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CHAPTER 1

INTRODUCTION

The most comprehensive air pollution control
legislation since the Clean Air Act of 1970 was passed by
the United States Congress on October 26, 1990, and signed
by the President on November 15, 1990. The Clean Air Act
Amendments (CAAA) of 1990 added many new provisicns of
extreme significance to industry.

The Environmental Protection Agency (EPA) had a program
for requlating toxic air pollutants outlined in the Clean
Air Act of 1970. Title III of the Clean Air Act Amendments
created a list of 189 compounds that are considered
hazardous air pollutants and contained a new approach to
regulating hazardous air pollutants (1). The strateqgy in the
CAAA is based on the control-technology approach similar to
the Clean Water Act (CWA). Through this new idea of control-
technology Congress is hoping to achieve its envircnmental
goals through the use of novel approaches. This research
involves the novel approach of destroying or detoxifying
trichloroethylene (TCE) and toluene in an Alternating
Current Plasma Reactor (ACPR). Both TCE and toluene are on
the list of hazardous air pollutants (1).
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Trichloroethylene (TCE) is an industrial solvent mainly
(85-90%) used for the vapor degreasing and cold cleaning of
fabricated metal parts. In addition it has been used as a
solvent for waxes, fats, resins, and oils and as an
anaesthetic for medical and dental use. It can be found in
printing inks, varnishes, adhesives, paints, lacquers, spot
removers, rug cleaners, disinfectants, and cosmetic
cleansing fluids (2).

Toluene is produced both in isolated form and as a
component of mixtures. When produced in the form of a
mixture it is used to back blend gasoline. Toluene in
isolated form is used in: (1) the production of other
chemicals; (2) as a solvent carrier in paints, thinners,
adhesives and inks; and (3) as an additive in cosmetic
products (3).

Trichloroethylene is a moderately toxic substance. In
terms of acute toxicity, LC., values in rodent test species
range from 45 to 260 mg/m’, and oral LD, values range from
2400 to 4920 mg/kg body weight (2). The toxic effects of
exposure are related to a depressant action on the central
nervous system that can lead to coma and death (2). Liquid
TCE has an irritant effect on the skin and eyes. Toxic
effects on the kidneys have been produced in rats by long-
term oral administration (2).

Toluene inhalation LC., values in mice range from

26,000 to 200,000 mg/m*, and oral LD,, values range from 2.6




to 7.5 g/Kg body weight(3). In human beings the primary
effect is on the central nervous system. This effect may be
depressant or excitatory (3). Single, short-term exposure to
toluene (750 mg/m’ for eight hours) has reportedly caused
transient eye and respiratory tract irritation. Repeated
long term exposure in this range, on the other hand, have
caused neurclogical damage (3).

There is clear evidence that trichloroethylene is
carcinogenic in mice with lifetime (2-year) exposures to
1620 mg/m’ by inhalation or oral administration of 700-1200
mg/Kg of bedy weight per day (2). The signs and symptoms of
over-exposure in human beings are mainly related to the
central nervous system, for example, headache, drowsiness,
hyperhidrosis, tachycardia, and in more severe cases, stupor
and coma (2).

As practiced in this research, both trichloroethylene
and tcluene in the gas phase can be detected through gas
chromatography using a flame ionization detector (FID) that
yields good sensitivity. Methods are available for the
determination of trichloroethylene and toluene in blood,
fat, tissues, food, and water (2,3).

The current methods of removal of air phase
trichloroethylene include: thermal oxidation, thermal
catalytic oxidation, carbon adsorption, on-site solvent
recovery, and solar detoxification (4). The most widely used

conventicnal methods of destruction for toluene include:




thermal incineration, catalytic incineration, carbon

adsorption, and packed-bed corona (5). The goal of this

research was to determine if an alternating current plasma
reactor can be used for the removal of both
trichloroethylene and tcluene from a contaminated air
stream.

For the purpose of this thesis the word "destruction"
as used in the title and the body of this document implies
the conversion of TCE and toluene into simpler compounds
after passage through the plasma reactor under contrclled
conditions. Chapter II discusses the possible compounds
that make up the effluent.

The specific objectives of this research are:

Lox To perform a bench scale study to confirm the
feasibility of removing air phase TCE and toluene
using plasma reactor.

2. Select an optimum frequency and primary voltage for
maximum destruction and minimal cost in terms of power
used.

3 Determine the effect of process parameters (residence
time, and humidity) on the removal efficiency of TCE
and toluene.

4. Determine the performance of plasma when a mixture of
two compounds are sent through the plasma reactor. Also

to find which of the gases' parameter the plasma




reactor would need to be tuned to achieve maximum

destruction for both chemicals.




CHAPTER II

LITERATURE REVIEW

ALTERNATING CURRENT PLASMA

The passage of an electric current or charge through a
medium, often accompanied by luminous effects is called
discharge (6). In 1929, Langmuir associated the word
"plasma", which is the greek word for "to mold" to the
discharge taking place in the closed container due to the

electric field (4). A region of ionized gas in a gas

discharge tube that contains approximately equal numbers of
electrons and positive ions and provides a conducting path
for the discharge is called plasma (6). Nowadays "plasma" is
the term usually used for discharge taking place in a
nonhomogeneous field such as between two cocaxial cylinders
and is considered the fourth state of matter (4). The
discharge is also called "corona" discharge. The old Greeks
noticed sulphur-like odors accompanying strokes of
lightning. One can find references to these observations in
Homeric songs of both Iliad and Odyssey (7). The smell was
most likely due to ozone, and the remarks of Homer are
probably the earliest reference to this substance and to ;
reactions initiated by electrical agents (7).

6 =l
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Normally gas is a poor electrical conductor but
sufficiently high electric field causes ionization of its
molecules and atoms. Application of an electric field on a
gas leads to the action of large forces on any free charges
that are already present in the gas due to the natural
ionization caused by cosmic rays or radioactive
contamination. These gasecus ions are attracted to the
charged electrodes and current flows through the plasma.
When an electrical discharge passes through a gas it splits
the neutral gas molecules into positively charged ions,
negatively charged ions, free radicals, and randomly
occurring free electrons. The total sum of the charged
entities makes the plasma neutral. Current flows as a result
of a multiple collision of ions within the tube. Ccllisions
between ions cause excitation and further ionization, light
being produced when excited atoms and ions return to the
ground state or when the positive and negative ions
recombine (6). Soon the two processes of ion formation and
the rate of recombination establish equilibrium. The
positive ions do not contribute much to the discharge as
these ions travel with very low drift velocities (4).

All matter shows intrinsic electrical conductivity due
to the ionization produced in the molecules of the material
medium by the cosmic rays. This conductivity can be
discovered by means of a device delicate enough to permit

the measurement of the current flowing between two




conducting surfaces as a function of the applied voltage or
by means of an electroscope when one can observe its
discharge (7).

Certain mixtures of molecules such as the components of
air are usually inert and do not react with one another
under normal conditions. For the components of air to react
with one another they must be in an abnormal, excited or
energy-rich state. From such observations it is learned that
there is needed a definite amount of energy of activation to
cause the chemical reaction to continue (7). The activation
energy that is required by the molecules of the chemical
systems for reaction can be applied in other forms. The
study of one of these forms is called the science of
photochemistry which deals with the reactions that have been
initiated by radiation fields. Similarly any form of
electrical discharge produces activated species of molecules
and hence may be expected to yield chemical reactions in
systems which ordinarily are unreactive (7).

Besides the electrical discharge due to thunderbolts in
the air that cause air to lose its non-conductivity for
electricity, artificial methods have been developed through
which electrical conditions can be induced in an otherwise
neutral medium. One of these artificial methods of inducing
electrical transport accompanied by light production in the

gas phase is the self-sustaining electrical discharge. Neon




signs, used extensively for advertising purposes, are a good
example of the practical use of a self sustained plasma.
Glockler and Lind (7) has suggested the following
impacts in the electrical discharges.
(a) ELASTIC IMPACTS
The impacts are called elastic between electrons (E")
and molecules (M) when neither impact partner suffers a
great change in energy and where at most only changes in
direction of motion result. These interchanges are cof no
significance in the production of the activated state
leading to chemical reaction.
(b) IONIZATION IMPACTS
Ionization impacts are represented by:
E- (fast) + M - M" + 2E (slow)
These impacts resulting in the production of positive ions
(M') and another electron. The positive ions created will
travel towards the cathode if they are produced in a region
where a potential gradient exists.
Some impacts may result in the formation of clusters:
M+ M- (M. M’
(c) EXCITATION IMPACTS
Some impacts are of the type:
E- (fast) + M - M* + E° (slow)
whereby the molecule is brought into an exzcited, energy-rich

state. From this higher quantum state (M*) the molecule will




return to normal condition after a short average life (107’
sec.) with the emission of radiation (hv):
M* - M + hv
(d) DISSOCIATION IMPACTS
One would not expect direct dissociation by electron
impact to occur to any extent. For example, the reaction
H, - 2H, at 4.34 e.v.
has not been observed, although, many investigators have

looked for the effect.

ALTERNATIVE METHODS OF TRICHLOROETHYLENE DESTRUCTION

Figure 1 shows the cost in $/Kg (1992 dollars) of TCE
for widely used methods of thermal oxidation, thermal
catalytic oxidation, carbon adsorption with off-site
regeneration, on-site solvent recovery and solar
detoxification. The mass is based on TCE in the air phase.
The cost reported in this figure include purchase cost of
the equipment and the actual treatment cost of the
contaminant. The importance of this figure lies in its
depiction of the large variation in the treatment costs for
different removal and destruction methods. It does not
include destruction of TCE through plasma. As Figure 1 shows
solar detoxification had the lowest cost of 6.8 dollars per
kilogram and the carbon adsorption with off-site
regeneration proved to be the most expensive at 27.34

dollars per kilogram.
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Costs include purchase cost of equipment and treatment of

TCE
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Figure 1: Cost (in US $) Comparison of Removal and
Destructive Methods of Trichloroethylene
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Kushner et al. reported the cost of treating TCE in
terms of power used per Kg of TCE in the air phase in a
silent discharge plasma reactor (8). A silent discharge
plasma reactor (SDP) is different than an alternating
current plasma reactor due to different reactor geometry and
its glass coating of the electrodes. They calculated the
cost to be slightly less than a dollar (1993 dollars) per
kilogram of TCE. Their reported cost is not included in
Figure 1 because it was based on kilogram of TCE removed and

not the cost of equipment and treatment.

ALTERNATIVE METHODS OF TOLUENE DESTRUCTION AND REMOVAL

Figure 2 shows the cost in $/1b (1992 dollars) of
toluene for widely used destructive methods of thermal
incineration, catalytic incineration, carbon adsorption, and
packed-bed corona. This cost includes energy usage, normal
maintenance, and equipment setup averaged over ten years. As
indicated by Figure 2 the packed-bed corona proved to be the
cheapest method of treating toluene (45,000 dollars per
year). The thermal incineration method carried the highest
cost of treatment (115,000 dollars per year). The packed-bed
corona uses a plasma detoxification process. It is different
than an alternating current plasma reactor because of its
rectangular geometry and the fact that it uses ferroelectric

pellets across its bed. In addition sparking occurs across
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the bed which is non-existent in an alternating current

plasma reactor.
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TRICHLOROETHYLENE CORONA CHEMISTRY

Trichloroethylene or C,HCl., reacts with atomic oxygen
and hydroxyl radicals, which are efficiently produced in a
low temperature plasma containing O, and H,0 to give the
following reactions (8):

C,HCl, + 4 OH - CO, + 3HCl + H,
CHCl; +4 O - 2 €0, + HCl -+ Cl,

The CO, and H, can be exhausted into the atmosphere,
while HCl and Cl, can be readily remcved from the gas
stream. Research has been conducted to detoxify TCE in a
silent discharge plasma (SDP) where one or both electrodes
were covered with dielectric layers (e.g. glass) that
separated them from the gas (8). It was found that the ClO0
radical is an important intermediate that oxidizes TCE and
its consumption by OH radicals is largely responsible for
the lower removal efficiencies in wet mixtures compared to
dry mixtures (8).

The following intermediate reactions have been reported
for TCE reactions inside a plasma reactor (8).

(a) In dry Ar/0,/TCE mixtures:

C,HCl, + O = CHOCl + CCl,

cCl; + 0O, - ClO + (COCT

CHOCl1 + O ~ COCl + OH
241 HEL

CHOCl + O =~ CO + CIlO
i 1,

cocl + 0, = CO, + Cl0

1.5




The Cl0 radical is an important intermediate and readily
reacts with TCE to form phosgene (COCl,) and
methyldichloride (CHCl,) which reacts with oxygen to form
chlorine.

CHCl; + Cl0 - COCl, + CHCI,

CHCl, #+ «© = QCHOCL ¥+ €l
(b) In Wet Ar/0,/TCE mixtures:

C,HCl, + OH - C,Cl;+ H,0

Clo + OH - HC1 + 0,

CoCl, + OH - COCl + HOC1l

Wet mixtures reactions are different than those in the
dry mixtures. In wet mixtures the formation of the hydroxyl
ion and its reaction with the ClO ion lowers the destruction
efficiency of TCE because the Cl0O ion helps oxidize the TCE

molecule (8).
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TOLUENE CORONA CHEMISTRY

According to Nunez et al (9) during the plasma
destruction of toluene the methyl group of the toluene
molecule undergoes oxidation and the reactions shown in
Figure 3 occur.

Toluene has a resonance structure where a proton is
lost or gained at the methyl group (CH,-) which should
result in a more reactive site. The methyl group serves as
an electron donor to the phenyl group. When an excited
oxygen molecule attacks the methyl group it forms a benzene
and a CH,0 radical. The CH,0 radical rapidly reacts to form
a CHO radical which goes to CO. The benzene radical reacts
as shown in Figure 3 and form O=C or O=C=C. Either 0O=C or
0=C=C radical reacts with oxygen to form CO,. The other
radical oxidizes rapidly to CHO and then to CO,. At low
temperatures the reaction to form CO rather than CO, is
favored while high temperatures favor formation of CO,. The
formation of the CO, molecule occurs at the breakdown of the
benzene ring, but the CO reaction is favored in the

remainder of bond destruction reactions (9).
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CHa CH»p i
@ — @ o, @ + CHy0

@ O 0=C-+-C=C-C=C-C=0

or
0=C=C- ++C=C-C=C

Source: Nunez et al. (1993)

Figure 3: Toluene Breakdown Inside Plasma Reactor
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DESTRUCTION STUDIES IN THE LITERATURE

Several studies have been performed on the destruction
of different chemical species when exposed to plasma. The
results of these studies are summarized in Table 1. The
trichloroethylene and toluene destruction results in the
Table 1 were obtained using a different type of plasma
reactor than the one used in this research. The one used for
carbon tetrachloride destruction by Hurst (12) was similar
to the one used in this work.

