
A MULTIPLE-WINDOWS INTERFACE FOR

INTERNET TOOLS

By

ROMONA M. BRISCO

Bachelor of Science

Langston University

Langston, Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1996

A MULTIPLE-WINDOWS INTERFACE FOR

INTERNET TOOLS

Thesis Approved:

(J

~mas G. {383hS
Dean of the Graduate College

ji

ACKNOWLEDGMENTS

I first would like to thank God, because none of this would be possible without him. I

truly and sincerely thank my advisor and mentor, Dr. K.M. George, for all his time, help,

support, counseling and guidance he has given me. I also sincerely thank and appreciate

Dr. In Rai Ro at Langston University for his support and guidance throughout my college

education. I also thank him for the knowledge he has given me in preparation for future

success and achievements. I thank both of my committee members, Dr. J.P. Chandler and

Dr. G.E. Hedrick for all their help.

I deeply appreciate the professors who gave me guidance and support outside their

duty as professors. I also appreciate those professors, faculty and staff members of

Langston University who supported me and provided me with the necessary background

education and knowledge to further my education and future career goals.

I would like to give special thanks to my parents, Diane and Alfred Brisco, and my

family and friends who supported all my endeavors. I thank my sister, Kimberley Brisco,

and my brother, Amar Brisco, who was there when I needed them the most. Lastly, I like

to thank those special friends that provided me with the help, support, confidence, love

and encouragement I needed while obtaining my degree.

iii

Chapter

TABLE OF CONTENTS

Page

L

1 INTRODUCTION.. I
1.1 Overview.................................. 2

2 DEVELOPMENT TOOLS....................... 6
2.1 Existing Tools........... 6
2.2 TcJlfk (Tool Command Languageffoolkit) 10
2.3 WISH (Windowing SheJl) 11
2.4 XF 14
2.5 EXPECT 21

3 THE INTERNET TOOLS 23
3.1 WWW (World Wide Web) 23
3.2 FrP (File Transfer Protocol) 25
3.3 Telnet. 27
3.4 Rlogin (Remote Login) 27

4 MULTIPLE WINDOWS INTERFACE (MWI) 29
4.1 Existing GUls 29
4.2 MWI Design 31

4.2.1 Constructing the Interface 31
4.2.2 The ModeL 34
4.2.3 The Design 36

5 CONCLUSION 40

BIBLIOGRAPHy 43

APPENDIX I Implementation (Source Code) 47

APPENDIX II Glossary 58

IV

Table

LIST OF TABLES

Page

1. MWI ys. Other Web Browsers 41

v

L

LIST OF FIGURES

Figure Page

1. Command-line option using WISH 12

2. GUI using WISH at command-line option 13

3. XF Tools 14

4. Example GUI. 15

Sa. Parameters for "button" widget.. 18

5b. Parameters for "menubutton" widget. 18

5c. Parameters for "menu" options 19

5d. Parameters for "text" widget.. 19

6. Final GUI. 20

7. Example procedure for menu option "B" in menubutton 20

8. Expectk process 22

9. An Example HTML File 24

10. URLs for different protocols 24

11. Sample fiP session 26

12. Telneting to the Autonomous Uni versity of Barcelona 27

13. Using Rlogin to the Hubble Space Telescope Daily Report 28

14. Main Window 32

vi

-

15. Internet Tools Menu 33

16. Result of accessing the WWW in MWI.. 33

17. The result of accessing WWW and a Window 34

18. An Active Automaton 36

19. MWI as an Active Automaton , 37

20. Event ,Loop 37

21. Software Architecture 38

22. Tree Structure of MWI 39

23. Local University WWW Interface 39

vii

CHAPTER 1

INTRODUCTION

This thesis develops a Multiple Windows Interface (MWI) for accessing Internet

Tools from an X-tenninal. One of the objectives of the MWI is to provide users with a

simple point and click access to the internet tools World Wide Web, FrP, rlogin, and

telnet. The major characteristic of MWI is that it provides a unified interface to several

services in parallel. Users of MWI will benefit from this interface in many ways. First,

for those users who do not have access to multiple windows, this interface provides them

with multiple Xtenns or windows if needed. Second, if users wish to retrieve information

from more than one source, they can accomplish that with a few clicks of the mouse.

They also can have access through the interface to the web and to an FrP site or another

internet capability simultaneously. Third, this is a unified graphical user interface in

which processes run simultaneously or concurrently which in essence saves time. Also,

the user can roam freely between the windows to access his or her infonnation. While

waiting for something to load or download, the user can do something else useful. There

is very little typing to do in this interface if one prefers it. The user should only have to

type if Xtenn windows are used and if he or she wants to access a different web page

other than the ones provided by the interface. MWI provides users with one web page in

which the user can access other pages by links. The links provided by this web page are

the ones that were mostly encountered on the net. Becau e this is a multiple window

interface to access internet tools, it facilitates high resource utilization.

1.1 Overview

The use of Graphical User Interfaces (GUls) is becoming the trend for loday's

developers. They are becoming the "dominant model for the user interface of

microcomputer operating systems [16]". The command-driven and text-based interfaces

are no longer the norm. "Command interfaces are thought to be too complex for

infrequent end users, so a menu-driven interface may be substituted on end user systems

[41]". Developers today want to provide users with an interface that is easier to use and

to understand. They want an interface that is also more efficient and sound rather than a

complex, difficult and unmanageable interface. According to [17], understanding what a

user interface is and how to build one are the two sides to the user interface problem.

Some users may face this problem while trying to create an application that satisfie their

needs. User-Interface Management Systems (UIMS) and User Interface Development

Environments (UIDE) aim to ease the burden of interface building [13][35]. Several

UIMS and UIDEs are described in [3], [7], [13] and [35]. If developers are to develop a

graphical user interface that is event-driven, it would satisfy most users in achieving their

tasks. Building this type of interface would make constructing an interface easy to

maintain and to develop [17]. Typing commands as well as learning commands can be

tedious and difficult. Therefore, a GUI is an attempt to eliminate "typed commands" by

allowing users to point at icons on the screen and click with a mouse to direct the

computer to perform different tasks. This makes it easy for a beginner who may find it

2

hard to learn all the commands needed to use a command-driven interface. AI 0, it can

be useful to an expert who might have otherwise forgotten a command.

According to [11], both the Apple Macintosh and Microsoft Windows proved that

GUIs are easy to use and powerful. The definition for GUTs may be defined differently in

some aspects by users or corporations, but essentially the whole concept used is similar

by all concerned. In [38], a GUI is defined as one that "runs in computer graphics mode",

A "true GUr', according to Microsoft, is one that offers a WYSIWYG (What You See Is

What You Get) screen for output, "graphically oriented" using icons, "looks good" and is

"easy to work with", "manipulates on-screen elements", and offers widgets such as

menus, window objects, and "dialog controls [38]".

Internet tools are used to find, retrieve or download information or resources available

world-wide. Some internet tools used to achieve these tasks are the World Wide Web,

File Transfer Protocol, Remote Login and Telnet. In [39], the author defines these

internet tools and briefly guides the user through the internet and tells the user how to use

each one of the tools. Users using these internet tools to accomplish such tasks find that

retrieving or downloading information can become time consuming and could be more

efficient in accessing information. A solution to this problem would be to provide a tool

that allows simultaneous access of internet tools. Such a tool would allow users to obtain

or retrieve information more efficiently and at a faster rate on the average. An approach

would be to design a windows application that would accomplish this task. In [17], the

author discusses how to design GUT applications that consist of factors that make a good

interface. The factors stated in [17] are I) having a consistent and strong interface so as

3

not to perplex and astonish the user, and 2) making the interface friendly by giving good

"feedback".

Thjs thesis is concerned with the design and implementation of A Multiple-Windows

GUI to support simultaneous access to internet tools. A multiple-windows interface

(MWn would allow a point and click access method for internet tools. It is a u er

interface, constructed to be event-driven by mouse clicks. Even though the interface will

not speed up a specific task, by providing a means of doing several tasks in parallel, it

supports overall efficiency. Factors that need to be considered in constructing such a user

interface would be 1) the tools used in building the interface and its efficiency as to how

fast one can access information via the interface, 2) programming language and the

efficiency of that language in programming specific tasks needed in the interface, 3) the

difficulty level of programming in constructing the interface, 4) user-friendly

environment, and 5) performance.

The MWI is different from present interface tools that appear to be similar. The MWI

will be 1) a non-commercialized product, 2) a multiple window, multitasking interface in

performing tasks in parallel and 3) an interface designed for X-Windows which requires

no initial interface related setup for accessing windows or internet tools.

MWI is constructed under the UNIX environment on the Sequent system. It is

implemented in a shared memory multiprocessor machine. MWI is designed, constructed

and programmed to access multiple windows and tasks at the click of a mouse. MWI will

allow users to transfer between windows while waiting for information, therefore the user

always has an option of doing some other task. MWI has a unique look as well as easy to

follow menu options. Lastly, MWI has an excellent help menu on all objects and tasks in

4

c

the interface. We provide a survey of work similar to MWl in Section 4.1. The next

chapter is devoted to GUI development tools.

