DYNAMIC SPIN SCHEMES

By
ZILI FAN

Bachelor of Science
Hangzhou University
Hangzhou, Zhejiang, P.R. of China
1991

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1994

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1996

DYNAMIC SPIN SCHEMES

Thesis Approved:

Thesis Adviser

r\A C“Qﬁ‘l aCCLfl_ﬂ

(._‘/ o7 ¥ ‘

s C.(;@;t

Dean of the Gradnate College

PREFACE

This paper presents two dynamic SPIN schemes: Index Dynamic SPIN and
Directory Dynamic SPIN. SPIN is a new indexing technique in database design,
which is of practical importance in various fields.

The dynamic SPINs modify the static SPINs in two ways: 1) The size ol index
file is flexible through operations on data. 2) Data overflow and data sparseness are
eliminated at the same time. Index Dynamic SPIN introduces the dynamic index tree
structures, the shapes of which are dvnamic through nodes split and combine. Di-
rectory Dyanmic SPIN evolves from extendible hashing, combining with static SPINs
properties. It introduces directory structure, instead of index tree in index file. Also.
the data file is composed of bucket units, so the flexibility of data file is accom-
plished in Directory Dynamic SPIN. The performance of the two dynamic SPINs are
analyzed. then compared with static SPINs.

I would like to express my sincere gratitude to my major adviser, Dr. G. E.
Hedrick. who introduced me to this interesting project, and constantly gave me in-
telligent guidance. Many thanks also to the other committee members, Dr. K. M.
George and Dr. John P. Chandler, for their helpful advisement and suggestions.

[wish to express my sincere gratitude to those who provided suggestions and
assistance for this study: Dr. Allen Divall, Mr. Yunpeng Zhang, and Mrs. Ying
Fan. My deepest appreciation is extended to my parents whose encouragement and

understanding were invaluable throughout the study.

111

TABLE OF CONTENTS
Chapter
L. INTBODUETION ¢ i 65 0 5 tome 6 2 6 5 5 svmms o o = 5 6 viams = v 5 svismee & %
. DEFINITIONS AND TEBMINOLOGY . oo cu vswiman s s e wam s g
[II. STATIC SPIN SCHEMES

The C.SPINBIHOEION: e 5 64 ¢ o im0 5 65 650 55 65 ¢ s 5 o
The S.SPIN function
The R.SPIN function,

1¥. DYNAMICSPINSCHEMES .: - . vevaas e s vwmens ve v v g i

Index Dynamic SPIN
Preliminaries

General Description
Space Utilization : « c « v wen 556 5 veses 5 4

Directory Dynammic SPIN : o o 5 v v o6 0 5 2 0mm o e
Preliminaries
General Description
Splitting Control - : : ¢ sows 5 5 5 ¢ 5ses 5 5 5
Bhicliet SLEMOERIE -« o o coonie w5 v = pwwm 4 4 &

Comparisons Between Dynamic SPINs and R_SPIN
V. IMPLEMENTATION

Dieta BITHEEHES o vons s a2 6 iena i g s 5 8emy 8 5 i
Index Dynamic SPIN S B P GGTAN &
Pirectory Dynamic SPIN . . . o coven o v wo mea s s o g

VI. PERFORMANCE ANALYSIS FOR SPIN

Testing Program « « cuac = < o v awsan

Performance Analysis for RSPIN

Performance Analysis for D.SPIN
Performance Analysis for T SPIN

Chapter Page

VII. SUMMARY. CONCLUSION, AND SUGGESTED FUTURE WORK 48

A SELECTED BIBLIOGRAPHY 20
APPENDIN A —GLOSSARY :ii s avawan s s v 95@us 5 5 & 06tes s 5 5 5 rued 53

Figure
g

2.

9.
10.
11.
12.
13.

14.

16.
17.
18.

19.

LIST OF FIGURES

Page
Transformation between different dimensional arravs : 7
Transformation values for the array arr[2][4] Y
Tree structures for RSPIN 11
Different shapes of trees in an index file 16
A leveled structure for the sparse situation ¢
Sequential numbers of index for the nodes at the same level 17
A DORSPEATSE (ARBER) RICE.: & vvw v v v # & wors 3 5 & = & Lswe % 5 W 8 eTeE § @ 8 18
Different initial trees 19
Teeol WILh Splitted NOAEE & voovu 5w v o 0% i B @ 8 SWE B 4 5 5 veveis 86§ 20
Insertion sitnation for index dynamic SPIN, 21
The final result of the index tree in DSPIN 23
The whole picture for data indexing and retriev. 24
Key transformations in extensible hashing 27
Key transformations in TSPIN 28
Directory of order d=3 with four buckets 30
T_SPIN transformations, 31
Distribution of keys after splitting bucket D 32
Batastriictite Tor DSPIN o o v 5 s nmag 5 o 5 ¢ sevnn o 2 v o seeis s & % 37
Experimental results using R_.SPIN function 41
The result of experiment using R_SPIN function 42

vi

Figure
2
22
23.

24.

Page
The result of experiment using D_SPIN function 43
An experiment using D_SPIN function 44
A search experiment using D_SPIN function 45
The result of experiment using T_SPIN function 46
The result of experiment using distribution of TSPIN 47

vii

CHAPTER 1

INTRODUCTION

Data indexing is important in database design and management. In large databases
the indexing techniques are critical for the fundamental operations of search, insert,
update, and delete. Research in this field has generated several structures and algo-
rithms including those for R_trees[1] and for B_trees|2].

Coburn proposed a new data indexing technique, called the Single Point Index
Network(SPIN)[4]. The significant difference between SPIN and other data indexing
techniques is that SPIN supports layered data relationships using a multidimensional
approach. The layered data structure is defined as abstract layers of data using the
data structure operations responsible for performing the fundamental operations of
search. insert, delete. and update. In an environment of relational databases, such a
layered data structure means a data structure supporting internal mappings between
fields in different databases. The process of snch mappings is also called “horizontal
integration [3],” which means the incorporation at one time of information from more
than one functional area. Horizontal integration requires that the computer work in
multidimensional data spaces and use multidimensional data structures.

According to Coburn[4], SPIN can perform fundamental operations on multidi-
mensional data spaces while other many data structures apparently cannot do the
same work with the same speed and flexibility[3]. The SPIN technique evolves from
performing a modification to the mnltidimensional array data structure, becanse the
multidimensional array is the most common multidimensional data structure. SPIN

consists of a series of transformation functions which convert multidimensional data

spaces into equivalent linear data spaces. This allows the computer to operate on a
multidimensional data space as though it were a linear space. However, the SPIN
schemes proposed by Coburn have properties of static structures. They require that
data storage space or index storage space be allocated statically. This means that
when a file exceeds the allocated space, an overflow happens; consequently, the entire
file must be restructured at great expense. In addition. overflow handling schemes
often increase the retrieval time as files approach their space limits. To overcome
these problems. dynamic SPIN schemes have been proposed. The file structures of
dynamic SPINs and their associated algorithms adapt themselves to changes in the
size of the file, so expensive periodic database reorganization is avoided. In this the-
sis, we introduce two dynamic SPIN schemes, index dynamic SPIN and directory
dynamic SPIN, with special emphases on the various design issues.

The goals of this thesis are to provide two basic designs of the dynamic SPIN
structures and algorithms, to outline some of the techniques that are being developed,
to implement the proposed dynamic SPINs, and to show how the various design
parameters relate to their performances.

In the thesis, Chapter II defines some technical terms which will be used in
the thesis. Chapter III explains static SPIN schemes, including properties of static
SPINs and the limitations of static SPINs. Chapter IV describes two dynamic SPIN
schemes: index dynamic SPIN and directory dynamic SPIN, some design issues are
also discussed 1n this chapter. Chapter V implements two dynamic SPIN schemes,
Chapter VI analyses the performance of dynamic SPINs. Chapter VII is the summary,

conclusions and directions for future work. Appendix A is the glossary.

CHAPTER II

DEFINITIONS AND TERMINOLOGY

To make the presentation of dynamic SPINs precise, this chapter defines some

terms. Implicit in these definitions is the assumption that the volume of data is large

and operations on data are in main storage.

L.

A dense tree means a tree whose nodes all contain data. In other words, a tree is
full. Conversely. a sparse tree means a tree whose nodes do not all contain data.
A majority of its nodes are empty. In database design, a sparse tree implies
that some storage space 1s wasted, and a dense tree implies that an overflow

may happen on the index tree.

static SPIN means the SPIN package developped by Coburn[3]. This SPIN
package includes three basic SPIN schemes: C.SPIN, S.SPIN and R_SPIN.
The first two SPINs transform multidimensional data structures into a one
dimensional data structures. R_SPIN, based on the S_SPIN’s transformation.
further transforms sparse data structures into dense data structures. All these

transformations have static properties; e.g., the size of index file is fixed.

dynamic SPIN means the SPIN package developped by the SPIN research
gronp’. There are several dynamic SPIN algorithms proposed so far. In this
thesis. two dynamic SPIN schemes are presented: index dynamic SPIN (D_SPIN
for short), and directory dynamic SPIN (7_SPIN for short). The size of index

file is flexible in dynamic SPIN schemes.

