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INTRODUCTION

Soil properties exert a profound influence on ground-water quality. As soil

is the "filter" through which water often travels prior to entering an aquifer, local

soil properties such as texture and structure can influence the rate and quality of

ground-water recharge. Shallow ground-water systems can be more vulnerable

to spills and ill-advised surface chemical appl.ications compared to deeper

ground-water systems as less soil overlies them to help buffer potential

problems. Shallow aquifers are easily accessible sources of water, they serve

as sources of recharge to deeper aquifers, and they can maintain streamflows in

times of drought (Fetter, 1994). Materials that are applied to the soil surface or

are buried in the soil can move through the vadose zone to shallow and surficial

aquifers by saturated and unsaturated water flow (Fetter, 1994). Field

experiments are needed to understand the role of soil in regard to rate and

quality of ground-water recharge.

The rapid movement of soil water through macropores does not follow

piston-flow theory and can carry water-soluble compounds (Bouma, 1983).

Some of these compounds can degrade water quality upon entering a shallow

aquifer. Matrix or piston-flow can also move solutes into the saturated zone over

a longer period of time. If preferential macropore flow occurs in a shallow soil

and ground-water system, aquifers can be impacted in a short period of time. In

addition, if piston-flow also occurs, aquifers can be impacted over the long-term.

The objectives of this research are: 1) to determine rate and type of

movement of surface applied solutes through soil to a shallow aquifer, 2) to

1
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assess the impact of a subsequent recharge event on tracer remaining in the

soil, and 3) to determine changes in ground-water quality after recharge from

surface applied water containing bromide and iodide.

LITERATURE REVIEW

Previous Site Research

The site is located in a residential area of Stillwater, OK. Twenty-seven

ground-water monitoring wells, 8 soil-moisture suction Iysimeters, and 4 neutron

probe access tubes are present at the site (Ross, 1988). Initial investigations by

Hagen (1986) and Hoyle (1987) revealed spatial and temporal changes lin

ground-water quality (el:ectrical conductivity) and water table elevation. These

variations were beleived to be caused by rapid preferential flow through soil

macropores.

Macropore flow was also documented at the site by Ross (1988) and Acre

(1989). Ross (1988) found fluctuations in soil-water quality over short periods of

time, and attributed them to fertilization and macropore flow. Acre (1989)

documented fluctuations in soil-moisture content and also determined that

preferential flow through macropores was the cause.

Froneberger (1989) utilized surface-appliied bromide and chloride tracers to

study soil-water movement through the unsaturated zone. Within a short period

of time, large slugs of the tracers were found in the Iysimeters, and this was

credited to preferential macropore flow.
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Macropores

Lawes et al. (1882) were some of the first researchers to document the

effects of macropores on soil-water behavior. They observed that soil

macropores moved water quickly to a sizeable depth with only small changes in

chemical composition.

Brewer (1964) described macropores as pores that are at least 100 J.lm in

diameter. Luxmoore (1981) detailed three classes of soil pores: micro, meso,

and macropores. Size classification of soil pores was also furthered by Skopp's

(1981) response to Luxmoore (1981) to incorporate the processes occurring

within the pore in the definitions of soil porosity terms. Zietlow (1992) states that

techniques for measuring macropore size include timing and measuring water

flow through soil cores, tracing visible voids, staining with methylene blue, and

scanning soil photographs with an image analyzer (Smettem, 1987; Lauren et

aI., 1988; Radulovich et aI., 1989; Edwards et aL, 1988).

Pore space in soils typically ranges from 33% to 67% of the total soil

volume (Soil Survey Staff, 1981). The Soil Survey Staff (1981) developed a

system for classifying soil pores in which pores are classified according to size,

quantity and shape. Pores less than 0.075 mm are classified as micropores.

Beven and Germann (1982) classified macropores according to their type.

This included cracks and fissures along ped faces of shrinking soils, and cracks

caused by worm, insect, and plant-root activity. Chan and Mead (1989) found

that a 25 year-old pasture had a higher density of water-transmitting macropores

when compared to both a 9-year old pasture and a field under cultivation. Heard



..

4

et al. (1988) studied the effects of tong-term conservation tillage on soil

macroporosity. They found that while not increa.sing the number of channels,

conservation tillage plots had the greatest number of continuous channels or

macropores (Heard et al. 1988).

To describe vertical saturated flow through macropores in unsaturated

soils, Bouma and Dekker (1978) coined the phrase "short circuiting". Rogowski

and Simmons (1988) confirmed that soil macropores produce field measured

hydraulic conductivities greater than laboratory calculated conductivities due to

preferential flow. In a laboratory study using undisturbed soil cores, Germann

and Beven (1981) illustrated that with a continuous water supply and subsequent

macropore flow, the hydraulic conductivity of the soil increases due to rapid flow

through macropores.

Many researchers have shown that macropores can enhance solute

movement through the unsaturated zone. Black et al. (1973) found that tritium

applied to a clay soil with shrinkage cracks moved to a depth of 80 cm within one

hour after being applied. Black et. al. (1973) also found that soil coatings on the

outer surface of the peds in this soil had higher tritium concentrations than soil

material from the inner portions of the peds, and attributed this to tritium moving

down the cracks and then being absorbed into the outer surface of the peds.

Quisenberry and Phillips (1976) noted that water and chloride moved through a

silt-loam aquifer with only small changes in composition. They attributed the

phenomenon to preferential macropore flow. Priebe and Blackmer (1989) also



found macropores to cause 180 labeled water and 15N labeled urea to have Ifttle

change in composition after moving preferentially through soil.

Ehlers (1975) found that almost all earthworm channels that reached the

surface of an untilled soil formed from loess were capable of transmitting water

deep into the soil profile. Edwards et al. (1988) found that continuous worm

burrows were important factors for rapid ,infiltration into a non-tilled silt loam soil

during intense rainstorms.

Bromide and Macropores

Bromide tracers have been used to evaluate the influence of macropores

on infiltration, solute movement, and ground-water quality. Tennyson and

Settergren (1980) quantified bromide movement through a soil profile in order to

evaluate water and ion movement at a proposed sewage effluent irrigation site.

Results showed that macropores cause field measured values of hydraulic

conductivity to be greater than those measured in the laboratory. Zachmann et

al. (1987) used bromide to trace water movement into soils in which worm

populations had been added and found that these soils showed evidence of

macropore flow through worm burrows. Germann et al. (1984) utilized bromide

to document that water infiltrates to a greater depth in soils with macropores.

Bromide tracer recovery below 0.5 m, one day after being appl,ied in a 3 cm

rainfall, ranged from 32% to 42% on a non-tilled silt loam soil column and was

attributed to movement through macropores (Germann et aL, 1984). Chan and

Mead (1989) studied the movement of bromide into soil and verified that

5
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macropores significantly decreased runoff. Starr and Glotfelty (19090) studied the

pattern of bromide movement through a field soil as affected by plow and

conservation tillage under severe leaching conditions. Two different processes

of bromide movement were described: one-dimensional movement through the

soil matrix and rapid downward movement through macropores, by-passing most

of the soil matrix (Starr and Glotfelty, 1990).

Bromide as a Tracer

Bromide can be used in field experiments at low but detectable

concentrations, posing no health or pollution problem (Schmotzer et al., 1973).

Bromide is not considered to be toxic to plants (Martin, 1966). Davis et al.

(1980) concluded that bromide is a good tracer in ground-water studies because

it occurs in concentrations less than 0.01 mM bromide in natural waters and has

low toxicity. LeBlanc and Garabedian (1986) utilized bromide to examine the

process of solute dispersion in ground-water. D'Lugsoz (1976) used bromide

present in brines as an indicator of salt-water contamination in aquifers.

Afyuni et al. (1994) evaluated lateral and vertical transport of bromide as a

function of landscape position. When comparing footslope, linear slope, and

interfluve landscape positions, they found vertical and lateral bromide transport

to be greatest at the footslope position. They concluded that variability in

bromide transport is related to soil profile characteristics and hydrology at

different landscape positions. Sharma and Taniguchi (1991) investigated the

effect of the mode of water application (steady state vs. intermittent) on the
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leaching of a pulse of bromide. Results showed that the movement of the solute

peak was much faster under the steady state than the intermittent application.

Levy and Chambers (1987) tested the assumption that potassium bromide is a

conservative tracer for soil-water studies. Their results showed no significant

sorption of bromide to soils and therefore indicated that bromide is a

conservative tracer under the conditions examined. Owens and Edwards (1992)

studied the impact on ground-water quality of a one-time application of bromide.

Results indicated seasonal variations in bromide concentrations in the ground

water. The highest concentration (9.2 mg/L) occurred within three years

following the initial application. Bromide concentration in the ground-water was

slightly above baseline levels ten years after application (Owens and Edwards,

1992). Bruce et al. (1985) measured the redistribution of bromide applied to the

surface of a sandy loam soil in relation to rainfall and pedon characteristics.

Rainfall was found to be more effective in transporting bromide through

drainageway soil pedons than those on the slopes.

Iodide has also been used as a tracer in soil and ground-water systems.

As iodide behaves similarly to bromide, the two ions can be used in the same

experimental system in order to substantiate impact of one tracer application

period on another. However, bromide and iodide are not identical. The iodide

ion is larger, with a radius of 0.219 nm, while the bromide ion is smaller, with a

radius of 0.196 nm (Brown and LeMay, 1981). Because the iodide ion is larger

than bromide, it may move more slowly through the soil system (Zietlow 1992).

Davis et al. (1985) and Leap and Sun (1978) noted that iodide may also be
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adsorbed to a larger degree than bromide, lowering its concentration in ground-

water.

Muramatsu et al. (1990) documented that iodide is not highly adsorbed to

quartz sand or clay minerals. Bradbury and Green (1985) analyzed diffusion

rates through crystalline rock matrices with iodide to study the feasibility of

radioactive waste disposal in crystalline rocks such as granite. Results indicated

weathered fracture surfaces increase diffusion and rock holding capacity. Leap

and Sun (1978) used iodide in carbonate rock tracer studies and found that

iodide can be detected at lower concentrations than bromide. Rowe et al. (1965)

analyzed underground water circulation in hot springs and geysers of

Yellowstone National Park with sodium iodide. Results indicated that sodium

iodide was a suitable tracer which aided in the identification of subterranean

reservoirs and interconnections linking certain hot springs and geysers.

Bromide and Nitrate

Some researchers (Onken et aL, 1977; Smith and Davis, 1974) have

shown that bromide can be used to mimic nitrate movement in soils, however,

differences exist between the ions that can create problems. Nitrogen is an.
essential element required in large amounts for plant growth, while bromide is

not. In addition, nitrogen circulates through the environment via the nitrogen

cycle, while bromide does not.

Onken et al. (1977) used bromide concentrations in soil water ranging from

0.06 mM to 0.50 mM and concluded that nitrate and bromide move similarly in
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soil under field conditions. Breakthrough curves for nitrate and bromide

movement in subsoil columns illustrated that bromide simulates the movement of

nitrate (Smith and Davis, 1974). Bromide can potentially mimic the movement of

nitrate in soils because both are: 1) monovalent anions, 2) similar in ionic radii,

and 3) taken up by plants (Kung 1990). The ionic radius of bromide is 0.196 nm

compared to 0.189 nm for a nitrate ion (Sidgwick, 1950).

Owens et al. (1985) observed that the amount of applied bromide taken

up by plants in a pasture research plot was similar to nitrate uptake. Five weeks

after being applied, 32% of the 168 kg B(/ha applied had been taken up by

plants (Owens et aI., 1985). Kung (1990) examined the influence of plant uptake

on the performance of bromide tracer in potatoes. Results showed that at least

53% of applied bromide mass was absorbed by potato plants. Approximately

44% of the absorbed bromide was later made available to the soil after portions

of the potato plants decayed. Kung (1990) argued that leaching potential of

some chemicals can be grossly overestimated by using bromide breakthrough

curves in situations where plants will absorb much of the chemical, and be

underestimated in situations where plants absorb little of the chemical. Brown et

al. (1979) studied plant uptake of bromide following methyl bromide soil

fumigation. Results showed that methyl bromide remaining in the soil was

hydrolyzed or decomposed by microorganisms, releasing bromine as inorganic

bromide. In addition, a linear relationship was found between soil bromide and

plant uptake in one plot, while not in other plots (Brown et aI., 1979). Kempton

and Maw (1972b) studied tomato plants grown in soil fumigated with methyl
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bromide, and found that inorganic bromide was accumulated in the foliage. The

bromide concentration in the tomatoes depended on application rate and the

duration of interval between fumigation and planting. Kempton and Maw (1972a)

also studied lettuce plants grown in soil supplemented with 0-5000 mg inorganic

SOkg soil. Concentrations in the plants ranged up to 100,000 mg/kg of dry

tissue. Bromide was also found to be located mainly in the outer leaves

(Kempton and Maw, 1972a).