This thesis is organized into five chapters and two appendices. In Chapter 2, overall

views and descriptions of development tools are given along with how the interface

works using these tools. In Chapter 3, emphasis is placed on the internet tools and how

this interface is designed to access these tools. Chapter 4 focuses on the MWI design,

Chapter 5 is the concluding chapter of this thesis. MWI is compared to other graphical

user interfaces (GUls) that are currently available in the public domain, and a section of

the concluding chapter presents further research work and development that will enhance

the MWI making it more efficient and more universal to use. Appendix I will focus on

the code that was used to implement the internet tools section of MWr. Appendix II

contains a glossary.

5

CHAPTER 2

DEVELOPMENT TOOLS

MWI is developed using GUI creation tools, and in this chapter, several tools are

reviewed and described.

2.1 Existing Tools

There are several tools or applications that are available for constructing graphical user

interfaces (GUD. User interfaces can be built using Microsoft Windows, SQL 3.0, Motif,

Visual Basic, XF, the X toolkit, the Tk toolkit and others. The spectrum of tools vary

from high-level programming languages to special purpose packages. Before developing,

designing and programming a GUI, the tools used in constructing the interface should be

examined. The tools used should make the interface easy to build, to maintain and to

extend. The user should be able to build a simple interface using the tool without

difficulty or confusion. Also, the user should be able to maintain the interface by making

modifications or alterations to the original interface without any complications. In this

thesis, a tool is considered efficient if it helps to reduce the development time. There are

several factors that contribute to efficiency:]) template of widgets that can be configured

with mouse clicks only; 2) little or no programming on the part of the user is required; 3)

in depth knowledge of any programming language is not required. Being proficient in a

6

certain language in order to construct an interface does not make it u er-friendly. The

overall quality of the finished interface is that it should be easy to use and to understand,

well-designed and fast in accessing information [21][38].

In [36], the authors discuss the creation of GUIs using 3GLs (Third-Generation

Languages) and OOP (Object-Oriented Programming) languages. 3GLs are languages

such as Fortran, Pascal, and C. An example of an OOP language is C++. According to

the authors in [36], the code for a simple windows application using ClWindows API

(Application Programming Interface) programming was complex and difficult for

mainframe developers. Therefore, using this software to construct GUIs would require

experienced C programmers, but this method would only be easy for them. However,

users not fluent in C or other languages who want to build windows applications would

find a particular software method that generates the code for the interface useful.

Methods like this will generate the code for the user by a simple mouse click on buttons,

icons, menus or other objects. Some methods that are designed to do this are Microsoft

Windows, Visual Basic, Digitalk, Powerbuilder 3.0 and XF.

Microsoft Windows Applications creates multiple windows and one or more

applications may be displayed concurrently on the screen. A user can create this

application by clicking on objects in the application. Another application which provides

similar features is Motif [22]. Although Motif and other applications are similar in

features and characteristics, there are distinct differences that make each application

umque. For instance, "there are pronounced differences between Microsoft's GUI

standard and the GU} standards of Motif and other applications on the Unix and

VAX!VMS platform [36]". Using Microsoft Windows one can develop a PC-based

7

application, because it "is a multitasking, object-oriented, graphically oriented platform,

users are presented with a simple and consistent interface that allows them to interact

with an application using graphical constructs as opposed to operating system commands

[36]". Therefore, the users can create an application easily by clicking on boxes, buttons,

pulldown menus and other widgets without the task of programming. This application

should be considered when wanting to construct an interface because it satisfies most of

the requirements stated in the introduction. On the other hand, aUI development with

Motif is difficult because the process can be frustrating [9]. Some frustrations that arise

using Motif are that Motif has no help infonnation, a lot of useful widgets are not part of

the library, there is a lack of widgets, and the awkwardness of Motif API [9]. This

method would not be a good idea to use in building an application based on the degree of

difficulty and frustration if a Windows type tool is available.

The Macintosh aUI has three different tools to use in order to create a aUI. The

Finder, is a "file management program that consists of a menu bar that manages files

using icons and windows [34]". The User Interface Toolbox allows developers to create

text-entry windows and use dialog boxes to browse directories. The Quickdraw handles

windows and menus. In the article [34], the author does not discuss how each of these

elements were implemented, but how they are used and their purpose in creating the GUI.

Also in the same article, the developers that the author talks about in creating the

Macintosh aUI using these elements are the Apple developers who seem to have

experience. Although the Macintosh Finder is easy to use, the elements involved in

creating this package would seem complicated for beginners trying to develop a similar

8

•

GUI [34]. Therefore, compared to other methods, using Macintosh would pose a high

level of difficulty.

X-Windows, which runs under the Unix environment provides a user-friendly

interface with no pre-defined windows. The toolkit used is the X-toolkit which u es a

Motif widget set built on Xlib ("X-library is a C language interface to the X Window

System, which includes numerous data types, constant definitions, macros and about 500

C library routines" [43]). Therefore, "programmers can directly program in Xlib,

however it requires a lot of redundant code to maintain the conventions [14]". Although

using X-Windows along with the X toolkit seems sound and convenient to use,

devdopers unfamiliar with Xlib programming will find it difficult. Coding is not

required if widgets are used, but at some point a user may have to program a specific task

in the interface. X-Windows may provide an efficient interface, but one of the main goals

of interface development is that the user must be comfortable overall using the toolkit to

build the interface and handle the programming language or tools involved as well.

Lastly, a toolkit that seems to answer all the questions and concerns in constructing an

interface would be the Tk toolkit used along with the Tel programming language and the

XF application. Tk creates all kinds of widgets including menus, icons, buttons and other

objects. Tk is a better choice than the tools used by Microsoft Windows and Macintosh,

Motif, and the X toolkit because not only is it easy to use and the programming is for

beginners, but it also provides a user-friendly and efficient interface that can be used to

create any interface [29).

There is no toolkit or application that is perfect or that will satisfy everyone.

However, a toolkit that 1) makes the interface easy to construct and maintain, 2) has

9

limited programming or easy to learn programming tool , 3) is efficient and 4) i user

friendly is a better choice than the other toolkits. In comparison, the Tk toolkit using Tel

as the programming language and XF as the interface development tool ranks high among

the tools that were previously reviewed. Tk and Tel can be used to build an interface

without the XF application, however, if the XF application is not used then the Tk toolkit

along with Tel language maybe grouped in the category with the other toolkits and

applications because some users may have a high degree of difficulty. Users will have

the tasks of programming the entire interface and will need to know more than just the

basics of the Tel language and Tk toolkit. Clicking on buttons, menus and other widgets

without having to go through layers of menus to select a widget, the color or

configuration of templates, provides users with an efficient interface in terms of

development time compared to other methods. Use of programming is only needed to

construct new widgets or to provide specific commands or tasks used in interacting with

the interface. Step by step instructions, code and graphics are provided by the Tk toolkit,

Tc1language and the XF application. In the next four sections, we review Tc1fTk, WISH,

XF and Expect. These four development tools were used to implement MWI.

2.2 TcVfk

Tel stands for "tool command language" and is a simple scripting language for

controlling and extending applications. Its interpreter is a library of C procedures that can

be easily incorporated into applications and each application can extend the core Tel

features with additional commands for that application [29]. Therefore, one can write Tel

10

code within a C program. Benefits in using Tel are rapid development, user convenience

and including different library packages.

Tk, a toolkit for the X-Window System [29], is a Motif-like widget set that gives

access to the widgets via Tel commands [7]. This toolkit "allows a user to create GUIs

for the X Window System by writing Tel scripts [29)". Tk creates all kinds of widgets

including menus, icons, buttons and other objects. Tk is very easy to use. Step by step

examples of how to build and construct menus, icons and other widgets and the code for

them are show in [29]. These step by step examples are very helpful in constructing

simple to more complex OUIs. Therefore, beginners would have no problem achieving

their goal using this toolkit.

2.3 WISH

WISH, a windowing shell, is a program that consists of Tel and Tk. WISH reads

commands from the command-line or from a file and displays the output to the screen. If

one prefers the command-line option then one would type Tel commands at the

command-line. WISH then will interpret these Tcl commands and build an interface

according to the specification provided by the user. However, if the file option is

preferred, WISH will load the specified file which has to be in the TcJITk language.

Figure 1 illustrates the command-line option using WISH which specifies an interface.

Figure 2 is the resulting interface created by WISH using this method.

After MWI was constructed, the interface was tested using WISH. Initially, WISH

was used also in debugging code for new commands and procedures for tasks/events.

II

WISH is also used in connection with XF. Once a GUI is created in XF one can load it in

WISH instead of in XF. However, adding new commands and procedures at the

command-line in WISH is not suggested for beginners and programmers with little

knowledge of Tclffk (47}. WISH is a good tool in developing interfaces.

