A MULTIPLE-WINDOWS INTERFACE FOR

INTERNET TOOLS

By
ROMONA M. BRISCO
Bachelor of Science
Langston University
Langston, Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1996

A MULTIPLE-WINDOWS INTERFACE FOR

INTERNET TOOLS

Thesis Approved:

%LW

Thesis Adviser
. £ W
tl Chardllor
/ izs O (o0

Dean of the Graduate College

ACKNOWLEDGMENTS

I first would like to thank God, because none of this would be possible without him. 1
truly and sincerely thank my advisor and mentor, Dr. K.M. George, for all his time, help,
support, counseling and guidance he has given me. I also sincerely thank and appreciate
Dr. In Hat Ro at Langston University for his support and guidance throughout my coliege
education. I also thank him for the knowledge he has given me in preparation for future
success and achievements. I thank both of my committee members, Dr. J.P. Chandler and

Dr. G.E. Hedrick for all their help.

I deeply appreciate the professors who gave me guidance and support outside their
duty as professors. I also appreciate those professors, faculty and staff members of
Langston University who supported me and provided me with the necessary background

education and knowledge to further my education and future career goals.

I would like to give special thanks to my parents, Diane and Alfred Brisco, and my
family and friends who supported all my endeavors. Ithank my sister, Kimberley Brisco,
and my brother, Amar Brisco, who was there when I needed them the most. Lastly, I like
to thank those special friends that provided me with the help, support, confidence, love

and encouragement I needed while obtaining my degree.

iii

TABLE OF CONTENTS

Chapter Page

L] OVOIVIBW . ..ieeieieiieeiieeeieeieeees ettt een e et se e s saeeseseseameesesesesasararassesensssnsssssrnseses B

2. DEYELOPMENT TOOLS....cco i 6
2] EXASTIRIE IOV 0 curensenonmnnnoinessmsarsusiss i ons s sonaits v casaxa s saR s RGN KRR A YGRS 5 6
2.2 Tcl/Tk (Toel Command LanguagefT OOLKIL) ... e 10
2.3 WISH (Wlndowmg Shell).... SRR R RS e T

3.1 WWW (World Wide Web).... AT R R A a e B
3.2 FTP (File Transfer Protocol) e S B o e o L e o 2 o e A
3.3 Telnet.. N T g e S L
3.4 Rlogin (Remotc Logm) ... 27

4 MULTIPLE WINDOWS INTERFACE (MWI).......cccocoooviiiiiiiiin e s 29
I L L T eyt 29
B MW DESIIN, . cuciusasosnsinssinnsivsesssmiaisiassatsiusis e s s o s T s s i ass 31

4.2.1 Construchng the Interface. ... s o 31
4.2.2 The MOdEl......vieimiiieieeeiiiiiinee s viricssesenissiassesnssssesssssssesesssseassinessnnn o e 39
4,23 The DESIgN.cvsimmaumiisims s ammsssisinisss 90
5 CONCLUSION. ..ottt ettt es et st et st esebe st et eseebe et stenenseane e eee 40
APPENDIX 1 Implementation (Source Code).............coooeeiiiniiiiviicciiinicnin. 47

APPENDIXIE GIOSSHEY. oo oo ioms st svanasiisie se i 58

LIST OF TABLES

Table

I. MWTI vs. Other Web Browsers

LIST OF FIGURES

Figure Page

1. Command-line option using WISH..........ccccoooiriiiiiiiiicii e
2. GUI using WISH at command-line option...............c........
3 X TOOIS i immsmviiisis s o s s A A A e SN e AR gt e mmeanesenan
4. Examiple QUL . oo eommussveoss mmmmesnessssemssemmssssssesssiss ssm sasses s s ssasassssss s asssanasoiss
5d. Patameters Tor " Button WIGgEL: . cumsmnimmismasinimiaais st
5b. Parameters for “menubutton” Widgel..........ccieevieeiiiiiiiiiiciiie e
Sc. Parameters for “Menw’” optONS: . e onsiisisisssiississsasissinasisies
S5d. Parameters TOr “teXt” WIAZEL. . .«.1ic e oemurinsrsarmsnssasmesisssmsnssosnssshrnnssnss o bissnsenssnsassnnssnns
6. Bl UL .o vososes oy s5samsssiimssass vasmi s i
7. Example procedure for menu option “B” in menubutton.................covvviiiiiiiiiin
8. EXPEOLK PrOCESS. 1. uveievere ittt ietttssieesbt ettt ern e seae s e s e eas s etsasees e baseas e b anaa e e n e sass e res
9. AnExaitiple BTMIL Fil......auinsmmiiamsmmnissimmissiisnigsaiiosiss i
10. URLSs for different protoColS.cviiiieriiimeiiinisoiniininesie s seeesnasssssssaneseneas
11 Sumple FTP SESSI0N ..o sismsaoiniissismsesssiiisn s
12. Telneting to the Autonomous University of Barcelona.............ccccccevviiiiiiiininnnnnn.
13. Using Rlogin to the Hubble Space Telescope Daily Report...........ccccooviiiiiiicinnnns

14 VAN WA OW i s s st Sre s s Vet Coe s s S e

vi

20

20

22

24

e]|

e e e e

E

15. Internet TOOIS MENU.......coiiieeiiiiciieniie s ss s s ssesss e e s e sassess. 33
16. Result of accessing the WWW in MWL......imiminimsmamiisiseimsinisiss 33
17. The result of accessing WWW and @ Window..........ccoceeiriniieeerie e secieecesnesnnes e 34
LRI SR T O —— 36
19: MWI a8 an Active AUCOMALON. .ciavisssivsisorissssmss iamivasssiasi e svasrngs 37
20. EVENE LOOP..cteeuieiiitieieeee sttt er st st et et e eaa e e esasesantasnsenasanssness 3 1
21 SOTIWATE: ATCRIBEEIIE v vsnvsvensosissnsceissims o s e i Sosds R34 R GRS ARS8 38
22. Tree Straetine OF MWL .. cninnavaniiismnierssimess s e s 39

23. Local University WWW INErEBCe.cusmisimasmmanvmmsmsusasissmsessssasssisssisss 39

vii

CHAPTER 1

INTRODUCTION

This thesis develops a Multiple Windows Interface (MWI) for accessing Internet
Tools from an X-terminal. One of the objectives of the MWI is to provide users with a
simple point and click access to the internet tools World Wide Web, FTP, rlogin, and
telnet. The major characteristic of MWI is that it provides a unified interface to several
services in parallel. Users of MWI will benefit from this interface in many ways. First,
for those users who do not have access to multiple windows, this interface provides them
with multiple Xterms or windows if needed. Second, if users wish to retrieve information
from more than one source, they can accomplish that with a few clicks of the mouse.
They also can have access through the interface to the web and to an FTP site or another
internet capability simultaneously. Third, this is a unified graphical user interface in
which processes run simultaneously or concurrently which in essence saves time. Also,
the user can roam freely between the windows to access his or her information. While
waiting for something to load or download, the user can do something else useful. There
is very little typing to do in this interface if one prefers it. The user should only have to
type if Xterm windows are used and if he or she wants to access a different web page
other than the ones provided by the interface. MWI provides users with one web page in

which the user can access other pages by links. The links provided by this web page are

the ones that were mostly encountered on the net. Because this is a multiple window

interface to access internet tools, it facilitates high resource utilization.

1.1 Overview

The use of Graphical User Interfaces (GUIs) is becoming the trend for today's
developers. They are becoming the “dominant model for the user interface of
microcomputer operating systems [16]”. The command-driven and text-based interfaces
are no longer the norm. “Command interfaces are thought to be too complex for
infrequent end users, so a menu-driven interface may be substituted on end user systems
[41]". Developers today want to provide users with an interface that is easier to use and
to understand. They want an interface that is also more efficient and sound rather than a
complex, difficult and unmanageable interface. According to [17], understanding what a
user interface is and how to build one are the two sides to the user interface problem.
Some users may face this problem while trying to create an application that satisfies their
needs. User-Interface Management Systems (UIMS) and User Interface Development
Environments (UIDE) aim to ease the burden of interface building [13]{35]. Several
UIMS and UIDE:s are described in [3], [7], [13] and [35]. If developers are to develop a
graphical user interface that is event-driven, it would satisfy most users in achieving their
tasks. Building this type of interface would make constructing an interface easy to
maintain and to develop [17]. Typing commands as well as learning commands can be
tedious and difficult. Therefore, a GUI is an attempt to eliminate “typed commands” by
allowing users to point at icons on the screen and click with a mouse to direct the

computer to perform different tasks. This makes it easy for a beginner who may find it

1

hard to learn all the commands needed to use a command-driven interface. Also, it can
be useful to an expert who might have otherwise forgotten a command.

According to [11], both the Apple Macintosh and Microsoft Windows proved that
GUISs are easy to use and powerful. The definition for GUIs may be defined differently in
some aspects by users or corporations, but essentially the whole concept used is similar
by all concerned. In [38], a GUI is defined as one that “runs in computer graphics mode”.
A “true GUI", according to Microsoft, is one that offers a WYSIWYG (What You See Is
What You Get) screen for output, “graphically oriented” using icons, “looks good” and is
“easy to work with”, “manipulates on-screen elements”, and offers widgets such as
menus, window objects, and “dialog controls [38]".