Jabro et al. (1991) characterized the movement of water and solutes in

soils with dual pore systems (macro and micropores) using bromide as a tracer

under saturated conditions. Jabro found that the distribution of the bromide

tracer in the soil profiles was highly variable. Results indicated that NO'3-N

contained in irrigation water or fertilizer solutions added to soils could result in

preferential movement of NO'3-N from the root zone to ground-water under

saturated conditions.

It is clear that under certain conditions, bromide behaves similarly to

nitrate. Also clear, however, are the many pathways of the nitrogen cycle which

make nitrogen movement through the environment much more complex than that

of bromide. Due to these complexities, researchers must use caution when

evaluating the effectiveness of bromide as a nitrate tracer.

Piston-Flow

A commonly held concept of soil-water movement is that of piston or

displacement flow. The piston flow concept states as water enters the soil j,t
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completely displaces the water that is already present in soil pores. Darcy's Law

is commonly used to characterize this type of flow in saturated soils (Darcy,

1856; Hubbert, 1956). Richards (1931) extended Darcy's Law to encompass the

flow of water in unsaturated soils. Bodman and Colman (1943) noted a wetting

"front" when applying water to dry soil, and concluded that the maximum water

content attained in the soil was approximately field capacity.

Izadi et al. (1993) used three piston-flow models based on Darcy's law,

field capacity, and the Transfer Function Model (Jury, 1982) to predict movement

of bromide through soil. The final measured position of bromide was significantly

greater than predicted by the piston-flow models, and Izadi (1993) concluded

that preferential flow must have occurred in the soil. Rice et al. (1991) also

found that preferential flow phenomena in soils resulted in solute and herbicide

velocities of 1.6 to 2.5 times faster than calculated by traditional water balance

methods and a piston-flow model.

Preferential Flow Without Macropores

Ghodrati and Jury (1990) used dyes to track the pathway of water into a

loamy sand soil and showed that three-dimensional preferential-flow channels

occurred in the almost structureless loamy sand. These flow channels were

likely present due to the channeling of water through matrix regions with higher

than average permeability (Simpson and Cunningham, 1982) or a fluid instability

induced by crusting or subsurface layering (Ghodrati and Jury, 1990). Based on

research performed on a clay loam soil, Bowman and Rice (1986) also
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concluded that significant preferential flow can occur even in soils with weak

structure.

MATERIALS AND METHODS

Site Description

The site lies within the northeast 1/4 of section 11, T 19 N, R 2 E in the city

limits of Stillwater, Oklahoma. The uppermost soil profile at the site (0 - 1.22 m)

has been mapped as the Ashport silt loam soil series (Henley et aI., 1987). The

Ashport soil series is classified as a Fine-silty, mixed, thermic Fluventic

Haplustoll that occurs on floodplains along streams in Payne county (Henley et

aI., 1987). Ross (1988) provides a description -of the complete soil profile at the

site (Table 1). Ross (1988) described two buried soil profiles beneath the

overlying Ashport soil profile. The first of these extends from 1.22 - 8.40 m

below surface and has been radiocarbon dated at 1,300 +/- 70 years before

present (Ross, 1988). The second buried profi1le occurs from 8.40 - 10.80 m and

has been dated at 10,600 +/- 170 years before present (Ross, 1988). Below this

second buried profile is a layer of gravel grading upward into alluvial sand (10.80

- 13.10 m), followed by the underlying Doyle shale (Table 1) (Ross, 1988). The

aquifer is contained within these buried alluvial soils and the water table

fluctuates between approximately 1.25 and 3.50 m below land surface (as

observed from 1986-1996).

Typical soil moisture contents at the site range from 0.11 - 0.35 cc/cc

(Ross, 1988; Froneberger, 1989). When the water table is high, moisture levels
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are fairly uniform with depth, however, when low, moisture levels are more

variable (Zietlow, 1992).

Naturally occurring macroporosity is present at the site. Zietlow (1992)

states that dessication crack macropores with surface openings as much as 1.27

cm wide often form at the site during prolonged dry periods. Hagen (1986) and

Ross (1988) noticed cracks between ped faces during their examinations of the

site. Zietlow (1992) noted abundant root macropores at the site, with the soil

being characterized by deep root zones. Ross (1988) noted many roots and root

casts in the upper soil profile. Zietlow (1992) also noticed tunneling earthworms

in soil cores from the site. These characteristics are typical of the Ashport soil

series (Soil Conservation Service, 1987).

Field Methods

Plot design

Field plots were designed to place bromide or iodide laden water in areas

surrounding a cluster of ground-water monitoring wells (01 through 05) (Figures

2a and 2b). The main plot had an area of 5.5 m2 and two smaller plots each

covered 1.5 m2
. As soil cores were taken to a depth of 2.4 m, the main plot

volume was 13.2 m3
. Surface applied bromide and iodide laden water was

contained within the plot area with plastic landscaping border partially buried to a

depth of 2.5 cm. Loose soil was packed on the outward facing side of the

landscape border to help stabilize it.
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To prevent lateral movement of the tracer once it had entered the soil, a

boundary area was established (Figure 2a) that received the same amount of

rainfall as the research plots. Equal amounts of water were appl'ied to both the

treatment and boundary areas. Water was applied to the boundary area with

biwall drip-irrigation tubing. The irrigation tubing was installed in three 152.5 m

sections with a 15 cm spacing between each loop. Each section was connected

to a residential water supply and each had an in-line pressure regulator to

regulate the amount of water applied to each boundary section,

Timing of tracer application

Two separate tests were completed at the research site. The first test was

made on March 1, 1991 using a bromide tracer. Both soil and ground-water

samples were taken and analyzed during the first test. On April 29, 1,991 a

second test was made using an iodide tracer. This second test was made to

assess the impact of another recharge event on bromide remaining in the soil

and to determine the impact of the application of trace amounts of iodide on

ground-water quality. The initial soil moisture content average during the iodide

test (0.25 cc/cc) was higher than that for the bromide test (0,20 cc/cc) (Zietlow,

1992). For the iodide test, only ground-water samples were taken and

analyzed.
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Tracer application

The application of the bromide and iodide tracers to the treatment areas

involved applying 7.5 cm of water to each plot over a three hour period. Storage

containers with a capacity of 150 liters were filled with deionized distilled water

and then KBr and KI were added to produce a 6.3 mM bromide (480 mg/L) and

0.05 mM (6.7 mg/L) iodide concentration. The bromide concentration was

chosen to represent a typical soil amendment rate and the iodide concentration

represented an application of trace amounts. Because iodide was added in

trace amounts, detectable levels (via saturated paste and ion chromatograph)

were not expected and were not found in the soil. The 5.5 m2 p'lot received

412.5 L of tracer-laden water. Each of the smaller 1.5 m2 plots received 112.5 L

of water. Given this volume of water and the chosen tracer concentrations,

1.98x105 mg of bromide and 2.76x103 mg of iodide were added to the largest

plot. To apply the water to the surface of the plots, several hoses running from

the storage containers to the soil surface were used. The flow from each hose

was regulated with clamps so that each plot received 2.5 cm of simulated rainfall

per hour. The hoses were moved on a regular basis to equally cover the plots

with bromide and iodide laden water.

Sampling in the field

Sampling in the field involved taking soil cores that were evaluated to

monitor bromide movement in the soil, and ground-water sampling used to

monitor bromide and iodide tracer amounts in the wells. A separate coring was
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also performed after tracer testing to determine bulk densities in 10 cm

increments. Ground-water samples were taken every 5 minutes for the first 5

hours of the experiment, dropping to every 10 to 15 minutes for the remainder of

the collection period (Zietlow, 1992). Water levels taken before testing verified

ground-water flow from the tracer application area toward the D well cluster

(Figure 2b) (Zietlow, 1992). A pressure transducer in the well continuously

measured depth to water during the experiment.

Soil cores were taken prior to testing and after complete applicati.on of

bromide. At timed intervals (background, 4.0 hrs after start, 5.7 hrs, 10.4 hrs,

23.1 hrs, 57.6 hrs, 151.0 hrs, 2.0 months, and 3.4 years), soil within the largest

plot was cored to a maximum depth of 2.4 m using a soil probe machine

(Giddings Machine Co., Inc. model HD-GSRP-S, Fort Collins, Colorado). Three

continuous cores, 5 cm in diameter were taken at each time interval. Each core

was retrieved in two parts with each part having a length of 1.2 m. After each

core was removed, the hole was quickly filled with sand and bentonite to prevent

water movement. The sand and bentonite were placed in approximately 30 cm

layers and each layer was compacted using a metal rod. Immediately after

being retrieved, each core was removed from the metal coring tube and cut into

10 cm segments. Each segment was then placed into a labelled plastic ziploc

bag for storage.
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Laboratory Methods

Each soil sample collected in the field was taken to a laboratory for

analysis. One core was utilized to determine bulk densities in 10 cm increments.

Soon after coring, gravimetric water contents were determined for each soil

sample. To determine the bromide content in the soil samples, saturated paste

extracts were made from each sample according to the method described by

Rhoades (1982). The only variation from Rhoades (1982) was the extraction of

soils using a Baroid press rather than a vacuum filter funnel. Extracted soil

solution was filtered using a 0.2 flm membrane filter. After filtering, a 1: 10

dilution of extract and distilled water was made, and 1 ml of this dilution was

analyzed on an ion chromatograph (Dionex'Corporation model2000i, Houston,

Texas) for determination of bromide concentration. Three bromide and iodide

standards were used to calibrate the ion chromatograph. The separator column

used was a Dionex corporation model HPIC AS4A, with an eluent of 1.8 mM

Na2COi1.7 mM NaHC03 flowing at a rate of 2 mllmin. The column was

regenerated with 0.0125 M H2S04, Ground-water samples were also analyzed

for bromide and iodide using the ion chromatograph.

RESULTS AND DISCUSSION

Soil-Water Content

Volumetric water content (8v) of the upper 240 em of soil (Figure 3)

increased from background levels after starting the bromide tracer test. Mean 8v

for the entire sampling depth prior to testing (background) was 0.25 cc/cc.
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Background data also revealed a relatively dry zone (8v =0.16 cc/cc) in the soil

profile from 90-100 cm (Figure 3). At 4 hours after starting tracer application, 8y

increased from background levels at all sampling depths. Mean 8y at 4 hours for

the upper 240 cm was 0.29 cc/cc. The 4 hour data also revealed a relatively dry

zone (8y=0.23 cc/cc) from 90-100 cm compared to the rest of the sampling

depths. For the remaining sampling times (5.7-151.0 hours) at which water

content was determined, 8y was similar throughout the entire sampling depth

(Figure 3). Mean 8y for 5.7, 10.4, 23.1, and 57.6 hours in the upper 240 cm was

0.30 cc/cc, and was 0.31 cc/cc for 151 hours.

The volumetric water content vs. soil depth curves in Figure 3 represent a

typical recharge event of a relatively dry soil profile. Central Oklahoma's mean

annual precipitation is 86.4 cm (Pettyjohn et al. 1983), with the wettest seasons

being spring and fall. Oklahoma has relatively dry winters, and soil profiles tend

to gradual'ly dry out after the fall recharge period. The majority of data is within

the 0.11-0.35 cc/cc averages for the site calculated by Ross (1988) and

Froneberger (1989). The drier portions of the background and 4 hour curves at

approximately 100 cm (Figure 3) is due to a sandier soil texture at that depth

(Figure 1 and Table 1) which tends to hold less water than soil textures

containing more silt and clay.

