
EFFICIENT RETRIEVAL OF

SOFTWARE COMPONENTS

FROM A REPOSITORY

By

SITARAM DONTU

Bachelor of Technology

Regional Engineering College

Warangal, Andhra Pradesh, India

1994

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December 1996

EFFICIENT RETRlEVAL OF

SOFTWARE COMPONENTS

FROM A REPOSITORY

Thesis Approved.

Dean of the Graduate College

II

PREFACE

Searching for a component in a software repository is a recurring problem in software

reuse. The retrieval scheme used for such repositories is syntactic and is generally based on

a predefined set of keywords. In many cases the desired component may not be retrieved

even though it is present in the repository. This can be attributed to the misspelling of the

search pattern, or a different representation of the software component in question by the user

or classifier. If the search tool allows for only exact pattern matching, the process of

specifying, locating, and retrieving a component can be complex and time consuming, and

hence frustrating.

This thesis introduced an inexact search scheme into an already existing repository

scheme. The inexact pattern matching was also compared with exact pattern matching.

Different levels of inexact searching can be selected. Tests were conducted using the same

search patterns for inexact and exact searching. Statistical analysis was applied on the

obtained data for both types of searches. Graphs were drawn and compared for exact and

inexact search methods. Gill (Graphical User Interface) is provided that reduces the tedium

involved in contending with textual interfaces. The work is implemented on a UNIX multi­

processor machine (Sequent Symmetry S/81) using C and Motif 1.1. Any terminal supporting

the X protocol can be used to display the tool's GUI.

Significant savings in time were achieved in inexact pattern searching over exact

pattern searching for retrieval of software components. A total of 27 searches were

III

conducted fOT each type (exact and inexact) of search methods. An average of 5 searches

were needed to retrieve a desired file in approximate pattern searching, unlike exact pattern

matching where an average of 17 searches were needed. The time spent to retrieve a desired

file in the inexact search method was approximately 70% less than the time spent in the exact

search method, thus saving the user's time and lessening their frustration.

IV

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Mansur H.

Samadzadeh for his intelligent guidance, constructive criticism, and inspiration. I also wish

to thank my other committee members Drs. Blayne E. Mayfield and Jacques E. Lafrance.

I wish to thank. my friends for their suggestions and timely humor. I also extend my

thanks to others who directly or indirectly helped in the progress of this work.

Finally, I would like to express my sincere gratitude to my parents, brother, and sister

for their moral support and encouragement.

v

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION... 1

II SOFTWARE REUSE AND REPOSITORIES .. 3

2.1 Software Reuse 3
2.2 Software Classification Systems . 3
2.3 Software Repositories __ . 5

2.3.1 Retrieval Methods .. 5
2.3.1.1 Low-Level Retrieval Methods. 5
2.3.1.2 High-Level Retrieval Methods. 6

III VCI: A VERSIONING AND REPOSITORY SYSTEM 9

3. 1 Design and Implementation . _. .. 9
3.2 Main Features 12

IV EFFICIENT RETRIEVAL . . 16

4.1 Agrep An Approximate Pattern-Matching Tool 17
4.1.1 Features.. 18
4.1.2 Algorithms. .. . 19

V IMPLEMENTATION AND EVALUATION . .22

5. 1 Implementation . _.. _ 22
5.1 .1 Details of the Implementation 22
5.1.2 Usage of the Integrated Search Tool 27

5.2 Evaluation 29
5.2.1 Background. 29

5.2.1.1 Collection of Data 30
5.2.1.2 Classification of Data 30
5.2.1.3 Measures of Central Tendency . 32

5.2.2 Test Suite . 34
5.2.3 Test Results.. . _ 40
5.2.4 Observations 42

VI SUMMARY, CONCLUSIONS, AND FUTURE WORK 43

VI

Chapter Page

REFERENCES 45

APPENDICES 48

APPENDIX A - GLOSSARY " 49

APPENDIX B - TRADEMARK INFORMATION 50

APPENDIX C - PROGRAM LISTING 51

VII

Table

LIST OF TABLES

Page

I Marks obtained by 64 students in a Thermodynamics class
[Source: Grewal 90] 31

II Frequency Distribution Table for the marks obtained by 64
students in a Thermodynamics class [Source: Grewal 90] 33

III Number of bits for all the files in the repository for approximate
and exact pattern matches 35

IV Frequency Distribution Table for exact pattern matching 40

V Frequency Distribution Table for approximate pattern matching 41

Vlll

LIST OF FIGURES

Figure

1. A delta chain in RCS [Source: Sobell 95]

Page

..................... , 10

2. Initial Screen with all the option buttons [Source: Nadelta 95] 13

3. Zoom-out mode of the display ofRCS file structure [Source: NadeJla 95] 14

4. Pattern Search Dialog Box 23

5. Dialog Box prompting the user to select one of the
options for the Libout process [Source: Nadella 95] . , 24

6. Comparison between approximate pattern matching
and exact pattern matching 28

7. Frequency Distribution Graph showing the number of files in
each bit interval for exact and approximate pattern matching ,. 42

IX

-

CHAPTER I

INTRODUCTION

Although software productivity has been on the increase over the years, the software

industry has been having difficulty meeting the high demand for software productivity and

quality [Mili et al. 95] [Boehm 87] [Cox 90]. According to Mili et al., "nothing short of an

order of magnitude increase in productivity will extricate the software industry from its

perennial crisis" [Mili et al. 95].

Software reuse appears to possess the potential to ~ncrease software productivity and

quality. For software reuse to work, it is necessary to maintain a software repository

containing reusable software components. Users can check in or check out reusable

components from the repository. The reusable components must be classified, stored, and

retrieved in a cost effective and efficient way [Fernandez-Chamizo et al. 95].

There has been a lot of attention on the efficient retrieval of software components

from repositories [Zand and Samadzadeh 95] [Girardi and Ibrahim 95]. Researchers have

come up with various solutions for the retrieval of software components. Most of the

proposed repository schemes have been shown to be difficult to use or not practically useful

for software reuse. GUIs (Graphical User Interfaces) are used to make it easy for users to

retrieve software components from a repository [Schlukbier 95].

2

Typically, the proposed search tools for retrieving software components allow for only

exact pattern matching (for patterns capturing and representing the characteristics and

features of the components). As a result, a desired component may not be retrieved even

though it is present in the repository. This can be attributed to the contention that human

reasoning is to a large extent approximate and inexact rather than precise in nature [Zadeh

65].

The above discussion can be used as a motivation to construct an intelligent search

tool which can incorporate and exploit inexactness in pattern matching. Such a search tool,

which was designed and implemented as part ofthis thesis work, reduces a user's effort in

retrieving a desired component and hence lessens the frustration incurred otherwise.

This thesis concentrated on the idea of an intelligent search tool. It integrated an

approximate pattern matching method into an existing exact matching tool that was built on

top of a version control system (Nadella 95]. Nadella's work involved developing a software

reuse assistant with a Gill to a software repository.

The rest of this thesis report is organized as follows. Chapter II introduces software

reuse and a number of retrieval methods. Chapter III discusses an existing repository system

(VCI) based on a versioning system (RCS). Chapter IV describes approximate pattern

matching. Chapter V gives the implementation and evaluation details, and Chapter Vl is the

concluding chapter containing the summary, conclusions, and future work.

CHAPTER II

SOFlWARE REUSE AND REPOSITORIES

2.1 Software Reuse

Software reuse is the process of creating software systems from existing software

rather than from scratch [Krueger 92]. It is aptly justified in the present competitive world

of increasing pressure on the software industry for product quality and developer

productivity.

It is argued that reuse in general reduces the amount of work to be done by reusing

previously written and thoroughly tested functions stored in a software repository. However,

software reuse involves other parameters such as storage, retrieval, and classification of

software objects [Femandez-Chamizo et al. 95]. This thesis work concentrated on the issue

of retrieval of software components in an efficient manner [Mansur et al. 96] by utilizing

approximate pattern matching.

2.2 Software Classification Systems

Software objects are classified based on different criteria. To support effective

retrieval, the software components have to be represented by some formal or informal

specification. Once they are classified, the retrieval becomes easy. Some of the important

classification systems are given in the following paragraphs.

3

4

Prieto-Diaz [prieto-Diaz and Freeman 87] used a faceted classification scheme, in

which they used six facets to describe each component (Function, Object, Medium, System

Type, Function Area, and Setting), some related to the environment and some related to the

functionality. The different values a facet can have are called terms. These terms are

organized in a conceptual graph that represents manually encoded knowledge about the

domain.

Swanson and Samadzadeh [Swanson and Samadzadeh 92] implemented the ideas of

Prieto-Diaz and Freeman [prieto-Diaz and Freeman 87], and developed a prototype that can

be used to catalog and retrieve software components. They also implemented the "terms

thesaurus" suggested by Prieto-Diaz and Freeman.

Embley and Woodfield [Embley and Woodfield 87] dassified the software

components as a knowledge structure consisting of ADTs (Abstract Data Types), Different

relationships among the ADTs are supported in this knowledge structure, and it helps in

browsing and finding software documents using keywords and natural language descriptions,

Wood and Sommerville [Wood and Sommerville 88] proposed a frame-based

software component catalogue. It has a frame which describes the main function performed

by a software component and the slots inside the frame specify the objects manipulated by the

software component.

The LaSSIE system (Devanbu et aI. 91] is composed ofa knowledge base which helps

users to understand the whole software system and also helps in retrieving a desired

component from the repository. It supports a Gill (Graphical User Interface).

The GURU system [Maarek et al. 91] classifies software based on attributes

5

automatically extracted from their natural language documentation by using an indexing

scheme based on the notions of lexical affinity and quantity of information.

2.3 Software Repositories

A software repository is a virtual storage or depository for software components.

Repositories are indispensable nowadays where the reuse of software artifacts is on the rise.

A software repository grows as new software components are added. But at the same time

the disk space should be utilized in an efficient way. Software configuration management

tools can be used to save disk space.

2.3.1 Retrieval Methods

Software component retrieval is the process ofnavigating the user through a software

repository for the retrieval of the desired component(s). Retrieval tools attempt to retrieve

components based on a user's queries. The efficiency of a retrieval tool is measured by the

amount oftime spent and the accuracy attained in retrieving a desired software component

The following subsections briefly discuss low-level and high-level retrieval methods.

2.3 .1.1 Low-Level Retrieval Methods Software reuse dates back a long time to the

use of statistical and mathematical subroutines. Various methods have been used for software

component retrieval from repositories. Most of the primitive tools retrieve components based

directly on code documentation [Femandez-Charnizo et al. 95]. As a result, effective retrieval

is directly proportional to the quantity and quality of the documentation available in the code.

6

This is a good approach but fails when the components are inadequately documented.

2.3 .1.2 High-Level Retrieval Methods In recent years, new methods of retrieval have

been developed that are based not only on external documentation available, but also on

semantic information [Fernandez-Charnizo et al. 95]. Most of the new methods use the

automatic indexing approach. This approach is based on the semantic and lexical

classification of the software components. Artificial Intelligence can also contribute in this

area. The important requirement of this approach is that it needs pre-encoded semantic

information about software artifacts.

Some researchers proposed the use of templates [Burton et al. 87] [Frakes and

Nejmeh 87] for retrieving components. Prieto-Diaz [Prieto-Diaz and Freeman 87] proposed

a faceted classification scheme for organizing software artifacts. This scheme uses six facets

to describe each software document. The different values that a facet can have are called

terms. This is represented in a conceptual graph. This semantic information is utilized in

retrieving a software component. The six facets are described below.

1. Function: The function performed by a software component.

2. Object: The objects which are manipulated in the software component.

3. Medium: The entities that served as the "locale of action", such as files and tables.

4. System Type: Functionally identifiable modules, e.g., a number sorter

5. Function Area: The keywords describing the application area of the software component,

e.g., a manufacturing department, a quality control department, etc.

6. Setting: The environment where the software component will be used, e.g, a chip

7

manufacturing plant, a steel plant, etc.

Wood and Sommerville [Wood and Sommerville 88] proposed a frame based

classification of software modules. The frames are constructed manually. The frames contain

slots which describe the objects manipulated by a module. Here also semantic information

is provided in the frames, and this information is utilized in the retrieval process.

Automatic text indexing systems automatically extract the natural language

specifications provided by the user, and these attributes are used in the retrieval of software

components. Software components in the repository are classified based on the terms

extracted from the natural language documentation of the software modules. Here the

retrieval systems mostly depend on the lexical elements present in the natura~ language

documentation, and they ignore the syntactic and semantic information found in the

documentation. The GURU system [Maarek et al. 9] Jfollows this type of retrieval approach.

Knowledge-based systems, unlike the automatic indexing method, try to understand

the software modules even more closely by analyzing the natural language specifications

syntactically and semantically. This helps a retrieval system in retrieving a software document

more accurately than it would otherwise. But here a large amount of pre-encoded

information must be provided for each software module. LaSSIE system [Devanbu et al. 91]

is an example of this kind of approach.

