63)

50

The above equation is similar to the gradient calculation of the expert network. In fact,

the calculation of the first term, ~ , is exactly the same as the expert network; that is by

backpropagation. We can think of this term as the Jacobian matrix of the (N +It expert

network; that is K (I,d), with i = N + 1. Let G denote N + 1, then we have the following

Jacobian matrix for the gating network:

du, aU l au! au, au) du j du,

av; I av;'2 av,~',R dq,' dq~, av:, dq~

au du2 du2 dU2 dU 2 dU 2 dU2 dU2
K --- av:.J av: 2 av~',R dq: dq~, avl~1 dq;u .(4 - 64)

(t,d)G - az -

dUN duN dUN (JuN dus" du SM duSM

av:.) av: 2 av~'.R dq: aq~, dvJ~l dq;',

The second tenn, which we now express in vector form, is just a stack of

individual elements that create one long vector,

-
5L

h. - 81

aJ ~ -82
(4 - 65)-au

hN -gN

Backpropagation in Gating Network

u' =fl(V'p +q')

e1
1Pl

,
82U2

!g2(Un FP2

• • •• • •• • •

PR

'-,-' ~

Inputs
--~v---~ ~

First Layer
---v---~ '---v----'

Second Layer Sorlmax

Figure 4 • 2 A Two Layered Gating Network

As shown in Figure 4 - 2, the gating network contains a multilayer network and a

softmax function on the last layer. Although the gating network differs from the expert

network by having a softmax function on the output layer, the backpropagation algorithm

in the gating network is still exactly the same as the expert network. The reason is

because we are backpropagating the output of the gating network, u. The only difference

is the variables' name, where the weights, biases, net inputs and outputs are represented

by V"', qm j , em, and um
. Now, let's summarize the equations used in backpropagation.

First, we calculate the basic feedforward equations of the network:

(4 - 66)

52

Then, we calculate the sensitivity at the output ,Mh, layer; that is

or in matrix form:

M au
M

'M(M)SC = aeM = F e =

o o

o
o

(4 - 67)

.(4 - 68)

Next, we calculate the sensitivity for the previous layer using the following recurrence

relation:

(4 - 69)

where

and

o

. m() _ a.rm(e)
f e- oe'

o

o
o

(4 - 70)

(4-71)

53

Repeat the recurrence relation until we find all the sensitivities in the layer. Then, by

using the chain rule, we can compute the Jacobian matrix as:

dUM duM de'"K t t J m . ",-I
(r.d)c = av'" = de m x avm = Sj.t G X Uk '

J ,k J J.f<

and

au'" au M ae7K __t t_x sm
(t.d)G - (J,qm - ae"! (J,q'" - j.t G •

J J J

Since we know that

(4 - 72)

(4 - 73)

from Appendix (A-II), we can update the weights and biases using the following pair of

equations:

V j,k m (k + 1) = V j,k 111 (k) + as7-, G (Uk m-I)(hr - gt) (4 - 74)

(4 - 75)

Like the expert network, the backpropagation on the gating network does not

involve any error term. This implies that the training of the gating network is solely

dependent on the tenn ~. which equals It, - gi ' and can be interpreted as follows.
I

During the training process, the synaptic weights of the i th output neurons of the gating

network gi move toward the posterior probability hi and allows the /h expert network to

generate the current training patterns.

54

Example: Steepest Ascent Learning in Modular Networks

In the following, we will show an example of how the weights and biases are

updated.

f

Figure 4 - 3 The Modular Network with Two 1-2-1 Experts, and .1-2 Gating

Figure 4 - 3 shows a modular network with two expert networks and a gating

network. Each expert is a 1-2-1 two-layer network with hyperbolic tangent activation

(tansig) functions in the first layer and linear activation (purelin) functions in the output.

The gating network is a 1-2 network with a single layer and a linear output function.

Assume that the input pattern, p, and target pattern, t, are

The weights and the biases of the experts and gating are initialized to:

55

First, we calculate the feedforward equation of the expert and gating network using

equation (4-44) and (4-66).

For expert network #1

eXpCn:)_eXpl-n:l [0.9640]
Y: = tansig(Wip+b:) = (n l) (-n l) = 07616

exp I +exp I •

2 [][0.9640]YI =Y; =purelin(W,2y~ +b ,) = -1 1 0.7616 +[0] =[-0.2024]

For expert network #2

-

e(n~) _ e(-n~) [0.9640]
1 - tansi Wi +b I - -

Yz- g(zp J-e(n~)+e(-n~)--0.7616

2 . 2 I 2 ['l[0.9640]Yz=Yz=purelm(W2Y2+ b 2)= 1 1 -0.7616 +[1]=[1.2024]

For gating network

56

e"!
gj =-2--;

I.eU
]

j=1

[0.5]

[
gl] e 0.5 [0.5]

g = g2 = e[O.5! + e[O.5] = 0.5 ;

The output of the modular network yields

y = glY I + g2Y2 = 0.5 x (-0.2024) + 0.5 x 0.2024) = 0.5.

To find the posterior probability, equation (4 - 38)

57

then,

So,

It, = 0.49 = 0.6687 , and
0.49 + 0.2427

hz = 0.2427 = 0.3313 .
0.49 + 0.2427

For first layer, the derivative of the hyperbolic tangent (tansig) transfer function is

and for second layer, the derivative of linear (purelin) transfer function is

-

To calculate the expert Jacobian, Z~ ,we would perfonn the backpropagation. The
I

starting point is the second layer on each expert network.

Backoropagation on Expert Network # 1

Starting from the last layer, calculate the sensitivities using (4-55),

Then, relate it using the recurrence relation on equation (4-52),

58

1 .,(1)(2)T 2 [I-a;.81 = FlO, . W, 81 = 0

SI =[-0.0707]
I 0.42

o][-1][1] = [1- (0.9640)2 °][-l}]
l-a;z 1 . ° 1-(0.7616)2 I I

We obtain the Jacobian matrix using (4-50) and (4-51) as follows,

~ _ I _ [-0.0707] _ [-0.0707]awi - S ,p - 0.42 [1] - 0.42

dy, =Sl =[-0.0707]
Ob: I 0.42

~ _ 2 ,_ [0.9640] _ [0.9640]aw 2 -SlY' -[I] 0 - 0
I

-

K =dyj =[ay~ ay~
I Jrl aw: 11 aw~11

= [- 0.0707 0.42 - 0.0707 0.42 0.9640 °

59

Backpropagation on Expert Network #2 will be the same as in Expert Network #1,

I . l(1)(2)T 2 [1- a~
S2 = F2 02 W2 S2 = ° I

S I =[0.0707]
I 0.42

dy2 I T [0.0707]
JW; = S2P = 0.42 [1]

dy 2 _ I _ [0.0707]
Obi -S2- I

2

°][1] 1_[1- (0.9640)2 °][1] 1
1-a~ 1[]- ° 1-(-0.76]6)2 1[]

dy {0.9640]T_2_ = S2 y I T = [1 = [09640 0]
JW2 2 2 ° .

2

dy~ =S~=[I].
Ob 2

Once we find the Jacobian matrix, find the JJ :
dy;

JJ =hi (t - YI) =[0.6687]([0] - [-0.2024]) =[0.1353]
dyl

/

:2 =~(t - Y2) =[0.3313]([0] - [1.2024]) =[-0.3984].

Now, we can compute the elements of the gradient, :.Ic :
,

For expert network #1:

al (al) dy, [- 0.0707] ,[- 0.0096]
awi = dyl awi =[0.1353] 0.42 = 0.0568

all =(al) dyll =[0.1353][-0.0707] =[-0.0096]
Ob, dyl Ob, 0.42 0.0568

~ =(al)~ =[][0.9640] =[0.1 304]aw2 ;)". aw2 0.1353 ° °
1 U~I I

al2 =(al) dy~ =[0.1353][1] =[0.1353]
Obi dyl Obi

For expert network #2:

al 1 =(al J dy 2
1

= [_ 0.3984][0.0707] = [- 0.02817]
aw2 dy2 aw2 0.42 -0.1673

al _((JI) dy I _ [][0.0707] _ [-0.02817]
-, - - -I - -0.3984 -
Ob2 dy2 Ob 2 0.42 -0.1673

~ =((JI) dy 2 =[_][0.9640] =[- 0.3841]aw2 ;)". aw2 0.3984 0 °
2 u~2 2

60

al
2

= (aJ JcJy; =[-0.3984][1] =[-0.3984]
01>2 dy2 01>2

Using steepest ascent, the weights in the experts are updated as follows:

61

Wk W k al
(new = i old + a dWk

I

and

Meanwhile, the gradient for the gating network's is computed as follows:

S = F(u) = [~ ~J with

al = [~ - gl] =[0.6687 -05] = [0.1687]
au ~ - g2 0.3313-05 -0.1687

:: = :: ~: = (hi - g\)pT = ([0.6687] - [05])1] = [0.1687]
1 1 \

aJ =[0.1687]
av' -0.1687

Using steepest ascent, the weights in the gating network are updated as follows:

1 1 aJ
V new = VOid +a av I

and

After the weights and biases are updated, the process is repeated for the next iteration.

62

63

CHAPTER V

MARQUARDT-LEVENBERG OPTIMIZATION

Chapter IV has provided a basic description of the modular network architecture

and its learning rule using the steepest ascent method. Unfortunately, steepest ascent is

the slowest optimization method. In this section, we will describe a technique to speed up

the learning process of the modular network using the Marquardt-Levenberg algorithm.

Marquardt-Levenberg in Multilayer Network

The Marquardt-Levenberg algorithm provides very fast training for multilayer

perceptrons. It has been shown to be approximately 20 times faster than the steepest

descent method [I I] in a small multilayer perceptron. Since the Marquardt-Levenberg

algorithm has worked so well for multilayer perceptrons, we would like to incorporate the

Marquardt-Levenberg optimization technique into modular network training. The

Marquardt-Levenberg modification for modular network training will be described in this

Chapter.

Marquardt-Levenberg Technique

Unlike the steepest descent algorithm, the Marquardt-Levenberg algorithm is a

variation of Newton's method. Hence, to explain the Marquardt-Levenberg Algorithm,

-
64

we will start by explaining how Newton's method works. Newton' method i based on

the second order Taylor series:

(5 - 1)

with

(5 - 2)

(5 - 3)

The basic idea behind Newton's method is to locate the stationary point of the quadratic

approximation for lex). In locating the stationary point, we will take the gradient of this

function with respect to Llx k , and set it equal to zero:

(5 - 4)

Solving for Llx k '

(5 - 5)

Hence, Newton's method is

(5 - 6)

If lex) is a function with a strong maximum, then A k is negative definite and Newton's

method will maximize lex). However, one problem with Newton's method is that the

65

Hessian matrix A k may not be invertible. To avoid tlVs, the Marquardt-Levenberg

modification is introduced [12].

(5 - 7)

and the Marquardt-Levenberg modification to Newton's method is

(5 - 8)

To see how the G k can be made invertible, suppose that the eigenvalues and eigenvector

of A k are {-AI'-A 2 , ... ,-A,.} and {d"d2 , •.• ,d.}. Then,

From this result, we can see that G k has the eigenvalues of (-Ai - J1k) and has the same

eigenvectors as A k • By increasing J1k until (-Ai - Jik) < 0, Gk can be made negative

definite and will be invertible.