Soil-Bromide Content

Soil cores were taken before and after application of the bromide tracer

solution and were analyzed for bromide content. Bromide concentration within
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the three cores was averaged for each sampling time. Nine sampling times were

examined: background, 4.0 hrs after start, 5.7 hrs, 10.4 hrs, 23.1 hrs, 57.6 hrs,

151.0 hrs, 2.0 months, and 3. 4 years (Figures 4a-i). The background soil

bromide content for the entire sampling depth (0-240 cm) averaged 0.15 mg B(

Ikg soil (Figure 4a). The total background bromide content within the main plot

volume (13.2 m3
) was 2.53x1 03 mg. A possible source for this background

bromide concentration is leakage from septic and sewer lines in the area.

Bromide is often used in cleaning agents and could therefore be present in

septic and sewer lines.

At 4 hours after starting the bromide application (Figure 4b), the upper 60

cm of the plot had a significant increase from background in mean bromide

concentration (3.12-30.68 mg SOkg soil). Also at 4 hours, the 70-130 cm depth

contained bromide discontinuously above background levels (0.85-3.32 mg S(

Ikg soil). Below 130 em, mean bromide concentrations were below 1 mg BOkg

soil. Total bromide content in the plot volume at 4 hours was 6.19x1 04 mg (31 %

of total applied).

At 5.7 hours after beginning tracer application (Figure 4c), the 0-130 cm

soil depth contained mean bromide concentrations significantly above

background levels (4.35-27.22 mg BOkg soil). Two "peaks" of bromide were

present at 5.7 hours, the first at the surface (0-10 cm) (27.22 mg BOkg soil) and

the second at 100-110 cm (14.83 mg BOkg soil). Below 130 cm, mean bromide

concentration was below 1 mg BOkg soil. Total bromide within the plot volume

at 5.7 hours was 1.01x1 05 mg (51.2% of total applied).
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The bromide data for 10.4 hours after tracer application appears quite

similar to bromide data at 5.7 hours (Figure 4d). At 10.4 hours, the 0-140 cm soil

depth contained mean bromide concentrations above 1 mg SOkg soil. Two

distinct peaks were also present at this sampling time. The first was found at the

surface (0-10 cm) (22.36 mg SOkg soil), and the second at 90-110 cm (11.57

11.68 mg SOkg soil). Below 140 cm, mean bromide concentrations were below

1 mg SOkg soil. Total bromide content within the plot volume at 10.4 hours was

9.26x104 mg (46.8 % of total applied).

Two mean bromide concentration peaks al,so appeared at the 23.1 hour

sampling time (Figure 4e). The first peak was located at the surface (0-10 cm)

(22.06 mg SOkg soil), and the second was located at 90-100 cm (18.74 mg S(

Ikg soil). Bel'ow 130 cm, mean bromide concentrations were below 1 mg SOkg

soil. Total bromide within the plot volume at 23.1 hours was 1.05x105 mg (52.8%

of total applied).

At the 57.6 hour sampling time (Figure 4f), the highest mean bromide

concentration was at the surface (0-10 cm) (19.97 mg B(Jkg soil). Bromide was

then found discontinuously above 1 mg BOkg soil from the surface to the 100 cm

depth. Below 100 cm, mean bromide concentrations were below 1 mg BOkg

soil. Total bromide content within the plot volume at 57.6 hours was 5.08x104

mg (25.7% of total applied).

One hundred fifty-one hours after beginning tracer application (Figure 4g),

the highest mean bromide concentration of 18.29 mg BOkg soil remained at the

surface (0-10 cm). From 20 to 90 cm, mean bromide concentrations were within
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the 2.62-5.43 mg Sr"lkg soil range. A peak of 9.32 mg BOkg soil was found at

the 90-100 cm depth. Below 130 em, mean bromide concentrations were below

1 mg SOkg soil. Total bromide content within the plot volume at 151 hours was

6.25x104 mg (31.6% of total applied).

Two months after tracer application, bromide levels near the surface were

lower than at 151 hours (Figure 4h). The maximum mean concentration found

near the surface was 11.59 mg BOkg soil. A peak of 6.53-6.78 mg BOkg soil

was found at the 90-110 cm depth. Below 120 cm, mean bromide

concentrations were below 1 mg SOkg soil. Total bromide content in the plot

volume at 2 months was 5.35x104 mg (27.0% of total applied).

At 3.4 years after tracer application, mean bromide concentrations were

below 1 mg BOkg soil from the surface to a depth of 120 cm (Figure 4i). At 130

140 cm, a peak of 10.11 mg BOkg soil was found. This peak then gradually

declined to below 1 mg SOkg soil between 200 and 220 cm. Total bromide

content in the plot volume at 3.4 years was 2.63x1 04 mg (13.3% of total applied).

Many similarities exist between the soil-bromide data for the nine sampling

times. Except for 3.4 years, the highest bromide concentrations for each

sampling time were found at the 0-10 cm depth (Figure 4a-i). This occurs for two

reasons. First, bromide was appl!ied at the surface, and was retained within the

matrix of the surface soil horizons via adsorption by water. Secondly, bromide

concentration was increasingl'y diluted by resident soil-water with depth. All of

the sampling times except 3.4 years also have their second highest bromide

concentration corresponding to a discontinuity in the soil profile. Due to the rapid
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development with which this second peak appeared, the peak is likely due to

macropore flow.

The C horizon of the uppermost soil profile represents a textural and

structural soil discontinuity and is located from 97-127 cm (Figure 1 and Table 1).

The C horizon is a fine-sandy loam with silt loam textures above and below.

Ross (1988) describes its structure as finel,y laminated stratified sand and the

horizons above and below as subangular blocky (Table 1). All of the sampling

times (except background and 3.4 years) have a bromide peak Just above or

within this C horizon. Changes in soil texture and structure such as this Ashport

soil C horizon tend to impede the downward movement of macropore flow of

water and solutes through soil (Brady, 1990). The larger pores in the fine-sandy

loam of the C horizon provide less matric potential for water than the finer pores

of the silt loam above. Only when the moisture and the matric potential gradient

is raised sufficiently will the water move into the sandier layer (Brady, 1990).

The upper 130 cm of soil was rapidly (within 4 hours) and continuously (up

to 2 months) influenced by the surface-applied water and bromide (Figure 4b-h).

The highest mean concentration found was 30.68 mg B(/kg soil (0-10 cm) at 4

hours after application began. The majority of the mean bromide concentration

data from 4 hours through 151 hours are within the 4-20 mg BOkg soil range. By

two months, mean concentrations decreased to the 0-10 mg BOkg soil range.

As bromide was applied to the surface at a rate of 480 mg/L, the majority of

bromide found in the soil-water was 4.8 to 24 times lower than surface applied

concentrations. This lowering of bromide concentration was due to dilution with

td
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soil-water already present in the profile, and latera,1 flow of tracer away from the

plot area after the effectiveness of the boundary area was diminished. The

boundary area would not prevent lateral diffusion of bromide after drying, and

this could be a source of lost bromide for the later sampling times. In addition,

the saturated paste method could have underestimated bromide concentrations

due to dilution.

The data (Figure 4a-i) indicates that much of the bromide moved downward

through the soil via preferential macropore flow and piston-flow. The bromide

spikes (Figure 4b-f: 4 hrs.- 57.6 hrs.) that occurred with depth soon after tracer

application are likely due to macropore flow because of the rapid speed with

which they appeared. This is supported by Rogowski and Simmons' (1988)

claim that macropores cause field hydraulic conductivities to be greater than

would be anticipated, and by Froneberger's (1989) findings of macropore flow at

the site. The bromide curves (Figure 4a-i) also reveal that piston-flow and

macropore flow of the tracer solution was influenced by textural and structural!

changes within the soil profile.

Total bromide levels found within the main plot volume (13.2 m3
) ranged

from 13.3% (3.4 years) to 52.8% (23.1 hours) of total (1.98X1 05 mg) surface-

applied bromide. Total bromide recovery rose to a maximum at 23.1 hours, and

then declined to a minimum at 3.4 years. Some of the variation can be

explained by the sometimes substantial variation between soil cores within the

same sampling time (depicted as standard deviation in Figure 4a-i). Macropore

flow is a likely cause of some of the variation between cores because due to their
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circuitous pathways, macropores can impact one soil core while not affecting

another core nearby. As the cores were used to estimate total bromide content,

macropore flow could cause some of the variation in the total bromide content

between cores. In addition, the manner in which bromide was applied to the plot

area could cause variation in total bromide content between cores. Bromide was

app.lied with tubing that was manually moved across the plot area. This method

may have resulted in a somewhat unequal distribution of bromide to the plot

surface.

As the wells were periodically checked and no large amounts of bromide

were found, some of the bromide moved laterally through the soil away from the

main plot area by diffusion and this could account for some of the difference

between total bromide applied and bromide found in the soil. Another potential

loss pathway of bromide could have been uptake by grass, foUowed by grass

removal after mowing at the site. Owens et al. (1985) reported that 32% of 168

kg BOha was taken up by grass in a pasture. Grass uptake could account for a

portion of the bromide unaccounted for by soil extracts in the main plot, but

amount of grass and bromide removal from the site was not monitored.

At 3.4 years after surface application, mean bromide data indicates a peak

of 10.11 mg BOkg soil below the Ashport soil C horizon (97-127 em) (Figure 4i).

Above this peak, mean bromide concentrations were below 1.5 mg BOkg soil.

By 3.4 years the peak at 2 months within the top of the C horizon had moved

through the discontinuity and will likely continue to proceed downward via piston

flow with time. If this "front" continues downward, it will eventually reach the
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aquifer. In addition, if this "front" moves at the same rate (41 cm/yr), it would

reach 2.5 m and the water table at 6.1 years after surface application.

Bromide Content in Wells

The surface of the shallow aquifer at the site was 2.5 m below ground

surface on the day of the bromide tracer test. Initial soil moisture content during

the bromide test averaged 0.20 cc/cc. Background bromide concentration for

the D wells was 0.33 mg/L. Well 01 did not contain water during the experiment.

Wells 02 and 03 were monitored and were found to contain bromide after tracer

application to the soil surface (Figure 5). Bromide above background levels was

not detected within wells 04 and 05.

At approximately 3 and 6 hrs. after the start of surface water and bromide

application, wells 02 and 03 contained bromide above background levels,

respectively (Figure 5). After rising above background levels, bromide

concentration in well D2 remained above 0.4 mg/L for the remainder of the test.

Bromide in well 02 had a 5-hour peak above 0.5 mg/L, with a top concentration

of 0.8 mg/L (2.4 times higher than background) at 6.17 hours. Bromide

concentration in well 03 began to rise above background concentrations at

approximately 6 hours and remained above background until 12 hours after

surface application (Figure 5). A peak above 0.4 mg/L was present in well 03

from approximately 6.3 to 8.9 hours. The highest concentration found in well 03

was 0.49 mg,JL (1.5 times higher than background) at 8 hours after surface

bromide application.
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Bromide did not appear in well 01 because it was screened above the

water table (2.5 m). A possible explanation for bromide not appearing in wells

04 or 05 is dilution. Well 04 is screened from 4.1 - 4.2 m and any bromide

reaching it was likely diluted to background levels by the aquifer volume. Any

bromide in well 05 was also diluted to background levels because while 05 is

screened over a large interval (2.1 - 4.3 m), ground-water samples were taken

from the bottom of the well (4.3 m). Another possible explanation for lack of

bromide in wells 04 and 05 is lateral ground-water flow moving bromide away

from the wells before bromide could reach the lower depths in the aquifer at

which these wells were sampled.

Bromide applied to the soil surface was detected first and for longer

duration in well 02 compared to well 03 (Figure 5) because well 02 was

monitoring the surface of the shallow aquifer (it is screened from 2.7 to 2.8 m).

Well 03 detected bromide at lower concentrations, at a later time, and for a

shorter period of time compared to well 02 because it was screened below 02

and the aquifer surface (3.0 - 3.2 m). Both dilution and lateral movement of

bromide via ground-water are possible explanations for these results.

Bromide began appearing above background levels in well 02

approximately 3 hours after beginning surface application. As the top of well

02's screened interval is 2.7 m, bromide moved through the soil and aquifer at a

rate of 90 cm/hr or 1.5 em/min. Bromide arrived at weill 03 (3 m) 6 hours after

application began, which would indicate a movement rate of 50 cm/hr or 0.83
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em/min. These rates are much higher than the 2.1 x 10-3 - 5.4 x 10-3 cm/hr

saturated hydraulic conductivities measured in the lab for the site (Melby, 1989).