Although different approaches for component retrieval have been proposed, most of

them allow for no errors in the query posed by a user. So the retrieval of components heavily

depends on the exactness of the user's query. But, as previously noted in this thesis report,

human reasoning is generally approximate. Some of the components may not be retrieved

-

8

even ifthey are present in the repository, because ofthe exactness of the query. A tool which

allows for inexactness in queries is therefore necessitated. Such a tool can search the

knowledge base (the software repository) for the requested item and retrieve all the related

software components.

-

CHAPTER III

VCl: A VERSIONING AND REPOSITORY SYSTEM

This chapter discusses Nadella's [Nadella 95] work and the software package that he

developed (as part of his thesis) called VCI (Version Control Interface). The present thesis

work was built on top ofVCI, replacing some of its parts and significantly improving it. This

process can be considered a good example of software reuse because the existence of a

software repository is a prerequisite for this thesis work, and VCI fills this prescription, thus

saving valuable time and letting this thesis concentrate on the retrieval of software

components. The following sections discuss the design, implementation issues, and important

features of VCI.

3. 1 Design and Implementation

VCI has a GUI (Graphical User Interface) to RCS (Revision Control System) and

combines the concept of software reuse with that of version (configuration) management

The notion ofRCS is discussed in the next paragraph which will explain how VCI used it as

a library package to the software repository.

RCS is a configuration management tool available on most of the UNIX and DOS­

based systems. A large project involving many people can have problems of coordination,

keeping track of different versions offiles, simultaneous updates of source code, etc. In these

9

-

10

situations, RCS can be used to keep track of all the source code and documentation files in

a large project [Sobell 95]. Although it can be used on any text file, RCS is most often used

to "manage source code and software documentation" [Sobell 95].

RCS keeps track ofeach update done on a particular file by writing down the author's

name, the changes made in the code, the reason, and the date the code was updated. Each

change is caIled a delta and it is identified by a version number consisting of two or four

components. The four components are called release, level, branch, and sequence numbers.

An original RCS file is assigned a version number of 1.1. The subsequent delta's are assigned

version numbers 1.2, 1.3, and so on. When major changes are done, the release number can

be changed. When a branch is created, the four components are used to fonn a version. For

example version 2.1.1.1 (see Figure I) is the result of application of the first delta to the first

branch on Release 2, LevelL Further nodes in that branch would be version(s) 2.1.1.2,

2.1.1.3, and so on.

Figure 1. A delta chain in RCS [Source: Sobell 95]

RCS saves only the deltas (the changed lines in the source code from the previous

version) and not the entire changed files, thus attempting to save space. However for a smaIl

-

II

project, the savings might not be significant, since ReS files themselves (i.e., the deltas) take

some space to store the information for each update.

vcr uses RCS as a helping hand in the construction of a repository. It uses RCS to

conserve disk space in the repository by making the checked-in components as versions of

previously checked-in components. The time to access (check out) the files is generally

increased as a tradeoff to the savings in disk space.

vcr maintains a structure or dependence hierarchy of the files as stored in the

repository using RCS. This structure is the backbone of VCl. The structure helps in storing

and retrieving a file. Because of the obvious importance of it, only the system administrator

can alter the structure of the files in the repository. Hence a file checked in by any user is

deposited tentatively in the repository only as an experimental file and not as a delta in the

RCS chain. The information about the file, the user who checked in the file, and other

relevant details are written in an information file. The VCl system administrator later checks

the information file for all the deposits, verifies their usefulness and re-checks the useful files

as versions of existing files in the repository. The structure of the files in the repository is

altered to reflect the changes in the new RCS ftles in the repository.

A typical file to be checked in is to be accompanied by the following information:

• Author's name

• Author's E-mail address

• Function. The main function performed by the software component

• Method: The objects (data types) manipul.ated by the software module

cd

-

12

• Implementation Details: A brief description of the implementation details of the software

module

During the retrieval process, the above infonnation is searched. VCI uses exact pattern

matching to retrieve a desired file.

VCI uses the concept of distance [Prieto-Diaz 89] to capture some aspects of the

nature of relationships among software modules stored in the repository. It also uses a

thesaurus to help the users find the documents using keywords which are similar in meaning,

the reason being that a file retrieved using a keyword might not be retrieved using a

synonymous keyword. VCI was written using C and Motif 1. 1. The tool (VCI) was built on

the Oklahoma State University Computer Science Department's multi-processor machine

Sequent Symmetry S/81 running DYNIX/ptx.

3.2 Main Features

This section discusses the important features of VCI (Version Control Interface)

[Nadella 95].

VCI is a tool that is built on top of an established version management tool (i.e., RCS)

to provide a software repository. The Gill provided by VCI is intended to be user friendly.

The initial screen with all the option buttons is shown in Figure 2. VCI is password protected

and only authorized persons can use the repository. Normal users can check in or check out

files from the library Only the library administrator or VCI system manager bas the final say

over whether a file can be deposited as an RCS file, which helps in eliminating arbitrary

.....

13

~:;.;.~_. :T:::,:::,:":.::.z:.;ZTm:':':'·:Z*!';'*~';':::~~Z;::::;::.;.~.;.::::~:::;.:::~~-:.;r:::~~';':~'":i';';:£";;:.n';~':"':':::*i';'';'':'';'Z.;.z;.:...;:.~!+r:::';!';'~;:':;'i*!7i::'i'':';'':".'iZ*-';.';~f.o~':''"~''''':' ":';'--:--:Z---"Z'-:--':""ii:"-- ~;.;~- ~.;.--;.. '"if""~

~~ ~~~~~~~~~~~~~~~~~~~1~~~~~~~$! Version Control Interface ~f~~~~~~f±:~~I=±~~:~~~~~~~~~±i~E:~::~:~~~ :...i· - -

Figure 2. Initial Screen with all the option buttons [Source: Nadella 95]

'S

14

confd.c

msgcl1.head

Figure 3. Zoom-out mode of the display of ReS file structure [Source: NadeUa 95]

-

-

-

15

additions to the library and optimizing the RCS structure for efficient space utilization.

VCI helps save disk space for the repository by exploiting RCS which is a widely used

software configuration management system. VCI provides graphs on the space savings

achieved and the file checkout frequency. It uses BLT [Mclennan 93] (the language built on

TcllTk) to draw the graphs.

VCI provides the option to change the structure of the repository in order to provide

faster access to most frequently checked out files. The move and delete buttons aHow for

moving a file to anywhere in the repository and deleting a file. This is a novel feature of VCI

that helps change the library hierarchy based on the usage (i.e., reuse history) of the files in

the repository.

The GUI for VCI helps a user navigate through a visual display of the entire library

structure of the repository. A user can view the library structure starting from a specific node

and optimally zoom in or zoom out for a low level or high level view of the hierarchy. If no

specific node is given by a user, the entire library structure is displayed (see Figure 3).

«

-

CHAPTER IV

EFFICIENT RETRIEVAL

Efficient retrieval means that a required software document is obtained from the

repository quickly. To achieve this goal, an approximate pattern matching method was

incorporated in the retrieval process ofvcr (see chapter rn for a detailed discussion ofVCI).

Approximate string matching is the process offinding a string B which is either "nearly exact" .

or the same as a given string A. It is used in diverse areas such as information retrieval,

pattern recognition, error correction, and molecular genetics [Ukkonen 85],

Various techniques have been used for the problem of approximate string matching

using Neural Networks and Dynamic Programming, Neural Networks apply fuzzy logic

theory while Dynamic Programming employs dynamic programming algorithms for the

problem of approximate string matching.

Many exact string matching algorithms are in use today. Such algorithms are used in

UNIX grep, Perl, GNU Emacs, etc. However, only a few algorithms have been proposed for

approximate string matching. Among the present approximate string matching methods,

agrep [Wu and Manber 92], which is a tool for fast approximate pattern matching and is

based on the well-known Knuth-Morris-Pratt algorithm [Knuth et al. 77], and the Boyer­

Moore algorithm [Boyer and Moore 77], is noteworthy,

16

-

17

A brief introduction to the agrep tool as well as some of its important features and

algorithms are included in the following subsections.

4.1 Agrep: An Approximate Pattern-Matching Tool

Most of the ideas in this subsection are adapted from the paper written by Wu and

Manber [Wu and Manber 92], which fonus the basis for this thesis work.

We search for patterns quite often in different circumstances, for instance in a file

containing text or source code. But most often we are disappointed for being unable to locate

the pattern we search for, the most plausible reason being the misspelling of the pattern. So,

an approximate pattern searching method can be used to bring up all the strings or words that

match a pattern "nearly exactly".

For example, consider the case where we are searching for a string S = s\ ~ ... Sn

inside a text file T. All the substrings "nearly equal" to S can be found under some criteria

ofapproximation. Under such criteria, we can state that a string S I is at a distance D from

a string S2, if S2 can be obtained from S1 by any sequence of' D' insertions, deletions, or

substitutions of single characters in any place in S1.

A tool, which searches a database for all the tenus nearly exactly matching a query,

was developed by Wu and Manber [Wu and Manber 92]. This tool is called agrep (which

stands for approximate grep) and is very similar to the UNIX grep family. It makes some

important additions to the grep family. Agrep supports wild cards, sets of patterns, and

regular expressions in addition to a number of other types of queries. Agrep is relatively fast

(except when the number of errors is very large) compared to the well known algorithm for

-

18

approximate matching to arbitrary regular expressions by Myers and Miller [Myers and Miller

89].

In this thesis, agrep was used was replace the exact pattern matching used in the reuse

library tool developed by Nadella [Nadella 95] for the retrieval of desired components from

a software repository. The significant features of agrep are discussed below.

4. 1. 1 Features

The following three features of agrep are the most important additions of the agrep

family to the grep family of pattern matching/search tools.

a. Searching for approximate patterns

agrep -3 Hello Mail

The above query searches for aU words that can be obtained from the string Hello by at most

three substitutions, insertions, or deletions from the file called Mail. Different costs can be

given to insertions, deletions, and substitutions. Consider the following query.

agrep -1 -52 -D2 tom students

This query will find all the names that can be obtained by inserting at most one character in

the string tom in the file called students. No substitutions or deletions of single characters are

allowed as the cost assigned to them is two, while the number of errors allowed is only one.

b. Record oriented rather than just line oriented

Agrep by default outputs only the line(s) containing a given pattern. But it can be user

defined to output all the lines containing the required 'pattern' delimited by a 'specific string'

at the beginning and at the end. This is called a record. The example below outputs the

«

-

19

whole record containing a 'pattern'.

agrep -d 'a tab' pattern Thesis

The above query searches for the string pattern in all the records starting and ending with a

tab ('a tab' represents the TAB key stroke) in the file called Thesis.

c. Sets of patterns with AND (or OR) logic queries

A logical query can be formed by using the logical operators AND and OR implicitly.

agrep -d 'a tab' 'patteml,pattern2' Thesis

The above query searches all the records starting and ending with a tab and outputs those

records containing either pattern], pattern2, or both. Similarly, we can create a query with

AND (',' stands for OR and ";' stands for AND).

agrep -d 'a tab' 'pattern1;pattem2 ' Thesis

We can form a complex query, as the one below, by combining all the above features.

agrep -d 'a tab' -2 'patternl;pattern2;<199[1-5J> , database

This query outputs all the records, containingpattemJ, pattem2 and a year between 1990 and

1996 with at most 2 errors in any of the sub-patterns, from a file called database. '< >'

doesn't allow for the occurrence of any errors in the string between the corner brackets.

4. 1.2 Algorithms

This subsection briefly describes the algorithms used in agrep by Wu and Manber [Wu

and Manber 92]. Agrep uses a slightly modified Boyer-Moore algorithm for simple exact

patterns and a partition scheme for simple patterns with errors. It uses new algorithms for

patterns with unlimited wild cards, patterns with uneven costs with different edit operations,

20

The main approach for finding simple patterns with errors is given. This algorithm is

1 and pi = tj + 1

{
I if Rj[i-I]

ootherwise

complicated. However, suppose m :s; 32 (which is usually the case in practice) and that R is

This transition, which we have to compute once for every text character, seems quite

Initially, Ro[i] = 0 for all i, l:s; i :s; m, and Rc[O] = 1.

construct a bit array Sj of size m such that S;[r] = 1 if Pr = Sj (It is sufficient to construct the

represented as a bit vector using one 32-bit word. For each character Si in the alphabet, we

S array only for the characters that appear in the pattern). It is easy to verify now that the

~+1 can be summarized as follows.

detennine whether tj +1 can extend any of the partial matches so far. The transition from ~ to

matches of prefixes ofP with a suffix of the text that ends atj. More precisely, ~[t] = 1 if

are all partial matches that may lead to full matches later on. When we read tj +1 we need to.