IThis research gronp cousists of Dr. G. E. Hednek, Dr. R AL DiVall, M. Z. Fan, and Y. Zhane

()]

load factor means a number, A. whose value is between 0 and 1, and whose
value indicates how full (the load) the storage tree (or table) is. An empty tree
(table) has a load factor of 0 (A=0); a full tree (table) has a load factor of 1

(A=1).

In SPIN. overflow means an attempt to insert data into a tree with a load factor

of 1. A memory error occurs if overflow is not handled properly.

radiz[tree] means a tree that has a fixed number of [possibly empty] branches

from each node. A radix n tree has n branches at each node.

A bucket (or page) corresponds to one or several physical sectors of a seconcdary

storage device such as a disk. The capacity of a bucket is b records in this thesis.

Space utilization is the ratio between n and m*b, where n is the number of
records in the file, m is the number of pages used, and b is the capacity in

records of the page.

CHAPTER III

STATIC SPIN SCHEMES

Coburn[4] developed three basic SPIN functions: C_SPIN, S_.SPIN and R_SPIN.
All three functions support multidimensional data spaces and have the static property:.
The basic mechanism behind these functions is that a key is transformed into an index
value. The index value is used to find an address of records in the data file. SPIN uses

a series of algorithms derived from the Fundamental Principle of Counting(FPC). The

FPC states:

Given a series of m operations 1, 2, 3, ..., m. If the first operation can be
performed in m, ways, the second in my ways, and so on until the mth
operation. which can be performed in m, ways, then the number of ways

the m operations can be performed is

Hr =0sn My (IJ

The C_SPIN Function

Coburn uses a multidimensional array to represent a multidimensional data space.
For instance, in the C language, the declaration “int arr[3|[3][3]" represents an ar-
ray of 27 integers in three dimensions with three indices in each dimension. When
nsing C_SPIN, this array represents the three leveled spaces, corresponding to three
dimensions of the array.

The problem addressed by C_SPIN is: “How can one access the multidimensional

array?” Traditionally, the programmer uses cursors which are translated to pointer

variables to navigate through the dimensions of a multidimensional array. This makes
partial key search, storage, and retrieval operations impossible. Also, procedures for
allocating multidimensional memory dynamically are generally unavailable.

One solution is to convert the multidimensional array into a corresponding single
dimensional array. With a one dimensional array, the shortcomings of accessing a
multidimensional array with a pointer variable can be avoided. Another reason for
using the single dimensional array is that the digital computer is a sequential device,
bur multidimensional arrays are not structured sequentially. One dimensional arrays
are sequential. Coburn states that nonsequential data structures can pose special
storage and retrieval difficulties for the computers[3].

Given the array “arr(3][3](3]”. it follows from formula 1 that there are 27 valid
multidimensional subscript combinations(keys) for this array. In general, given an N
dimensional array with n, indices in dimension i and 7 = 0,1,2,..., N — 1, by formula
1, C_SPIN transforms the ng * ny *ns * ... ¥ ny_, subscript combinations into the set
of sequential whole numbers & such that & = 0,1,2,...,ng*xny *ng * ... * (ny_; — 1).

This transformation has the following properties(4]:

1. The transformation is well ordered. That is, given two distinet subscript combi-
nations(keys), say k; and ks, which are passed to the C_SPIN function with the
proper arguments, and two return values Oy and O, from C_SPIN corresponding

to ky and k;, respectively. it follows that if &y > ko. then Oy > O,

2. The transformation is one-to-one and onto. For each distinct subscript cou-
bination passed to C_SPIN, there is exactly one return value and that return

value is unique.

3. The transformation is sequential. A given multidimensional array contains keys
that are base 10 integer values, it follows that, given k; and k; such that k) < ks,

if there does not exist an ky such that k; < ki < kg, then the corresponding

0folfo] <> 0 1j0]0) <—> 4
0)0)f2] <> 1 o)) <—> 5
010} <—> 2 (o) <—> 6
o)) <—> 3) <> 7

Figure 1: Transformation between multidimensional array and single dimensional
array

return values O, and O, have the following relationship: O, = O; + 1.

The Figure 1 clearly shows the above properties, given a multidimensional array
“int arr([2][2][2]".

While C_SPIN provides a good way to access multidimensional arrays in main
storage, there are still some problems with C_SPIN. The first problem is that C_SPIN
is restricted to dimension sizes no larger than five. The reason is the formula that
C_SPIN employs to conversion grows exponentially when the number of dimensions
increases. The second problem is that access is denied to the interior dimensions of
a multidimensional array structure, therefore, partial subscript combinations cannot

be indexed. These limitations lead to the S_SPIN function.
The S_SPIN Function

S_SPIN function iteratively applies C_SPIN function one dimension at a time. The
formula S_SPIN uses in transforming a multidimensional array into a singly dimen-

sional array is:

rec_numberli + 1] = rec_number|i] x 10" + k[i + 1] — rec_number|i] * kr[i] ~ (2)

where,
rec_number[i+1]=the index for the (i+1)st level.?
rec_number[i]=the index for the previous level or iteration.
max|ij=the number of indices in the ith dimension.
ex|i]s are exponents computed as followings:
if(max[i+1]>0 && max[i+1]<=10) ex[i|=1
else if(max[i+1]>10 && max[i+1]<=100) ex[i]=2
else if(max[i+1)>100 && max|i+1]<=1000) ex[i]=3
k[i]=the value of the multidimensional subscript within the ith dimension.
krlijs are values computed as followings:
if(max[i+1]>0 && max[i+1]<=10) kr[i]=10-max[i+1]
else if(max[i+1]>10 && max|i+1]<=100) kr[i]=100-max[i+1]
else if(max([i+1]>100 && max[i+1]<=1000) kr[i]=1000-max[i+1]
i € (0,1,2,3;..N=2)
As an example, the following illustration using the array “arr[2][4]” applies the
fornula 2:
N=2;
max[0]=2, max[1]=4;
ex[0]=1, since max(1]<=10:
kr[0]=10-max[1]=10-4=6.
Eight valid subscript combinations can be passed to S.SPIN. They are (0,0),
(0. 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3). By formula 2, rec_number|l] =

rec.number(0] * 10! + k[1] — rec_number(0] * kr[0]; where, rec_number([0] is the index

20ne less than the nuniber of the dimension withiu a multidimensional array is called the level
of the array.

Subscript . _ _

Combinati Right-hand side computation Index

‘ombination
(0, 0) 0x10'4+0—-0%6 0
0, 1) 0x10"4+1-0%6 1
(0, 2) 0%10' +2—-0x6 2
(0, 3) 0%10"' +3—-0=%6 3
(1, 0) 1x100+0—1%6 4
(1, 1) 1%10" +1—1%6 5
(1, 2) 1%10'4+2—-1%6 6
(1, 3) 110" +3—1%6 7

Figure 2: Transformation values for the array arr[2][4]

for the first dimension, it is zero or one in this example. k[1] is the index value in the
first level. it 1s 0, or 1, or 2 in the example. Fignure 2 shows the transformation.

The formula 2, a recursive function, generates a sequence of return values al
each level. For example, given an array “arr[1][2][3][4],” when applying formula 2 to
calculate the index value for this array, it also generates index value for “arr[1][2].”
and “arr[1][2][3].” as well as “arr[1][2][3][4].” Consequently, S_SPIN permits compu-
tation of partial subseript combinations (partial keys). There are some limitations
of S_.SPIN One, is that the level order is fixed. The level order cannot be changed
without restarting the entire computation. The other problem is, since the level or-
der is fixed, accessing level n requires computing values for all levels throngh and
including level n-1 first. It is not possible to access the level we want directly. Partial
subscript combinations always proceeds from the first level to the desired level; It
is uni-directional. For example. given the array “arr[1][2][3][4][5],” we cannot access

a partial subscript combination such as “[4][5],” “[2](3][4].” In a relational database

10
environment, the relationship reflected by such combinations is common.
The R_SPIN Function

Another problem C_SPIN and S_SPIN cannot solve is representation of sparse data.
Database designers try to avoid the problem of representation of sparse data. For
example, suppose an airline owns 100 planes and flies to 100 cities. It is reasonable
to assume that the route that each plane flies does not pass through all 100 cities.
A multidimensional array to represent this would be “arr[100][100]." Using such an
array would require using 10000 (100*100) bytes of storage. If each plane flies to at
most 3 cities on a route, we would like to declare the array “arr[100][3].” because it
would require using only 300 bytes of storage, a savings of 9700 bytes.

R_SPIN can keep track of which nodes at one level are mapped to which nodes of
the next level. This helps to solve the problem of sparse data representation. Given
a multidimensional array, such as “p[20][40][50]," first, we assume we know that:
a) whether there is a sparse situation; and b) the degree of sparseness. Suppose,
after eliminating sparseness, we can reduce the number of mappings in the “p” array
to “p[20]3][2].” which is a dense array. We open an index file constructing a tree
structure for “p[20][3][2]" (Figure 3).

