By

JOHN M. BENSON

Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1995

Submitted to the Faculty of the
Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of MASTER OF SCIENCE

July, 1996

CONSTRUCTION OF EXPERIMENTAL APPROACH EMBANKMENTS
AT SALT FORK RIVER BRIDGES ON US 177 AND THEIR INITIAL PERFORMANCE

Thesis Approved:

Hebert h. Hughes
Thomas C. Collins
Dean of the Graduate College

ACKNOWLEDGMENTS

First of all, I want to thank my wife, Lisa, for her patience and support. I would also like to thank my adviser, Dr. Don Snethen, for allowing me the opportunity to work on this research. Also, thanks to Dr. Snethen for his help in getting me scholarship funds and guiding my development as an engineer with his advice and insight. I also want to thank Dr. Robert Hughes and Dr. Vernon Mast for their help as committee members. Finally, I would like to thank the Oklahoma Department of Transportation for funding this research.

At the Oklahoma Department of Transportation, appreciation is extended to Mike Beier at the Perry Residency for of his help during and after construction. The "Shannons," Shannon Hudson and Shannon Koeninger, also deserve thanks for their help with the laboratory testing and site visits.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION. 1
Research Project Description 2
Purpose of Thesis 3
2. SITE CHARACTERIZATION 5
Topography 5
Test Descriptions. 6
In-Situ Test Comparisons and Conclusions. 9
3. INSTRUMENTATION INSTALLATION AND BACKFILL CONSTRUCTION 22
Instrumentation 22
Backfills 37
4. MATERIALS TESTING 53
On Site QC/QA 53
OSU Soils Laboratory Testing. 55
ODOT CPT Testing 56
5. DISCUSSION OF RESULTS 58
Performance To Date 58
Preliminary Findings. 65
Conclusion 66
REFERENCES 68
APPENDIX A - SPT, CPT, AND DMT SOUNDINGS FROM GEOTECHNICAL INVESTIGATION 69
APPENDIX B - INSTRUMENTATION LOCATIONS AS-BUILT 113
Chapter Page
APPENDIX C - OSU SOILS LABORATORY TEST RESULTS AND B1 RELATIVE DENSITIES 132
APPENDIX D - INSTRUMENTATION DATA 135

LIST OF TABLES

Table Page

1. In-Situ Test Profile Comparison at A2 12
2. In-Situ Test Profile Comparison at B1 13
3. In-Situ Test Profile Comparison at B2 14
4. In-Situ Test Profile Comparison at Cl 15
5. In-Situ Test Profile Comparison at C2 16
6. Settlement Estimates from US 177 Geotechnical Investigation. 18
7. Summary of Backfills and Instrumentation. 36
8. Cost and Time of Construction Summary 52
9. Theoretical and Measured Lateral Earth Pressures. 60
10. Summary of Settlement 63

LIST OF FIGURES

Figure Page

1. In-Situ Test Configuration for Salt River Site. 10
2. Total Pressure Cell. 24
3. Blockouts for Total Pressure Cells and Tubing 25
4. Amplified Liquid Settlement Gage. 27
5. Pressure Indicator. 29
6. Installed Inclinometer Casings and Open Tube Piezometer. 31
7. Inclinometer, Pulley Assembly, and Control Cable 33
8. Ao and Bo Orientation. 34
9. Compaction of Control Section, A1 39
10. Wrapping of Cardboard Spacing for Geotextile Reinforced Backfill. 41
11. Layout of Geotextile at B1 42
12. Folding Over the Geotextile to Form the Face of the Wall. 45
13. Pouring of Controlled Low Strength Backfill at B2. 47
14. Dynamic Compaction of C 1 48
15. Flooding and Vibration at C2. 50

CHAPTER 1

INTRODUCTION

A smooth highway is a desire shared by engineers and travelers alike. One common problem encountered throughout the United States is rough transitions between the highway pavement and the bridge deck. This "bump at the end of the bridge" is typically a result of differential settlement between the bridge and the approach embankment. Serious motorist safety problems can arise from this bump if the difference is two inches or more. Other complications from differential settlement can be driver discomfort, structural damage from dynamic impact loads, damage to the vehicles driving over the bump, and increased maintenance. This problem is common throughout the country (1).

A report by the Colorado Department of Highways cites five main reasons for approach settlement which contributes to the "bump at the end of the bridge" (1). One is the poor compaction of abutment backfill. Two others are the time dependent consolidation of the embankment foundation and time dependent consolidation of the approach embankment itself. Also, erosion of soil at the abutment face and poor drainage
of the embankment and abutment backfill are reasons listed causing differential settlement.

The University of Oklahoma conducted research in 1990 (2) that attempted to apply statistical theory to the likelihood of and degree of deformation of the abutment backfill. Different input parameters, including settlement, were measured at several bridges in Oklahoma. Links were made associating features like traffic, depth of foundation soil, age of embankment, embankment height, SPT (Standard Penetration Test) blow count for the embankment and foundation soil, friction ratio from the CPT (Cone Penetration Test), CPT tip resistance, and skewness of the bridge approach to total measured settlement. In Schwidder's work (1), these methods were compared to conventional soil mechanics settlement calculations and found to give inconsistent data.

Research Project Description

This study is an evaluation of experimental approach embankments. The research site is a bridge replacement project on US highway 177 over the Salt Fork of the Arkansas River mostly in Noble county (with the northern tip extending into Kay county) Oklahoma. One main bridge crosses the river and two overflow bridges lie to the north. The project is surveyed from south to north so that the main bridge on the south end is bridge " A " and the two overflow bridges are bridge " B " and bridge " C ". The southern abutments of the bridges are referred to as " 1 " and the northern end as " 2 " (the south and
north ends of bridge A are known as "A1" and "A2," respectively). The focus of the research is four trial approach embankments and one control section. The bridge replacement includes a total of six abutment backfills, but the southern embankment of bridge A is twice as high as the others and was not used in the backfill comparisons. However, the south abutment of bridge A was instrumented and data from it are presented in the appendices. Since the five remaining abutments have heights between 13 and 17 feet, their similarity allows comparison. The trial backfills are a geotextile reinforced granular material at B 1 , controlled low strength material at B 2 , dynamically compacted granular material at C 1 , and flooded and vibrated granular material at C 2 .

Purpose of Thesis

This thesis documents the construction of four experimental and one control approach embankment/abutment wall backfills used at the bridge replacement project on US 177 in Kay and Noble counties in Oklahoma. Along with actual construction, this documentation includes site characterization, instrumentation installation, and materials testing for the project. Presentation of initial data and preliminary findings are presented.

The information was gathered in several steps. Site characterization came from frequent visits and the study of aerial photographs combined with the principles of terrain analysis. Backfill construction information was gathered on site during the construction of the trial backfills. Installation of the instrumentation started in February 1995, when the forms for the instruments were constructed and was mostly completed in June 1995,
after construction of the trial backfills had been completed. Instrumentation installed thus far includes the total pressure cells, amplified liquid settlement gages, telescoping inclinometer casings, and piezometers. Surface settlement points are the only remaining items to be installed, which will be done after paving. Daily trips by OSU research staff were made during the construction phase to monitor and verify the construction techniques of the experimental backfills. Firsthand experiences along with field notes from OSU research staff and Mike Bier, ODOT construction inspector, videotapes, and photographs were utilized to document the construction. Instrumentation installation was also documented using photographs, OSU field notes, and first hand experiences. Data from the instrumentation have been continually collected on 3-4 week intervals since the installation of the instruments. The original scope of this research was to collect data for two years after installation. Although this time has not fully elapsed, preliminary suggestions will be made based on cost, time of installation, and measured performance.

CHAPTER 2

SITE CHARACTERIZATION

Site characterization for a project is essential to develop adequate and appropriate construction plans to fit the need of a particular project. For this bridge replacement project, as with any large civil project, thorough investigation of the foundation materials was needed to characterize the soil and set parameters for design. This chapter discusses the general topography of the site, tests performed for site characterization, and concludes with construction technique recommendations from the geotechnical investigation.

Topography

General topographic description of the site is an alluvial valley surrounded by low rolling hills with moderate slopes. Aerial photography reveals mottled phototones and land uses for grain crops and grazing. Fine grained soils are the predominant surface soil type in this area.

Site description is based on the 1970 Soil Conservation Service Noble County Soil Survey(3) and the 1974 Kay County Survey(4). The southern-most portion of the
project is classified as Miller clay with $0-1 \%$ slopes. It is characterized as a compressible and unstable soil that floods because of slow percolation (low permeability). At the south of bridge A (A1) Yahola silt loam (SM, SC, ML, CL) with $0-1 \%$ slopes is encountered. It is poor as roadfill because of low strength, but does drain favorably. The Yahola group also lies on the north bank of the Salt Fork River and continues northward approximately to the south abutment of bridge B. From there, the Port silt loam formation (classified as ML, CL) with $0-1 \%$ slopes extends northward past the north embankment of bridge C . This material has favorable drainage and is fair as roadfill. It is compressible and deemed unstable for use as embankment material. Near the south of bridge C, a band of Port silty clay loam lies within the Port silt loam formation. It has low strength and shrink swell behavior, making it fair as roadfill material. As an embankment material it is unstable and compressible. North of the Port silt loam and extending to the northern end of the project lies a Dougherty-Eufaula complex soil (SM, CL) that is characterized with moderate seepage and susceptibility to wind erosion.

Test Descriptions

Three primary in-situ tests were run for the geotechnical investigation for the US 177 project: the Standard Penetration Test, the Cone Penetration Test, and the Dilatometer Test.

Standard Penetration Test

The Standard Penetration Test (SPT) is a widely used test that correlates results to determine soil type. A split spoon sampler (or split barrel) with a sample length capacity of $1.5 \mathrm{ft}(0.5 \mathrm{~m})$ is driven into a soil deposit. To maintain uniformity, the sampler dimensions are kept constant with a 2 in . (51 mm) outside diameter and a $13 / 8$ in. $(35 \mathrm{~mm})$ inside diameter. A 140 lb . $(64 \mathrm{~kg}$) weight drives the sampler with 30 in . (75 cm) drops so the energy is known. The number of blows to drive the sampler 18 in . (45.7 cm) into the ground is recorded and the blow count, N , is the number of blows for the last one foot of the drive.

The blow count along with visual identification and laboratory results were used to describe the density of cohesionless soils and the consistency of cohesive soils. Density and consistency descriptions were used to help delineate soil strata or confirm uniformity. Other correlations with N values used were, for cohesionless soils, relative density and bearing capacity, and for cohesive soils, shear strength.