Figure 1. Command-line option using WISH.

12

•

; This file is loaded into the text window because it is the file specified in the
i program. This textbox could also be used for other purposes. It can be used to
~ type in text or display text or display graphics.

i

:' The II Hello II button demonstrates the use of a procedure which prints out a
i essage when clicked upon. The IIEXIT" button demonstrates the use of a command.
! When one clicks on this button, the GUI will exit. The last Widget, a textbox,
; loads a local file called IIREAD" which has this text associated with it. The
: procedure contains the code involved to load this file and display it in this

textbox widget.

Figure 2. GUI using WISH at command-Une option.

13

-

2.4 XF

XF played an important role in the development of MWI. Therefore a very detailed

description of XF is presented in this section.

XF is an integrated programming environment that supports the development of GUIs

[7]. XF is a user-friendly tool in which one could easily design and implement a

and menus provided by XF can be used to create well-structured interfaces. Refer to

graphical user interface. In fact, XF is a UIDE for developing GUis. Different widgets

Comblnedl
Procedure_
~ldget_1

autoProc_d

Templat._.Additional
TkEm_oe_
TkGS
XFForm

Standard

Button
Canv._
Ch_oekbutton
Entry

Lab_I
Llatbox
lVIenu
lVIenubutton
lVIessag_
RadloDutton

l.Add vvltn de1'_ul t-I .lln ..__rt "t It_. ICon.,lgure _nd _dd I
I .. 14'11111111 III til III tIll 11111 II' '11111' III 11'1'11 I I I I I I '1111 I 11'1" I I t I I" ,., 1'" I I ,1'1 Ii., I t I I" I i I I I i I I I I' I f i I I I I I I j I' i I til j I

Figure 3. XF tools.

Figure 3 for the tools XF provides for interface development. XF constructs widgets such

as buttons, menus, lists, etc. with mouse clicks. Figure 4 illustrates a Window created

using XF. The example GUr in Figure 4 contains 1) a button that displays a message

when clicked upon, 2) a menubutton containing a menu of options that displays messages

and clears the textbox, and 3) a text widget containing text. All of these widgets were

created by mouse-clicks. This tool allows easy manipulation of existing interfaces

constructed under XF as well. XF assists in the creation of interfaces by relieving the

14

developer of the task of coding or programming to great extent. The code is

automatically created once a widget is selected and the action i invoked by coding

main window of XF and double-click the leftmost mouse button on "menu", This

leftmost mouse button on "button" to create a button widget. Next, double-click the

Tempiat..

Comblnldl
Procedural
Wldgel.,
autoProeedureli

Slandard Additional

Frame 11<EmlCl
Lib" TkGS
L111bolC XFForm
Menu
Menubul10n
Message
Rldiobullon

nl.-1lng rllCt...donl

Current wldglt pith: .

Current widget typl: TIlll

Figure 4. Example GVI.

jAdd with d...ultl' t/DI.-1 1Iti @Onflgurl Ind Iddl

t6lt6

by writing Tel code. For example, to create the sample GUI in Figure 4, one would type

in "xf' at the prompt to start the application. To begin, one would double-click the

middle mouse button in an empty space in the work section of XF, in this case,

leftmost mouse button on "menubutton" to create a menubutton widget. After in erting

the menubutton widget, double-click the middle mouse button on the widget, move to the

are created in the root window. To set the current widget path one would double-click the

commands. In coding such commands, one can create their own events or special tasks

accomplishes the creation of a menu of options. To create the text widget, set the

"current widget path" located in the main window of XF to ".". This means that widgets

underneath the menubutton, or double-click in the "current widget path" space with the

15

middle mouse button until "." is displayed. If one is inserting a widget and the "current

widget path" is not set to root then one may accidentally insert a widget within a widget.

This causes an error if the widget cannot include another widget. For example, a menu or

menubutton widget can contain other menu or button widgets, but a button widget cannot

contain another button widget; i.e. button on top of a button. All the widgets are

contained in the "Standard" column in the main window of XF. However. one could use

a template in the "Templates" column to modify/create new widgets. After inserting the

widgets, the action/event behind the widget has to be implemented. One can either save

the GUI and edit the code or do it in XF by selecting "Commands" and/or "Procedures"

from the "Programming" menu in the main window of XF. One could configure the

widgets before or after coding the tasks or events by double-clicking on the widget with

the rightmost mouse button and specifying the requirements. or one can select

"Parameters" from the "Configuration" menu in the main window of XF. The widgets in

Figure 4 were given the parameters shown in Figures 5a. 5b, 5c. and 5d respectively. The

results are shown in Figure 6. While specifying the parameters, if one chooses to give the

widget a command at that time then one would specify that command in the "Command"

box in the parameter window. The procedure for menu option B in the menubutton

widget is shown in Figure 7 as an example. Procedures, events. commands and widgets

can also be written in the C programming language. However, in this case all procedures,

events, commands and widgets were created by XF and/or Tcl code. By one creating his

or her own events or tasks, one could construct and design a very good interface. Once

the interface is designed and saved as a file, it can also be edited or modified to produce

new code for widgets, commands and procedures. For the example QUI in Figure 4, one

16

would go to the "File" menu in the main window of XF using the mouse, elect "Save

As", specify the name of the me in the "Filename" space provided and then exit XF by

selecting the "Quit" option in this menu. To edit the file for making modifications, such

as creating new commands, one would use an editor in which he/she is already familiar.

17

Button arametera :.buttonO

'WIdget path: .

t

Geometry

_ Apply permanently

Figure 5a. Parameters for "button" widget.

Text varlabl e:
........._---------------

Command:

S 12e: II=!;C:=====~~;C:=====:::Jo

Name: buttonO

Symbolic name: :::======================Background:

~===================Bitmap:
:=::;===============::::::===::::;::::==:::Font: -Adobe-H elvetlca-Bold- R-N

Foreground:

:=;=======================Label:
:=;:;:;:;:::;:;;;:;:::=====::;::;:::;:=:;=:;::::;::======

pu.ts stdou.t "Hello Worldl"

--~----------------------~---~---
Menubutton parameters:.menubutton4

Y'r!ldget path: .
Name: menubutton4

Symbolic name:

Background: White

Bitmap:

Font: -Adobe-H elvetlca-Bold- R-N 4

Foreground: Blue

Label: A rnenubutton

Name of menu: . rnenubutton4. rn

VV'.ldth • Height
Size:

0 10
Text variable:

unaerllne
Underline:

0

Menu I Special I General I Geometry I Binding

I "1"1~1~1111"1~1"11~1~1~1~'~"IIIII~IIIII~I"II~'~'~I~'~11'1~':~~I:I~I:~I~I~I~'I'IIII~"III~':'~':='~II"'ltlll

Figure 5b. Parameters for ''menubutton'' widget.

18

-

Cancel

Binding

CBs~d., down

Menu:

Menu al'1lmet.a:.menubutton4.m

Widget path: .menubutton4

<> Active <> DI.abled

Command:

White

Name: m

Small

Figure Sc. Parameters for "menu" options.

Insert

OK

puts stdout "This i. a simpJ.e OOI:

~~c~======~~~~----~oIF. <command> B
<command> C

arameters:. teMt6

VVldget path: .

BindingGeometry

Figure Sd. Parameters for "text" widget.

s
Border 'W'Idth: ~~~==================:::::l

t

Size: ~~¢=======~~=~=======::J78

,_ EMport selectlonl

10 Set grldl

Font: "'-Courler-Medlurn-R-Norrnal-"'-120

Foreground: Black
:=;::::=:;:;=;::==;:::::;::=;;:::=:=::=;:==:::::;=:::;:=::::;;;::::;:=

Name: teMt6

Symbolic name: :=:=======================
Background:

~;::::;:::;::;::;::::==============================

VVrap: 10 None'.

V scroll command: NoFunctlon

19

This is a textbox in which one can type in text. A command or procedure can
be written so that when one types in certain words or text. an event happens.
One can also display an existin9 file here.

Figure 6. Final GUI.

R.nalTl.

-<> EMClud.

Figure 7. Example procedure for menu option "8" in menubutton.

There are severa] other tools in XF for constructing very simple to more complex

interfaces. XF has other uses as well. However, in the example GUll. one would not need

all of the tools, only those specified for the example. For more information on other tools

and uses of XF, refer to [7].

20

J,

XF constructs interactive interfaces rapidly because the user accesses all widgets from

a list [7]. This makes development easy and quick for beginners and user who want an

efficient interface done in little time. These benefits make XF flexible and less time

consuming in development. The user can create an easy or more complex interface by

adding more capabilities. In the instance of this thesis, I have added events to the

interface by adding Expect code. Expect is explained in further details in the next

section. According to [7], using XF will not only "result in better code" but wiJl also

allow users to develop an interface in a short period of time with little help from the

tutorial. In [7] the author dicusses the benefits from using XF such as fun, flexibility,

support for "group development and standard interfaces" and "immediate access to the

resulting interface" [7].