We construct a one-to-many mapping. From “p[20](3][2]" each element in level
zero is mapped to three elements in level one; each element in level one is mapped (o
two elements in level two(Figure 3). There are 20 trees in Figure 3, corresponding to
the first dimension in “p[20][3][2]” which has 20 elements in dimension one. At the
beginning, all nodes are initialized to zero except those at level zero, into which are put.
into index values taken from the first dimension of “p[20][3][2]" (Figure 3). If R_.SPIN
operates on the subscript combination “p[3](20[8],” R.SPIN first uses formula 2 to
calculate the index values corresponding to “p[3](24]” and “p[3](24][8].” then R_.SPIN

stores the index values in the first empty node at the corresponding level. We call

11

o AR 0 o 3. cnsvnenasiiig 19

A

Figure 3: Tree structures for R_SPIN

Level 0

Level 1 .

C (
et L

Level 2

these values V values.?

Next. R_SPIN uses the location value of the nodes to calculate the index values
in the dense array by employing formula 2. For example, if V values of the array
“p[3][24][8]” are stored in the first node at each level, then the subscript combination
of location values is “k[3][0][0].”

R_SPIN retrieves index values for a subseript combination by matching the value
computed by formula 2 with those stored in the index file. For example, if the array
“p[3][14][8]" is passed to R.SPIN. it will employ formula 2 to calenlate level one
index value using “3” and “14” as subscripts. Then it will compare the V value
stored at each one of the three nodes of level one of the tree which is indexed 3. I[il
matches one of those values, it will go to next level to determine whether the index
values caleulated using “3”, “14” and “8" matches the V values stored at that level.
R_SPIN significantly reduces the number of mappings into sparse array. This creates

a very efficient way of storing and retrieving keys.
The limitations of R_.SPIN

The major deficiency with R_SPIN is the inability to predict accurately the sparseness

3The first etupty node at each level means the first available node at certain subtree of that level,
rather than all nodes of that level.

OEKLAHOMA STATE UNIVE!

12

arbitrary multidimensional arrays. Failure to make such predictions accurately leads
to an overflow. The following example shows the overflow problem.

An airline example

For example, suppose we have a level-structured airline network with the airline
roites emanating from a:

a. very big city:

b. big city;

¢. middle-sized city; or a

d. small city.

We use a multidimensional array to express this structure as: Pla][b][c][d]. Sup-
pose. we have an airline from a to b, b to ¢, and ¢ to d. At level two going from b
to ¢, we may have such questions as: From a given big city; e.g., Dallas, how many
airline routes are there to middle-sized cities? This leads to the “distribution of keys”
problem:.

Distribute of keys

A statement of the “distribution of keys” problem [ollows. On average, how
many airlines are there from one of the big cities to the middle-sized cities? We
must know the probability of Dallas (a big city) having five or more airlines to the
next level (middle-sized cities). We also must know what the probability of one big
city having five or more airlines to the next level (middle-sized cities). We examine
several sample data sets, then determine the distribution of keys for these data sets.
For example, we can choose Houston, Chicago, ..., etc., to determine whether each
of these cities has five or more airlines to the next level. We compute an average
probability for each of these cities having five or more airlines each to the next level
of cities. If the samples are typical and representative, then we apply the result to

the entire data set even though the contents of the data set change dynamically.

13
From this example, we surmise:

1. The distribution of keys can be predicted only in a detail application environ-

ment.

2. The number of actual mappings assigned to a certain node at a certain level
of some leveled data structure depends on the prediction for the distribution of
keys. For example, if Dallas has a .95 probability of having five airlines fly to
the next level, and we assign only four airlines to Dallas, then there is a very

high risk of an overflow situation .

. The probability differences for overflow exist not only among different levels,
but also among different nodes at the same level. For example, suppose Houston
is at the same level as Dallas. Houston'’s probability of having five airlines fly to
the next level might be .85. One reason is that the actual number of airlines for
Houston and Dallas might be different. Dallas might have six airlines; Houston

might have eight airlines.

1. In a detailed application environment, the overlow problem may be predicted.
but the problem still exists. Even with a .99 probability of having uo overflow
for a certain node, the risk of overflow is still there. For example, suppose Dallas
has .95 probability for five airlines, .99 probability for six airlines. If we assign
six airlines to Dallas, there is still a .01 probability of overflow. One solution is to
assign more positions for airlines to Dallas. [n such case, the risk of overflow may
approach zero, but space is wasted in a matrix representation of the data. In
other words. Dallas uses only a small number of the airlines assigned. Complete
elimination of inefficient (sparse) data storage is R_.SPIN’s target, but that also
causes the overflow problem. It is a dilemma: complete elimination of sparseness

causes overflow; complete elimination of overflow requires sparse data to be

STATE UNIVE!

OKLAHOMA

o

14

stored in oversized arrays.

R_SPIN employs formula 2 twice. First, it uses formula 2 to calculate an index

value. Since formula 2 has an estimated time complexity of
0 =€)

for some machine defined constant, ¢, and number of dimensions, n, its repeated

nse during a single operation makes the method relatively inefficient.

The sparse situation that occurs in this example is: there are many middle-sized

cities, but not all of them are connected to all of the big cities.

TE UNIVE!

OKLAHOMA STA

CHAPTER IV

DYNAMIC SPIN SCHEMES

I this chapter. we introduce two dynamic SPIN schemes: index dynamic SPIN
(D_SPIN for short) and directory dynamic SPIN (T_SPIN for short). Both algorithms
evolved from the limitations of the static SPINs. We explore some design issues, such
as space utilization, splitting control, and bucket structure. We also compare the

dynamic SPINs with the static SPINs.
Index Dynamic SPIN

From the limitations of the R_SPIN, we design a new index SPIN, which dynam-
ically changes its number of nodes when overflow happens. It eliminates the dilemma

presented in Chapter 111
Preliminaries

Mappings between levels

The example in last chapter shows that different nodes at the same level may
have different numbers of mappings, since the nodes may have different probabilities
of overflow. The trees in R_SPINs index file are not the same. A level may look like
those shown in Figure 4. In Figure 4, tree one has three children at level one and each
child at level one has two children at level two. For tree two, there are two children
at level one - one has two children at level two, the other has three children at level

two.

ATE UNIVERSITY

OKLAHOMA ST

16

O O dd O

O

Figure 4: Different shapes of trees in an index file

Sparse data mappings

[t is common in sparse storage situations with R_SPIN to have different numbers
of mappings at the same level. Suppose a teacher teaches three classes, each class has
a maximnm 30 students. A multidimensional array to express the teacher’s classes
with the students in each class requires a multidimensional array, V[3][30]. However. if
only 10 students enrolled in the first class, 20 students enrolled in the second class and
97 students enrolled in the third class, then there is a sparse data storage situation.
Each number at the first level (0, 1, 2) has a different mapping to the second level
(10, 20, 27).

Even when there is the same number of mappings for each node at the same
level, the nodes commonly have different contents. The 30 students in class one will
be different. from those in class two, as well as from those in class three. There exist
situations that we have the same contents for multiple mappings. For example, some
students may enroll in more than one class. Taking the above information together.
a level-structured graph shows the sparse storage situation clearly.

Figure 5 shows four nodes at level one and nine nodes at level two. Each node

at level one may have 1. 2 or 3 mappings to level two. Some mappings have the same

ATE UNIVERSITY

OKLAHOMA ST

17

S ﬁ\/
/]

Sa [O
O

O

Figure 5: A leveled structure for the sparse sitnation

Level 2

Figure 6: Sequential natural numbers indexing the nodes at the same level

content (Two or more pointers at level one point to the same node at level two). Also.
some nodes at level two are unused.
Tree structured arrays

Figure 6 shows a tree structure corresponding to the multidimensional array
A[3][2][2]. The subscript key values appear beside the nodes.

Formula 2 (Chapter III) calculates the index values at level one. It results in:

[0l [0]=0 [1]1[1]=3
(0] [1]1=1 [2][0]=4

OEKLAHOMA STATE UNIVERSITY

18

Figure 7: A no-sparse (dense) tree

[1]1[0]=2 [2][1]=5

These index values correspond to nodes as shown in Figure 6.

Level one index values are sequential numbers progressing from the leftmost
node to the rightmost node. The index values for level two also may be sequential
numbers. Index values fill the nodes (Figure 6).

Formula 2 yields:

level two
(o]l [o] [0]=0 [1]1[1]([0]=6
(0] [0] [1]=1 [1][1][1]=7
[0] [1] [0]=2 [2][o] [0]=8
(0] (1] [1]=3 [2][0][1]=9
(1] [0] [0]=4 [2][1][0]=10
[1]1[0][1]=5 [2][1][1]=11

Formula 2 and Figure 6 are consistent. Both reflect the transformation proper-

ties, which are stated in Chapter III.
Let the tree i, (Figure 7) be dense. At level j, the first node’s index value is k,

the next node will be k+1, next to next: k+1+1, ..., until the last node (rightmost

OKLAHOMA STATE UNIVERSITY

19

AN 1Ry

Binary tree

Y

Unary tree

Figure 8: Different initial trees

node) at level j. The values appear as:

kk+1,k+2,k+3,k+4,..

We also know that the index values for tree i-1, which is at the left side of tree
1. at level j. The last node’s index value at level j for tree i-1 is A-7. Continuing to
the left, we have all index values at level j:

k—4,k-3,k—2,k-1.