Cone Penetration Test

The Electric Cone Penetration Test (CPT) was used to define the soil profile and soil properties. As the cone penetrates, a strain gage near the tip measures strain which allows tip resistance to be calculated and then subtracted from the total applied force to obtain the sleeve friction. Sleeve friction is a function of grain size for granular soils and
cohesion for fine-grained soils. Sleeve friction and tip resistance values were used to describe the soil type based on empirical correlation.

Dilatometer Test

The Dilatometer Test (DMT) is an in situ test used to define soil strata. The device attaches to the end of the same type of extension rods used for the CPT. It is a flat plate 96 mm (3.78 in.) wide, 240 mm (9.45 in .) long, and 15 mm (0.59 in.) thick. The penetrating end of the plate is pointed. One side of the plate contains a stainless steel membrane 0.2 mm (0.0079 in .) thick and 60 mm (2.36 in .) in diameter. Pneumatic pressure from a source on the ground surface is applied through a tube to the membrane. When the membrane expands outward $0.05 \mathrm{~mm}(0.00197 \mathrm{in}$.) and then $1.10 \mathrm{~mm}(0.433$ in.) total (so an additional 1.05 mm), the applied pressure values are recorded. With these pressure values various indexes were calculated, which correlate with other empirical data. From this, estimates of the soil type, density, Ko values (earth pressure ratio), and the overconsolidation ratio were made.

Test Configuration

The original geotechnical investigation plan for the bridge replacement project called for subsurface exploration and in situ testing of the pier and abutment foundation material. The pier foundation investigation involved primarily SPT and split spoon
sampling. Investigation for the foundation originally included 8 CPT soundings, one DMT sounding, one SPT boring, and one continuous pushtube boring. The configuration of these tests at each abutment is shown in Figure 1. During the actual investigation. changes were made. CPT number eight as shown in the figure was dropped and replaced with another DMT run near CPT number seven. A triangle represents a pressuremeter test location that was originally planned but omitted during the investigation. This configuration ensured that accurate profiles were estimated, which was especially important when attempting to reduce differential settlement between the bridge and approach embankment.

In-Situ Test Comparisons and Conclusions

Dr. Jim Nevels, Jr., ODOT geotechnical engineer, prepared the foundation report for the US 177 project site. The following information is taken from his report (5).

Comparisons

With the SPT, CPT, and DMT performed in such close proximity at this particular project site, profile comparison can confirm the relative accuracy of these procedures. CPT-5 (from Figure 1) test results and DMT data from near CPT-5 were chosen from each of the trial embankments for comparison. For bridges A and B , boring logs (including SPT N values and lab test results) were chosen from stations within 1 ft

Figure 1. In-Situ Test Configuration for Salt River Site (1)
$(0.3 \mathrm{~m})$ of the north abutment wall station. Bridge C investigation sites did not correlate as closely to the abutment locations, but tests from stations nearest the abutment walls were chosen.

Soil types within a profile are determined differently for each in-situ test. The SPT boring log gives soil descriptions straight from visual inspection that are substantiated with laboratory data. With the DMT, a series of steps is required to be able to estimate soil type. After following procedures to get the material index and dilatometer modulus, soil descriptions and unit weights can be estimated. The DMT device used by the Oklahoma Department of Transportation (ODOT) has software that automatically calculates values and gives a soil description, as seen on the DMT data sheets in Appendix A.

Profile estimation from the CPT is not automated. First, major differences in soil strata were determined by visually assessing pattern changes in the friction ratio (sleeve friction / tip resistance) versus depth plot. Once these basic strata were established, average friction ratio values and tip resistance values for each strata were graphically determined. Third, plots of friction ratio versus tip resistance were used to estimate a soil description. For this particular exercise, plots from Robertson and Campanella (6) were used.

Comparison of abutments $\mathrm{A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1$, and C 2 are shown in Tables 1, 2, 3, 4, and 5 , respectively. Since the SPT boring involves direct observation and testing, it is considered the control for a comparison basis. Detail improved when going from the CPT to the DMT. This comparison helps verify the legitimacy and relative accuracy of the

Table I In-Situ Test Profile Comparison at A2

Table 2. In-Situ Test Profile Comparison at B1

	${ }^{\text {SPT }}$		DMT		CPT	
	Depth (ft)	Description	$\frac{\text { Depth (ft) }}{0}$	Description	Depth (ft)	Description
	0			Sllty Sand	0	$+$
		Low Plasticity Silt and Sandy Silt	334.9	Low Plasticity Sillt with Sand		Silty Sand
					6	
	96 11	Silty Sand		Silty Sand		Sand
		Poorly-Graded Sand with Silt and Sitty Sand				
			ω			
				Sand	22	
	23	Low Plasticiy Clay with Sand	23		22	
	24	Clayey Sand		Sill with Clay		
	245	Poorly-Graded Sand	248			Silty Sand
	255	High Plasticity Clay with Sand		Silty Sand		Silty Sand
	262	Clayey Sand				
	27	Low Plasticily Clay with Sand	309			
	27.5			Low Plasticity Silt with Sand	29	
		Poorly-Graded Sand	2953	Low Praticty Sm win Sand	29	
	30.5			Sllty Sand		
		Poorly-Graded Sard with itt				
		and				Sand
		Poorly-Graded Sand	345	Sand		
			361		36	Shale
	36.6	Silty Sand		Clay with sith		
	37	Shale	37.7	Silly Sand		
			394			
				Silt		
			41	End of Sounding		

Table 3 In-Situ Test Profile Comparison at B2

Table 4. In-Situ Test Profile Comparison at Cl

Table 5 In-Situ Test Profile Comparison at C2

CPT and DMT in situ tools if the right correlations are made. However, variations in the descriptions demonstrate the variability inherent in empirical methods. Complete details of the CPT, DMT, and SPT soil data are provided in Appendix A.

Ten-year settlement was calculated for all the abutments except for the south abutment of bridge A. Two sets of calculations were made, one based on CPT data and the other based on DMT data. For CPT based settlement calculations, the Schmertmann method (7) for ten-year settlement was calculated by converting electric cone resistance $\left(\mathrm{q}_{\mathrm{c}}\right)$ to an equivalent elastic modulus. The DMT settlement was calculated by applying the appropriate modulus from the dilatometer with elastic theory (5). The calculations were similar at the north abutment of bridge A with both methods effectively predicting 0.8 in (2.0 cm). North abutment of bridge C gave the most variation with the CPT method predicting 0.7 in (1.8 cm) and DMT predicting $1.9 \mathrm{in}(4.8 \mathrm{~cm})$. Complete settlement estimates, as published in the foundation report, can be seen in Table 6.

Soils

Generally, the soils are Quartenary Period Alluvium deposits from the Salt Fork of the Arkansas River. This material varies from gravel and sand to sitt and clay.

Bridge A. Soils at bridge A are predominantly clays and silts. Plasticity indexes (PI) from the 20 s to the 30 s are common. One $2.5 \mathrm{ft}(0.8 \mathrm{~m})$ thick layer of highly plastic (or "fat" in the Geo Log documentation) clays with PI values ranging from 37 to 46 and SPT N values of zero were located just south of the south abutment wall. Clay

Table 6. Settlement Estimates from US 177 Geotechnical Investigation (5)

Bridge Abutment

A2
СРТ-2
0.958
CPT-5
1.135
CPT-6
0.794

DMT-1 0.840

B1
CPT-2
0.289

CPT-5 0.340

CPT-6
0.359

DMT-1
0.732

B2
CPT-2
1.306

CPT-5
0.728

CPT-6 0.849

DMT-1 1.024

C1
CPT-2
0.860

CPT-5
0.837

CPT-6 0.757
DMT-1
1.365

C2
CPT-2
1.053

CPT-5
0.937

CPT-6
0.737

DMT-1
1.859
areas were abundant on the south end of the project. The Noble County Soils Report by the Soil Conservation Service (SCS) (4) reported consistent trends of more clayey soils in the southern portion of the project. Moving north, the soils became less plastic and more silty, consistent with the SCS maps. At the northern end of bridge A, PI values decreased to the teens and low 20s. SPT N values generally ranged from four to seven in these silty and silty sand regions.

Bridge B. Soil types at bridge B were coarser than those at bridge A . Most soils were silt and sand combinations with significant strata of sand. Silts and sandy silts had SPT N values ranging from five to seven. Most of these soils were non-plastic, but a few had PI values as high as 15 . Soils with more sand and silty sands had higher SPT N values of 20. Locations with poorly graded sands had SPT N values of 11-20, both of which were classified as loose to medium dense, based on SPT correlations (8).

Bridge C. Bridge C soils were combinations of silt, poorly -graded sand, and clay. The material descriptions commonly changed in 6 in. (15.2 cm) intervals. Overall, the SPT N values were low and plasticity was either non-existent or low. All but one clay was classified as lean. This only "fat" clay was at the north end of bridge C . This 9 $\mathrm{ft}(2.7 \mathrm{~m})$ thick layer at station $194+98$, right of centerline, was not lab tested and is only documented with material description. Typical silts had SPT N values between 3 and 11 and were non-plastic. Sands appeared to be loose with SPT N values of 1 to 7 .

Combinations of silt and sand were common that had low SPT N values and low to zero PI values.

Bedrock

The bedrock at the US 177 project site was shale with isolated lenses of limestone. Permian Aged shale of the Wellington Formation made up the top 10 to 15 ft (3.0 to 4.6 m) of the bedrock and was described as reddish-gray in color, soft and weathered. Depth to shale varied among the bridges with the foundation report showing depth to bedrock at bridges A, B, and C is 25,36 , and $40 \mathrm{ft}(7.6,11.0,12.2 \mathrm{~m})$, respectively. This upper portion had lower Rock Quality Designation (RQD) values than the underlying material. RQD's for the Wellington formation varied from 48.6 to 62 and then 83 at bridges A, B, and C, respectively. Unconfined compressive strengths (UCS) for this top formation ranged from $540 \mathrm{tsf}\left(540 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ at bridge A to values below 10 tsf $\left(10 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ at bridge C .