Internet tools are used to find, retrieve or download information or resources available
world-wide. Some internet tools used to achieve these tasks are the World Wide Web,
File Transfer Protocol, Remote Login and Telnet. In [39], the author defines these
internet tools and briefly guides the user through the internet and tells the user how to use
each one of the tools. Users using these internet tools to accomplish such tasks find that
retrieving or downloading information can become time consuming and could be more
efficient in accessing information. A solution to this problem would be to provide a tool
that allows simultaneous access of internet tools. Such a tool would allow users to obtain
or retrieve information more efficiently and at a faster rate on the average. An approach
would be to design a windows application that would accomplish this task. In [17], the
author discusses how to design GUIT applications that consist of factors that make a good

interface. The factors stated in [17] are 1) having a consistent and strong interface so as

ﬂ

A
i
not to perplex and astonish the user, and 2) making the interface friendly by giving good '

It
“feedback”.

This thesis is concerned with the design and implementation of A Multiple-Windows
GUI to support simultaneous access to internet tools. A multiple-windows interface
(MWI) would allow a point and click access method for internet tools. It is a user
interface, constructed to be event-driven by mouse clicks. Even though the interface will
not speed up a specific task, by providing a means of doing several tasks in parallel, it
supports overall efficiency. Factors that need to be considered in constructing such a user
interface would be 1) the tools used in building the interface and its efficiency as to how
fast one can access information via the interface, 2) programming language and the
efficiency of that language in programming specific tasks needed in the interface, 3) the
difficulty level of programming in constructing the interface, 4) user-friendly
environment, and 5) performance.

The MWI is different from present interface tools that appear to be similar. The MWI
will be 1) a non-commercialized product, 2) a multiple window, multitasking interface in
pcr’formilllg tasks in parallel and 3) an interface designed for X-Windows which requires
no initial interface related setup for accessing windows or internet tools.

MWI is constructed under the UNIX environment on the Sequent system. It is
implemented in a shared memory multiprocessor machine. MWI is designed, constructed
and programmed to access multiple windows and tasks at the click of a mouse. MWI will
allow users to transfer between windows while waiting for information, therefore the user

always has an option of doing some other task. MWI has a unique look as well as easy to

follow menu options. Lastly, MWI has an excellent help menu on all objects and tasks in

the interface. We provide a survey of work similar to MWI in Section 4.1. The next
chapter is devoted to GUI development tools.

This thesis is organized into five chapters and two appendices. In Chapter 2, overall
views and descriptions of development tools are given along with how the interface
works using these tools. In Chapter 3, emphasis is placed on the internet tools and how
this interface is designed to access these tools. Chapter 4 focuses on the MWI design.
Chapter 5 is the concluding chapter of this thesis. MWI is compared to other graphical
user interfaces (GUIs) that are currently available in the public domain, and a section of
the concluding chapter presents further research work and development that will enhance
the MWI making it more efficient and more universal to use. Appendix I will focus on
the code that was used to implement the internet tools section of MWL Appendix II

contains a glossary.

—

CHAPTER 2

DEVELOPMENT TOOLS

MWTI is developed using GUI creation tools, and in this chapter, several tools are

reviewed and described.

2.1 Existing Tools

There are several tools or applications that are available for constructing graphical user
interfaces (GUI). User interfaces can be built using Microsoft Windows, SQL 3.0, Motif,
Visual Basic, XF, the X toolkit, the Tk toolkit and others. The spectrum of tools vary
from high-level programming languages to special purpose packages. Before developing,
designing and programming a GUI, the tools used in constructing the interface should be
examined. The tools used should make the interface easy to build, to maintain and to
extend. The user should be able to build a simple interface using the tool without
difficulty or confusion. Also, the user should be able to maintain the interface by making
modifications or alterations to the original interface without any complications. In this
thesis, a tool is considered efficient if it helps to reduce the development time. There are
several factors that contribute to efficiency: 1) template of widgets that can be configured
with mouse clicks only; 2) little or no programming on the part of the user is required; 3)

in depth knowledge of any programming language is not required. Being proficient in a

certain language in order to construct an interface does not make it user-friendly. The
overall quality of the finished interface is that it should be easy to use and to understand,
well-designed and fast in accessing information [21][38].

In [36], the authors discuss the creation of GUIs using 3GLs (Third-Generation
Languages) and OOP (Object-Oriented Programming) languages. 3GLs are languages
such as Fortran, Pascal, and C. An example of an OOP language is C++. According to
the authors in [36], the code for a simple windows application using C/Windows API
(Application Programming Interface) programming was complex and difficult for
mainframe developers. Therefore, using this software to construct GUIs would require
experienced C programmers, but this method would only be easy for them. However,
users not fluent in C or other languages who want to build windows applications would
find a particular software method that generates the code for the interface useful.
Methods like this will generate the code for the user by a simple mouse click on buttons,
icons, menus or other objects. Some methods that are designed to do this are Microsoft
Windows, Visual Basic, Digitalk, Powerbuilder 3.0 and XF.

Microsoft Windows Applications creates multiple windows and one or more
applications may be displayed concurrently on the screen. A user can create this
application by clicking on objects in the application. Another application which provides
similar features is Motif [22]. Although Motif and other applications are similar in
features and characteristics, there are distinct differences that make each application
unique. For instance, “there are pronounced differences between Microsoft's GUI
standard and the GUI standards of Motif and other applications on the Unix and

VAX/VMS platform [36]”. Using Microsoft Windows one can develop a PC-based

application, because it “is a multitasking, object-oriented, graphically oriented platform,
users are presented with a simple and consistent interface that allows them to interact
with an application using graphical constructs as opposed to operating system commands
[36]”. Therefore, the users can create an application easily by clicking on boxes, buttons,
pulldown menus and other widgets without the task of programming. This application
should be considered when wanting to construct an interface because it satisfies most of
the requirements stated in the introduction. On the other hand, GUI development with
Motif is difficult because the process can be frustrating [9]. Some frustrations that arise
using Motif are that Motif has no help information, a lot of useful widgets are not part of
the library, there is a lack of widgets, and the awkwardness of Motif API [9]. This
method would not be a good idea to use in building an application based on the degree of
difficulty and frustration if 2 Windows type tool is available.

The Macintosh GUI has three different tools to use in order to create a GUL. The
Finder, is a “file management program that consists of a menu bar that manages files
using icons and windows [34]". The User Interface Toolbox allows developers to create
text-entry windows and use dialog boxes to browse directories. The Quickdraw handles
windows and menus. In the article [34], the author does not discuss how each of these
elements were implemented, but how they are used and their purpose in creating the GUL
Also in the same article, the developers that the author talks about in creating the
Macintosh GUI using these elements are the Apple developers who seem to have
experience. Although the Macintosh Finder is easy to use, the elements involved in

creating this package would seem complicated for beginners trying to develop a similar

GUI [34]. Therefore, compared to other methods, using Macintosh would pose a high
level of difficulty.

X-Windows, which runs under the Unix environment provides a user-friendly
interface with no pre-defined windows. The toolkit used is the X-toolkit which uses a
Motif widget set built on Xlib (“X-library is a C language interface to the X Window
System, which includes numerous data types, constant definitions, macros and about 500
C library routines” [43]). Therefore, “programmers can directly program in Xlib,
however it requires a lot of redundant code to maintain the conventions [14]”. Although
using X-Windows along with the X toolkit seems sound and convenient to use,
developers unfamiliar with Xlib programming will find it difficult. Coding is not
required if widgets are used, but at some point a user may have to program a specific task
in the interface. X-Windows may provide an efficient interface, but one of the main goals
of interface development is that the user must be comfortable overall using the toolkit to
build the interface and handle the programming language or tools involved as well.
Lastly, a toolkit that seems to answer all the questions and concerns in constructing an
interface would be the Tk toolkit used along with the Tcl programming language and the
XF application. Tk creates all kinds of widgets including menus, icons, buttons and other
objects. Tk is a better choice than the tools used by Microsoft Windows and Macintosh,
Motif, and the X toolkit because not only is it easy to use and the programming is for
beginners, but it also provides a user-friendly and efficient interface that can be used to
create any interface [29].

There is no toolkit or application that is perfect or that will satisfy everyone.

However, a toolkit that 1) makes the interface easy to construct and maintain, 2) has

limited programming or easy to learn programming tools, 3) is efficient and 4) is user-
friendly is a better choice than the other toolkits. In comparison, the Tk toolkit using Tcl
as the programming language and XF as the interface development tool ranks high among
the tools that were previously reviewed. Tk and Tcl can be used to build an interface
without the XF application, however, if the XF application is not used then the Tk toolkit
along with Tcl language maybe grouped in the category with the other toolkits and
applications because some users may have a high degree of difficulty. Users will have
the tasks of programming the entire interface and will need to know more than just the
basics of the Tcl language and Tk toolkit. Clicking on buttons, menus and other widgets
without having to go through layers of menus to select a widget, the color or
configuration of templates, provides users with an efficient interface in terms of
development time compared to other methods. Use of programming is only needed to
construct new widgets or to provide specific commands or tasks used in interacting with
the interface. Step by step instructions, code and graphics are provided by the Tk toolkit,
Tcl language and the XF application. In the next four sections, we review Tcl/Tk, WISH,

XF and Expect. These four development tools were used to implement MWI.