General description

Given a multidimensional array (or combination of keys), P[20][30][40], we deter-
mine the maximum number of actual mappings at each level to eliminates sparseness.
This does not eliminate overflow. In other words, we may choose p[20][1][1], which
certainly eliminate sparseness, but also has an overflow problem. Overflow is not a
problem during initialization. Figure 8 shows several structural choices for eliminating
sparse data storage.

If it is unknown whether there is a sparse storage problem, or if it is known there
is a sparse storage problem and the probability of overflow is unpredictable. then, the

unary tree may be the best choice to guarantee dense storage utilization. Binary trees

OKLAHOMA STATE UNIVERSITY

20

i
J

Figure 9: Trees with splitted nodes

also can be used in certain applications.® If we can predict the probabilities, we may
choose a conservative number of mappings between levels to minimizing the risk of
overflow, while we also eliminate sparse data storage problems.

The reason for choosing among different shapes of trees is to initialize those
trees efficiently. Any tree will grow after initialization. A tree growing from a binary
structure allows faster access than a tree growing from unary structure. There is no
significant increase in access speed when using a tree with radix greater than two.

The binary tree is the starting tree in this example; i.e., p[20][2][2]. Each node
splits into two parts, shown in Figure 9.

Using the preliminaries described above, we fill in the index values the left part.
of the node. shown in Figure 9. At the same level, indexes are sequential numbers.
The index value for the root node is trivial, since the number in dimension one is
always the same after eliminating spars storage; i.e., from P[20][30][40] to p[20][2][2],
the number 20 does not change.

Given a level two datum with key k; and with index [3][14](8] (k;[3][14](8]), we

employ formula 2 to calculate the V values for k. Suppose V) is the V value for

4A binary tree can be used in any application. [t is particularly useful in applications such as

the airline problem.

STATE UNIVE

OKLAHOMA

21

Figure 10: Insertion situation for index dynamic SPIN

level one, V| = k;[3](14]. We put V) into the right part of the first available node at
level one, shown in Figure 9. The index value for V; is just the number in the left
part of node. In this case, it is six.® Let Vi; stands for the V value for level two.
Vii = ky[3][14][8]. We put V4, in the first available child node of V;. We also can
obtain the index value for V}, easily. In this case, it is twelve.

Suppose we want to insert ky[3][17][21]. V values(Vi, Vo) will be put in the
corresponding nodes, shown in Figure 9. Next., suppose we insert k3[3][19][7]. Since
there is no empty node at level one available, there is an overflow situation.

To handle the overflow situation, we create an empty node at level one, which is
also connected to the root node 3 (Figure 10).

The newly created node is split into two parts as before. The index value for
the new node is the maximum index value at level one (which is 39) plus one; i.e..
39+1=40. We put number 40 in the left part of the new node. The right part of
new node is still used to store V values. All other nodes are left unchanged. Now
the maximum index value for level one is 40 (Figure 10). If tree 4 has overflow at

level one. then we create a new node, split it, put the index value 41 (40+1) into the

we do not need to use Formula 2 to calenlate index values. The index values are already in

place.

OKLAHOMA STATE UNIVERSITY

22

left part of the node, and put the V value into the right part of the node (Figure
10). Index values for level one are no longer sequential numbers. However, this new
method observes a prime principle of SPIN: a distinct V value is associated with
a distinct index value. The index values are used to retrieve data records from a

database.

We discuss several common operations for this new algorithm.

1. Insertion

Insertion is discussed above. An inserted node is filled with two numbers. The
left part of the node is its index value, the right part of node is its V value.
Also, the left part of each node should never be empty. An index value should

always occupy the lefthand “data area.”

. Searching
This uses the R_.SPIN method for searching. It calculates V values for the
key, or combination of keys. then uses the caleulated V values to search the
corresponding tree, node by node, level by level. If the calculated V valne
matches the V value stored in the node, then search is successinl. The index
value of the node is returned. The search is unsuccessful when a 'V value of () is

deleted.

3. Deletion

Logically, if the deleted node’s index value is X, then we must find all nodes
whose index value is larger than X, then reduce their values by one. A problem
arises with those nodes whose index values are larger than X. They can be
located randomly on both sides of the deleted node. We must search every
node at that level, and check whether the index value is larger than X. One way

to avoid this tedious work is lazy deletion. When we want to delete a node, we

STATE UNIVERSITY

OKLAHOMA

23

K: index value;
V: V value;

Figure 11: The final result of the index tree in index dynamic SPIN

mark it as deleted, but leave it physically in place. When the marked nodes
reach a threshold, we start the physical deletion mechanism (garbage collection)

~physically deleting all marked nodes during a single search.

After building these trees., a possible final result is shown in Figure 11. The
shape of each tree is different.

This new method has several advantages:
1. It completely eliminate sparse data storage problems
2. It eliminates overflow.

3. It employs formula 2 only once.

Like most traditional tree algorithms, all trees’ shapes are changing (growing or

shrinking) dynamically, according to the operations perforied.

Space Utilization

Assume that data is stored on magnetic disks. Data is fetched from magnetic
disk drives in pages of a fixed size. Further assume we have built a very large index

file of more than 100,000 trees on that disk already. Each fetch of a page takes about

OKLAHOMA STATE UNIVERSITY

24

Return index valye

V value search

0 record
1
17
k o
5 iy
{i 4
: 5
.i 2
S | ZA
- A
. 1
Return rectrd ; k)

Figure 12: The whole picture for data indexing and retrieving

10 milliseconds on average on the fastest disk drives. This is the time it takes tor
the disk arm to move to the correct cylinder, for the disk to revolve until the head
is over the correct place in the track, and for the data to be transferred to the main
storage. For a search operation, given a combination of keys, index dynamic SPIN
scheme calculates a V value, then the program accesses the index file to try to find
the same V value. The index file consists of several pages (blocks). The page that
contains the tree number is brought into main storage.

Suppose each page contains 30 trees. Since the root numbers of trees are kept. as
sequential numbers, retrieval of the tree with the index value matching the V valne
is direct. The index value points to a location in a data file which is also on the disk
and broken into pages by the operating system®. What is associated with each index
value may be a data record, or another file pointer, depending on the application.
Page fetch or swapping is the same as above. The total situation is shown in Figure
12:

No matter how large a page is, the root numbers of the tree are sequential

natural numbers, as are the index values. This kind of structure is useful since a

SAll index values are arranged into sequential mimbers in all pages.

[IVERSITY

A

IMA S

- i

-

Y

O

25
digital computer is a sequential device.
Directory Dynamic SPIN

First we presented preliminaries of directory dynamic SPIN (T_SPIN for short).

Then we gave a general description and several design issues about T_SPIN.

Preliminaries

A General Design Method for SPIN

The transformation mechanism behind R_SPIN is studied first. Given a sparse
multidimensional array, such as P[20](30][40]. and its dense form p[20][3][2](different
from D_SPIN, R_SPIN gives us both a sparse form and a dense form before we can
go through the R_SPIN function), we have an index file containing 20 tree structures
of the form shown in Figure 3.3. All nodes initially contain the value zero. When
the subscript combination, such as P[3][24][8], is passed to R_.SPIN, R_SPIN uses
the formnla 2 to calculate the corresponding index value, such asV. This is the first
transformation, which transforms p[3][24](8](a multidimensional data space) to integer
number V (a singly dimensional data space). Such transformation is not enough, since
the result Vis in the sparse data space. We need to transform V (big number, sparse
form) into n (small number, dense form). In order to do that, we stores the Vin the
first empty node at the corresponding level. In this case, it’s level 2. Then, R_SPIN
uses the location value of that node into which it already put V| to calculate the
dense form index value n using the formula 2. R_SPIN returns the value n.

We can see from R_SPIN that the whole process actually is divided into two
steps:

First step. the transformation from a multidimensional data space to a single

dimensional data space.

26

Second step, the transformation from a sparse data space, which is already single
dimensional, to a dense data space.

D_SPIN also shows this two-step transformation. First step, D_SPIN is the
same as R_SPIN; Second step. because D_SPIN already stored the index value(n
value in this example) in the left part of node, it retrieves the n value from the
node, instead of calculating it. So, if we work in a sparse multidimensional data
space, the above two-step transformation is necessary if we want to index and process
data efficiently. Besides R_.SPIN and D_SPIN, various techniques can be used in
the process of transformation. All those techniques either have a static property,
as does R_SPIN, or a dynamic property, as does D_SPIN. Iu the view of design,
the two-step transformation gives us a general design method to design a new SPIN
technigue. In other words, we only need to design a transformation technique for
each transformation step. The T_SPIN proposed in this section is designed according

to the two-step transformation design method.

General Description

T_SPIN is evolved from extensible hashing[8]. Extensible hashing is a method

of organizing a file so that it has the following three properties[13]:

1. The file will automatically expand as necessary to accommodate new records.

The expansion will not require a reorganization of the file.

2. The file will automatically contract so that the probability of the load factor
dropping below 50% is negligibly small. As with the expansion, the coutraction

will not require a reorganization of the file.

3. The file structure will allow retrieval of a record by primary key with one access

to the file.