TCE has been detoxified in a silent discharge plasma
reactor but not in an alternating current plasma reactor.
Also, toluene has been altered in a packed-bed corona
reactor but not in an alternating current plasma reactor.
Both the silent discharge plasma reactor and packed-bed
corona reactor are briefly described on page 12 of this
study. One of the goals of this study was to investigate
frequency and humidity effects on toluene and TCE
destruction in an ACPR. In addition this study was conducted
to evaluate the differences in destruction efficiency of a
chlorinated aliphatic (TCE) as compared to an aromatic
compound (toluene). One of the other major objectives of
this study was to determine the effect of a mixture of gases

on the tuning of the plasma reactor.

19
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Table 1

Results of Plasma Destruction Tests
—
Tesat Destruction Frequency | Temperature | Concent- Reactor Residence
Species Efficiency (Hz) (K) ration Type Time
(PPM) (Seconds)
Trichloroethylene Silent
(1) >99.9 4500 300-500 100-1000 | Discharge 1.6
Plasma
Carbon Electron-
tetrachloride 90 60 298 10-700 beam 3
(2)
Toluene 100 60 323.15 50-250 Packed Bed| 0.48-1.43
(3) Corona
Nitrogen Oxide Pulse
(4) 100 50-250 423,15 200 Corona- 2
induced
Carbon
tetrachloride 94.2 550 298 19-83 ACPR 8-170
(5)
~Sources:
(1) Kushner et al (8)

(2) Koch et al

(3) Nunez et al.
(113
(12)

(4) Masuda S.
(5) Hurst M.

ORKLAHOMA STATE UNIVERSITY

)
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CHAPTER III

EXPERIMENTAL APPARATUS, METHODS, AND DESIGN

This chapter is devoted to describing and explaining
the experimental procedures, data analysis, and the design
used in this research. This chapter has been divided into
two parts to discuss the above components of the research;
1. Experimental apparatus, 2. Experimental design.

EXPERIMENTAL APPARATUS

There were three major components of the apparatus used
in this research.

1. Electrical System

2. Plumbing System

3. Analysis System

Electrical System

The electrical system was the driving force of this
experimental setup. Contaminant destruction was accomplished
through the formation of a plasma that needs a constant
supply of electricity to induce an electric field between
the electrodes of the alternating current plasma reactor. A
schematic of the electrical system is shown in Figure 4.

The three basic components of this system were the

transformer, oscillator, and three Fluke meters. A John

21
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Figure 4: Schematic of Electrical System
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Fluke digital fluke meter Model 83 (Everret, CA 94538) was
used to read current in amperes going from the socket to the
oscillator. The oscillator was a California Instruments
Series BOOT Oscillator. The oscillator's available range was
from 40 to 5000 Hertz. It was used to change the frequency
of the current. A John Fluke Multimeter Mocdel 8010A Digital
(Everett, WA 98206) was used to read the primary voltage
leading to the transformer. A high voltage Magnetic
Jefferson Electric Luminous Tube Transformer was used to
create an electric potential across the electrodes in the
plasma reactor. This transformer had a range from 0 to 120
rms and drew current from the oscillator. It was center-
taped and rated at 15,000 volts. This transformer was
connected to the two electrodes of the reactor by 8 mm
multi-thread silicone coated wires (Taylor Prowire, OK). One
of these electrodes was placed in the central annular space
of the reactor and the other was wrapped around its outside
surface. To measure the secondary voltage a John Fluke
Multimeter Model 8010A Digital was connected to the
transformer by means of a high voltage probe. This probe was
built by John Fluke Manufacturing Co., Inc. (Everett, WA
98206) and was rated at 45,000 volts and 60 hertz.

Plumbing System

A schematic of the plumbing system is shown in Figure
5. The air from a compressed air gas cylinder was regulated

through a Linde FM4575 Mass Flow Meter/Flow Controller. The

23
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24

OKLAHOMA STATE UNIVERSITY



mass flow controller had four different modules which could
provide a range of flow rates. This research used only one
module (channel 1) that could provide up to a 1000 ml per
minute of gas flow. As shown in the Figure 5, the compressed
air line was divided into three lines. Each of these three
lines had control valves to increase or decrease the gas
flow through the line. One of these lines served the purpose
of adding humidity to the air flow by passing it through a
water saturator consisting of two 500 ml Erlenmeyer flasks.
The first of these flasks was half filled with water with
the inlet tube immersed in the liquid and the outlet at the
top. The second flask was used to make sure no water
droplets from the first flask proceeded into the line.

The second line passed through an Erlenmeyer flask half
filled with Drierite (anhydrous CaSO,, Fischer Scientific)
to act as a gas drier. This set-up allows different
humidities in the composite gas stream toc be created.

The third line lead to a 100 ml gas sampling bulb. This
glass bulb had an inlet and an ocutlet at the ends. In
addition it had a sampling port in the middle sealed with a
rubber cap. Liquid trichloroethylene and toluene were
injected through this sampling port. For the purpose of
liquid injection a syringe-pump model 1002 Syringe pump
(Houston Atlas Inc.) was used. This syringe pump contained
state of the art digital circuitry to control the motor's

speed. A useful feature included in the syringe pump was the
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automatic drive limit. The drive limit circuit automatically
prevented the micro-jector thrust plate from travelling past
the front most limit to avoid possible damage to the
syringe. The thrust plate of the syringe pump is driven by a
linear motion stepper motor which provides precise step-wise
linear motion using a minimum of mechanical parts. The
syringe pump was fitted with a 25 microliter Hamilton 710RN
Syringe (Supelco Inc., Bellefonte, PA).

The concentration of trichloroethylene and toluene in
the composite gas stream were controlled by injecting only a
certain amount of these chemicals per unit time. The
calculations for the required injection volume of both
toluene and TCE are given in Appendix C. These calculations
show the volume of these chemicals injected to acquire a 300
ppm concentration in the air phase inside the glass bulb.

Humidity was monitored using a Davis Instrument Model
DTH-1 Digital Hygrometer/Thermometer. The humidity probe had
an accuracy range between 20-80 percent humidity. As shown
in Figure 5, a sampling port was placed in line immediately
following the humidity probe. The sampling bulb was a
Fischerbrand Septum-Port Gas Sampling Tube made of Pyrex
glass with a volume of 200 ml. This influent sampling bomb
had a rubber septum through which samples were drawn. The
rubber septum was changed after every run. Figure 6 shows
the dimensions of the sampling bulb. The samples were taken

using a gas-tight syringe and injected into the Gas
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Figure 6: Schematic of Gas Sampling Bomb
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Chromatograph (GC) in the next room. As shown in Figure 5,
the plasma reactor was located immediately behind the
sampling bomb. The length of tubing between the sampling
bomb and plasma reactor was 3.3 meters.

The main component of experimental apparatus used in
the research was the alternating current plasma reactor.
The plasma reactor was connected to the electrical system as
described above. The plasma reactor dimensions are shown in
Figure 7. The effective volume of the reactor was 19.6 ml.
and was determined by filling the reactor with water. The
reactor was made of Pyrex glass, 1.11 cm. thick, and
consisted of two concentric cylinders forming an annulus
through which the reactant gas flowed. The Pyrex glass is
Corning code 7440 chemical-resistant borosilicate glass with
a dielectric constant of 4.6 at 25°C (12). One electrode was
situated in the center of the reactor. The second electrode
was wrapped around the outside of the reactor. The inner
electrode consisted of a number 40 mesh copper sheet wrapped
in a cylinder and inserted into the inner glass cylinder.
The outer electrode consisted of a molybdenum wire (1 mm
diameter) wrapped 18 times around the outside of the outer
glass cylinder. When current was supplied, this allowed a
plasma to be formed in the annulus. The electrodes were
situated in this manner for two reasons. First, so that
there can be no corrosion of the electrodes by the reactant

gas, since the gas never comes in contact with the
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electrodes. Second, the glass barrier helps create a diffuse
glow throughout the entire annulus region instead of a
bright arc between the two electrodes. The plasma reactor
was located in an outside bay at Oklahoma State University's
Hazardous Materials Lab. This bay was separated from the
other equipment rooms by a thick concrete wall. The plasma
was mounted using iron brackets and clamps. The clamps were
enclosed and fitted with 0.5 cm. thick teflon covering to
prevent stray current from exiting the reactor. This
effluent sampling bulb was of the same type as the influent
sampling bulb.

The entire piping system was made of welded stainless

steel, and teflon tubing. The steel tubing had an inner

diameter of 0.635 cm. and the thickness of tube material was f?
0.0889 cm. Two different sizes of teflon tubing was used. :Z
One had an inner diameter of 2 cm. and the other had an lg
inner diameter of 0.635 cm. The thickness of teflon tube E%
material was 0.159 cm. The teflon tubing was used because of Eg

its flexible characteristics (as compared to steel), non-
reactivity with TCE and toluene gas and any by-products of

the plasma, such as ozone.
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ANALYSIS SYSTEM

To analyze the polluted air stream and to determine the
concentration of the pollutant in the gas a Gas
Chromatograph (GC) was used. The GC produces an area count.
To decode these areas in terms of recognizable units like
parts per millions the GC needs to be calibrated. The GC was
calibrated using standards of known concentration.

A Perkin-Elmer Sigma 3B gas chromatograph (Flame
Ionization Detector) with data station was used for the
analysis of samples obtained from the gas stream. A 6 feet
and 1/8 inches column packed with 1% SP-2100 on 100/120 mesh
Supelcoport (Supelco Inc.) was used.

The carrier gas for the GC was nitrogen. Hydrogen and
oxzygen were used for combustion in the GC. The isothermal

zone temperatures used were:

110 €2

Il

Detector temperature

Injection temperature 120 C*°
Oven temperature = 110 C°
The calibration standards were made by injecting a
known volume of the liquid TCE or toluene, using a 50 pL gas
tight syringe into large glass bottles. This 50 pL gas tight
syringe was manufactured by Dynatech Precision Sampling
Corporation of Baton Rouge, LA. The volume of the glass
bottles ranged from 25 to 27 liters in volume. The volume of

these bottles were determined by measuring the volume of

water contained by these bottles.
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The trichloroethylene used was purchased from Fisher
Scientific and was 99.9 percent pure with a residue of
0.0003 percent. The toluene was purchased from J. T. Baker
chemical. It was 99.9 percent pure with a residue of 0.0001
percent.

The following two-step strategy was adopted for the
construction of calibration curves:

(1) Each calibration curve was composed of at least
four sample data points. For example a curve of 10, 200,
250, 300, 350, and 400 parts per million.

(2) Three calibration curves were created for
trichloroethylene and three for toluene. Each of these

calibration curves were checked for accuracy by injecting a

known concentration of the contaminant gas into the GC and ;:
comparing the area with the area predicted by the standard }ﬁ
calibration curve. !§

The following steps were taken to obtain one data E%
point on a calibration curve: ;i

(1) The opening of the five separate glass bottles .

were covered with parafilm. The parafilm was

checked against a teflon and rubber cap for its

URUAHOMA

e

ability to prevent leaks. It was found that both
parafilm and teflon caps worked equally well
(tests are included in the results on page 98) at
containing the gas inside the bottles. These

bottles were kept at room temperature of 75 F°.
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(2)

(3)

(4)

With a syringe a known volume of the liquid
contaminant was injected though the parafilm.
These volumes ranged from 2 microliter to 49
microliter.

Immediately after the contaminant was injected
into the bottle the opening was covered with
another two pieces of parafilm to ensure the
opening made by the syringe needle did not leak

any gas.

These bottles were left at room temperature for 45

minutes sc that the contaminant gas that was
created by evaporation of the injected liquid
could diffuse in the air inside the bottles.
Tables 9 and 10 (Appendix H) contain the data of
concentrations of TCE and toluene in the bottles
over a 45 minutes duration. These concentration
are in terms of the areas obtained from the GC.
Both these tables are plotted in Figures 8 and 9,
respectively. These plots were developed by
sampling the same bottle at 5 minute intervals.
For each curve it was noticed that after a
duration of 20-25 minutes the maximum
concentration had been reached. Thus 45 minutes
diffusion time was considered sufficient for the
complete diffusion of contaminant in the air

inside the bottle.
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{5) With a syringe 5 ml of contaminated air was
extracted from the bottle and then injected
immediately in the GC.

(6) Data obtained from the GC integrator were
used to plot the calibration curve. The areas
under the curves were related to the known
concentrations of the contaminant inside the
bottle as shown in Figure 10.

This study was conducted during the months of
September, October, and November of 1994 at Stillwater,
Oklahoma. The three spreadsheets included in Appendix F
report the data for pressure in inches of Hg for Stillwater
(Oklahoma) area. This data was reported by the MESONET
System of the Department of Agriculture of Oklahoma State
University at Stillwater, Oklahoma. The maximum value of
pressure was 29.59 inches and the minimum value was 28.7
inches with an average of 29.15 inches. During the three
months of September, October, and November the pressure
changed only 1.5 percent with respect to the average value
of 29.15 inches. This pressure change was not significant
enough to have an effect on calibration data.

The results of the calibration data are discussed in
the results section in Chapter IV. The calculations for the
theoretical values are shown in the Appendix C. Figures 11

to 18 show different equipment discussed in this chapter.
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Figure 11: Gas Chromatograph Unit
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Figure 12: Mass Flow Controller
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Figure 13: Oscillator with Function Generator
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Figure 14: Humidity Meter
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Figure 15: Syringe Pump
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Figure 16: Water Saturator and Drierite System
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Figure 17: Gas Sampling Bombs
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Figure 18: Transformer Hooked Up tO the Plasma Reactor
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EXPERIMENTAL DESIGN
This section describes and explains the strategy and
procedure adopted to systematically determine the effect of
varying residence time and humidity on the percent of
pollutant left in the effluent.