2.5 Expect

Expect is a program that is used to control interactive programs and can be written in

C, C++ or Tel [19]. Expect can do what any shell script does, but mainly is used for

automating programs. Expect is easy to use and is used in real applications [19]. Expect

can be combined with Tk to produce Expectk that allows one to build X applications. As

a general purpose language, Ex.pect can be called a communicating script because it is

specifically designed to interact with interactive programs [19]. Figure 8 shows an

example of the user communicating with an interactive process via Expect. Expect is

also useful for spawning processes, handling multiple processes simultaneously,

interacting with multiple processes and adding

21

'I

(1) User Command

(4) End Resull

TIT

F

Figure 8. Expectk process.

extensions. In creating the MWI, Expectk code was mainly used in creating the event of

"Window" and the accessing of "Internet Tools". This code was used to implement these

tasks because the user would use the window like a shell expecting a prompt and a

response in return and access the internet tools simultaneously while interacting with

MWI. Therefore, communication from the interface by the window via Expectk would

allow this process to happen along with the technique of automating internet tools and

displaying output to the user in the window provided. For example, if one would open a

window in the interface then the Expectk script sends a command to the interface, and

vice versa, to execute the task/event. This tool made it efficient in providing the

necessary elements to complete specific tasks in the MWI.

22

CHAPTER 3

INTERNET TOOLS

Internet tools are used by people who want to obtain infonnation or resources. These

tools can also be used for other purposes. The Internet Tools mentioned in this thesis, the

World Wide Web (WWW or the Web), File Transfer Protocol (FTP), Remote Login

(r1ogin) and telnet can be accessed simultaneously by any user of MWI. These tools are

discussed in the next sections.

3.1 World Wide Web (WWW)

The WWW was developed around 1989 at CERN (Conseil Europeen pour la

Recherche Nucleaire or European Organization for Nuclear Research) at the European

Laboratory for Particle Physics [44] by Tim Berners-Lee and Robert Cailliau [37][45].

The WWW has become the "fastest growing part of the Internet [2]". The Web uses two

protocols as a means of obtaining resources and data. First, Hypertext Transfer Protocol

(HTTP) is a client-server protocol where the client is a WWW browser making a request

to the server for information. The WWW server responds to the request by transferring

the information requested back to the client. Second, Hypertext Markup Language

(HTML) "files are text files containing the elements of the documents [5]". HTML files

contain tags which denote the beginning or end of an element such as a paragraph or

23

header. Figure 9, taken from [5], illustrates this example. To access a ite vi.a the Web,

one would give a Universal Resource Locator CURL) as described in [37] or Uniform

Resource Locator CURL) described in [39].

<HTML>
<HEAD>
<TITLE>example ofbasic HTML</TITLE>
</HEAD>
<BODY>
<HI> Example ofbasic HTML document<IHI>
<HR>
<P> The format in which this HTML document is displayed

depends on the browser used to view it. <IP>
<HR>
<ADDRESS>djb I djb@acm.org<IADDRESS>
<IBODY>
<!HTML>

Figure 9. An Example HTML File taken from [5].

This locator opens the address specified in the URL. Figure 10, taken from [39] is the

fonnat used for accessing site addresses for different protocols. These protocols include

http, gopher, ftp, news and mail for their respecti ve servers. The format for the e

protocols should be in URL form such that "URL addresses should be understood as

follows: <protoco1>:II<computer Internet address>:port number/file or directory> [39]".

http://www.injorms.org/
gopher://sils. umich. edu: J704/
news:sci.op-research

mailto:msodhi@umich.edu

Figure 10. URLs for different protocols taken from [39].

People are using the web for many different purposes. Using the Web is very easy and

it is also universal. For this reason, and because of its growth, the Web has "become

synonymous with the Internet [39]". The WWW "is a technology that allows you to

weave related infonnation on the Internet into hypertext documents [39]". Therefore, one

24

could easily access information or resources on the internet by clicking on hypertext

.links. These links are created by using HTML which will bring about Web brow er .

Web browsers are programs that read Hypertext Markup Language (HTML) files, access

newsgroups and web servers, have e-mail capabilities, find information quickly and

"make information quickly and inexpensively available worldwide [39]". Some

examples of web browsers are Netscape, Mosaic, and Lynx. Most web browsers display

both in text-only and graphics. However, Lynx is a text-only browser.

3.2 File Transfer Protocol (FTP)

FTP and anonymous FfP are "used for both a communication protocol (file transfer

protocol)" and for transferring files from remote computers to one's local computer [39].

For anonymous FTP, one would not have to have an account (userid and password) on a

computer but an.onymous access instead to transfer files between machines. Two ways to

access ftp sites are by web browsers and graphical ftp programs. Using these options

makes it easy because downloading or viewing files are done by point and click access,

Also, by using these two options, one can automatically decompress and view, retrieve

and save files. Basic commands for retrieving and storing files are "get filename" and

"put filename" respectively. FTP also has e-mail capabilities called Ftpmail. Ftpmail "is

a special type of e-mail server" [39] that sends archived files to a user. The basic five

steps of FTP according to [26] are "connect, log in, change directories, grab the file, get

out". Figure 11, taken from [26], shows an example of an FTP session using these basic

steps.

25

Stept
home> rtp wuarchive.wustl.edu
Connected to wuarchive.wustl.edu
220 wuarchive.wustJ.edu FTP server...ready.

Step 2
Name(wuarchive.wustJ.edu:align):anonymous (wg in as "anonymous. ")
331 Guest login ok, send your complete e-mail address as password.
Password: align@ (You won't see what you type,

but enter your e-mail address here.)
230 Guest login ok, access restrictions apply.

Step 3
rtp> cd mirrorslmsdosJdatabase
250 CWD command successful.

(Change 10 appropriate directory.)

Step 4
rtp> binary (SetfiLe type to binary ijnecessary.)
200 Type set to I.
rtp> get roadmile.zip mileage.zip (Retrieve file and rename to mileage. zip)
200 PORT command successful.
150 Opening BINARY mode data connection tor roadmile.zip (55711 bytes).
226 Transfer complete.
local: roadmile.zip remote: roadmile.zip
55711 bytes received in 67 seconds (0.81 Kbytesls)

Figure 11. Sample FTP session taken from [26].

Step 5
ftp> quit
221 Goodbye.
home>

(Disconnect and return home.)

')

26

3.3 Telnet

Telnet is a tool that allows one to login to remote computers and obtain infonnation

that is located at the remote site. One could login remotely using a user id and password.

However, some sites allow public access. One would have to know the addres of the

computer in order to complete a telnet command. An example in Figure 12, taken from

host> telnet babel.uab.es
Trying 158.109.0.14...
Connected to babel.uab.es.
Escape character is '"]'.
Connecting...
Connection #1 established to BABEL.DAB.ES
Ordinador BABEL de les
Biblioteques UAB. Entreu HELLO UAB.BIB:

Figure 12. Telneting to the Autonomous University of Barcelona [27].

[27], illustrates a telnet session. This example shows a telnet to the Autonomous

University of Barcelona by command-line instructions. There are also other ways to

telnet. However, in this thesis,. the example shown in Figure 12 is appropriate.

3.4 Remote Login (rlogin)

The rlogin command is generally the same as telnet. However, one could set up

aliases to make both the connection to the host and to log in, and "the usemame at the

remote computer can be sent from the command-line [27]". This makes rlogin an easier

choice than telnet. An example rlogin session is given in Figure 13.

27

•

host> rlogin stinfo.hq.eso.org -1 stinfo
Last login: Sat Sep 25 04:40:48 from 153.90.2.2
SunOS Release 4.1.3(MC3) #1: Tue Jun 15 14:32:45 MET DST 1993

»Welcome to the STINFO Bulletin Board
(Revised, June 1993)

» Enter your E-mail address: align@montana.edu

Please choose a bulletin board:
HST status reports (h)
European HST news (e)
Quit (q)
Enter h, e, or q>

Figure 13. Using Rlogin to the Hubble Space Telescope Daily Report [22].

28

CHAPTER 4

MULTIPLE WINDOWS INTERFACE (MWI)

In the previous chapters we described the tools used in the development of MWI and

the target of MWI. The focus of this chapter is MWI. The underlying model and

software architecture are the topics of this chapter.

4.1 Existing GUIs

There are several aUIs that support internet applications. Multithreading and multiple

documents are two features that distinguish some of these applications. There are few

tools that provide these techniques because most applications either do one or the other or

the application does not provide simultaneous access between internet tools. A few

applications that provide the techniques are Microsoft Windows [36][38), X-Windows

[14), and Netscape Navigator [8)[31). Other applications that are similar to these but do

not provide the technique described above are discussed in [23) and [24). The

applications discussed are either single purpose applications or applications that do not

provide simultaneous access to internet tools.