2.2 Tel/Tk

Tcl stands for “tool command language” and is a simple scripting language for
controlling and extending applications. Its interpreter is a library of C procedures that can
be easily incorporated into applications and each application can extend the core Tcl

features with additional commands for that application [29]. Therefore, one can write Tcl

10

code within a C program. Benefits in using Tcl are rapid development, user convenience
and including different library packages.

Tk, a toolkit for the X-Window System [29], is a Motif-like widget set that gives
access to the widgets via Tcl commands [7]. This tooikit “allows a user to create GUIs
for the X Window System by writing Tcl scripts [29]”. Tk creates all kinds of widgets
including menus, icons, buttons and other objects. Tk is very easy to use. Step by step
examples of how to build and construct menus, icons and other widgets and the code for
them are show in [29]. These step by step examples are very helpful in constructing
simple to more complex GUIs. Therefore, beginners would have no problem achieving

their goal using this toolkit.

2.3 WISH

WISH, a windowing shell, is a program that consists of Tcl and Tk. WISH reads
commands from the command-line or from a file and displays the output to the screen, If
one prefers the command-line option then one would type Tcl commands at the
command-line. WISH then will interpret these Tcl commands and build an interface
according to the specification provided by the user. However, if the file option is
preferred, WISH will load the specified file which has to be in the Tcl/Tk language.
Figure 1 illustrates the command-line option using WISH which specifies an interface.
Figure 2 is the resulting interface created by WISH using this method.

After MWI was constructed, the interface was tested using WISH. Initially, WISH

was used also in debugging code for new commands and procedures for tasks/events.

WISH is also used in connection with XF. Once a GUI is created in XF one can load it in
WISH instead of in XF. However, adding new commands and procedures at the
command-line in WISH is not suggested for beginners and programmers with little

knowledge of Tcl/Tk [47]. WISH is a good tool in developing interfaces.

% button .b -text "Hello” -command HI
.b
% proc HI {1} { puts stdout "Hello there stranger!”
}
% pack .b
% button .bl -text "EXIT" -command exit
b1
% pack .bl
% text .text -relief raised -bd 2
Ltext
% scrollbar .scroll -command ".text yvieuw"
.scroll
% pack .scroll -side right -fill y
% pack .text -side left
% proc loadFile file { .text delete 1.0 end
set f Lopen $filel
while {![eof $f1} {
.text insert end [read $f 1000]
}
close $f

oadFile READ

1
1

Figure 1. Command-line option using WISH.

12

Hello

EXIT

This file is loaded into the text window because it is the file specified in the
{jprogram. This textbox could also be used for other purposes. It can be used to
{itype in text or display text or display graphics.

{|The "Hello" button demonstrates the use of a procedure which prints out a
{imessage when clicked upon. The "EXIT" button demonstrates the use of a command.
{[When one clicks on this button, the GUI will exit. The last widget, a textbox,
{|loads a local file called "READ" which has this text associated with it. The
{lprocedure contains the code involved to load this file and display it in this

ditextbox widget.

Figure 2. GUI using WISH at command-line option.

13

24 XF

XF played an important role in the development of MWI. Therefore a very detailed
description of XF is presented in this section.

XF is an integrated programming environment that supports the development of GUIs
[7]. XF is a user-friendly tool in which one could easily design and implement a
graphical user interface. In fact, XF is a UIDE for developing GUIs. Different widgets

and menus provided by XF can be used to create well-structured interfaces. Refer to

(RN e
i == = S IEE Sl CEllEd CEEd P el EE
eSmpty
CTurrent wldg-t path:l.
Stanmndard Oadditiornal Templiates
el Button ThkE macs Combined/

Canvas TGS Procedures/
CTheckbutton XFForm Widgets/
Entry autoProced
Fraame

Label

Limtbbo»

Mernu

Meanubutton

Message

Radiobutton

<! J 1=
Current widget type:fFrames

Flle Configuration Edit Programming Misc Options iel

[Ada with defaults] "“"" 1 terr [Configure and add]

OO oo oo oo oo oo oooogouooguaopoogoao oo oo ooooo o ngroun oo uoooouooooauuuonpun

Figure 3. XF tools.
Figure 3 for the tools XF provides for interface development. XF constructs widgets such
as buttons, menus, lists, etc. with mouse clicks. Figure 4 illustrates a Window created
using XF. The example GUI in Figure 4 contains 1) a button that displays a message
when clicked upon, 2) a menubutton containing a menu of options that displays messages
and clears the textbox, and 3) a text widget containing text. All of these widgets were
created by mouse-clicks. This tool allows easy manipulation of existing interfaces

constructed under XF as well. XF assists in the creation of interfaces by relieving the

14

s UIRIVERSITY

-y

o R e . i o aa

developer of the task of coding or programming to great extent. The code is
automatically created once a widget is selected and the action is invoked by coding
commands. In coding such commands, one can create their own events or special tasks
by writing Tcl code. For example, to create the sample GUI in Figure 4, one would type
in “xf” at the prompt to start the application. To begin, one would double-click the

leftmost mouse button on “button” to create a button widget. Next, double-click the

T S NE e i

FEERT OEXERRIT EE
{inserting Text..done

Current widget path].
Standard |

menubuttord
toxth

Additional | Tempiates

Combined/
Procedures/
Widgets/
auloProcedures/

Menubutton
Message
Radiobutton

L.—.———.———..__——.-_
Figure 4. Example GUL
leftmost mouse button on “menubutton” to create a menubutton widget. After inserting
the menubutton widget, double-click the middle mouse button on the widget, move to the
main window of XF and double-click the leftmost mouse button on “menu”. This
accomplishes the creation of a menu of options. To create the text widget, set the
“current widget path” located in the main window of XF to “.”. This means that widgets
are created in the root window. To set the current widget path one would double-click the
middle mouse button in an empty space in the work section of XF, in this case,

underneath the menubutton, or double-click in the “current widget path” space with the

R e AN AR m&ﬂ-'-U&uVWTY

middle mouse button until “.” is displayed. If one is inserting a widget and the “current
widget path” is not set to root then one may accidentally insert a widget within a widget.
This causes an error if the widget cannot include another widget. For example, a menu or
menubutton widget can contain other menu or button widgets, but a button widget cannot
contain another button widget; i.e. button on top of a button. All the widgets are
contained in the “Standard” column in the main window of XF. However, one could use
a template in the “Templates” column to modify/create new widgets. After inserting the
widgets, the action/event behind the widget has to be implemented. One can either save
the GUI and edit the code or do it in XF by selecting “Commands” and/or “Procedures”
from the “Programming” menu in the main window of XF. One could configure the
widgets before or after coding the tasks or events by double-clicking on the widget with
the rightmost mouse button and specifying the requirements, or one can select
“Parameters” from the “Configuration” menu in the main window of XF. The widgets in
Figure 4 were given the parameters shown in Figures 5a, 5b, 5c, and 5d respectively. The
results are shown in Figure 6. While specifying the parameters, if one chooses to give the
widget a command at that time then one would specify that command in the “Command”
box in the parameter window. The procedure for menu option B in the menubutton
widget is shown in Figure 7 as an example. Procedures, events, commands and widgets
can also be written in the C programming language. However, in this case all procedures,
events, commands and widgets were created by XF and/or Tcl code. By one creating his
or her own events or tasks, one could construct and design a very good interface. Once
the interface is designed and saved as a file, it can also be edited or modified to produce

new code for widgets, commands and procedures. For the example GUI in Figure 4, one

16

AR AR e S i R A umi\t'WTY

would go to the “File” menu in the main window of XF using the mouse, select “Save
As”, specify the name of the file in the “Filename” space provided and then exit XF by
selecting the “Quit” option in this menu. To edit the file for making modifications, such

as creating new commands, one would use an editor in which he/she is already familiar.

17

ikl atlatiss ot LN \limbﬂY

TS it t o, pararmaters - bt to oo T
Widget path: .

Name: buttonO

Symbolic name:|

Background: |White

Bitmap: |

Font:|-Adobe—Helvetica—Bold—R—N

Foreground:|Red
Label: |A button

F':u'"ldth
Sixze:
O

Text variable: |

Command:
"Hello Woxrld!l !

General I Geometry

[IEHlMenubutton parameters :.menubuttond ||l ﬂﬂﬂﬂ[
Widget path: .

Name: menubuttond

Symbolic name:|

B ackground: |White

Bitmap:|

Font:|—Adobe—Helvetica—Bold—R—N

Foreground:|Blus

Label: |A menubutton

Name of menu:|.msenubuttond.m

width
Size:
|0

Text variable:|
Onderliine
Underline: =

Menu Special General ' Geometry Blnjalng
oK Apply m Apply permanently Cancel |||

U O O o O O O O O O e e e e e T PO T O PR LT EET U R

Figure 5b. Parameters for “menubutton” widget.

isialaatates ossat Uil Vlhﬂb.ﬂ.“l(

Menu parameters:. menubuttond.m
Widget path: .menubuttond

Name: m

Symbolic name: |
Menu entry: Commandbutton Menu:
lb.l:p\ <=commands:= A
ctive bg:[Red <command> B
cc.l.rltor:l <command> C
ackground:|white
Itmap:] |
Font:| |
State:| € Normal | & Active | O Disabled
nderline:[7 '
cemmmd: l
aputs stdout "This is a simple GUI d|

1<) T
Insert | Modify | Delete | Cn:cade down
Small | General | Binding
oK Apply B Apply permanently Cancel
(TR R T T R TIIERET [TREIECT RENRRRY CIRNTNErT LR LU L L NI RER TS TR Al PRy ot A0 e it o

Figure Sc. Parameters for ‘““menu’ options.

et AR T ext parameters :. tex< &||ililTTTTmmiHinhm)
wWidget path: .