Concentration in Pollutant Stream

In this research a desired concentration of contaminant
in the air stream was achieved through the injection of
liquid contaminant into the air stream with the help of a
syringe pump. The OSHA's (29 CFR 1910) Hazardous Air
Pollutant table in Appendix B lists the acceptable maximum
peak for toluene and TCE as 500 ppm and 300 ppm,
respectively. Both of these values are above the acceptable
ceiling concentration for an eight hour exposure. A target
value of 300 ppm was chosen for both chemicals. This
concentration was chosen for two reasons: (1) the desire to
conduct tests in the vicinity of potential exhaust
concentrations of different industries, and (2) higher
concentrations caused a problem by forming droplets at the
tip of the syringe needle from the syringe pump during
injection.

To create a steady stream of 300 ppm in the air stream
the required volume for continuous injection of pure
contaminant was quantified for both toluene and
trichloroethylene. This amount of injected liquid was a

function of residence time (i.e volume of air going to
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plasma), and the volume of syringe. The combination of the
syringe pump's speed and the volume of the syringe also
effected the volume of injected liquid. This is because at a
selected speed the pushing-plate on the syringe pump moved
at a constant rate irrespective of the kind of syringe
fitted between its plates. The required injection volume of
toluene and TCE was calculated to keep a steady
concentration of 300 ppm inside the reactor (19.6 ml.) at
any time using a 25 microliter Hamilton 710RN Syringe
(Supelco Inc., Bellefonte, PA) fitted in the pump. To keep a
steady stream of 300 ppm. of these chemicals in the reactor
a volume of 0.0216 pl. for TCE and a volume 0.0257 pl. for
toluene was injected per selected residence time.
Calculations for the volume of contaminant required to
produce a steady stream of 300 ppm are given in Appendix C.

Selection of Electrical Parameters

The selection of electrical parameters is an important
issue in the design process because the goal is to avoid
applying more power than needed, thereby increasing the cost
of operating the plasma reactor. Using air as the feed
stream at 500 cubic centimeter per minute and 80 per cent
humidity, an electric field using varying frequencies and
primary voltages was applied to the plasma reactor. The
lowest primary voltage selected was 30 volts. At this
primary voltage the frequency was changed from 45 hertz to

1200 hertz and the secondary voltage was recorded.
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Additional primary voltages selected were 40, 50, 60, and 70
volts, and the same procedure was repeated. In this manner
the optimum frequency and power were obtained for this
plasma reactor configuration. This topic is discussed

further in the results chapter.
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Humidity Variation

To measure the effect of humidity on the destructive
ability of the plasma reactor three different relative
humidities were arbitrarily chosen. These selected relative
humidities were 20 percent, 40 percent, and 80 percent. To
change the humidity of the reactor feed stream the volume of
the air stream going through the water saturator was varied
to obtain the desired relative humidity. The following
sequence of events was carried out for these test runs:

(1) Air supply is turned on at a desired flow rate.
Calculations for flow rates are shown in Appendix C.

(2) The valve leading to the water saturator was
manipulated to obtain the desired humidity.

(3) The syringe pump was turned on and set to the desired
injection rate.

(4) The system was allowed to run for one hour to purge all
the gas from the system. In the meantime the
concentration of the influent flow stream was measured
using the GC. To measure the concentration of the
sample a 5 ml. injection volume was used.

(5) The humidity meter was continuously checked for desired
humidity.

(6) After the desired humidity was achieved power was
supplied to the reactor and it was tuned to the desired
frequency and primary voltage allowing it to form

plasma.
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(7) Samples were taken for about 65 minutes from both
the influent and effluent sampling bombs at five
minutes intervals and taken to the adjacent room
immediately to be injected into the GC.

(8) Power supply was turned off.

(9) Effluent flow stream concentrations was measured until
it reached approximately the same value as the
influent. The influent concentration was also measured
to provide a standard of comparison.

Residence Time Variation

To measure the effect of residence time on the
destruction ability of the plasma reactor three different
values of residence time were selected. The plasma reactors
residence times used during this project were 3 seconds, 5 >
seconds, and 10 seconds. To alter the residence time the Ln

volume of the air stream going through the reactor was

varied to obtain the desired residence time. The following hay’

sequence of events was carried out for these test runs: :

(1) Air supply was turned on.

(2) The flow module 1 for the air stream was set at the
desired flow rate.

(3) The syringe pump was set to the desired injection rate.

(4) The system was allowed to run for one hour to purge all
the gas from the system.

(5) In the meantime the concentration of both the influent

and effluent flow streams was measured using the GC.
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(6) After the desired residence time was achieved power was
supplied to the reactor and it was tuned to the desired
frequency and primary voltage allowing it to form
plasma.

(7) Samples were taken for about 65 minutes from both
influent and effluent sampling bombs at five minutes
intervals. These samples were analyzed by GC.

(8) Power supply was turned off.

(9) Effluent flow stream concentrations was measured until
it reached approximately the same value as the
influent. The influent concentration was also measured
to provide a standard of comparison.

Mixed Flow Stream of TCE and Toluene

In this step of the research trichloroethylene was
equally mixed with toluene. The objective of this experiment
was to determine if this mixture showed higher destruction
at different frequencies than when these contaminants were
individually injected into the air stream. The selection of
toluene was based on the reason that toluene being a ring
compound might show different behavior than the straight
chain trichloroethylene. Equal volumes of both the
contaminants were used so that it was easy to monitor the
variance in destruction of these chemicals at various

frequencies.
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CHAPTER IV
RESULTS

SELECTION OF ELECTRICAL PARAMETERS

A series-RLC circuit was used in the apparatus setup
for this study. This type of circuit consists of resistance,
capacitance, and inductance. In this circuit there are three
cases: (1) Inductive reactance is greater than capacitive
reactance, (2) Inductive reactance is equal to the
capacitive reactance, and (3) Capacitive reactance is
greater than inductive reactance (13). The complex impedance >
Z (Ohms) of an alternating current series-RLC circuit is ;}E
given by (6) 1

Z = R + iX (1) =)
where,

Z = Impedance (ohms)

R = Resistance (ohms)
i = {~=1)%
X = Capacitive or inductive reactance

The real part, the resistance, represents a loss of
power due to dissipation. The imaginary part, the reactance,

indicates the phase difference between the voltage and
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current. It is either positive or negative depending upon
whether the current lags or leads the voltage, respectively.
The capacitive reactance X. or inductive reactance X;

as given by (6)

X. = 1/0C (2)
X, = L (3)
where,
@ = Angular frequency (rad/s)
C = Capacitance (ohms)

L = Inductance (ohms)

In a circuit containing capacitance only the impedance
is given by (6)

Z =R - i/eC (4)

Also, in the circuit containing inductance the f”'
impedance is given by (6)

Z =R+ ieL (3)
when inductance is equal to the reactance, the impedance is
given by (6)

Z =R (6)
where,
R = Resistance (ohms)

A series-RLC circuit can either be a lagging or leading
circuit depending on whether wL or 1/@C is larger,
respectively. Some equations of series-RLC circuit can be
given as follow (13)

Zese = Zpe L = R+ J (X Xo) (7)
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= Zge COS QPrie + J Zme Sin g (8)
bpe = “ (R* + (X, - X.~_)2 (9)
tan ¢ = (X;- X.)/R (10)

Where ¢ is the angle between the Z and R.

For this study the series-RLC circuit was tuned before
the setup was used for the experimental destruction of
trichloroethylene and toluene. Tuning in this case means
correcting the power factor so that the maximum available
power is used inside the circuit. In the real world apparent
power is paid for but only real power is dissipated, it may
be possible to reduce electrical utility charges if the
power factor is established as unity. A tuned circuit for
this study was a circuit where the power factor was one,
meaning the impedance was equal to the resistance of the
circuit (13). The impedance of the circuit is due to
resistance and the capacitive or inductive reactance of the
circuit. The tuning of the RLC circuit of this type is very
important because for a given power to be supplied, the
current is increased due to the low power factor. Low power
factor also causes an increase in copper losses and a
decrease in the efficiency of both apparatus and the supply
system (14). Therefore, to increase the efficiency of the
circuit and to establish the power factor as unity the
resonant frequency needed to be determined.

A series-RLC circuit can become resonant in two ways.

I1f the frequency applied is fixed, the elements must be
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adjusted so that the capacitive reactance cancels the
inductive reactance (i.e X,- X.=0). If the circuit elements
are fixed, then the frequency must be adjusted. Resonant
frequency is the frequency of the RLC-series circuit purely
resistive in nature. Therefore, frequency can be changed to
obtain the resonance frequency where the capacitive
reactance is equal to inductive reactance. In short, in a
resonant series-RLC circuit (1) the impedance is minimum,
(2) impedance equals resistance, (3) current and voltage are
in phase, (4) current is maximum, and (5) power dissipation
is maximum (13).

The data for the current passing through from the wall
socket to the oscillator were obtained by putting an ammeter
in series between the wall socket and the oscillator. This
current data was multiplied by the voltage of 110 wvolts to
obtain the apparent power consumed by the circuit of the
setup. The minimum frequency that could be produced through
the oscillator was 45 hertz. The plasma started to form
around 500 hertz and diminished around 1000 hertz depending
on the primary voltage. Therefore, using different primary
voltages of 30, 40, 50, 60, and 70 volts and frequencies
between 50 and 1200 hertz the data reported in Tables 6, 7,
and 8 were obtained.

The value of peak power consumed or dissipated i.e the
power at resonant frequency or primary voltages is shown in

Figure 19. This figure shows peak powers consumed by the
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circuit at primary voltages of 30, 40, 50, 60, and 70 volts.
The bell shaped curves result as the frequency change from
left to right on x-axis in Figure 19. In Figure 19 the
location of points tracing the shape of the bell curve on
either side of the peaks is not exact. These points were
obtained by calculation using the following equation

P=V * I * Power factor (11)

P (Watts)

Il

110 Volts * Current (Bmperes) * 1 (12)
The exzact location of the points tracing the shape of
curve for different primaries can be calculated analytically
by knowing the values of inductance, capacitance,
resistance, and current. The location of the peaks of these
bell shaped curves is exact because at these locations the
power factor is equal to unity. At these peaks the impedance >
is equal to resistance, indicated by the zero slope of the ?ﬁ
power curve. Using the original values of the power factor
between zero and one for either side of the peaks of the
curves in Figure 19 would only change the slope of these
five curves. The peaks of the curves which occur only when
power factor equals 1 would not change.
This test was conducted to select a primary voltage at
the resonant frequency for tuning the plasma reactor. As
seen from Figures 19 and 20 the power consumed in the
circuit first increases with increasing frequency and
reaches a peak. This peak occurs between 650-800 hertz

depending on the primary voltage. After this peak the power
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drawn by the system gradually decreases. For a primary

voltage of 30 volts the peak is at 800 hertz while the peak

for the 70 volts curve was at 650 hertz. This meant that as

the primary voltage increased the peak was achieved at a

lower frequency. This phenomenon is because of the circuit

selectivity. Similar results have been reported by other

investigators at Oklahoma State University (12,15). After

this peak, at a specific frequency, the power drawn by the

system decreased gradually and the plasma cease to form

around 1000 hertz. This phencmena of power increasing with

the frequency and then decreasing occurs because of

"resonance" explained in detail earlier in this section.

Transformers basically convert electrical power from one

circuit to another circuit at the same frequency (14). It >0
can increase or decrease the vocltage with a corresponding
decrease or increase in current keeping power constant. This
transformation of energy is described by Faraday's Laws of )
electromagnetic induction through two windings (Primary and
Secondary). The primary winding receives energy from an a.c.
supply at one voltage; the other circuit called the
secondary, delivers energy to the load at a different
voltage. The transformer used in this study was a step up
transformer and it was rated to step 120 wvolts to 15,000
volts at the secondary side. Just before the optimum

frequency the secondary voltage goes through its maximum as
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shown in Figure 20. Similar results have been obtained for
different plasma reactors (12, 15).
The following sequence of events take place in Figure
18. At a certain voltage, around 200 hertz depending on the
primary voltage the current increases so much as to travels
through the dielectric (i.e. into the gas in the reactor)
and a buzzing sound coming from the reactor can be heard.
With further increase in frequency the secondary voltage
decreases until the plasma starts to form around 500 hertz
(Figure 20). After 500 hertz both secondary voltage and
current increase together. Secondary voltage at this point
increases because the dielectric starts acting as a
capacitor. The current on the other hand increases because
of the ionization inside the plasma reactor. Around the >
point of peak power; between 650-800 hertz, depending on the
primary voltage, the capacitance of the circuit reaches the
inductance of the transformer. When the difference of oL or f?
1/wC is zero the impedance is equal to resistance in the X"
circuit. At this point the circuit is tuned and resonance
occur. Inductance is a property of a coil through which an
electromotive force is induced when the flux linked with it
is changed. In addition inductance relates the magnetic flux
of the circuit to the current flow through the circuit. The
magnetic flux is a measure of the electric field of force
through a specified area and electromotive force is the

algebraic sum of the potential difference in a circuit (6).
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The effective opposition offered by an inductance is called
inductive reactance shown by eq. 3.

Capacitance is the property of an isolated conductor to
store electric energy. The capacitance is defined as the
ratio Q/V and is determine by the size and the shape of the
conductor. It is constant for an isolated conductor. After
the peak power the plasma reactor as a capacitor has reached
its maximum capacitance. After this stage the secondary
voltage starts decreasing (Figure 20) until plasma dies
around 1000 hertz.

From Figure 19 the primary voltage of 40 volts and a
frequency of 800 hertz was selected for this system. This
particular primary voltage was selected because it yielded
satisfactory destruction. Also because there was a sudden
jump between the power curves of 30 and 40 volts primary
voltages. This peculiar behavior is a property of the
dielectric. The dielectric in the circuit was the plasma

reactor.
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PRELIMINARY TESTS

During calibration tests parafilm was used to close the
bottle openings that were used to contain the pollutant
mixture (air plus chemical). The feasibility of using
parafilm as a 1id was investigated and compared with teflon
centered plastic lids. Table 11, and 12 in Appendix H show
results for calibration data from both methods. Each data
point represent one test run. The data from Tables 11 and 12
are plotted in Figures 21 and 22.

An ANOVA (Analysis of Variance) statistical test in
Microsoft Excel 4.0 was run for the statistical analysis of
the two curves in Figures 21 and 22. ANOVA refers broadly to
a collection of experimental situations and statistical
procedures for the analysis of quantitative responses from
experimental units (16). There are different type of ANOVA
tests. The Single-factor ANOVA, or One-way ANOVA was used
for the statistical analysis of these plots. One-way ANOVA
was used because time was the only factor. The significance
level of 0.05 was used. The hypothesis was that the mean of
the two data samples is the same. The statistical analysis
on Table 11 and 12 of Appendix H are tabulated in Test 1 and
2 of Appendix G. The TCE data (Table 9, Appendix H) was
tabulated in Test 1 (Appendix G) and the toluene data was
tabulated in Test 2 (Appendixzx G).