¢
b=

s -4 ~

BLAHUMA §

V)

27

Primary) Directory File
key H(key) index pointer

1: Hashing function(S_SPIN function in directory dynamic SPIN)
2: Extract first d digits

3: Table look up

Figure 13: Key transformations in extensible hashing

Obviously, extensible hashing file is a dynamic file structure. The sequence of
transformations by extensible hashing is shown in Figure 13. The first transformation
is a hashing function that maps the keys randomly onto some fixed address space
represented by the range of the hashing function. The first few digits of this result
are then extracted for use as an index into a directory. The directory contains pointers
that point to the file.

Considering the two-step transformation method it SPIN design, we can see that
the first transformation in Figure 13 actually is doing the work for the second step
in the two-step transformation: transforming a single dimensional sparse data space
into a dense data space.

In order to combine the dynamic properties of extensible hashing with SPIN
techniques, we must add the first step of two-step transformation to Figure 13, which
is. a transformation from a multidimensional data space to a singly dimensional data
space. We employ formula 2 to do this work. However, we do not need any tree
structures in this step, because the results of first step are arranged linearly so that
they can be easily hashed in the second step transformation.

Now, the whole picture of transformations is shown in Figure 14.

- e

BLAAUMA ST

U-..

28

multidimensional
data
space
I
kingle dimensiona] 9 dense data 3|
data space Irectory
space H(key) index
4
1: Formula 2 2: Hashing function
file
ointer
3: Extract d digits 4: Table lookup |-

Figure 14: Key transformations in T_SPIN
There are several design issues related to the transformations in Figure 14.

1. In Figure 4.11, only first three steps transformation belongs to T_SPIN, because

the fourth step (table look up) is beyond a indexing technique, and it will be

handled by file system.

The file pointers do not point to individual records, like R_SPIN or D_SPIN, but

rather to blocks of records called buckets. A bucket is a large block of records,
all of which are read with one physical read operation. The method of placing
and locating records within the bucket is not important since no additional

physical I/O operations are required|23]. Buckets may be added to and deleted

from the file at any time.

3. The hashing function used with T_SPIN can be any hashing function as long

as it satisfies the following four properties(13]:

(a) uniform and random distribution of keys over the range of the function:

(b) small variations in the key will cause large variations in the value of the

function:

(¢) synonyms occur no more than random probabilities would allow;

URLAHOUMA STATE

4.

=1

29

(d) the range of the hashing function be close to a power of 2.

The selection of the range of the hashing function is somewhat arbitrary and is
not tied to the number of records in the file. The range of hashing function is the
range of address space of dense data. For a dynamic scheme, we cannot know
in advance precisely how large the dense space need to he[4]. The selection
of the range of the hashing function actually depends on the given practical
application. In R_SPIN. such arbitrary selection of the range of dense data space
leads to the overflow problem; in D_SPIN, there is no this problem, because the
index trees (which actually reflects the range of dense data space) dynamically
expands or contracts. In this case, T_.SPJIN, the arbitrary selection may lead to
synonyms, which means more than one record is mapped to the same location
by the hashing function. Considering the basic unit in a data file is the bucket
in T_SPIN, if synonyms happen, we can put two records in the same bucket.

This means we map them to the same location.

According to the properties of the hashing function, it is convenient to choose
a range of hashing function equal to the first prime munber smaller than a
“round” binary number that is a power of 2[7]. For example, the largest prime

number less than 2'9 is 65,521,

The third transformation in Figure 15 extracts a relatively small integer from
H(key) by using the first few digits of the hashing function. There are several
arbitrary choices in the selection of digits. It is advantageous to use as small
a base as possible; hence, binary will be used as the base and bits will be the
digits. Another choice is which digits to use. Conventionally. the high-order

digits are selected|7].

The digits extracted from H(key) are then nsed as an index into a one dimen-

URLAHUMA NTATH

30

d=3
A H(key)=00...
‘J'] B | H(key)=010...
_ D H(k&‘}’)zl...
— Buckets with records
Directory

Figure 15: Directory of order d=3 with four buckets

sional array of file pointers. This array is called the directory and contains 27

entries, one for each combination of d digits from H(key).

8. The number of digits extracted from the hashing function value, the number
of entries in the directory, and the number of buckets in the file all will change
automatically as the file expands and contracts. Consequently, it is necessary
to store some parameters to indicate the current state of the file. Specifically,
the number of digits. d. used to index into the directory are stored with the

directory as shown in Figure 16.

The transformation shown in Figure 16 uses the first three binary digits from
the hashing function to partition the address space of the hashing function into eight
equal segments. These eight segments correspond to eight entries in the directory.
For example, suppose H(key)=0110100101100101 in binary. The first three digits,
011, have a value of 3. By using 3 as an index into the directory, we find a pointer
that points to bucket C.(The first element in the directory has an index of zero.)

The complete sequence of retrieving a record using T-SPIN cousists of six steps.
First, the formula 2 is applied to produce a single dimensional data(key). Second, the

key is hashed to produce H(key). Third, the first d digits(bits) are extracted from

UNLARUMA S1A°

31

multidimensional | 1|,. | 2
diita 1.rect.0r§, file
space index pointer

1: The T_SPIN function

2: Table look up

Figure 16: T_SPIN transformations

H(key) to form an index into the directory. Forth, the index is used to locate the
appropriate bucket pointer in the directory. Fifth, the pointer is used to read the

bucket into primary memory. Sixth, the desired record is located within the bucket.

The T_SPIN Function

From Figure 15, we see that the first three steps of key transformation are ac-
tually functional operations. The output of formula 2 is the input of the hashing
funection, and the ontput of the hashing function is the input of the extraction func-
tion. This chain of function calls suggests that we may combine the three functions
into one function to eliminate the overhead of function calls. The T_SPIN function is
the result of such combination. The input of the T_SPIN function is the multidimen-
sional array and the number of digits we want to draw (d value), and output of the
T_SPIN function is the digits extracted from the hashing result (the hashing process
is embedded in the 7_SPIN function).

After combining the function calls together, the key transformation is simplified

as shown in Figure 17.

Splitting Control

- -

ALK LINIVERSITY

-4 —

UnNLAMUIMA NI

32

d=3
A g =P
// H{key)=00...
B d'=3 |
| H(key)=010...
H\ H(key)=011...
i H(key)=10..
d=2]
E H(key)=11...

Figure 17: Distribution of keys among buckets after splitting bucket D.

The reason we use buckets instead of records as basic units in data file is to
allow the data file to expand or contract gracefully as the number of records varies.
In other words, we want to keep the perfect dynamic property for T_SPIN. In this
section, we discuss the splitting control in data file,

A rule is imposed on the buckets that sets a minimum and maximum load factor
for each bucket. Typically, these are 50% and 100%, respectively[13]. A change in
the file structure is triggered whenever these limits are violated by the addition or
deletion of a record.

Consider the small file of Figure 16. Suppose that a record is to be added which

maps into bucket D. If bucket D is already full, there is no room for the new record.

This triggers an expansion of the file. A new hucket, E, is added to the file. Half of

the pointers that point to bucket D are changed to point to bucket E. The records
i bucket D that are reached through the pointers that were changed must he moved
to bucket E. This will be approximately half of the records that were in bucket D.
This leaves both buckets approximately half full and there is ample room for the new
record.

The result of this split is shown in Figure 17. Before the split, all records for

UNLADNUIMIA NLATH |

33

which H(key)=1... were in bucket D. Now those where H(key)=10... are in bucket D
and those where H(key)=11... are in bucket E. The parameter d/ shown with each
bucket in Figure 17 indicates the number of digits of H(key) whose value is common
to all records in the bucket. This must always be equal to or less than the number of
digits, d, used to index into the directory.

The process for contracting the file is the reverse of enlarging it. Buckets must
be combined if three conditions are true[9]. First, the average load factor for the two
buckets cannot exceed 50%. Otherwise, there would not be room in the combined
bucket for all the records. Second, the buckets to be combined must have the same
value of d7. Third, the keys of the records in both buckets must share a common value
of the first (dr-1) digits of H(key). These last two conditions are necessary so that
the records of the combined bucket will share a common value of the first d” digits of

H(key).

Bucket Structure

Besides the splitting control, another important design issue is the bucket stric-
ture. However, we don't need to pay much attention to bucket structure for two
reasons. First. whatever method is nsed to organize the bucket internally will not
affect the number of physical 1/O operations and so will not have a significant im-
pact on most file operations. Second, there are many feasible solutions, with no clear
preference between them|7].

Structures as simple as a sequential-chronological organization with a bit map
are feasible. To find the desired record, each record in the bucket is examined in
sequence and its key is compared to the given key until a match is found or the end
of the bucket is reached. The ordered relative file could also be used for the internal
bucket structure and would permit a binary search to be used to find the desired

record. The problem of insertions and deletions is solved by moving blocks of records

INIV RHNITY
? 2500 £ 4

A1 H,

UNLANUMA N

34

as necessary to make room for a new record or close up a gap when an old record
1s removed. Thus, the reorganization is continuous and can be done entirely within

main storage.
Comparisons Between Dynamic SPINs And R_SPIN

The comparisons between dynamic SPINs and R_SPIN in this section focus on
the design issues. The performance comparisons are covered in Chapter VI.