If ~+ I [m] = I, then we output a match that ends at position j+1.

the first i characters ofthe pattern match exactly the last i characters up to j in the text. These

PI pz ... Pn be the search string to be searched in a large text file T = t1 ~ ... tnand R be a

multi-patterns, and arbitrary regular expressions.

character of the text has been processed. The bit array ~ contains infonnation about all

bit array of size m (the size ofthe pattern). We denote by ~ the value of array R after the jth

the 'shift-or' algorithm ofBaeza-Yates and Gonnet [Baeza-Yates and Gonnet 89]. Let P =

taken as is from Wu and Manber's work [Wu and Manber 92]. The algorithm is based on

-

-

21

transition from ~ to ~+I amounts to no more than a right shift of~ and an AND operation

with Sj, where Si = tj + l . So, each transition can be executed with only two simple arithmetic

operations, a shift and an AND. The algorithm for multi-patterns uses a hashing technique

combined with a different Boyer-Moore Algorithm.

•

-

CHAPTER V

IMPLEMENTATION AND EVALUATION

5. 1 Implementation

5.1.1 Details of the Implementation

The code responsible for pattern searching, written by Nadella [Nadella 95], was

completely removed and new code was added to bring approximate pattern matching into

focus.

A dialog box (see Figure 4) with all the features necessary to facilitate easy retrieval

of software components from the library, using approximate pattern matching, was

developed. The dialog box contains the following components.

1. Text Box: For typing a query (search pattern).

2. Option Menu: To select the number of errors allowed in the search pattern during

the search process.

3. Scrolled List To display the retrieved files.

4. Scrolled Text: To display information about the file selected in the Scrolled List.

5. Frame Box: To display which file is selected.

6. Action Area: To contain Check out, Search, and Cancel buttons.

The screen which leads to the dialog box mentioned above is shown in Figure 5,

22

r

-

23

....

..•.

....
':.
....

j
r
II

CANCELSEARCH

FUNCTION: prints hello world in a
window
METHOD: uses motif and C++
IMPLEMENTATION: This is the famous
Ritchie's hellowor-ld progr-~

AUTHOR: Sitar-am Dontu
EMAIL: dontu~a.cs.okstate.edu

FILE INFORMATION

tictactoe.c
tr-aversal.c
getusers.c
sirnple_sb.c
d!:jnapix.c

FILES RETRIEVED
Makefile

~::"""'::"::'J:""::::::::"""::::":""::::::::":":" ..,. :::::::::::.•: :::..••::::•.:..: :.•:..: ::::::..:::::..: : ::••:..::.•:: ::•..•: :::••:::::::::::..:..:..1.':::::/.':••: ..::::: :.•:/::::.'.':::::::: •..: : :::::: ·:..::..:,·..::..:::::z

r-1i; ;mmiT~;;;H~;;~;;;~;i~i;;i:;:;~::::;;;ii;im;I~i;i~;I;~;~r:·p·;:;·;~·:·:s·;:=·;~:·h·?"·:"i::;;~Eii~:::m;i;;;i~i;;:;:;;i:;;;;m;;~;~:::~;;ri~I:m:m;;;M;:m{:~

I SEARCH PATTERN : Imotif I~RRORS ALLOWED: I 1 c::J I Ii
» »

1::~f
~ c====. CHECK OUT
~::-

::::
.~.

',:,
....

IPlS9_area.c
~ a_dynapix.c

I: ;.d_area.c

....:~~~~=='=~~~~~~~II FILE SElECTED hello.C

Figure 4. Pattern Search Dialog Box

-

-

24

Version Control Interface

~ ~

~ it
~ ~

:~ <> FILE SELECTED BY NAME ~
~ ~

I • FILE SELECTED BY PATTERN mTCHING i
::f i
~ ~
~ ~
~ ~
:! [] lCANCELI ~
~ 4
~.-.":":::"f':"'~''':''-:'':'w.~, •••~.":.,,:,: •••~·:.......-:.-.-:.-:":"':"':::.":'.":'.-.":'-':":::::":'.":'.":'.-:;::::'.':'":':'~':::::.":'.,,:,.':'.":':.w·.":"r:'..::::.~J

t'

±:

._._..,.._ ..-.._ "._ .,. ...- ,...•._._ .-.~ .. _._.y--···w"-"··---- "'······--···-""'·-··--·········;··-·":,,-'-···--···'o/;·"Y y·-·_,-·-----p·-·-·-.·K'W··_·_·-··w -".~

Figure 5. Dialog Box prompting the user to select one of the
options for the Libout process [Source: Nadella 95]

--

-

25

Thus, a query can be formed by using logical connectives between words. For example, the

query, matif;unix means that the file to be searched must contain both of the words motif and

unix. Two or more words can be connected logically, however the AND and OR logical

connectives cannot be intermixed in a single pattern. The case sensitivity ofthe pattern is

ignored in approximate pattern matching.

Using the above two patterns, we can fonn a complex query such as the one given

The text box (see figure 4) allows the following types of search patterns.

3. Word sequence, e.g.,

Sitaram Dantu

which constitutes a query as a sequence of words. The resulting query will be a search

according to the criteria chosen (exact or approximate pattern matching) by matching a

selection from the Option menu which is explained later in this subsection. Let us consider

the above query, i.e., Sitaram Dantu. If exact pattern matching is selected, a file name is

retrieved only if it contains the query exactly as given, unlike the case for approximate pattern

matching, where the case sensitivity ofthe search pattern is ignored and the number of errors

allowed in the search pattern is controlled.

b. Pattern formed by the logical connectives AND and OR, e.g.,

matij,'unix

matij,unix

(where ';' represents the AND logical connective)

(where',' represents the OR logical connective)

below.

PatternJ;Pattern2;<199[1-5J>

As a result of such a query, a file is retrieved only if it contains Pattern1, Pattern2, and a year

«

-

26

between 1990 and 1996. The notation '< >' indicates that the pattern does not allow for any

errors in the string between the comer brackets.

The Option menu (see Figure 4) is similar to a Pulldown menu. When it is clicked

with the left mouse button, it presents a list of choices. In the Pattern Search dialog box (see

Figure 4), the Option menu contains five choices. The first choice is exact for exact pattern

matching and the rest of the choices, 0, 1, 2, and 3, are for approximate pattern matching,

which control the number of errors allowed in the search pattern.

Based on a repository of 100 programs and 27 searches conducted, agrep took

approximately 0 - 5 seconds to search a file for a given query. As a basis for comparison, an

assorted set of 100 files was searched sequentially, the time taken was approximately 500

seconds (over 8 minutes). That is a comparitively long time to wait, and it increases as the

number and size of files in the repository increases. So, to reduce the time taken to search

the repository, each search should be made independent of the other searches. This is

possible by forking a separate process for each search. We should be able to collect the

results ofall such independent searches carried out by different forked processes. For this we

need shared memory. Obviously, no two search processes must write in the shared memory

at the same time. This was achieved by a binary semaphore. Hence shared memory, a binary

semaphore, and fork system calls were made use of in the search process. This brought down

the search time for 100 files to approximately 40 seconds.

The following data (provided by a user while checking in a software component into

the repository) is searched in every file for a given query.

1. Author

ad

-

27

2. E-mail address of the author

3. The function of the file

4. A description about the objects manipulated by the file

5. A brief description of the implementation details of the file

Graphs were drawn using BLT [Mclennan 93]: (a language built on TcllTk) which

compare approximate pattern matching and exact pattern matching. All the necessary

parameters required for each graph were calculated and then a file containing all the BLT

commands was created which was run to create the graph. An option is provided in each

graph which automatically generates a postscript file, if so desired and selected. An example

of such a graph is shown in Figure 6.

5.1.2 Usage of the Integrated Search Tool

The repository was filled with 100 'c' files obtained from various sources such as

O'Reilly's Motif, Volume 1, written by Heller and Ferguson [Heller and Ferguson 91); the

'/contrib/src' directory from the Oklahoma State Unversity Computer Science

Department's Sequent multi-processor machine; personal files, etc. After approximate grep

was introduced into VCI, the search process retrieved more files than it used to retrieve using

exact pattern matching. This made the search process generally more productive.

A dialog box is provided (see Figure 4) for the retrieval process. The following steps

can be followed in the process of retrieving a desired file from the repository.

1. Type a query in the Text Box as explained in the previous subsection (see Subsection

5.1.1). The size of the query must be greater than the number of errors allowed when

.-

-

28

To create a postscript.me "hits.ps.n, Pl"l!lSS ths~ buUoJL

File Size

IORdio I
File Hit Frequency

-.. ..
III-:E
X ;Ie
Q.

~-
Figure 6. Comparison between approximate pattern matching and exact pattern matching

'r

-

29

approximate pattern matching is selected.

2. Click the Search button in the Action Area with the left mouse button, or press Enter in

the Text Box after the query is typed to start the search process.

3. Select the desired file by double clicking it.

4. Select the Check Out button in the Action Area to checkout the file into the current

directory.

The cursor shape is changed to a watch once the search process begins. Tbis means

that the user has to wait for some time before the user can interact with the dialog box again.

The retrieved files are displayed in the Scrolled List Box named Files Retrieved. Double

clicking a file shows the description of the file in the Scroned Text Box named File

Wonnation, and the Frame Box just below the Scrolled List Box displays the name of the file

selected. Pressing the Check Out button in the Action Area checks out the selected file into

the current directory from which VCl is run. Appropriate error dialogs pop up, if necessary,

during the retrieval process.

5.2 Evaluation

5.2.1 Background

The following discussion is adapted from Grewal's Higher Engineering Mathematics

text [Grewal 90].

Statistics deals with methods for collection, classification, and analysis of numerical

data for drawing valid conclusions and making reasonable decisions. It has meaningful

rd

-

30

applications in production engineering, in the analysis of experimental data, etc. The

importance of statistical methods in engineering is generally on the increase.

5.2.1.1 Collection ofData: The collection of data constitutes the starting point of any

statistical investigation. It should be carried out systematically with a definite aim in view.

Also data collection should be conducted with as much accuracy as is desired in the final

results, for detailed analysis would not compensate for the bias and inaccuracies in the original

data. Data may be collected for each and every unit of the whole lot (population), for it

would ensure greater accuracy. But complete enumeration is prohibitively expensive and time'

consuming. As such, out of a very large number of items, a few of them (a sample) are

collected and conclusions drawn on the basis of that sample are taken to hold for the

population. A sample should however be a random sample, i.e., it should be obtained

without bias or showing preferences in selecting sample items from the population.

5.2.1.2 Classification ofData The data collected in the course of an inquiry is not in

an easily assimilable form. As such, its proper classification is necessary for making

meaningful inferences. The classification is done by dividing the raw data into a convenient

number of groups according to the values of the variable and finding the frequency of the

variable in each group.

Let us, for example, consider the raw data relating to the marks obtained in a

Thermodynamics course by a group of 64 students (see Table I). The data can be grouped

and shown in a tabular form (see Table II). Table II shows that there is one student getting

marks between 50 - 54, two students getting marks between 55 - 59, nine students getting

st

-

31

marks between 60 - 64, and so on. Thus the 64 figures have been put into 10 groups, called

the classes. The width of the class is called the class interval and the number in that interval

is called its frequency. The mid-point or the mid-value of a class is called the class mark.

Tabl.e II, showing the classes and the corresponding frequencies, is called a frequency table.

Thus a set of raw data summarized by distributing it into a number of classes along with their

frequencies is known as ajrequency distribution.

TABLE I

Marks obtained by 64 students in a Thermodynamics class [Source: Grewal 90]

79 88 75 60 93 71 59 85

84 75 82 68 90 62 88 76

65 75 87 74 62 95 78 63

78 82 75 91 77 69 74 68

67 73 81 72 63 76 75 85

80 73 57 88 78 62 76 53

62 67 97 78 85 76 65 71

78 89 61 75 95 60 79 83

While forming a frequency distribution, the number of classes should not ordinarily

exceed 20, and should not, in general, be less than 10. As far as possible, the class intervals

should be of equal width.

«

-

32

In some investigations, the number of items is required to be less than a certain value.

We add up the frequencies ofthe classes up to that value and call this number the cumulative

frequency. In Table II, the third column shows the cumulative frequencies, i.e., the number

of students getting less than 54 marks, less than 59 marks, and so on.

The condensation of data in the form of frequency distribution is very useful as far as

it converts a long series of observations into a compact form. But in practice we are generally

interested in comparing two or more series. The inherent inability of the human mind to grasp

in its entirety even data in the form of a frequency distribution compels us to seek for certain

constants which could concisely give an insight into the important characteristics of the series.

The chiefconstants which summarize the fundamental characteristics of a series are Measure

ofcentral tendency, Measure ofdispersion, and Measure ofskewness.

5.2.1.3 Measures of Central Tendency A frequency distribution, in general, shows

clustering of the data around some central value. Finding this central value or the average is

of importance, as it gives a most representative value ofthe whole group. Different methods

give different averages which are known as the measures ofcentral tendency. The commonly

used measures of central value are mean, median, and mode.

Mean is calculated as foUows. IfXI> X2, ... , x" are a set of n values of a variate, the

mean is given by

I~

Mean
+ Xn. IX

---------, 1. e.,
n n

«

-

33

In afrequency distribution, where the frequencies for the values XI> X2, ... , ~ are

FI, F2, ... ,Fn respectively, we have

Mean
FIXI + F2X2 + ... + FnXn .