The variance for the plastic cap data (column 1) in

Test 1 (Appendix G) was 4.03E-05 and that for parafilm data
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{(column 2) was 3.65E-05. The F-value was 0.0l1 and F-critical
value was 4.49 indicating that the hypothesis that the mean
of the two data is the same should be accepted. This also
means that the there is no significant statistical
difference between the two data sets. The variance for the
plastic cap data (column 1) in Test 2 (Appendix G) was 0.001
and that for parafilm data (column 2) was also 0.001. The F-
value was 0.008 and F-critical value was 4.494 indicating
that the hypothesis that the mean of the two data is the
same should be accepted. This also means that the there is
no significant statistical difference between the two data
sets. Therefore parafilm's performance was same as plastic
caps. In this study parafilm was picked because cf its ease
of use.

Table 13 (Appendix H) tabulates the areas obtained from
the GC for the same sample. These data points were recorded
by injecting the pollutant gas four times from the same
sample and are plotted in Figure 23. The average of the
areas in Table 13 was 0.217 with one percent difference with
the lowest and the highest data points. This difference was
considered acceptable for the purpose of this study. This
means that the GC's performance was satisfactory and

dependable.
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CALIBRATION DATA

The extent of destruction of TCE and toluene in this
study was denoted by the difference of influent and effluent
concentrations. For a chemical, an effluent concentration of
only 5 percent of its influent concentration would translate
into 95 percent destruction. To measure the destruction of
TCE and toluene three relations needed to be established.
First the relation between liquid volume of the chemical and
its concentration when injected into a defined air mass was
established. Secondly, the relation between the
concentration in the air mass (of the standards) and areas
plotted by the GC was established. Thirdly, the relation
between the areas plotted by the GC and the concentration
that these areas represent was established.

The first relation was established by injecting a known
volume of the chemical into a known volume of air (mass)
where the theoretical concentration (column 1 in Table 2)
had already been established mathematically as presented in
Appendix C. As seen in Appendix C 0.0216 microliter of TCE
is equivalent to 300 ppm in 0.0196 L air mass. The second
relation was established with the help of the GC. The
pollutant air (air plus chemical) was injected into the GC
to establish the relation between theoretical concentration
of the pollutant (column 1 of tables 2 and 3) in the mix and
the area plotted by the GC (Column 2,3, and 4 of tables 2

and 4). The third relation was that between the areas
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plotted by the GC (columns 2, 3, and 4 of tables 2 and 4)
and the concentrations that these areas indicated (Predicted
concentrations in columns 5, 6, and 7 in tables 2 and 4).
For this study, this relation is established by an equation
of line that was obtained by plotting the theoretical
concentrations against the average of the areas obtained
from the GC. This equation of line was used to sum up the
error introduced by the fact that the GC would give slightly
different areas for the same theoretical concentration and
evenly distribute it over the range of values when
converting the areas from the GC into parts per million of
the pollutants. Three calibration curves were constructed
for TCE and three for toluene following the process
discussed in the analysis section.

Before the tabulation of TCE data in Table 2, five
concentrations were chosen. The five concentrations for TCE
were 9.79 ppm, 29.37 ppm, 48.96 ppm, 145 ppm, and 331.98
ppm. For every desired concentration a calculated volume of
TCE (using the equation shown in Appendix C) was injected
into the air present in a large glass bottle as discussed in
the analysis section. The volume of air (mass) in the
bottles was a known value. Then three 5 ml samples of
pollutant air (air plus TCE) from these bottles were taken
by a 10 ml gas tight syringe and injected into the GC. This
10 ml gas tight syringe was manufactured by Dynatech

Sampling Corporation of Baton Rouge, LA. For the first value
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of 9.79 ppm in the first column of Table 2 these three
injections into the GC taken from the same glass bottle
yielded 0.01, 0.0095, and 0.011 in terms of area on the GC
plot. It can be noticed that these three numbers for the
same concentration and bottle differ in value.

To get the predicted concentration in Table 2 the three
areas plotted by the GC (Columns 2,3, and 4) were averaged
and plotted against the theoretical values. An equation of
the line was obtained from this plot as shown on tcp of
columns 5, 6, and 7 in Table 2. The area values from the GC
in columns 2,3, and 4 were put in this equation to get the
predicted concentration in columns 5,6, and 7. A column of
average values (Column 8) is shown for the three predicted
columns. This way the plotted area by the GC can be tied
down to a concentration while incorporating the fact that
the GC would not give the same area for the same volume of
pollutant air using this procedure and equipment.

The last column of Table 2 lists the standard
deviations of the predicted concentrations of TCE. The
standard deviations for TCE ranged from 0.87 (Minimum) for
145 parts per million to 2.01 (Maximum) for 29.37 parts per
million concentration. Table 3 lists the average of the
three areas (column 2, 3, and 4 of Table 2) from the GC and
the average of the predicted concentrations (column 8 of
Table 2). The linear regression data for TCE are tabulated

in Appendix D. Figure 24 shows the average of three areas
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from the GC plotted against the average of the predicted
concentrations for TCE. It represents a composite
calibration curve for TCE based on the averages of the three
independent calibration curves. Also included in this figure
is the equation of the line best fit and its r®’ value.
Figure 25 shows the theoretical concentrations (column 1 in
Table 2) of TCE plotted against the three areas from the GC
(column 2, 3, and 4 of Table 2).

A similar method of interpreting calibration results
was used for toluene. Table 4 lists the theoretical
calculated concentrations, areas under the curve, and
predicted concentrations with their averages and standard
deviations. Table 5 lists the average of the three areas
(column 2, 3, and 4 of Table 4) from the GC and the average
of the predicted concentrations (column 8 of Table 4). The
linear regression data for toluene is tabulated in Appendix
D. The standard deviations ranged from 0.4 (minimum) for the
8.28 parts per million to 7.09 (maximum) for 414.19 parts
per million. Figure 26 shows the average of three areas from
the GC plotted against the average of the predicted
concentrations for toluene. It represents a composite
calibration curve for toluene based on the averages of the
three independent calibration curves. Also included in this
figure is the equation of the line best fit and its r’

value. Figure 27 shows the theoretical concentrations
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(column 1 in Table 4) of toluene plotted against the three
areas from the GC (column 2, 3, and 4 of Table 4).

A single different calibration data point was checked
each day of an experimental run. Each time the concentration
value, using the existing calibration curves (Figure 24 and
26), was within 5 percent of the theoretical concentration
of the calibration data points. Therefore, a whole new
series of calibration data were not repeated and the data in
Tables 3 and 5 were relied upon for the duration of this

research.
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Table 2

Calibration Data for Trichloroethylene

Theoretical Average Standard
Calculated &Feas Under the GC Curve_ Predicted Concentration (PPM) Predicted Deviation
Concentration Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Concentrations of Predicted
(PPM) Equation of Line (PPM) Concentrations

Y = -1.213 + 1400.033 (X)
9,792 0.010 0.010 0.011 12,787 12.087 14,187 13.021 1.069
29.370 0.020 0.022 0.022 26.088 29.168 29.868 28.374 2.011
48,960 0.035 0.034 0.035 47.368 45.828 47.788 46.995 1.032
145.000 0.103 0.104 0.105 143.410 143.830 145.090 144,110 0.874
331.980 0.239 0.239 0.238 332875 333.535 331.295 332.602 1.166
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Table 3

Predicted Concentrations of Trichloroethylene

Theoretical Average of
Calculated Average Areas Predicted
Concentrations from GC Concentrations
(PPM) (PPM)
9.792 0.010 13.021
29..37 0.021 28.374
48.96 0.034 46.995

145 0.104 144.110
331.98 0.238 332.602
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Table 4

Calibration Data for Toluene

Average Standard
’heoretical Area Under the Curve Predicted Concentrations (PPM) Predicted Deviation
Calculated Run 1 Run 2 Run 3  Run 1 Run 2 Run 3 Conc. of Predicted
(PPM) Equation of Line ({PPM) Concentrations
Y = 438.874 (X) + 0.32483
8.28 0.023  0.022 0.021  10.375 10.156 9.585 10.039 0.408
24.85 0.057 0.058 0.053 25.209 25.780 23.585 24.858 1.139
41.41 0.084 0.085 0,081 37.278 37.629 35.918 36.942 0.904
149.95 0.342 0.346 0..371 150.288 151.956 163.323 155.189 7.093
280.84 0.634 0.636 0.635 278.659 279.317 278.922 278.966 0.331
300.00 0.682 0.677 0.682 299.461 297.442 299.681 298.862 1.234
414.19 0.945 0.945 0.942 415.192 414,929 413.876 414.666 0.697
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Table 5

Predicted Calibrated Concentrations of Toluene

Theoretical Predicted
Calculated Average Concentrations
Concentratoins Areas from GC (PPM)

(PPM)

8.28 0.022 10.039
24.85 0.056 24.858
41.41 0.083 36.942
149.95 0.353 155.189
280.84 0.635 278.9266

300 0.680 298.862
414.19 0.944 414.666
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EFFECT OF RESIDENCE TIME ON DESTRUCTION

To measure the effect of residence time on the
destruction ability of the plasma reactor three different
values of residence time were chosen. These different
residence times were 3 seconds, 5 seconds, and 10 seconds.
The maximum destruction can be calculated from Tables 14 and
15 (Appendix H). These tables tabulate the effluent and
influent concentrations for a complete run for TCE and
toluene, respectively. In this study the destruction was the
difference of influent and effluent concentrations. The
maximum destruction of trichloroethylene achieved for 3
seconds was 99 percent, for 5 seconds it was 97 percent, and
for ten seconds it was 97 percent. For toluene the maximum
destruction achieved for 3 seconds was 93 percent, for 5
seconds it was 94 percent, and for ten seconds it was 95
percent. To change the residence time the volume of the air
stream going through the reactor was varied to obtain the
desired residence time. At three seconds the flow rate was
395 ml/min, for 5 second it was 235 ml/min, and for 10
seconds the flow rate was 118 ml/min (Appendix C). All these
tests were run at 20 percent relative humidity to keep the
humidity from not being a variable. The temperature during
these experiments was 50 F°.

The destruction of the contaminant was plotted in terms
of percent remaining in the effluent against time. The plot

for the residence times of 3, 5, and 10 seconds for
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trichloroethylene is shown in Figure 28. The plot for the
residence times of 3, 5, and 10 seconds for toluene is shown
in Figure 29. The percent remaining in the effluent of the
different residence times for both chemicals were plotted
together against time in Figure 30.

For each experiment test the equipment was run for one
hour to purge all the gas in the system and allow the gas
stream to become steady in terms of pollutant concentration
and humidity. At the end of one hour several samples were
taken. The last two samples, one for effluent and one for
influent, are plotted in all the figures. After the second
of these two samples were injected into the GC the plasma
was turned on and the first sample during the destruction
phase of the experiment was taken 5 minutes later. The
effluent did not show the maximum destruction achievable
after five minutes because of the remaining pollutant in the
inside volume (448.6 ml. as calculated in Appendix C) of
plumbing after ACPR. It took T = 15-20 minutes for the
effluent from the ACPR to totally flush this 448.6 ml. After
20 minutes the effluent concentration reached that of
maximum pollutant destruction and remained steady till the
plasma was turned off. Only the steady state data was used
to calculate the destruction efficiency. After the ACPR was
turned off at T = 65 minutes it took the effluent from the
ACPR 15-20 minutes to totally flush the inside volume of

plumbing (from ACPR to the effluent sampling bulb) before
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the effluent reached the concentration of influent. During
every ninety-five minute test for each residence time
several samples were taken from the influent sampling bulb
to ensure that a steady stream of 300 ppm of the desired
contaminant was being fed to the reactor and the decrease in
the effluent concentration occurred because of the
destruction in the plasma reactor.

An ANOVA (Analysis of Variance) statistical test in
Microsoft Excel 4.0 was run on the three different data sets
for 3, 5, and 10 seconds for both TCE and toluene. This data
is tabulated in Tests 3 for TCE (test on data contained in
Table 14, Appendix H) and Test 4 for toluene (test on data
contained in Table 15, Appendix H) as shown in Appendix G.
The hypothesis was that during the destruction phase (T = 35
minutes to T = 65 minutes) the means of the different
residence times were the same.

For TCE the variance for the 3 second residence time
was 4.44, for 5 seconds it was 3.30, and for 10 seconds it
was 2.02 as shown in Test 3 (Appendix G). Averages for the
same columns were 3.33, 4.44, and 4.60. The F-value was 0.89
and F-critical value was 3.68 indicating that the hypothesis
should be accepted and there is no significant statistical
difference in the three curves.

For toluene the variance for the 3 seconds residence
time was 1.07, 0.71 for 5 seconds, and 5.08 for 10 seconds

as shown in Test 4 (Appendix G). The F-value was 1.28 and
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the F-critical value was 3.81 depicting that the hypothesis
should be accepted. This means that there is no significant
statistical difference among the three curves.

The ANOVA test was also run on the combined run of all
the six residence times of both toluene and TCE (Figure 30)
in Test 5 as shown in Appendix G. It was noticed that F-
value (1.32) was smaller than F-critical value (2.62) which
means that there is no significant statistical difference
among the six different curves.

It was observed that in this range of three to ten
seconds of residence times the destruction data did not show
any considerable difference even when the two compounds were
put together. These results signify that the residence time
in the vicinity of these values and with this setup would
not effect destruction. Therefore operators can run this
system at lower residence times increasing the flow rate and
thereby decreasing the cecst to run the plasma reactor.

Nunez et al (9) reported that less destruction occurred
when they increased the flow rate from 0.5 L/min to 2.5
L/min for toluene. They used residence time varying between
0.48 seconds to 1.43 seconds. In their study two different
concentrations, 50 and 250 ppm, were used. They noticed that
the effluent concentration increased from zero to 25 ppm for
the influent concentration of 50 ppm. For the 250 ppm the
effluent concentration changed from 100 to 250 ppm. Their

results are different than this study. This may be because
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that they used a different type of plasma reactor called
packed bed corona reactor, that has been explained on the
page 8 of this study. In their plasma reactor continuous
sparking occurred which is probably disrupted by the higher
flow rate bringing the destruction down.