Compared to the surface-applied bromide concentration of 480 mg/L, the

maximum concentration found in the wells of 0.8 mg/L is small. This is due to

dilution of the tracer solution by soil-water and aquifer water.

Bromide reached a shallow aquifer 2.5 m below surface before the

overlying soil was fully impacted by the tracer solution as indicated by soil-

bromide content (Figure 4a-i). While dilution of the bromide concentration took

place, the speed with which some bromide reached the aquifer indicates

preferential flow through macropores. As stated in the site description, the

Ashport soil profile was relatively dry (9.3% saturation) and macropores of

various types were present (dessication cracks, cracks between ped faces, roots

and root casts, and earthworm-caused macropores).

As the wells were periodically checked up to March 1996 and no significant

amounts of bromide were detected, most of the bromide was either not detected

as it entered the aquifer, diffused away from the study area, or was taken up by

plants. Only 13.3% of total bromide added was found in the main plot volume at

3.4 years, therefore much of the bromide could have remained in the adjacent

soil or entered the aquifer outside the plot area.

Iodide Content in Soil and Wells

Background levels for iodide in the 0 wells was below the detection limit of

the ion chromatograph « 10 ug/L) (Zietlow, 1992). Initial depth to water on the
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day of the iodide test was 2.4 m. Initial soil moisture content (0.25 cclcc

average) was higher than that of the bromide test. Iodide above background

levels was found only in wells 01 and 02 (Figure 6). Iodide concentrati'on

reached 3.0-3.5 mg/L 5.5 hrs after surface application of water and iodide and

only 1 hr after initial detection of iodide in well 02. Iodide concentration 10.4 hrs

after surface application was 0.86 mg/L in well 02. Iodide first appeared in well

01 at 5.8 hours (0.25 mg/L), then remained around 0.4 mg/L for the next 3 hours

(Figure 6). Iodide in well 01 then rose to 1.0 mg/L at 10.2 hours after starting.

No iodide was found in the soil cores due to dilution with soil water, dilution

within the saturated paste, and the low concentration applied (6.7 mg/L). Much

of the iodide applied was not held in the soil because of the relatively high soil

moisture content, and therefore the iodide travelled to the aquifer and then away

from the study site via lateral ground-water flow. In addition, iodide was not

found in wells 03, 04, and 05. As with bromide, iodide was diluted by soil water

and aquifer water, and moved away via lateral ground-water flow.

Wells 01 and 02 received iodide because they were screened near the top

of the aquifer. Well 02 received iodide sooner and in higher concentrations than

well 01 (even though 01 is screened closer to the aquifer surface) due to

preferential macropore flow (Figure 6). Macropores influencing well 02 were

larger and less circuitous, thereby enabling iodide to reach well 02 sooner and in

higher concentrations.

Iodide first appeared in well 02 (2.7 m) (1.3 mg/L) at 4.7 hours after

surface application, Therefore, iodide travelled at a rate of 57.4 cm/hr or 0.96

rfC
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em/min. Iodide first arrived in well 01 (2.4 m) at 5.8 hours after starting tracer

application at a concentration of 0.2 mg/L. This results in an iodide movement

rate of 41 cm/hr or 0.68 em/min. As with bromide, these rates are much higher

than the 2.1 x 10-3
- 5.4 x 10-3 cm/hr saturated hydraulic conductivities measured

in the lab for the site (Melby, 1989).

As opposed to the bromide test, iodide concentrations found in the wells

were relatively close to surface applied concentrations. Iodide was applied to the

surface at a rate of 6.7 mg/L, and iodide was found in well 02 up to 3.2 mg/L.

Some dilution did occur, however much less than in the bromide test. Due to the

relatively wet soil moisture conditions during the iodide test, little tracer was held

in the soil and higher concentrations arrived at the aquifer. As no iodide was

found in the soil, or in the wells (after the initial slugs), it is assumed that most of

the iodide entered the aquifer and moved away via lateral ground-water flow or

was diluted below detection limits.

Iodide moved rapidly and preferentially through macropores to the shallow

aquifer. However, iodide took 1-1.5 hours Iionger than bromide to appear in the

wells. Iodide is a slightly larger ion than bromide, which could account for the

delay. In addition, dessication crack macropores were likely smaller during the

iodide test due to higher initial soil moisture. The shrinking of these macropores

would cause a slower rate of movement.

'rl
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Bromide Content in Wells After Iodide Test

Well samples were also analyzed for bromide during the iodide test.

Bromide above background levels (0.33 mg/L) was found only in well 02 (Figure

7). Bromide in Well 02 remained just above background levels until

approximately six hours after starting the iodide application. A small peak in

bromide of 0.4 to 0.463 mg/L was present from 6 to 7.5 hours after testing

began. Bromide then began to gradually decrease to background levels.

Bromide did not appear in wells 03, 04, or 05 after the iodide test because

they were either screened or sampled lower in the aquifer than well 02, and

dilution or lateral ground-water flow prevented bromide from reaching them. Two

potential explanations exist for the lack of bromide in well 01. First, 01 is

screened from 244-250 cm and the water table the day of the iodide test was at

240 cm. Well 01 was therefore close to not being fully developed, which could

potentially impede entry of water and solutes into the well. Secondly, the

bromide remaining in the soil two months after the bromide test may have been

in locations unavailable to the macropores that partially "feed" well D1. Well 02

was the only well that received bromide after the iodide test because 02 was

monitoring the top of the shallow aquifer and was fully developed.

Bromide remaining in the soil two months after the bromide test was

flushed to the aquifer via preferential macropore flow after the iodide recharge

event. The 2-month soil-bromide data (Figure 4) reveals that some bromide

does exist in the soil profile and can serve as a source of bromide to the aquifer

following recharge events.
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The bromide peak seen in well 02 arrived at the same time as the iodide

peak (approx. 6 hrs.). Given the initial soil moisture conditions and the state of

macropores on the day of the iodide test, 6 hours was the time required for

solutes moving from the surface and solutes remaining in the soil to reach the

aquifer via preferential macropore flow. The bromide peak after the iodide test

took longer to arrive at well 02 than the bromide peak following the bromide test

because of increased soil moisture reducing the size of macropores. The

bromide peak after the iodide test (0.46 mg/L) was also of lower concentration

than the bromide peak following the bromide test because bromide

concentrations remaining in the soil after two months were much lower than

bromide concentrations in the soil immediately and soon after the bromide test.

CONCLUSIONS

Shallow unconfined aquifers are easi:ly accessible sources of water that are

at higher risk for contamination than deeper aquifers due to their close proximity

to the land surface. The soil and ground-water system studied in this

investigation is typical of the Ashport soil series, as shallow aquifers are often

found below Ashport soils.

Tracers were found to move through the Ashport soil profile to the aquifer

at rates much higher than saturated hydraulic conductivities measured in the lab.

Bromide was found to move at a maximum rate of 90 cm/hr, iodide at a

maximum rate of 57.4 cm/hr, while lab saturated hydraulic conductivities were

found to be 2.1 x 10-3
- 5.4 x 10-3 cm/hr (Melby, 1989). The tracers moved

w
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through the Ashport soil at such high rates due to preferential flow through

macropores.

Results also indicate that some of the bromide tracer remained in the soil

matrix and gradually travelled downward as a "front" via piston-flow. This "front"

of bromide appears to be travelling at a rate of 5.0 x 10.3 cm/hr. At this rate, the

bromide "front" will reach 2.5 m (the elevation of the water table on the day of the

test) in the summer of 1997. This represents a second way in which surface-

applied bromide will potentially impact the aquifer.

In addition to immediate macropore flow and piston-flow, the aquifer

appears to be impacted by the tracers a third way: macropore flow after a

recharge event. Following a recharge event, tracer remaining in the soil was

transported within 6 or 7 hours to the aquifer via macropores.

Initial soil moisture content appears to have an impact on macropore flow

at the site. When soil conditions were drier, tracers arrived at the aquifer sooner,

yet in lower concentrations compared to moist soil conditions, when tracers took

longer to arrive in the wells, yet arrived in higher concentrations. This was due to

macropore size and continuity, and matric potential of the soil.

While three pathways of tracer entry into the aquifer have been identified,

water-quality degradation only occurs if high concentrations arrive in the ground-

water over extended periods. Tracers arrived in bursts that were less than 5

hours in duration. The concentrations of these bursts were low for bromide and

high for iodide compared to surface-applied concentrations. Bromide never

exceeded 2 mg/L and iodide never exceeded 3.5 mg/L.

fcC
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The tracers were not seen in the aquifer at levels that would constitute a

health hazard. However, iodide appeared briefly in well D2 at roughly half the

surface-applied concentration. This is somewhat disconcerting because if more

than trace amounts were applied, would a spike of half the concentration hit the

aquifer? If yes, it could pose a health hazard. Initial soil-moisture levels appear

to playa large role in the concentration of solutes flowing preferentially through

soil macropores.

While some bromide may still impact the aquifer, much of the bromide is

unaccounted for. Bromide has been leaving the site via lateral ground-water flow

and lateral movement through the soil. The boundary area was designed to

prevent lateral flow of tracer through soil on the day of the test. During the days

following the test, however, a portion of the bromide moved laterally and

therefore away from the sampling area. In addition, the saturated paste method

likely underestimates solute concentrations, and an unknown quantity of bromide

could have been removed from the site via grass removal during mowing.

This investigation represents a worst-case scenario for a pollutant that is

an anion. This study is a potentially good model for similar halogens such as

chloride, and its movement after a salt-water spill at an oil site, for example.

Finally, this investigation is specific to the Ashport soil series containing buried

soils and any correlation to other soil types should be done with caution.
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Table 1

Soil Profile Description of Ashport Soil Series and Underlying Buried Soils in the
Study

From Ross (1989)
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Horizon Depth Description
(m)

Ap 0.00 - 0.48 Reddish Brown (2.5YR 4/4, dry) to dusky red (2.5YR
3/2 moist) silt loam; moderate medium subangular
blocky, parting to weak medium platy structure;
friable; common roots and fine, continuous root
casts; gradual boundary.

A 0.48 - 0.66 Dark reddish brown (2.5YR 3/4, dry) to dark red
(2.5YR 3/6) silt loam; weak, coarse, prismatic
structure; friable; common, fine, continuous root
casts in peds; gradual boundary.

•»..
Bw 0.66 - 0.97 Red (2.5YR 4/6, dry) to dark reddish brown (2.5YR f~04

-<4

3/4, moist) silt loam; weak coarse, subangular u;
structure; friable; common, fine, continuous root ti

f~
casts; gradual boundary. •

• -<4
~~::,

C 0.97 - 1.27 Reddish brown (5YR 4/4, dry) to dark reddish brown ~.I~

(2.5YR 3/4, moist) fine sandy loam; finely laminated, : -ol· ~
• d~

stratifi,ed sands; friable; few, fine root casts; clear · .~
'1)

boundary. .~~

·-~·',;

2Ab 1.27-1.63 Dark reddish gray (5YR 4/2, dry) to dark reddish .'· I~
brown (5YR 3/3, moist) silt loam; moderate, fine,

:~subangular blocky structure; firm; roots; clear .,~

boundary. ::)

2AB 1.63 - 1.73 Reddish brown (5YR 4/4, dry) to dark reddish brown
(2.5YR 3/4, moist) silt loam; few, fine, faint, yellowish
red (5YR 5/6) mottles; medium. fine, subangular
blocky, parting to moderate, medium, prismatic
structure; firm; common, fine, round, black (n 2/0)
manganese nodules; few, fine, root casts; gradual
boundary.
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Table 1 (continued)

Horizon Depth Description
(m)

2Bw1 1.73-1.98 Reddish brown (5YR 4/4, dry) loam; few, fine, faint,
yellowish red (5YR 5/6) mottles; moderate, medium
to fine, subangular blocky, parting to moderate,
medium, prismatic, with moderate, coarse platy
structure; firm; common, fine to medium, black (n
2/0) manganese nodules; few fine root casts;
gradual boundary.