The J1k has a very meaningful interpretation. As Jik increases to very large value,

the Marquardt-Levenberg algorithm approaches the steepest ascent method, and as J1k

decreases to zero, the algorithm becomes Newton's method. This Marquardt-Levenberg

modification provides a nice compromise between the speed of Newton's method and the

guaranteed convergence of steepest ascent.

66

Marquardt-Levenberg Modification to Modular Network

To use the Marquardt-Levenberg algorithm for Modular Networks, we have to

modify the performance index, so that it will work on a window of data. Hence, the

notations use in the Chapter are slightly different than in Chapter IV. For a complete

listing of symbol notation, see Appendix D. Since the performance index of the modular

network is the log-likelihood function described in equation (3-1), and proportional to the

sum of the log likelihood function over the training set, we can define the performance

index as the sum of the log likelihood functions over the training set,

Q N I (.)T(.)
J - "1 " -2" Yq -Yi,q Yq -Y"q

- L.J n L.J gi ,q exp
q=l i=!

Let

N I (.)T (.)
J

- 1 ~ -"2 Yq -YI.q Yq -YI,q
q - n L.J gi,q exp ,

i=l

then, the sum of the log-likelihood function over the training set becomes

Q

J =" JL.J q.
q=1

(5-10)

(5 - 11)

(5-12)

The lq is the performance index at lh data. Since the performance index is a scalar, the

subscript will always denotes the qlh data. To derive the Marquardt-Levenberg

modification for Modular Networks, we need to find the Jacobian and Hessian of the

performance index with respect to the all the weights in the network.

67

Gradient Calculation

We first note from appendix B that the total weights and biases of the modular

network are defined as x, which contains the weights' and biases' of the experts, rl ... rN,

and gating, z, such that

rl

r2

X=

r N

z

where

(5-13)

b l
J, ... bs~,r (5 - 14)

contains the weights and biases in ith expert network and

Then, the total gradient for the modular network is

(5-15)

JJ
ax f JJq

q=l drNf c)Jq

q=1 dz

(5-16)

Now, define the total output of the network for the qlh input as rnq, we have

Y1.q
Yli.q ~,q

Y2,q
Y2,.q ~,q

m = where Yi,q = and U = (5-17)q q

YN,q
YSM.,.q UN,q

uq

Since the total weights of the network, x, is an indirect function of the performance

index, J, but is a direct function of the total output of the modular network, Illq, we use

the chain rule to relate them,

6

(5-18)

If we define

then we can express equation (5-19) as

dJ amT dj
-=--ax ax am

Expanding this equation, we get

dyJ dyl dyl dy\
T

dj
drl dr2 drN dz dyl
dy2 dy2 dy2 dy2 dj

dJ dr) drz drN dz dyz
- =ax dyN dyN dyN dyN dj

drl dr2 drN dz dyN
au au au au dj
- - - -
dr] dr2 deN (}z au

(5-19)

(5 - 20)

(5 - 21)

69

The term : is the derivative of the performance index with respect to the total

outputs of each expert and gating network, This term is computed as

ajT_[dj dj aj aj]
am - ()YI ()Y2 ,.. ()yN au'

where

~ [~ dl l ~ d12 ~Q]- I

()yj = dyl ",I

...
dy2 i •, dysM dyJ " dysM

i,J ' .. i,a

and

a.i ~ [JI, dJ, JJ(JJ2 ... Jla1
au duJ.J du2, JUN,I JU,.2 duN .Q

(5 - 22)

(5 - 23)

(5 - 24)

The dj and dj are supposed to be matrix but due to the arrangement in the
dyj au

Jacobian matrix, am, we have to pile them into vector form. The term am is the
~ ~

Jacobian matrix; the partial derivative of the total outputs of each expert and gating

network with respect to all the modular network's weights and biases. Since the

individual expert network and gating network are independent of each other, the partial

derivative of an i lh expert network output or a gating network output that is not with

respect to its own networks' weights and biases is equal to zero. Hence, all the off-

diagonal terms in the Jacobian matrix are equal to zero.

70

dyt 0 0 0ar1

0 dy2 0 0
am ar2

- = (5-25)ax dyN
0 0 arN
0 0

c:m
-
dL

Since the off-diagonal terms are zeros, we can calculate the gradient with the following

matrix,

aJ
=ax (5 - 26)

Similar to Chapter IV, we will call the Jacobian matrix in expert i as K(/.dJ, and the

Jacobian matrix in gating as K U .dJ <; where we can view the gating as the (N + It expert;

that is i = G as N+ 1. To find each diagonal term of the Jacobian matrix in equation (5-

22), we will need to use the backpropagation algorithm as described in Chapter IV with a

little modification. This modification is instead of finding the Jacobian for one training

data point, we need to find the Jacobian for a set of training data. Hence, the Jacobian

matrix for the i th expert network will be

7l

(1yli.l (1y"" dyl/.1 dyl/., dyl,.• dyl,,1 dyl,.1

awl awl aw~IR aiT db~11 aw2
db~M I1.1, 1,2 i , , I, 1.1 i

dy2 /.1 dy2 ,.1 dy2 /., dy2/., dy2 ,.1 dy2,.1 dy2/,1

awl ~ aw~l.RI afT db~11 aw2
db~MI1.1, 1.2 I I I 1.1 ,

dyS"'I., dySM dyS" (1ySM dys" dyS" dys"'.1 1.1 ;.1 i,l 1,1 1,\

aT ~ aw~,.RI afT db~" J;T db~M,
()y;

1.1, l.2 i I, 1.1 ,

-= OyJ " Oy, '.' dy',.1 dyl/., dyl,., dyl,., dy".,dr, awl awl dv.J~L.R . db' db~" aw2
db;" I1.1, 1.2 I I, 1.1,

dys'" '.' dys" dys" dysM (1ysM dys" dysMI.' •. 2 .., '.1 1.2 1.1

awl awl aw~I.Ri db l
db;" aw2

db;.. ,'.1, 1.2 I I, 1.1,

dysM dysM dy" dys" dysM dys" Oy ..
I.e ,.e s ,,(J i.O I.e i.Q s '.(J

awl awl aw;I.R, db' db;, aw2
Jb;M, ,(5 - 27)1,1, 1.2, I,

I
1.1,

and the Jacobian matrix for the gating network will be
'.
"
.
'.

JuI,1 JuI •1 Jul •l JUl.) dul,l dul,l d~.l
':
'.

av:.1 av1
1
•2 av~I,R Jq; Jq~1 av~.2 Jq';

Jul ,2 JuI •2 JuI•2 aul•2 Ju I ,2 dul,2 ~,2

av: I av:.2 av~'.R Jq; Jq~, av~2 Jq';

JuI.Q JuI.Q Ju1,Q dul,Q Ju',Q duJ•Q Ju',Q

au av:,1 av:.2 av;',R (Jq11 Jq;, av~2 (Jq~,

- (JUz I JUz.1 duz" (JUz,1 duz,1 (JUz,1 duz,1
.(5 - 28)

dz
av;.l av,1 2 av~'.R (Jq: (Jq~, av~.2 oq~,

(Ju2.Q au2,Q duz,Q duz.Q oU2,Q duz,Q oUz,Q

av;,1 av l
l
,2 av;'.R Jqi Jq~, av~2 Jq:.,

duSM .Q (JUSM .Q aus",Q Jus" .Q aus" .Q (JUSM .Q Jus".Q
av j',l avl

l
.2 av;'.R oq; Jq;, av;, Jq';...,-

When compare these Jacobian matrices on equation (5-27) and (5-28) with equations (4-

43) and (4-62), we have modified them to include all the Jacobian tenns for a entire

72

training set by stacking them in one column. Each Jacobian matrix element for the i th

expert network can be calculated using the following pair of equations,

(5 - 29)

(5 - 30)

where

y,. = YrM is the lh element of the output in the last layer of the i th expert network
1..1/ 1.1/

and Y:,:1 is the kth element of the output in layer m-I of the i1h expert network when input

Pq is presented to the network.

Similarly, each Jacobian matrix element for the gating network can be calculated

using the following pair of equations,

where

dun! duM dam
I q r q , q mK =--=--X--=s

(r,d) G ()qm dam (j,qm I,r G.q ,
I I q I

(5-31)

(5 - 32)

73

u/ = U,M is the tth element of the output in the last layer of the gating network and
q q

U;-I is the kth element of the output in layer m-l of the gating network when input Pq is
q

presented to the network.

Hessian Matrix Computation

The Hessian matrix is calculated by taking the second derivative of the

perfonnance index, lex), with respect to the modular network parameters x. Since the

parameters are composed of the weights and biases in each expert and gating, the Hessian

matrix will gives

a2 l a2 l a21 a21
de 2 -- --

deiJr) JrNdrl (hdr
ll

a2l a2 l a2 1 a21
--

de 2
--

a2l delJr2 drNdr2 (hdr22

ax2 -
(5 - 33)

a2l a2l ;P 1 a2 l

dr 2 --
iJr1iJrN dr2drN (hdrNN
a2l a2 l a2 J a2l
-- -- --
del(h de2(h drNdL (h2

As seen in the Hessian matrix, we can divide the matrix into four sub-matrices; that are

the second derivative of the weights and biases in experts-experts, experts-gating, gating-

experts and gating-gating.

Recall the calculation of gradient on equation (5-20),

al am T ()j
-=--ax ax ch

(5 - 34)

-
74

By applying the results that the off-diagonal terms in the Jacobian matrix ~ are equally

to zero, we can also denote them with the following pair of equations:

aJ _(du)T a.i
CIz- dz duo

(5 - 35)

(5 - 36)

Hence, to calculate the Hessian matrix, we can compute the derivative of modular

network's weights and biases with respect to the above pair of equations. It turns up that

a2 J a2J a2J
we have four second derivative terms to compute; that are -- '-2' Clzar. ,and

arjar; dz ,

a
2

J . These four second derivative terms are also the sub-matrices in the Hessian
arjdz

matrix. The detail of how these four second derivative terms are computed is shown in

Appendix C. The results of these terms are summarized below:

I·,
~

• I
: I

r••·..