Ventanna Mosaic is a browser that supports multiple documents but not multithreaded

downloads [8). Another application, SPRY Mosaic, was developed in 1989 by SPRY

29

1"

;).

Incorporated, a seattle-based company "known for its TCPIIP stack" [33]. SPRY was

founded in 1989 and "was acquired by CompuServe Incorporated in 1995" [46]. SPRY i

now called CompuServes Internet Division. SPRY Mosaic contains a network file

manager that "allows multiple active FrP sessions open for managing remote drives [8]".

SPRY Gopher, allows the viewing of gopher sites in multiple windows. Although SPRY

contains the internet tools, mail, news and gopher and the facility for viewing mail and

gopher sites by multiple windows, SPRY does not access different internet tools

simultaneously. Another application that accesses internet tool applications is MultiNet

for Windows. Although MultiNet for Windows includes internet tools and multiple

telnet sessions that can be open at one time, again, there is no simultaneous access

between the internet tools provided. The Netscape Navigator browser supports not only

multiple documents, but can "open multiple windows on one machine" [8] and is

considered to be multitasking. However, Netscape does not provide parallelism in

accessing internet tools. Netscape does, however, "perform multiple simultaneous

downloads [18]". What Netscape does not provide is an ealiY way to telnet and so "in

order to access the information stored on Telnet resources," one will "need a Telnet and a

3270 helper application [31)". This means that one's computer is turned into a dumb

terminal (VT I00) that allows text-only access to mainframe data. To accomplish this,

one would have to first install and configure the "helper" applications. Therefore,

Netscape is not applicable and not as efficient as the MWI. Another application, Internet

In A Box "is an all-inclusive multimedia Windows interface providing a suite of Internet

applications including E-mail, newsgroups, Telnet, Gopher, and Mosaic [32]". Although

this application supports the above internet applications and "works with both PCs and

30

t".

local area networks" [32], the internet applications can not be accessed. simultaneou Iy

and the internet tool FrP is "lacking" in some aspects [30]. Lastly, an application that

has the "ability to manage severa] concurrent windows each having their own window to

its own virtual PC" [38], is the Windows 386 version. This application is multitasking,

allows multiple windows and allows programs to run concurrently but it is complex and

is DOS-based.

4.2 MWI Design
4.2.1 Constructing the Interface

The MWI was constructed using the development tools discussed in chapter 2. The

MWI is made up of widgets. icons, menus, buttons, and labels. Each widget and icon in

the interface provides the user with some action whether it is displaying a message,

providing some specific information, providing help or accessing one of the internet

tools. The primary objective of the interface as mentioned in the introduction is to assist

the user to access internet tools concurrently. The main interface, shown in Figure 14,

provides the interconnection for the set of functions a user may access. The button,

Internet Tools, at the bottom of this window provides the user with a smaller window

containing a menu and some information to get him/her started on internet applications.

This window is shown in Figure 1S. From this window, a user can choose an item from

the menu which contains other items. These menu items include internet tools that the

user can access. Once the user clicks on the menu item and drags the cursor to the

submenu of that particular internet tool, the action will access an internet tool or perform

some other action. An example of the next level is shown in Figure 16. In this case the

user has chosen the Web. While accessing an internet tool, the main menu window will

31

;>..

stay active on the screen until the user has exited this window. Thi featur allow a u er

to select other options to access different internet tools. The main menu window should

be exited after a user has finished using MWI. There is a miscellaneous menu option in

the main menu window in which the user can choose to quit from its submenu. The main

menu of the "Internet Tools" window is currently the most important part of the interface

because it allows access to the internet tools provided. If one chooses, accessing more

than one tool or task in MWI can also be accomplished. An example is shown in Figure

17. In this figure, one would access the WWW from the internet tools menu and click on

the button "Window" from the main window in MWI.

II "" ,,,.,,""_.,,',,.~,~~,~,:,~..~~"'~~~,~,~,,,.,,",,.,'", "''',..'"".,'''~" ..,,, ,,',.,,'',..,'',.. ,, , ~,~,~,~,:,~,~,~,~,:,~,~,~.."",.•"•.•.".w" ..,••, ~,,~,~,~.~.:,,,.

Figure 14. Main Window.

32

]..
')

.

Figure 15. Internet Tools Menu.

;)
'4
)

..
1')

I;1
:>

OrTlona M. Brillco Horn. a •

!\-talUrn ediIL

~C!.CI!1.P'_~t.~!'"_~l~!,~~_1.!'!"9!"!"!'!~9!'_

~~II!J..P'_~t.~!'"_~<;.i~!'~~_

Of£Jce: 314 MaJ:h Science..
Telephone: (405) 744-8518
FAX: (405) 744-9097
Eme.ll: rornonano@c •.otate.edu

The Internet

Romona.M. Brl..co
Computer Selenee Department
218 MlUh Seleneeto
OkJahoma StlUe Unlver"lty
Still'W'lLter. a klahon>a.
USA

ITltle:1 I Romona M. Br,aco Homepag_

IURL: I lJ:1tt p : / /_. ca. okatate. edu/-romon_m/

Figure 16. Result of accessing the WWW in MWI.

33

Clone New CloseHome Reload Opan...

Office: 314 MlUh SCience.
Telephone: (405) 744-8518
FAX: (405) 7.44-9097
Ema.ll: romona.m.Oa.c•.oka:tate.edu

~":I:.l~~~!>f.~'!~~!!.

5==_c!'J!l~'!t~F_~~l~!,~ J!'J5"!1"lIl!-lJ9!'_

- W.1oom. to ~h. OONET archive.
230- A serv~o. or OUN~T T.ehno~oQ~e. Xnc_ ~.11. Churoh. VirQinia
230- ~or ~n~orm.~~on abou~ OONET~ ca~~ +1 703 206 5600_ or ••• the ti1••
230- in /uun.e-~n~o
230-
~5g: Ace ••• i • • ~1ow.d .11 day. Loo.~ tLme i. Fri Sep 27 13:56:12 199

230- A11 tr.an.r.r. are 109ged ~ith your ho.t name and .m.i~ .ddr•••.
~~g: If you don't 1~ke thi. po1ioy~ d~.oonn.c~ nowt

~5g: ~;.ho(:)P;~ ~~;·~ir~~·~~:;&~~.~·~~·y~~~r~~~.:~;~:~T~i:'virr ~~~~Qo~r
~~g: the .i.nrorm.~1on.1. m•••• .q•• vh.1.oh. may b. con:ru • .1.no your ~tp cJ..:t..nt.

230----------- ---------- ---------- ---------- ---------- ---- _230-Arch1v. upgrad•• ~n pro9r••• 1 s •• l~n~o/README.work ~or detai1.

230----------- ---------- ---------- ---------- ---------- ----------230-
230-PJ.•••• r •• d the 1:.:1.1. I in~o IR!:ADHE., :t'tp
230- it wa. 1 ••t modi~i.d on Pr.1. Har 29 ~6:26:09 1996 - 182 dey••~o

230-P~•• a. r.ed ~h~ ~il ~/~"~~/~R~p.~.A~n~p.~.~~~~~~~~~~~~~~~~~
~~8-Gu;;tW~~Q~~1 r NC c ••le 2. b ROfnon. r1.co om _.
re > ~.,~ Annol_ ~ Htl'fp

Figure 17. The result of accessing WWW and a Window.

This example shows how multiple actions are perfonned simultaneously in MWI. The

"Window" is another important part of the interface because like an Xtenn, a user can

type commands in this window and also see the displayed results. In order to access this

window the user will have to click on the button "Window" from MWI. The other ..
buttons and menus provided in this interface are for providing help and entertainment to •

1

the user. They include answers to questions about buttons, menus, saving files, welcome

messages and entertainment. Together, these elements achieve the design objectives of

theMWI.

4.2.2 The Model

There are several computing models for user interaction used in software

development. Currently, a very popular example is the client-server model [12]. In the

34

client-server model, software is organized as a client or a erver. Client makes requests

and server performs the tasks. Clients and servers are independent objects using the

request-reply communication scheme. Another model is the event-driven computing

model [10]. In this case objects respond to events. Graphics packages such as SRGP

(Simple Raster Graphics Package) [10] are based on this model. In this thesis a new

model is developed and used. It is called an active automaton model (AAM). The model

is described below:

In AAM, software is organized as self-contained objects. All objects are capable of

executing concurrently. A property named focus is associated with each object. An

active-object is defined as a pair (object, focus). A focus can be on or off. An event is a

message sent to an object. An event can change the focus of an object. An active

automaton is defined as a state machine where active objects are states and events are

input. The transition function defines a new state depending on the current state and the

current event. An example is shown in Figure 18. In figure 18, when the mouse is in

window 1, its focus is on and the states are (window), on) and (window 2, off). When

the mouse moves to window 2, the states change to (window I, off) and (window 2, on).