Name: texts

Symbollc name:|
Background: |White

pixels
B order width: =

[Export selection]
Font: [*—Courler—Medium—R —-Normal—*—120

Foreground: |Black

<> ﬁa!_s-d I‘ Sunken l(} Fiat
o Ridge I <> Groove

0 Set grld]

width Helght
Size:

78 249
Wrap:lo Nonol’ Thar < Wordl

¥ scroll command: |[NoFunction

Rellef:

Speclial I General | Geometry I Binding
” O Apply M Apply permanently Cancel

OO O OO OO O O O OO OO O O OO O O OO O O o oo oo oo oo oooooooo oo gogooooooe

Figure 5d. Parameters for “text’” widget.

s UNIVRESITY

-8 mih@
e Ad s

(P2 SN SFe TR PN

A menubutton

[This 1s a textbox in which one can type in text. A command or procedure can
be written so that when one types in certain words or text, an event happens.
One can alsc display an existing file here.

Figure 6. Final GUIL

xXF rocedures

Name:iClearT axt

ParamotersJ {textWidget ".text6"}
StextWidget delete 1.0 end

Loangav-]InsortIEdItlFl-nam-IEemovolHld-l:l.ar
Pattern:

€ Include L <> Exclude
CKIIIO0 Show hiddenjRescan Rescan permanenti:

TN oo oo oo o oogoo oo ooooooooo oo oo oo oo oooommgoont

Figure 7. Example procedure for menu option “B” in menubutton.
There are several other tools in XF for constructing very simple to more complex
interfaces. XF has other uses as well. However, in the example GUI, one would not need
all of the tools, only those specified for the example. For more information on other tools

and uses of XF, refer to [7].

20

1Py

Sansi-Uiti Y BN

(3 ¢ Wy SRR

XF constructs interactive interfaces rapidly because the user accesses all widgets from
a list [7]. This makes development easy and quick for beginners and users who want an
efficient interface done in little time. These benefits make XF flexible and less time
consuming in development. The user can create an easy or more complex interface by
adding more capabilities. In the instance of this thesis, I have added events to the
interface by adding Expect code. Expect is explained in further details in the next
section. According to [7], using XF will not only “result in better code” but will also
allow users to develop an interface in a short period of time with little help from the
tutorial. In [7] the author dicusses the benefits from using XF such as fun, flexibility,
support for “group development and standard interfaces” and “immediate access to the

resulting interface” [7].

2.5 Expect

Expect is a program that is used to control interactive programs and can be written in
C, C++ or Tcl [19]. Expect can do what any shell script does, but mainly is used for
automating programs. Expect is easy to use and is used in real applications [19]. Expect
can be combined with Tk to produce Expectk that allows one to build X applications. As
a general purpose language, Expect can be called a communicating script because it is
specifically designed to interact with interactive programs [19]. Figure 8 shows an
example of the user communicating with an interactive process via Expect. Expect is
also useful for spawning processes, handling multiple processes simultaneously,

interacting with multiple processes and adding

21

T e S oS =S T e nabﬂ“l'

(3) Process (2) Spawn Process

awned o
(l)UserCommand

WJISH < *»USER

(4) End Result

Figure 8. Expectk process.
extensions. In creating the MWI, Expectk code was mainly used in creating the event of
“Window” and the accessing of “Internet Tools”. This code was used to implement these
tasks because the user would use the window like a shell expecting a prompt and a
response in return and access the internet tools simultaneously while interacting with
MWI. Therefore, communication from the interface by the window via Expectk would
allow this process to happen along with the technique of automating internet tools and
displaying output to the user in the window provided. For example, if one would open a
window in the interface then the Expectk script sends a command to the interface, and
vice versa, to execute the task/event. This tool made it efficient in providing the

necessary elements to complete specific tasks in the MWI.

22

CHAPTER 3

INTERNET TOOLS

Internet tools are used by people who want to obtain information or resources. These
tools can also be used for other purposes. The Internet Tools mentioned in this thesis, the
World Wide Web (WWW or the Web), File Transfer Protocol (FTP), Remote Login
(rlogin) and telnet can be accessed simultaneously by any user of MWI. These tools are

discussed in the next sections.

3.1 World Wide Web (WWW)

The WWW was developed around 1989 at CERN (Conseil Europeen pour la
Recherche Nucleaire or European Organization for Nuclear Research) at the European
Laboratory for Particle Physics [44] by Tim Berners-Lee and Robert Cailliau [37][45].
The WWW has become the “fastest growing part of the Internet [2]”. The Web uses two
protocols as a means of obtaining resources and data. First, Hypertext Transfer Protocol
(HTTP) is a client-server protocol where the client is a WWW browser making a request
to the server for information. The WWW server responds to the request by transferring
the information requested back to the client. Second, Hypertext Markup Language
(HTML) “files are text files containing the elements of the documents [5]”. HTML files

contain tags which denote the beginning or end of an element such as a paragraph or

23

Ui VRRSITY

-

3 sl-.§
T o

(3 SNy UL N F9

header. Figure 9, taken from [5], illustrates this example. To access a site via the Web,
one would give a Universal Resource Locator (URL) as described in [37] or Uniform

Resource Locator (URL) described in [39].

<HTML>

<HEAD>

<TITLE>example of basic HTML</TITLE>

</HEAD>

<BODY>

<HI>Example of basic HTML document</HI>

<HR>

<P> The format in which this HTML document is displayed
depends on the browser used to view it.</P>

<HR>

<ADDRESS>djb / djb@acm.org</ADDRESS>

</BODY>

</HTML>

Figure 9. An Example HTML File taken from [5].
This locator opens the address specified in the URL. Figure 10, taken from [39] is the
format used for accessing site addresses for different protocols. These protocols include
http, gopher, ftp, news and mail for their respective servers. The format for these
protocols should be in URL form such that “URL addresses should be understood as

follows: <protocol>://<computer Internet address>:port number/file or directory> [39]”.

http:/fwww.informs.org/
gopher://sils.umich.edu: 1704/
news:sci.op-research
mailto:msodhi @umich.edu

Figure 10. URL:s for different protocols taken from [39].
People are using the web for many different purposes. Using the Web is very easy and
it is also universal. For this reason, and because of its growth, the Web has “become
synonymous with the Intemet [39]”. The WWW “is a technology that allows you to

weave related information on the Internet into hypertext documents [39]”. Therefore, one

24

Vil TAnEE UMY D

e

-

'J;

Fa

could easily access information or resources on the internet by clicking on hypertext
links. These links are created by using HTML which will bring about Web browsers.
Web browsers are programs that read Hypertext Markup Language (HTML) files, access
newsgroups and web servers, have e-mail capabilities, find information quickly and
“make information quickly and inexpensively available worldwide [39]”. Some
examples of web browsers are Netscape, Mosaic, and Lynx. Most web browsers display

both in text-only and graphics. However, Lynx is a text-only browser.

3.2 File Transfer Protocol (FTP)

FTP and anonymous FTP are “used for both a communication protocol (file transfer
protocol)” and for transferring files from remote computers to one’s local computer [39].
For anonymous FTP, one would not have to have an account (userid and password) on a
computer but anonymous access instead to transfer files between machines. Two ways to
access ftp sites are by web browsers and graphical ftp programs. Using these options
makes it easy because downloading or viewing files are done by point and click access.
Also, by using these two options, one can automatically decompress and view, retrieve
and save files. Basic commands for retrieving and storing files are *“get filename” and
“put filename” respectively. FTP also has e-mail capabilities called Ftpmail. Ftpmail “is
a special type of e-mail server” [39] that sends archived files to a user. The basic five
steps of FTP according to [26] are “connect, log in, change directories, grab the file, get

out”. Figure 11, taken from [26], shows an example of an FTP session using these basic

steps.

25

ikl aVaaaa DA E Ut‘(i‘w".&f '.'"i.i'i-

Step 1

home> ftp wuarchive.wustl.edu

Connected to wuarchive.wustl.edu

220 wuarchive.wustl.edu FTP server...ready.

Step 2

Name(wuarchive.wustl.edu:align):anonymous (Log in as “anonymous.")
331 Guest login ok, send your complete e-mail address as password.

Password: align@ (You won't see what you type,

but enter your e-mail address here.)
230 Guest login ok, access restrictions apply.

Step 3
ftp> cd mirrors/msdos/database (Change to appropriate directory.)
250 CWD command successful.

Step 4

ftp> binary {Set file type to binary if necessary.)
200 Type set to L.

ftp> get roadmile.zip mileage.zip (Retrieve file and rename to mileage.zip)
200 PORT command successful.

150 Opening BINARY mode data connection for roadmile.zip (55711 bytes).
226 Transfer complete.

local: roadmile.zip remote: roadmile.zip

55711 bytes received in 67 seconds (0.81 Kbytes/s)

Step 5

ftp> quit

221 Goodbye. (Disconnect and return home.)
home>

Figure 11. Sample FTP session taken from [26].