Beneath the Wellington Formation lies the Oscar Group, also known as the Wellington-Admire Unit. This structure was characterized as mainly shale with layers of limestone and fine-grained Arkosic sandstone. Borings showed the shale as dark gray to grayish red shale that was silty to clayey. RQD values were in the 90 s for bridge A and bridge B , but in the upper 50 s for bridge C . UCS values were much higher in the Oscar Group with values up to $1063 \mathrm{tsf}\left(1063 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ at bridge A , but mostly averaging 530 $\operatorname{tsf}\left(530 \mathrm{~kg} / \mathrm{cm}^{2}\right)$, and $22.8 \mathrm{tsf}\left(22.8 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ and lower at bridge C. No UCS data for any bridge B borings were reported. Bridges A and B showed limestone generally 50 ft (15.2 $\mathrm{m})$ below the surface with limestone interbedded in the shale at about $45 \mathrm{ft}(13.7 \mathrm{~m})$. The limestone bed was about $10 \mathrm{ft}(3.0 \mathrm{~m})$ thick and varied between bridge A and bridge B .

Geologic mapping (6) showed the Herrington limestone unit at the project site, so the foundation report suggested the possibility of this limestone from the Herrington Formation. Bridge C borings showed no limestone present.

Crews drilled $93 \mathrm{ft}(28.3 \mathrm{~m})$ near the north end of bridge A to determine if any other limestone units existed. One $0.15 \mathrm{ft}(4.6 \mathrm{~cm})$ thick layer was encountered at 82.3 ft $(25.1 \mathrm{~m})$ below the ground surface. Shale was the only other bedrock material encountered.

Water levels in the borings were at depths of 2 to $12 \mathrm{ft}(0.6$ to 3.7 m$)$. Isolated gravel pits may exist within the valley that may bear significant water. Nearby wells yield 20 to 150 gallons (75.7 to 567.8 L) per hour from the alluvium. Visual investigation of the bedrock cores suggested that no significant water bearing zones existed in the bedrock formations.

Conclusions

This investigation report concluded that drilled shafts should be used for the bridge foundations and driven piles be used for the abutment foundations. The slurry displacement method was recommended for the drilled shafts due to the loose granular material and its depth below the water table. These recommendations were followed with the installation of drilled shaft bridge piers and driven piles for the abutments.

CHAPTER 3

INSTRUMENTATION INSTALLATION

AND BACKFILL CONSTRUCTION

This chapter discusses the construction and instrumentation installation at each experimental approach embankment. The objective of the experimental backfills was to reduce or eliminate the "bump at the end of the bridge" by decreasing the vertical settlement of each backfill and lateral stress exerted on abutment and wing walls. This was done by constructing backfills that were well-drained and self-supportive to act as an incompressible single mass. For quantitative monitoring, instrumentation was necessary. Instrumentation for each of the abutment walls and backfills was chosen to monitor lateral movement of the abutment wall and the backfill, lateral stresses exerted upon the abutment wall, settlement, and pore water pressure.

Instrumentation

Each abutment was instrumented with: total pressure cells, amplified liquid settlement gages, piezometer, inclinometer casings with telescoping couplings, and surface settlement points.

Total Pressure Cells

Lateral stresses exerted onto the abutment wall were measured using total pressure cells embedded at the centerline of the abutment wall adjacent to the fill. Three cells were spaced $3 \mathrm{ft}(0.91 \mathrm{~m})$ apart vertically. The cells used were $9 \mathrm{in} .(22.9 \mathrm{~cm})$ in diameter, stainless steel covered rubber membranes (Figure 2) that measure total lateral earth pressure. A transducer converted the lateral pressure to a pneumatic pressure that was measured by the Pressure Indicator in psi (pounds per square in.) units. For reading, the Pressure Indicator applied air pressure through the input tube so that eventually, the built-up pressure was greater than the pressure exerted by the backfill. An equilibrium state for the membrane was achieved by reducing the applied pressure and that pressure was measured and recorded.

The pressure cells were instalied on the face of the abutment wall so that they were flush with the wall surface. When the forms for the abutment wall were constructed, blockouts for the pressure cells and the tubing that leads up to them from the control box were included, as can be seen in Figure 3. For installation, the cells and tubing were connected and grouted in place. The pressure cells were cleaned and backfilling was begun.

Figure 2. Total Pressure Cell (9)

Figure 3. Blockouts for Total Pressure Cells and Tubing

Amplified Liquid Settlement Gages

Settlement was measured using the amplified liquid settlement gages. One gage was placed on the centerline and one 10 ft west of centerline, both $2 \mathrm{ft}(0.61 \mathrm{~m})$ below the base of the abutment wall and $6 \mathrm{ft}(1.8 \mathrm{~m})$ behind the abutment wall. The gages were fixed on 18 in . by 18 in . (45.7 cm by 45.7 cm) metal plates. When settlement occurred, the buried gage moved and the head relative to a reference reservoir located on the west wingwall was measured.

The settlement gage is composed of three main parts- the transducer, the reservoir, and the tubing. The transducer is a sensing unit designed to provide continuous reading and be installed at the point of settlement measurement. The reservoir is at a fixed location on the wingwall at a higher elevation than the transducer. The tubing supplies fluid and air needed to read the transducer using the Pressure Indicator. Settlement is measured when a balance of the hydraulic head of the ethylene-glycol and regulated pneumatic pressure from the pressure indicator is achieved. Readings are in units of psi head that can be converted to a linear vertical distance.

The settlement gages were placed in 2 ft by $2 \mathrm{ft}(0.61 \mathrm{~m}$ by 0.61 m$)$ holes (Figure 4) and covered with sand. Excess tubing was laid in the hole to provide extra length during settlement. Inside the backfill area, the tubing was placed in a plastic conduit that ran from the centerline settlement gage to the offset gage, to the west wingwall, and then up to the junction box.

On the outside of the west wingwall, locking steel security boxes cover a terminal

Figure 4. Amplified Liquid Settlement Gage (ALSG)
box and tubing from the settlement gages and pressure cells. The terminal box houses labeled connections to the instrument tubing for access with the Pressure Indicator. This terminal box was placed directly above a plastic conduit that leads to the inside of the wingwall to the junction box. From there, the tubing for the amplified liquid settlement gages and total pressure cells splits to reach its respective instrument.

The Pressure Indicator is a portable device the size of a small suitcase used to measure settlement from the amplified liquid settlement gages and total lateral earth pressure from the total pressure cells. It contains a supply of nitrogen used as the controlled air pressure source for the input connections of the settlement gages and pressure cells. All readings are taken when the flow meter in the Pressure Indicator reads 0.1 SCFH (standard cubic ft per hour). A flow meter is also used for hookup to the outlet side of the instrument being read to confirm a continuous flow of air from the Pressure Indicator to the measuring device and back to the Pressure Indicator. This ensures proper air flow for accurate readings. A digital liquid crystal display pressure gage measures applied pressure which is then recorded onto data sheets. Figure 5 is a photograph of the Pressure Indicator.

Piezometers

While settlement gages and pressure cells were installed before backfill placement, instrumentation for the water pressure, lateral movement, and additional settlement were installed after each backfill was completed. One open-tube piezometer

Figure 5. Pressure Indicator (9)
was installed on the centerline in each experimental backfill $12 \mathrm{ft}(3.7 \mathrm{~m})$ from the abutment wall to depths of $40 \mathrm{ft}(12.2 \mathrm{~m})$. PVC pipe with $1.5 \mathrm{in} .(3.8 \mathrm{~cm})$ diameter was used for the riser. Groundwater depth was measured by placing a water level indicatordown the tube attached to a calibrated cord. When the tip of the indicator reached water, a simple electrical circuit was formed that triggered an alarm to sound. Using the alarm, the depth of the ground water was measured by the calibrated cord and recorded.

Inclinometer Casing with Telescoping Couplings

To measure lateral movement, three inclinometer casings were installed at the end of each bridge. One, in the abutment wall itself on centerline, was installed before the wall was poured. The other two inclinometers were installed on the centerline and 10 $\mathrm{ft}(3.05 \mathrm{~m})$ west of centerline $9 \mathrm{ft}(2.7 \mathrm{~m})$ from the back of the abutment wall in the backfill after construction. Figure 6 shows the installed inclinometers and piezometer. The blue inclinometer casings are $2.75 \mathrm{in} .(7.0 \mathrm{~cm})$ diameter tubes that extend to depths ranging from 50 ft to $58 \mathrm{ft}(15.2 \mathrm{~m}$ to 17.7 m$)$ as noted in Appendix B .

Both lateral movement and settlement data were obtained from these inclinometer installations. For lateral movement, the casing is designed for an inclinometer probe with four grooves spaced 90° apart on the inside of the casing. The inclinometer probe is a stainless steel cylinder 1 in. $(2.54 \mathrm{~cm})$ in diameter and $2 \mathrm{ft}(0.61 \mathrm{~m})$ in length housing two accelerometers. The accelerometers were positioned at right angles of one another

Figure 6. Installed Inclinometer Casings and Open Tube Piezometer
and measured tilt in degrees with reference to the vertical. To take a reading, a pulley assembly was attached to the top of the inclinometer casing to facilitate the lowering and raising of the inclinometer attached to a control cable. Figure 7 shows the inclinometer with the control cable and pulley assembly. Spring loaded wheels on the outside of the inclinometer guided the device as it was pulled by hand upward through the tubing and stopped every $2 \mathrm{ft}(0.61 \mathrm{~m})$ for a reading. The probe was next rotated 180° to measure movement in the other two directions so that movement in two perpendicular planes was measured, one perpendicular to the abutment wall (plane A) and one parallel to the abutment wall (plane B). When readings were taken, data were recorded by a DataMate, an electronic memory device attached to the inclinometer.

The data were analyzed using the DataMate Manager and Digi-Pro software on a personal computer. For analysis, movement within the two planes was detected by comparison of any data set with the initial readings taken at the time of installation. Ao and Bo are designations for the positive direction for planes A and B , respectively. The Ao direction always is toward the plane formed by the back side of the abutment wall while Bo is always 90° to the right of Ao. Figure 8 shows the orientation. So when standing over the backfill inclinometer casing, Ao direction is facing the abutment wall. When standing over the abutment wall inclinometer casing, Ao is toward the backfill. The backfill Ao direction for abutments A2, B2, and C2 is south, while the backfill Ao direction for B 1 and C 1 is north. Referenced from the bridge or abutment wall, the Ao direction at $\mathrm{A} 2, \mathrm{~B} 2$, and C 2 is north, while the Ao direction for B 1 and C 1 is south.

Settlement was the other parameter measured with the inclinometer casings set in

Figure 7. Inclinometer. Pulley Assembly, and Control Cable (9)

Figure 8. Ao and Bo Orientation (9)
the backfill (the casing in the abutment wall was read for lateral measurement only). As can be seen in Appendix B, telescoping joints were installed at different depths along the backfill inclinometer casings. A specially designed hook was lowered down the casing and pulled upward. As it was pulled up, it caught the bottom lip of the top piece of casing in the telescoping coupling. The hook was attached to a measuring tape that allows depth readings with reference from the top of the casing. As distances from one joint to the other changed, isolated strata of settlement were delineated.