All objects are executing concurrently. An event can effect changes in more than one

state. The difference between the event-driven model and the AAM is that in the event-

driven model applications wait for an event to occur, and in AAM all applications run

concurrently.

35

, I

I.....,
t
Ii
~..

7 •

mouse in Window 2

mouse in Window 1

Figure 18. An Active Automaton.

4.2.3 The Design

The user interface designed in this thesis, the MWI, is designed to be an active

automation. In Figure 19, MWI is represented as an active automaton. The automaton in

this figure contains the states Rlogin, FfP, WWW and Telnet. The arcs are the

transitions from one state to another. This figure also shows that the arcs are bi-

directional between states. This means that any of the internet tools can be accessed

simultaneously with each other. The highest level implementation structure of the MWI

follows the underlying model. The implementation was accomplished by an event loop.

Figure 20 shows the event loop at the abstract level.

36

.

WWW

R 10 ~in

Telnet

FTP

Event Loop:

Figure 19. MW I as an Active Automaton.

While(not quit) (
switch(event) {

WWW
/* Execute World Wide Web Interface */

FTP
/* Start File Transfer Protocol Process */

Rlogin
/* Start Remote Login Process */

Telnet
/* Start a Telnet Process*/

}
}

Figure 20. Event Loop.

The software architecture of MWI consists of the development tools Tel and Tk

discussed in Chapter 2. The source code of MWI is based on the Tel and Tk. Figure 21

illustrates the software architecture design in terms of the relationship of MWI to other

software.

37

....,

.a.

.

MWI

Figure 21. Software Architecture.

The organization of the components of MWI correspond to the software components.

The components can be organized as a tree. The tree structure is represented in Figure

22. All the nodes in this figure make up the MWI. First, the root node in Figure 22 is

"Mwr' because it is the "root" to an other objects in MWI. Second, the "HELP" node

provides users with pertinent information about Objl~cts in MWI. Third, the "Internet

Tools" node which is the main focus of this interface, accesses the internet tools provided

by MWI simultaneously, Lastly, the "Entertainment" node provides miscellaneous

entertainment to the user. This ensures that the user may have "fun", or will not become

"bored", while waiting for one's information or resources. The child nodes of these

parent nodes are as follows: 1) The child nodes for "HELP" are "Getting Started",

"Application", "Windows", "Buttons", and "Miscellaneous", 2) The child nodes for

"Internet Tools" are "Web", "FTP", "Rlogin", "Telnet", and "Miscellaneous" and 3) The

38

'''4....
I

••.)
.......
')

child nodes for "Entertainment" are "Weather", "News", "Messages", "Pictures", and

"Miscellaneous". This tree contains all the elements in the MWI.

A:rns 101rierl:tTa:is
A:rns 1oMJ1iPe~-+-----+1
8 fe lei I Ie fSEJ\ice;

:fotteLSe

MWI

Rg..re22. TrmStn.dued lWJL

.)

!'"

)....~..
:>..
.~

:J...
')

....
;!"t

I
I

oournen. ..""".,

Figure 23. Local University WWW Interface.

!=!~-.h.ct.*P..JiIL."..\.~ YAJY'~"'J.'"-...N_ t'ounded on. December 2$. 1890. _ 0 klllllh.c:Jorna

~r~~I~~k~~rn~:~:ni.;~~~::'L.I~~·o~:J~~Lk.~';";~:~~.;;~-::;O;'~~~hC::::~~~r~
.R.lS:l~JT1~cornrn.Lan.ity "N'lth &popUlaElOn ...ound A2.000. Sttll'N'lLt_r t. approKlrrlacoly
60 n-.Jlee ~rorn the Tul...~ 0 klan.orn.& City 1'TIl.t:ropoilt:ftI") ar1ICI I. r.e.dlly
-.co.....b •• by i.nt:_r.1:.a=_ hiSh""'..",.~ air. T~ Unl...,.r.lI:Y h_ ..., .~olln'1..nt"or
-.p:proxt.tnat_ly 26.000 .'h._adient. on. it:. f'our c pua••• """,lth approxln"lat"ely 1 g,OOO on
th4 Stlll"OoJAJacer CJ-..np~.

T~ CO:rr.llp_'t..r .ct__,e. J[>._parll......nll o~r.I.~." f'ull r-.r"S- otcs. r •• progr ...n •. Tn.

Efc.-:K Fa...........rd Horn. A.IO•.d, 0

ITI!:'.: I I CO""Put.',.. 5<;'1_1""\<:_ O-P_r'""t.,....,,'t:

'..,RL:' I....t''t'tp //~.c:•. ok.'t_'t•.•d1,-,/

39

CHAPTERS

CONCLUSION

There are applications that appear similar to the Multiple Window Interface for

Internet Tools [23][24]. However, MWI differs from them in several ways. Most

applications are single purpose applications with the capability to browse the web [23].

However, MWI can browse the web and at the same time explore other internet tools. In

other words, MWI provides the same capability of single purpose interfaces and also

allows access to any other internet too]s simultaneously. For example, in using the web

browser mosaic, if a user types in the command "mosaic", the interface that appears is the

home page of WWW of a local university, or the homepage a user. An example is shown

in Figure 23. MWI is a unified interface that parallelizes the tasks of accessing internet

tools. This is possible since the implementation platform is a multiprocessor machine.

Therefore, MWI has incorporated a WWW interface that begins with a home page that

provides a set of Jinks that are the most commonly encountered on the web as illustrated

in Figure 16. By implementing this feature, MWI is more efficient, convenient, and faster

than NCSA mosaic or any other web browsers discussed in this thesis. The list of links

used in MWI were chosen based on the high traffic encountered at these sites. Some

links are by subjects and others are not. By clicking on the links provided by MWI, the

40

,-....'.,J
..
)..
,~•,)..
~

i..
)

7

user can get to hislher point of interest on the net faster because it avoid variou links

between the starting point and the final destination. Another reason why the links

provided by MWI are more efficient compared to other browsers is that while the user is

waiting for hislher information, he/she can explore the interface by clicking on different

widgets, menus and icons to find out other interesting information or entertain

themselves. Mosaic and Netscape can provide the same information or resources as MWI

by clicking on links. However, using Mosaic and Netscape involves browsing various

links before one gets to their final destination point of resources. In other words, one of

the major differences between MWI and other web browsers is concurrency. Table I

provides a comparison of MWI with other browsers. The criteria for comparison and the

browsers to compare are taken from [23].

....
~

Factor MWI InterA p Netsca pe Quarterdeck NCSA
....

Navigator Mosaic Mosaic
•

1. Navigation •• •• ••• ••• ••• •• *
;)

2. Bookmarks * *1/2 * *•• • -*l/z ***Ifz * *ljz ..
3, CusLomization * *** *. * liz ***'/2 ** * 'iz **- ...

~

• • * '/z ..- ..
4. Downloading ,. *.* **** * *. 'iz .>..

* * * * * *
:a

5. Concu rrency
~..

***•• Exce lIent ····Good ···Acceptable ··Poor ·Unacceptable :>

Refer to PC Computing[2J] pp.161 for further explanation of Ratings.

Table I. MWI vs. Other Web Browsers.

41

MWI has proven to be a better choice over the GUIs discussed in this thesis. In

conducting this research MWI has also proven to be a user-friendly interface and more

efficient than most GUIs used in the public domain.

Future research work may include enhancement of MWI to provide access to all

internet tools (gopher, archie and news). However, it is portable to systems which do not

support X-Windows, XF, Tcl, Tk, Expect and Wish. Another direction for future work is

to investigate methods to use Sequent's parallel programming library with the objective

of improving performance.

42

I•..
)

...,..

.)..
.J..
)

"'.J..

7

BmLIOGRAPHY

[1] Aho, Alfred V. and Ullman, Jeffrey D., Foundations of Computer Science, W. H.
Freeman and Company, 1992.

[2] Berghel, H., The Inevitable Demise of the Web, Applied Computing Review,
Volume 3 Number 2, ACM Press, Fall 1995.

[3] Bherat, Krishna and Brown, Marc H., Visual Oblique: A System for Building
Distributed, Multi-User Applications by Direct Manipulation, SRC-Technical Report
130a, Digital Sytems Research Center, Palo Alto, CA, October 1995.

[4] Bourne, John R., Object-Oriented Engineering Building Engineering Systems Using
Smalltalk-80, Richard D. Irwin and Asken Associates, Inc.,]992.

[5] Bouvier, Dennis J., Versions of Standards of HTML, Applied Computing Review,
Volume 3 Number 2, ACM Press, Fall 1995.

[6] Brisco, Ramona M., A Multiple Windows Interface for Internet Tools, Proceedings
of the ISCA (International Society for Computers and their Applications) 11th
International Conference, Computers and Their Applications, San Francisco, CA, March
1996.