(5 - 37)

where

(5 - 38)

75

(5 - 39)

where

(5 - 40)

(5-41)

(5 - 42)

It is interesting to note that all four terms have a very similar solution. In fact, the

Hessian matrix is different only on the diagonal terms where there are H(x) and B(x)

added. If we assume the H(x) and B(x) terms are small and negligible, then equations

(5-37) and (5-39) become
'.
",
"

(5 - 43)

':j
"

and

(5-44)

If we substitute these sub-matrices in equations (5-41), (5-42), (5-43), and (5-44) back

into the Hessian matrix in equation (5-33) and reorganized them, we can obtain

8' J = (ihnn~yon
dx. 2 dx. am 2 dx.

where

(PJ J2J J2J J2J

dy/
--

, dy2dyt dy Ndyl Judy I

J2J J2J J2J J2J

J2J dyJdy2 dy/ dy Ndy2 Judy 2

=am2
J2J J2J J2J J2J

dytdy N dyi)y N Jy N2 JudyN
J2J J2J J2J J2J
--
dy1Ju dy2 Ju dyN du Ju2

and

dyl 0 0 0
del

0 dy2 0 0
Jrn dr2
- =
dx. dyN0 0

drN
0 0

Ju
-
(fL

Each individual terms in the ~ matrix are calculated as

~(JJJ=h;(-I)+(Y· -y;)(hk-hA)(Y· -Ykt if i=k
dyk dyi

=-(Y·-Yi)(h,hk)(y'-Ykf if i:f-k

(5 - 45)

(5 - 46)

(5 - 47)

(5 - 48)

76

,

:'1I'
"

"
~

~
I

if i = j

if i:f. j

(5 - 49)

77

~J~)=(h,-h.')(Y·-y,f if i=j

=-hjhj(y*-yjf ifi:f.j

~J~}(h;-h;2)(y'_y,) jf i=j

=-h,hj(y* - Yi) if i:f. j

(5 - 50)

(5-51)

The complete calculation detail are shown in Appendix C-V to Appendix C-VIII. It is

interesting to note that the ~(aJ)and ~(aJ) are mirror image of each other. In
aUj dyi dy j au;

fact, the a
2

~ matrix has all the upper right off diagonal terms mirror imaging all theam

. 7 (.)(.)7lower left off dIagonal terms. Let e jei = Y - Yj Y - Yi ,then

,

"
I,

11

I

-~I+(~ _~2)eI2T

-(~~)ele2T

-(hJhN)e]e/
(hI - ~2)elT

-(h,~)e/

-(~hN)e/

(~ _~2)el

-(~hl)e\

-(~hN)e2eN
T

-(J~~)eIT

(~ -h/)e/

-(~hN)eN
T

-(~~)e2

(~- ~2)e2

-(hNht)eNe.
T

-(hN~)eNe/

-(h1hN)e N

-(~hN)eN

78

-(hNhl)el

(hI _~2) -(8J - 8n
~h. + 8281

-(hN~)e2

~~ +8182

(~-~2)-(82 - 8/)

(hN -h/)eN

~hN + 8.8N

~hN +828N
.(5 - 52)

One way of doing this is to use a for loop and summing each of the Hessian

,
,I
,'I..,
"0
'~

I'

(5 - 53)il; = f(Jrnq)T(4JdrnQ
•

ax q=. ax dm q ax

them; that is

However, since we need the Hessian matrix for a set of training data, we have to batch

matrix produced by each data point q. To do this, we first calculate the experts and gating

Jacobian, on equation (4-43) and (4-64), at qlh data point and substitute them into total

iF]
modular network Jacobian on equation (5-25). Then, calculate the --2 term at qth data

~q

point and multiply them together using equation (5-53) and repeat the process until the

last data point. This method will be suitable for implementation in C++ or FORTRAN.

79

Another way of doing this is to utilize the sparse matrices in MATLAB. To do

this, we can use the experts and gating Jacobian calculation on equation (5-27) and (5-

28). Then, substitute them into the total Jacobian matrix on equation (5-25). The a
2

~ iam

calculated in such a way that it includes a window of data, stacking them diagonally. For

example

-(~,Ih,.1)e2,J e,,1 T 0 0

;,(~}
-(~,2h,.2)e2 .2e1,2 T 0

0
. (5 - 54)

0 0 -(~.Qh,.Q)e2 ,Qel.QT

Once the~ matrix is made available, then find the Hessian matrix using equation (5-

45). Take note that utilizing the sparse matrices in this algorithm is essential otherwise

the a
2

~ needs to store all the zeros and it will be memory intensive. By utilizing theam

sparse matrices, the zeros is indicated by just the index and save a lot of memory,

I
'"

'I
"'!I,
"•,.
"

II
\

80

Marquardt-Levenberg Modification to Approximated Newton's Method

Since all the off-diagonal terms are exactly the solution of the second derivative

we are using the exact Newton's methods on all the off diagonal terms. Meanwhile, since

we assume the H(x) and B(x) to be small, we are using the approximated Newtons'

methods on all the diagonal terms. Hence, we will be using the Marquardt-Levenberg

modification to the approximated Newton's methods in the modular network:

(5 - 55)

The parameter J1 is multiplied by some factor f3 whenever a step would result in

an increased in J(x). When a step reduces J(x), J1 is divided by f3. When J1 is large, the

algorithm becomes steepest ascent method and when J1 is small, the algorithm becomes

approximated Newton's method.

I

'.

,~ I.',.
"

"
I~,
\
I

81

CHAPTER VI

MODULAR NETWORK ALGORITHMS
COMPARISON

Comparison of Learning Algorithms for the Modular Network

To test the capability of Marquardt-Levenberg (ML) modification for the modular

network, we have tested the algorithm on five simple function approximation problems

using several network architectures. Two other learning algorithms, Steepest Ascent (SA)

and Resilient backpropagation (Rprop), were used on the same test problems to provide

a baseline performance comparison. Since the Rprop algorithm has not been discussed,

we will explain how the algorithm works in the following,

Resilient Backpropagation (Rprop) Algorithm

Rprop is the most recent gradient based learning algorithm [13]. Its convergence

speed in multilayer networks is equivalent or slightly better than Quickprop. The basic

principle of Rprop is to eliminate the harmful influence of the size of the gradient on the

weight step. Only the sign of the derivative is considered to indicate the direction of the

weight update. The size of the weight change is exclusively determined by a weight-

specific, so called 'update-value' Il j ,j:

"
: I
"'I
'I
";
~,
I

-~. (k) , if
I.}

Aw. .(k) = +~. (k), ifI.J I.}

o if

aJ(k)
-->0aw..

I.}

aJ(k)
--<0aw..

I.}

else

(6 - 1)

2

The second step of Rprop learning is to detennine the new update-values ~ . .(k) based
I,)

on the sign dependent adaptation process.

r(x ~i)k - I) , if

~i.j(k)= 7fx~i)k-l), if

~ .. (k-l),
'.}

where 0 < 7]- < 1< 7]+ .

aJ~(k-.....:..I) x_aJ_(k_) > 0
aw. aw..

I,} I.}

aJ(k -1) x _aJ(_k) < 0
aw.. aw.

'.} I.}

else

(6 - 2)

All update-values are initialized to a value ~II' The choice of this value is rather

uncritical for the multilayer network, a typical value is 11
0

= 0.1. To prevent the weight

changes from becoming too large, a maximum upper bound I1 malt is set for each I1 j •i ; a

typical value is Amax = 50 . The increase and decrease factors are typically fixed at

7]+ = 1.15 and 7f = 0.7 . These values are based on empirical tests.

"

"I,

"

3

Evaluation Methods

To accurately evaluate the speed of these three algorithms, we evaluate tbe

performances in two stages. In the first stage, ten random initial weights and bia e: are

selected and used throughout each test problem for the three learning algorithms. Take

note that the parameters in each algorithm are set to a fixed number which are used

throughout the test problem in this stage. For the SA algorithm, the learning rate, a , is

set to 0.1. For Rprop, the typical values that were described previously are used:

1]+ =1.15, 11- = 0.7 , 11
0

= 0.1 and I1 max = 50. For the ML algorithm, the initial J1 is set

to 100, and the increasing and decreasing factor f3 is set to 5. The average number of

epochs and flops are calculated for those trials which converge.

In the second stage, we select four sets of initial weights and biases that give the

best results in the first stage for each problem, Then, we try to fine tune the parameters in

each algorithm for each specific initial weights and biases. It required many runs to fine

tune these parameters to give the best possible results for each set of random initial

weights and biases. The results are plotted in terms of the sum of squared error versus the

number of floating point operations as shown in Figure 6 - 1 to Figure 6 - 4. Also, the

average number of epochs, average number of floating point operations and relative speed

are summarized for each problem. In both stages, the relative speeds are obtained by

dividing the average number of flops for each algorithm by the smallest average number

of flops.

This second stage evaluation will provide us with an accurate evaluation of the

speed comparison on these algorithms. This is because the first stage comparison might

,,·,
II
"j

II

I', ;
d
II·,
"·,
.11
"
'II
, ,
•"
I

"
'I

"
It
01
I,

'.

84

contain a large fluctuation, since some initial weights and biases might take longer to

converge. Also, the second stage will provide us some measure of how diversified the

first stage is. Since the SA algorithm is very slow in converging, we excluded the SA

algorithm for the second stage evaluation.

Training Set

The training set used throughout the first four problems is an absolute value

function. This absolute value function is chosen because it contains a sharp change at the

point (0,0) which modular network is very good at capturing. This training set consists of

21 input/output pairs which cover the interval [-1,1]. Throughout these first four

problems, two expert networks and one gating network will be used. We will compare the

speed of the three learning algorithms while varying numbers of layers in the expert

and/or the gating network.

On the fifth problem, we will use a sawtooth function as the training set. This

sawtooth function consists of 21 input/output pair which cover the interval [-1, I] and it is

shown in the top left plot of Figure 6 - 5 with a + mark.

-
85

Problem #1

In this test problem, each expert network has a 1-1 architecture with linear output

function, and the gating network has a 1-2 architecture. The stopping criterion i et at

sum of squared error of 10-4
.

Table 6 - 1 summaries the first stage evaluation result of the three methods for an

average of ten trials. When we compare the average number of epochs required to

converge, the ML shows about 5 times fewer epochs than the Rprop and about 1100

times fewer epochs than SA. However, the average number of epochs provides limited

information, since the three algorithms do not have the same number of floating point

operations (flops) per each iteration. As shown in the last column, the ML algorithm is

about 1.665 times faster than the Rprop and about 385 times faster than the SA method

for the 10-4 stopping criteria.

Epochs Floating Point #of Relative
Operation Successes Speed

ML 16.6 266685.6 10/10 1
Rprop 77 444229.8 10110 1.665
SA 19567.2 102842201.5 10/10 385.6

Table 6 - 1. First Stage Algorithms Comparison for Problem #1

In the second stage, we fine tuned the four best sets of initial. weights and biases

that we obtained in the first stage. The results are summarized in Figure 6 - I and Table 6

- 2. In Figure 6 - 1, the sum of squared errors versus the number of floating point

operations for each algorithm are plotted (solid line - ML , dashed line - Rprop). As

shown, Rprop is initially faster than ML but ML takes over Rprop later. This is not

6

surprising because ML takes about 3 time more flop than the Rprop for each epoch. A

shown in Table 6 - 2, the average number of epochs and average number of floating point

operations for both algorithms show an improved performance after fine tuning the

parameters. The relative speed comparison in term of flops shows that ML is still about

1.66 times faster than the Rprop. This indicates that the results obtained in the first stage

are quite accurate.