There are several differences between dynamic SPINs and R_SPIN:

1. T_SPIN, D_SPIN and R_SPIN can all be analysed by two-step transformation

method. But they have different operations on second step.

[SPIN | First step | Second step |
R_SPIN | Formula 2 | Formula 2

D_SPIN | Formula 2 | embedded in the nodes
T_SPIN | Formula 2 | hashing function

2. The contents of index file and basic units of data file are different among the

three SPINs.
[SPIN I Contents of index file | Basic units of data file ‘

R_SPIN | tree structures records
D_SPIN | tree structures records
T_SPIN | directory table buckets

3. Different overflow problem handling techniques:

(a) R_SPIN: gives a message when overflow happens;

(b) D_SPIN: solves the overflow problem by dynamically expanding or con-

tracting the tree structures index file;

(¢c) T_SPIN: solves the overflow problem by allowing more than one index key
to be mapped to the same directory entry. (As long as the first few d digits

of index keys are the same, they all belong to the same directory entry.)

4. Different index retrieving method:

NIV HEHNETY
.- et LY

¥

MADVIVIA NILA LK

PRI R

35

(a) R_SPIN: traces the corresponding nodes in the same tree structure, and

retrieve the information the nodes contain.
(b) D_SPIN: the same as R_SPIN.

(¢c) T_SPIN: one directory table corresponding to each level of multidimen-
sional array, and each entry in the directory table contains the file pointer

to a certain bucket.
5. Different data file structures:

(a) R_SPIN: records are basic units of data file; many insertions and deletions
may cause data file reorganization.

(b) D_SPIN: the same as R_SPIN.

(¢) T_SPIN: the data file gracefully expands or contracts according the inser-

tion or deletion operatious.

LV HHSETY
VR e

MK LN

WDLADNVIVEA N

CHAPTER V

IMPLEMENTATION

An implementation of the two dynamic schemes has been done under UNIX
and written in C. Both implementations are based on the two-step transformation
method (Chapter IV). The implementation utilizes the assumption that all operations
on data occur in main storage. In this chapter, we first present data structures for

both schemes, then we give an implementation steps for each dynamiec scheme.
Data Structures

Index Dynamic SPIN

The data structure for a single node in the index is shown in Figure 18 The
node contains three integer nmbers and two structure pointers. The iuteger left_part
contains the K value, which is the initial sequential integer number. The integer
right_part contains the V value, which is the computed index nmumber. The integer
num_of_child contains the number of children the node has. The two structure pointers
are children pointer and parent pointer. A node may have more than one children.
Except the top node, each node has one parent node.

Directory Dynamic SPIN

The data structure for directory dynamic SPIN is the same as R_SPIN. Both

nse multidimensional array as their basic data structure,
Index Dynamic SPIN

The D_SPIN function implements the basic design idea in Chapter IV. It assumes

that all operations on data occurs in main storage. The steps of this program are:

36

-

VIVHEHNILY

WYLy

- S

37

struct {
int left_part;
int right_part;
int num_of_child;
struct tree *child| |;

struct tree *parent;

Figure 18: Data structure for D_.SPIN

Step IP 1 (Initialization) Compute the parameters for the formula 2.

Step IP 2 (Compute index value) In sparse situation, compute the index
value at each level. Put the result i an integer array “rect.”

Step IP 3 (Check root node) Check whether the root node is NULL; if it 1t,
it needs to be initialized, then go to IP 4. Otherwise, go to Step IP 8.

Step IP 4 (Root node initialization) Initialize the root node. Also, initialize
the child nodes for root. The left_part of each node 1s assigned sequential imteger
number from zero to the maximum number of the nodes. The right_parl of each node
15 assigned zero. Assign the pointers of child nodes to a temporarily pointer array,
“templ.” Templ points to level zero. Set counter of this level to the number of nodes
at this level plus one.

Set level 3=0.

Step IP 5 (Go down one level) Create a temporarily pointer array “temp2”,

which is a pointer to node at level one. The left_part of each node at level one 1s

the sequential integer number from zero to the mazwmum. number of the nodes. The

right_part of each node is matialized to zero. Set counter of this level to the number

of nodes at this level plus one.

SV ILHNELY
T

AN AL 1Y TV

38

Step IP 6 (Connect level j and level j+1) Allocate memory space for child
nodes of templ. Assign nodes of temp2 to the address of child nodes of tempi; Assign
pointers of nodes of templ to the pointers of parent nodes of temp2.

Step IP 7 (Go down next level) Reinitialize nodes of temp1; Assign pointers
of nodes of temp?2 to pointers of temp1. Then, go to IP 5, if j<=L (L is level number).
If 5> L, go to step IP 8.

Step IP 8 (Retrieve nodes or add new nodes to the trees) Locate the tree
to be retrieved or added by using the subscript at level zero. Set the root of selected
tree to subroot. Then. if the execution mode is “r” (retrieve), do Step IP 9; if the
execution mode is “a” (add), do Step IP 10.

Step IP 9 (Retrieve index nodes from the tree) Starting from the first
node at level 1, if the right_part value of the nodes of the subroot’s children matches
the index subscript at level 1, then, go to next level. We repeat this step until we reach
the last level of the tree. At any level of the iree, of the index subscript does not match
any nodes at that level, it means that there 1s no such index value to be retrieved in
the index tree, and return -1.

Step IP 10 (Add new index nodes to the tree) Starting from the first node
at level 1, if we can find the matched node, which means the indexr subscript value
at level one already exists, then we go to neat level. If we cannot find the matched
node, we create a new path which contains one new node at each level. Set left_pori
of the new node to the counter value at this level. Update counter value by adding
one. Assign right_part of new node the index subscript value. Set number of children

of the new node to one. Then, we go to next level, and repeat this search.
Directory Dynamic SPIN

The T_SPIN function implements the basic design idea in Chapter IV. It assumes

that all operations on data occurs in main storage. The steps of this program are:

VY
.- A

T T]

— a

39

Step DP 1 (Initialization) Initialize the parameters for formula 2. Set level
i=0. Create an integer array “krec” to contain the index values returned.

Step DP 2 (Compute the index value) From level 0 to level L, compute the
index value at each level by using formula 2. Put the results into “krec.” This index
value is equal to V value in R_.SPIN, which 1s the result of conversion from the sparse
multidimensional subscripts to a one dimensional index value.

Step DP 3 (Define various parameters) Define the size of hash table, which
will be used in hash function. Also define the value of d. which is an integer number
specifying how many digits will be extracted from the hashing result.

Step DP 4 (Hashing the index value) Given a hashing function, hash the
mdex value at each level. Store the results into “h_result,” which is an integer array.

In this program, the hashing function used 7s:

MR- Yy

hash(x) = rmodH SIZE

|'
S o

Step DP 5 (Extract frist d digits from the “h_result”) The hashing result
in Step DP 4 is in decimal format. It 1s transformed into bhinary format. Then, i
15 extracted by d digets from its hagh order end. Put the result wnto wnteger array

“e_result.” Return “e_result.”

CHAPTER VI

PERFORMANCE ANALYSIS FOR SPIN
Testing Program

The testing program experimentally examines the average time complexity of the
D_SPIN and T_SPIN functions. It measures the average running time for insertion
and search operations. In order to compare the performances of dynamic SPINs with
R_SPIN, the average running time of R_.SPIN is also tested. The steps of the test
program are listed below. In the following steps. the test function means D_SPIN.,
T_SPIN or R_SPIN function.

Step TP 1 (Generate permutations) Recursively generate distinct multi-
dimensional subscript combnations (or permutations), which is used during testing.
They are stored in main storage.

Step TP 2 (Set total test times) Set a number “N” for the total number
of testing cycles. In each testing cycle, a generated permutalon is passed to the test
funetion.

Step TP 3 (Initialize test function) There are many static parameters in-
volved . the test function, and their computation takes some time. So the test func-
tron must be initialized before tests begin.

Step TP 4 (Measures the overhead) Since this program lests the average
time behavior of test function, the test function is repeated within a testing loop.
In this step, a loop 1s implemented with all the necessary instructions except the

functional call of test function.

40

= -

41

——r_spin
0.00091 - =—Log. (r_spin)
0.0009 -
0.00089 A
Average
Time 0.00088 -
(sec.) 0.00087 4 y = 1E-05Ln(x) + 0.0009
tl
0.00085 - R®=0.49788
000035 $—t—+—t—t—+ 1+t
o] [=] o [=) o (=] =2 =] o o
S22 E88888B8REREEE
- = — - o N N N N 1]

Total Ho. of Permutations

Figure 19: The result of experiment using R_SPIN function

Step TP 5 (Execution loop) This loop tests all the necessary instructions
and execution call to test function. Record the testing time.
Step TP 6 (Caculate average running time) Subtract overhead time from

the total exaction time, then divide the result by number “N”.
Performance Analysis for R_.SPIN

The original R_SPIN function is modified so that it operates on the main storage.
We assume that the dense dimension size (tree branch size) is eight so that given
a total number of permutations (3200 in this example), the probability ol overflow
sitnation is relatively small. All graphs in this chapter are created by Microsoft Excel.
Figure 6.1 shows the experimental results of R_.SPIN with a permmtation efinition
of five dimensions and dimensional size of eight in each dimension.