2Bw2 1.98 - 2.75 Reddish brown (5YR 4/4, dry) to dark red (2.5YR
3/6) silt loam; few, medium, faint, yellowish red (5YR
5/6) and reddish brown (5YR 5/3) mottles; moderate,
medium to fine, subangular blocky, parting to
moderate, medium, prismatic structure; firm;
common, medium, black (n 2/0) manganese nodules;
few, fine carbonate threads and fine concretions;
few, fine root casts; gradual boundary. '»

~~~.-04

2Bw3 2.75 - 3.15 Yellowish red (5YR 5/6, dry) silt loam; pinkish gray
:~

~=a
(5YR 7/2) mottles; moderate, to coarse to medium :>
prismatic, parting to moderate medium prismatic • -'4

.2~

structure; firm; few fine to medium black (n 2/0) ::)
manganese nodules; few, fine to medium carbonate .1~

;:...

concretions; few fine root casts, surrounded by .0:·-..
intense yellowish red (5YR 5/6) mottling; clear 'I)

boundary.
~.

-~,.
- <-.'

2Bw4 3.15 - 3.51 Yellowish red (5YR 4/6, dry) silty clay loam; few, I~

medium, faint reddish gray (5YR 5/2) mottles; .~
moderate, medium, prismatic, parting to moderate, · .::,
medium, subangular blocky structure; firm; few, fine,
irregular, black (n 2/0) manganese nodules; few, fine
root casts; gradual boundary.

2Bw5 3.51 - 3.66 Yellowish red (5YR 4/6, dry) loam; few, fine, faint,
reddish gray (5YR 5/2) mottles; moderate to weak,
medium, subangular blocky, parting to moderate to
weak, medium, prismatic structure; firm; few, fine,
black (n 2/0) manganese nodules; few to common
root casts; diffuse boundary.
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Table 1 (continued)

Horizon Depth Description
(m)

2BC1 3.66 - 3.97 Reddish brown (5YR 4/4, dry) clay loam; weak.
medium. prismatic, paring to moderate, medium,
subangular blocky structure; few, medium, black (N
2/0) manganese nodules; few, fine root casts; diffuse
boundary.

2BC2 3.97 - 4.27 Reddish brown (5YR 4/4, dry) silty clay loam; weak,
medium prismatic, parting to weak, medium,
subangular blocky structure; few, fine to medium,
black (n 2/0) manganese nodules; few, fine roots
casts; diffuse boundary.

2BC3 4.27 - 4.88 Reddish brown (5YR 4/4, dry) silt loam; weak,
medium, prismatic, parting to weak, medium,
subangular blocky structure; firm; few, fine, irregular,
with patches of many fine, round. black (n 2/0) ~> ',-..~
manganese nodules; few, fine root casts; clear :.~

boundary. f~
:. J
:>

2BC4 4.88 - 5.03 Yellowish red (5YR 4/6, dry) silt loam; massive,
.....
.2~

breaking to weak, medium, subangular blocky .:)

structure; firm; few medium, irregular, black (n 2/0) 1~
. -~

manganese nodules; very few, fine root casts;
4
~

~~

diffuse boundary. I)
A~

-~

2BC5 5.03 - 6.10 Reddish brown (5YR 4/4, dry) s.ilty clay loam; weak,
.~..'

medium, prismatic, parting to weak, medium, I;
1"

moderate, platy structure; firm; few, medium, -j
irregular, black (n 2/0) manganese nodules; few fine ~.

root casts; diffuse boundary.
:,

2BC6 6.10 - 6.48 Reddish brown (5YR 4/4, dry) silty clay loam; few,
very faint, yellowish red (5YR 4/6) mottles; weak,
medium prismatic, parting to weak medium
subangular blocky structure; friable; many
continuous root casts and pores in peds; few,
medium, irregular black (n 2/0) manganese nodules;
diffuse boundary.
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Table 1 (continued)

Horizon Depth Description
(m)

2BC7 6.48 - 6.71 Reddish brown (5YR 4/4, dry) silt loam; few,
medium, faint, yellowish red (5YR 4/6) mottles; weak,
medium, prismatic, parting to weak, medium,
subangular blocky structure; firm; few, medium,
irregular black (n 2/0) manganese nodules; diffuse
boundary.

2BC8 6.71-7.17 Yellowish red (5YR 4/6, dry) silt loam; few, medium,
distinct, grayish brown (5YH 5/6) and yellowish
brown (5YR 5/2) mottles; weak, medium, prismatic,
parting to weak, medium, subangular blocky
structure; firm; few, irregular, medium, black (n2/0)
manganese nodules; diffuse boundary.

2BC9 7.17-7.78 Yellowish red (5YH 4/6, dry) silty clay loam; few,
medium, faint, pinkish gray (5YR 6/2) mottles; weak,
medium, subangular blocky structure; firm; few to ~

,:....
common, continuous root casts; few, medium, round, --4

black (n 2/0) manganese nodules; diffuse boundary. .~~
: ~
.~.

2BC/A 7.78 - 8.39 Dark reddish brown (5YR 3/4, dry) and yellowish red
. --4

.2~

(5YR 4/6, dry) clay loam; few, fine, faint pinkish gray :)

(5YR 6/2) mottles; weak, medium, subangular blocky x~
-~

structure; few, fine black (n 2/0) organic matter c:~
~

"1

fragments (charcoal); firm; few, fine root casts; I)

diffuse boundary.
A~

'::.1;.
",-'3Ab 8.39 - 9.00 Dark reddish brown (5YR 3/3, dry) silt loam; few, I;
1"

fine, faint, reddish gray (5YR 5/2) mottles; moderate, -1
medium, subangular blocky structure, paring to ,,~

weak, medium, platy structure; common, fine,
:,

continuous root casts; few, fine, black (n 2/0) organic
matter fragments; clear boundary.

3AB1 9.00 - 9.30 Reddish brown (5YR 4/4, dry) silty clay loam; few,
fine, faint, yellowish red (5YR 5/6) and reddish gray
(5YR 5/2) mottles; moderate to weak, medium,
subangular blocky, parting to moderate to weak,
medium prismatic structure; gradual boundary.
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Table 1 (continued)

Horizon Depth Description
(m)

3AB2 9.30 - 9.91 Reddish brown (5YR 4/3, dry) sil,ty clay; common,
fine, distinct yellowish red (5YR 5/6), reddish gray
(5YR 5/2) mottles; weak to moderate, medium,
subangular blocky, parting to moderate to weak,
medium prismatic structure; firm; common, medium,
distinct gray (5YR 5/1) mottles surrounding common,
medium root casts; gradual boundary.

3Bw 9.91 - 10.83 Reddish brown (5YR 4/6, dry) silty clay; common,
fine, distinct gray (5YR 5/1) mottles; weak to
moderate, medium, subangular blocky, parting to
weak to moderate, medium prismatic structure; firm;
common, medium, root casts; gradual boundary.

3C1 10.83-11.59 Reddish brown (5YR 4/6, dry) silt loam; few, fine,
distinct, strong brown (7.5YR 5/8) and pinkish gray
(5YR 6/2) mottles; stratified, massive structure; ><l

.;'-4

friable; gradual boundary. -04

:~
3D1 11.59 -11.90 Reddish brown (5YR 4/6, dry) sandy loam; stratified, :;:-

-04

massive structure; friable; gradual boundary. 2:
)

3D2 11.90-13.12 Reddish brown (5YR 4/3, dry) gravelly sandy loam; ~

-'"
massive; friable; abrupt boundary.

.. 4
~

~'"
I)

3R 13.12 - 13.73 Upper Pennsylvanian Doyle shale.
~ ...

_.1
;~

.'
I~
1 4

-~
'4:,
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Figure 1. Soil Profile of Ashport Soil Series at the Study Site in
Stillwater, Oklahoma
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Figure 2a
Field-Plot Design for Bromide and Iodide Tracer Tests at the Study Site in

Stillwater, Oklahoma
From Zietlow (1992)
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Figure 2b - Well Cluster Diagram of Groundwater Monitoring Wells at the Study
Site in Stillwater, Oklahoma
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Figure 3. Volumetric Water Content - Bromide Tracer Test
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Figure 4(a). Changes in B( concentration with depth before application.
Bars represent positive component of standard deviation.
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Figure 4(b). Changes in B( concentration with depth at 4 hours
after application. Bars represent positive component of standard
deviation.
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Figure 4(c). Changes in B( concentration with depth at 5.7 hours
after application. Bars represent positive component of standard
deviation.
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Figure 4(d). Changes in Bf concentration with depth at 10.4 hours
after application. Bars represent positive component of standard
devi,ation.
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Figure 4(e). Changes in B( concentration with depth at 23.1 hours
after application. Bars represent positive component of standard
deviation.

'"

.~,.....

.).~
--4.....,,..
J

...
I'
1..
,~

)

•



..
57

0----,----------------------------,

50

.- 100
E
u---..c-..
Q.
Q)

Cl 150

200

250 --'--r-----,--..---------.-----.---,.----,------.--r-----.--..---------.---j

o 5 10 15 20 25 30 35 40 45 50 55 60

mg Br kg-1 soil

Figure 4(f). Changes in B( concentration with depth at 57.6 hours
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Figure 4(h). Changes in Bf concentration with depth at 2 months
after application. Bars represent positive component of standard
deviation.
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Figure 7
Bromide in Well 02 After Iodide Tracer Application - April 29, 1991
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Volumetric Water Content - Bromide Tracer Test

Depth (em) Bkgrnd A vol. Bkgrnd B vol. Bkgrnd C vol. Bkgrnd Mean Bkgrnd Std, pev.
0-10 0.26 0.26 0.14 0.22 0.07
10-20 0.23 0.27 0.21 0.24 0.03