Comparison of Fine Tuned Rprop and Marquardt for Problem I

, I

; I
'.
••

\

\
\

I

I,,

3.53
10-5 l..-... L-__--.J'--__--' ---l --'- --l. --'- -.l

o 0.5 1 1.5 2 2.5
floating point operations (flops)

Figure 6 • 1. Comparison of ML and Rprop algorithms

Epochs Floating Point Relative Speed
Operation

ML 1) 170623.25 1
Rprop 54.75 282621.5 1.66

Table 6 • 2. Second Stage Algorithms Comparison for Problem #1

87

Problem #2, Increasing the Size of the Gating Network

In this test problem, we took the modular network architecture of problem #1 and

added a tan-sigmoidal hidden layer to the gating network. Hence, the gating network has

a 1-2-2 architecture. The stopping criterion is set at a sum of squared error of 10-4. Table

6 - 3 summarizes the first stage results. As shown in Table 6 - 3 the ML is still

approximately twice as fast as Rprop and about 124 times as fast as SA when comparing

the relative speed in term of flops. When comparing the average number of epochs taken

to converge with problem # I, it seems that by adding a hidden layer, the algorithms take

fewer epochs to converge, except for the Rprop.

Epochs Floating Point # of Successes Relative
Operation Speed

ML 12 381020.14 10/10 1
Rprop 87.11 786340.33 10/10 2.063
SA 5660.2 47277739.2 8/10 124.08

Table 6 • 3. First Stage Algorithms comparison for Problem #2

However, after going through the second stage to fine tune the parameters, Table

6 - 4 reveals that Rprop takes an average of 41 epochs to converge for the four initial

weights selected from stage one. That is less than the second stage average number of

epochs in problem #1. This result indicates that the Rprop does take fewer epochs to

converge in problem #2 than problem # I. It also implies that adding a hidden layer to the

gating network improves the convergence.

When comparing the average number of flops it takes to converge in stage one

and two, the Rprop has shown an improvement from 786340.33 to 354798.25. This

could indicate the first stage Rprop results are not very accurate. This inaccuracy is also

\
•'.'\
I

, I

".,•
'11 1

\
'I

I

!
·1
I
!
'.·I

,:1,
'!

8

reflected in the relative speed, where the ML is shown to be about 1.48 times faster than

the Rprop in the second stage rather than 2.06 times in the first stage.

While Table 6 - 4 summarizes the average results, Figure 6 - 2 shows the

sum of squared error versus the flops for four sets of initial weights and biases selected

from the first stage. Again, a similar phenomenon occurs, that is Rprop leads in the SSE

in the beginning and ML takes over later.

Epoch's Floating Point Relative Speed
Operation

ML 7.75 239470 1
Rprop 41 354798.25 1.48

Table 6 - 4. Second Stage Algorithms Comparison for Problem #2

Comparison of Fine Tuned Rprop and Marquardt for Problem"

,­ , •
\'
1
I
:

\
\ ...

/ ' "-
\ 1\ 1 1

I' I
, I I I 'I ~ I

, 1\', I I I' " f
\ I \ / I I I I ' , I I'
'I I I! I I \ I \ I 1 II

~ I I I I I \ \
I II II 1/ I I , 1\ II \

/ I \I I I I,
I 'I \ I III II

II \' \' I "
~ I I I

II I

II I

11 I
I \

\

\

\

I
10-5 L--__L....__..L-__...L.-__...L.-__...L..-__...L..-__.....L....__-I-__-'-__-'

o 0.5 1.5 2 2.5 3 3.5 4 4.5 5
floating point operations (flops) x 105

Figure 6 - 2. Comparison of ML and Rprop Algorithms for Problem II

8

Problem #3, Increasing the Size of the Expert Network

In this test, we added a tan-sigmoidal hidden layer, 1-2-1, to each expert network,

while retaining the 1-2 architecture of the gating network. The stopping criterion is et at

a sum of squared error of 10-3
. Due to the long training time of the SA method, it i not

used in this test problem. As shown in Table 6 - 5, the Rprop algorithm takes about 2.3

times as many flops as ML to converge in the first stage testing. Also, ML converges 9

times and Rprop converges 7 times. This seems to suggest that ML converge more often

than the Rprop. For a much accurate comparison, the second stage results are shown on

Table 6 - 6. As shown, the Rprop takes about 1.58 times as many flops to converge than

ML which is less than the first stage. Again, this phenomenon has sugge ted that the first

stage result has many fluctuations.

A plot of the sum of squared error versus the number of floating point operations

on the four selected sets of initial weights and biases, Figure 6 - 4, seems to uggest that

the error surface on this network architecture is rough. This is especially true as Rprop

shows many spikes during the course of convergence (implies that the weight space i

very sensitive, a small change will result in a big error) and ML shows a very flat surface

during the course of convergence (implies that ML takes very small steps in this region).

Also, the same phenomenon shows up again where Rprop leads in the beginning of the

training while ML takes over later.

Epochs Floating Point # of Successes Relative
Operation Speed

ML 58 2521575.142 9/10 1
Rprop 521.5 5914616.4 7/10 2.346

Table 6 - 5. First Stage Algorithms Comparison fOT Problem #3

-
o

Epochs Floating Point Relative Speed
Operation

ML 27 1079905 1
Rprop 196.75 1660871 1.54

Table 6 • 6. Second Stage Algorithms Comparison for Problem #3

Comparison of Fine Tuned Rprop and Marquardt for Problem III

j'
,I

"
".'2.5

X 10
6

2

10-4 L- ..L- ..L.- ...l-- ...l-- -----I

o 0.5 1 1.5
floating point operations (flops)

Figure 6 • 3 Comparison of ML and Rprop Algorithms for Problem III

91

Problem #4, Increasing the Size of both Expert and Gating Networks

The fourth test problem adds a tan-sigmoidal hidden layer to both the expert and

the gating networks. Each expert network has a 1-2-1 architecture, and the gating network

has a 1-2-2 architecture. The stopping criterion is set at a sum of squared error of to-3
. A

shown in Table 6 - 7, the Rprop algorithm requires 5 times more flops than ML to

converge in the first stage testing. Meanwhile, as shown in Table 6 - 8, the Rprop

algorithm requires about 2.2 times more flops in the second stage testing. This large

variation seems to be caused by the increasing complexity of the network architecture.

Nevertheless, this indicates that as network complexity increases, the network training is

very sensitive to the parameters of the algorithms. Table 6 - 8 also shows that as the

network complexity increases, ML can converge much faster than Rprop. A plot of the

second stage results, Figure 6 - 4, have indicated that Rprop seems to encounter shallow

error surfaces and has a hard time to converge. This shows that the convergence speed

difference will become more pronounced when a lower stopping criterion is et.

Epochs Floating Point # of Successes Relative
Operation Speed

ML 25.4 1510953 9/10 1
Rprop 890.9 7467667.4 6110 4.94

Table 6 • 7. First Stage Algorithms Comparison for Problem #4

Epochs Floating Point Relative Speed
Operation

ML 9.75 642584 I
Rprop 120.5 1425887.25 2.22

Table 6 - 8. Second Stage Algorithms Comparison for Problem #4

-
92

Comparison of Fine Tuned Rprop and Marqua.rdt for Problem IV
10 2 .---___,__---~--___,__---~--___,__---r_--__r_---r_--_.

16 18

x 10
5

146 8 10 12
floating point operations (flops)

42
10-5 l.-__---'- .L-__---'- .L-__---'- .L-__---'-- .L-__....J

o

Figure 6 • 4. Comparison of ML and Rprop Algoritbms for Problem IV

Problem #5

In this test we will approximate the sawtooth function which is shown in the top

left corner of Figure 6 - 5 (with the + mark). We use a modular network that contains 4

expert networks and a gating network. Each expert network has a one layer 1-1

architecture with a linear transfer function, and the gating network has a 1-4 architecture.

All three algorithms are used in approximating this sawtooth function, but as shown in

Table 6 - 9, only ML successfully trains in the first stage testing with a low successful

rate, two out of ten. We tried to tune the parameters for Rprop so that it would

approximate the sawtooth function but of no avail. Figure 6 - 5 shows a case where a

modular network successfully approximated the sawtooth function with the ML

93

algorithm. In the top left plot, it shows the sawtooth function (the + mark) and the

modular network output response (the solid line). As shown, the gating network is able to

divide the region into four sections (top right plot) and assign each expert network to

learn one region (lower left plot). The lower right plot is the learning curve of the

network. The dash-dot line is the sum of squared error and soLid line is the negative

performance index.

This sawtooth approximation has provided us some insights into how the modular

network works. However, the two out of ten success rates has suggested the difficulty of

this test problem. Nevertheless, it indicates that ML can converge on some difficult

problems where Rprop and SA cannot converge.

Epochs Floating Point #o(
Operation Successes

ML 95.5 18268004 2110
Rprop - - 0/10

SA - - OlIO

Table 6 • 9. Algorithms Comparison for Problem V

94

0.5t---~--+--~---+

2r--~--~-~----.,

Gating Network Output

\f \1 \1

0.2

0.4

0.8

0.6

Performance Error and SSE
10

2 r-------------,

-0.5 0 0.5
Input

Expert Networks Output

O'-----+--~--+---~

-1

Function Approximation

+
.,.0.4
(J)

~
~ 0.3
,
5°·2
a.
'5
0 0.1

-1
\

\

\

:I'
"

'10
"I,
",",

10·4'--- ~ ___J

10° 10' 102

Epochs

0.5o-0.5
·2'----~--~-~---J

-1

Figure 6 - 5. Approximating the Sawtooth Function ,II
•

'1
·1

Summary

In this chapter, several tests were performed to test the Marquardt-Levenberg

'I
,',
'I.

algorithm for the modular network. As shown in the five tests above, the ML algorithm

converges much faster than the Rprop and SA algorithms. These effects become more

pronounced when a lower stopping criterion is set. Also, as the complexity of the network

increases, we can see that Rprop converges less often than ML. The author also finds

that the parameters for each algorithm are very sensitive; a slight variation in the

parameters may result in longer training. Throughout the tests, adding a hidden layer in

..
95

the gating network seems to speed up the converging rate. The succes rates in problem

#5 have suggested that more research needs to be done in selecting the network

architecture. We will leave this to the next Chapter, where we will examine some

network architectures and a gating weight initialization method to speed up the training of

the modular network.

96

CHAPTER VII

MODULAR NETWORK PERFORMANCE

In this Chapter, several preliminary simulation results are discussed. In test I, we

will see a comparison between a modular network and a two-layered feedforward

network with varying hidden layer. This test demonstrates the superiority of the modular

network over the multilayer network for certain problems. In test 2, a two-cycle sinusoid

is used to test the modular network. This test demonstrates the strengths of modular

networks. In test 3, a four-cycled sinusoidal test pattern is used to test a modular network

that has 5 expert networks. This simulation shows a case where the modular network fail

to converge. Test 4 and test 5 offer some ways to improve the performances of the

modular network. One way of improving the modular network is to use the what and

where modular network, and this is demonstrated in test 4. Another way of improving the

modular network is shown in test 5. This improvement is to develop a weights

initialization method to preset the gating network's weights. In test 6 and test 7. we will

demonstrate the capability of modular network in approximating the coulumb friction

model and the classical friction model. Lastly. in test 8, we will use the modular network

to model a single linked pendulum that contains a coulomb friction. This test

demonstrates an important application of the modular network in system identification.