Hurst (12) reported no significant effect on
destruction with increase in flow rates in the plasma
reactor for carbon tetrachloride. He used residence times
varying between 8 to 70 seconds (for reactor size of 74.78
ml), and concentrations between 19 to 83 ppm. His study was
run using the same type of plasma reactor and confirms the

results reached in this study.
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EFFECT OF RELATIVE HUMIDITY ON DESTRUCTION

To measure the effect of relative humidity on the
destruction ability of the plasma reactor three different
values of humidities were chosen and tested using a 5 second
residence time. These different humidities were 20 percent,
40 percent, and 80 percent. For trichloroethylene the
maximum destruction at 20 percent relative humidity was 97.1
percent, for 40 percent relative humidity the destruction
was 92 percent, and for the 80 percent relative humidity the
destruction dropped to 79.2 as shown in Table 16 in the
Appendix H. In this study the destruction was the difference
of influent and effluent concentrations. The maximum
destruction of toluene achieved for 20 percent was 95.25,
for 40 percent it was 79.77, and for 80 percent it was 73.73
as shown in Table 17 in Appendix H. It was observed in these
tests that humidity inhibited the destruction ability of the
plasma reactor. The destruction of the contaminant was
plotted in terms of percent remaining in the effluent
against time. The TCE data in Table 16 (Appendix H) is
plotted in Figures 31. Table 17 that contains the toluene
data is plotted in Figure 32. The percent remaining for all
three relative humidities for both trichloroethylene and
toluene are plotted against time in Figure 33 to allow a
better comparison of the effect of relative humidity on the

destruction of these two chemicals.
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The same equilibrium procedure used for residence time
tests was adopted in these tests. The equipment was run for
one hour to purge all the gas in the system and allow the
system to reach steady state. The last two samples, one for
effluent and one for influent, are plotted in all the
figures. After the second cf these two samples were injected
into the GC the plasma was turned on and the first of sample
of the destruction phase was taken 5 minutes later. The
effluent did not show the maximum destruction achievable
after five minutes because of the remaining pollutant in the
inside volume of plumbing equipment as explained in the
third paragraph of the preceding section. During every
ninety-five minute run for each residence time several
samples were taken from the influent sampling bulb to ensure
that a steady stream of 300 ppm of the contaminant was being
fed to the reactor and the decrease in the effluent
concentration occurred because of the destruction in the
plasma reactor. At T = 65 minutes the plasma was turned off,
after the corresponding effluent sample was taken. The
effluent concentration increased steadily until it reached
the influent concentration.

An ANOVA statistical test was run on the destruction
data generated using the three relative humidity
percentages. The One-way ANOVA in was used for this
analysis. First it was used on the data in Figure 31 that

depicts the effect of humidity on the percent
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trichlorcethylene concentration remaining in effluent. The
hypothesis tested was that the means of the different
relative humidity data during the destruction phase (T = 35
minutes to T = 65 minutes) were the same. The significance
level of 0.05 was used. The ANOVA results for the effect of
humidity are tabulated in Test 6 (Table 16) and Test 7
(Table 17) in Appendix G for TCE and toluene, respectively.
For trichloroethylene the variance for the 20 percent
humidity data was 3.44, for 40 percent it was 6.04, and for
80 percent relative humidity it was 0.62. Averages for these
three humidities were 4.74, 10.96, and 21.72 for 20, 40, and
80 percent relative humidity, respectively. The F-value was
89.286, and the F-critical value was 3.98 which shows that
the hypothesis should be rejected and that there is a
significant statistical difference in the three curves.

For the relative humidities of 20, 40, and B0 percent
for toluene the variances were 0.66, 1.35, and 0.58
respectively. The F-value was 570.10 and the F-critical
value was 4.25 depicting that the hypothesis should be
rejected. This means that there is a significant statistical
difference among the three different curves.

It was observed that in the range of 20 to 80 percent
relative humidity there was a significant statistical
difference in the humidity curves of both trichloroethylene
and toluene. These statistical results confirm the visual

inspection of Figures 32 and 33. Taking into consideration
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the ultimate destruction obtained by each of these curves
and the visual differences between them it can be confirmed
that there is a significant difference between these curves
and increasing relative humidity decreases the destruction
of these chemicals.

If the decision on what comparisons to make is withheld
until after the data are examined, statistical comparison
may still be made, but the alpha (&) level is altered
because such decisions are not taken at random but are based
on observed results (17). Newman-Keuls range test is one of
several methods that have been introduced to handle such
situations (17). Since for this study the decision on what
comparisons to make was withheld until after the data were
examined it was decided to confirm the results obtained by
the ANOVA test by using Newman-Keuls range test on the
humidity data of both TCE and toluene. Tests 6 and 7
(Appendixz G) contain the test steps and results. According
to Newman-Keuls range test shown in Test 6 of Appendix G the
three curves of relative humidities for TCE are
significantly different from each other. From the Newman-
Keuls range test that was applied to the three relative
humidities in Test 7 of Appendix G the three curves of
toluene are also significantly different from each other.
This confirms the earlier results obtained through Single-

Factor ANOVA test.
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The Newman-Keuls range test was also applied to the
combined run of all the six relative humidities of both
toluene and TCE (Figure 33) in Test 8 of Appendix G. The
results showed that all the six curves are significantly
different from each other, except 20 % curve of toluene is
not significantly different from 20 % curve of TCE and 40 %
curve for toluene is not significantly different from 80 %
curve of TCE. This means that the two chemicals act alike at
20 % relative humidity with respect to total destruction. It
also means that toluene destruction in ACPR gets relatively
more inhibited with increasing relative humidity than TCE.

Hurst (12) reported no significant effect on
destruction with changes in relative humidities for carbon
tetrachloride. He changed percent relative humidities from
20 to 61, used residence times varying between 8 to 70
seconds (for reactor size of 74.78 ml), and concentrations
between 19 tco 83 ppm. Kushner et al (8) reported that
destruction of trichloroethylene in silent discharge plasma
decreased with an increase in humidity. Their results
confirm the results obtained in this study for
trichloroethylene. Their research showed that the ClO
radical is an important intermediate which oxidizes TCE. Its
consumption by OH radicals is largely responsible for the
lower rate of remediation in wet mixtures compared to dry
mixtures. The reason of lower destruction with increasing

humidities for toluene was unknown in this research.
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EFFECT OF THE MIXTURE OF TWO POLLUTANT ON DESTRUCTION

The objective of this experiment was to determine the
effect of frequency on the destruction of a mixture of two
pollutants. In this step of the research trichlorocethylene
was mixed equally with toluene. Equal concentrations of both
contaminants were mixed together to facilitate easy
detection of any difference in the behavior of the two
chemicals. A residence time of 5 seconds and relative
humidity of 20 percent was selected for these tests.

Two different concentrations of the mixture were used
in this test. First an equal concentration of 148 ppm of
trichloroethylene was mixed with 148 ppm of toluene by
mixing in the required amount of these two chemicals. The
data are tabulated in Tabkle 18 in Appendix H and plotted in
Figure 34. At 200 and 400 hertz the destruction of
trichloroethylene was zero. The destruction then increased
to 12.45 % at 600 hertz, 98.7 % at 800 hertz, and decreased
to 10 % at 1000 hertz. For toluene the destruction was zero
at 400 and 600 hertz, it increased to 10.38 % at €00 hertz,
93.4 % for 800 hertz, and decreased to 13.23 % for 1000
hertz. The Single-factor ANOVA results on this test data are
shown in Test 9 in Appendix G. The variance for the TCE and
toluene data was 1765.29 and 1567, respectively. The F-value
was 0.001 and F-critical value was 5.32 indicating that the

hypothesis that the mean of the two data are the same should
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not be rejected. This means that there is no significant
statistical difference between the two data sets.

For the second test equal concentration of 200 ppm of
the two chemicals were mixed. This data are shown in Table
19 in Appendix H and are plotted in Figure 35. At 200 and
400 hertz the destruction of trichloroethylene was zero,
same as for the test at the lower concentration of 148 ppm.
The destruction then increased to 10.23 % at 600 hertz,
99.02 % at 800 hertz, and 9.66 % at 1000 hertz. For toluene
the destruction was zero at 400 and 600 hertz which
increased to 12.04 % at 600 hertz, 94.2 % for B00 hertz, and
14.5 % for 1000 hertz. The ANOVA results on this test data
are shown in Test 10 in Appendix G. The variance for the TCE
data was 1793.75 and for toluene the variance was 1578.31.
The F-value was 0.0002 and F-critical value was 5.317
indicating that the hypothesis that the mean of the two data
is the same should not be rejected. This also means that the
there is no significant statistical difference in the two
data sets.

The maximum destruction for TCE and toluene at 5 second
residence time tabulated in Table 14 and 15 was 97.07 % and
95.25 %, respectively at 20 % relative humidity. These
numbers are very close to the numbers obtained for maximum
destruction for both the 148 and 200 ppm mixtures described
above. No noticeable variation in the destruction was

noticed between these two tests and the 5 second residence

7



time (20 percent humidity) tests conducted earlier in this
research for each chemical individually. The absence of any
variation indicates that the electrical parameters which
were selected for the air phase work the same on these
pollutants regardless of the fact that these gases are

present in a mixture or individually.
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POWER DISSIPATION OVER A SINGLE RUN

The power did not change significantly over the 65
minute runs as shown in Figure 36. This test was run using
trichloroethylene at a residence time of 3 seconds and 20
percent humidities. The data are tabulated in Table 20 in
Appendix H. The plasma was started at a primary voltage of
40 and at a frequency of 800 hertz. Immediately after the
plasma was turned on the power was 512.6 watts. This value
of power was obtained by multiplying the current obtained
from the fluke meter that was measuring current flowing to
the oscillator (from socket) by the voltage of 110 volts.
This value of 512.6 watts decreased to 490.6 watts after 30
minutes and remained constant thereafter. This change of 22
watts was taken into consideration for cost analysis which
is based on 490.6 watts. The exact cause of 22 watts drop
was unknown in this research. It was not a matter of concern
as the equipment was run at least an hour before any tests

were performed.
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REPRODUCIBILITY OF RESULTS

Three different duplicates for the trichloroethylene
destruction data were taken for the residence time of three
seconds. These duplicates were taken to show: (1) At time =
30 minutes the effluent stream reaches a steady state, and
(2) The experiments performed using the setup used in this
study are reproducible.

Figure 37 shows three influent and three effluent data.
The three duplicate runs are tabulated in Table 21 of
Appendix H. A Single-factor, or One-way ANOVA statistical
test was run on the three duplicates as shown Test 11 in
Appendix G. One-way ANOVA was used because the percent
remaining of the pollutant was dependent only on the factor
of time. The hypothesis was that during destruction phase (T
= 35 to T = 90 min) the means of the three duplicate were
the same. The variance for first duplicate was 1.28, for
second duplicate it was 0.95, and for third duplicate it was
1.38. Averages for the same columns were 2.22, 2.20, and
1.97. The F-value was 0.15 and F-critical value was 3.40
indicating that the hypothesis should be accepted and that
there is no significant statistical difference in the three
curves of the duplicates. This result demonstrates that the
experiments performed using the setup used in this study are
reproducible. Also from inspection of the three curves one
can see that after thirty-five minutes the destruction

remains practically the same indicating steady state.
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COST ANALYSIS

The cost analysis was based on power used per Kg of
trichlorcethylene and toluene in the air phase for a
concentration of 300 ppm, a residence time of 5 seconds, and
a power of 490.6 watts. At this concentration air makes up
99.97 percent of the air phase with trichloroethylene or
toluene making up the remaining 0.03 percent by vclume.
Therefore, the specific gravity of air was used for cost
calculations. It was calculated that 0.017 Kg of pollutant
in air phase passes through the reactor in one hour as shown
in Appendix A. At a cost of 0.08 dollars per kilowatt hour
it would cost 2.30 dollars to detoxify one kilogram of
pollutant gas. A cost of 0.039 dollars was calculated for
running the plasma reactor for one hour. Hurst (10) reported
the cost of 0.0081 dollars to run the plasma reactor for one
hour. He calculated this cost by using a utility cost of
0.035 dollars per kilowatt hour instead 0.08 dollars per
kilowatt hour as used in this study. Also in Hurst's study
the volume of the plasma reactor used was 78.74 cubic
centimeter which is larger than 19.6 cubic centimeter used
in this study. He varied the concentration from 19 to 83
parts per million at a primary voltage of 50 volts.

Kushner et al (7) reported the operating cost to be a
little less than a dollar for a Kg of TCE in gas phase. They
estimated the cost based on $0.10/kWh. Their cost is less

than calculated in this study. They used concentrations
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varying from 100 to 1000 parts per million. Their lower cost
might be because of the square geometry of the Silent
Discharge Plasma (SDP) which may be more efficient in
establishing a strong electrical field as compared to the
cylindrical shape of the alternating current plasma reactor.
In their reactor there was no localized arcing because one
or both the electrodes in their reactor were covered with
dielectric. In the SDP the dielectric surfaces serve the
role of the capacitor in series with the plasma saving the
power dissipated in the circuit and thereby decreasing the

cost.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The specific objective of this research was to prove that
the plasma reactor was a feasible method for the destruction
trichloroethylene and toluene. The goal of this objective
was accomplished by finding and evaluating the effect of
design variables on destruction efficiency. The design

variables considered were relative humidity and residence

time.

CONCLUSIONS
The conclusions arrived at from these research
experiments are as follows:

1. The plasma reactor had a small optimum range that
enveloped all the peak values for power delivered for
different primary voltages.

2 The maximum power consumed elevated with increase in
primary voltage.

3. Varying residence time to 3, 5, and 10 seconds did not

have any significant effect on the destruction

efficiency of TCE and toluene.
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10.

Humidity had a negative effect on the destruction. The
increase in humidity from 20 percent relative humidity
to 40 and then 80 percent decreased destruction.

The ACPR proved to be an effective method of
trichloroethylene destruction under the conditions and
equipment used for this research.

The maximum destruction achieved for trichlorocethylene
was 99.03 percent at residence time of 3 secconds and 20
percent relative humidity.

The ACPR proved to be an effective method of

toluene destruction under the conditions and equipment
used for this research

The maximum destruction achieved for toluene was 95.43
percent at residence time of 10 seconds and 20 percent
humidity, indicating that Alternating Current Plasma
reactors used in this study was more successful in
altering trichloroethylene (maximum destruction
99.03%) .