20-30 0.25 0.24 0.28 0.25 0.02
30-40 0.28 0.27 0.28 0.28 0.01
40-50 0.25 0.36 0.30 0.30 0.06
50-60 0.20 0.29 0.27 0.26 0.05
60-70 0.13 0.26 0.24 0.21 0.07
70-80 0.10 0.29 0.25 0.21 0.10
80-90 0.09 0.21 0.25 0.19 0.08

90-100 0.11 0.18 0.19 0.16 0.04
100-110 0.15 0.28 0.19 0.20 0.07
110-120 0.16 0.31 0.24 0.24 0.07

120-130 0.22 0.30 0.24 0.26 0.04
130-140 0.24 0.31 0.26 0.27 0.04
140-150 0.26 0.30 0.28 0.28 0.02
150-160 0.25 0.31 0.28 0.28 0.03
160-170 0.25 0.30 0.28 0.27 0.03
170-180 0.24 0.27 0.27 0.26 0.02
180-190 0.25 0.26 0.27 0.26 0.01
190-200 0.24 0.26 0.25 0.01
200-210 0.25 0.38 0.32 0.10
210-220 mean=
220-230 0.25
230-240
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Volumetric Water Content - Bromide Tracer Test

Depth (cm) 4 hours A 4 hours B 4 hours C 4 hours Mean 4 hrs Std. Dev.
0-10 0.28 0.25 0.33 0.29 0.04
10-20 0.28 0.26 0.28 0.27 0.01
20-30 0.31 0.29 0.31 0.30 0.01
30-40 0.31 0.29 0.30 0.30 0.01
40-50 0.32 0.30 0.35 0.32 0.02
50-60 0.33 0.33 0.35 0.33 0.01
60-70 0.30 0.28 0.35 0.31 0.04
70-80 0.28 0.29 0.34 0.31 0.03
80-90 024 0.21 0.29 0.25 0.04

90-100 0.21 0.17 0.31 0.23 0.07
100-110 0.23 0.19 0.30 0.24 0.06
110-120 0.30 0.27 0.30 0.29 0.02
120-130 0.30 0.26 0.28 0.02
130-140 0.27 0.27 0.28 0.27 0.01
140-150 0.28 0.32 0.33 0.31 0.03
150-160 0.30 0.30 0.32 0.31 0.01
160-170 0.32 0.30 0.32 0.31 0.01
170-180 0.30 0.31 0.31 0.31 0.00
180-190 0.30 0.32 0.32 0.31 0.01
190-200 0.30 0.31 0.33 0.31 0.01
200-210 0.29 0.32 0.31 0.31 0.02
210-220 0.27 0.30 0.29 0.29 0.02
220-230 0.29 0.28 0.28 0.01
230-240 0.27 0.29 0.28 0.01

mean=
0.29
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Volumetric Water Content - Bromide Tracer Test

Depth (em) 5.7 hours A 5.7 hours B 5.7 hours C 5.7 hours Mean 5.7 hrs Std. Dev.
0-10 0.31 0.24 0.33 0.29 0.04
10-20 0.29 0.28 0.31 0.29 0.01
20-30 0.31 0.32 0.33 0.32 0.01
30-40 0.31 0.32 0.32 0.32 0.00
40-50 0.31 0.36 0.31 0.33 0.03
50-60 0.30 0.32 0.31 0.31 0.01
60-70 0.29 0.31 0.30 0.30 0.01
70-80 0.27 0.28 0.30 0.28 0.02
80-90 0.24 0.26 0.27 0.26 0.02

90-100 0.26 0.29 0.31 0.28 0.02
100-110 0.29 0.29 0.32 0.30 0.02

110-120 0.30 0.29 0.30 0.30 0.01
120-130 0.27 0.29 0.29 0.28 0.01
130-140 0.29 0.27 0.33 0.30 0.03
140-150 0.32 0.30 0.33 0.32 0.02
150-160 0.30 0.31 0.34 0.31 0.02
160-170 0.30 0.30 0.31 0.31 0.01
170-180 0.32 0.30 0.32 0.31 0.01
180-190 0.29 0.31 0.32 0.30 0.01

190-200 0.28 0.30 0.31 0.30 0.01
200-210 028 0.32 0.30 0.30 0.02

210-220 0.29 0.31 0.29 0.30 0.01
220-230 0.29 0.30 0.29 0.29 0.01
230-240 0.31 0.31

mean=
0.30
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Volumetric Water Content - Bromide Tracer Test

Depth (cm) 10.4 hours A 10.4 hours B 10.4 hours C 10.4 hours Mean 10.4 hrs Std. pey.
0-10 0.25 0.24 0.33 0.28 0.05
10-20 0.30 0.28 0.30 0.29 0.01
20-30 0.28 0.28 0.30 0.29 0.01
30-40 0.32 0.29 0.30 0.30 0.01
40-50 0.33 0.34 0.34 0.34 0.01
50-60 0.30 0.31 0.36 0.32 0.03
60-70 0.30 0.29 0.30 0.30 0.01
70-80 0.27 0.30 0.29 0.28 0.02
80-90 0.25 0.27 0.26 0.26 0.01

90-100 0.23 0.30 0.28 0.27 0.04
100-110 0.29 0.32 0.30 0.30 0.01
110-120 0.31 0.32 0.29 0.30 0.02
120-130 0.28 0.28 0,30 0.29 0.01
130-140 0.29 0.28 0.30 0.29 0.01
140-150 0.32 0.32 0,33 0,32 0.01
150-160 0,31 0.32 0.35 0.32 0.02
160-170 0.30 0,33 0.34 0.32 0,02
170-180 0.30 0.31 0.33 0.31 0,01
180-190 0.32 0.33 0.33 0,01
190-200 0.32 0.32 0.32 0.00
200-210 0.32 0.31 0.32 0.00
210-220 0,32 0.31 0.32 0.00
220-230 0.30 0,29 0.30 0,00
230-240 0.28 0.28

mean=
0.30
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Volumetric Water Content - Bromide Tracer Test

Depth (em) 23.1 hours A 23.1 hours B 23.1 hours C 23.1 hours Mean 23.1 hrs Std, Dev,
0-10 0.23 0.26 0.24 0.24 0.02
10-20 0.28 0.30 0.26 0.28 0.02
20-30 0.27 0.33 0.30 0.30 0.03
30-40 0.08 0.34 0.33 0.25 0.15
40-50 0.30 0.32 0.34 0.32 0.02
50-60 0.31 0.31 0.30 0.31 0.01
60-70 0.30 0.29 0.31 0.30 0.01
70-80 0.26 0.27 0.29 0.27 0.01
80-90 0.28 0.27 0.29 0.28 0.01

90-100 0.28 0.29 0.29 0.29 0.01
100-110 0.33 0.31 0.29 0.31 0.02
110-120 0.30 0.31 0.30 0.31 0.01
120-130 0.32 0.29 0.29 0.30 0.02
130-140 0.31 0.30 0.31 0.30 0.00
140-150 0.44 0.32 0.32 0.36 0.07
150-160 0.30 0.32 0.33 0.31 0.01
160-170 0.29 0.32 0.34 0.32 0.02
170-180 0.27 0.32 0.33 0.31 0.03
180-190 0.28 0.32 0.32 0.31 0.02
190-200 0.28 0.29 0.33 0.30 0.03
200-210 0.29 0.29 0.31 0.30 0.01
210-220 0.29 0.30 0.30 0.01
220-230 0.29 0.31 0.30 0.01
230-240 0.30 0.30

mean=
0.30
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Volumetric Water Content - Bromide Tracer Test

Depth (cm) 57.6 hours A 57.6 hours B 57.6 hours C 57.6 hoyrs Mean 57.6 hrs Std. Dev.
0-10 0.23 0.23 0.23 0.23 0.00
10-20 0.28 0.29 0.28 0.28 0.01
20-30 0.32 0.32 0.30 0.31 0.01
30-40 0.32 0.31 0.28 0.30 0.02
40-50 0.34 0.31 0.32 0.32 0.01
50-60 0.31 0.32 0.29 0.30 0.01
60-70 0.29 0.30 0.30 0.30 0.01
70-80 0.27 0.28 0.27 0.27 0.01
80-90 0.26 0.25 0.26 0.26 0.00
90-100 0.27 0.29 0.28 0.28 0.01
100-110 0.30 0.30 0.30 0.30 0.00
110-120 0.32 0.30 0.30 0.31 0.01
120-130 0.30 0.29 0.30 0.30 0.01
130-140 0.30 0.32 0.32 0.31 0.01
140-150 0.31 0.33 0.33 0.32 0.01
150-160 0.30 0.32 0.35 0.32 0.02
160-170 0.31 0.33 0.33 0.32 0.01
170-180 0.30 0.30 0.32 0.31 0.01
180-190 0.31 0.30 0.32 0.31 0.01
190-200 0.31 0.30 0.30 0.30 0.00
200-210 0.29 0.29 0.29 0.29 0.00
210-220 0.29 0.28 0.31 0.29 0.01
220-230 0.28 0.28 0.28 0.00
230-240 0.28 0.28

mean=
0.30
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Volumetric Water Content - Bromide Tracer Test

Depth (cm) 151 hours A 151 hours B 151 hours C 151 hours Mean 151 hrs Std. Dev,
0-10 0.21 0.22 0.22 0.22 0.01
10-20 0.27 0.28 0.28 0.28 0.01
20-30 0,30 0,32 0.28 0.30 0.02
30-40 0.33 0,32 0.31 0.32 0.01
40-50 0.33 0.34 0.34 0.34 0.00
50-60 0.30 0.60 0.32 0.41 0.17
60-70 0.29 0.29 0.28 0.29 0.00
70-80 0.26 0.27 0.27 0.27 0.00
80-90 0,23 0.51 0.23 0.32 0.16

90-100 0.42 0.26 0.27 0.32 0.09
100-110 0.34 0.27 0.27 0.29 0.04
110-120 0.30 0.26 0,30 0.29 0.03
120-130 0.30 0.33 0,30 0.31 0.02
130-140 0.30 0.29 0.31 0.30 0.01
140-150 0.31 032 0,32 0.32 0.01
150-160 0.30 0.31 0.32 0.31 0.01
160-170 0.31 0.34 0.36 0.34 0.02
170-180 0.30 0.31 0.33 0.31 0.02
180-190 0.30 0.32 0.33 0.32 0.01
190-200 0.27 0.75 0,32 0.44 0.26
200-210 0.29 0,03 0.31 0.21 0.16
210-220 0.29 0.42 0.31 0,34 0.07
220-230 0.22 0.31 0.26 0.07
230-240 0.29 0.29

mean-
0.31
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Soil-Bromide Content Data

Background A data B data C data Mean Standard Dev.

Depth (cm) mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Sr/kg soil mg Sr/kg soil

0-10 0.06 0.17 0.05 0.09 0.07

10-20 0.06 0.69 0.03 0.26 0.37

20-30 0.05 0.05

30-40 0.04 0.04

40-50 0.04 0.06 0.05 0.01

50-60 0.04 0.04

60-70 0.02 0.05 0.13 0.07 0.06

70-80 0.01 0.03 0.02 0.01

80-90 0.02 0.21 0.11 0.11 0.10

90-100 0.08 0.08

100-110 0.03 0.05 0.04 0.02

110-120 0.04 0.02 0.03 0.01

120-130 0.16 0.15 0.07 0.12 0.05

130-140 0.12 0.35 0.07 0.18 0.15

140-150 0.12 0.19 0.16 0.05

150-160 0.11 0.54 0.29 0.31 0.22

160-170 0.09 0.17 0.57 0.28 0.26

170-180 0.12 0.08 0.54 0.25 0.25

180-190 0.12 0.37 0.53 0.34 0.21

190-200 0.04 0.40 0.22 0.25

200-210 0.04 0.58 0.31 0.38

210-220

220-230

230-240 ......
(.oJ
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Soil-Bromide Content Data

4 Hours A data B data C data Mean Standard Dev.

Depth (em) mg Sr/kg soil mg Sr/kg soil mg Sr/kg soil mg Sr/kg soil mg Sr/kg SQII

0-10 27.42 23.86 40.77 30.68 8.91

10-20 17.78 2.04 21.11 13.64 10.19

20-30 8.03 0.05 16.25 8.11 8.10

30-40 6.02 0.07 10.24 5.44 5.11

40-50 3.10 0.03 9.17 4.10 4.65

50-60 3.06 0.03 6.28 3.12 3.12

60-70 2.88 0.10 1.32 1.43 1.40

70-80 2.06 0.23 1.06 1.12 0.92

80-90 0.11 3.54 1.82 2.42

90-100 0.02 0.24 6.30 2.19 3.56

100-110 0.07 0.05 9.85 3.32 5.65

110-120 0.07 0.04 2.44 0.85 1.38

120-130 0.94 2.78 1.86 1.30

130-140 0.80 0.05 0.15 0.34 0.40

140-150 0.26 0.06 0.11 0.14 0.10

150-160 0.23 0.12 0.19 0.18 0.05

160-170 0.22 0.23 0.16 0.21 0.04

170-180 0.33 0.22 1.68 0.74 0.81

180-190 0.38 0.36 0.34 0.36 0.02

190-200 0.32 0.21 0.30 0.28 0.06

200-210 0.32 0.16 0.24 0.24 0.08

210-220 0.10 0.13 0.22 0.15 0.07

220-230 0.10 0.16 0.13 0.05

230-240 0.10 0.10
-....I
~



Soil-Bromide Content Data

5.7 Hours A data B data C data Mean Standard Dev.

Depth (em) mg Br/kg soil mg Br/kg soil mg Brikg soil mg Br/kg soil mg Br/kg soil

0-10 30.98 20.19 30.48 27.22 6.09

10-20 11.97 9.91 14.19 12.02 2.14

20-30 5.53 6.93 7.80 6.75 1.15

30-40 7.21 5.56 14.49 9.09 4.75

40-50 4.44 2.81 5.88 4.38 1.54

50-60 3.45 3.16 7.34 4.65 2.33

60-70 3.09 3.43 6.53 4.35 1.90

70-80 193 3.39 12.96 6.09 5.99

80-90 0.38 3.12 26.26 9.92 14.22

90-100 0.09 0.52 37.80 12.80 21.65

100-110 0.08 0.12 44.30 14.83 25.52

110-120 0.26 0.08 19.22 6.52 11.00

120-130 0.09 1.63 13.39 5.04 7.28

130-140 0.18 0.11 0.76 0.35 0.35

140-150 0.33 0.29 0.86 0.50 0.32

150-160 0.48 0.38 0.49 0.45 0.06