[7] Delmas, Sven, XF Design and Implementation of a Programming Environment for
Interactive Construction of Graphical User Interfaces, Technical University of Berlin, MS
Thesis, 1993.

[8] Feinman, Todd, Internet Chameleon, PC Magazine, October 10, 1995, Volume 14
Number 17,pp.178-182, 187-188.

[9] Flanagan, David, Internet access tools: Motif Tools Streamlined OUI Design and
Programming with the Xmt Library, O'Reilly & Associates, Inc., 1994, pp. 3-4.

[10] Foley, 1., Dam, Van A., Feiner, S. and Hughes, J., Computer Graphics: Principles
and Practices, Second Edition, Addison-Wesley Publishing Company, Reading, MA,
1996.

43

....'.,.
,......
,)

......•)
'.J•)
•I
J..
:>

7

[11] Grainger, Brian E., Gill Drag-and-Drop Tools Ease 01 Database and Device
Interface Definition, Instrumentation & Control Systems 1995, pp. 53-55.

[12] International DCE Workshop, DCE--the OSF distributed computing environment:
client/server model and beyond, Karlsruhe, Gennany, October 1993.

[13] lohnson, Jeff A, Nardi, Bonnie A, Zanner, Craig L., and Miller, Jame R., ACE:
Building Interactive Graphical Applications, Communications of the ACM, April 1993,
Volume 36 Number 4, pp. 41-55.

£14] Kummetha, V.C.S. Reddy, A level-linked R* tree structure with an application
using X-Window graphical interface, Oklahoma State University, MS Thesis, 1993.

[15] Kwan, Thomas T., McGrath, Robert E. and Reed, Daniel A, NCSA's World Wide
Web Server: Design and Perfonnance, Computer, November 1995, Volume 28 Number
11, pp. 68-74.

[16] Laudon, Kenneth C. and Laudon, Jane P., Essentials of Management Information
Systems, Prentice Hall, Inc., 1995.

[17] Leavens, Alex, Designing GUI Applications for Windows, M&T Books, 1994, A
Division of MIS: Press, Inc., A Subsidiary of Henry Holt and Company, Inc..

[18] Lewis, Peter H., Best Web Browsers, PC World, June]995, Volume 13 Number 6,
pp. 137.

[19] Libes, Don, Exploring Expect, 0' Reilly & Associates, Inc., 1995.

[20] Marcus, Aaron, Smilonich, Nick and Thompson, Lynne, The Cross-GUI Handbook
for Multiplatforrn User Interface Design, Addison-Wesley Publishing Company, 1995.

[21] Mayhew, Deborah J., Principles and Guidelines in Software User Interface Design,
Prentice Hall, Inc., 1992.

[22] McMinds, Donald L., Writing your own OSFlMotif Widgets, Prentice Hall Inc.,
1995.

[23] Meyerson, Adam, The Ultimate Web Browser, PC Computing Magazine,
September 1995, Volume 8 Number 9, pp. 152-162.

[24] Mullet, Kevin and Sano, Darrell, Designing Visual Interfaces, Prentice Hall, Inc.,
]995.

[25] Notess, Greg R., Comparing Commercial WWW Browsers, Online, May 1995,
Volume 19 Number 3, pp. 43-49.

44

......
1..
;!
•)
04..
'If•
..
}
•)..
•I•
.J

[26] Notess, Greg R., Learning to FfP, Online, March 1994, Volume 18 Number 2, pp.
79-82.
[27] Notess, Greg R., Telnet Explored, Online, January 1994, Volume 18 Number 1, pp.
94-96.

[28] Osterhaug, Anita, Guide to Paranel Programming On Sequent Computer Systems,
Second Edition, Sequent Computer Systems, Inc., 1989.

[29] Ousterhout, John, The Tel and Tk Toolkit, Addison-Wesley Publishing Company,
1994.

[30] Pasicznyuk, Robert and Zumalt, Joe, Four Internet Browsers--A review., Journal of
Academic Librarianship, March 1996, pp. 163-164.

[31] Pfaffenberger, Bryan, Netscape Navigator Surfing the Web and Exploring the
Internet, Academic Pess, Inc., 1995.

[32] Resnick, Rosalind, Graphical Interfaces for the Internet, PC Novice, January 1995,
Volume 6 Number 1, pp. 76-79.

[33] Rodriguez, Karen, CompuServe buys SPRY for Internet Links, InfoWorld, March
20,1995, Volume 17 Number 12, pp. 14.

[34) Rose, Phillip F. H., The Macintosh Finder Pure GUI, PC Magazine, September 12,
1989, Volume 8 Number 15, pp. 133-134.

[35) Rudolf, Jim and Waite, Cathy, Completing the Job of [nterface De ign, IEEE
Software, November 1992, Volume 9, pp. 11-32.

[36] Sayles, lohnathan S., Karlen, Steve, Molchan, Peter, and Bildoeau, Gary, GUI
Based Design and Development for Client/Server Applications, John Wiley & Sons
Publishing Company, 1994.

[37] Schulzrinne, Henning, World Wide Web: Whence, Whither, What Next?, IEEE
Network, March 1996, Volume 10 Number 2, pp. 10-17.

[38] Seymour, Jim, The GUI An Interface You Won't Outgrow, PC Magazine,
September 12, 1989, Volume 8 Number 15, pp. 97-109.

[39] Sodhi, Man Mohan S., An OR/MS Guide to the Internet, Interfaces, November
December 1995, Volume 25 Number 6, pp. 14-29.

[40] Stevens, W. Richard, UNIX Network Programming, Prentice Hall, Inc., 1990.

45

1·'...
•)

•••.t
•
J
•
)

4

l

!
"J

[41] Tenopir, Carol, The User-System Interface, Library Journal, August 1989, Volume
114 Number 13, pp. 80-81.

[42] Weiss, Mark Allen, Data Structures and Algorithm Analysis in C, The Benjamin
Cummings Publishing Company, Inc., 1993.

[43] Yang, Cui-Qing and Ali, Mahir, S., Xlib by Example, X Version II Release 5,
Academic Press, Inc., 1994.

[44] A short history of Internet Protocols at CERN,
http://wwwcn.cem.ch/pdp/ns/benffCPHIST.html.

[45] CERN-European Laboratory for Particle Physics,
http://www.cem.ch/CERN/GeneralInfo.html.

[46] SPRY Corporate Information, http://www.sprynet.com/aboutlcorpinfo/index.html.

[47] wish-Simple windowing shell, http://xpi.com/tix/doc/tcltkmanlwish.html.

46

•·•..
I
•••••
l
•

,

APPENDIX I

IMPLEMENTATION (SOURCE CODE)

#!lcontriblbin/wish -f

wm title. "Internet TOOLS"

#---

The code below creates the main window, consisting of a

menu bar and a message explaining the basic operations

of the program.

#---

frame .menu -relief raised -borderwidth 1

message .msg -font -Adobe-times-medium-r-normal--*-180* -relief raised -width 500 \

-borderwidth I -text "The menus above contains one or more subjects to choose from. To

invoke one of the subjects, press the left mouse button on the menu item, drag the mou e

to the desired subject in the menu, then release the mouse button. Click on OK when

finished with each window. When you are done with this window, go to the menu Mise

to quit. "

paek .menu -side top -fill x

47

..
"fJ

f

pack .msg -side bottom -expand yes -fill both

menubutton .menu.menu -text "Ftp" -menu .menu.menu.m \

-underline 0

menu .menu.menu.m

.menu.menu.m add command -label "uu.nel" \

-command FIP1 \

-underline 0

set id 0

proc FIPl (} {

global id

set id 1

if {$id == l} {

puts "FrP id = 1"

test

exec ftp ftp.uu.net &

.menu.menu.m add command -label "cs.berkeley.edu" \

-command FrP2 \

-underline 0

proc FrP2 {} {

48

..
i
i

.

exec ftp ftp.cs.berkeley.edu &

.menu.menu.m add command -label "a.cs.okstate.edu" \

-command FTP3 \

-underline 0

proc FrP3 {} {

exec ftp ftp.a.cs.okstate ..edu &

.menu.menu.m add command -label "wuarchive.wustl.edu" \

-command FTP4 \

-underline 0

proc FTP4 {} {

exec ftp wuarchive. wustl.edu &

.menu.menu.m add command -label "aud.alcatel.com" \

-command FrP5 \

-underline 0

proc FrP5 {} {

exec ftp ftp.aud.aJcatel.com &

.menu.menu.m add command -label "sunsite.edu" \

-command FfP6 \

49

-underline 0

proc FrP6 {} {

exec ftp ftp.sunsite.edu &

menubutton .menu.text -text "Explore the WEB" -menu .menu.text.m -underline 0

menu .menu.texLm

.menu.text.m add command -label "World Wide Web... " -command Web! \

-underline 0

proc Web 1 {{ w .bindings}} {

catch {destroy $w}

toplevel $w

dpos $w

wm title $w "Links to the World Wide Web"

wm iconname $w "Text Bindings"

button $w.ok -text OK -command "destroy $w"

text $w.t -relief raised -bd 2 -yscrollcommand "$w.s set" -setgrid true \

-width 60 -height 28 \

-font "-Adobe-Helvetica-Bold-R-Normal-*-120-*"

scrollbar $w.s -relief flat -command "$w.t yview"

50

pack $w.ok -side bottom -fill x

pack $w.s -side right -fill y

pack $w.t -expand yes -fill both

Set up display styles

if ([tk colorrnodel $w) == "color"} {

set bold "-foreground red"

set nonnal "-foreground {}"

} else {

set bold "-foreground white -background black"

set nonnal "-foreground {} -background {}"

$w.t insert 0.0 {\

To get to a web page, move the mouse over a URL address.