, I. e.,
n

IFiXi
IFi'

The same formula will also hold good for a grouped distribution except that the values

Xl' X2, ... , ~ will then correspond to the mid-points of the classes.

d

-

34

5.2.2 Test Suite

In the retrieval of software components, as far as this thesis is concerned, we are

interested in how fast we can retrieve a desired component and how much (whether) the

approximate pattern matching is an improvement over exact pattern matching. We take

samples (data obtained from pattern searches), classify them into small groups, and deduce

the average number of hits, say 'm' hits for any desired file in 'n' searches. It means that any

desired file in the repository can be brought 'm' times on the average in tn' searches, From

this we can calculate the average number of searches required to retrieve a desired file from

the repository, and it can be used for comparisons between approximate and exact pattern

matching,

The discussion in the background subsection (see Subsection 5.2.1) can now be

applied to the data obtained from pattern searches, The tables containing the data are given

in the following pages.

·s

-

TABLE III

Number of hits for all the files in the repository
for approximate and exact pattern matches

35

Number of Hits Number ofHits
File Name (Approximate (Exact Pattern

Pattern Matching) Matching)

Makefile 3 0

a_dynapix. c 5 0

action area.c 5 2

alpha_list. c 4 0

app_scroll. c 10 3
'~......

arrow.c 4 o-!~

arrow timer.c 5 1
III).....
I

ask user.c 6 1 ~~
I

ask_user_simple. c 5 0
"

I~'

ask_user_simple 1. c 4 0
ji,,

build menu.c 5

build_option. C 5

cmd area.c 5

color draw.c 6 2

color slide.c 5 0

confcli.c 5

confd.c 5

copy_by_name. c 6 3

copyJetrieve. c 6 2

corners.c 7 3

TABLE ill (Continued)

Number ofbits for all tbe files in the repository
for approximate and exact pattern matches

36

Number ofHits Number ofHits
File Name (Approximate (Exact Pattern

Pattern Matching) Matching)

cutyaste.c 5 1

dialog,c 5 0

draw2.e 8 3

drawing.c 9 5

drawn.c 6 3
'ta:.....

dynapix.c 4 ..!

editor.e 6 2 ~
I

entry_cb.e 6 2
-c:~

I

'\
error test.e 4 0 ':),

~~expand.e 2 0 -4

file browser. C 6

file sel. c 8 1.

fill.c 0 0

fillmake 0

fontlist.e 3 0

form eorners.e 7 2

frame.e 5 2

free hand.e 7 3

friends.c 2 0

getusers.e 9 3

•

TABLE I1I (Continued)

Number of hits for all the files in the repository
for approximate and exact pattern matches

37

Number of Hits Number of Hits
File Name (Approximate (Exact Pattern

Pattern Matching) Matching)

hello.C 3 2

hello_dialog.e 5 0

help_text. c 7 3

incr retrieve.c 6 2

inet.h 3 0
'~

4
.,....

mqUlre.e .~
iremake 3 0 'U"....1'tJI' ...
main list.e 7 3

I

"

map_dlg.e 5 1 '::)

~ij
modal.e 6 0

......

modify_btn. e 5 0

modify_text c 9

monitor sb.e 4 1

msg_area.e 5 3

msgcli.c 5 0

msgd.e 4 0

multi click. e 5

multi font.e 5 0

paned_win1.e 7 2

paned win2.e 7 2

d

-

TABLE ill (Continued)

Number of hits for all the files in the repository
for approximate and exact pattern matches

38

Number ofHits Number of Hits
File Name (Approximate (Exact Pattern

Pattern Matching) Matching)

password.c 4 0

plxmaps.c 7 0

popups.c 6 2

prompt_dig. c 7 0

prompt-'phone.c 6
~

"
prompt-.phone2.c 6 0 I~

pushb.c 7 '..u
'I-

"",-
queryJetrieve. c 6 2 "\

I

'1
radio box.c 3 0 I:),

~i
reason.c 6 0

......

....

replace.c 5

rowcol.c 6 2

rtre.C 2 0

rtree.dat 1 0

rtreefunc. C 1 0

rtreemake 1 0

script.c 2 0

search list. c 4

search text.c 5 I

select dlg.c 6

g

TABLE III (Continued)

Number of hits for all the files in the repository
for approximate and exact pattern matches

39

Number of Hits Number ofHits
File Name (Approximate (Exact Pattern

Pattern Matching) Matching)

select text. c 5

show files. e 5

showyix.c 5 0

simpleJist. c 4

simpleyopup. e 11 3
.~.....

simpleyullright. e 11 2 ~~,

simpleJadio. c 3 0 ,,~
I,"

simple_sb.e 5
,'\

f

'I
simple_scale. e 5 0 ':).

·4....,;
spreadsheet. c 5 2 ~
string.c 7 0

text_entry c 5 2

text form.c 6

tictactoe. c 6

toggle.c 3 0

traversal.c 5

undo.e 4 2

unit_types. c 8

warrung.c 5

xeal.c 4 0

s

-

40

5.2.3 Test Results

The total number of searches conducted was 27. The data (see Table III) is

meaningfully classified below. The following table is for exact pattern matching.

TABLE IV

Frequency Distribution Table for exact pattern matching

Frequency Mid-point of
,

Class Interval Fi~
, I...

(F) Interval (~ ·IOiil.......
0-2 70 1 70

.~
''".........

2-4 29 3 87
,,~
I

4-6 1 5 5 ~-~~
I

6-8 0 7 0 ',
':S,

8 - 10 0 9 0
.4~

.~~

.4'"...
10 - 12 0 11 0 '..
12 - 14 0 13 0

14 - 16 0 15 0

16 - 18 0 17 0

18 - 20 0 19 0

I Fj = 100 I(F j X;)=162

Mean = I(FjX;) / L Fj = 162/100 = 1.62

That means that for any file an average of 1.62 hits is obtained in 27 searches. From this we

•

-
41

can calculate the number of searches needed to find any desired file. Average number of

searches per file (Total number of searches / Average number of hits) = 27 / 1.62 "" 17.

The following table is for approximate pattern matching.

TABLE V

Frequency Distribution Table for approximate pattern matching

Class Interval
Frequency Mid-point of

Fi~(F) Interval (X)

0-2 5 5
• 'lIo:

2-4 12 3 36 '::::- ~

4-6 5 220
'"u

44 "I

'''1:1
..-

6-8 30 7 210
,..~

I.,
8 - 10 6 9 54 t=:).

.4;"l
~~

10- 12 3 11 33 ;~-
'"

12 - 14 0 13 0

14 - 16 0 15 0

16 - 18 0 17 0

18 - 20 0 19 0

LFi = 100 L(Fi XJ=558

Mean = L(FiX) / L F j = 558/100 = 5.58

So, an average of 5.58 hits for any file in the repository is noted. Average number of searches

per file (Total number of searches 1Average number of hits) = 27/5.58 ~ 5.

-

42

The following graph is drawn based on the above two tables.

File Hit Graph

exact

6-8 8-10 10-12 12-14 14-16 16-18 18-2
Hit Interval

approximate

4-6

•

2-4

10 -+------::..,."..,,=--''t---------''.....--------------

O+-------,--~-__+---+--___+:::::::==- -__II~-.....-__II

0-2

70 -+-------------------------

60 -+-\------------------------

1/1 50 -+----;:-----------------------­
Cll

!:: 40 -+----\----+~~-----------------o

] 30-+---~_F---~---------------­
E
~ 20 -+-------i~----~.____--------------

Figure 7. Frequency Distribution Graph showing the number of files in
each hit interval for exact and approximate pattern matching

f

,1
I::>,..~
~b
.4'"....

5.2.4 Observations

From the above results, we note that a desired file from the repository is retrieved

faster with approximate pattern matching than exact pattern matching. The number of

searches in approximate pattern matching can be improved if the number of errors in the

search pattern is increased, but sometimes this will bring up files which are a lot different from

the user specifications.

-

CHAPTER VI

SUMMARY, CONCLUSIONS, AND FUTURE WORK

Software reuse helps increase software productivity and quality. But it also involves

storage, retrieval, and classification of software obj ects. Retrieval of software components

from a repository is a recurring problem. Exact pattern matching is used in most of the

repository schemes, which reduces the effectiveness of retrieving a software document from

a repository. Approximate pattern matching overcomes the above deficiency by reducing the

users' effort in the retrieval significantly. Agrep is a fast approximate pattern search

algorithm. It was integrated into an existing repository schem.e (VCI), which employed exact

pattern matching. A Dialog Box was provided for the retrieval process using agrep.

A prototypical experiment was conducted that involved storing 100 files in the

repository and comparing approximate pattern search over exact pattern search. The same

search patterns were used for both approximate and exact pattern matching. The number of

searches conducted was 27. The number of hits for all the files in the repository was noted

in both cases (approximate and exact pattern matching). Graphs were drawn comparing

approximate and exact pattern matching. From the graphs, it was deduced that on an average

5 searches were needed to retrieve a desired file, unlike exact pattern matching where an

average of] 7 searches were needed. Hence the time spent in approximate matching to

43

, ,
I

t<I
"
' ...
.'~

,;:;::
.. -

..,~
'=:>.
~i
~.....

d

-

44

retrieve a desired file was approximately 70% less than the time spent in exact pattern

matching.

The storage structure of the files, stored as ReS files in the repository, can still be

finely tuned to reduce the access times for the files to be checked out. This can be done by

dynamically changing the storage structure. Those files which are frequently accessed can be

brought up closer to the root, which can potentially reduce future file access times. To

capture this essence, a controlled study is needed to explore the different ways that the

storage structure should be restructured dynamically. . ,
I

oj

..:
'~

.:::
~~

',(,)
I_
I
I

. 'I
'=:)..,....
'1)
~
...

g

-

REFERENCES

[Baeza-Yates and Gonnet 89] R. A. Baeza-Yates and G. H. Gonnet, "A New Approach to
Text Searching", Proceedings of the 12th Annual ACM-SIGIR Conference on
Information Retrieval, pp. 168-175, Cambridge, MA, June 1989.

[Boehm 87] B. Boehm, "Improving Software Productivity", IEEE Software, Vol. 4, No.5,
pp. 43-57, September 1987.

[Boyer and Moore 77] R. S. Boyer and 1. S. Moore, "A Fast String Searching Algorithm",
Communications ofthe ACM, Vol. 20, No. lO, pp. 762-772, October 1977.

[Burton et al. 87] B. A. Burton, R. W. Aragon, S. A. Bailey, K. D. Koehler, and L. A.
Mayes, "The Reusable Software Library", IEEE Software, Vol. 4, No.4, pp. 25-33,
July 1987.

[Cox 90] B. 1. Cox, "Planning the Software Revolution", IEEE Software, Vol. 7, No.6, pp.
25-35, November 1990.

[Devanbu et al. 91] P. Devanbu, R. Brachman, P. Selfridge, and B. Ballard, "LaSSIE: A
Knowledge-Based Software Information System", CACM, Vol. 34, No.5, pp. 34-49,
May 1991.

[Embley and Woodfield 87] D. W. Embley and S. N. Woodfield, "A Knowledge Structure
for Reusing Abstract Data Types in Ada Software Production", Proceedings ofthe
Joint Ada Conference. Fifth National Conference on Ada Technology and
Washington Ada Symposium, pp. 27-34, U.S. Army Communications-Electronics
Command, Fort Monmouth, NJ, 1987.

[Fernandez-Chamizo et al. 95] Carmen Femandez-Chamizo, Pedro A. Gonzalez-Calero, Luis
Hernandez-Yanez, and Alvaro Urech-Baque, "Case-Based Retrieval of Software
Components", Expert Systems with Applications, Vol. 9, No.3, pp. 397-405,1995.

[Frakes and Nejmeh 87] W. B. Frakes and B. A. Nejmeh, "Software Reuse Through
Information Retrieval", The 32ndIEEE Computer Sot.:iety International Conference.
Digest ofPapers: Intellectual Leverage, pp. 380-384, San Francisco, CA, February
1987.

45

.~

,~

-

46

[Girardi and Ibrahim 95] M. R. Girardi and B. Ibrahim, "Using English to Retrieve
Software", The Journal of Systems and Software, Vol. 30, No.3, pp. 249-270,
September 1995.

[Grewal 90] B. S. Grewal, "Statistical Methods", Higher Engineering Mathematics, Khanna
PUblishers, pp. 758-760, New Delhi, India, 1990.

[Heller and Ferguson 91] Dan Heller and Paula M. Ferguson, MotifProgramming Manual,
O'Reilly and Associates, Inc., Sebastapol, CA, 1991.

[Knuth et al. 77] D. E. Knuth, 1. H. Morris, and V. R. Pratt, "Fast Pattern Matching in
Strings", SIAM Journal on Computing, Vol. 6, No.2, pp. 323-350, June 1977.

[Krueger 92] Charles W. Krueger, "Software Reuse", ACM Computing Surveys, Vol. 24,
No.2, pp. 131-179, June 1992.