26

FRhh M AN ATALS o ade

3.3 Telnet

Telnet is a tool that allows one to login to remote computers and obtain information
that is located at the remote site. One could login remotely using a user id and password.
However, some sites allow public access. One would have to know the address of the

computer in order to complete a telnet command. An example in Figure 12, taken from

host> telnet babel.uab.es

Trying 158.109.0.14...

Connected to babel.uab.es.

Escape character is ‘]’.

Connecting...

Connection #1 established to BABEL.UAB.ES
Ordinador BABEL de les

Biblioteques UAB. Entreut HELLO UAB.BIB:

Figure 12. Telneting to the Autonomous University of Barcelona [27].
[27], illustrates a telnet session. This example shows a telnet to the Autonomous
University of Barcelona by command-line instructions. There are also other ways to

telnet. However, in this thesis, the example shown in Figure 12 is appropriate.

3.4 Remote Login (rlogin)
The rlogin command is generally the same as telnet. However, one could set up
aliases to make both the connection to the host and to log in, and “the username at the

remote computer can be sent from the command-line [27]”. This makes rlogin an easier

choice than telnet. An example rlogin session is given in Figure 13.

27

Vihia dd i alii s v adnk B

host> rlogin stinfo.hg.eso.org -l stinfo
Last login: Sat Sep 25 04:40:48 from 153.90.2.2
SunOS Release 4.1.3(MC3) #1: Tue Jun 15 14:32:45 MET DST 1993

>> Welcome to the STINFO Bulletin Board

(Revised, June 1993)
>> Enter your E-mail address: align @montana.edu

Please choose a bulletin board:
HST status reports (h)
European HST news (e)

Quit (q)

Enter h, e, or g>

Figure 13. Using Rlogin to the Hubble Space Telescope Daily Report [22].

28

hndei bbb ivraliia wada

CHAPTER 4

MULTIPLE WINDOWS INTERFACE (MWI)

In the previous chapters we described the tools used in the development of MWI and
the target of MWIL. The focus of this chapter is MWI. The underlying model and

software architecture are the topics of this chapter.

4.1 Existing GUIs

There are several GUIs that support internet applications. Multithreading and multiple
documents are two features that distinguish some of these applications. There are few
tools that provide these techniques because most applications either do one or the other or
the application does not provide simultaneous access between internet tools. A few
applications that provide the techniques are Microsoft Windows [36][38], X-Windows
[14], and Netscape Navigator [8][31]. Other applications that are similar to these but do
not provide the technique described above are discussed in [23] and [24]. The
applications discussed are either single purpose applications or applications that do not
provide simultaneous access to internet tools.

Ventanna Mosaic is a browser that supports multiple documents but not multithreaded

downloads [8]. Another application, SPRY Mosaic, was developed in 1989 by SPRY

29

TEF

4 W I BE
A Ve

VERAK AL LS W Al

Incorporated, a seattle-based company “known for its TCP/IP stack” [33]). SPRY was
founded in 1989 and “was acquired by CompuServe Incorporated in 1995” [46]. SPRY is
now called CompuServes Internet Division. SPRY Mosaic contains a network file
manager that “allows multiple active FTP sessions open for managing remote drives [8]".
SPRY Gopher, allows the viewing of gopher sites in multiple windows. Although SPRY
contains the internet tools, mail, news and gopher and the facility for viewing mail and
gopher sites by multiple windows, SPRY does not access different internet tools
simultaneously. Another application that accesses internet tool applications is MultiNet
for Windows. Although MultiNet for Windows includes internet tools and multiple
telnet sessions that can be open at one time, again, there is no simultaneous access
between the internet tools provided. The Netscape Navigator browser supports not only
multiple documents, but can “open multiple windows on one machine” [8] and is
considered to be multitasking. However, Netscape does not provide parallelism in
accessing internet tools. Netscape does, however, “perform multiple simultaneous
downloads [18]”. What Netscape does not provide is an easy way to telnet and so “in
order to access the information stored on Telnet resources,” one will “need a Telnet and a
3270 helper application [31]”. This means that one’s computer is turned into a dumb
terminal (VT100) that allows text-only access to mainframe data. To accomplish this,
one would have to first install and configure the “helper” applications. Therefore,
Netscape is not applicable and not as efficient as the MWL Another application, Internet
In A Box “is an all-inclusive multimedia Windows interface providing a suite of Internet
applications including E-mail, newsgroups, Telnet, Gopher, and Mosaic [32]". Although

this application supports the above internet applications and “works with both PCs and

30

* - . A scghs - - A » . v
Vindeibdivalish o Adak s

local area networks” [32], the internet applications can not be accessed simultaneously
and the internet tool FTP is “lacking” in some aspects [30]. Lastly, an application that
has the “ability to manage several concurrent windows each having their own window to
its own virtual PC” [38], is the Windows 386 version. This application is multitasking,
allows multiple windows and allows programs to run concurrently but it is complex and
is DOS-based.
4.2 MWI Design
4.2.1 Constructing the Interface

The MWI was constructed using the development tools discussed in chapter 2. The
MWI is made up of widgets, icons, menus, buttons, and labels. Each widget and icon in
the interface provides the user with some action whether it is displaying a message,
providing some specific information, providing help or accessing one of the internet
tools. The primary objective of the interface as mentioned in the introduction is to assist
the user to access internet tools concurrently. The main interface, shown in Figure 14,
provides the interconnection for the set of functions a user may access. The button,
Internet Tools, at the bottom of this window provides the user with a smaller window
containing a menu and some information to get him/her started on internet applications.
This window is shown in Figure 15. From this window, a user can choose an item from
the menu which contains other items. These menu items include internet tools that the
user can access. Once the user clicks on the menu item and drags the cursor to the
submenu of that particular internet tool, the action will access an internet tool or perform
some other action. An example of the next level is shown in Figure 16. In this case the

user has chosen the Web. While accessing an internet tool, the main menu window will

31

VibAKMi i iTiia adassa Vi

stay active on the screen until the user has exited this window. This feature allows a user
to select other options to access different internet tools. The main menu window should
be exited after a user has finished using MWI. There is a miscellaneous menu option in
the main menu window in which the user can choose to quit from its submenu. The main
menu of the “Internet Tools” window is currently the most important part of the interface
because it allows access to the internet tools provided. If one chooses, accessing more
than one tool or task in MWI can also be accomplished. An example is shown in Figure
17. In this figure, one would access the WWW from the internet tools menu and click on

the button “Window” from the main window in MWL

Internet Tools | Entertalnment |Window

LB bty

Figure 14. Main Window.

32

v W d B

L

jatais wadad S UMY ERSLL |

(W ¢y T LY

intemet TOOLS, . = iy

tp Explore the WEB Rlogin Telnet Misc

' The menus above contains one or more subjects

;: to choose from. To invoke one of the subjects,

| press the left mouse button on the menu item,

| drag the mouse to the desired subject in the menu,
| then release the mouse button. Click on OK when
| finished with each window. When you are done

1 with this window, go to the menu Misc to quit.

I'I1

HEHEHITERE B

Figure 15. Internet Tools Menu.

T NS SA X Mo sale 2.7b2 [Romona M. Brisco Homepag e T it
| Fife Qaﬂbna __.A_ﬂau?am Annorate News HMHelo |

‘I

ITIt‘IB [l Romona M. Brisco Homapage I S |
lUFIL | lxﬁ‘:tp S/a . cs. oult-t- edu /~comonam/ I |

! N ||
| |

Romona M. Brisco i
Computer Science Department
218 Math Sclences

i Oklahoma State University I

UsA i‘

!- O ffice: 314 Math Sclences J,
Telephone: (405) 744-8518

FASS: (405) 744-9097
‘ Email: romonam @a.cs.ckstate.edu I'

! The Internet

l ‘ Multimedia

| auk “orwad Homeﬂumaacmu L
-Iln‘lﬂll!'ﬁlrﬂ'('--‘ﬁ.'n!ﬂ. -------- T T T T T Y T T O TY T R T T T U TV Ay T TRy T TS P T P S PO Y PO TR T e P LY TP YR TR T FL L Y TR Y Y O Y EE T Y T Y R R M P Y A A A TR A R AR A IR S I R R AR el

Figure 16. Result of accessing the WWW in MWL

33

|| Stillwater. Oklahoma

. . = ’ - u D sk s W BIiN: LU B N 1w
VAR b AN AT A W AR Uitt;blwij |

= e
Walcome to the UUNET archive.

A service of UUNET Technologlies Ine, Falls Ch

For information about UUNET,., call +1 703 206

in Juunet-info

ureh, Virginia
5600, or see the files

Access is sllowed all day. Local time is Fri Sep Z7 13:56:12 1996.

All Transfers are legq.d with your host name and asmail address.
If you don’t like this policy. disconnect nowl

It Kour FTP client crashes or h-ni- shortly afrer login, T©x using a
dam {- as the first character o your password. Thim wil turn off
the informatioconal messages which may be confusing your ftp client.