160-170 0.52 0.37 0.57 0.49 0.10

170-180 0.51 0.43 0.82 0.58 0.21

180-190 0.40 0.36 0.50 0.42 0.07

190-200 0.27 0.64 0.64 0.52 0.21

200-210 0.18 0.36 0.43 0.32 0.13

210-220 0.11 0.24 0.44 0.26 0.16

220-230 0.17 0.20 0.39 0.25 0.12

230-240 0.31 0.31 -....J
U1
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Soil-Bromide Content Data

10.4 Hours A data B data C data Mean Standard Dev.

Depth (em) mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Br/kg soil

0-10 17.22 15.60 34.25 22.36 10.33

10-20 9.00 13.71 31.31 18.00 11.76

20-30 2.85 3.59 11.94 6.12 5.05

30-40 3.69 3.54 13.57 6.94 5.75

40-50 1.57 5.82 8.46 5.29 3.48

50-60 1.88 4.35 14.15 6.80 6.49

60-70 0.72 2.58 6.60 3.30 3.01

70-80 0.92 4.61 13.62 6.38 6.53

80-90 1.40 8.74 16.60 8.91 7.60

90-100 0.45 7.28 27.31 11.68 13.96

100-110 11.57 11.57

110-120 1.63 1.63

120-130 0.83 0.21 2.99 1.34 1.46

130-140 0.54 2.01 1.28 1.04

140-150 0.61 0.51 0.44 0.52 0.09

150-160 0.63 0.59 0.22 0.48 0.23

160-170 0.78 0.68 0.24 0.57 0.29

170-180 1.08 0.70 0.31 0.70 0.39

180-190 0.43 0.77 0.60 0.24

190-200 0.70 0.44 0.57 0.18

200-210 0.51 0.36 0.43 0.11

210-220 0.22 0.22

220-230 0.43 0.22 0.32 0.15

230-240 0.50 0.50 ......
C7'
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Soil-Bromide Content Data

23.1 Hours A data B data C data Mean Standard Dev.

Depth (em) mg Sr/kg soil mg Sr/kg soil mg Br/kg soil mg Brlkg soil mg Br/kg soil

0-10 20.00 25.90 20.29 22.06 3.33

10-20 9.98 16.27 17.79 14.68 4.14

20-30 1.95 11.81 10.39 8.05 5.33

30-40 0.43 9.88 14.06 8.12 6.98

40-50 0.72 3.33 9.65 4.56 4.59

50-60 0.40 6.26 6.87 4.51 3.57

60-70 0.51 5.58 8.37 4.82 3.99

70-80 2.31 11.89 13.87 9.36 6.18

80-90 4.10 17.83 19.66 13.86 8.51

90-100 24,31 16.49 15.42 18.74 4.85

100-110 7.37 22.15 8.78 12.77 8.16

110-120 0.53 6.76 1.70 3.00 3.31

120-130 0.27 1.02 7.63 2.97 4.05

130-140 0.14 0.89 0.51 0.53

140-150 0.53 0.42 0.48 0.08

150-160 0.53 0.17 0.38 0.36 0.18

160-170 0.42 0.27 0.45 0.38 0.09

170-180 0.18 0.35 0.49 0.34 0.16

180-190 0.36 0.43 0.57 0.45 0.11

190-200 0.09 0.19 0.57 0.28 0.25

200-210 0.14 0.21 0.46 0.27 0.16

210-220 0.15 0.37 0.26 0.15

220-230 0.33 0.33

230-240 .......
.......
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Soil-Bromide Content Data

57.6 Hours A data B data C data Mean Standard Dev.

Depth (em) mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Br/kg soil

0-10 16.92 18.10 24.89 19.97 4.30

10-20 7.39 19.26 17.99 14.88 6.52

20-30 3.42 10.47 6.18 6.69 3.55

30-40 1.80 3.56 1.61 2.32 1.07

40-50 1.65 1.82 1.25 1.57 0.29

50-60 1.12 2.26 7.95 3.78 3.66

60-70 0.79 1.91 2.60 1.77 0.91

70-80 0.93 3.06 10.74 4.91 5.16

80-90 0.36 3.38 4.34 2.70 2.08

90-100 0.32 1.89 1.61 1.27 0.84

100-110 0.32 0.62 0.47 0.21

110-120 0.36 0.19 0.27 0.12

120-130 0.30 0.30 0.27 0.29 0.02

130-140 0.25 0.25

140-150

150-160 0.58 0.58

160-170 0.60 0.27 0.44 0.23

170-180 0.70 0.41 0.40 0.50 0.17

180-190 0.53 0.72 0.38 0.55 0.17

190-200 0.74 0.32 0.28 0.45 0.26

200-210 0.52 0.33 0.24 0.36 0.15

210-220 0.53 0.25 0.39 0.20

220-230 0.43 0.26 0.34 0.12

230-240 0.39 0.39 -....J
co
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Soil-Bromide Content Data

151 Hours A data B data C data Mean Standard Dev.

Depth (em) mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Br/kg soil mg Br/kg soil

0-10 17.80 18.49 18.59 18.29 0.43

10-20 7.58 14.22 11.65 11.15 3.35

20-30 3.05 7.47 4.86 5.13 2.22

30-40 2.70 7.11 6.47 5.43 2.38

40-50 2.88 4.58 7.68 5.05 2.43

50-60 2.62 5.20 5.78 4.53 1.68

60-70 1.85 1.97 4.03 2.62 1.22

70-80 1.30 2.49 6.15 3.32 2.53

80-90 0.64 5.60 5.94 4.06 2.97

90-100 9.19 4.47 14.31 9.32 4.92

100-110 0.39 0.93 8.53 3.28 4.55

110-120 1.36 0.87 1.11 0.35

120-130 0.53 0.68 2.68 1.29 1.20

130-140 0.20 0.66 0.43 0.33

140-150 0.29 0.29

150-160 0.38 0.38

160-170 0.44 0.79 0.61 0.25

170-180 0.33 0.50 0.97 0.60 0.33

180-190 0.58 0.61 0.49 0.56 0.06

190-200 0.16 1.19 0.81 0.72 0.52

200-210 0.04 0.71 0.38 0.47

210-220 0.47 0.62 0.54 0.10

220-230

230-240 -.....J
\.0



Soil-Bromide Content Data

2 Months A data B data C data Mean Standard Dev.

Depth (em) A mg Br/kg soil B mg Br/kg soil C mg Br/kg soil mg Brlkg soil mg Br/kg soil

0-10 22.22 8.33 4.23 11.59 9.43

10-20 16.11 7.59 1.97 8.56 7.12

20-30 10.11 5.35 1.35 5.60 4.39

30-40 7.44 4.12 2.96 4.84 2.32

40-50 8.02 1.71 0.72 3.48 3.96

50-60 7.08 1.38 0.61 3.02 3.53

60-70 6.32 0.45 0.14 2.31 3.48

70-80 8.41 0.50 0.20 3.04 4.66

80-90 6.63 0.51 0.05 2.40 3.67

90-100 17.58 1.90 0.10 6.53 9.61

100-110 15.64 3.12 1.60 6.78 7.71

110-120 6.28 1.72 1.02 3.01 2.86

120-130 1.07 0.14 0.04 0.42 0.57

130-140 0.12 0.26 0.31 0.23 0.10

140-150 0.25 0.08 0.66 0.33 0.30

150-160 0.34 0.49 1.02 0.62 0.36

160-170 0.54 0.67 1.21 0.81 0.36

170-180 0.99 0.80 1.12 0.97 0.16

180-190 0.87 0.42 0.59 0.62 0.23

190-200 1.16 0.59 0.81 0.86 0.29

200-210 0.50 0.22 0.14 0.29 0.19

210-220 0.48 0.48 0.48 0.00

00
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Soil-Bromide Content Data

3.4 Years A data B data C data Mean Standard Dev.

Depth (em) A mg Br/kg soil B mg Br/kg soil C mg Br/kg soil mg Brlkg soil mg Brlkg soil

0-10 0.78 0.37 0.45 0.53 0.22

10-20 0.36 0.54 0.25 0.38 0.15

20-30 0.25 0.08 0.26 0.20 0.10

30-40 0.05 0.14 0.08 0.09 0.05

40-50 0.23 0.08 0.15 0.15 0.07

50-60 0.16 0.09 0.16 0.14 0.04

60-70 0.17 0.09 0.05 0.10 0.06

70-80 0.05 0.11 0.08 0.08 0.03

80-90 0.06 0.12 0.05 0.08 0.04

90-100 0.12 0.06 0.04 0.08 0.04

100-110 0.13 0.02 0.05 0.07 0.06

110-120 0.35 0.34 0.47 0.39 0.07

120-130 2.34 1.15 0.71 1.40 0.84

130-140 13.18 12.56 4.57 10.11 4.80

140-150 5.22 5.16 6.45 5.61 0.73

150-160 6.10 4.01 3.68 4.60 1.31

160-170 3.99 4.54 2.33 3.62 1.15

170-180 1.91 2.31 0.98 1.74 0.68

180-190 1.37 1.59 0.82 1.26 0.40

190-200 1.76 1.51 0.45 1.24 0.70

200-210 0.25 0.45 0.35 0.14

210-220 0.06 0.50 0.28 0.31

co......



Bromide Mass Pata

Background A.-dm B data edata -MuD.
Depth (em) Bromide (mg) Bromide (mg) Bromide (mg) Bromide (rog) .

0-10 36.98 110.94 33.46 60.46
10-20 50.29 559.93 21.29 210.50
20-30 45.25 45.25
30-40 31.97 31.97
40-50 35.45 49.20 42.33
50-60 33.75 33.75
60-70 16.31 40.30 107.73 54.78

70-80 10.37 21.32 15.84

80-90 14.21 167.00 90.09 90.43

90-100 68.07 68.07

100-110 22.24 43.23 32.73

110-120 30.57 17.05 23.81

120-130 123.05 116.23 51.26 96.85

130-140 91.37 274.50 54.31 140.06

140-150 100.75 153.61 127.18

150-160 92.95 441.90 232.01 255.62

160-170 72.73 144.98 473.18 230.29

170-180 99.87 65.51 450.17 205.18

180-190 103.54 322.22 459.97 295.24

190-200 38.22 345.27 191.75

200-210 33.79 514.55 274.17

210-220 total mg= 2526.28

220-230
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Bromide Mass Data

4 Hours A..dm ftd.ila C data ..M.un
pepth (em) Bromide (mg) Bromide (mg) Bromide (mg) Bromide (mg)

0-10 18246.66 15881.36 27132.21 20420.08

10-20 14375.88 1646.76 17070.04 11030.89

20-30 6890.45 47.01 13940.80 6959.42

30-40 5166.63 60.57 8785.02 4670.74

40-50 2622.21 24.05 7770.54 3472.26

50-60 2593.92 26.87 5319.55 2646.78

60-70 24111.23 83.69 1103.94 1199.62

70-80 1722.46 190.19 886.21 932.95

80-90 87.74 2840.39 1464.07

90-100 17.53 192.01 5058.45 1756.00

100-110 57.90 44.70 8125.65 2742.75

110-120 58.41 29.15 2009.88 699.15

120-130 736.38 2174.23 1455.30

130-140 623.19 42.79 119.85 261.95

140-150 211.90 48.23 92.11 117.41

150-160 184.69 100.34 155.26 146.77

160-170 186.89 194.98 137.22 173.03

170-180 273.38 184.49 1403.82 620.56

180-190 324.91 306.91 290.24 307.35

190-200 279.50 179.93 258.52 239.32

200-210 283.94 141.68 216.75 214.12

210-220 85.18 115.18 197.75 132.71

220-230 85.52 143.06 114.29

230-240 88.55 ~

total mg= 61866.06
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Bromide Mass Data

5.7 Hours A data B..itIti c...dilI ..Mun
Depth (em) Bromide (mg) Bromide (rog) Bromide (rog) Bromide (mg)

0-10 20615.32 13433.33 20287.35 18112.00

10-20 9675.90 8014.62 11469.58 9720.03

20-30 4742.79 5944.47 6691.45 5792.90

30-40 6183.91 4772.88 12433.23 7796.67

40-50 3758.82 2380.85 4981.22 3706.96

50-60 2924.10 2675.78 6214.72 3938.20

60-70 2580.46 2863.38 5459.78 3634.54

70-80 1615.92 2831.99 10834.56 5094.16

80-90 301.44 2504.52 21087.44 7964.47

90-100 73.13 414.58 30351.92 10279.88

100-110 63.06 95.28 36549.75 12236.03

110-120 213.15 65.28 15852.97 5377.13

120-130 72.75 1269.91 10460.42 3934.36

130-140 139.14 88.90 590.35 272.80
I

140-150 272.08 237.05 702.07 403.73

150-160 394.47 305.61 397.93 366.00

160-170 432.73 310.17 478.28 407.06

170-180 422.22 358.31 684.09 488.21

180-190 345.29 313.01 427.76 362.02

190-200 231.58 549.26 556.67 445.84

200-210 157.64 317.40 382.84 285.96

210-220 95.73 216.03 387.71 233.16

220-230 148.48 175.02 349.07 224.19

230-240 277.62 277.62

total mg= 101353.91