Surface Settlement Points

Settlement is measured yet another way with the surface settlement points. These points will be installed on the surface of the asphalt once paving is completed. Elevations at the time of installation will be recorded and then compared to subsequent elevations measured when readings for all the instruments are taken. The configuration of the surface settlement points will be a 4 point by 4 point grid with $5 \mathrm{ft}(1.5 \mathrm{~m})$ spacing. The configuration will run from the west wingwall to the centerline, and from the abutment wall $20 \mathrm{ft}(6.1 \mathrm{~m})$ away from the bridge.

Appendix B contains plan and profile drawings of as-built instrumentation of each backfill. Table 7 is a summary of the approach embankments and instrumentation.

Table 7. Backfill and Instrumentation Summary

South of Bridge A, Al- unclassified borrow (not considered in this study)
North of Bridge A, A2 - unclassified borrow (control section)
South of Bridge B, B1 - geotextile reinforced granular backfill
North of Bridge B, B2 - controlled low strength backfill
South of Bridge C, C1 - dynamically compacted granular backfill
North of Bridge C, C2 - flooded and vibrated granular backfill

	A1	A2	B1	B2	C1	C2	
Total Pressure Cells in Centerline Abutment		3	3	3	3	3	3
Walls							
Amplified Liquid Settlement Gages beneath approach embankment	Centerline	1	1	1	1	1	1
Inclinometer casing in abutment wall	Offset	0	1	1	1	1	1
Inclinometer casing with telescoping couplings thru approach embankment	Centerline	1	1	1	1	1	1
Open Tube Piezometer thru embankment centerline	Offset	0	1	1	1	1	1
Surface Settlement Points	16	16	1	16	1	1	

Backfills

The primary aim of this research project was to monitor the performance of the four experimental backfills and compare their performance to one another and an identically instrumented control section. The following is a discussion of the Spring 1995 construction of the five backfills involved in this research.

Drainage

Drainage construction for each of the backfills followed standard ODOT specifications. Consistent drainage system construction should eliminate drainage as a factor in the cause of "the bump at the end of the bridge" and maintain the validity of the data. A perforated PVC pipe was buried along the inside base of the abutment wall and covered with granular material. A solid PVC pipe connected the east end of each perforated drain pipe and ran through the base of the east wingwall and down the embankment where it drained beneath the bridge. For A2 and B2, the pipe was covered with coarse pipe underdrain material which was covered with filter sand. Since the other trial sections used granular material, the PVC pipe cover was all coarse pipe underdrain material, with no filter sand material.

North of Bridge A, A2

The backfill north of bridge A was used as a control section for this research. The
method of construction was not specified to represent a typically constructed backfill. The contractor was to use unclassified borrow and achieve the specified densities.

On Thursday, April 27, backfilling began. The initial method of compaction the contractor used was inadequate. At first, a cube of concrete with side dimensions of approximately $4 \mathrm{ft}(1.2 \mathrm{~m})$ was dropped from heights of $5 \mathrm{ft}(1.5 \mathrm{~m})$ as a sort of dynamic compaction. Density requirements were not met. The next day, compaction was successful using a Case 1150C tracked front end loader with a full scoop and simply driving over the $1 \mathrm{ft}(0.3 \mathrm{~m})$ lifts as shown in Figure 9. The loader passed over the backfill twice, once in a direction parallel to the abutment wall and once parallel to the centerline. The area approximately $2 \mathrm{ft}(0.6 \mathrm{~m})$ away from the walls was compacted using a walk behind pad vibrator. The following Monday was a rain day and work resumed on Tuesday, May 2. Because of a series of rain days, the backfill compaction was finally completed on Wednesday, May 10, with a construction time of 4 days and a cost of $\$ 1500$.

South of Bridge B, B1

Behind the south abutment of Bridge B a geotextile reinforced wall was constructed. This technique was chosen because of its ability to support its own weight. Tension on the folded portion was resisted by the pressure of the overlying lift, creating essentially a free standing structure supported by its own weight. Theoretically this would keep all lateral stress from the abutment walls and both wingwalls. Settlement

Figure 9. Compaction of Control Section, Al
was minimized by densification of each lift assuring a well-compacted backfill.
Preliminary steps were required before the non-woven geotextile could be laid. First, the excavation had to be level and the $5: 1$ incline towards the south had to be defined. A base lift of granular material was placed to be a level and densified base for the geotextile wall. Then, as shown in Figure $10,4 \mathrm{ft} \mathrm{X} 8 \mathrm{ft} \mathrm{X} 2 \mathrm{in} .(1.2 \mathrm{~m} \times 2.4 \mathrm{~m} \times 5.1$ cm) panels of collapsible honeycomb cardboard were wrapped with plastic to be longitudinally attached to the abutment and wing walls. Steel rods used for the reinforcement of concrete ("rebars") were stuck into the ground at the base of the panels used to keep them against the wall. These bars were removed as the backfill was placed. At first, only the bottom row of spacers was set with the second row to be set as construction of the geotextile wall progressed upward. The panels were left in place and will be collapsed prior to paving by wetting the cardboard. When collapsed, space between the walls and the face of the geotextile structure will allow tension to further develop and improve the free-standing characteristics of the structure. Once the excavation was detailed, the base layer placed, and the first row of wrapped honeycomb cardboard spacers were set, construction could begin.

Construction of the south of bridge B geotextile reinforced granular backfill began on Monday, May 22, and consisted basically of repeating five steps for each of the eight lifts: lay the textile, place and spread the sand, water, compact, and fold over the flaps. Figure 11 shows the placement. Laying the geotextile was similar to laying carpet. Rolls of textile 12 ft (3.7 m) wide were rolled in the direction perpendicular to the face of the wall (north to south). Excess fabric (approximately $6 \mathrm{ft}(1.8 \mathrm{~m})$) was temporarily

Figure 10. Wrapping of Cardboard Spacing for Geotextile Reinforced Backfill, B1

Figure 11. Layout of Geotextile at B1
attached to the abutment and wing walls to later be folded back onto the granular material. This proved to be somewhat of a challenge. At first. duct tape was used but would be inadequate by not sticking to the cool, damp concrete abutment wall for more than 15 minutes. By the fifth lift, wires were used along with the tape by sticking through the fabric and attaching to rebar or other available anchors. The width of the backfill along with the excess required for construction of the wall required that a total of four strips of textile had to be placed. Overlap seams were chosen instead of sewn ones. These 3 ft to $6 \mathrm{ft}(0.91 \mathrm{~m}$ to 1.8 m$)$ overlaps helped to create a strong seam through friction. Since the backfill area was about 40 ft wide (39 ft 8 in . or 12.1 m), the fourth strip overlapped much more than the $2 \mathrm{ft}(0.61 \mathrm{~m})$ minimum. Shovelfuls of granular backfill were placed near the edge of the fabric to help keep the honeycomb cardboard and the fabric from blowing in the wind.

Next, the sand was placed using a tracked front end loader and a bulidozer occasionally. The front end loader dumped sand from the south to the north to avoid direct contact to the geotextile by the machinery. While the loader was operating, five men with concrete spreaders and shovels spread the material. Once all the material was placed, a total of six men distributed the material to create a $12 \mathrm{in} .(30.5 \mathrm{~cm})$ thick lift.

Compaction with a walk behind vibrator followed. The weather had been rainy during the week and the sand was already somewhat moist, but to reach saturation extra moisture was applied using a water truck. A five horsepower walk behind pad vibrator achieved adequate densities with one, or sometimes two, passes. Density readings were taken with a Troxler nuclear density/moisture gage. After density was achieved, a small
mound descending away from the wall was pushed up using concrete spreaders around the perimeter of the three walls. The flaps were then brought down from hanging on the walls and laid on top of this grade as seen in Figure 12.

This process continued until eight lifts were completed on Thursday, June 1.
With an average of four men for spreading and the equipment mentioned, completion took 104 man-hours. The time for each lift gradually increased since the area of the lift increased with the slope of the backfill volume. The estimated cost was approximately $\$ 25,000$ for installation over a 5 day period.

North of Bridge B, B2

Controlled low strength material (CLSM) backfill was placed behind the north abutment wall of bridge C . This backfill supports itself since the fill acts like a single unit upon curing. Self -support theoretically eliminates lateral wall stress and the relatively high strength of $300 \mathrm{psi}\left(21.6 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ for base materials will help reduce settlement.

Construction of the CLSM approach embankment was simple and fast. First, the excavation was cleaned out and the faces of the two exposed pressure cells covered with plastic for protection (the lowest pressure cell was covered with the granular drainage material as was the case with all four test sections). Then forms were built on the north side of the fill area. The contractor built the forms so that the outside corners of the fill

Figure 12. Folding Over the Geotextile to Form the Face of the Wall at B1
were deeper than the rest at the edge for strengthening. Excavation and form work construction took 8 man-hours total.

Pouring the backfill involved ready-mix concrete trucks backing up to the forms and releasing the backfill material down the chute directly into the excavated volume. Two trucks were able to simultaneously unload. Twenty-three loads of nine cubic yards each were dumped for a total of 207 cubic yards $\left(158.3 \mathrm{~m}^{3}\right)$ in 4.5 hours on Friday, May 12. Figure 13 shows the filling taking place. Besides pouring, the only labor involved was using a vibrator near the abutment wall and magnesium concrete leveler attached to extension rods. Total time for this construction was 2 days at a cost of $\$ 14,560$.

South of Bridge C, C1

Dynamically compacted granular backfill was placed at the south abutment of bridge C. Dense and confined sand will have high shear strength and will approach behavior of single, solid mass. With effective densification, both settlement and lateral earth pressures were minimized.

The construction began on Friday, May 12, and finished on Thursday, May 18.
Lifts of granular backfill $2 \mathrm{ft}(0.6 \mathrm{~m})$ thick were spread and then sprayed with water. Then a tracked crane dropped a $4 \mathrm{ft}(1.2 \mathrm{~m})$ cube of concrete as seen in Figure 14. The weight of the cube was estimated at 4 tons (3629 kg). It was dropped from heights of 8 ft $(2.4 \mathrm{~m})$. The drop configuration was from the edge of the wing wall to the center and from the abutment wall back. Impact areas overlapped half of the previous impact. This

Figure 13. Pouring of Controlled Low Strength Backfill at B2

Figure 14. Dynamic Compaction of Cl
procedure followed through the next three lifts. Control of the drop height and pattern improved after the first lift was completed which resulted in more consistent heights closer to the specifications and efficient overlapping. A walk behind pad vibrator densified the perimeter and then densities were taken. If density was sufficient, material for the next lift was brought in with a front-end loader.