- - o o - - -
rchive upgrades in progresal See /finfo/README.work for details
- o —— e —————— - -

L I A

(b2

Q0000000000000 000000)

Fleases read the file /info/RERDME. ftp
it was last modified on Fri Mar 29 16:26:09 1996 - 182 days ago
FPlease read he 1 info /READMFE

it was 1 T IVE — -~
Guase 1ogk I INCSA X Mosaic 2.752 |

WUWEUWOOUWWOLERRREUWWL LWL LW

ot
b ooc
v

111

2
2
2
2
2
2
2
2
2
2
2
2
2
2
=
2
2
2
2
2
=2
2
2
£L

Office: 314 Math Sciences
Telephone: (405) 744-8518

FAS: (4A05) 744-2097

Emall: romonam @a.cs.okstate.edu

Figure 17. The result of accessing WWW and a Window.
This example shows how multiple actions are performed simultaneously in MWI. The
“Window” is another important part of the interface because like an Xterm, a user can
type commands in this window and also see the displayed results. In order to access this
window the user will have to click on the button “Window” from MWI. The other
buttons and menus provided in this interface are for providing help and entertainment to
the user. They include answers to questions about buttons, menus, saving files, welcome

messages and entertainment. Together, these elements achieve the design objectives of

the MWI.

4.2.2 The Model

There are several computing models for user interaction used in software

development. Currently, a very popular example is the client-server model [12]. In the

34

Eaa0id i

Valiia wasnass VANA ¥ AZEN)

7 ARdad Ad A

client-server model, software is organized as a client or a server. Client makes requests
and server performs the tasks. Clients and servers are independent objects using the
request-reply communication scheme. Another model is the event-driven computing
model [10]. In this case objects respond to events. Graphics packages such as SRGP
{Simple Raster Graphics Package) [10] are based on this model. In this thesis a new
model is developed and used. It is called an active automaton model (AAM). The model
1s described below:

In AAM, software is organized as self-contained objects. All objects are capable of
executing concurrently. A property named focus is associated with each object. An
active-object is defined as a pair (object, focus). A focus can be on or off. Aneventisa
message sent to an object. An event can change the focus of an object. An active
automaton is defined as a state machine where active objects are states and events are
input. The transition function defines a new state depending on the current state and the
current event. An example is shown in Figure 18. In figure 18, when the mouse is in
window 1, its focus is on and the states are (window 1, on) and (window 2, off). When
the mouse moves to window 2, the states change to (window 1, off) and (window 2, on).
All objects are executing concurrently. An event can effect changes in more than one
state. The difference between the event-driven model and the AAM is that in the event-
driven model applications wait for an event to occur, and in AAM all applications run

concurrently.

35

mouse in Window 2

mouse in Window |

Figure 18. An Active Automaton.

4.2.3 The Design

The user interface designed in this thesis, the MWI, is designed to be an active
automation. In Figure 19, MWI is represented as an active automaton. The automaton in
this figure contains the states Rlogin, FTP, WWW and Telnet. The arcs are the
transitions from one state to another. This figure also shows that the arcs are bi-
directional between states. This means that any of the internet tools can be accessed
simultaneously with each other. The highest level implementation structure of the MWI
follows the underlying model. The implementation was accomplished by an event loop.

Figure 20 shows the event loop at the abstract level.

36

hhide M AN Tis A W AL E B U&ia?@;”ii z

Figure 19. MWI as an Active Automaton.

Event Loop:

While(not quit) {
switch(event)
WWw
/* Execute World Wide Web Interface */

FTP
/* Start File Transfer Protocol Process */

Rlogin
/* Start Remote Login Process */

Telnet
/* Start a Telnet Process*/

Figure 20. Event Loop.
The software architecture of MWI consists of the development tools Tcl and Tk
discussed in Chapter 2. The source code of MWI is based on the Tcl and Tk. Figure 21

illustrates the software architecture design in terms of the relationship of MWI to other

software.

37

savddnddn VINATVAAWAL

Vidda dsaaia

Figure 21. Software Architecture.

The organization of the components of MWI correspond to the software components.
The components can be organized as a tree. The tree structure is represented in Figure
22. All the nodes in this figure make up the MWI. First, the root node in Figure 22 is
“MWT” because it is the “root” to all other objects in MWI. Second, the “HELP” node
provides users with pertinent information about objects in MWL Third, the “Internet
Tools” node which is the main focus of this interface, accesses the internet tools provided
by MWI simultaneously. Lastly, the “Entertainment” node provides miscellaneous
entertainment to the user. This ensures that the user may have “fun”, or will not become
“bored”, while waiting for one’s information or resources. The child nodes of these
parent nodes are as follows: 1) The child nodes for “HELP” are “Getting Started”,
“Application”, “Windows”, “Buttons”, and “Miscellaneous”, 2) The child nodes for

“Internet Tools” are “Web”, “FTP”, “Rlogin”, “Telnet”, and “Miscellaneous” and 3) The

38

ddpds vivaviawii I

ARt b A\ ST & b

child nodes for “Entertainment” are “Weather”, “News”, “Messages”, “Pictures”, and

“Miscellaneous”. This tree contains all the elements in the MWI.

Acess tolrtaret Tads
Axess toMitfideWhabwe MWI

Hiptotrelbe \

HELP Internet Tools Entertainment

[Sart AT Appicaicn] Wrcowtir Msg. (V] Fp [Wetra] NovgPiotres] Vesseges | Ms:]

FAgre22. TreeSindued MVL

e i 3 RA< - (= 1 e e

[Ticie:] | Computar Sciance Department

!1|I"I. 25
’ Yoars i

;H|[?..::,, o
Ml

Qumqmnvt-n.-.vmmnur was founded on December 25, 1890, as O kliahomea
Agricultural schaniconl College. On July 1. 19587, Oklanoma Adehd College

becarme Ohl-)-u:m-. Sirtaze LInlversity. OSLY s located in S@tillywatgr. a north—ocantral

O Elano ma community with a population aroursd A2 000, Stillwater in approqimatas |y
S0 miles from the Tulsa and Oklahomaea Clty metropolitan aress, arsd (0 rood iy
moceossible by iNnterstate highvways and edr, The University has an eanccollmeant of
approximately 26,000 students on lte four campuses,. With approxlmately 19,000 on
the Stilluvwater oampLus.

'I."h- com Pputer Scileances D-p—rlmdn! offers o !\-‘ll l'w- of ﬂ-nl‘-- ’-‘ll Jﬂl’-'ﬂ. '1 I"Iu-

id W A404 L Qo*&"é}é”d’-i ‘

[Fervard]romaljRreicadicpen. JlSeve as ||

Figure 23. Local University WWW Interface.

39

.

CHAPTER 5

CONCLUSION

There are applications that appear similar to the Multiple Window Interface for
Internet Tools [23][24]. However, MWI differs from them in several ways. Most
applications are single purpose applications with the capability to browse the web [23].
However, MWI can browse the web and at the same time explore other internet tools. In
other words, MWI provides the same capability of single purpose interfaces and also
allows access to any other internet tools simultaneously. For example, in using the web
browser mosaic, if a user types in the command “mosaic”, the interface that appears is the
home page of WWW of a local university, or the homepage a user. An example is shown
in Figure 23. MWTI is a unified interface that parallelizes the tasks of accessing internet
tools. This is possible since the implementation platform is a multiprocessor machine.
Therefore, MWI has incorporated a WWW interface that begins with a home page that
provides a set of links that are the most commonly encountered on the web as illustrated
in Figure 16. By implementing this feature, MWI is more efficient, convenient, and faster
than NCSA mosaic or any other web browsers discussed in this thesis. The list of links
used in MWI were chosen based on the high traffic encountered at these sites. Some

links are by subjects and others are not. By clicking on the links provided by MWI, the

40

SLdE L VERAVIZENJL L .{

TR

" & Bl bk A\ ATE

user can get to his/her point of interest on the net faster because it avoids various links
between the starting point and the final destination. Another reason why the links
provided by MWI are more efficient compared to other browsers is that while the user is
waiting for his/her information, he/she can explore the interface by clicking on different
widgets, menus and icons to find out other interesting information or entertain
themselves. Mosaic and Netscape can provide the same information or resources as MWI
by clicking on links. However, using Mosaic and Netscape involves browsing various
links before one gets to their final destination point of resources. In other words, one of
the major differences between MWI and other web browsers is concurrency. Table |

provides a comparison of MWI with other browsers. The criteria for comparison and the

browsers to compare are taken from [23].

Factor MWI InterAp Netscape Quarterdeck NCSA
Navigator Mosaic Mosaic
LEE 12 -k LE 2 LR 2 LE R]

1. Navigation

2. Bookmarks il LAl wkly -l %l

3. Customization i *E XL, .y amip “w

4. Downloading LB " x xxmly i e
LE R LR | * - - -

5. Concurrency

xx¥*Excellent ****Good ***Acceptable **Poor *Unacceptable

Refer to PC Computing[23] pp.161 for further explanation of Ratings.

e R e e

Table I. MWI vs. Other Web Browsers.

41

{ I
- 8

Acliny

bW AdaAdd ViRAT

W b Bdis b d V7 45

MWTI has proven to be a better choice over the GUIs discussed in this thesis. In

conducting this research MWI has also proven to be a user-friendly interface and more

efficient than most GUIs used in the public domain.

Future research work may include enhancement of MWI to provide access to all
internet tools (gopher, archie and news). However, it is portable to systems which do not
support X-Windows, XF, Tcl, Tk, Expect and Wish. Another direction for future work is
to investigate methods to use Sequent’s parallel programming library with the objective

of improving performance.

42

i/l 4 4

v addddd WOT4 D

BIBLIOGRAPHY

[1] Aho, Alfred V. and Ullman, Jeffrey D., Foundations of Computer Science, W. H.
Freeman and Company, 1992.