In Figure 19. “Total No. of Permutations” refers to the different total permu-
tation numbers used in this experiment, and “Average Time” means the average
insertion time.

Figure 19 shows that the average insertion time of R_SPIN function is logarith-
mic. The trendline function is logarithmic function. The R-square of the trendline is

0.9788 (close to 1), which means the simulation of trendline is good.

TR A A

42

0.0008
0.00088
0.00088
Average °-00087 y = 3E-05Ln(x) + 0,0008
search U-00086 R*=08512
time 000085
(sec) 0.00084 .
0.00083 e
0.00082 Log. (r_spin)
0.0008e1
00008 ¢—4+—F+—+—+—+—+—t+—+—+—+—+—+—+++—+—t+—+—++—+—++++++—
o o o o o o o (=] (=] (=] Q o o
SBEREBEEEEEZRER R
Permutations

Figure 20: The result of experiment using R_SPIN function

This average insertion time does not include the initialization time for index
trees. It only counts the insertion time on initialized index trees. The theoretical
proof shows that average time complexity for insertion or search on this kind of tree
structures (incomplete tree) has logarithmic behavior[12].

The search operation in R_SPIN

The search experiments in this example use some of the permutations that
were inserted in earlier. As a result, all search operations in the experiments are
successful. Figure 20 shows the results of experiment with dimensional size eight.
The experiment indicates that the average search time of the R_SPIN function has

logarithmic time complexity.
Performance Analysis for D_SPIN

We assume that the operations occur in main storage, the binary tree is the initial
index data structure for D_SPIN, the level number for index tree is four (dimension
number is five). Figure 21 shows the experimental results of D_SPIN.

Figure 21 shows the average insertion time of D_SPIN is a logarithmic time
complexity. The function of trendline is logarithmic time complexity. The value of

R-square is close to one (0.9553), which means a good simulation of the trendline.

& Vs

- s

0.0014 s
0.00135 - Log, (d_spin)

0.0013 4

Average 0.00125 |
Time 00012 -

(sec) 00115 |

0.0011

0.00105 -

0.001 4

y = 0.0001Ln(x) + 0.0009
R*=0.9553

o o o = [==] [[(=] o (=] =] o] o

w (=) o ﬁ = w0 @K o 8 N w [v=] (=] o™

- -— (8] o o~ ™ [vp] [5e] (32} (ar] ™ = =
Total Ho. of Permutations

Figure 21: The result of experiment using D_SPIN function

In view of algorithm design, there are several factors contributed to this logarithmic

average insertion time.

1. Initialization time is not included in the test result. The initialization time
means time for creating initial tree structures. It usually cost much more than
that for operations (insertion or search) on initialized trees. In D_SPIN, besides
the initialization time. there is also some time needed o create new nodes when
overflow happens. The total number of those new nodes depends on how many
nodes are created and initialized at the beginning and how often the overflow
happens. Generally, the more new nodes are initialized at the beginning, the

less new nodes are needed to be created during execution.

2. In practical applications. since the probability of overflow can be predicted
roughly. the number of initialized nodes should at least count 50% of total per-
mutations so that less time will be spent on creating new nodes and general
performance of D_SPIN is acceptable. In this example, it counts 37%. If there
is no overflow then it is reasonable for D_SPIN having a logarithmic execution
hehavior, because the D_SPIN executes on the same index tree structure as

R_SPIN, and R_SPIN has been proved to have a logarithmic average time com-

TR A s

44

0.009375 ——d_spin
0.008375 —Linear (d_spin)
0.007375
Average 0006375
Time 0005375
(sec.) 0.004375

y = 00003x + 0.001

0.003375 R?=0.9985
0.002375

0.001375 : + g ——t t t——t—t——t————————+

2258888385888 888 -8

— -~ -— — -— ™ o~ ™~ o™ m ™

Figure 22: An experiment using D_SPIN function

plexity. If the time for creating new nodes does not count very much in total
execution time, it can be expected that average insertion time of D_SPIN has

logarithmic behavior.

3. In the implementation of D_SPIN, when an overflow at the same level happens.
not only a new node at that level is created, but also a path of child nodes is
created. So, it effectively saves the time for creating new nodes when overflow

happens on the same path repeatedly.

4. In some cases, if the time needed for creating new nodes counts a much bigger
percentage in total execution time, then it can be cxpected that the average

insertion time of D_SPIN is linear. Figure 22 confirms this expectation.

In Figure 22, the number of initialized nodes only counts 3.8% of total permu-

tations. We see that trendline is a linear function.

The search operation in D_SPIN
The search experiments in this example nse some of the permutations that were
inserted in earlier. As a result, all search operations in the experiments are successful.

Figure 23 shows the results of experiment with dimensional size two. The experiment

S Y

-

45

—e—d_spin
000114 - . Log. (d_spin)
000112 -
Average a.0011:4
search 0.00108 4
time 0.00108 Y= 4E-05Ln(x) +0.001
sec. R?=0.9262
(sec.) 0.00104 -
D.Gﬂmzl
oo H+—t+————+—t+—t+—t+—t+—+—+—+—++—+—+—+—+—+—+—+—++
o o (o] o] o] o o o [=] o o (=] o] =
e 2 R 833 8 &8 8 8 &3 88 8 ¢

Permutations

Figure 23: A search experiment using D_SPIN function

indicates that the average search time of the D_SPIN function has logarithmic time
complexity.

Compare D_SPIN with R_SPIN

If we compare the trendline function of D_SPIN with that of R_SPIN for insertion
operation, we find the fixed parts of both functions are the same; but for variable
parts (value of slope), the D_SPIN’s is ten times larger than the R_SPIN's. In other

words, R_SPIN is ten times faster than D_SPIN.
y = 0.0001Ln(z) + 0.0009.....d_spin (3)

y = 1E£ —05Ln(x) + 0.0009....r_spin (4)

Considering the static property of R_.SPIN and dynamic property of D_SPIN.

it is reasonable that execution of R_.SPIN is several orders of magnitude faster than

execution of D_SPIN.
Performance Analysis for T_SPIN

As stated in Chapter IV, the T_SPIN function is actually a transformation func-
tion. It transforms a sparse nmltidimensional array into a dense multidimensional

array, which is further transformed into d binary digits. The data structure the

e AS &

46

0.00213 - +—!_spin
‘ ——=Linear (t_spin)
0.00212 4
Average
Time
(sec) oo J y = -5E-08x + 0.0021

R?=0.0348

0.0021 J-—f—i——i—'f—i—l'—f—f-ﬂ—*f—f—l—!—i—!—!—l—r—l—i—l—i—!—i—ﬂ—l—l—l

[=] (=] o [[L) o (=] Qo [(=] o o
= w o o o™ = w w (=] (] = [7=] R 8 [
- - -— - — o™ o o™ o™ [7]

Total Ho. of Permutaions

Figure 24: The result of experiment using T_SPIN function

T_SPIN function uses is multidimensional array, which is similar to having only one
path in D_SPIN's tree structures. So, given a certain level of multidimensional array.
a constant average running time can be expected. This expectation is confirmed by
experiments. Figure 24 shows the experiment results.

In Figure 24, the slope of trendline function is very small (-5E-08) and can be
considered close to zero. So, the average execution time of T_SPIN can be considered
to be constant. In this case, it is 0.0071 seconds. We also see from Figure 24 that larger
the number of input data is, more the average running time is close to 0.0021. One
reason for this constant time complexity is that the T_SPIN does not keep directory
table which is necessary for data record retrieving and search. The outpuf of T_SPIN
is the index value for the directory table. The management of directory table is left
for file system of database.

The other way to measure the performance of T_SPIN is to analyze the distri-
bution of its output. The output of T_SPIN is the d binary digits, which is required
to evenly distributed in the directory table, so that the load factor of each bucket. is
closed to each other. One important factor to influence the values of d binary digits
is the hashing function used in 7_SPIN. In this test program, T_SPIN uses a typical

hashing function:

= o

47

Oiatnbution
of Times

101
1
11

g 8

—

dbinarydigits (d=4)

1010
1011
1100
1101
110
111

Figure 25: The result of experiment using distribution of output in T_SPIN

hash(r) = xmodH _SIZE

Figure 25 shows the experimental results of T_SPIN, using d=4 at level 4.

From Figure 25, we see that the distribution of output is good. No directory

entry has too many or too few index numbers.

CHAPTER VII
SUMMARY. CONCLUSION, AND SUGGESTED FUTURE WORK

Index dynamic SPIN (D_SPIN) and directory dynamic SPIN (T_SPIN) are two
dynamic indexing techniques that do not require complete file reorganization as a
result of overflow. They can be very useful for applications where overflow occurs
often, and the frequency of overflow cannot be predicted accurately. They also elimi-
nate the sparse situation in index files so storage space is saved when the index data
file is large. The design of both dynamic SPINs follows the two-step transformation
method, which is presented in chapter IV.