Once the URL address is highlighted, press mouse button 3.

insertWithTags $w.t \

{1. Connect to Web.} d1

insertWithTags $w.t \o\n

insertWithTags $w.t \

foreach tag {d 1 d2 d3} {

$w.t tag bind $tag <Any-Enter> "$w.t tag configure $tag $bold"

5\

t

SWot tag bind Stag <Any-Leave> "$Wot tag configure Stag $nonnal"

$Wot tag bind d I <3> web 1

proc web 1 {{ W 0 bindings}} {

global id

catch {destroy $w}

toplevel $w

dpos $w

wm title $w "Internet Tools"

wm iconname $w "WWW"

button $wook -text OK -command "destroy $w"

text $wot -relief raised -bd 2 -yscrollcommand "$wos set" -setgrid true \

-width 60 -height 28 \

-font "-Adobe-Helvetica-Bold-R-NormaJ-*-120-*"

scrollbar $w.s -relief flat -command "$w.t yview"

pack $w.ok -side bottom -fill x

pack $w.s -side right -fill y

pack $w.t -expand yes -fill both

Set up display styles

if {[tk colormodel $w} == "color"} {

set bold"-foreground red"

52

.

set norma} "-foreground {}"

} else {

set bold "-foreground white -background black"

set normal "-foreground {} -background {}"

if {$id == O} {

puts "WWW id = 0"

test

$w.t mark set insert 0.0

bind $w <Any-Enter> "focus $w.t"

exec xmosaic -home http://a.cs.okstate.edu/-romonamJ &

$w. t tag bind d2 <3> mkP}ot

$w.t tag bind d3 <3> mkCanvText

$w.t tag bind d4 <3> mkArrow

$w.t tag bind d5 <3> mkRuler

$w.t tag bind d6 <3> mkScroll

END OF PROCEDURE web I

Procedure: test

proc test {} {

S3

global id

switch $id \

o { puts "Exec WWW" } \

1 { puts "Exec FrP"} \

2 { puts "Exec RLogin"} \

3 { puts "Exec Telnet"} \

default { puts "ERROR"} \

The procedure below inserts text into a given text widget and

applies one or more tags to that text. The arguments are:

#

w Window in which to insert

text

args

#

Text to insert (it's inserted at the "insert" mark)

One or more tags to apply to text. If this is empty

then all tags are removed from the text.

Itl

proc insertWithTags fw text args} f

set start [$w index insert]

$w insert insert $text

foreach tag [$w tag names $start] {

$w tag remove $tag $start insert

54

foreach i $args {

$w tag add $i $start insert

menubutton .menu.scroll -text "Rlogin" -menu .menu.scroIJ.m \

-underline 0

menu .menu.scroll.m

.menu.scroll.m add command -label "Hosts..." -command funListbox2 -underline 0

proc funListbox2 {{w .12}} {

catch {destroy $w}

toplevel $w

dpos $w

wm title $w "Hosts"

wm iconnarne $w "Listbox"

wm minsize $w I I

message $w.msg -font -Adobe-times-medium-r-nonnal--*-180* -aspect 300 \

-text "A listbox containing several hosts is displayed below, along with a

scrollbar. You can scan the list either using the scrollbar or by dragging in the listbox

window with button 2 pressed. If you double-click button I on a host, then you have

selected that host. Click the \"OK\" button to bo connected."

55

IU,

II

frame $w.frame -borderwidth 10

bunon $w.ok -text OK -command "destroy $w"

pack $w.msg -side top

pack $w.ok -side bottom -fill x

pack $w.frame -side top -expand yes -fill y

serollbar $w.frame.scroll -relief sunken -command "$w.frame.list yview"

listbox $w.frame.list -yscroll "$w.frame.scrolJ set" -relief sunken \

-geometry 20x20 -setgrid I

pack $w.frame.list $w.frame.seroll -side left -fill y

$w.frame.list insert 0 a.cs.okstate.edu

bind $w.frame.list <Double-I> {exec rlogin a.cs.okstate.edu}

#\

"$w config -bg \[lindex \[selection get\] 0\]

$w.frame config -bg \[lindex \[selection get\] 0\]

$w.msg config -bg \[lindex \[selection get\] 0\]"

menubutton .menu.mise -text Misc -menu .menu.misc.m -underline 0

menu .menu.mise.m

.menu.mise.m add command -label "Bitmaps" -command mkBitmaps \

-underline 0

.menu.misc.m add command -label "Quit" -command "destroy." -underline 0

56

pack .menu.menu .menu.text .menu.scroll .menu.misc -side left

Set up for keyboard-based menu traversal

bind. <Any-Focusln> {

if {("%d" == "NotifyVirtual") && ("%m" == "NotifyNormal")) {

focus .menu

tk_menuBar .menu .menu.menu .menu.text .menu.scroll .menu.misc

Position a dialog box at a reasonable place on the screen.

proc dpos w {

wm geometry $w +300+300}

57

APPENDIX II

GLOSSARY [1,4, 7, 10, 14 t 19, 29 t 40, 42, 46]

API - Applications Programming Interface, a set of functions that a user process can call.

Dialog box - type of window that presents choices to the user and provides a graphical
means to input infonnation to an application.

Dialog controls - dialog box controls are user interface components that appear primarily
in dialog boxes.

Expect - a program that is used to control interactive programs. A communicating script
that interacts with interactive programs.

Finite automaton - a graph-based way of specifying patterns.

Menus - provides an easy way to use visual interface that allows the user to browse and
select an item from a hst of choices or commands that the application provides rather than
having to recall the commands, options, or data from memory.

Multiprocessor - computer that incorporate multiple identical processors (CPUs) and a
single common memory.

Nodes - a set of points usually represented by circles.

OOP - Object Oriented Programming. a methodology that provides description of
objects. including functional, behavioral and declarative function.

Protocol - a set of rules and conventions between the communicating participants.

Shared Memory - two or more processes share a memory segment.

SRGP - Simple Raster Graphics Package. a device independent graphics package that
exploits raster capabilities.

Tel - Tool Command Language, a scripting language for controlling and extending
applications.

58

TCP/IP - Transmission Control Protocol, a connection-oriented protocol that provides a
reliable full-duplex, byte system for a user process. Internet Protocol, the protocol that
provides the packet delivery service for TCP, UDP, and ICMP.

Tk - toolkit for the X-Window System that allows a user to create GUIs by writing Tel
scripts.

Widgets - a window with a particular appearance and behavior. Widgets are divided into
classes such as buttons, menus, and scroll bars.

Window(s) - a window is an area within the screen (or on the desktop) with which a user
conducts a dialog with a computer system.

WISH - Windowing Shell that supports the development and execution of graphical user
interfaces.

WYSIWYG - What You See Is What You Get, an acronym for what you see is what you
get. It generally refers to the degree of one-to-one correspondence between information
displayed on the screen and information displayed on printed output or stored in files.

XF - an integrated programming environment that supports the development of GUIs. An
interface used to build/create other interfaces.

X-lib - X library, the lowest level of programming interface to X. A programming
interface that has subroutine package written in C and is provided by the X-Window
system.

X-Windows - interface that runs under UNIX environment.

59

VITA

ROMONA M. BRISCO

Candidate for the Degree of

Master of Science

Thesis: A Multiple-Windows Interface for Internet Tools

Major Field: Computer Science

Biographical:

Personal Data: Born in Chicago, lllinois, to Diane and Alfred Brisco.

Education: Graduated from Martin Luther King Jr. High School, Chicago,
Illinois, June 1989; received Bachelor of Science degree in Computer Science
from Langston University, Langston, Oklahoma, in July 1993; compl.eted
requirements for the Master of Science degree at Oklahoma State University I

Stillwater, Oklahoma, in December 1996.

Experience: Graduate Research Assistant and Teaching Assistant at Oklahoma
State University, Stillwater, Oklahoma; Software Developer at BELLCORE,
Piscataway, New Jersey; GUI developer and Assistant System Admin
istrator at Argonne National Laboratory, Argonne, Illinois.

Professional Organizations: ACM Student Chapter (Oklahoma State University);
Delta Sigma Theta Sorority Incorporated.