[2] Berghel, H., The Inevitable Demise of the Web, Applied Computing Review,
Volume 3 Number 2, ACM Press, Fall 1995.

[3] Bherat, Krishna and Brown, Marc H., Visual Oblique: A System for Building
Distributed, Multi-User Applications by Direct Manipulation, SRC-Technical Report
#130a, Digital Sytems Research Center, Palo Alto, CA, October 1995.

[4] Bourne, John R., Object-Oriented Engineering Building Engineering Systems Using
Smalltalk-80, Richard D. Irwin and Asken Associates, Inc., 1992.

[5] Bouvier, Dennis J., Versions of Standards of HTML, Applied Computing Review,
Volume 3 Number 2, ACM Press, Fall 1995.

[6] Brisco, Romona M., A Multiple Windows Interface for Internet Tools, Proceedings
of the ISCA (International Society for Computers and their Applications) 11th
International Conference, Computers and Their Applications, San Francisco, CA, March
1996.

[7] Delmas, Sven, XF Design and Implementation of a Programming Environment for
Interactive Construction of Graphical User Interfaces, Technical University of Berlin, MS
Thesis, 1993.

[8] Feinman, Todd, Internet Chameleon, PC Magazine, October 10, 1995, Volume 14
Number 17, pp. 178-182, 187-188.

{9] Flanagan, David, Internet access tools: Motif Tools Streamlined GUI Design and
Programming with the Xmt Library, O'Reilly & Associates, Inc., 1994, pp. 3-4.

[10] Foley, J., Dam, Van A., Feiner, S. and Hughes, J., Computer Graphics: Principles

and Practices, Second Edition, Addison-Wesley Publishing Company, Reading, MA,
1996.

43

14 1

LW

Cdddei Wold T ishing]

& o o

[11] Grainger, Brian E., GUI Drag-and-Drop Tools Ease OI Database and Device
Interface Definition, Instrumentation & Control Systems 1995, pp. 53-55.

[12] International DCE Workshop, DCE--the OSF distributed computing environment:
client/server model and beyond, Karlsruhe, Germany, October 1993.

[13] Johnson, Jeff A., Nardi, Bonnie A., Zarmer, Craig L., and Miller, James R., ACE:
Building Interactive Graphical Applications, Communications of the ACM, April 1993,
Volume 36 Number 4, pp. 41-55.

[14] Kummetha, V.C.S. Reddy, A level-linked R* tree structure with an application
using X-Window graphical interface, Oklahoma State University, MS Thesis, 1993.

[15] Kwan, Thomas T., McGrath, Robert E. and Reed, Daniel A., NCSA’s World Wide
Web Server: Design and Performance, Computer, November 1995, Volume 28 Number
11, pp. 68-74.

[16] Laudon, Kenneth C. and Laudon, Jane P., Essentials of Management Information
Systems, Prentice Hall, Inc., 1995.

[17] Leavens, Alex, Designing GUI Applications for Windows, M&T Books, 1994, A
Division of MIS: Press, Inc., A Subsidiary of Henry Holt and Company, Inc..

[18] Lewis, Peter H., Best Web Browsers, PC World, June 1995, Volume |13 Number 6,
pp. 137.

[19] Libes, Don, Exploring Expect, O’ Reilly & Associates, Inc., 1995.

[20] Marcus, Aaron, Smilonich, Nick and Thompson, Lynne, The Cross-GUI Handbook
for Multiplatform User Interface Design, Addison-Wesley Publishing Company, 1995.

[21] Mayhew, Deborah J., Principles and Guidelines in Software User Interface Design,
Prentice Hall, Inc., 1992.

[22] McMinds, Donald L., Writing your own OSF/Motif Widgets, Prentice Hall Inc.,
1995.

[23] Meyerson, Adam, The Ultimate Web Browser, PC Computing Magazine,
September 1995, Volume 8 Number 9, pp. 152-162.

[24] Mullet, Kevin and Sano, Darrell, Designing Visual Interfaces, Prentice Hall, Inc.,
1995.

[25] Notess, Greg R., Comparing Commercial WWW Browsers, Online, May 1995,
Volume 19 Number 3, pp. 43-49.

44

ddin/i i 4

madddd Watal

[26] Notess, Greg R., Learning to FTP, Online, March 1994, Volume 18 Number 2, pp.
79-82.
[27] Notess, Greg R., Telnet Explored, Online, January 1994, Volume 18 Number 1, pp.
94-96.

[28] Osterhaug, Anita, Guide to Parallel Programming On Sequent Computer Systems,
Second Edition, Sequent Computer Systems, Inc., 1989.

[29] Ousterhout, John, The Tcl and Tk Toolkit, Addison-Wesley Publishing Company,
1994.

[30] Pasicznyuk, Robert and Zumalt, Joe, Four Internet Browsers--A review., Journal of
Academic Librarianship, March 1996, pp. 163-164.

[31] Pfaffenberger, Bryan, Netscape Navigator Surfing the Web and Exploring the
Internet, Academic Pess, Inc., 1995.

[32] Resnick, Rosalind, Graphical Interfaces for the Internet, PC Novice, January 1995,
Volume 6 Number 1, pp. 76-79.

[33] Rodriguez, Karen, CompuServe buys SPRY for Internet Links, InfoWorld, March
20, 1995, Volume 17 Number 12, pp. 14.

[34] Rose, Phillip F. H., The Macintosh Finder Pure GUI, PC Magazine, September 12,
1989, Volume 8 Number 15, pp. 133-134.

[35] Rudolf, Jim and Waite, Cathy, Completing the Job of Interface Design, IEEE
Software, November 1992, Volume 9, pp. 11-32.

[36] Sayles, Johnathan S., Karlen, Steve, Molchan, Peter, and Bildoeau, Gary, GUI-
Based Design and Development for Client/Server Applications, John Wiley & Sons
Publishing Company, 1994.

[37] Schulzrinne, Henning, World Wide Web: Whence, Whither, What Next?, IEEE
Network, March 1996, Volume 10 Number 2, pp. 10-17.

(38] Seymour, Jim, The GUI An Interface You Won't Outgrow, PC Magazine,
September 12, 1989, Volume 8 Number 15, pp. 97-109.

[39] Sodhi, Man Mohan S., An OR/MS Guide to the Internet, Interfaces, November-
December 1995, Volume 25 Number 6, pp. 14-29.

[40] Stevens, W. Richard, UNIX Network Programming, Prentice Hall, Inc., 1990.

45

axdiny/ A 4

v waddas e s it

[41] Tenopir, Carol, The User-System Interface, Library Journal, August 1989, Volume
114 Number 13, pp. 80-81.

[42] Weiss, Mark Allen, Data Structures and Algorithm Analysis in C, The Benjamin
Cummings Publishing Company, Inc., 1993.

[43] Yang, Cui-Qing and Ali, Mahir, S., Xlib by Example, X Version II Release 5,
Academic Press, Inc., 1994.

[44] A short history of Internet Protocols at CERN,
http://wwwcn.cemn.ch/pdp/ns/ben/TCPHIST .html.

[45] CERN-European Laboratory for Particle Physics,
http://www.cermn.ch/CERN/GeneralInfo.html.

[46] SPRY Corporate Information, http://www.sprynet.com/about/corpinfo/index.html.

[47] wish-Simple windowing shell, http://xpi.com/tix/doc/tcltkman/wish.html.

46

APPENDIX 1

IMPLEMENTATION (SOURCE CODE)

#!/contrib/bin/wish -f
set auto_path "$tk_library/demos $auto_path"

wim title . "Internet TOOLS"

#

The code below creates the main window, consisting of a
menu bar and a message explaining the basic operations
of the program.

#

frame .menu -relief raised -borderwidth 1

message .msg -font -Adobe-times-medium-r-normal--*-180* -relief raised -width 500 \
-borderwidth 1 -text "The menus above contains one or more subjects to choose from. To
invoke one of the subjects, press the left mouse button on the menu item, drag the mouse
to the desired subject in the menu, then release the mouse button. Click on OK when
finished with each window. When you are done with this window, go to the menu Misc
to quit. "

pack .menu -side top -fill x

47

Toer woIs

pack .msg -side bottom -expand yes -fill both
menubutton .menu.menu -text "Ftp" -menu .menu.menu.m \
-underline 0

menu .menu.menu.m

.menu.menu.m add command -label "uu.net" \
-command FTP1 \

-underline O

setid O
proc FTP1 {} {
global id
setid 1
if {$id==1} {
puts "FTPid = 1"
test
J

exec ftp ftp.uu.net &

]

.menu.menu.m add command -label "cs.berkeley.edu” \
-command FTP2 \

-underline 0

proc FTP2 (} {

48

exec ftp ftp.cs.berkeley.edu &
}
.menu.menu.m add command -label "a.cs.okstate.edu” \
-command FTP3\
-underline O
proc FTP3 {} {(
exec ftp ftp.a.cs.okstate..edu &
)
.menu.menu.m add command -label "wuarchive.wustl.edu” \
-command FTP4 \
-underline 0
proc FTP4 {} {
exec ftp wuarchive.wustl.edu &
}
.menu.menu.m add command -label "aud.alcatel.com" \
-command FTP5 \
-underline O
proc FTP5 {} {
exec ftp ftp.aud.alcatel.com &
}
.menu.menu.m add command -label "sunsite.edu” \