Individual destruction efficiency in the mixture was
not significantly different than their individual
destruction efficiency in the plasma reactor used in
this study.

The cost of operating the plasma reactor was calculated
to average 2.30 dollars per kilogram of TCE or

toluene in air phase. The cost for running the plasma

reactor for one hour was 0.039 dollars.

108




RECOMMENDATIONS
The following recommendations are made:

1; Further research needs to be performed to find the
exact nature and sequence of reactions taking place in
the ACPR to better control the behavior of pollutants
during destruction.

2. The destruction behavior of hazardous air pollutants
needs to be investigated with residence time shorter
than one second.

1 The destruction behavior under extreme hot and cold
temperatures needs to be investigated.

4. Scaling up of the reactor to meet industrial

applications should be investigated.
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Appendix A

COST OF REMEDIATION OF TCE AND TOLUENE
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COST ESTIMATION
The cost is based on the pollutant mix with air
Effective Volume of the Plasma Reactor = 0.01386 L
Specific gravity of TCE = 1.46 Kg/L
As the mix is more than 99.97 % air (300 Parts/1l Million
Parts) the calculations should be based on air.
Assuming, density of air = density of the mix (pollutant +
air)
The Density of Air @ 60 F = 0.0763 1lb/ft® = 0.035 Kg/ft?®
1 ft* = 28.317 L
0.035 Kg/ft’ = 0.00123 Kg/L
For residence time of 5 seconds:

1 hr = 3600 seconds

3600 seconds/5 seconds = 720 times

720 * 0.0196 L * 0.0012 Kg/L = 0.017 Kg of mix/hr

Cost in Dollars Per Kilogram

For 490.6 Watts/hr @40 Volts Primary (from Table 20)
(490.6 Watt.hr * 1Kg )/0.017 Kg = 28858.82 Watt.hr
= 28.85 KWhr
For .08 dollars/KWhr:
Cost = 28.85 KWhr * 0.08 dollars
= 2.30 dollars/Kg of toluene or trichloroethylene gas.

Cost in Dollars Per Hour

The cost of running the reactor for 1 hour:

0.4906 KWhr * 0.080 = 0.039 dollars/hr
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Appendix B
Table Z-2
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§1910.1000

1See Table Z-3.
“Vanes with compound.

29 CFR Ch. XVII (7-1-93 Edition)

TABLE Z2-2
Acceoiable maxmum paak above
the acceplable ceiling concenira-
8-heur time L]
Substance weghted av- | cailing con- hon for an B-hr shit
orage cantration
Concentration “"“"’1:’; dure:
Benzanes (Z37.40-1969) .. Pl [ 1+ - - | TP 25 ppm ......... 10 mnutes.
Berylllum and berylliium mmuncs t22? ‘29—19?01 5 2 pg/me Sugmd ... 30 mnutes.
Caommum tumes= (Z37.5-1970) ...cocovvicininiiiiiane 0.1 mgrm? ... | 0.3 mg/m3
Caomium duse (Z37 5-1970) . 0.2 mg/im> . 0.8 mg/m>.
Carvon disulfide (Z37 3-1968] ... 21 20 e s 0 pom ... 30 mnutes.
Caroon letrachlonde (Z37. \?-19671 cereersineessnreninesansnennnese | 10 PO 25 ppm ... 5 mn. inany 4
hrs.
Chromic acid and chromates (Z37.7=1971) ..vvivciiieis | cvenieeninnenes 1 mg/10m:
Ethylens diromide (Z37.31-1970) ... 20 ppm . D ppm ... S0 ppm i 5 mnutes.
Ethylene dichionce (Z37.21=1969) .....cccoviciiienceneiianns 50 ppm ......... 100 ppm ... 200 ppm ... 5mn. n any 3
hrs,
Fluonde as dust (Z37.28-1969) .........cccceviivcrmrrienrvnsneniees | 25 MBIMY L | ciiriccnviiinees | cimiaesiaereressninen
Formaidehyce: see 1810.1048 ...
Hydrogen fluonde (Z37 28-1968) 3 PO i aas
Hydrogen sutice (237 2-1966) ........ccoviiiiiciinnirninie 20 ppm .........
Mercury (Z27.8-1871) 1 mg/10m?
Methyl chionde (Z37.18=1969) ......ccccecrimmereciiesnenssssieainans 100 ppm ....... | 200 ppm ...
Metrytens chionde (237 23-1868) .............. 500 ppm ... 1,000 pom
Organc (aloyl) mercury (Z37 30-1088) ... 0.01 mg/m? 0.04 mgm> .
Styrena (Z37.15-1889) .._.....oviininniiininns iR 100 ppm ... | 200 pom ...
Tetrachiomethyene (227 22—=1387] ....ooccvvririersiereresrarsinns 100 ppm ....... 200 ppm .......
Toluens (227 12-1887) ..coerieecsnnineeerinns 200 ppm ... 300 pom ...
Trchloroethysena (237, 19—\937) 100 ppm ... 200 pom ... 300 ppm ....... 5 mins. n any 2
hra.

+ This standard acohes 'o tha ndusiry segments exempt from the 1 ppm B8-hour TWA and 5 ppm STEL of the benzane
stancard ar 1910.1028,

» This stancard appiles [0 Any operations or seciors for which the Cadmium standard, 1910.1027, is stayed or othermse nol n
eftecL
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APPENDIX C
INJECTION VOLUME DETERMINATION FOR TOLUENE AND
TRICHLOROETHYLENE
&

AIR FLOW RATES
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TOLUENE

Determine the volume of Toluene to be used for 300 PPM Conc:

This

time.

T = 77°F = 298K

Y Effective Volume of the ACPR = 19.6 ml = 0.0196L

P

1 atm.
Density = 0.862 gm/ml (20°C) = 0.8623E-03 gm/pl
n = PV/RT

=1 atm (0.0196 L)/(0.0821 L x atm/gmole % K) (298K)

8.011E-04 g.mol
% mole of toluene =
300 PPM x 8.015E-04 g.mole/1E+06 = 2.405E-07 g mole

Toluene in gms

2.405E-07 g mole (92.13/moles of Toluene)

2.21 x 10°° gm

Volume of Toluene = 2.215E-05 gm/0.8623 % 10"’ gm/ml
= 0.0257 pl

volume of pollutant needs to be injected per residence

TRICHLOROETHYLENE

Determine the volume of Trichloroethylene to be used for 300

PPM Conc:
T = 77°F = 298K
V=19.6 ml = 0.0196 L

P =1 atm.

Density = 1.46 gm/ml (20°C) = 1.46 E-03 gm/pl
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PV/RT

oo}
Il

I
H

atm (0.0196L)/(0.08206 L.atm/gmole.K) (298K)

= 8.015E-04 gmol
®x mole of trichloroethylene

= 300 ppm x 8.015E-04 g.mol/1 x 10°

2.4045E-07 g.mole
Trichloroethylene in gms

= 2.4045E-07 g.mole * 92.13/moles of trichloroethylene

3.159E-05 gm

Volume of Trichloroethylene

3.159E-05 gm/0.8623 x 10~° gm/ml

0.0216 pul
This volume of pollutant needs to be injected per residence

time.

Air Flow Rates:
3 Seconds
(19.6 ml. * 60 seconds)/(3 second * 1 minute)
= 392 ml/min
5 Seconds
(19.6 ml. * 60 seconds)/ (5 second * 1 minute)
= 235.2 ml/min

10 Seconds

(19.6 ml. * 60 seconds)/ (10 second * 1 minute)

= 117.6 ml/min
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Inside Volume of Plumbing:
To calculate the inside volume of plumbing from the reactor
to the point of effluent sampling the inside volume of

following should be added together:

33 cm. of 2 cm. dia tube = 103.6 ml.

(the tube that connected the outlet

of ACPR to the 0.635 cm. dia tube)

300 cm. of 0.635 cm. dia tube = 95.0 ml.

250 ml. of effluent sampling port = 250.0 ml.
Total = 448.6 ml.

120



APPENDIX D

REGRESSION DATA FOR TRICHLOROETHYLENE AND TOLUENE
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Regression Data for Trichloroethylene

Regression Statistics

Multiple R 0.9998
R Square 0.9997
Adjusted R Square 0.99%6
Standard Error 0.0020
Observations 5

Analysis of Variance

Sum of Mean Significance

df Squares Square ¥ F
Regression 1 0.0363 0.0363 8975.30 2.5925E-06
Residual 3 1.214E-05 4.047E-06
Total 4 0.0363

Standard t
Coeff. Error Statistic P-value Lower 95% Upper 95%

Intercept 0.0002 0.0012  0.1979  0.8528 -0.0037  0.0042
xl 0.0007 7.564E-06 94.7381 7.443E-08 0.0007 0.0007

122



Linear Regression Data for Toluene Caliberation

Regression Statistics

Multiple R 0.9999
R Square 0.9998
Adjusted R Square 0.99¢%8
Standard Error 0.0053
Observations 7

Analysis of Variance

Sum of Mean Significance
df Squares Square F F
Regression 1 0.7%929 0.7929 2B446.468 1,3902E-10
Residual 5 0.0001 2.787E-05
Total 6 0.7931
Standard t
Coeff. Error Statistic P-value Lower 95% Upper 95%
Intercept -0.0019  0.0031 -0.6228 0.5563 -0.0099  0.0060
xl 0.0023 1.3504E-05 168.6608 2.93E-12 0.0022 0.0023
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APPENDIX E

PHYSICAL DATA OF TCE AND TOLUENE
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CHEMICAL FORMULA
MOLECULAR MASS
CAS CHEMICAL NAME
CAS REGISTRY NO.
MELTING POINT
BOILING POINT
DENSITY

SPECIFIC GRAVITY
VAPOR PRESSURE
FLASH POINT

IONIZATION ENERGY

TOLUENE
C,Hq
92.13
PHENYLMETHANE
108-88-3
-85 €
110.6 C
0.8669 g/ml (20 C)
0.8623 (20 C)
28.7 mm Hg (25 €)
4.4 C
8.82 ev
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CHEMICAL FORMULA
MOLECULAR MASS
CAS CHEMICAL NAME
CAS REGISTRY NO.
MELTING POINT
BOILING POINT
SPECIFIC GRAVITY
VAPCR PRESSURE

IONIZATION POTENTIAL

TRICHLOROETHYLENE
¢, HCl;
131.4
TRICHLOROETHENE
79-01-6
-84.8 C
86.7 C
1.46 (20 C)
57.8 mm Hg (20 C)

9.47 ev

126




APPENDIX F

PRESSURE DATA
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T

MESONET CLIMATOLOGICAL DATA SUMMARY SEPTEMBER 1994 Time Zone: Midnight-Midnight CST
(STIL) STILLWATER Nearest Cicy: 2 W STILLWATER County: PAYNE
Latitude: 36-07-16 Longitude: 97-05-42 Elevation: 892 feet
TEMPERATURE (°F) DEG DAYS |HUMIDITY (%) RAIN PRESSURE (in)| WIND SPEED (mph)| SOLAR PCT OF OBS PRESENT
DAY MAX MIN AVG DEWPT HDD CDD MAX MIN AVG (in) STN MSL DIR AVG MAX | (MJ/m2) T RH P W SoL
1 67 63 65.2 62.4 0 0 94 82 88 0.01 29.18 30.14 NNE 7.4 18.6 5.12 100 100 100 100 100
2 76 66 €69.3 66.3 1] 4 94 69 88 0.06 29.19 30.15 ESE 6.5 15.3 11.33 100 100 100 100 100
3 77 €68 72.1 68.7 0 7 93 76 B6 0.00 29.13 30.09 SE 8.2 20.3 8.55 100 100 100 100 100
4 91 72 80.1 k9.8 0 15 S50 39 &8 0.00 29.00 29.95 SSE 10.5 28.4 23.62 100 100 100 100 100
5 79 70 73.8 65.3 0 9 893 68 B3 0.38 29.08 30.04 SSE 5.7 2.5 9.91 100 100 100 100 100
6 B4 60 72.7 &K5.3 1] 8 94 38 76 0.01 29.22 30.18 NE 4.8 16.2 23.49 100 100 100 100 100
7 84 S5& 70.0 61.5 ] -] 95 41 72 0.00 29.16 30.12 ESE 4.5 14.5 21.38 100 100 100 100 100
B B 62 71.0 65.7 0 ] 94 53 80 0.03 29.11 30.07 SSE 4.6 23.9 13.25 100 100 100 100 100
9 Bl 53 70.1 64.8 0 5 95 57 Bl 0.01 29.11 30.07 SE 4.1 17.1 16.69 100 100 100 100 100
10 84" 63* 72.0% 63.3°* o 7* 94+ 34* 72%| 0.00 29.12* 30.08*| SE = 5.3* 20.3*| 21.47* 59 99 L] 59 99
11 B6 51 72 9 65.3 1] B 93 47 74 0.00 29.15 30.11 SSE 6.0 21.8 21.71 100 100 100 100 100
12 B7 &5 76.0 &£7.8 o 11 %91 S50 72 0.00 29.15 30.11 SSE 6.7 21.1 20.25 100 100 100 100 100
13 8B 69 78.3 6€9.3 o 13 B9 49 70 0.00 29.11 30.06 5 8.1 22.1 17.7% 100 100 100 100 100
14 B 72 79.4 69.4 0 14 Bl 48 &7 0.00 29.04 30.00 5 9.1 26.0 21.69 100 100 100 100 100
15 81 €9 74.5 70.0 0 10 94 64 B3 1.33 29.00 29.95 s 5.2 17.4 8.74 100 100 100 100 100
16 82 55 69.6 658.1 0 5 94 29 64 0.00 29.13 30.08 N 6.2 23.8 19.83 100 100 100 100 100
17 82 51 84.9% 53.1 0 0 93 25 65 0.00 29.19 30.1S W 4.6 23.4 23.41 100 100 100 100 100
18 80 49 63.6 55.0 1 0 94 37 72 0.00 29.20 30.16 W 3.0 16.1 22.79 100 100 100 100 100
19 82 51 65.9 57.4 0 1 94 37 73 0.00 29.18 30.14 ESE 3.3 16.1 22.59 100 100 100 100 100
20 83 56 69.6 60.0 0 - 94 39 69 0.00 29.10 30.05 SE 4.7 18.0 21.08 100 100 100 100 100
21 83 56 70.9 61.0 ] 6 94 42 68 0.73 28.96 29.91 s 8.7 135.9 12.31 100 100 100 100 100
22 65 49 55.8 45.8 9 0 89 30 64 0.06 29.08 30.04 NwW B.9 138.1 18.37 100 100 100 100 100
23 61 44 51.7 43.8 13 0 91 47 68 0.00 28.85 29.80 NNW 7.7 25.0 11.65 100 100 100 100 100
24 66 46 54.2 46.1 11 0 92 40 70 0.00 29.02 29.98 NNW 6.9 23.8 16.10 100 100 100 100 100
25 80 486 62.2 52.17 3 0 93 28 &9 0.00 29.03 25.98 NNW 6.2 27.9 18.31 100 100 100 100 100
26 82 S1 64.6 53.4 0 0 93 33 &3 0.00 28.89 25.84 W 3.4 14.2 21.14 100 100 100 100 100
27 83 49 65.5 55.8 0 0 94 35 &9 0.00 28.93 25.88 ESE 4.2 16.7 20.60 100 100 100 100 100
28 89 53 69.7 60.4 -0 5 94 30 172 0.00 28.97 29.93 ESE 3:5 1541 20.45 100 100 100 100 100
29 93 53 74.4 &60.9 0 9 95 23 62 0.00 28.95 29.90 s 5.7 22.4 20.70 100 100 100 100 100
3o 89 64 75.6 58.1 0 11 67 24 48 0.00 28.91 25.87 s 9.8 30.9 20.48 100 100 100 100 100
Bl 58 &£9.2* 60.7* <- Monthly Averages -> 29.07* 30.03*| SSE* 6.1* 38.1*| 17.83" 99 99 99 99 99
Temperature - Highest: 93* Degree Days - Total HDD: 8- Number of Days With:
LowescC: 44+ Total CDD: 163+ Tmax 2 90: 2° Rainfall 2 0.01 inch: 9
Tmax $ 32: 0* Rainfall 2 0.10 inch: 3
Rainfall: Monthly Total: 2.62 in. Humidity - Highest: 95* Tmin £ 32: 0°* Avg Wind Speed = 10 mph: 1*
Greatest 24 Hr: 1.33 in. Lowest: 23 Tmin S 0: gF Max Wind Speed 2 30 mph: 3-