One main concern with this method was the movement of the abutment and wing walls, so there were no drops closer than $2 \mathrm{ft}(0.61 \mathrm{~m})$ from the walls. Transits set up about $100 \mathrm{ft}(30.5 \mathrm{~m})$ from the backfill focused on wall marking to detect lateral movement. None occurred until the second lift while movement was greatest during compaction of the third and fourth lifts. Total movement of the abutment wall was 0.01 $\mathrm{ft}(0.305 \mathrm{~cm})$ away from the backfill (north), while the west wingwall moved 0.01 ft $(0.305 \mathrm{~cm})$ west and the east wingwall moved $0.02 \mathrm{ft}(0.610 \mathrm{~cm})$ east.

Cost for south backfill of bridge C dynamic compaction was $\$ 15,000$ over a 5 day period. Workers included a crane operator and a spotter. Equipment used was a crane, front end loader, walk behind pad vibrator, and three transits.

North of Bridge C, C2

The north abutment of bridge C was backfilled with granular material, then flooded and vibrated. The same reasoning was used here as with the south side of bridge C in that as sand density increases, so will its shear strength and bearing capacity.

Figure 15 shows the construction that began on Friday, May 12, with the

Figure 15. Flooding and Vibration at C2
placement of the first $4 \mathrm{ft}(1.2 \mathrm{~m})$ lift. First, the granular material was placed and spread with a front end loader. Then the lift was flooded with water from a water truck. A hand held concrete vibrator was inserted to the approximate depth of the lift at approximate 1 ft $(0.6 \mathrm{~m})$ spacing over the whole backfill area to create a $1 \mathrm{ft}(0.6 \mathrm{~m})$ grid pattern.

Densities were then checked using a Troxler density/moisture gage. The first round of testing after completion of the first lift revealed that the densities were too low. On the following Monday, vibration of the first lift was repeated and all subsequent densities were sufficient. The second $4 \mathrm{ft}(1.2 \mathrm{~m})$ lift was placed and the backfill was completed on Tuesday, May 16.

Equipment used was one loader, one vibrator, and a water truck. The construction time was 2 days and the cost was estimated at $\$ 16,000$.

Summary

Table 8 shows a summary of the cost and time of construction for each of the backfills. Construction times are approximate due to the variation in the rate of productivity of the workforce and a "learning curve" for the new and different techniques. This unfamiliarity with certain construction methods was to be expected and was most prevalent on $B 2$, the geotextile reinforced granular backfill, since it was definitely the most unique and labor intensive. Construction time could have been reduced at $C 2$, the flooded and vibrated backfill, by eliminating the second vibration of the first lift.

Table 8. Cost and Time of Construction Summary

	Quantities	Estimated Cost	Construction Days	Equipment
A2	$300 \mathrm{yd}^{3}$	$\$ 1,500$	4	Loader, walk-behind pad vibrator
B1	375.2 yd 3 fill $2227 \mathrm{yd}^{2}$ textile	$\$ 25,000$	5	Loader, walk-behind pad vibrator, concrete spreaders, water truck
B2	$182 \mathrm{yd}^{3}$	$\$ 14,560$	2	Concrete trucks, concrete vibrator
C1	$305.9 \mathrm{yd}^{3}$	$\$ 15,000$	5	Crane, concrete block, walk- behind pad vibrator, water truck
C2	$305.9 \mathrm{yd}^{3}$	$\$ 16,000$	2	Water truck, concrete vibrator

CHAPTER 4

MATERIALS TESTING

This chapter discusses the materials testing conducted for the Salt Fork River bridge replacement project on US 177 in Noble and Payne counties in Oklahoma. Three categories of testing took place: on-site quality control/quality assurance (QC/QA) testing, laboratory testing, and the in-situ Cone Penetration Testing following construction.

On-Site QC/QA

During construction, QC/QA testing was performed by both ODOT inspectors and OSU research staff. A Troxler nuclear density gage was used to measure density, ensuring adequate compaction of the lifts for all backfills except for B 2 , where controlled low strength material backfill was placed.

The granular backfills ($\mathrm{B} 1, \mathrm{C} 1$, and C 2) were all tested during construction using the nuclear density/moisture gage and obtaining percent Proctor compaction values based on Standard Proctor tests conducted by ODOT. Proctor dry density values inherently do
not appropriately describe the in-place density of granular backfill. For approaches C1 and C2, the density was reaffirmed using the electric cone penetration test (CPT), to be discussed later in this chapter. But in approach B1, only a nuclear gage was used, and tests were run just as they would be run in fine-grained materials, with a percentage Proctor specification.

Test specifications should not be the same for coarse-grained and fine-grained materials. To measure density of granular materials, the Relative Density was used. Maximum and minimum index density values were obtained in the OSU soils laboratory and then used in the Relative Density formula (10):
$D_{R}=\frac{\left(\gamma_{\text {field }}-\gamma_{\text {min }}\right)}{\left(\gamma_{\text {max }}-\gamma_{\text {min }}\right)} * \frac{\gamma_{\text {max }}}{\gamma_{\text {field }}} * 100$
where:
$D_{R}=$ Relative Density,$\%$
$\gamma_{\text {field }}=$ Field Density
$\gamma_{\text {min }}=$ Minimum Index Density
$\gamma_{\max }=$ Maximum Index Density
to compute percentage relative density. Values between 0 and 33% indicate "loose" soils, 34% to 67% indicate "medium dense" soils, and values greater than 67% indicate "dense" soils (10). CPT soundings were conducted through the backfill materials on both ends of bridge C and confirmed adequate densities. The Proctor test performed by ODOT for the south of bridge B gave a maximum dry density value of 115.6 pcf (18.2 $\mathrm{kN} / \mathrm{m}^{3}$). The measured index densities gave a relative density of 42%, the lower end of
the "medium dense" range. Since this is the maximum value used in the Proctor density specification, lifts obtaining 95% or more of the $115.6 \mathrm{pcf}\left(18.2 \mathrm{kN} / \mathrm{m}^{3}\right)$ density would meet specifications. This specification allows a density of $109.8 \mathrm{pcf}\left(17.3 \mathrm{kN} / \mathrm{m}^{3}\right)$, which yields a relative density value of 2%, a very loose value. The base layer was placed with a relative density of 1% and the eight lifts had relative density values from 19% to 32%. All measured density values yield relative density values below 33%, classifying them as "loose".

The depth of compaction is also a limit for the common nuclear gage. The probe of the nuclear gage was inserted to depths of 6 in . (15.2 cm), giving accurate data for depths short of the lift thickness of backfills in C 1 and C 2 . The cone penetration test overcame this limit as it continuously tested to depths greater than $25 \mathrm{ft}(7.6 \mathrm{~m})$.

OSU Soils Laboratory Testing

Laboratory soil tests were performed at OSU to ensure consistency with ODOT data and compliance with the project specifications. Both the south and north of bridge A approach embankment materials underwent Standard Proctor (ASTM D-698) and Atterberg Limit (ASTM D-4318) tests. These materials were low plasticity with the south abutment backfill classified as CL, low plasticity clay, and the north abutment backfill as SM, silty sand. South of bridge B, eight lifts of SP material were placed. OSU performed relative density tests (ASTM D-2049) to determine maximum and minimum index densities so that relative densities in the field could be determined. No
soils tests were conducted north of B, where the CLSM was placed. Lab tests for both ends of bridge C were performed. Maximum and minimum index density tests were performed as well as classification testing of the backfill material. Each end of bridge C is backfilled with SP material, poorly-graded sand. Appendix C contains laboratory test results.

ODOT CPT Testing

To ensure final construction quality, ODOT performed electric cone penetration tests on both approach embankments of bridge C. On each approach embankment three CPT's were run- east, center, and west. The east and west soundings extended through the approach embankment while the center sounding extended to the bedrock. C 1 tests gave relative density results of 90% or greater for the depth of the experimental backfill (the only exception being the surface of the backfill which had relative density values of 70%). At C2, the tests showed relative density values of above 70% to depths of the trial backfill.

The CPT test also gave phi angle, ϕ (angle of internal friction), estimates for the material. This allowed quantification of the shear strength of the soil which could be used to estimate total lateral earth pressure exerted upon the wall. For Cl, ϕ of the backfill ranged from 46° to 48° for the bottom $2 \mathrm{ft}(0.6 \mathrm{~m})$ of the fill, and greater than 48° for the rest. C 2 had lower ϕ results. The top $2 \mathrm{ft}(0.6 \mathrm{~m})$ gave readings greater than 48°
and the middle of the fill had values of 46° to 48°. Toward the bottom, ϕ values of 40° to 42° were determined.

CHAPTER 5

DISCUSSION OF RESULTS

All instrumentation but surface settlement points were installed and readings are continually taken. Cost, time of construction, and performance are the criteria for making a final recommendation about performance and can only be accurately done with at least two years worth of data. Preliminary observations and comments will be made based on the performance data from the first 7 months. Preliminary findings are discussed and the conclusion presents a case for continued data collection.

Performance To Date

Performance of the approach backfills through December 1995 was evaluated.
Parameters measured were lateral earth pressure against the abutment wall, lateral movement of the backfill and abutment wall, settlement, and pore water pressure. These parameters are discussed in the following paragraphs.