-command FTP6 \

49

-underline O

proc FTP6 () {

exec ftp ftp.sunsite.edu &

menubutton .menu.text -text "Explore the WEB" -menu .menu.text.m -underline 0
menu .menu.text.m
.menu.text.m add command -label "World Wide Web..." -command Webl \

-underline O

proc Web1 {{w .bindings}} {

catch {destroy $w}

toplevel $w

dpos $w

wm title $w "Links to the World Wide Web"

wm iconname $w "Text Bindings"

button $w.ok -text OK -command "destroy $w"

text $w.t -relief raised -bd 2 -yscrolicommand "$w.s set" -setgrid true \
-width 60 -height 28 \
-font "-Adobe-Helvetica-Bold-R-Normal-*-120-*"

scrollbar $w.s -relief flat -command "$w.t yview"

50

pack $w.ok -side bottom -fill x
pack $w.s -side right -fill y

pack $w.t -expand yes -fill both

Set up display styles
if {[tk colormodel $w] == "color"} {
set bold "-foreground red"
set normal "-foreground { }"
} else {
set bold "-foreground white -background black"
set normal "-foreground {} -background {}"
}
$w.t insert 0.0 {\
To get to a web page, move the mouse over a URL address.
Once the URL address is highlighted, press mouse button 3.
}
insertWithTags $w.t\
{1. Connect to Web.} d1
insertWithTags $w.t \n\n
insertWithTags $w.t\
foreach tag {d1 d2 d3} {

$w.t tag bind $tag <Any-Enter> "$w.t tag configure $tag $bold"

51

$w.t tag bind $tag <Any-Leave> "$w.t tag configure $tag $normal”
}
$w.t tag bind d1 <3> webl
proc webl! {{w .bindings}} {

global id

catch {destroy $w]

toplevel $w

dpos $w

wm title $w "Internet Tools"

wm iconname $w "WWW"

button $w.ok -text OK -command "destroy $w"

text $w.t -relief raised -bd 2 -yscrollcommand "$w.s set" -setgrid true \
-width 60 -height 28 \
-font "-Adobe-Helvetica-Bold-R-Normal-*- [20-*"

scrollbar $w.s -relief flat -command "$w.t yview"

pack $w.ok -side bottom -fill x

pack $w.s -side right -fill y

pack $w.t -expand yes -fill both

Set up display styles

if {[tk colormodel $w] == "color"} {

set bold "-foreground red"

52

set normal "-foreground { }"
} else {
set bold "-foreground white -background black"
set normal "-foreground {} -background { }"
}
if {$id ==0) {
puts "WWW id = 0"
test
J
$w.t mark set insert 0.0
bind $w <Any-Enter> "focus $w.t"
}
exec xmosaic -home http://a.cs.okstate.edu/~romonam/ &
$w.t tag bind d2 <3> mkPlot
Sw.t tag bind d3 <3> mkCanvText
$w.t tag bind d4 <3> mkArrow
$w.t tag bind d5 <3> mkRuler
$w.t tag bind d6 <3> mkScroll
END OF PROCEDURE webl
}
Procedure: test

proc test {} {

53

global id
switch $id \
0 { puts "Exec WWW"}\
1 { puts "Exec FTP"} \
2 { puts "Exec RLogin"} \
3 { puts "Exec Telnet"} \
default { puts "ERROR"} \
}
The procedure below inserts text into a given text widget and

applies one or more tags to that text. The arguments are:

#

#w Window in which to insert

text Text to insert (it's inserted at the "insert" mark)

args One or more tags to apply to text. If this is empty
then all tags are removed from the text.

proc insertWithTags {w text args} (
set start [$w index insert]
$w insert insert $text
foreach tag [$w tag names $start] {

$w tag remove $tag $start insert

54

foreach i $args {

$w tag add $i $start insert

menubutton .menu.scroll -text "Rlogin" -menu .menu.scroll.m \
-underline O

menu .menu.scroll.m
.menu.scroll.m add command -label "Hosts..." -command funListbox2 -underline 0
proc funListbox2 {{w .12} } {

catch {destroy $w}

toplevel $w

dpos $w

wm title $w "Hosts"

wm iconname $w "Listbox"

wm minsize $w | |

message $w.msg -font -Adobe-times-medium-r-normal--*-180* -aspect 300 \
-text "A listbox containing several hosts is displayed below, along with a
scrollbar. You can scan the list either using the scrollbar or by dragging in the listbox
window with button 2 pressed. If you double-click button | on a host, then you have

selected that host. Click the \"OK\" button to bo connected."

55

frame $w.frame -borderwidth 10

button $w.ok -text OK -command "destroy $w"
pack $w.msg -side top

pack $w.ok -side bottom -fill x

pack $w.frame -side top -expand yes -fill y

scrollbar $w.frame.scroll -relief sunken -command "$w.frame.list yview"
listbox $w.frame.list -yscroll "$w.frame.scroll set" -relief sunken \
-geometry 20x20 -setgrid |
pack $w.frame.list $w.frame.scroll -side left -fill y
$w.frame.list insert O a.cs.okstate.edu
bind $w.frame.list <Double-1> {exec rlogin a.cs.okstate.edu }
#\
"$w config -bg \[lindex \[selection get\] O\]
$w.frame config -bg \[lindex \[selection get\] O\]
$w.msg config -bg \[lindex \[selection get\] O\]"
}
menubutton .menu.misc -text Misc -menu .menu.misc.m -underline 0
menu .menu.misc.m
.menu.misc.m add command -label "Bitmaps" -command mkBitmaps \
-underline 0

.menu.misc.m add command -label "Quit" -command "destroy ." -underline O

56

pack .menu.menu .menu.text .menu.scroll .menu.misc -side left
Set up for keyboard-based menu traversal
bind . <Any-FocusIn> (
if {("%d" == "NotifyVirtual") && ("%m" == "NotifyNormal")} {

focus .menu

}

tk_menuBar .menu .menu.menu .menu.text .menu.scroll .menu.misc

Position a dialog box at a reasonable place on the screen.

proc dpos w {

wm geometry $w +300+300}

57

APPENDIX II

GLOSSARY [1,4, 7, 10, 14, 19, 29, 40, 42, 46]

API - Applications Programming Interface, a set of functions that a user process can call.

Dialog box - type of window that presents choices to the user and provides a graphical
means to input information to an application.

Dialog controls - dialog box controls are user interface components that appear primarily
in dialog boxes.

Expect - a program that is used to control interactive programs. A communicating script
that interacts with interactive programs.

Finite automaton - a graph-based way of specifying patterns.
Menus - provides an easy way to use visual interface that allows the user to browse and
select an item from a list of choices or commands that the application provides rather than

having to recall the commands, options, or data from memory.

Multiprocessor - computer that incorporate multiple identical processors (CPUs) and a
single common memory.

Nodes - a set of points usually represented by circles.

OOP - Object Oriented Programming, a methodology that provides description of
objects, including functional, behavioral and declarative function.

Protocol - a set of rules and conventions between the communicating participants.
Shared Memory - two or more processes share a memory segment.

SRGP - Simple Raster Graphics Package, a device independent graphics package that
exploits raster capabilities.

Tcl - Tool Command Language, a scripting language for controlling and extending
applications.

38

TCP/IP - Transmission Control Protocol, a connection-oriented protocol that provides a
reliable full-duplex, byte system for a user process. Internet Protocol, the protocol that
provides the packet delivery service for TCP, UDP, and ICMP.

Tk - toolkit for the X-Window System that allows a user to create GUIs by writing Tcl
SCripts.

Widgets - a window with a particular appearance and behavior. Widgets are divided into
classes such as buttons, menus, and scrollbars.

Window(s) - a window is an area within the screen (or on the desktop) with which a user
conducts a dialog with a computer system.

WISH - Windowing Shell that supports the development and execution of graphical user
interfaces.

WYSIWYG - What You See Is What You Get, an acronym for what you see is what you
get. It generally refers to the degree of one-to-one correspondence between information

displayed on the screen and information displayed on printed output or stored in files.

XF - an integrated programming environment that supports the development of GUIs. An
interface used to build/create other interfaces.

X-lib - X library, the lowest level of programming interface to X. A programming
interface that has subroutine package written in C and is provided by the X-Window

system.

X-Windows - interface that runs under UNIX environment.

59

VITA
ROMONA M. BRISCO
Candidate for the Degree of

Master of Science

Thesis: A Multiple-Windows Interface for Internet Tools
Major Field: Computer Science
Biographical:
Personal Data: Born in Chicago, Illinois, to Diane and Alfred Brisco.

Education: Graduated from Martin Luther King Jr. High School, Chicago,
Illinois, June 1989, received Bachelor of Science degree in Computer Science
from Langston University, Langston, Oklahoma, in July 1993; completed
requirements for the Master of Science degree at Oklahoma State University,
Stillwater, Oklahoma, in December 1996.

Experience: Graduate Research Assistant and Teaching Assistant at Oklahoma
State University, Stillwater, Oklahoma; Software Developer at BELLCORE,
Piscataway, New Jersey; GUI developer and Assistant System Admin-
istrator at Argonne National Laboratory, Argonne, Illinois.

Professional Organizations: ACM Student Chapter (Oklahoma State University);
Delta Sigma Theta Sorority Incorporated.