97

Test #1 Comparison of Multilayer Networks and Modular
Network

Test Function: Absolute Value Function

In test 1, we compare the capability of the modular network versus the multilayer

network in implementing a function with discontinuous derivative. The te t pattern is an

absolute value function over the interval [-1,1]. The modular network has two expert

networks. Each expert network has a 1-2-1 architecture with a hyperbolic tangent

function in the first layer and a linear function in the second layer. The gating network has

a 1-2 architecture. Meanwhile, the multilayer network has a I-N-I architecture with

hyperbolic tangent functions in the first layer and a linear function in the second layer. N

is the number of hidden neurons and is selected to be N=2, 10, 20. Hence, we will

compare three two-layer networks with one modular network. The intention of this test is

to see how many hidden neurons, N, are needed to train the absolute value function. Both

networks are trained using the Marquardt-Levenberg algorithm. The algorithm stops if it

reaches 1000 epochs or if the magnitude of the gradient is less than 10-5
.

~,
'.

9

The Learning Curve of three 1-N-1multilayer network and a modular network

....... -. "

"
"

..'>.,. -..,.. , ..- - ... ,

- -,

10·10,--_~_~~~~~>--_~_~~~~~>--_~_-,--~-,--~-,--,--,
100 10' 10

2
103

epochs

Figure 7 - 1. Learning Curve of 3 Two-layered Network and a Modular Network

Figure 7 - 1 shows the learning curves of these 4 networks. The 1-2-1 network is

indicated by the dash-dot line and it has the highest sum of squared error. As shown, the

network stops learning at 22 epochs. Meanwhile, the 1-10-1 and 1-20-1 networks,

indicated by dotted line and dashed line, have a lower sum of squared error than the 1-2-1

network. However, when we compare them to the modular network, the modular network

has a lower sum of squared error than any of the two-layer networks.

9

of Parameters SSE PeIcenta~e Erro'r

Multilayer Networks
1-2-1 network 7 0.131558 36.8212%
l-lO-l network 31 6.345857 X 10-5 0.7966%

l-20-1 network 61 8.761381 X 1O--{; 0.2960%

Modular Network
each expert 1-2-1, gating 1-2 18 5.364634 X 10-10 0.0023%

Table 7 • 1. Comparison of Multilayer and Modular Networks

Table 7 -] compares the number of parameters, the minimum sum of squared

error and the percentage error in each network. The modular network uses only 18

parameters and has a lower percentage error than all three two-layer networks. Also, it

takes less training time than any of the multilayer networks.

Considering the above test, the modular network seems to be a very good

candidate for discontinuous functions.

Test #2 Sine Wave Testing I

Test Function: Two-Cycled Sine Wave

The modular network used in this two-cycle sine wave test (+ mark in Figure 7 - 2

) is a modular network with two experts and a gating network. Each expert network has a

] -2-1 architecture, with hyperbolic tangent functions in the first layer and a linear

function in the output layer. The gating network used in this test is a single layer with 1-2

architecture. As shown in Figure 7 - 2, the gating network is able to assign each expert to

one cycle of the sine wave and approximate the two-cycle sine wave function to a sum

squared error of less than 10-5
. Interestingly, if a 1-2-1 multilayer network is used to

100

approximate this two-cycle sine wave function, the minimum urn of quared error it can

reach is 10-3
.

21o

10
1

Epochs

-1
O'-----~-~'----''''--~'-------.J

-2

Gating Network Outputs
1.----..--....---..-,......--.------,

-..
----..

0.6

0.2

0.4

0.8

10-6 '--- -'--__~___J

10°

Performance Error and SSE
102

.-------.-------,

2

2

1o-1

-1 0 1
Input

Expert Networks Outputs
3.----..----~--~---,

Function Approximation

1

2

o

2.----..----....--------"to+1oo.----,

-1 '---__~__-'--___L_____'

-2

-::Ja.
'50.5
o

Figure 7 - 2. Two-cycle Sine Wave Testing

Test #3 Failure in Training

Test Function: Four-Cycled Sine Wave

In this test, a modular network with 5 expert networks is used to approximate a

four-cycle sinusoidal function. Each expert network has a 1-2-1 architecture with tan-

sigmoidal and linear transfer functions. It is shown in the plots in Figure 7 - 3 that the

101

gating network uses only two expert networks and turns off the other three expert

networks. The sum of squared error dashed line as shown in the lower right of

Figure 7 - 3, reaches 10-3
. As we have noted from test #2, a 1-2-1 multilayer network can

only train to a sum of squared error of 10-3
. Hence, it is not surprising that this network

reaches the same minimum point. This shows that as the complexity of the network

architecture increases, it becomes harder and harder to train the modular network because

of many local minimum and local maximum points which exist during the course of

training. To avoid these cases, we will look into several ways to improve the training

particularly: the what and where modular network architectures and the gating weights

initialization method.

Function Approximation Gating Network Outputs

6r---~--~-~-----'

0.5a-0.5

Performance Error and SSE

O'---~~---'-''"'---~----'

-1

0.4

0.2

0.6,

0.8

-0.5 a 0.5
Input

Expert Networks Outputs

O'-----~..........~~-~------'
-1

+
"Ei 1.5
rn

~
1- 1

-S
a.
:; 0.5
o

-2

0.5

10.4 L-__~ ~ --'

10° 10' 102
10

3

Epochs

Figure 7 - 3. Four Cycles Sine Wave Testing

a-0.5
-4'----'----~-~~----'
-1

102

Test #4 The What and Where Modular Network

Test Function: Absolute Value

Expert Network IH

p

y-

.. -------- .. --.--.

Figure 7 • 4. The What and Where Modular Network Architecture

To compare the performance of the modular network with the what and where

modular network, we use the architecture shown in Figure 7 - 4 to approximate the

absolute value function over the interval [-1,1]. In the first architecture, MA# I, we feed

the same input pattern into both the expert network and the gating network, p = p .

Hence, this network has no pre-information of how the data should be divi.ded. In the

second architecture, MA#2, we feed the gating network with the sign of the test pattern;

that is if p ~ 0 then p =1 and if p < 0 then p =-1 . In the third architecture, MA#3, the
- -

gating network is fed with binary information, using 2 inputs. The gating network

receiyes l' = [~] if the input p ;, 0 and receiyes l' = [~] if the input p < o. Each

103

modular network is trained using the Marquardt-Levenberg method until the sum of

squared errors reach 10-4
. In all ten trials, the weights and biases in the modular network

are randomly initialized. The initial J1 is set to 100 and the increasing and decreasing

parameter, f3, is set to 5.

The Learning Curve of 2 What &Where Modular Networks and a Modular Network
10' .----.,.-----,------,---..------.------,------,----,

"..

...
\
\

\

\
\

\

\

\
\
\

\

\
\

\
\

\
\

\
\

\

161412
10·5 l..-.----'------..l.-----'----L----'---__-..l.-__--'-__--l

a 2 4 6 8 10
epochs

Figure 7 • 5. Learning Curve Comparison of 3 modular networks

Figure 7 - 5 shows the learning curves of the three different modular networks

described above. The MA#l, MA#2 and MA#3 are represented by the solid line, dashed

line and the dotted line, respectively.

104

Network Architecture Number of Success in 10 Average # of Epochs
trails

MA#1 10110 16.375 epochs
MA#2 10110 11.5 epochs
MA#3 10110 7.5 epochs

Table 7 - 2. Comparison Table of 3 Different Modular Architectures

Advantages of Using What and Where Modular Network

Table 7 - 2 summarizes the number of successes and the average # of epochs in lO

attempts on the 3 architectures described above. As shown in Figure 7 - 5 and Table 7 - 2,

MA#1 takes longer to train than MA#2 and MA#3. This comparison tells us that we can

achieve faster convergence in training by providing the network with more precise

information on how the data should be divided. From Table 7 - 2, we can see that all three

network trained successes. Meanwhile, when we compare MA#2 and MA#3, the MA#3

trains slightly faster than the MA#2. This implies that the stronger the condition given to

separate the classes, the faster it trains.

Disadvantage of Using What and Where Modular Network

There are two disadvantages of the what and where modular network. First, when

there is no classification information given, then we cannot use the what and where

modular network, because we do not know which information belongs to which class.

Another disadvantage is that we cannot compute the derivative of the outputs of the

network with respect to the network inputs. This is especially important when we use a

modular network to model a plant and we want to backpropagate from the modular

1.05

network plant to the controller. For example, the what and where modular network cannot

be used for modeling the plant in Model Reference Adaptive Control.

Test #5: Weight Initialization Method

Test Function: Absolute Value Function

In this test we will develop a weight initialization method for a single layer gating

network with 2 expert networks. In Chapter 3, we discussed how the weights and biases

affected the decision region. Here, we will discuss this effect in more detai1.

The basic idea behind the weight initialization in the modular network is to set the

weights and biases in the gating network based on the input data, so that each expert

network gets to learn a region. Take a case where we have 2 expert networks, then it is

desired to have 2 regions classified based on the input to the gating network. If we have

an input P into the gating network, then the output of the gating network will be

exp(vIP+q,)
g I = -----'---(-'----

exp(vIP+q,)+exp V 2P+q2)

and

gl and g2 can be rewritten as

(7 - I)

(7 - 2)

(7 - 3)

106

and

(7 - 4)

Then, the decision boundary occurs at exp(V2P + q2) = exp(V1P + ql) or

(7 - 5)

This is consistent with our discussion in Chapter 3 where we said that the decision

boundary depends on the distance between the weights and biases. Let

P
= Pmax - Prnin

mid 2

Then, our desired decision boundary will be at

If we randomly select VI ,v2 and q, ' we can get q2 by

(7 - 6)

(7 - 7)

(7 - 8)

We randomly selected VI ,v2 and qj in the interval [-10,+10] and retrained the

MA#l architecture in test #3 with and without this new weight initialization procedure.

Figure 7 - 6 shows the learning curves of the modular network trained with and without

weight initialization using the Marquardt-Levenberg algorithm. With weight

initialization, the network trains a lot faster than without weight initialization. In the

107

average over ten trials, the network takes 11.2 epochs to converge to SSE=lO-4. In fact,

the speed is comparable with the MA#2 in test #4.

The weight initialization for the case of more than 2 experts and more than 1 layer

in the gating network is still under development.

Learning Curve of MA With and Without Weights Initialization
10

2

10'

10
0

g10.1

UJ
CIl
Ql...
gJ 10.2
0-

CI)

15
510.3

CI)

10.4

10.5

10.6
0 2 4 6 8 10

epochs
12 14 16 18

Figure 7 - 6. Learning Curve of a Modular Network with and without weights initialization 00 gating
network

108

Test #6 Friction ModeJ Approximation I

Test Function: Coulomb Friction Model

Function Approximation
1.5~--r--__-~----,

Gating Network Output

0.5o-0.5
o'---------~--"""----~

-1

Performance Error and SSE

0.2

0.4

0.6

0.8

-0.5 0 0.5
Input

Expert Networks Output

+ 1.....
CD
C) 0.5....as
f-
- 0I

~-0.5-::J
o -1---.....