[Maarek et al. 91] Y. Maarek, D. Beny, and G. Kaiser, "An Infonnation Retrieval Approach
For Automatically Constructing Software Libraries", IEEE Transactions on Software
Engineering, Vol. 17, No.8, pp. 800-813, August 1991.

[Mclennan 93] Michael 1. Mclennan, BLT, Copyright © 1993 AT&T Bell Laboratories.

[Mili et aI. 95] Hafedh Mili, Fatma Mili, and Ali Mili, "Reusing Software: Issues and
Research Directi.ons", IEEE Transactions on Software Engineering, Vol. 21, No.6,
pp. 528-559, June 1995.

[Myers and Miller 89] E. W. Myers and W. Miller, "Approximate matching of regular
expressions", Bull. OfMathematical biology 51, pp. 5-37,1989.

[Nadella 95] S. C. Nadella, "A User-Friendly Interface to RCS and Its Use as a Software
Repository", Master's Thesis, Computer Science Department, Oklahoma State
University, Stillwater, OK, 1995.

[Preito-Diaz 89] R. Preito-Diaz, "Classification of Reusable Modules", .Software Reusahility,
Vol. I, Ted 1. Biggerstaff and Alan 1. Pedis, Eds., pp. 99-124, Addison-Wesley
Publishing Company, NY 1989.

[Prieto-Diaz and Freeman 87] R. Prieto-Diaz and P. Freeman, "Classifying Software for
Reusability", IEEE Software, Vol. 4, No.1, pp. 6-16, January 1987.

[Samadzadeh et al. 96] Mansur H. Samadzadeh, S. C. Nadella, S. Dontu, and M. K. Zand,
"Software Repository: Efficient Storage and Retri'eval", Proceedings of the Sixth
International Conference on Information Processing and Management of

, ,

oI~.....
.~.­'~ .
:i

'\~.l

'i;­,~

-

47

Uncertainty in Knowledge Based Systems (IPMU'96), Special Track on Software
Reusability, Vol. III, pp. 1129-1135, Granada, Spain, July 1996.

[Schlukbier 95J Alan C. Schlukbier, "The Future Is Reuse", Computer World, Vol. 29, Issue
19, pp. 77, May 1995.

[Sobell 95J Mark G. Sobell, A Practical Guide to the UNIX System, Benjamin/Cummings
Publishing Company Inc., Redwood City, CA, 1995.

[Swanson and Samadzadeh 92J 1. E. Swanson and Mansur H. Samadzadeh, "A Reusable
Software Catalog Interface", Proceedings of the 1992 ACMISIGAPP Symposium on
Applied Computing, pp. 1076-1086, Kansas City, MO, March 1992.

[Ukkonen 85J Esko Ukkonen, "Algorithms for Approximate String Matching", biformation
and Control, VoL 64, Nos. 1-3, pp. 100-118, January-March 1985.

[Wood and Sommerville 88] M. Wood and 1. Sommerville, "An Infonnation Retrieval System
for Software Components", ACM SIGIR Forum, Vol. 22, Nos. 3-4, pp. 11-25,
Spring/Summer 1988.

[Wu and Manber 92J Sun Wu and Udi Manber, "Agrep: A Fast Approximate Pattem­
Matching Tool", Proceedings ofthe Winter 1992 USENIX Conference, pp. 153-162,
San Francisco, CA, January 1992.

[Zadeh 65] L A Zadeh, "Fuzzy Sets", Information and Control, Vol. 8, pp. 338-353, June
1965.

[Zand and Samadzadeh 95J Mansour Zand and Mansur H. Samadzadeh, "Software Reuse:
Current Status and Trends", The Journal ofSystems and Software, Vol. 30, No.3,
pp. 167-170, September 1995.

, ,

...

-

APPENDICES

48

~,-
\~)--'"\
'~,
'::S.....
Il)
i....

-

ADT

BLT

Delta

Dialog

GUT

Pattern

RCS

Repository

Software Component

Tel

Tk

VCl

Appendix A

GLOSSARY

Abstract Data Type, a user defined type with a set ofoperations
defined on it.

A library of extensions to the Tk toolkit.

When one version is stored fully, the other versions are
represented based on differences from this version; the
differences are called deltas.

A secondary (transient) window in a graphical user interface
which has reduced functionality unlike the main (top-level)
window.

Graphical User Interface, a visual representation of some of the
functionality ofa program that can be manipulated in a fiiendly,
easy-to-use, and non-programmatic manner,

A string supplied by a user as (part of) a query.

Revision Control System, a configuration management tool.

A virtual storage or depository for software components.

A piece of code (or software artifact in general).

Tool Command Language, a scripting language that is used for
developing and using graphical user interface applications.

A tookit based on Tel that helps users create graphical user
interfaces for the Xl] Window System by writing Tel scripts.

Version Control Interface, a tool (developed by Sunil Nadella
[Nadella 95]) which provides a graphical user interface to a
repository.

49

.' ,
,
Js:..........

-

DYNlX/ptx

Motif

NeD

Sequent Symmetry S/81

UNIX

X

Appendix B

TRADEMARK INFORMATION

A registered trademark of Sequent Computer Systems, Inc.

A registered trademark of Open Software Foundation (OSF).

A registered trademark of Network Computing Devices, Inc.

A registered trademark of Sequent Computer Systems, Inc.

A registered trademark of UNlX System Laboratories, Inc,

A registered trademark of Massachusetts Institute of
Technology (M1T).

50

I
I

.' ,
J...........

-

Appendix C

PROGRAM LISTING

.
The program files are presented in this appendix. The following files contain the new

code that is added to Nadella's program files (old code) [Nadella 95]. As a whole (new code

+ old code), functions as a single entity. The new code depends on some of the data

structures defined in the old code. The pattern search functionality is completely replaced by

the new code.

The order of the files as given in the following pages is given below:

app grep.c

app sear.c

hits.c

graph.c

head.h

51

-

1*
* * * * * * * • * * • * • • * * • • * * * •

52

*
*
*

Filename

Programmed by

Last updated on

app_grep.c

Dontu Sitaram

Oct 30 1996

*
*

• • * * * • • * * * * * * * * * * • * • * *

This file contains the code to display the window and controls
in it during the check out process using pattern search
(approximate pattern search) .

*1

#include <Xm/DialogS.h>
#include <Xm/Frame.h>
#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/Form.h>
#include <Xm/Label.h>
#include <Xm/List.h>
#include <Xm/PushB.h>
#include <Xm/PanedW.h>

1*
* This function creates the pattern search dialog and its controls.
* A search pattern is typed in a text box after selecting the
* the number of errors allowed. The retrieved files are displayed
* in a scrolled list window and the information about a file can be
* displayed in a scrolled text window. The action area contains
* 3 buttons. The check out button checksout any file selected. A
* file can be selected by double clicking on it in the scrolled
* text window. The search process can be initiated either by
* clicking on the search button or pressing return in the pattern
* text box after typing the pattern. Cancel button pops down the
* dialog.

*1

I~..........
-..

-,

I

53

/'" The structure of the dialog is given below. */
/*

PanedWindow

Option Menu

1------------ 1
1 I
1------------1

Form

Text

1-----------1
I 1
1-----------1

Label

1------1
I 1
1------1

1
I

--- 1

1 I
1 I
1 I
1 1
1 I

--- I
I

Form

Label

1----------------1
1 1
1----------------1

Scrolled List

1----------------1
I I
1----------------1

Label

1----------------1
1 I
1----------------1

Scrolled Text

1----------------1
1 1
1----------------1

Frame

1---------------------------------------1
I 1
1---------------------------------------1

Form

1---------------------------------------1
I PushButton PushButton PushButton 1

I 1---------1 1---------1 1----------1 1
I I 1 1 I 1 I 1
I 1---------1 1---------1 1----------1 1
1 1
1---------------------------------------1

-

*/

void
app_grep ()
(

static Widget
static Widget
static Widget
static Widget

top;
pane. form, forml, form2, form3. label, option;
frame, text_output. buttons;
s_list, 6_text, a_text;

/'" Stores some widgets which are to be used later. */
static Widget *arr;

Pixel f9, bg; /* background and foreground colors */
Pixmap pixmap; /* background in the action area */

extern Widget toplevel; /* top level Widget */
extern void help(); /* help function defined in file_select.c */

XmString
Arg
int
Dimension

str, zero, one, two, three, four;
args[15] ;
n = 0, i, x, y;
h;

g

void option_cb(), annul();

extern void a_search (), sel_callback (), a_checkout () ;
extern void a_checkout();

/*
* A static dialog is created and remains in memory
* until the application is terminated.

*/
if (!top)

/*
* arr is a static array of widgets used to store handles
* to needed widgets in this dialog box. The reason we go
* for this type of storage is none of the widgets are made
* global and it is also not desirable.
*/

arr = (Widget *) XtMalloc (6 * sizeof(Widget»);

/*
* Get the x and y coordinates of the top left corner of
* the top level window.

*/
XtVaGetValues (toplevel, XmNx. &x, XmNy, &y, NULL);
x = x + 140;

Y = Y + 125;

/*
* Dialog shell.

*/
top = XtVaCreatePopupShell ("Pattern Search", xmDialogShellWidgetClass,

toplevel,
XmNx, x,
XmNy, y.
NULL) ;

/*
* Manager widget - panedWindow.

*/
pane = XtVaCreateWidget ("pane", xmPanedWindowWidgetClass, top,

XmNsashWidth, 1,
XmNsashHeight, 1,
NULL) ;

/*
* Link the help callback function.

*/
XtAddCallback(pane. XmNhelpCallback, help, 25);

arr[5] = pane;

/*
* Pane widget is used to store the initial default
* value for the number of errors allowed in the pattern.

*/
XtVaSetValues (pane, XmNuaerData. 0, NULL);

/*
* Manager widget - form widget in panedWindow.

*/
form = XtVaCreateWidget ("form", xmFormWidgetClass, pane, NULL);

54

-

ss
;*
* Manager widget - form1 (form) widget in
* form widget.
*;

forml = XtVaCreateWidget ("forml", :xrnFormWidgetClass, form,
XmNleftAttachment,
XmNtopAttachment,
XmNrightAttachment,
XmNfractionBase,
NULL) ;

XmATI'ACH_FORM ,
XmATI'ACH_FORM ,
XmATI'ACH_FORM,
16,

str XmStringCreateSimple ("SEARCH PATI"ERN :");

;*
* Label widget "SEARCH PATI"ERN" in form1 widget.
·1

label z XtVaCreateManagedWidget ("label", xrnLabelWidgetClass, form1,
XmNlabelString, str,
XmNleftAttachment, XmATI'ACH_FORM,
XmNleftOffset, 7,
XmNtopAttachment, XmATI'ACH_FORM,
XmNbottomAttachment, XmATI'ACH_FORM,
NULL) ;

1*
• Free the string after it is used.
·1

XmStringFree (str);

;*

-"It
in form1 Widget, to type

XtVaCreateManagedWidget ("a_text", xmTextWidgetClass, form1,
XmNleftAttachment, XmATI'ACH_WI DGET,
XmNleftWidget, label,
XmNleftOffset, 2,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 9,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL) ;

a_text;

• Text widget class
* the user's query.
*;

a_text

arr [oj

1*
* If return is pressed in the text widget class,
* the search routine is activated.

*1
xtAddCallback (a_text, XmNactivateCallback, a_search, arr);

str = XmStringCreateSimple ("ERRORS ALLOWED :");
zero = XmStringCreateSimple (" exact ");
one = XmStringCreateSimple (" a ");
two = XmStringCreateSimple (" 1 ");
three = XmStringCreateSimple (" 2 ");
four = XmStringCreateSimple (" 3 ");

1*
• Option menu for selecting the number of errors
* in the query.
·1

option = XmVaCreateSimpleOptionMenu (form1, "option", str, 'E',
a ;·intial menu selection·I, option_cb,
XmVaPOSHBU'I"I'ON, zero, 'e', NULL, NOLL,

E

pa

56

XmVaPUSllBUTTON, one, '0', NULL, NULL,
XmVaPUSllBUTTON, two, '1', NULL, NULL,
XmVaPUSHBUTTON, three, '2', NULL, NULL,
XmVaPUSHBUTTON , four, '3', NULL, NULL,
XmNrightAttachment, XmAITACH_FORM,
XmNrightOffset, 7,
XmNtopAttachment, XmAITACH_FORM,
XmNbottomAttachment, XmAITACH_FORM,
NULL) ;

/*
* Free all the strings no longer needed.
*/

XmStringFree (str);
XmStringFree (zero);
XmStringFree lone);
XmStringFree (two);
XmStringFree (three);
XmStringFree (four);

/*
* Manger widget - form2 (form) widget class
* under form widget.
*/

form2 ~ XtVaCreateWidget ("form2", xmFormWidgetClass, form,
XmNleftAttachment,
XmNtopAttachment,
XmNtopWidget,
XmNtopOffset,
XmNrightAttachment,
XmNbottomAttachment,
XmNfractionBase,
NULL) ;

XmAITACH_FORM,
XmAITACH_WIDGET,
forml,
10,
XmAITACH_FORM,
XmAITACH_FORM,
16,

str XmStringCreateSimple ("FILES RETRIEVED");

f*
* Label widget "FILES RETRIEVED" in form2
* form widget.
*f

label ~ XtVaCreateManagedWidget ("label", xmLabelWidgetClass, form2,
XmNlabelString, str,
XmNleftAttachment, XmAITACH_FORM,
XmNleftOffset, 7,
XmNtopAttachment, XmAITACH_FORM,
NULL) ;

XmStringFree (str);

n ~ O·

/*

XmSTATIC); n++;
XmRESIZE_IF_POSSIBLE); n++;
10); n++;
XmAITACH_FORM); n++;
7); n++;
XmAITACH_POSITION); n++;
5); n++;
XmAITACH_WIDGET); n++;

XmNscrollBarDisplayPolicy,
XmNlistSizePolicy,
XmNvisibleltemCount,
XmNleftAttachment,
XmNleftOffset,
XmNrightAttachment,
XmNrightPosition,
XmNtopAttachment,

(args [n] ,
largs [nl ,
largs [nl,
(args [n] ,
(args[n] ,
(args [nl ,
(args [nl ,
(args [n] ,

* The scrolled list widget shows a maximum of
* 10 files. If there more than 10 files, vertical
* and horizontal scrollbars show up.