Lateral Earth Pressure

The pressure exerted against the abutment walls was measured by the total pressure cells in units of pounds per square inch. For comparison with measured values, theoretical Rankine values were computed for approaches $\mathrm{A} 2, \mathrm{~B} 1, \mathrm{C} 1$, and C 2 . The Rankine formula for lateral stress against a retaining structure is (11)

$$
\begin{align*}
\sigma_{\mathrm{a}} & =\mathrm{K}_{\mathrm{a}} * \gamma * \mathrm{H} \tag{2}\\
& \text { where: } \\
\sigma_{a} & =\text { active lateral earth pressure against a retaining structure at depth } H \\
K_{a} & =\text { Rankine coefficient for active earth pressure } \\
= & \tan ^{2}\left(45-\frac{\phi}{2}\right) \\
\phi & =\text { internal angle of friction } \\
\gamma & =\text { dry density } \\
H & =\text { depth of interest. }
\end{align*}
$$

Lateral earth pressure at rest was also calculated using the same formula as above, but replacing K_{a} with K_{O} and, according to Jaky, is equal to $1-\sin \phi(11)$. Table 9 shows measured total pressure cell values and theoretical values using the Rankine formulas for active and at rest conditions. For A2, the ϕ angle of internal friction is estimated at 39°, taken from Schwidder's initial approximation (1). Total pressure cell readings vary from a maximum at the center cell with a pressure of $1.6 \mathrm{psi}\left(0.115 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ to a minimum at the top pressure cell $0.4 \mathrm{psi}\left(0.029 \mathrm{~kg} / \mathrm{cm}^{2}\right)$. B1 values are included to show the data collected. With higher readings for the bottom TPC, it appears the bottom cardboard

Table 9. Theoretical and Measured Total Lateral Earth Pressures

	A2	B1	B2	C1	C2
ϕ, in degrees	$39^{\text {a }}$	<30		$48.5{ }^{\text {b }}$	$46.7{ }^{\text {b }}$
K_{a}	0.2275	$0.3610^{\text {c }}$		0.1435	0.1576
$\mathbf{K}_{\mathbf{0}}$	0.3707	0.5305		0.2510	0.2722
γ, in pcf	$103.3{ }^{\text {d }}$	111.3		$123.6{ }^{\text {e }}$	$122.8{ }^{\text {e }}$
H1, feet	2.19	1.86	1.55	0.96	0.96
$\sigma_{\mathrm{a}} 1, \mathrm{psi}$	0.4	0.5		0.1	0.1
$\sigma_{0} 1, \mathrm{psi}$	0.6	0.8		0.2	0.2
$\sigma 1$ measured, psi	0.5	0.2	0.5	0.5	0
H2, feet	5.19	4.86	4.55	3.96	3.96
$\sigma_{\mathrm{a}} 2, \mathrm{psi}$	0.8	1.4		0.5	0.5
$\sigma_{\mathrm{o}} 2, \mathrm{psi}$	1.4	2.0		0.9	0.9
$\sigma 2$ measured, psi	1.6	0.4	0	1.0	1.0
H3, feet	7.66	7.86	7.55	6.96	6.96
$\sigma_{\mathrm{a}} 3, \mathrm{psi}$	1.3	2.2		0.9	0.9
$\sigma_{\mathrm{o}} 3, \mathrm{psi}$	2.0	3.2		1.5	1.6
$\sigma 3$ measured, psi	1.5	6.0	0.7	2.5	2.7

a- from Schwidder (1)
b- weighted average from 0 to 8 feet depths from ODOT CPT tests c- ϕ assumed at 28°, from Bowles (7)
d- 95% of 108.7 pcf dry density from OSU Standard Proctor Test
e- average of field densities taken by OSU
σ_{a} - theoretical Rankine active lateral earth pressure
$\sigma_{\mathrm{O}^{-}}$theoretical Rankine lateral earth pressure at rest
H1-distance from top of subgrade to the center of the top TPC
H2- distance from top of subgrade to the center of the middle TPC
H3- distance from top of subgrade to the center of the bottom TPC
spacers are still intact. The column for B2 is incomplete because of the lack of ϕ values for the CLSM. The middle total pressure cell at B2 shows no lateral pressure exerted while the top and bottom cells register pressure values. For C 1 and C 2 , the ϕ angle used is an average of the top $8 \mathrm{ft}(2.4 \mathrm{~m})$ from the cone penetration test. Middle TPC measured values are close to the at rest conditions. Time plots of total lateral earth pressure are shown in Appendix D.

Possible reasons for total lateral pressure differences between the measured and theoretical values are numerous. Speculation can include the working condition of the cells and the readout equipment. At B1 the bottom cell value can be ignored until the cardboard is collapsed. As more data are collected, perhaps more understanding of differences like these could be understood.

Active total force was calculated for approach embankments $\mathrm{A} 2, \mathrm{C} 1$, and C 2 .
Quantities for the abutments are the same as used in the lateral pressure calculations. The
total force per running foot of wall was calculated using the formula (11)

$$
\begin{equation*}
P_{o}=\frac{1}{2} * K_{a} * \gamma * H^{2} \tag{3}
\end{equation*}
$$

where:
$\mathrm{P}_{\mathrm{o}}=$ force, pound per running foot of wall
$\mathrm{K}_{\mathrm{a}}=$ Rankine coefficient of active earth pressure
$\gamma=$ unit weight of the soil, pcf
$\mathrm{H}=$ height of wall, ft.

At A2, using the same values for density and ϕ angle as used for the lateral earth pressure calculations, P_{O} is $881 \mathrm{lb} . / \mathrm{ft}(1311 \mathrm{~kg} / \mathrm{m})$. At C 1 and C 2 , the same set of values was also used from the lateral pressure calculations giving of $562 \mathrm{lb} . / \mathrm{ft}(836 \mathrm{~kg} / \mathrm{m})$ at C 1 and $613 \mathrm{lb} . / \mathrm{ft}(912 \mathrm{~kg} / \mathrm{m})$ at C 2 .

Lateral Earth Movement

Lateral earth movement was detected by using inclinometer readings through September 1995 and analyzing the data with the Digi-Pro software. Plots of data from each abutment are shown in Appendix D. At A2 both backfill casings indicate positive movement in the A plane (southward in this case) while the abutment wall also shows positive movement. When comparing the abutment wall, offset, and centerline plots a match can be made between at least two of the plots showing similar magnitudes in the same direction. The three plots for $\mathrm{B} 2, \mathrm{C} 1$, and C 2 show the most consistent movements regarding direction. Magnitudes are low with typical values of 0.05 in . (1.27 mm).

Settlement

Settlement was measured by the amplified liquid settlement gages and the telescoping couplings of the inclinometer casings. Table 10 summarizes the data for both as of December 1995. The complete data are shown in appendix D.

Concerning the settlement gages, the centerline gage indicates more settlement
than the offset. Centerline settlement is greatest at A2 and least at C2. The backfills with the greatest differential settlement between the centerline and the offset are B2 and C2. with differences of $.16 \mathrm{ft} .(4.8 \mathrm{~cm})$ and $.115 \mathrm{ft} .(3.5 \mathrm{~cm})$ respectively. These values show trends of greater settlement along the centerline and are consistent with conventional vertical stress theory. Stresses are greatest in the center of a trapezoidal loading configuration, directly attributing to the increased deformation.

Table 10. Summary of Settlement

Liquid Settlement Gages

ΔH in feet

	A2	B1	B2	C1	C2
Centerline	.275	.202	.260	.250	.175
Offset	.180	.140	.100	.250	.060

Telescoping Couplings

Δ in Length (L) in feet

	A2		B1		B2		C1		C2	
	Centerline	Offset								
$\Delta \mathrm{L}_{2}$	-0.04	0.001	0.036	-0.01	-0.10	0.01	0	0.035	0	0.01
$\Delta^{\text {L }}$	0	0	0	0.01	0	0	0	-0.005	-0.085	-0.01
$\Delta \mathrm{L}_{4}$	0.09	0.001	0.002	0	0	-0.06	-0.05	0.075	0.005	-0.015

where:
$\Delta L_{4}=$ R4-R3 $=$ Settlement of Foundation Strata
$\Delta \mathrm{L}_{3}=\mathrm{R} 4-\mathrm{R} 2-\Delta \mathrm{L}_{4}=$ Settlement of Embankment Strata
$\Delta L_{2}=$ R4-R1- $\Delta L_{3}-\Delta L_{4}=$ Settlement of Experimental Backfill Strata
R1, R2, R3, R4= depth readings to telescoping couplings, 1 as the top coupling and 4 as the bottom coupling

The telescoping couplings provided a good indication of movement, but the hook method was not as reliable and accurate as the settlement gages. So, when analyzing the hook data, movements of thousandths of a foot cannot be reliable. Although the precision of the hook method may be doubtful, trends can certainly be detected. The largest deformation occurred in the foundation of A2 centerline, again consistent with vertical stress distribution theory. C1 offset shows the most total movement, with settlement in the trial backfill and foundation. One clear trend detected is the general lack of settlement in the embankment material below the experimental approach embankments. Abutment backfills B 2 and C 2 show cumulative negative movement (upward), raising questions about that particular set of data. Of the backfills with cumulative positive magnitude, B1 showed the least settlement and A2 showed the most.

Pore Water Pressure

The elevation of the water table corresponded to river depth fluctuations which were a function of rainfall amounts. Points in mid-June and the beginning of August 1995 reflect the large rainfalls recorded at those times, with the August rainfall attributed to the northward scour of the river just to the west of bridge A. Groundwater table elevations over time are shown in Appendix D.

Pore water pressure has played little role in the performance of the backfills.
During flood stage, the water table reached elevations near the original ground surface.

But, with the sandy foundation and embankment soils, deformation was primarily elastic, which was not effectively influenced by the pore water pressure.

Preliminary Findings

Evaluation of the experimental approach embankments was based on a simple ranking system. Cost, time of construction, and measured performance were the ranking categories. The backfill with the highest cost was B1, the geotextile reinforced granular backfill, at $\$ 25,000$. The rest of the experimental backfills were all between $\$ 14,000$ and $\$ 16,000$, while the control section cost the least at $\$ 1500$. For time of construction, B1 and C 1 ranked last in this category with 5 days required; B2 and C2 were the fastest with 2 days.

Evaluation of performance was more complicated, but was still a ranking process. A ranking system assigned the value 1 to the best performing backfill (the least amount of pressure, movement, or settlement) and 5 assigned as the worst performance. This system adequately reflects the relative performance of each backfill. Each experimental backfill received a ranking in the following performance sub-categories: total pressure cells, amplified liquid settlement gages, inclinometer plots, and telescoping couplings. These different instrumentation rankings were summed, which indicated the best overall performer with the lowest sum. For B 2 and C 2 , the telescoping couplings have cumulative negative values, so these sub-categories were removed from performance consideration. These final rankings and qualitative consideration of relative magnitudes
indicate B2, the controlled low strength material backfill, as the best performing trial abutment backfill/approach embankment to date.

Abutment C 2 , the flooded and vibrated backfill, achieved rankings close to B2. It showed the least telescoping coupling settlement among the backfills, but high movements in the inclinometer and a ranking of third in the total pressure cell readings kept it ranked overall below B2. Abutment B1, the geotextile reinforced granular backfill, showed good performance (an equal overall ranking to C2), but is by far the most costly and time consuming. All trial backfills performed better than the control section A2. Although abutment A2 did not always rank last in the categories, it was consistently ranked in the bottom half of the individual instrumentation rankings.