-1 .5 L...-__-'-__"''"_____-'--_------'

-1

1.5,.-----.,....---...-----...,-------,

r-::::-..-.

0.5

o

-0.5

-11---------------1

\

\

10
1

Epochs

10-10 '--- -'- ----'

10
00.5o-0.5

-1.5'-----~-~~-~------'
-1

Figure 7·7. Modeling Coulumb Friction Model

To use the modular network to approximate a discontinuous function, in particular

the friction function, our first attempt is to model a simple coulumb friction. We can

think of a coulumb friction as a sign function. We have modeled the sign function over

the interval of [-1,1]. The modular network architecture used in modeling this function

has a I-I, linear architecture for each expert and a 1-2 architecture for the gating network.

As shown in Figure 7 - 7, the modular network is able to approximate the function almost

exactly. When looking closely at the gating outputs, we see that the gating is able to split

109

the region into two sections and allows each expert network to approximate one region. In

this case, the sum of squared error is trained to less than the 10-6 in 34 epochs.

Test #7 Friction Model Approximation /I

Test Function: Classical Friction Model

Function Approximation
1.5

+ ~
1

+-:
<1l
Ol 0.5.....
ell
I-
- 0I

+-:a.-0.5-::J
0 -1

~
-1.5

-1 0 2
Input

Expert Networks Outputs
6

4

2

0

-2

-4
-1 -0.5 0 0.5 1

Gating Network Outputs
1

0.8

0.6

0.4

0.2

0
-1 -0.5 0 0.5

Performance Error and SSE
105

,.....------.,..-----------,

, ,
"

, - - - ,
'" \ ,

'I' \

10
1

Epochs

Figure 7 • 8. Modeling Classical Friction Model

In this test, the modular network is used to train the test pattern (+ marks) as

shown in the top left of the Figure 7 - 8. This function closely mimics the classical

friction model. We can view this function as a force versus velocity of a friction model.

Due to the sharp changes at the discontinuity at zero, two-layer networks are used for the

expert networks. The Marquardt-Levenberg algorithm is used to train the network until

llO

the sum of squared errors is less than 10-4. Again the modular network is able to train this

friction function accurately. When we look closely into how the gating and expert

networks perform, the gating network divides the region into two sections and assigns an

expert network to learn each half of the curve.

From these preliminary tests, it appears that the modular network will perform

better than the multilayer network in modeling the friction.

Test #8 Identification: Plant Modeling
In this test, we will use the modular network to identify a single-link pendulum

that has a coulomb friction non-linearity. This single link pendulum with coulomb

friction is shown in Figure 7 - 9. It is driven by a dc motor with one of its ends attached to

the motor shaft. The mathematical model for this pendulum system can be shown as:

where

d2

0 2 de 10· (0) . (dO)-2-+ -+ .sm +slgn - =U
at at dt

o is the angle of the pendulum and

u is the current applied to the DC motor.

(7 - 9)

111

Figure 7 • 9. The Single Linked Pendulum with Coulomb Friction

To identify a model, we mean to train a neural network to follow the real plant as

close as possible. The plant can be modeled by using the configuration shown in

Figure 7 - 10. According to system identification theory, a nonlinear plant can be

identified by using the current and delayed inputs and outputs relation [141 [15]. Hence,

the inputs of the network consist of the current and previous motor control voltages u(k)

and u(k-l) and the current and previous motor positions y(k) and y(k-l). The output of the

network is the next motor position y(k+ 1). To ee how both multilayer feedforward

networks and modular networks perfonn in plant modeling, we will identify the plant

using both feedforward networks and modular networks.

lL2

y (k + 1)
PLANT p

e&:l)
L :

~ ..
NEURAL YNN (k + 1)--- NETWRG.,RKS)TDLI- PLANT'"---.ITDL ,

.- :

u(k)

Figure 7· 10. System Identification of a Plant

Data Sets

In plant modeling, the most important aspect is to sample enough data for the

neural network model. This data must be able to cover the entire operating range of the

system that you are trying to model. One way to obtain enough data is to use random

initial conditions for position and input voltage, Then, allow the system to run for one

time step and obtain the future, current and previous time step positions and also the

current and previous time steps of input voltage. The single-link pendulum has a full

range motion from the straight downward position 0° to the straight upward position 180°.

Hence, the position is randomly sampled within this range, and the velocity is randomly

sampled between -12 and 12. Meanwhile, the input voltage is randomly sampled from -15

to 15. The sampling rate is chosen at 20 samples a second. We will use the alternative

training methods CATS), as described in [15], to train both the modular network and the

multilayer network. Initially, two data sets, each consisting of 400 data points, were

113

collected and trained. The results were not satisfactory as it did not pa s the parallel test

described in the next section. Further investigation revealed that insufficient data were

collected at low velocity, where the friction effects are the greatest. Hence, another 100

data points were collected for each data set in the low velocity range between -1 and 1. A

total of 500 data points for each set of data was used.

Evaluation Methods

After the neural networks are trained to model the plant, two evaJuation methods

are peIformed on the trained model. These methods are the series-parallel test and the

parallel test. The series-parallel test, shown in Figure 7 - 11, has the delayed actual plant

outputs as the network inputs. On the other hand, the parallel test, shown in Figure 7 - 12,

has the delayed network outputs fed back to its input.

u(k) PLANT

Trained Neural
Network

NNp

Yr(k+l)

YNtl.k+l)

Figure 7 - 11. Series-Parallel Test

u(k) PLANT

Trained Neural
Networks

NNp

y,(k+l)

YN,.,,(k+l)

114

Figure 7 - 12. ParaDel Test

It is obvious that the parallel test is a more difficul t test, because the trained model

does not receive the actual plant input. If the plant model does not exactly match the real

plant, then a small error in each time step will accumulate and become a large error in the

end. On the other hand, the series parallel test receives the actual time-delayed plant input

and therefore has no accumulation error and is much easier to pass. For a trained neural

network model to perform well, the trained model must pass both series-parallel and

parallel tests.

115

Modular Network and Multilayer Network for Plant Modeling

u(k)

u(k -I)

y(k)
y(k -I)

+

Ex.perl
r-----.. Network 1

"------'" Ex.pert
"------'" Network 2

Gating Network
························;,·(ky-········]

Multilayer Soft
Network max

L-..Js,(k)

Figure 7 - 13. Modular Network Architecture

The modular network used in plant modeling has 2 expert networks, each with a

4-8-1 architecture, hyperbolic tangent function in the first layer and linear layer in the last

layer. The gating network is a 1-2 single layer. Since we know that the friction changes

sign when the velocity changes sign, the gating network receives the difference between

the current position and the previous position of the plant. Also, the gating network's

weights are preset to allow one expert to train for positive velocity and the other expert to

train for negative velocity. The network architecture is shown in Figure 7 - 13. Using the

newly developed Marquardt-Levenberg algorithm for the modular network and the ATS

method, the model is trained. As shown in Figure 7 - 14, the sum of square error (solid

line) and the negative performance index (dashed line) both went below lO-4.

116

Learning Curve of Modular Network for Single Link Pendulum with Friction
104

..-----..--------.-.,.....-...........--,-..--r,----,...-----,-,...--.,.........,........."T'""T",----,...-----,r--....-...........,.....,..........,...."

10-5 '--__'------'-_-'----...----'--............-'-__-'------'-_-'-----.L-...I.----'---'----'---'-__-'---------'_.J.-...........---'-~

10° 10
1

10
2

103

epochs
Figure 7 • 14. Modular Networks Learning Curve

Simultaneously, a 4-15-1 multilayer network is also used to model the plant with

the same data set that was given to the modular network. Using the Marquardt-Levenberg

algorithm for the multilayer network and the ATS method, the 4-15-1 network was

trained. Figure 7 - 15 shows the learning curve of the 4-15-1 network. As shown, the

learning curve is saturated at about a sum of squared error equal to]0-3 which is not as

low as the modular network. This could mean a local minimum was reached. However,

after retrained the network several times, the same results were achieved. Hence, this

could be the global minimum.

117

Learning Curve of Multilayer Network of aa Single Linked Pendulum with Friction
103

~-.-----r--r-.,...-..--r-r-..-----r-----r---'--'--'""""T""T"""'-----'--""'--'''''''''''''''''''''''"T""T"T--'---''''''--'''--'-'-'''''''''''''

10 -4 '-----_--'----"----'--'---'--'-'-LL--_--"-----'-----'---L..-..'--'-'...J...L_----'-_~'______'____'__L_'....LJ.__'____'______'___'__'_'............J

10° 10
1

10
2

10
3

10
4

epochs
Figure 7 - 15. Feedforward Neural Network Learning Curve

Model Testing

To evaluate the neural network models, both the trained modular network plant

model and the trained feedforward network plant model are tested using the series-

parallel and parallel tests. As mention above, to accurately model a plant, the trained

neural network model must pass both the series-parallel and parallel tests. On both the

series-parallel and parallel tests, four test cases were selected: 90° free fall (the top left

plot), 10 volt step input with zero initial condition (the top right plot), random initial

condition where x I(0)=2.089 and x2(O)=-0.2778 (bottom left plot) and -10 volt pulse

118

response with xl (O)=pi (bottom right plot). On each plot, the solid line is the actual plant

response and the dashed line is the trained network response.

Series-Parallel Test

Figure 7 - 16 and Figure 7 - 17 show the series-parallel tests of a trained

feedforward network and a trained modular network. As shown in the plot, both trained

networks show excellent response on each test; that is why you only see the solid line

(actual plant response) but not the dashed line (neural network response). Several other

tests were also performed and the results are the same.

90 degree free fall
2..--~--~-~~-~--,

10 volt step input

54321

1.5

54321

o

0.5

-0.5 L..-_~__~_~~_~_----'

o

random input xl =2.089,x2=-0.2778
3..--~--~--~-~----, 4..--~--~-~--~---,

3

2

1

o

-1 L..-_~__~_~~_~_----' -1 L..-_~__~_~__~_----J

01 2345 01 2345
Figure 7 • 16. Series Parallel Test on a trained feedforward network

119

90 degree free fall
2.---~----~--~-___..

10 volt step input
2,.--~--~---.---.........-----,

0.5

o

-0.5 L....-.._----'--'=----_~_~__~_._J

o 2 3 4 5

1.5

2 3 4 5

random input x1 =2.089,x2=-0.2778
3.--------~--~-----,

-10 volt pluse input
4,.-----~--------,

2

2
1

o o

54
-1 L-_~__,,---_~__~_---J

2345 01 23
Figure 7 - 17. Serial Parallel Test on a trained modular network

1
-1 L....-.._~__~_~__~_--'

o

Parallel Test

In the parallel test, the trained feedforward network did not perform very well. As

shown in Figure 7 - 18, the trained feedforward network seems to have difficulty in

capturing the friction effects. In most of the cases, it did not stick as the real pLant does. I

retrained the feedforward network plant several times, but the result was always the same.

While the trained feedforward network has difficulty in capturing the friction effects, the

trained modular network seems to perform fairly well. Figure 7 - 19 shows the parallel

tests of the trained modular network. As shown, the trained modular network response

closely follows the real plant response. Several other test cases were aiso performed and

the results were the same.