*f
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg

c

-
57

XtSetArg (args[n), XmNtopWidget,
XtSetArg (args[n), XmNbottomAttachment,

label); n++;
XmATrACH_FORM); n++;

1*
* Scrolled list widget in form2 (form) widget.
*1

s_list XmCreateScrolledList (form2, "s_list", args, n);
arr[l) s_list;

1*
* Callback registered for double clicking on
* an item in the scrolled list. The callback
* function is called to provide description
* of the item (file) selected here.
*f

XtAddCallback (s_list, XmNdefaultActionCallback, eel_callback, arr);

str = XmStringCreateSimple ("FILE INFORMATION");

/*
* Label widget "FILE INFORMATION" in
* form2 (form) widget.
*f

label - XtVaCreateManagedWidget (" label", xmLabelWidgetClass, form2,
XmNlabelString, str,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 6,
XmNtopAttachment, XmATTACH_FORM,
NULL);

XmStringFree (str);

n = 0;

f*

7); n++;

True); n++;
False); n++;
XmMULTI_LINE_EDIT); n++;
False); n++;
False): n++;
True); n++;
XmATrACH_WIDGET); n++;
label); n++;
XmATTACH_FORM); n++;
XmATTACH_POSITION); n++;
6); n++;
s_list); n++;
XmATTACH_FORM); n+.;

XmNscrollVertical,
XmNscrollHorizontal,
XmNeditMode,
XmNeditable,
XmNcursorPositionVisible,
XmNwordWrap,
XmNtopAttachment,
XmNtopWidget,
XmNbottomAttachment,
XmNleftAttachment,
XmNleftPosition,
XmNleftWidget,
XmNrightAttachment,
XmNrightOffset,

(args (n) ,
(arge [nJ ,
(arge [n] ,
(arge [nl ,
(arge [nl ,
(arge [n] ,
(arge [nl,
(arge[n] ,
(args [n] ,
(args [nl ,
(args [n] ,
(args [n] ,
(args en] ,
(args[n] ,

* The scrolled text widget has the following
* resources set. The list cannot be edited,
* has a vertical scrollbar, and doesn't provide
* a horizontal scrollbar.

*1
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg
XtSetArg

f*
widget where the file information
Child of a form widget (form2) .

XmCreateScrolledText (form2,
s_text;

* Scrolled text
* is displayed.

*/
B_text
arr[2]

Us_text"} args, n);

•

~1

58

f*

XtVaCreateManagedWidget ("frame",
XmNshadowType,
NULL) ;

* Frame widget to
* widget which is
* for good visual
*f

frame =

form a border around a text field
created below. This is used only
appearance. Child of pane widget.

xmFrameWidgetClaas, pane,
XmSHADOW_ETCHED_otrr,

f*

XtVaCreateManagedWidget (" text_output",
xmTextFieldWidgetClass, frame,
XmNvalue, "FILE
XmNeditable, False,
XmNcursorPositionVisible, False,
XmNshadowThicJmess, 0,
NULL) ;

* Text field widget, which displays the name of
* the file being checked out. When no file is
* selected for check out, it displays "FILE SELECTED;
*/

text_output

None".

SELECTED None",

f*
* The height of the text field widget is stored in 'h'.

*/
XtVaGetValues (text_output, XmNheight, &h, NULL);

f*
* The panes (which contains the frame widget, and the
* frame widget is the parent of text_output widget) height
* is made constant. It remains the eame even if the whole
* dialog window is resized.
*/

XtVaSetValues (frame, XmNpaneMaximum, h+8, XmNpaneMinimum, h+8, NULL);

f*
* Form widget (form3) is created as a child of pane
* widget. It will contain the action area buttons
+ 'check out', 'search', and •cancel , buttons.

*f
form3 = XtVaCreateWidget ("form3", xmFormWidgetClass, pane,

XmNfractionBase, 16,
NULL) ;

­I

-

text_output;arr[3]

/ .
• A pixmap is created inside the form3 widget using
* the window foreground and background colours and
• "horizontal" pixmap is internal to motif.

*f
XtVaGetValues(form3, XmNforeground, &fg, XmNbackground, &bg, NULL);
pixmap = XmGetPixmap(XtScreen(form3), "horizontal" , fg, bg);
XtVaSetValues (form3, XmNbackgroundPixmap, pixmap, NULL);

i == 1;
for n=l; n<=3; n++)

if (n == 1)
str = XmStringCreateSimple (" CHECK OUT ");

else if (n == 2)
str XmStringCreateSimple (" SEARCH ");

else
str XmStringCreateSimple (" CANCEL ");

-

/*
* Each
* form
*/

buttons

action area hutton is created as a child of
widget (form3) .

XtVaCreateManagedWidget ("buttons", XIlII'ushButtonWidgetCl.lIs.
XmNlahelString, str,
XmNsensitive. n •• 1?False : True,
XmNshowAsDef.ult, n .= 2?True : Fallle,
XmNdefaultButtonShadowThickness, 1,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition. i,
XmNrightAttachment, XmATTACH_POSrTrON,
XmNrightPosition, i+4,
XmNtopAttachrnent, XmATTACH_FORM,
XmNbottomAttachrnent, XmATTACH_FORM,
NULL) ;

form3,

59

XmStringFree (str);
i += 5;

/*
* Callback for the check out button.

*/
XtAddCallback (buttons, XmNactivateCallback, a_checkout, arr);

1*
* Callback for the search button.

*/
XtAddCallback (buttons, XmNactivateCallback, a_search, arr);

else if (n == 1)
(

if n

arr[4]

2)

buttons;

-...
else if (n =. 3

1*
* Callback for the cancel button.
*/

XtAddCallback (buttons, XmNactivateCallback, annul, NULL);

XtVaGetValues (buttons, XmNheight, &h, NULL);

/*
* The action area height is made constant.

*/
XtVaSetValues (form3, XmNpaneMaximum, h+9, XmNpaneMinimum, h+9, NULL);

XtManageChild (s_text);
XtManageChild (s_list);
XtManageChild (option);
XtManageChild (forml);
XtManageChild (form2);
XtManageChild (form3);
XtManageChild (form);
XtManageChild (pane);

XtPopup (top, XtGrabNone);

...

c

-

f"
.. This function stores the selection (no of errors) as the value
* of XmNuserData of PanedWindow.

"f
void
option_cb(menu_item, client_data, call_datal
Widget menu_item;
XtPointer client_data;
XtPointer call_data;
{

item_no = (int) client_data;
XtVaSetValues (XtParent (XtParent (XtParent (XtParent (XtParent (menu_item)))),

XmNuserData, item_no,
mn.L) ;

f"
" This function pops down the dialog when the cancel button
" is clicked. The dialog is not destroyed. It is popped up
* when the pattern search is selected in the libout process.

*f
void
annul (menu_item, client data, call_data)
Widget menu_item;
XtPointer client_data;
XtPointer call_data;

Widget shell;

shell = XtParent (XtParent (XtParent (menu item»);

XtPopdown (shell);

60

""-.'-

-'::

po

/*
* * * • * * * • * * * * * * • * * * * * * *

61

*
*

Filename

Programmed by Dontu Sitaram

*

*

Last updated on

* * * * • * * * * *
Oct 30 1996

This file contains the code to find the files whose description
has the pattern given by the user in the Libout process.

*/

#include <Xm/Text.h>
#include <Xm/List.h>
#include <Xm/MessageB.h>
#include <X11/cursorfont.h> /* For changing the cursor shape */

#include <stdio.h> /* For popen() */
#include <time.h>
#include <string.h>
lIinclude <sys/types.h>
lIinclude "sem.h" /* Library containing semaphore system calls */
lIinclude "shared_mem.h" /* Library containing shared memo sys. calls */

IIdefine SEMKEY_VAL 50091 /* Semaphore key (e.g. , last 5 digits of SSN) */
IIdefine SHMEM_KEY1 17346 /* Shared memory key */
IIdefine SHMEM_KEY2 44099 /* Shared memory key */

int shmid1; /* Id of shared memory segment 1 */

int shmid2; /* Id of shared memory segment 2 */

int shared_created = 0;

...,

--
char *shared;
int *found;

int semid;

/* Shared memory for holding files containing the pattern */
/* Shared integer */

/* Semaphore id */

I.......
...l-'1:0'

extern
struct f~le node {

char name[20];
char rcsfile[80];
char rcsno[2000];
char author[40];
char email [40j ;
char function [100] ;
char method[100];
char implementation[1000]
float saved;
int outno;
int status;
int filesize;
struct file_node *left;
struct file_node *right;
s·truct file_node *parent;

};

typedef struct h list hits_list;
extern
struct h_list

c

-

char file_name (30] ;
int count;
hits_list *next;

} ;

extern XmStringCharSet charset;
extern struct file_node *head, *point;
extern Widget toplevel; /* toplevel widget */
extern hits_list *approx_hd;
extern hits_list *exact_hd;
extern int sys_adm;

extern errordialog();
extern void hits_count();
extern void checkout();

void match_display();
void match_traverse();
void match_check();
void compare();
void create_sharedmem();
void TimeoutCUrsor();
void shared_kill();

/*
* This function removes the semaphore and the shared
* memory segments created.
*/

void
shared_kill ()

/*
* Remove the semaphore, semid; shared memory, shmid1
* and shmid2.

*/
aem_rm (semid) ;
ahmkill(shmid1);
shmki 11 (shmid2) ;

/"
" This function creates a semaphore and the shared
* memory segments needed.

*/
void
create_sharedmem()

if «shmid1 = ahminit«key_t)SHMEM_KEY1,sizeof(int))) •• -1)
{

printf("Shared memory segment initialization failed\n"l;
exit (1) ;

/*
* Found is a shared pointer to an integer.

*/
if «found = (int *) shmat(shmid1, (char *)0, 0» c: (int *)-1)
{

perror ("shmat" l ;
exit (1);

62

....

..

if «shmid2 shminit«key_t)SHMEM_KEY2,2000*sizeof(char)) _: -1)

c

..

printf(nShared memory segment initialization failed\n");
exit(l) ;

/*
* Shared is a shared character array of size 2000.

*/
if «shared = (char *) shmat(shmid2, (char *)0, Ol) =- (char *)-1)
{

perror (nshmat") ;
exit (ll;

/*
* Create the binary semaphore.

*/
semid = sem_create«(key_t)SEMKEY_VAL, I): /* initialising semid .. 1 -I
if (semid == -1)

printf(nSemaphore initialization failed.\n");
exit(l);

/*
* Initialize shared memory segments.

*/
*found = 0;
strncpy (shared, 2000);

/*
* This function is called when the search button in the
* pattern search dialog window is clicked. It searches
• all the files in the library and displays them in a
• scrolled list window. When a file is double clicked
• it's info. is displayed in a scrolled text window.
• If any error is encountered or no pattern is typed
- appropriate messages are given.

*/
void
a search (w, client_data, call_datal
Widget w;
XtPointer client_data;
XtPointer call_data:

63

...,
i

::.-.
.1\

....
lJ

(Widget -) client_data;
s_list, text_output, s_text, ok_button, pane;

char -text;
Widget -arr
Widget a_text,
Display *dpy;
int n == 0, i;
int status;
static int firsttime
hits_list -hits-ptr;

o·

time t time1, time2;

a text arr[O);
s list arr (1) ;
s_text arr(2);
text_output = arr[3);
ok_button = arr(4);
pane = arr[5];

d

...

if (firsttime ~~ 0)

firsttime++;

/*
* Create the ehared memory only the first time
* approxima.te search is called.
*/

create sharedmem ();
shared_created 1;

else

/*
* Initialize the shared memory everytime search
* ie started so that a new set of files matched
* are e,tored in this shared segment.