(c) Copyright 1954,

THE OKLAHOMA CLIMATOLOGICAL SURVEY

* indicates incomplete record
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MESONET CLIMATOLOGICAL DATA SUMMARY OCTOBER 1994 Time Zone: Midnight-Midnight CST
(STIL) STILLWATER Nearest City: 2 W STILLWATER County: PAYNE
Latitude: 36-07-16 Longitude: 97-05-42 Elevation: B92 feet
TEMPERATURE (°F) DEG DAYS |HUMIDITY (%) RAIN PRESSURE (in)| WIND SPEED (mph)| SOLAR PCT OF OBS PRESENT
DAY MAX MIN AVG DEWPT HDD CDD MAX MIN AVG (in) STN MSL DIR AVG MAX | (MJI/m2) T RH P W SOL
1 g7 57 73.0 &0.8 0 8 92 36 61 0.00 28.85 29.80 s 6.2 21.1 19.51 100 100 100 100 100
2 85 60 72.7 61.5 0 8 88 38 &3 0.08 28.76 29.71 ESE 6.4 19.1 16.67 100 100 100 100 100
3 B4 65 74.0 66.0 0 9 91 52 72 0.33 28,91 29.86 E 7.6 23.4 1509 100 100 100 100 100
4 85 64 73.6 65.2 0 9 92 41 71 0.12 29.16 130.12 NE 5.3 18.86 18.73 100 100 100 100 100
S 80 65 71.1 65.0 0 6 93 55 78 0.04 28.99 29.95 SE 6.5 21.9 10.33 100 100 100 100 100
6 84 70 76.2 62.4 0 11 69 40 55 0.00 28.76 29.70 s ld4.4 38.7 15.63 100 100 100 100 100
7 75 54 63.1 56.8 2 0 92 52 76 0.47 28.93 29.88 NNW 8.3 22.8 2.60 100 100 100 100 100
8 68 44 S7.6 48.5 1) 0 92 29 &9 0.00 29.15 30.11 NNW 8.8 26.8 18.20 100 100 100 100 100
9 71 39 53.3 42.5 12 0 93 24 67 0.01 29.29 30.25 N Jal  EaT 20.10 100 100 100 100 100
10 70 37 52.3 42.0 13 0 94 27 68 0.00 29.27 30.23 W 229 15.3 19.63 100 100 100 .100 100
11 71 35 52.7 41.9 12 0 94 25 65 0.00 29.17 30.13 W 2.8 12.6 19.31 100 100 100 100 100
12 74 37 55.5 48.7 10 0 94 48 75 0.00 29.06 30,02 E 3.0° 19.1 18.05 100 100 100 100 100
13 74 48 £62.4 55.5 3 0 95 48 75 0.00 29.12 30.08 NE 5.5 18:7 16.53 100 100 100 100 100
14 69 45 59.5 54.3 S 0 95 56 79 0.00 29.07 30.03 SE 5.7 15.3 10.06 100 100 100 100 100
15 62 58 59.8 57.13 S 0 92 83 89 0.21 28.89 29.84 SSE 10.8 25.0 2.07 100 100 100 100 100
16 70 61 66.0 63.7 0 1 94 86 90 0.01 28.95 29.91 SE 10.4 22.6 3. 41 100 100 100 100 100
17 71 68 69.1 66.6 0 4 93 83 90 0.03 28.91 29.86 SSE 11.2 25.1 3.49 100 100 100 100 100
18 76 52 66.5 62.5 0 1 94 49 B85S 0.20 28.90 29.85 SSE 4.4 20.6 9.71 100 100 100 100 100
19 72 48 5%.9 57.0 5 0 95 68 88 0.01 29.02 29.97 ENE 3.6 12.0 9.84 100 100 100 100 100
20 76 58 &5.8 62.0 0 1 95 58 85 0.00 29.04 25.99 ESE 3.} 9.6 9.96 100 100 100 100 100
21 76 54 66.0 62.1 0 1 95 60 85 0.13 28.86 29.81 N 4.5 21.5 10.54 100 100 100 100 100
22 41 47 &1.6 51.7 k| 0 95 22 70 0.01 28.94 29.89 N 1.8 17.3 16.42 100 100 100 100 100
23 76 43 59.8 48.0 5 0 94 24 &3 0.00 29.11 30.06 ESE 4.6 19.% 16.53 100 100 100 100 100
24 72 51 60.6 48.7 4 0 94 26 61 0.00 29.15 30.11 NNE 78 23,9 11,28 100 100 100 100 100
25 60 35 49.0 31.2 16 0 88 20 43 0.00 29.32 130.28 NNE 8.4 22.9 16.60 100 100 100 100 100
26 63 30 45.8 134.1 19 0 94 26 61 0.00 29.31 30.27 SE 2.8 I2.) 16.61 100 100 100 100 100
27 68 34 51.7 138.5 13 0 88 28 5SS 0.00 29.16 30.12 SSE Bl 21.2 16.04 100 100 100 100 100
28 67 45 655.4 46.9 10 0 78 51 &7 0.00 29.01 29.96 SSE 8.8 28.7 9.40 100 100 100 100 100
29 66 S0 S57.9 51.7 7 0 B6 61 75 0.00 29.03 29.99 SSE 4.5 7.1 4.68 100 100 100 100 100
30 68 56 61.0 56.7 4 0 931 64 82 0.02 29.03 29.98 S 3.1 15.5 4.60 100 100 100 100 100
i1 S9 38 50.7 45.9 14 0 94 51 80 0.38 29.07 30.02 NNW 8.5 41.3 10,12 100 100 100 100 100
73 S0 61.4 53.4 <- Monthly Averages -> 29.04 29.99 SE 6.2 41.3 12.64 100 100 100 100 100
Temperature - Highest: 87 Degree Days - Total HDD: 171 Number of Days With:
Lowest: 30 Total CDD: 59 Tmax 2 90: 0 Rainfall 2 0.01 inch: 15
Tmax < 32: 0 Rainfall 2 0.10 inch: 7
Rainfall: Monthly Total: 2.04 in. Humidity - Highest: 895 Tmin 5 32: 1 Avg Wind Speed 2 10 mph:
Greatest 24 Hr: 0.47 in. Lowest: 20 Tmin S 0: 0 Max Wind Speed 2 30 mph:

{(c) Copyright 15%4, THE OKLAHOMA CLIMATOLOGICAL SURVEY

* jndicates incomplete record
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MESONET CLIMATOLOGICAL DATA SUMMARY NOVEMBER 1994 Time Zone: Midnight-Midnight CST
(ST1L) STILLWATER Nearest City: 2 W STILLWATER County: PAYNE
Latitude: 36-07-16 Longitude: 97-05-42 Elevation: 892 feet
TEMPERATURE (°F) DEG DAYS |HUMIDITY (%) RAIN PRESSURE (in)| WIND SPEED (mph)| SOLAR PCT OF OBS PRESENT
DAY MAX MIN AVG DEWPT HDD CDD MAX MIN AVG (in) STN MSL DIR AVG MAX | (MJ/m2) T RH P W SOoL
1 70 37 53.5 41.7 12 0 94 25 61 0.00 28.90 29.86 SSE 8.6 27.3 11.87 100 100 100 100 100
2 74 5S4 64.0 53.6 1 0 74 47 862 0.00 28.70 29.65 s 11.8 31.0 10.45 100 100 100 100 100
k! 83 57 70.5 60.8 0 S 84 45 66 0.00 28.82 29.77 SsW 10.9 31.5 12.23 100 100 100 100 100
4 59 44 49.5 47.3 15 0 93 77 90 0.48 28.89 29.84 NNW 6.8 21.9 1.71 100 100 100 100 100
5 54 37 44.5 41.7 20 0 95 64 87 1.02 28.92 29.87 NwW 6.9 24.0 4.98 100 100 100 100 100
& 70 33 49.8B 41.8 15 0 95 33 72 0.00 29.22 30.18 ESE 3.1 13.1 14.97 100 100 100 100 100
7 72 43 57.3 48.7 8 V] 87 45 68 0.00 29.12 30.0 SSE 8.6 26.4 13,11 100 100 100 100 100
8 BO 53 66.1 658.9 0 1 B8 51 73 0.14 28.90 29.8 SSE 8.6 27.7 10.00 100 100 100 100 100
9 53 41 46.8 42.1 18 0 92 68 179 0.52 29.14 30.10 NNW 10.2 29.4 3.81 100 100 100 100 100
10 57 3% 46.9 41.4 18 0 91 55 76 0.00 29.25 30.21 E 6.2 14.8 12.23 100 100 100 100 100
11 60 40 50.3 43.% 15 0 84 51 74 0.00 29.18 30.14 S5SE 5.8 17.0 11:53 100 100 100 100 100
12 58 43 50.8 45.2 14 0 89 61 77 0.00 29.07 30.03 SSE 10.3 24.1 8.95 100 100 100 100 100
13 65 57 61.3 57.3 q 0 94 66 81 0.14 28.93 29.88 s 10.2 26.4 1.55 100 100 100 100 100
14 61 48 531.7 49.9 11 1] 95 64 81 0.01 29.17 30.13 NNE 6.5 18.6 4.78 100 100 100 100 100
15 S8 33 47.1 40.1 18 0 93 42 72 0.00 29.37 30.34 N 8.3 26.5 12.12 100 100 100 100 100
16 61 24 44.7 137.0 20 0 895 35 72 0.01 29.18 30.14 SSE 4.8 18.5 131.84 100 100 100 100 100
17 B0 44 S3.4 48.9 12 0 90 45 81 0.00 28.85 29.80 s 9.6 26.4 2.39 100 100 100 100 100
18 65 28 47.% 137.5 17 1] 94 25 64 0.05 29.14 30.10 ESE 4.8 17.3 12.25 100 100 100 100 100
19 55 S1 52.8 50.8 12 0 95 80 91 1.36 29.06 30.02 ESE 10.6 31.2 0.74 100 100 100 100 100
20 60 42 51.9 43.2 13 0 95 27 &8 1.45 28.65 29,60 SW 13.9 43.9 7.83 100 100 100 100 100
21 59 38 47.6 38.4 17 0 89 44 63 0.00 29.14 30.09 NNE B.0 23.0 12.71 100 100 100 100 100
22 42 33 39.8 30.0 25 0 B0 42 &0 0.00 29.51 30.47 NE 10.1 24.9 L3 100 100 100 100 100
23 50 27 37.5 30.7 28 0 94 38 72 0.00 29.59 130.56 S5W 2.9 14.0 11.61 100 100 100 100 100
24 S4 35 45.6 40.1 19 0 84 83 176 0.00 29.23 130.19 s B.4 26.2 5.35 100 100 100 100 100
25 51 46 48.3 44.3 17 0 90 73 82 0.00 29.13 30.09 ESE 4.6 13.2 277 100 100 100 100 100
26 61 48 52.9 51.2 12 0 95 86 92 0.02 28.81 29.76 SSE 8.3 20.5 2.54 100 100 100 100 100
27 67 35 52.2 40.8 13 0 90 31 58 0.00 28.71 29.65 WhW  12.2 44.0 12.22 100 100 100 100 100
28 59 2& 39.0 28.8 26 0 91 18 &3 0.00 28.99 29.94 W 4.5 27.5 12.58 100 100 100 100 100
29 51 231 314.9 27.3 30 "] 93 33 71 0.00 29.30 30.26 MW 3.4 16.8 12.17 100 100 100 100 100
i0 59+ 22* 40.6* 27.4* 24 0* 93+ 22* S6*| 0.00 29.34 130.30 SW 6.0 29.1 12.10 95 99 100 100 100
61 39 50.0* 43.0* <- Monthly Averages -> 29.07 30.03 SSE 7.8 44.0 8.59 99 99 100 100 100
Temperature - Highest: B83* Degree Days - Total HDD: 456* Number of Days With:
Lowest : 22« Total CDD: b i Tmax 2 90: O* Rainfall 2 0.01 inch: 11
Tmax € 32: 0° Rainfall 2 0.10 inch: 7
Rainfall: Monthly Total: 5.19 1in. Humidity - Highest; 95* Tmin < 32: 6* Avg Wind Speed 2 10 mph: 9
Greatest 24 Hr: 1.45 in. Lowest : 18+ Tmin S 0: o Max Wind Speed 2 30 mph: S

(c)