Conclusion

D_SPIN employ an index tree structure in the index file. It keeps all necessary
information in nodes of the tree. The advantage of this method is that it keeps
the layered data structure. The disadvantage of this method is that it must create
new nodes and a new path to overcome overflow; thereby, reducing the efficiency of
operations when compared to the static SPINs. T_SPIN employs a hash function in
its transformation processes. The output of T_SPIN is d binary digits, which will be
further used by file system to retrieve specific bucket. The advantage of T_SPIN is
that it introduces bucket concept, and it keeps data file dynamic since buckets in the
data file split on overflow. The disadvantage of 7_SPIN is that it sacrifices execution
speed since it needs to hashing and extract the outputs instead of directly retrieving
outputs as does R_SPIN.

The empirical results presented above demonstrate that a trade-off exists be-

tween dynamic SPINs and static SPINs. If time is a major factor, static SPINs show

43

49

better performance since static methods are almost ten times faster than dynamic
SPINs in the test example. However, if eliminating overflow and saving storage space
is a premium, then dynamic SPINs show better performance because there is neither
overflow nor sparse data storages in dvnamic SPINs.

Suggested Future Work

The work in this thesis is limited to the indexing technique which is only one
link in whole database design chain. It is necessary to measure the performance
of dynamic SPINs in practical database design and application. For example, after
getting results from 7_SPIN. one must design and implement buckets, file pointers,
directory tables, ..., etc.. so that the test constitutes a complete picture of a database

design. This part of work is left to future study.

=

10.

i)

12

A SELECTED BIBLIOGRAPHY

Guttman, A., R-trees: a dynamic index structure for spatial searching, Proceed-
ings of ACM SIGMOD (Special InterestGroup on the Management of Data).
June, 1984, pp.47-57

Bayer, R. and M. Schkolnick, Concurrency of operations on B-trees, Acta In-
formatica 9, 1977, pp.1-21

Coburn, Ty K. C SPIN toolkit, Oklahoma City, OK: ca.1991.

Coburn, Ty K. An introduction to SPIN hashing: an approach to managing
multidimensional data spaces. Tinker AFB, OK: Unpublished technical report.
ca. 1991.

Coburn, Ty K. An introduction to the S_SPIN hash function: making more
out of the multidimensional array. IEEE (Institute of Electrical and Electric
Engineers) NAECON(National Avionics Engineering Conference) 1994.

Fan, Z.M., Y. Zhang, R.A. DiVall and G.E. Hedrick Overflow analysis in SPIN.
Computer Science Dept., OSU: Unpulished technical report, OSU-CS-TR-96-
01, 1996.

Fagin, R., J. Nievergelt, N. Pippenger, and H.R. Strong Extensible hashing - A
fast access method for dynamic files. ACM Transactions On Database Systems,
‘ol 4. pp. 315-344. Sept. 1979.

Larson, P. A. Dynamic hashing. BIT 18, pp. 184-201, 1978.

Flajolet. P. On the performance evaluation of extendible hashing and trie search-
ing. ACTA Informatica, Vol 20, pp. 345-369, 19&83.

Korth. H. F. and A. Silberschatz Database System Concepts. New York: MeGraw-

Hill, Inc., ¢1991.

Zhang, Y., R.A. Divall, M.Z. Fan and G.E. Hedrick An Ezperimental Analysis
of a New Multr-Dimentional Storage And Retrieval Method. Compnter Science
Dept., OSU: Unpulished technical report, OSU-CS-TR-95-04, 1995.

Divall. R.A., Y. Zhang, M.Z. Fan and G.E. Hedrick. A Theoretical Analysis
of a New Multidimentional Storage and Retrieval Method. Computer Science
Dept.. OSU: Unpulished technical report (in preparation), 1995.

Naa

13.

14.

16.

17.

18.

19.

(]
-1

51

Harbron, T. R. File systems: structures and algorithms. Englewood Cliffs NJ:
Prentice Hall, Inc. ¢1987.

Aho, A.V., J.E. Hopceroft, and J.D. Ullman Data Structures and Algorithms.
Reading, MA: Addison-Wesley, 1983.

Aoe. J., Y. Yamamoto, and R. Shimada, A Practical method for reducing sparse
matrices with invariant entries, International Journal of Computer Mathemat-
ics, Vol. 12, pp. 97-111, Nov. 1982.

Bover, R.S. and J.S. Moore, A fast string searching elgorithm, Communication
of the ACM, Vol.20, No.10, pp. 762-772. Oct. 1977.

Buehrer, D.J. and Y.W. Fan, SL-trees: An indexing structure for object-oriented
data-bases. The Journal of Systems and Software, Vol.32, No.3, pp. 237-249,
Mar. 1996.

Chang, Y. and Lee C., Climbing hashing for extensible hashing, Information
Science, Vol.86, No.3, pp. 77-99, Sept. 1995.

Cormack, G.V., R.N.S. Horspool and M. Kaiserswerth, Practical perfect hash-
ing, The Computer Journal, Vol.28, pp. 54-58, Jan. 1985.

Jacobs, D.W., The space requirements of indexing under perspective projections.
IEEE Transactions on Information Theory, Vol.18, pp. 330-333. Mar. 1996.

Jaeschke, G., Reciprocal hashing: A method for generating minimal perfect hash-
ing functions, Communication of the ACM, Vol.24, pp. 829-833, Dec. 1981.

Jonge, W.D.. A.S. Tenenbaum, and R.D. Reit, Two access methods using com-
pact binary trees, IEEE Trans. Software Engineering, Vol. SE-13, pp. 799-810,
Jul. 1987.

Knnth, D.E., The Art of Computer Programmang, Vol. 111: Sorting and Search-
ing. Reading, MA: Addison-Wesley, 1977.

Kmuth, D.E.. J.H. Morris, and V.R. Pratt, Fast pattern matching in strings,
SIAM Journal of Computer, Vol. 6, No. 2, pp. 323-349, Jun. 1977.

Kumar, V. and J. Mullins, An integrated data structure with multiple-access
paths for database-systems and its performance. Data and Knowledge Engi-
neering, Vol.16, No.1, pp. 51-72, Jul. 1995.

Maly. R., Compressed Trees, Communication of the ACM, Vol. 19, No. 7, pp.
409-415, Jul. 1976.

Orenstein, J.A., Multidimensional tries used for associative searching, Informa-
tion Processing Letters, Vol. 14, No. 4, pp. 150-157, Jun. 1982.

28.

29.

30.

31.

52

Sheil, B.A.. Median split trees: A fast lookup technique for frequently occurring
keys, Communication of the ACM, Vol. 21. pp. 947-959, Nov. 1978.

Standish, T.A.. Data Structure Techniques. Reading, MA: Addison-Wesley.
1980.

Tarjan, R.E. and Yao A.C.. Storing a sparse table. Commun. ACM, Vol. 22
pp. 606-611, Nov. 1979.

Wirth, N., Algorthms and Data Structures. Englewood Cliffs, NJ: Prentice-
Hall, 1986.

APPENDIX A

Glossary

Any computer program whose objective is the solution of a practical problem.
application environment

An environment imputed to the SPIN package by the application program.
dense|tree])

A tree whose nodes all contain data.

dynamic SPIN

Any method that is contained wn the SPIN package that allows the structure of the
data to change dynamzcally.

key distribution

The way the keys of data objects are distributed throughout the dala space. Frequently
expressed as a probability distribution funetion.

level [in SPIN]

The part of a storage tree that corresponds to a guen index . a multidimensional
array.

load factor

A number, X, whose value is between 0 and 1, and whose value indicates how full (the
load) the storage tree(or table) 1s. An empty tree (table) has a loud factor of 0 (A=0);
a full tree (table) has a load factor of 1.

multidimensional array

Any array with more than one dimension.

overflow

In SPIN, an attempt to insert data into a tree with a load factor of 1.

radix|tree]

A tree that has a fized number of [possibly empty/ branches from each node. A radiz
n tree has n branches at each node.

sparse [data)

Multidimensional data in which the number of zero or empty storage locations greatly
exceeds the number of nonzero, nonempty storage locations.

static SPIN

Any method that is used within the SPIN package and whose storage structure remains
fized after initial allocation.

SPIN

Single Pownt Index Network. A data structure for data organization and retrieval.
SPIN mapping

Any mapping of keys, index values, or data values within one of the SPIN methods.
data file

A file 1s a collection of records.

bucket(or page)

A bucket (or page) corresponds to one or several physical sectors of a secondary storage
dewvice such as a disk. Let the capacity of a bucket be b records.

space utilization

Space utilization 1s the ratio between n and m*h, where n is the number of records in

the file, m 1s the number of pages used, and b is the capacity of the page.

VITA
ZILI FAN
Candidate for the Degree of

Master of Science

Thesis: DYNAMIC SPIN SCHEMES
Major Field: Computer Science
Biographical:

Education: Graduated from Hangzhou Second High School, Hangzhou, China
in July. 1987; received Bachelor of Science degree in Management Sci-
ence from Hangzhou University, Hangzhou, China in July, 1991; received
Master of Science degree in Economics from Oklahoma State University,
Stillwater, Oklahoma in December, 1994.

Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in December, 1996.

Experience: Employed by Oklahoma State University, Departiment of Computer
Science as a graduate research assitant, 1995 to 1996