120

90 degree free fall 10 volt step input
2 8

1.5
6

1
4

0.5

0
2..

/-0.5 0
0 2 4 6 0 2 4 6

random input x1 =2.089,x2=-0.2778
3 r---------~-------,

-10 volt pluse input
4.----~------------,

64

2

o

1

3

-1 '-----~----~----'
24602

Figure 7 - 18. Parallel Test on a trained feedforward network

2

o

-1 '-----~----~------'
o

90 degree free fall 10 volt step input
2r---------~--------, 2.---------~-----,

642
O"'--------'-----~------J

o

1 -

0.5

1.5

642

o

0.5

1.5 .

-0.5 '--_--=:.._~ ~ --J

o

642

-10 volt pluse input

o

1

2

3

4.-------------------,

-1 '-- ~ ~ _____J

o642

2

o

1

random input x1=2.089,x2=-0.2778
3.------------------,

-1 '-----~-------'------'
o

Figure 7 - 19. Parallel Test on a Trained Modular etwork

-
121

Summary

In this chapter, we have compared the modular network with the feedforward

network and have found that the modular network is superior for many applications.

However, several tests have indicated that the modular networks can be very hard to train.

Hence, two methods of improving the convergence were tested. These methods are the

what and where modular network architecture and the weight initialization method. As

shown in the tests, these methods do speed up the training of the modular network.

In addition, we also showed some applications of the modular network for

implementing discontinuous functions. Several tests have indicated that the modular

network can be used for modeling friction. In one particular test, test #8, we have

demonstrated an important application of the modular network. We have shown the

possibility of using modular networks to capture a friction non-linearity that is embedded

in the dynamics of a single-link pendulum. This clearly implies a possibility of using

modular network in reducing or eliminating friction.

l22

CHAPTER VIII

CONCLUSION

Starting from the basic building blocks in Chapter II, this research has developed a

faster training algorithm for the modular network, described in Chapter V, known as the

Marquardt-Levenberg (ML) algorithm. It is shown in Chapter VI that the Marquardt­

Levenberg algorithm is more than 100 times faster than the Steepest Ascent method (SA)

and about two times faster than Rprop. Hence, it is by far the most promising and the

fastest training method for the modular network which has been reported. Another

algorithm which has evolved in recent years, the Expected Maximization (EM)

algorithm, has been incorporated into the training of the hierarchical modular network

[16] [17]. This algorithm has been shown to be one to two orders of magnitude faster than

the Steepest Ascent (SA) method for the hierarchical modular network. Hence, it would

be interesting to incorporate the Marquardt-Levenberg algorithm into the hierarchical

modular network and compare it with the EM algorithm. However, this comparison is

beyond the scope of this research.

A test in Chapter VII has revealed that the modular network is far superior than

the multilayer network in implementing discontinuous functions. However, the fast

convergence of the ML training algorithm is sometimes hindered by the modular network

architecture, since the performance surface contains many local maximums and local

123

minimums .. Hence, two methods of improving the training, the what and where network

and the gating weight initialization, are discussed in Chapter VII. The what and where

modular network shows significant improvement in the training process, but it can only

be used efficiently if one know how the tasks should be divided. Meanwhile, the gating

weight initialization also shows significant improvement in the training process, but the

weight initialization for the case of more than 2 experts and more than 1 layer in the

gating network is still under development. Nevertheless, both methods show promising

results.

Since the modular networks are capable of implementing discontinuous functions,

several friction functions have been tested. The results have indicated that the modular

networks are capable of implementing friction functions. Moreover, it is capable of

capturing the friction model that is embedded in another system dynamic, as shown in test

8 in Chapter VII. With these capabilities, the modular network can be used in modeling or

possibly controlling a system where the friction is the primary concern. Nonetheless, the

use of modular networks in friction compensation will be a promising method in the

future.

The use of the ML training algorithm for the modular network has opened up

several possible future research areas. First, it would be interesting to incorporate the ML

algorithm into the hierarchical modular network and compare it with the EM algorithm.

Second, we should further investigate methods for improving the training process, such as

setting the initial weights or using the what-and-where modular network. As described

above, the modular network training process is hindered by the network architecture.

124

Specially adapted training algorithms could overcome the problems caused by this unique

architecture. Lastly, we can investigate a number of application areas. A noted above,

modular networks, when trained with the ML algorithm, are capable of implementing

discontinuous functions, such as friction models. Hence, it may be possible to use the

modular network, trained with the ML algorithm, to implement an adaptive friction

compensation control system.

125

REFERENCES

Haykin S. (1994). Neural Networks, A Comprehensive Foundation. Macmillan:
NY.

2 Martin T. Hagan, Howard Demuth & Mark Beale. (1996). Neural Network
Design. PWS Publishing :MA.

3 Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer Feedforward
Networks are Universal Approximators. Neural Networks, 2, pg. 183-192.

4 Jacobs, R.A., and M.I. Jordan, (1993). Learning Piecewise Control Strategies in a
Modular Neural Network Architecture. IEEE Transaction ofSystem, Man, and
Cybernetics. vol. 23,337-345.

5 Bridle, J. (1989). Probabilistic Interpretation of Feedforward Classification
Network Outputs, with Relationships to Statistical Pattern Recognition. In F.
Fogelman-Soulie & J, Herault (eds.), Neuro Computing: Algorithms,
Architectures, and Applications. NY: Springer-Verlag.

6 Bridle,1.S. (1990). Training Stochastic Model Recognition Algorithms as
Networks can lead to Maximum Mutual Infonnation Estimation of Parameters.
Advances in Neural Information Processing System 2 (D.D. Touretzky, ed.),
pp.211-217. San Mateo, CA: Morgan Kaufmann.

7 Sutton, R.S. (1986). Two Problems with Backpropagation and Other Steepest
Descent Learning Procedures for Networks. Pro. Eighth Annual Conference
Cognitive Science Society. 823-831.

8 Jacobs, R.A. and Jordan M.l. (1991). Task Decomposition through Competition
in a Modular Connectionist Architecture: The What and Where Vision Tasks.
Neural Computation, vol. 3, 79-87.

9 Jacobs, R.A. and M.l Jordan, (1992). "Recent Development in Supervised
Learning" Tutorial Notes. International Joint Conference on Neural Networks,
Baltimore, MD.

10 Wilks, S.S., (1962). Mathematical Statistics. New York: Wiley.

II Martin T. Hagan & Menhaj, Nov. (1994) "Training Feedforward Neural
Networks with Marquardt-Levenberg Algorithm" IEEE Transaction on Neural
Networks, vol. 5 No.6.

126

12 L.E. Scales (1985), Introduction to Non-linear Optimization. New York:
Springer-Verlag.

13 Martin Riedmiller, (1994). "Advanced Supervised Learning in Multilyer
Perceptrons - From Backpropagation to Adaptive Learning Algorithms.",
Denmark

14 Narendra, Kumpati S. (1989). Stable Adaptive Systems. Prentice Hall. N.J.

15 Yang, Wei Chung. (1994) Neurocontrol using Dynamic Learning. OSU These

16 M. I. Jordan and Robert A. Jacobs. (1994). Hierarchical Mixtures of Experts and
the EM Algorithm", Neural Computation 6: 181-214.

17 Jordan M.1. & Xu L. (1993). Convergence Results for the EM Approach to
Mixtures of Experts Architectures. Neural Networks.

127

APPENDIXES:

A) Pre-steps

Before we go through the computation of gradient matrix and Hessian matrix, we

will compute several preliminary steps that we will need in the computing the Gradient

and Hessian matrix.

dJ
A-I) Calculate -

dy;

From equation (3-1), we define the performance index as

(

N 1(.)7'(. lJ'" -- y -Y, Y -Yj
J = In ~ gj exp 2 •

j=l

(A-I-I)

Then, differentiating the performance index with respect to the outputs of the i Lh expert

network yields,

(A-I-2)

=0

dJ (.)ay; = h. Y - Yi

if i"* j

(A-I-3)

l28

JJ
A-II) Calculate ­

duo
t

Again, using the log-likelihood perfonnance index, (A- I-I), we differentiate it with

respect to the ith output of the gating network.

(A-II-I)

From Appendix A-IV, the differentiation of softmax function with respect to the i th gating

outputs is calculated as:

jf j = i

if j:t i

(A-II-2)

Substituting equation (A-II-2) into (A-II-I), we have

N I(.)f(.) N 1(')T(.)" 2" Y -YJ Y -YJ" 2" Y -YJ Y -Y}

JJ _ ~gjexp - f;tgjgjex p

::I.. N ~I')T(.)au; "2'Y -YJ Y -YJ
£.J gj exp
j=1

Combining the above equations, we have

if i = j

if i:t j

.(A - IT - 3)

129

(A-II-4)

and finally

(A-Il-5)

ah
A-III) Calculate the dy~

We have defined the posterior probability as:

(A-III-I)

Now, we would like to differentiate them with respect to the output of the klh expert

network. Let

(A - 111- 2)

where

Then, using the chain rule, we differentiate the numerator, U(Yi), and denominator, v(Yj):

Calculate the derivative inside:

130

(A-ID-3)

if i = k (A-IIl-4)

and

if i = k

if i ;t:. k

(A-ID-5)

Substituting these back into equation (A-ill-3), ah; becomes
dyk

if i ;t:. k

if i =k

131

if i = k

if i * k

(A - ill - 6a,b)

Also, from the above equation, we can shown that

ag.
A - IV) Calculate the -'

duk.

The softmax function, equation (3-9), is defined as:

_ exp(uj)

gj - N •

2: exp(um)

m=1

(A - IV - I)

By differentiating the softmax function with respect to the k1h output of the gating

network, we obtain

ago a
-'=-
aUk aUk

exp'"
N

2:exp""'
m=1

N

exp"; 2:exp"HI - exp"; expU;
=_---'m=='"--I --;:--__

(~exP".)'
N

0.2: exp"m - exp'" expUt
= m=!

(~exP"')'

if i = k .

if i * k

(A - IV - 2)

132

Then, combining them together, we have

ago 2au' = gi - gj
k

if i =k

if i 1:- k
(A-fV-3)

ah
A-V) Calculate the -' termauj

The posterior probability is defined as:

-.!.(i -y;((y'-YI)
h = giexP 2

r N 1(.)T(.)'
'"' -- y -Y) Y -y)
.L.,gjexp 2

j=l

(A-V-l)

By differentiating the a posteriori probability with respect to the l output of the gating

we get:

ah a_,=-
aU j du j

~.)7"(')-?\Y -y, Y -Yo
gi exp 2

N 1(.)T(,)
'"' - y -y) y -Y}
.L.,gjexp 2

j=l

(A-V-2)

From equation (A-IV-3) and (A-III-7), we have

ag 2
_J =g._gau. J }

I

if j = i

if j 1:- i

(A-V-3)

and

We can show that

if j = i, then

L33

and can be reduced to

(A V-5)

If i :t j , then

if i = j. (A-V-6)

L 4

and it can be reduced to

dh; =-g.h-h(h.-g.)duo J I I J J
J •

=-h;hj if i 1= j

Therefore,

(A-V-8)

if i = j

if i:l:- j'
(A-V-9)

B) Gradient Calculation in Modular Network

To calculate the gradient of the modular network, we have to compute the

gradient in the expert and gating networks simultaneously. Define x as the total weights

and biases in the expert networks, WI ... WN, and gating network, v, such that

rJ

r2

X= (B - 1)

r N

z

135

where

(B - 2)

contains the weights and biases in i th expert network and

(B - 3)

Therefore, the total gradient in the modular network ~s

dJ
-
drl

dJ

dJ dr2
- = (B - 4)ax dJ

--
drN
dJ
-
dz

In the following, we will show the gradient calculations in both the expert and the gating

networks.