*/
strncpy (shared, 2000);
*found = 0;

/*
*Iinitialize or reset the Widgets to the following
* values everytime searching is started.
*/

XmTextSetString (text_output, "FILE SELECTED None") ;
XmTextSetString (s_text, NULL);
XmLietDeleteAllltems (s_list);
XtSetSensitive (ok_button, False);

/*
* The following 3 lines uodate the window for the
* above changes.

*/
dpy = XtDieplay (XtParent (pane»;
XFlush (dpy);
XmUpdateDieplay (XtParent (pane»);

/*
* (n-1) is the number of errors
* allowed in the query.
*/

XtVaGetValues (pane, XmNuserData, &n, NULL);
text = XmTextGetString (a text};

if !*text II !text)

errordialog ("No pattern typed") ;
return;

}
if ((int)strlen(text) <= (n-ll }
(

errordialog ("Size of pattern must be greater than the number of errore");
return;

TimeoutCursor (True, XtParent (panei);

time1 = time(NULL);

64

.. ,

II

J

,I

.

paz

65

/* Ch~ck the tree r~eursively to s~~ if any fil~ description has the
* required pattern. Make a linked list of all matching files.
*/

match_travers~ (head->left, text, n);

for (i=O; i<no_of-processes; i ••)
wait (&status);

time2 = time(NULL);

printf ("The time taken for match_traverse function = \g\n", difftime (time2, timel»);

XtFree (text);
match_display (s list, n);

TimeoutCUrsor (Fals~, XtParent (pane));

if (! *found)
errordialog ("Patt~rn not found");

/'"
'" This function displays all the files retri~ved in the scrolled
* list window.
*/

void
match_display(s list, nl
Widget s_list;
int n;
{

XmString listname;
int i = 1;
char *p;

/* Travers~ the link~d list of file names alr~ady chos~n,

* and add on~ by one to th~ scrolled list widg~t.

*/

XmListD~let~Allltems (s list);

p = strtok (shar~d, " ");
while (p) {

if (sys_adm)
hits_count (p, nl;

listname = XmStringCreateSimpl~(pJ;

XmListAddltemUnselected(s_list, listname, i ••);
XtFree(listnam~l;

p = strtok (NULL, " ");

/'" This function is used to check the RCS tree structure
... recursively to s~e if any file's description has the
* required pattern. At each node in the tree, it forks
* off a process which does the work of searching the given
* pattern in that node. This expedites the search proc~ss.

*/
void
match_traverse (eur, str, nl
struct file_node *cur;
char *etr;
int n;

...

.1

J

-

int childpid;
if (cur) {

if ((childpid =fork(») -1)
{

/. Fork failed .•/
perror("fork failed");
exit (1) ;

66

if (childpid == 0)
{

/. child process "/

compare (cur, str, n);
exit(l) ;

else
no_of-processes++;

match_traverse (cur->left, str, n);
match_traverse(cur->right, str, n);

/.
" This function is called by each forked process
" to search the query given hy the user in the node.
" It calls agrep to search the given pattern with
" the given no. of errors in that node. If found,
" the filename of the node is written in a shared
" memory using a semaphore. The semaphore is a binary
" semaphore and allows only one process to write into
• the shared memory at a time.

"/
void
compare (cur, str, n)
struct file node "cur;
cha.r *etr;
int n;
(

char cmd[2000] ;
char str1[2000];
char buf[102];
FILE ·ptr;
int ret_val = 0;

sprintf (str1, "%s\n%s\n%s\n%s\n%s", cur->function, cur->method,
cur->implementation, cur->author, cur->email);

~I.,
=~."

1/

.1

if (n == a)
sprintf(cmd, "echo \"%9\"

else
sprintf (emd, "echo \ "%s\"

if ((ptr = popen(cmd, "r")) !=
while (fgets(buf, 100, ptr)

ret_val = 1;

pclose (ptr);

agrep -d '$$' -w '%9''', 9tr1, etr);

agrep -d '$$' -%d -i '%s"', str1. n-1. str);

NULL)

! = NULL)

-

..

sem_wait (sernid);

67

*found
strcat
strcat

1;

(shared, cur->narne);
(shared, " ");

sem_signal (semid);

/*
* This function is called when any filename in the
* scrolled list window is doble clicked or retrun
* is pressed when that filename is highlighted. It
* displays that file's info. is a scrolled text
* window.
0/

void
sel_callbacklw, client_data, call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

XmListcallbackStruct *cbs = (XmListCallbackStruct oJ call data;
char *choice, str(80), file_selected[120];
Widget *arr = (Widget *) client_data;
Widget s_text, text_output, ok_button;

s_text = arr(2);
text_output = arr[3];
ok_button = arr(4);

XmStringGetLtoR (cbs->item, charset, &choice);
strcpy (str. choice);

.,..
:-:~-.
,I

.11

••
~

XtFree (choice);
sprintf (file_selected, "FILE SELECTED: \"s",
XrnTextSetString (text_output, file_selected);
XtSetSensitive (ok_button, True);
match_check (s_text, str);

/*
o This function does the job displaying a files
* information in a scrolled text window.

*/
void
rnatch_check(s text, str)
Widget s_text;
char str(80);
{

char string[2000);

point = NULL;
traverse (head->left, str);

str) ;

if (point) (
sprintf(string,
"FUNCTION: %s\nMETHOD: %s\nIMPLEMENTATION: %s\nAUTHOR: %s\nEMAIL: %s",

point->function, point->method, point->implementation, point->author,
point->email) ;

XmTextSetString Is_text, string};
else {

-

68

errordialog (" FILE NOT FOUND IN LIBRARY ")
return;

/o,

* This function is called when the check out button
* is clicked. The selected file is checked out into
* the directory from which 'vci' is run.
o,/

void
a_checkout(w, client_data, call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

Widget o,arr = (Widget o,) client data;
char o,choice, str[l20], *file_name, string[80];
Widget text_output;

text_output = arr[3];

choice = XmTextGetString (text_output);
strcpy (str, choice);

XtFree (choice);

~I

~;-.
I

strtok (str, ":");
file_name = strtok (NULL, " \0");
checkout (file_name);

sprintf (string, "%s checked out", file_name);
errordialog (string);

/*
* The search process takes some time. This function
* indicates that by changing the cursor to clock
* shape, i.e., the user is not supposed to do anything
* until the cursor is turned back to normal.
*/

void
TimeoutCursor(on, top)
Boolean on;
Widget top;
{

static Cursor cursorl, cursor2;
XSetWindowAttributes attrsl, attre2;
Display *dpy = XtDisplay (top);
XEvent event;

if (!cursorl && !cursor2);
{

cursorl
cursor2

XCreateFontCursor (dpy, XC_watch);
XCreateFontCUrsor (dpy, 58);

/*

None;
cureor2;

on ? cursorl
on ? cursorl

* If on is true, then turn on watch cursor, otherwise,
* return the top shell's cursor to normal and toplevel's
* cursor to its original cursor.

*/
attrsl.cursor
attrs2.cursor

5

-

/o.
• Change the main application shell's cursor to be the
• timeout cursor or reset it to normal. If other shells
• exist in this application, they have to be listed
• here in order for them to have timeout cursors too.
*/

XChangeWindowAttributes (dpy, XtWindow (top), CWCursor, &attrsl);
XChangeWindowAttributes (dpy, XtWindow (toplevel), CWCursor, &attrs2);
XFlush (dpy);

/*
* Get rid of all button and keyboard events that occured during
* the searching process. The user shouldn't have done anything
* during this time, so flush for button and keypress events.
• KeyRelease events are not discarded because accelerators
* require the corresponding release event before normal input
* can continue. Note: XCheckMaskEvent removes the events happened
• from the event queue, i.e., they are lost. If you want to
* process any particular event later you need to set an
* application defined flag or variable that notifies the
* application that it must eventually should deal with that event.

*/
if (on == False)

while (XCheckMaskEvent (dpy,
ButtonPressMask I ButtonReleaseMask I ButtonMotionMask
I PointerMotionMask I KeyPressMask, &event))

XBell (dpy, 50);

69

,

-

/*
* * * • * * • * * • * • • * * * • * * * * •

70

*
*
*
*
*

Filename

Programmed by

Last updated on

hits.c

Dontu Sitaram

Oct 30 1996

*
*

* * * * * * * * * * * * • • • * • • * • * •

This program contains all the functions needed to draw the File Hit graph.
*/

#include cstdio.h>
#include cstring.h>

void hits_count();
void load_hits();
void hitlist_kill();
void cleanup ();

extern int sys_adm;
extern int shared_created;
extern char lib_d[100J;

extern void shared_kill();

typedef struct h list hits list;
struct h_list (- -

char file_name [301 ;
int count;
hits_list *next;

) ;

hits list *approx_hd;
hits list *exact_hd;

f*
* This function is called from match_dioplay i.n app_sear.c.
* This function makes a linked list of all the files found
* in the search process. Each file in the list has a counter
* attached to it which has the no of times the file appeared
* in all the search process till now. There are 2 linked lists
* one for exact matching and the other for approximate pattern
* matching.

*f
void
hits_count (str, n)
char *str;
int n;

hits_list *hits-ptr;
int file_found D 0;

t •.

if (n ! = 0)

hitsytr
else f* n =

hitsytr

/* n = 1 - 4
approx_hd;

o *f
exact_hd;

*/

/* Check if the file is present in the linked list. */
while (hits-ptr->next)

if (strcmp (str, hits-ptr->next->file_name) == 0)
(

hitsytr->next->count++;

..

file found 1·
break;

}
hits-ptr = hits-ptr->next;

1*
* Add the file to the linked list and make its counter 1.
*1

if (!file_found)

hits-ptr->next = (hits_list *) malloc (sizeof (hits list);
hits-ptr = hits-ptr->next;
hits-ptr->next = NULL;

strcpy (hits-ptr->file_name, str);
hits-ptr->count = 1;

1*
* This function loads the hits.dat file in the library
* directory. The hits.dat file contains the hits in the
* previous runs of vci.
*1

void
load_hits ()

FILE *fp;
char temp [Sol ;
hits_list *hits-ptr;

approx_hd = (hits_list *) malloc (sizeof (hits list»;
approx_hd->next = NULL;

exact_hd = (hits_list *) malloc (sizeof (hits_list);
exact_hd->next = NULL;

sprintf (temp, "'oshits.dat",lib_d);

fp = fopen (temp, "r");
if (!fp)

printf ("Error in opening file hits.dat\n");
exit(1);

1*
* Load the approximate hits.

*1
hits-ptr = approx_hd;
while (fscanf (fp, "'os", temp) != EOF)

if (strcmp (temp, "------") != 0)
{

hits-ptr->next = (hits_list *) malloc (sizeof (hits list);
hits-ptr = hits-ptr->next;
hits-ptr->next = NULL;

strcpy (hits-ptr->file_name, temp);
fscanf (fp, "\d", &hits-ptr->count);

else
break;

71

d

-

/*
* Load the exact hits.
*/

hits-ptr = exact_hd;
while (fscanf (fp, "\s" , temp) != EOF)
{

hits-ptr->next = (hits_list *) malloc (sizeof (hits_list»);
hits-ptr = hits-ptr->next;
hits-ptr->next = NULL;

strcpy (hits-ptr->file_name, temp);
fscanf (fp, "\-d", &hits-ptr->count);

}
fclose (fp);

/ .
• This function delteles the linked lists allocated to
* exact matching and approximate matching at the end of
* execution of vci.

*/
void
hitlist kill ()

FILE *fp;
char temp[50];
hits_list *hits-ptr;

hits-ptr = approx_hd->next;

sprintf (temp, "%shits.dat",lib_d);

fp = fopen (t",mp. "w");

/*
* Write the hits in the fil", hits.dat in th", lib dir",ctory.

*/
while (hits-ptrJ
{

fprintf (fp, "%s \d\n" ,hits-ptr->fil",_name, hits-ptr->count);
free (approx_hd);
approx_hd = hits-ptr;

hits-ptr = hits-ptr->next;

l
free (approx_hd);

fprintf (fp, "%s\n","------");
hits-ptr = exact_hd->next;
while (hits-ptr)
{

fprintf (fp, "%s %d\n",hits-ptr->file_name, hits-ptr->count);
free (exact_hdl;
exact_hd hits-ptr;

72

hits-ptr->next;

free (exact_hd);

fclose (fpl;

d

/*
* This function calls the necessary cleaning functions
* to clean up the semaphore and the shared memory.
*/

void cleanup ()
(

if (shared_created
shared_kill () ;

if (sys__elm)

hitlist_kill () ;

exit (0);

73

•

...

/*
* * - * * • * * * * * * • • * * * • • • • •

74

*
*

*

Filename

Progranuned by

Last updated on

graph.c

Dontu Sitaram

Oct 30 1996

*

* " " * • * • • * * * *

"#~/contrib/bin/blt_wish -f\n\n");
nif [file exists /contrib/library] {\n");

set blt_library /contrib/library\n}\n");
"option add *Blt_htext.Font "Times-Bold-R*14*\n");
"option add "Blt_text.Font *Times-Bold-R*12*\n"l;
"option add *graph.xTitle \"File Size\"\n");

This program contains all the bIt code necessary to draw
the File Hit graph using BLT.