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Bromide Mass Data

10.4 Hours ~ B data C data ..Mun
Depth (em) Bromide (mg) Bromide (mg) Bromide (mg) Bromide (mg)

0-10 11462.31 10382.12 22791.10 14878.51

10-20 7275.37 11081.80 25311.68 14556.28

20-30 2444.16 3079.26 10240.99 5254.80

30-40 3169.50 3041.05 11647.22 5952.59

40-50 1332.26 4930.82 7166.43 4476.50

50-60 1592.94 3685.64 11987.83 5755.47

60-70 599.22 2158.11 5517.46 2758.26

70-80 765.05 3852.13 11385.31 5334.16

80-90 1127.20 7014.42 13328.75 7156.79

90-100 359.91 5846.21 21930.37 9378.83

100-110 9544.15 9544.15

110-120 1340.92 1340.92

120-130 647.97 166.66 2332.44 1049.02

130-140 421.98 1571.95 996.96

140-150 499.19 415.31 355.79 423.43

150-160 509.00 481.56 177.10 389.22

160-170 655.71 564.59 197.24 472.51

170-180 902.78 585.52 258.81 582.37

180-190 373.59 661.99 517.79

190-200 601.04 379.71 490.37

200-210 453.82 318.35 386.08

210-220 192.36 192.36

220-230 380.61 190.45 285.53

230-240 438.46 438.46

total mg= 92611.37
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Bromide Mass pata

23.1 Hours M.m Bdata C data ...Mun
Depth (em) Bromide (rog) Bromide (mg) Bromide (mg) Bromide (rog)

0-10 13308.00 17238.69 13502.48 14683.06

10-20 8068.67 13154.00 14383.42 11868.69

20-30 1674.74 10134.04 8912.49 6907.09

30-40 370.78 8473.03 12066.61 6970.14

40-50 605.70 2821.27 8170.61 3865.86

50-60 339.76 5302.68 5818.25 3820.23

60-70 423.01 4665.29 7000.68 4029.66

70-80 1933.57 9939.79 11591.54 7821.63

80-90 3290.31 14314.85 15786.88 11130.68

90-100 19517.73 13243.48 12379.66 15046.96

100-110 6083.50 18272.39 7241.28 10532.39

110-120 435.30 5575.79 1406.57 2472.55

120-130 214.49 796.34 5956.65 2322.49

130-140 105.49 691.89 398.69

140-150 430.84 344.01 387.43

150-160 433.50 140.23 305.80 293.17

160-170 352.38 228.03 373.30 317.90

170-180 149.49 290.06 409.63 283.06

180-190 308.98 369.18 488.21 388.79

190-200 81.34 160.99 488.89 243.74

200-210 129.10 191.08 408.95 243.04

210-220 135.97 329.32 232.64

220-230 291.28 291.28

230-240 total mg= 104551.20

240-250

250-260
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Bromide Mass Data

57.6 Hours A...d..iUi 8..diIa c....d..ili ..Mnn
Depth (em) Bromide (mg) Bromide (mg) Bromide (mg) Bromide (mg)

0-10 11258.53 12043.51 16561.17 13287.74

10-20 5974.53 15574.34 14543.17 12030.68

20-30 2933.42 8982.29 5298.82 5738.18

30-40 1540.35 3050.40 1381.65 1990.80

40-50 1395.14 1542.14 1060.99 1332.76

50-60 948.58 1913.12 6734.17 3198.62

60-70 664.43 1595.18 2176.73 1478.78

70-80 776.63 2556.17 8979.07 4103.96

80-90 291.57 2717.51 3485.34 2164.81

90-100 253.65 1514.96 1292.34 1020.32

100-110 261.93 508.85 385.39

110-120 294.42 156.11 225.26

120-130 231.13 236.93 208.13 225.40

130-140 197.03 197.03

140-150

150-160 473.71 473.71

160-170 502.38 229.61 366.00

170-180 584.47 346.35 335.47 422.09

180-190 461.71 625.11 325.99 470.94

190-200 640.83 278.42 242.19 387.15

200-210 466.55 293.00 210.28 323.28

210-220 474.25 219.15 346.70

220-230 376.59 225.99 301.29

230-240 342,09 342.09

total mg= 50812.94
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Bromide Mass Data

151 Hours AJtm Bdata edata ..MuD.
Depth (em) Bromide (mg) Bromide (mg) Bromide (rog) Bromide fmg)

0-10 11846.16 12305.22 12369.85 12173.74

10-20 6126.12 11493.19 9416.29 9011.87

20-30 2618.44 6407.49 4172.26 4399.40

30-40 2315.63 6098.64 5553.10 4655.79

40-50 2440.00 387619 6504.06 4273.41

50-60 2215.90 4405.10 4895.29 3838.76

60-70 1547.60 1649.83 3369.87 2189.10

70-80 1089.20 2083.12 5144.80 2772.38

80-90 512.43 4494.82 4772.71 3259.99

90-100 7380.54 3589.76 11490.35 7486.88

100-110 323.18 764.49 7034.56 2707.41

110-120 1118.03 715.07 916.55

120-130 412.60 529.89 2089.50 1010.66

130-140 153.58 516.65 335.11

140-150 237.01 237.01

150-160 306.61 306.61

160-170 367.19 660.53 513.86

170-180 279.36 416.75 812.45 502.85

180-190 500.64 528.26 422.77 483.89

190-200 140.68 1025.24 696.80 620.91

200-210 36.59 632.92 334.76

210-220 416.09 548.19 482.14

220-230 total mg= 62513.08

230-240
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Bromide Mass pata

2 Months A.d.m. Bdata C data ..MuD.
Depth (em) Bromide (mg) Bromide (mg) Bromide (mg) Bromide (mg)

0-10 14786.01 5543.75 2814.89 7714.88

10-20 13022.05 6136.42 1593.80 6917.42

20-30 8673.24 4587.22 1155.76 4805.41

30-40 6381.33 3532.63 2541.52 4151.83

40-50 6794.97 1448.30 610.89 2951.39

50-60 5993.18 1164.83 519.07 2559.03

60-70 5285.55 379.16 120.03 1928.24

70-80 7029.51 420.06 163.17 2537.58

80-90 5324.38 408.44 42.91 1925.24

90-100 14115.73 1526.69 79.09 5240.51

100-110 12901.03 2570.64 1318.26 5596.64

110-120 5183.42 1416.36 840.39 2480.06

120-130 836.82 105.70 34.22 325.58

130-140 96.49 203.39 239.43 179.77

140-150 199.45 65.96 539.01 268.14

150-160 274.49 396.81 833.56 501.62

160-170 451.82 556.28 1014.63 674.24

170-180 824.90 670.26 938.11 811.09

180-190 753.68 358.36 506.20 539.41

190-200 1004.28 513.24 700.60 739.37

200-210 444.04 197.09 124.66 255.26

210-220 425.39 424.19 424.79

total mg= 53527.51
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Bromide Mass Data
I

3.4 Years ~ .Ii.dIlI c...d.ila .Mull
Depth (em) Bromide (mg) Bromide (mg) Bromide (mg) Bromide (mg)

0-10 519.47 244.91 300.99 355.12

10-20 288.59 438.72 198.52 308.61

20-30 210.48 71.65 222.79 168.31

30-40 43.42 123.03 72.37 79.61

40-50 192.61 69.13 129.57 130.44

50-60 136.97 76.50 138.20 117.22

60-70 141.08 73.33 45.38 86.60

70-80 38.30 88.12 70.37 65.60

80-90 46.17 98.58 43.72 62.82

90-100 97.47 50.06 34.35 60.63

100-110 106.75 20.57 37.53 54.95

110-120 291.06 284.23 389.79 321.69

120-130 1824.41 901.87 556.64 1094.30

130-140 10297.45 9810.59 3573.02 7893.69

140-150 4252.77 4203.59 5253.13 4569.83

150-160 4965.19 3264.87 2995.00 3741.69

160-170 3333.35 3796.48 1949.60 3026.48

170-180 1599.75 1930.78 822.03 1450.85

180-190 1179.53 1373.17 706.27 1086.33

190-200 1519.30 1301.75 385.37 1068.81

200-210 224.40 400.51 312.45

210-220 55.63 446.60 251.11

total mg= 26307.14
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APPENDIX C

Well Data (Bromide)
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Wells 02 & 03 - Bromide Concentration (mg/L) vs. Time (hrs.) I

02 Hours 03 Hours l:im!.rs 02 (Br-] 03 [Sr-] 02 Time 03 Time
0.15 0.2 0.15 0.401 909 912
0.87 0.92 0.2 0.362 952 955
1.12 1.15 0.87 0.347 1007 1009
1.83 1.5 0.92 0.358 1050 1030
2.25 1.92 1.12 0.367 1115 1055
2.67 2.33 1.15 0.328 1140 1120
3.08 2.75 1.5 0.346 1205 1145

3.5 3.17 1.83 0.355 1230 1210
3.92 3.58 1.92 0.35 1255 1235
4.33 4 2.25 0.381 1320 1300
4.75 4.42 2.33 0.335 1345 1325
5.17 4.83 2.67 0.289 1410 1350
5.58 5.25 2.75 0.308 1435 1415
6.17 5.67 3.08 0.425 1510 1440

7 6.33 3.17 0.345 1600 1520
7.83 7.17 3.5 0.678 1650 1610
8.67 8 3.58 0.293 1740 1700

9.5 8.83 3.92 0.772 1830 1750
10.5 9.67 4 0.332 1930 1840

11.75 10.75 4.33 0.779 2045 1945
12 4.42 0.316 2100

4.75 0.745
4.83 0.386
5.17 0.756
5.25 0.269
5.58
5.67 0.388
6.17 0.798
6.33 0.379

7 0.676
7.17 0.463
7.83 0.546

8 0.488
8.67 0.455
8.83 0.372

9.5 0.425
9.67 0.373
10.5 0.448

10.75 0.391
11.75 0.432

12 0.383
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APPENDIX D

Well Data (Iodide)
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Iodide Tracer Test (4/29/91) - Test started at 10:45 am

Wells 03, 04, and 05 - No iodide above detection limit

01 Hours after start Well 01 Iodide (mg/L> 01 Time 02 Hours after start Well 02 Iodide (mg/L) D2 Time
0 953 0 1021

1.25 1200 1.33 1205
1.67 1225 1.75 1230
2.08 1250 2.17 1255

2.5 1315 2.58 1320
2.92 1340 3 1345
3.33 1405 3.42 1410
3.75 1430 3.83 1435
4.17 1455 4.25 1500
4.58 1520 4.67 1.319 1525

5 1545 5.08 1.759 1550
5.42 1610 5.5 2.938 1615
5.83 0.246 1635 5.92 3.227 1640
6.25 0.431 1700 6.33 3.09 1705
6.67 0.376 1725 6.75 2.417 1730
7.08 0.399 1750 7.17 2.239 1755

7.5 0.3 1815 7.58 1.647 1820
7.92 0.378 1840 8 1.003 1845
8.33 0.413 1905 8.42 1.136 1910
8.75 1930 8.83 0.926 1935
9.25 0.233 2000 9.42 1.217 2010

10.17 0.994 2055 10.42 0.858 2110

1,0
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APPENDIX E

Well Data (Bromide After Iodide Test)
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Iodide Tracer Test (4/29/91) (Test started at1 0:45 am)

Well 01 - no bromide above background level
Well 03- " " " " II

Well 04- " " " " II

Well 05- " " " II "

Hours after start Well 02 Bromide (mg/L) IiIne
0 0.369 1021

1.33 0.382 1205
1.75 0.344 1230
2.17 0.37 1255
2.58 0.38 1320

3 0.347 1345
3.42 0.366 1410
3.83 0.374 1435
4.25 0.386 1500
4.67 0.375 1525
5.08 0.405 1550

5.5 0.378 1615
5.92 0.404 1640
6.33 0.46 1705
6.75 0.463 1730
7.17 0.419 1755
7.58 0.413 1820

8 0.399 1845
8.42 0.409 1910
8.83 0.397 1935
9.42 0.398 2010

10.42 0.357 2110
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