In the performance and time of construction categories, B2 achieved the highest ranking. In the cost category, qualitative judgment must be used. Although B2 shows the second to lowest cost, it is still almost ten times the cost of the control section at A2. Only an economical analysis involving research on the cost of the damage from differential settlement betweent the bridge and approach embankment could quantitatively determine the cost effectiveness of spending this extra amount during construction.

Conclusion

In order for these preliminary findings to be confirmed, more observation is required. Data collection through years of use is desirable to allow full consideration of
performance over time, including sustained traffic loading. As the Oklahoma University study (2) points out, generally the older the structure, the more likely differential settlement will occur. Although the "bump at the end of the bridge" is a problem among highway departments throughout the United States, practical studies to this extent are rare if not non-existent. The final results of this study will help Oklahoma, its highways, and taxpayers. Also, recognition will be gained by ODOT, OSU, and the entire state of Oklahoma upon completion and publication of this innovative and practical research. The continued collection of data over at least the next two years is imperative and will help to maximize the potential of this important study.

REFERENCES

1. Schwidder, Arthur J., Estimation of Stress and Deformation Parameters at Salt Fork River Bridges on US 177, Oklahoma State University, 1994.
2. Laguros, Joakim G., Zaman, M. M., and Mahmood, I.U., Evaluation of Causes of Excessive Settlements of Pavements Behind Bridge Abutments and Their Remedies-Phase I, ODOT Study 84-12-2, ORA 155-857, Oklahoma Department of Transportation, Oklahoma City (1986).
3. Soil Conservation Service, Noble County Soil Survey, US Department of Agriculture, 1970.
4. Soil Conservation Service, Kay County Soil Survey, US Department of Agriculture, 1974.
5. Nevels, Jim, Bridge Foundation Investigation Project No. BRF-52B(202), State Job No. 00127(04), Structures A, B, and C. Noble and Kay Counties, Project No. 44750, Oklahoma Department of Transportation, Oklahoma City (1994).
6. Robertson, P. K., and Campanella, R. G., "Interpretation of Cone Penetration Tests, Part I: Sand", Canadian Geotechnical Journal, Vol. 20, no. 4, Ottawa, Nov. 1983, pp. 718-733.
7. Bowles, Joseph E., Foundatıon Analysis and Design. Fourth Edition, McGraw-Hill, Inc., New York (1988), pp. 84, 272.
8. American Association of State Highway and Transportation Officials, Manual on Subsurface Investigations, Washington, DC (1988), pp. 133.
9. Slope Indicator Company Product Literature, "Pressure Cells," "Pneumatic Pressure Indicators," "Inclinometers," Seattle, Washington, 1993.
10. Hausmann, Manfred R., Enginecring Principles of Ground Modification, McGrawHill, New York (1990), pp. 77.
11. Das, Braja M., Principles of Geotechnical Engineering, Third Edition, PWS, Boston (1994), pp. 394, 395.

APPENDIX A

SPT, CPT, AND DMT SOUNDINGS FROM
GEOTECHNICAL INVESTIGATION

T Eil. APPKS. Bridge A . Hetern rem agers seno 195 th

K(EMARKS: Bride A: M. Man

FIEMARKS: Oridge B. M .ABu

JILATOMETER DATA LISIIMG \& INTERPRETATION GBASED OM THE ! FBA DILATOKETER MANUNL, 300T
TO1 FILE: MOELE CD. US 177
SCATIOM: MEAR CPT-S
KOG. ZY : DEAN. SESSIOMS. I PARTY
NALL. BY : OEAM

SNDG. MG. VAT-1
FAGE
FMGE
SNOG. DATE: $10 / 27 / 93$
ANK. DAIE: $11 / 5 / 93$

-WM YSIS PARNMETERS:

 SURF.ELEV. $=274.56$ aWATER DEPTH WAIER DEPTH $=4.08 \mathrm{M}$
SP GR MATER $=1.000$ SAI SU $10=0.00$ shit coxversions:

0.50	59.32	3.05	0.00	517.									2166.	SILTY SAMP
1.00	14.76	2.56	0.00	234.	1.54		82.7	40.7	0.31	43.9	3.15	17.7	$\bigcirc 70$.	SILTY SAKD
1.50	7.40	3.59	0.00	250.	i). 83		60.8	4.3	1).46	41.8	1.41	5.2	599.	SAM
2.00	4.81	2.39	0.00	145.	0.65		44.8	41.4	0.60	39.1	1.48	3.0	205.	SILTY SAND
2.50	5.25	3.02	0.00	249.	0.71		55.8	41.2	0.75	39.2	1.60	3.5	43.	SILTY SAMD
¿.20	5.93	3.79	0.00	390.	9. 72		73.1	41.6	2.91	40.0	1.99	3.6	768.	SAMD
3.50	5.24	2.36	0.10	330.	0.70		82.3	41.7	1.06	40.0	3.2!	3.5	037.	SILTY SAMD
-. 00	4.74	2.59	0.00	312.	0.65		89.2	+1.2	1.22	*). 0	2. 15	2.9	571.	SILTY SAMD
4.50	5.91	2.79	0.00	450.	0.78		107.3	41.5	i. 31	40.4	3.37	$\pm .3$	715.	SILTY SAMD
5.40	4.17	2.67	0.00	322.	0.67		d4.1	38.4	1.35	37.3	3.41	8.9	554.	SILTY SAMD
5.50	$3.2 \overline{4}$	3.47	0.00	342.	0.18		75.1	41.1	1.46	40.1	1.36	1.6	520.	SAMD
0.v0	4.08	0.57	0.00	7%.	1.00	0.49					2.79	3.0	117.	SILTY CLAY
0.50	4.65	1.98	0.00	308.	0.79		54.6	36.2	1.53	35.2	1. 68	3.8	550.	SILTY SAMD
$\bigcirc .00$	2.15	1.81	0.00	13 s.	1). 41		25.8	31.1	1.53	30.0	1.76	1.7	142.	SILTY SAMD
7.50	3.00	2.00	0.00	219.	0.62		40.9	35.0	1.65	36.1	2.26	2.2	302.	SILTY SAMD
9.00	1.75	3.77	0.00	250.	0.47		45.4	34.9	1.72	34.1	1.27	1.2	C47.	SAMD
8.50	1.97	1.37	0.00	10 d.	3. 40		79.4	18.6	1.84	38.0	1.12	1.0	97.	SANDY SILT
9.00	5.19	2.68	0.00	010.	0.46		191.4	-2.8	1.97	42.4	3.51	3.0	1174.	SILTY SAMD
9.50	3.78	0.53	0.00	85.	0.94	0.59					3.29	2.7	128.	SILTY CLAY
10.00	2.93	3.44	0.00	+67.	0.43		138.5	41.3	C. 10	40.9	1.02	1.3	070.	SAMC
. 3.30	4.85	3.11	7.00	677.	0.51		265.1	44.5	2.20	44.2	2.68	ci. 1	1268.	SILTY SAND

EMARKC: Bridge C.S.AbIA

$\dot{(M)}$	THALST (KGF)	$\dot{(\dot{A} \dot{R})}$	$\stackrel{B}{(B A R)}$	$\stackrel{C}{C}$	OA （BAB）	$\begin{aligned} & D 8 \\ & \text { (BAR) } \end{aligned}$	$\begin{aligned} & \text { こクRMG } \\ & \text { (BAR) } \end{aligned}$	$\begin{aligned} & 2 / 20 \\ & \text { (BAN) } \end{aligned}$	2HHI （BAR）	IMCAL （BAR）	$\begin{aligned} & \text { F0 } \\ & \text { (BAR) } \end{aligned}$	P1 （BAM）	FP （BAB）	$\begin{array}{ll} 10 \\ \text { (BAR) } \end{array}$	ainra （T／M3）	$\operatorname{siv}_{(\mathrm{BAR})}$
＋4440	＊＊4st	\＄464t	4854＊	694＊＊	$t 464$	4814t	4464t	444t4	\＄2est	\＄4404	titet	Heth	＋4＊4	t＋404t	4－048t	4t424
0.50	2090.	C． 81	10.10		0.27	0.38	10.00	0.04	0.25	0.04	c． 76	9.51		0.000	1.90	9.082
1.00	799.	2.28	4.41		0.27	0.38	10.00	0.014	0.25	0.04	2.48	4.03		0.000	1.70	0.170
1.50	1071.	2.18	6.17		0.27	0.38	10.00	0.04	0.25	0.04	2.28	5.77		0.049	1.70	0.205
2.00	693.	1.42	3.03		0.27	0.38	10.00	0.04	4.25	0.04	1.06	2.65		0.098	1.60	0.237
2.50	277.	1.55	2.91		0.27	0.38	10.00	0.04	0.25	0.06	1.78	2.53		0.147	1.20	0.265
3.00	1234.	1.49	5.34		0.27	0.38	10.00	0.04	0.25	0.04	1.00	4.96		0.196	1.20	0.300
3.50	428.	9.99	2.78		0.27	0.38	10.00	0.04	0.25	0.04	1.20	2.40		0.245	1.00	0.335
4.00	1293.	1.51	6.51		0.27	0.38	10.00	0.04	4． 25	0.34	1.56	0.13		0.294	：． 80	0.369
4.50	2 C 43.	3.42	12.80		0.27	0.38	10.00	0.04	0.25	0.04	3.26	$12 . \bar{c} 1$		6.343	1.70	0.411
5.00	4028.	－． 48	26.70		U． 27	0.38	10.00	0.44	－ 2.25	0.04	0.33	26.11		0.393	3.00	0.457
5.50	2753.	5.40	13.60		0.27	0.38	10.00	0.04	0.25	0.04	4.25	13.01		9．442	1.70	6． 544
2.10	1988.	3.98	12.10		0.27	0.38	10.00	0.04	U． 25	0.04	3.89	11.51		U． 491	．． 70	1）． 548
2.50	हो192．	3.41	11.50		0.27	0.38	1 l .00	0.04	0.25	0.04	3.32	10.91		1． 340	i． 70	0.592
7.00	1336.	c． 78	10.85		0.27	0.38	10.00	0.04	ن． 25	0.04	2.09	10.26		U． 589	1.90	\％，0．jo
7.50	2957.	4.71	15.90		0.27	0.38	10.00	9.64	1）． 25	0.04	4.46	15．31		1）．636	1.70	U．651
d． 00	1183.	3.39	9.45		0.27	0.38	10.00	0.14	0.25	19.04	3.39	9.07		1）． 1887	！．90	1）．725
8.50	4181.	4.67	18.95		0.27	0.38	10.00	0.04	6.25	9.14	$4 . \mathrm{E} 7$	13.36		9，736	－ 20	9.771
9.00	4894.	5.31	20.30		0.27	0.38	10.00	0.04	4.25	0.034	4.87	19.71		0.785	2.00	v．820
9.50	3875.	3.73	16.80		0.27	0.38	10.00	0.04	0.25	G．i＇4	3.39	10.21		i． 334	1.94	9．867
10.00	4588.	5.98	20.60		0.27	0.38	10.00	1）． 04	11.25	0.04	5.56	20.01		0.883	2.00	1， 714
10.50	c355．	4.11	14.20		0.27	0.38	10.00	0．04	0.25	0.04	3.92	13．61		9． 932	1.90	9．900
1.0	2039.	3.31	12.10		0.27	0.38	10.00	0.04	0.25	0.04	3.18	11.51		0.981	1.90	1.004
． 0	2396.	3.11	11.95		0.27	0.38	10.00	0.04	9.25	0.04	c． 98	11.36		1.030	1.70	1.6 .7
12.00	3161.	4.71	16.30		0.27	0.38	10.00	U． 04	0.25	0.04	－． 4.4	15.71		1.079	1.30	1.093
12.50	2059.	3.70	12.50		0.27	0.38	10.00	0.04	0.25	0.04	3.57	11.91		1.129	1.70	1.137
13.00	2167.	5.67	17.10		0.27	0.38	10.00	1）． 04	U．25	0.04	5.81	13.51		1.178	2.00	1.184
13.50	5200.	5.89	19.90		0.27	0.38	10.00	0.04	0.25	0.04	5.50	19.31		1.227	E．00	1.233
14.00	4079.	13.45	40.10		0.27	0.38	10.00	0.64	0.25	0.04	12.21	39.51		1．27\％	E．15	1.265
14.50	1183.	4.48	8.32		0.27	0.38	10.00	0．iv	4.85	4.04	4.59	7.74		1.325	！．90	1.8 .33
15.00	0016.	c）． 80	42.90		0.27	0.38	10.00	0.34	0.25	9.04	19.58	$4 \overline{C L} .21$		1.374	$\because 2$	1.380
15.50	2475.	çl．ous	50.10		0.27	0.38	10.00	0.04	U． 25	0.04	çu． 27	49.51			E．：V	i．${ }^{\text {a }}$
：5．70	7392.	＜j． 30	45.20		0.27	0.32	10.00	6．${ }^{\text {u }}$	\％．ट5	リ． 44	14.15	＋4．01		1.743	$\therefore \therefore \%$	1．455
Eid OF	SOUKDIM				IINTE	ERPRETE	SOIL	F＇RAME	TEES	OX NETT	PAGE，					