*/

#include <stdio.h>
#include "head.h"

void set coor ();

/*
* This function contains the BLT code necessary to draw
" the graphs showing the relationship between approxima­
* te pattern matching over exact pattern matching.

*/
void
hits_graph (mode)
int mode;
(

FILE" ofp;
char temp[80];
int *X; /" X coordinates */
float *y; /" Y coordinates */
int j;

sprintf(temp, "'l-shits.grph", lib_d);
ofp .= fopen (temp, "w");

if (!ofp) {
errordialog ("Unable to open hits. grph file .. ");
return;

/* Lock the hits.grph file in the library directory to avoid
" simultaneous updates.

*/
if (llock(ofp))

errordialog ("Unable to lock hits .grph file .. ");
return;

/*
* BLT code is written in file hits.grph,
* which is executed once all the necessary
* data required to draw the graph is written
" in the file hits.grph.

*/
fprintf(ofp,
fprintf(ofp,
fprintf(ofp,
fprintf(ofp,
fprintf(ofp,
fprintf (ofp,

d

-

/*
* Frequency Hit Graph - shows the number of
* hits for all files in the repository for
* approximate and exact pattern matching.
*/

if (mode ~= 2)
fprintf(ofp, "option add *graph.yTitle \"No of hits\"\n");

else
/*

* Hit Ratio graph - shows the ratio of approximate
* hits over exact hits for all the files.

*/
if (mode == 3)

fprintf(ofp, "option add *graph.yTitle \"(approx. hits / exact hits) ratio\"\n");

/*
* Graph title in BLT code.

*/
fprintf(ofp, "option add *graph.title \"File Hit Frequency\"\n");
fprintf(ofp, "option add *Blt_graph.legendFont *Times-*-*-8*\n\n");
fprintf(ofp, "set visual (winfo screenvisual .J\n");

/*
* Background colours for the buttons in header
* are set.
*/

fprintf(ofp, "if { $visual != \"staticg.ray\" } (\n");
fprintf(ofp," option add *print.background yellow \n");
fprintf(ofp," option add *quit.backgro\Uld red \n");
fprintf(ofp, "}\n\n");

/*
* The header text is set and a button for
* creating a postscript file of the graph
* is set.
*/

fprintf (ofp, "global graph\n");
fprint f (ofp. "set graph . graph\n") ;
fpri.ntf(ofp, "blt_htext .header -text (\n");
fprintf(ofp, "To create a postscript file \"hits.ps.\", press the \\\\\n");
fprintf(ofp, "button $blt_htext(widget) .print -text print -command (\n");
fprintf(ofp," .graph postscript hits.ps -pagewidth 6i -pageheight. 4i");
fprintf(ofp, " -landscape false \n }\n\n");
fprintf(ofp, "$blt_htext(widget) append $blt_htext(widget) .print\n");
fprintf(ofp, "\H\ button.}\n\n");

/*
* Footer text and a button for quitting is set.

*/
fprintf(ofp, "bIt htext .footer -text (Hit the \\\\\n");
fprintf(ofp, "button $blt_htext(widget) .quit -text quit -command (destroy .}\n");
fprintf(ofp, "$blt_htext.(widget) append $blt_htext(widget) .quit\n");
fprintf(ofp, "\\\\ button when you are done.\\\\\n");
fprintf(ofp, "$blt_htext(widget) -padx 20\n");
fprintf(ofp, "\\%\}\n\n");

/*
* Count the number of files in the repository.

*/
tcount = 0;
nofiles (head->leftl;

75

d

I"
" X and Y coordinates of the BLT graph.

"I
X (int ,,) malloc «(tcount+ll*sizeof(int});
Y : (float *J malloc ((tcount+l)"sizeof(float»);

1*
* This function calculates the X and Y coordinates
* and puts them in X and Y arrays created dynamically.
*1

set_coor {X, Y, O. mode);

1*
* All the coordinates are written down
* in the BLT file hits.grph.

"I
fprintf (ofp, "set Xl (\n");
for (j = 0; j < tcount; j++)

fprintflofp. " td n
, X[j]);

fprintf(ofp, "\n}\n\n set Y1 {\nooJ;
for (j = 0; j < tcount; j++l
{

if (mode == 2)
fprintf(ofp. 00 %.Of\n", Y[j]);

else
if {mode == 31

fprintf(ofp. 00 %.2f\n". Y[j]l;
}
fprintf(ofp, "\n}\n\n oo);

1*
* BLT code necessary to draw the graph
* for the obtained coordinates.
"/

fprintf(ofp. "bIt_graph $graph\n\n");
if (mode == 3)

/*
* The Hit ratio graph has a thin line connecting
* all the points in the graph. The points are
" represented by circles on the line.

"I
fprintf(ofp. "$graph element create Ratio -xdata $Xl -ydata $Yl \\\n");
fprintf(ofp, n -symbol circle -linewidth l\n");

else
if (mode == 2)

/*
* The Frequency hit graph has a thin line connecting
" all the points in the graph for approximate pattern
" matching. The points are represented by circles on
* the line.
*/

fprintf (ofp, "$graph element create approx -xdata $Xl -ydata $Yl \ \ \n oo) ;
fprintf(ofp," -symbol circle -linewidth l\n oo);

1*
• Get the X and Y coordinates for all the
" points on the Frequency Hit graph.

*1
set_coor (X, Y. 1, mode);

fprintf(ofp, "set Xl {\n");

76

•

for (j = 0; j < tcount; j++)
fprintf(ofp, " td", X[j]);

fprintf(ofp, "\n}\n\n set Y1 (\n");
for (j = 0; j < tcount; j++)

fprintf(ofp, " td\n", Y[j]);
fprintf(ofp, "\n}\n\n");

/*
* The Frequency hit graph has a thin line connecting
* all the points in the graph for exact pattern
* matching. The points are represented by squares on
* the line.

*/
fprintf (ofp, "$graph element create exact -xdata $Xl -ydata $Y1 \ \ \n") ;
fprintf(ofp, " -symbol square -linewidth l\n");

/.
* Free the memory after X and Y dynamic arrays
* are no longer needed.

*/
free (X);

free (Y);

fprintf (ofp, "set coor O\n");
fprintf (ofp, "label .1 -textvariable coor\n"l;

fprintf(ofp, "pack append. \\\n .header { padx 20 pady 10} \\\n");
fprintf (ofp, " . graph { fill expand } \ \ \n") ;
fprintf (ofp, ".1 padx 20 pady 20) \\\n .footer { padx 20 pady 10 }\n\n ");

fprintf(ofp, "wm min. 0 O\n\n");

fprintf(ofp, "bind $graph <Bl-ButtonRelease:> { \\W crosshairs toggle }\n\n");

fprintf(ofp, "proc TurnOnHairs { } {\n");
fprintf (ofp, "bind .graph <Any-Motion:> (\n");
fprintf(ofp. ".graph crosshairs configure -position @\\x,\\y\n");
fprintf (ofp, "set coor [.graph invtraneform \\x tty] \n) \n} \n") ;

fprintf(ofp, "bind .graph <Enter:> (TurnOnHairs }\n");

memeet(temp, '\0',80);
sprintf (temp, "chmod 777 \shits .grph", lib_d);
eystem(temp) ;

memset(temp, '\0', 80);

/*
* Execute the hite.grph graph at the shell to show the graph.

*/
sprintf(temp, "\shits.grph &", lib_d);
system (temp) ;

unlock (ofp) ;

fclose(ofp) ;

77

•

..

f*
* This function gets the X and Y coordinates of the number of
* hits for all files in the repository from the linked
* lists, necessary to draw the Frequency Hit graph or
* Hit Ratio graph.
*f

void
set_coor(X, Y, n, mode)
int oX;

float *y;
int n;
int mode;
{

f*
* hits-ptr is used to traverse the linked list,
* which contains the number of hits for the files
* which came up as a result of pattern searches.
*f

hits list *hits-ptr;

f* Needed for drawing ratio graph. *f
hits list *approx-ptr, *exact-ptr;

struct list *list-ptr;
int file found = 0;
int xl, yl;
int numerator;
int denominator;

xl = 0; yl = 0;
list-ptr = listhead->right;

f*
* If mode~2, then the X and Y coordinates for
* the number of hits for all files should be
* calculated to draw the Frequency Hit Graph.
*f

if (mode 2)

if (n oj
hits-ptr approx_hd->next;

else
hits-ptr exact_hd->next;

f*
* List-ptr is a linked list containing information
* about all the files in the repository. For both
* approximate and exact pattern matchings, the # of
* hits for all the files are obtained and put in the
* X and Y arrays.

*f
while (list-ptr)
(

X[xl++) = list-ptr->filesize;

f*
* For files with (hits> 0), calculate the
* Y coordinate.

*f
while (hits-ptr)

if (strcmp (hits-ptr->file_name, list-ptr->name) 0)

78

d

-

file_found ~ 1;
Y[y1++] = hits-ptr->count;
break;

}
hits-ptr ; hits-ptr->next;

/*
* For files with (hits; 0),

* Y coordinate is 0 (zero).
*/

if (file_found ;= 0)

Y [y1++1 ; 0;

79

if (n == 0)

hits-ptr
else

hits-ptr

approx_hd->next;

exact_hd->next;

list-ptr = list-ptr->right;
file found = 0;

else

/*
* If mode=), then the X and Y coordinates for
* the number of hits for all files should be
" calculated to draw the Hit Ratio Graph.
*/

if (mode = =))

exact-ptr = exact_hd->next;
approx-ptr = approx_hd->next;

while (list-ptrl
{

X(xl++J = list-ptr->filesize;

/*
" Number of hits using approximate matching.

*/
while (approx-ptr)

if (strcmp (approx-ptr->file_name, list-ptr->name) •• 0)

numerator; approx-ptr->count;
break;

approx-ptr->next;

/"
* Number of hits using exact matching.

*/
while (exact-ptr)

if lstrcmp (exact-ptr->file_name, list-ptr->namel == 0)
{

denominator = exact-ptr->count;
break;

exact-ptr->next;

-

/*
* Calculate the (approximate/exact) hits ratio.
* It should be ensured that the denominator
* should be at least one to avoid 'division
• by zero'. A pattern suchs as '#' brings up
* all the files during a search, and ensures
* that all the files have >= zero hits.
*/

Y[yl++J (float) numerator/denominator;

exact-ptr = exact_hd->next;
approx-ptr = approx_hd->next;

list-ptr = list-ptr->right;

80

..

-

1*
* * * * * * * * * * * * * * * • * * * * • •

81

*
*

*

Filename

Programmed by

Last updated on

head.h

Dantu Sit.aram

Oct 30 1996

** ******************

This file consists of all the declarat.ions needed by the file graph.c.
*1

ext.ern char lib_d[looj;
extern lock();
ext.ern unlock();

/*
* The following structure contains information
* about an Res file in the repository.
*1

ext.ern struct file_node
char name[20);
char rcsfile[80);
char rcsno[2000];
char author [40) ;
char email (40] ;
char function[100l
char method[lOol;
char implementation [1000]
float saved;
int outno;
int st.atus;
int filesize;
etruct file_node *left.;
struct file_node *right;
etruct file node ·parent;

};

extern etruct file_node *head;

extern int tcount; 1* t.count is the total # of files in the repository */
extern void nofilee(); 1* This function calculat.es the t.otal # files *1

1*
* This structure contains information about
* the distance, the name of file to be att.ached
* to, etc., which is given by the user in the
* LINK process.

*1
extern
struct list.{

char name[20];
char filename [201 ;
int type;
int distance;
int filesize;
struct list * left;
struct list. * right;
} ;

extern struct list *listhead;

..

-

/*
* The following structure is made use
* of in noting down the ~ of hits for
* all files in the repository.
*/

typedef struct h_list hits_list;
extern
struct h_list {

char file_name [30] ;
int count;
hits list *next;

};

extern hits list *approx_hd;
extern hits_list *exact_hd;

82

VITA

Sitaram Dontu

Candidate for the Degree of

Master of Science

Thesis: EFFICIENT RETRIEVAL OF SOFTWARE COMPONENTS FROM A
REPOSITORY

Major field: Computer Science

Biographical:
Personal Data: Born in Cement Nagar, Andhra Pradesh, India, July 3, 1972, son of

Venkatapathy Dontu and Venkata Lakshmi Dontu.

Education: Graduated high school from Sarada Junior College, Vijayawada, India in
May 1990; received Bachelor of Technology in Electronics and
Communication Engineering from Regional Engineering CoJlege, Kakatiya
University, Warangal, India in May 1994; completed the requirements for the
Master of Science degree in Computer Science at the Computer Science
Department at Oklahoma State University in December 1996.

Experience: Employed by Oklahoma State University, Computing and Information
Services, as a Lab Consultant from January 1995 to October 1996.

..