B·I) Gradient Calculation in Expert Networks

The weights and biases in the i th expert network are defined as rj • Take note that

r j consists of all the weights and biases in i th expert stack together in one long vector.

Therefore, the gradient calculation for the expert networks involves computing the

derivative of the performance index with respect to all the weights and biases. Since the

performance index is an indirect function of the weights and biases in the expert

136

networks, we have to use the chain rule to relate them. The equation below shows the

chain rule:

Note that i *" k gives

dyk =0
dr '

I

(B-I- 1)

(B-I- 2)

because each expert is independent of one another. Therefore, the only case which ha a

nonzero value is when i = k. When i = k this gives

dJ _ [dyi)T dJ
dr

j
- dr

i
dyj. (B-I-3)

Since we use a multilayer network for the expert network, the dY i term can be obtained
dr;

using backpropagation from Chapter III. From equation (A-I-3), we have shown that

dJ (.)dyj =h, Y - Yi .

This gives

dJ = (dy;)T h (• _ .)
dr. dr I Y Y,

I I

(B-I- 4)

(B-I- 5)

137

B-II) Gradient Calculation in the Gating Network

The weights and biases in the gating network are denoted as z. Like the expert

networks, the z consists of all the weights and biases in the gating networks stacked

together in one long vector. Therefore, the gradient calculation in the gating network

involves computing the derivative of the performance index with respect to all the

weights in gating network. As with the expert network, the performance index is an

indirect function of the z. Hence, we need to use the chain rule to relate them:

dJ _ (du)T dJ-- - -
dz dz au

where

u=

is the output of the gating network.

(B-lI- 1)

(B-lI- 2)

Since we also use a multilayer network as the gating network, the ~ term can be

obtained using backpropagation. From equation (A-II-5), we have shown that

(B-II- 3)

We can lump these equations into one column vector as

dJ
-=h-gau

where

~ gl

h= ~ and
gz

g=

hN gN

This gives

dJ (du)T
~= J;. (h-g)

13

(B-II- 4)

(B-II- 5)

(B-II- 6)

B-III) Total Gradient in Modular Network

With the above derivation, the total gradient in the modular network is given as

C) Hessian Matrix Calculation

Recall the total weights, x, in the modular network in equation (B-1). By

computing the second derivative of the performance index with respect to the total

weights in modular network, x, the Hessian matrix gives

139'

;j2l a2l a2l a2l
dr 2 -- --

dr2dr1 arNar) dzdrl1
a2 l a2l a2 1 a2 l
--

ar2
2 --

a21 dr)dr2 arNde2 dzar2
= (C - I)

dx2

a21 a21 a2 1 a21
de 2 --

dr)drN dr2arN dzdrNN

a21 a21 a2 1 a21
-- -- --
dr,dz ar2dz arNdz dz2

In the following, we will show step by step calculations of each term in the Hessian

matrix for the modular network.

a2 1
C-I) The -- term

dr;drj

By a
2

I , we mean the upper left terms in the Hessian matrix (C-I):
dr;arj

a21 a2 l a21
ar 2 --

dr2dr] drNdrl1

a2J a21 a2 l
--

ar2
2dr)dr2 drNdr2

a2J a2J all
dr)drN dr2drN dr 2

N

Recall equation (B-I-3), which gives

aJ =:(dyj)T aJ .
dr. dr ;),,'.

J , VI,

We can express each element of aJ as the following summation:
dr;

(C-I-l)

(C-I-2)

aJ _~dyh aJ
ar

kl
- 7 ark; dyj; .

(C-I-3)

140

Taking the derivative with respect to the experts' weights using the chain rule again, we

will have the following equation:

(C-I-4)

We expand the second tenn on the right hand side as:

(C-I-5)

If q -:t: I ,

(C-I-6)

because the weights of the [th expert have no direct relation with qlh expert's output.

Equation (C - I - 5) then simplifies to

(C-1-7)

Then, equation (C-I-4) becomes

L41

(C-I- 8)

For the first term in the equation (C-I-8),

if I 1= i ,

(C-I- 9)

because the weights of the th expert are not related to the weights of the i th expert.

Equation (C - I - 8) thus reduces to

~[~]~ L~~Jt + LGry, L~[~]dy'l'
arm, ark, j arm, dy i; jar", P dy PI dy if arm,

a

Now, if L= i , the first term in equation (C - I - 8) becomes

(C-I- 10)

(C-I- Ii)

If we assume that H(x) is small, then we can approximate the Hessian matrix as

(C-I- 12)

In fact, we can express the Hessian in vector form:

(C-I- 13)

142

a2 J
C-II) The dz2 term

Recall the Hessian matrix of equation (C-l). Now, we would like to calculate the

lower right corner term: ~; . Recall equation (B-II-l), which gives

aJ
We can express each element of dz as

aJ _ L auj JJ
Ck" - j dz" au j •

(C-II-l)

(C-II-2)

By taking the derivative with respect to gating network's weights, Zk, using the chain rule,

we obtain

(C-II-3)

We can expand the second term using the total derivative as

(C-II-4)

Then, equation (C-II-3) becomes

(C-II-5)

The first term in the summation can be rewritten

143

(C-ll-6)

where we assume B(x) is small, then we can approximate equation (C - II - 5) as

(C-II-7)

a2 J .
Notice the similarity between this computation and the dr/Jr

j

term computatIOn of

equation (C - I - 12). In fact, we can also express equation (C-II-7) in vector form as:

a
2
J= (du)T(a

2
J)(du)

()z2 dz du2 ()Z. (C-I1-8)

a2J
C-UI) The -- termdzar;

This term resembles the upper right hand section of the Hessian matrix. To

calculate this term, we use equation (B-I-3), which gives

aJ _(Jyj)T aJ
dr; - Jr

j
Jy;'

Again, we can express the elements in summation form as:

aJ _±dyjj aJ
ar,. - J= 1 ar,. dy,. .

t t J

(C - III - I)

(C - In - 2)

144

By taking the derivative with respect to gating network's weights, we will have the

second derivative of the perfonnance index with respect to the cross term weights and

biases between the ith expert network and the gating network:

(C-lII-3)

Expanding the second term on the summation, yields

(C - III - 4)

Substituting equation (C-TII-4) back into equation (C-III-3), we obtain

(C-IlI-5)

Notice that the first term of the summation goes to zero because the outputs of the i th

expert network and the weights of the gating network are unrelated. Therefore, equation

(C-lII-5) reduces to

(C-IU-6)

or

(C - TIl - 7)

]45

We can also express the above equation in the following vector fonn:

a2J a2J
Since -- is the transpose of -- , we have

drkdz ()zdrj

C-V) Compute the ~(aJ Jterm
dy k dyj

Recall equation (A-I-3), which gives

aJ (.)
dyj = h, Y - Yi .

(C-ID-8)

(C - IV - 1)

(C-V-I)

By using the chain rule, we take the derivative of this equation with respect to the k1h

expert network's output, which gives

If i =k, then

(C-V-2)

(C-V-3)

From equation (A-ill-6a), we have

146

if i = k . (C - V - 4)

Substitute equation (C-V-4) into (C-V-3) yields

and we have

In equation (C-V-2), if i;l; k, then from equation (A-III-6b), we have

(C-V-S)

(C-V-6)

~ = -hA(Y· -Yk) if i;l; k. (C-V-7)

Substitute equation (C-V-7) into (C-V-6), yields,

and we have

(C-V-8)

(C-V-9)

147

a(aJ JC-VI) Compute the - - term
au} (Jui

From equation (A-II-5), we have

(C - VI - 1)

By taking the derivative of this equation with respect to the output of the gating network,

we have:

(C - VI - 2)

Notice that we obtain two terms in equation (C-VI-2), and both terms have been

computed in Appendix A-V and Appendix A-IV. Hence, substituting equation (A-V-9)

and (A-IV-3) into equation (C-VI-2) yields:

a(aJ JC-VII) Compute the - - term
()y) aUj

Recall equation (A-II-5), which yields

if i = j

if i -:t j

(C - VI - 3)

(C - VII - 1)

Differentiating it with respect to the /h expert network output gives

148

Since gi and Yj are not related,

F A d' A III Jh. ,rom ppen IX - , -' IS glVen as:
dyj

(C-VII-2)

(C-VII-3)

:~ =(hj -h/)(Y· -Yi)

=-h;hAy· - Y j)

if i = j

if i"* j

(C-VII-4)

Substituting equation (C-VII-3) and (C-VIl-4) into equation (C-VII-2) gives

~J~) = (h, - iI')(Y· - y,)

=-hjh;(y· - Yj)

if i = j

if i"* j

(C-VII-5)

J (JJ)C-VIII) Compute the JU
j

dyj term

. J (JJ) . f a ,(JJ)Smce - - IS the transpose 0 -' - ,au. ;J",. ;J",. au.
J UJ, UJ J I

(C-VIII-l)

we have

149

~J~)=(h,-h,')(Y'-y;f if i=j

=-h;hj(Y* - y;f if i:1: j

(C-Vill-2)

C-IX) Summary

The approximated Hessian matrices are calculated using the following equations:

Each middle term in the above equations are calculated as

~ j (~) = 10,(-1) +{y' - y,){h, - h,')(Y' - yJ if i = j

=-(y·-y,)(h;hj)(y·-yjf if i:1:j

(C-IX-l)

(C-IX-2)

(C-IX-3)

(C - IX - 4)

(C-IX-5)

if i = j

if i:1: j

(C-IX-6)

if i = j

if i = j

if i"# j

150

(C-IX-7)

(C-IX-8)

Thesis:

Major Field:

Biographical:

VITA ~

Meng Hock Fun

Candidate for the Degree of

Master of Science

TRAINING MODULAR NEURAL NETWORKS WITH
MARQUARDT-LEVENVERG ALGORITHM

Electrical Engineering

Education:

Experience:

Professional
Memberships:

Graduated from Taylor's College, Kuala Lumpur,
Malaysia in 1989; received Bachelor of Science
degree in Electrical Engineering from Oklahoma State
University, Stillwater, Oklahoma in July 1993.
Completed the Requirements for the Master of
Science degree in Electrical Engineering at Oklahoma
State University in May, 1996.

Employed by Oklahoma State University, Department
of Electrical Engineering as a teaching assistant and
as a graduate research assistant in a Friction Control
Project from 1993 to present.

Tau Beta Phi Society, Eta Kappa Nu Society, and
United States Chess Federation.