APPENDIX B

INSTRUMENTATION LOCATIONS

AS-BUILT

BACK OF WALL SECTION, SOUTH ABUTMENT WALL, BRIDGE A, AS-BUILT CONDITIONS

PLAN SECTION, SOUTH ABUTMENT WALL, BRIDGE A, AS-BUILT CONDITIONS

BACK OF WALL SECTION, NORTH ABUTMENT
WALL, BRIDGE A, AS-BUILT CONDITIONS

PLAN SECTION, NORTH ABUTMENT WALL, BRIDGE A, AS-BUILT CONDITIONS

\& CROSS SECTION, SOUTH ABUTMENT WALL, BRIDGE B, AS-BUILT CONDITIONS

BACK OF WALL SECTION, SOUTH ABUTMENT WALL, BRIDGE B, AS-BUILT CONDITIONS

PLAN SECTION, SOUTH ABUTMENT WALL, BRIDGE B, AS-BUILT CONDITIONS

BACK OF WALL SECTION, NORTH ABUTMENT WALL, BRIDGE B, AS-BUILT CONDITIONS

$\stackrel{\text { SCALE }}{0-5 E E T}$

PLAN SECTION, NORTH ABUTMENT WALL, BRIDGE B, AS-BUILT CONDITIONS

BACK OF WALL SECTION, SOUTH ABUTMENT WALL, BRIDGE C, AS-BUILT CONDITIONS

PLAN SECTION, SOUTH ABUTMENT WALL, BRIDGE C, AS-BUILT CONDITIONS

PLAN SECTION, NORTH ABUTMENT WALL, BRIDGE C, AS-BUILT CONDITIONS

APPENDIX C

OSU SOILS LABORATORY TEST RESULTS AND
B1 RELATIVE DENSITIES

Soils Laboratory Results

Bridge A
South Approach Embankment, Unclassified Borrow, Pit I
Liquid Limit
29.7\%

Plastic Limit
19.7\%

Plasticity Index $\quad 10.0$
\% - \#200 Sieve 85\%
Max. Dry Density $\quad 114.4$ pcf
Optimum Moisture Content 14.4\%
Classification CL, A-6
North Approach Embankment, Unclassified Borrow, Pit 2
Liquid Limit 20.67\%
Plastic Limit 17.9\%
Plasticity Index 2.7
$\%$ - \#200 Sieve 24\%
Max. Dry Density $\quad 108.7$ pcf
Optimum Moisture Content 13.6%
Classification SM, A-2-4

Bridge B

South Approach Embankment, Granular Backfill
Plastic Limit Non-Plastic
\% - \#200 Sieve 0.2\%
Min. Ave. Index Density 109.6 pcf
Max. Ave Index Density 125.1 pcf
Classification SP, A-1-b
North Approach Embankment, Controlled Low Strength Backfill
No Soils Tests Conducted

Bridge C

South Approach Embankment, Granular Backfill
Plastic Limit Non-Plastic
$\%$ - \#200 Sieve 0.3\%
Min. Ave. Index Density $\quad 109.7$ pcf
Max. Ave. Index Density $\quad 125.2$ pcf
Classification SP, A-1-b
North Approach Embankment, Granular Backfill

Plastic Limit	Non-Plastic
$\%-\# 200$ Sieve	0.4%
Min. Ave. Index Density	109.9 pcf
Max. Ave. Index Density	125.6 pcf
Classification	SP, A-1-b

Relative Densities at B1

Lift	Base	1	2	3	4	5	6	7	8
$\mathbf{D}_{\mathbf{R}}(\%)$	0.7	23	30	28	22	19	32	23	30

APPENDIX D

INSTRUMENTATION DATA

TOTAL PRESSURE CELL DATA (TIME PLOT) SOUTH ABUTMENT WALL., BRIDGE A

TOTAL PRESSURE CELL DATA (PROFILE) SOUTH ABUTMENT WALL, BRIDGE A

SETTLEMENT FROM AMPLIFIED LIQUID SETTLEMENT
GAGES (\&) SOUTH ABUTMENT WALL, BRIDGE A

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOT) SOUTH ABUTMENT WALL, BRIDGE A

TOTAL PRESSURE CELL DATA (TIME PLOT) NORTH ABUTMENT WALL, BRIDGE A

TOTAL PRESSURE CELL DATA (PROFILE) NORTH ABUTMENT WALL, BRIDGE A

SETTLEMENT FROM AMPLIFIED LIQUID SETTLEMENT
fiAGFC (CL) NORTH ABUTMENT WALL, BRIDGE A

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOT) OFFSET, NORTH ABUTMENT WALL, BRIDGE A

gROUNDWATER TABLE ELEVATION (TIME PLOT) NORTH ABUTMENT WALL. BRIDGE A

TOTAL PRESSURE CELL DATA (TIME PLOT) SOUTH ABUTMENT WALL, BRIDGE B

TOTAL PRESSURE, PSI

TOTAL PRESSURE CELL DATA (PROFILE) SOUTH ABUTMENT WALL, BRIDGE B

SETTLEMENT FROM AMPLIFIED LIQUID SETTLEMENT
GAGES SOUTH ABUTMENT WALL, BRIDGE B

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS (TIME PLOT) CENTERLINE, SOUTH ABUTMENT WALL, BRIDGE B

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOT) OFFSET, SOUTH ABUTMENT WALL. BRIDGE B

TOTAL PRESSURE CELL DATA (TIME PLOT) NORTH ABUTMENT WALL, BRIDGE B

TOTAL PRESSURE CELL DATA (PROFILE) NORTH ABUTMENT WALL, BRIDGE B

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOT) CENTERLINE, NORTH ABUTMENT WALL, BRIDGE B

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOT) OFFSET, NORTH ABUTMENT WALL, BRIDGE B

GROUNDWATER TABLE ELEVATION (TIME PLOT) NORTH ABUTMENT WALL, BAIDGE B

total phessure cell data (rime plot) south abutment wall. bridge c

TOTAL PRESSURE, PSI

TOTAL PRESSURE CELL DATA (PROFILE) SOUTH ABUTMENT WALL, BRIDGE C

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOT) CENTERLINE, SOUTH ABUTMENT WALL, BRIDGE C

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS
(TIME PLOTI OFFSET, SOUTH ABUTMENT WALL, BRIDGE C

TOTAL PRESSURE CELL. DATA (PROFILE) NORTH ABUTMENT WALL, BRIDGE C

SETTLEMENT FROM INCLINOMETER TELESCOPING COUPLINGS (TIME PLOT) CENTERLINE, NORTH ABUTMENT WALL, BRIDGE C

GROUNDWATER TABLE ELEVATION (TIME PLOT) NORTH ABUTMENT WALL, BAIDGE C

VITA

John M. Benson
Candidate for the Degree of
Master of Science

Thesis: CONSTRUCTION OF EXPERIMENTAL APPROACH EMBANKMENTS AT SALT FORK RIVER BRIDGES ON US 177 AND THEIR INITIAL PERFORMANCE

Major Field: Civil Engineering
Biographical:

Personal: Born in Norman, Oklahoma, on December 28, 1970, son of John and Beth Benson.

Education: Graduated from Broken Arrow Senior High School, Broken Arrow, Oklahoma, May 1989; received Associate of Science Degree from Tulsa Junior College, Tulsa, Oklahoma, July 1992; received Bachelor of Science Degree in Civil Engineering from Oklahoma State University, Stillwater, Oklahoma, May 1995; completed requirements for Master of Science Degree at Oklahoma State University, July 1996.

Experience: Employed by Western Technologies, Inc., Farmington, New Mexico, as a materials and soils testing technician, summer 1994; employed by Oklahoma State University as a graduate research assistant, 1995 to May 1996.

Professional Memberships: National Society of Professional Engineers, American Society of Civil Engineers