Copyright 1994,

THE OKLAHOMA CLIMATOLOGICAL SURVEY

* indicates incomplete record
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Table E  Upper 5 Percent of Studentized Range ¢*

P

nj 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

1 180 267 328 372 405 43.1 454 473 491 506 519 532 543 554 563 572 580 S88 596
2 609 828 980 1089 11.73 1243 1303 1354 1399 1439 1475 1508 1538 1565 1591 16,14 1636 1657 16.77
3 450 588 683 751 804 B47 BB5 98 946 972 995 1006 1035 1052 10.6Y 1084 1098 11.12 11.24
4 393 500 576 631 673 706 735 760 783 RO3 821 837 K52 K67 BBO 8BYZ 903 9.4 924
5 361 454 518 564 599 628 652 674 693 7.0 725 739 752 764 775 786 795 804 8.3
6 346 434 49 531 563 589 6.2 632 649 665 679 692 704 T4 724 734 743 751 759
7 334 416 468 506 535 559 580 599 615 629 642 654 665 675 684 693 701 7T08 716
8 326 404 453 489 517 540 560 577 592 605 6.8 629 639 648 657 665 673 680 6.87
9 320 395 442 476 502 524 543 560 574 587 598 609 6,19 628 636 644 651 658 665
10 3.15 388 433 466 491 512 530 546 S560 572 583 593 603 612 620 627 634 641 647
11 311 382 426 458 482 503 520 535 549 561 571 581 59 598 606 6.4 620 627 633
12 308 377 420 451 475 495 512 527 540 551 5601 571 580 58 595 602 609 615 621
13 306 373 415 446 469 488 505 519 532 543 553 563 571 579 586 593 600 606 6.11
14 303 370 411 441 464 483 499 513 525 536 546 556 564 572 579 586 592 598 6.03
15 301 367 408 437 459 478 494 508 520 531 540 549 557 565 572 579 585 591 596
16 300 365 405 434 456 474 490 503 515 526 535 544 552 559 566 573 579 SB4 590
17 298 362 402 431 452 470 486 499 511 521 531 539 547 555 561 568 574 579 584
18 297 361 400 428 449 467 483 49 507 517 527 535 543 550 557 563 569 574 579
19 296 359 398 426 447 464 479 49 504 5104 523 532 539 546 553 559 565 ST 575
20 295 358 396 424 445 462 477 490 500 511 520 528 536 543 550 556 561 566 571
24 292 353 390 407 437 454 468 481 492 501 510 518 525 532 538 544 550 555 5.59
30 289 348 384 401 430 446 460 472 483 492 500 508 515 521 527 533 538 543 548
40 286 344 379 404 423 439 452 463 474 482 490 498 505 511 517 522 527 532 536
60 283 340 374 398 416 431 444 455 465 473 481 488 4094 500 So06 511 515 520 524
120 280 336 369 392 410 424 436 447 456 464 471 478 484 490 495 500 504 509 513
= 277 332 363 386 403 4107 429 439 447 455 462 468 474 480 484 4EY 493 497 501

*From J. M. May, "Extended and Corrected Tables of the Upper Percentage Points of the Studentized Range," Biomerrika, vol. 39 (1952), pp. 192-193.

**p is the number of quantities (for example, means) whose range is involved. a3 is the degrees of freedom in the error estimate,
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Test 1
Statistics test on
Feasibility of Parafilm as a subtitute of Plastic Cap
(Data Contained in Table 9)

Time Areas from the GC -
(Min) Plastic Cap Parafilm
5 0.199 0.2
10 0.208 0.209
15 0.212 0.211
20 0.215 0.216
25 0.217 0.217
30 0217 0.217
35 0.218 0.218
40 0.217 0.218
45 0.218 .217

Anova: Single-Factor

Summary
Groups Count Sum Average Variance
Column 1 9 1.92 021 4.03E-05
Column 2 9 1.92 0.21 3.65E-05
S8 df MS ~F  P-value F crit
Between
Groups 2.22E-07 1 2.22E-07 0.01 0.94 4.49

133



Test 2
Statistics test on
Feasibility of Parafilm as a subtitute of Plastic Cap
(Data Contained in Table 10)

Time Areas from the GC

(Min) Plastic Cap Parafilm
5 0.622 0.618
10 0.635 9. 632
15 0.651 0.651
20 0.665 0.666
25 0.674 0.675
30 0.682 0.681
35 0.682 0.68
40 0.681 0.681
45 0.682 0.681

Anova: Single-Factor

Summary
Groups Count Sum Average Variance
Column 1 9 5.974 0.66 0.001
Column 2 9 5.965 0.66 0.001
. s F____Pomlve F erit
Between
Groups 4 .5E-06 1 4.5E-06 0.008 0.929 4.494
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Test 3
Statistics test on
Effect of Residence Time on Destruction of TCE
{(Data Contained in Table 14)

Relative Humidity = 20%
Temperature = 50 F

100% = 300 ppm

% Parts Per Million in Effluent

Time at Different Residence Times
(Min) 3 Sec 5 sec 10 sec
5 100.7% 100.7% 101.30
10 42.51 56.09 36.79
15 15.21 18.33 16.00
20 e I o
25 1.63 5.67
30 4.42 4.60 4,28
35 4.37 7.77 5.16
40
45 6.33 4.7¢9 5.12
50 2.79 3.867 6.84
55
60 1.07 2.88 3.16
65 0.98 2093 3.07

Anova: Single-Factor for T = 35 Min to T= 65 Min
Alpha = 0.05

Summary
Groups Count Sum Average Variance

Column 1 6.00 19.95 3.33 4.44

Column 2 6.00 26.65 4.44 3.30

Column 3 6.00 27.63 4.60 2.02

Source of Variation

_ss df = Ms 3 P-value F crit
Between
Groups 5.82 2.00 2.81 0.89 0.43 3.68
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Test 4
Statistics test on
Effect of Residence Time on Destruction of Toluene
(Data Contained in Table 15)

Relative Humidity = 20%
Temperature = 50F

100%=300ppm

% Parts Per Million in Effluent

Time at Different Residence Times
(Min) 3sec S5sec 1l0sec
5 101.04 96,29 99.87
10 49.13 47.34 50.66
15 12.18 10.49 16.49
20
25 9.65 B8.28 16.68
30 8.62 6.74 10.99
35 7.82
40 6.19 6.63 B8.684
45 6.37 5.40 6.04
50
55 6.35 4,75 4,69
60 6.32 6.06 6.32
65 58.98 4.57

Anova: Single-Factor for T = 35 Min to T = 65 Min
Alpha = 0.05

Summary
Groups Count Sum Average Variance
Column 1 5 33.85 6. 77 1.07
Column 2 5 29.58 5.92 0.71
Column 3 6 44.71 7.45 5.08

Source of Variation

sSs df Ms_ F o ”P—value _ F_prip

Between
Groups 6.43 2.00 3.22 1.28 0.31 3.81
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Test 5
Statistics Test on
Effect of Residence Time on the Destruction
of Toluene and TCE
(Data Contained in Table 14 and 15}

Relative Humidity = 20 %
Temperature 50 F
100% 300ppm

% Parts Per Million in Effluent
at Different Residence Times

Time Toluene TCE
{Min) 3sec S5sec l0sec 3sec 5sec 10sec
5 101.04 89.29 99.87 100.79 100.79 0% 30
10 48.13 47.34 50.66 42.51 56.09 36.79
15 12.148 10.49 16.48 15.21 18.33 16.00
20 7.16
25 9.65 8.28 16.68 1.63 5.67
30 8.62 6.74 10.99 4.42 4.60 4.28
35 7.82 4.37 P77 5.16
40 6.19 6.63 B8.84
45 6.37 5.40 6.04 6.33 4.79 5.12
50 2.7719 3.67 6.84
55 6.35 4.75 4.69
60 6.32 6.06 6.32 1.07 2.88 316
65 58.98 4.57 0.98 2.93 3.07
Anova: Single-Factor for T = 35 Min te T = 65 Min
Alpha = 0.05
Summary
Groups Count Sum Average Variance
Column 1 5 B4.21 16.84 554.79
Column 2 4 22.84 G ddl 0.66
Column 3 3 38.29 6.38 Z2.87
Column 4 5 15.53 e i 5,15
Column 5 5 22.05 4.41 4.12
Column 6 5 23.35 4.67 2.49
Source of Variation
SS df MS F P-value F crit
Between N -
Groups 629.34 5.00 125.87 1:32 0.29 2.62
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(Data Contained in Table 16)

Test 6
Statistics Test on
Effect of Relative Humidity on the Destruction of TCE

Residence Time = 5 sec
Temperature = 50 F

100%

300ppm

% Parts Per Million at Different

Time Effluent Relative Humudities
(Min) 20% 40% BO%
5 100.79 100.32 99.47
10 56.09 58.93 59.95
15 18.33 22.14 28.47
20
25 1.63 17.95 23.86
30 4.60 14.47 22.65
35 T30 12.51
40 22.09
45 4,79 10.05
50 3.67 8.98 20.98
55
60 2.88 8.79 21.16
65 2+93 8.09 20.84
Anova: Single-Factor for T = 35 Min teo T = 65 Min
Alpha = 0.05
Summary
Groups Count Sum Average Variance
Column 1 5 23.72 4.74 3.44
Column 2 5 54.79 10.96 6.04
Column 3 4 86.88 21.72 0.62
Source of Variation
SS df Ms E P-value F crit
Between
Groups) 646.1629 2 323.081 B9.286 1.58E-07 3.982
Within
Groups) 39.80357 11 3.619

Newman—-Keuls Method for the TCE Humidities

STEP 1 Mean of Three Humidities
40%

STEP 2

STEP 3

Error Mean Square is 3.619 with 11 degrees of

freedom:

20%
4.744

/3.619/3

10
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STEP 4

From Table E (in Appendix G) the Significant Ranges

at 5 % and n2=11 are:

1 2 3
RANGES 3.15 3.88
STEP 5 Multiplying the Std. Error of 1.1 the Least
Significant Ranges (LSR) are:
P 2 3
LSR 3.47 4.27
STEP 6
LARGEST VS SMALLEST 21,721 >
LARGEST VS NEXT SMALLEST 4.744 >
SECOND LARGEST VERSUS SMALLEST 10.858 >

From these results the 20%, 40%, and 80 % curves are
significantly different from each other.
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Test 7
Statistics Test on

Effect of Relative Humidity on the Destruction

of Toluene
(Data Contained in Table 17)

Residence Time = 5 sec
Temperature = 50 F

100 = = 300 ppm

% Parts Per Million Effluent

Time at Different Relative Humudities
(Min) 20% 40% 80%
5 99,294 100.473 99.740
10 47.338 57.647 T2:::397
15 10.485 26.926 34.074
20

25 8.279 24.574 2B.279
30 6.738 22.559 29.588
35

40 6.632 22.853 27.750
45 5.397 21.044 27.132
50

55 4.750 20.574 27.985
60 6.058% 20.235 26.279

Anova: Single-Factor for T = 35 Min to T = 60 Min

Between
Groups)
Within

Groups)

Alpha = 0.05

Summary
Groups Count Sum Average Variance
Column 1 4 22.838 5.710 0.664
Column 2 4 84.706 21.176 1,359
Column 3 4 109.147 27.287 0.580

Source of Variation

ss af ) MsS F P-value F crit
989.5158 2 494.758 570.107 3.33E-10 4.256
7.8105 9 0.868

Newman-Keuls Method for the Toluene Humidities

STEP 1

STEP 2

STEP 3

Mean of the three humidities:

20% 40% 80%
5.1 21.18 27,29

Error Mean Square is 0.868 with 9 degrees of freedom:

/0.868/3 = 0.537
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STEP 4 From Table E (in Appendix G} the significant ranges
at 5 % and n2 = 9 are:
1 2 3
RANGES 3.2 3.95

STEP 5 Multiplying the Std. Error of 0.537 the Least
Significant Ranges (LSR) are:

B 2 3

LSR 1.2 2,12
STEP 6
LARGEST VS SMALLEST 21.57 > 2.12
LARGEST VS NEXT SMALLEST 6.11 > 1:72
SECOND LARGEST VERSUS SMALLEST 15.46 > 2. 12

From these results the 20%, 40%, and B0 % curves are
significantly different from each other.
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Test B
Statistics Test on
Effect of Relative Humidity on the Destruction
of Toluene and Trichloroethylene
(Data Contained in Table 16 and 17)

Residence Time = 5 sec
Temperature = 50 F
160 % = 300 ppm

% Parts Per Million in Effluent
at Different Residence Times

Time Toluene TCE

(Min) 20% 40% 80% 20% 40% 80%
5 99.29 100.47 99.74 100.79 100,32 99.47
10 47.34 57.865 72.40 56.09 58.93 59.95
15 10.49 26.93 34.07 18.33 22.14 28.47
20

25 8.28 24.57 28.28 1.63 17.95 23.86
30 6.74 22.56 29.59 4.60 14.47 22.65
35 7.7 12561

40 6.63 22,85 27.75 22.09
45 5.40 21.04 27.13 4.79 10.05
50 3.67 B.98 20.98
55 4.75 2057 27.99

60 6.06 20.24 26.28 2.88 8.79 21:.16
65 2.93 8.09 20.84

Anova: Single-Factor for T = 35 Min to T = 65 Min
Alpha = 0.05

Summary

Groups Count Sum Average Variance

Column 1 4 22.84 5.71 0.66

Column 2 4 84.71 21.18 1.36

Column 3 4 109.15 27.29 0.58

Column 4 5 22.05 4.41 4.12

Column 5 5 48.42 5.68 2.99

Column 6 4 85.07 21527 0.32

Source of Variation
Ss df Ms F P-value F crit

Between) 1948.83 5 389.77 209.47 1.48E-16 2.71
Groups)
Within) 37.21 20 1.86
Groups)

Neumann-Keuls Method for the Toluene and TCE Humidities

STEP 1 Mean of 6 Humidity Curves

B D F A c E
20% 40% BO% 20% 40% 80*
5.71 21.18 27.29 4.41 9.68 21.27
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STEP 2 Error Mean Square is 1.86 with 20 degrees of freedom:

STEP 3 /1.86/3 = 0.8

STEP 4 From Table E (in Appendix G) the significant ranges
at 5 % and n2 = 20 are:
1 2 3 4 5 6
RANGES 2.95 3.58 3.96 4.24 4.45

STEP 5 Multiplying the Std. Error of 0.8 the Least
Significant Ranges (LSR) are:

B 2 3 4 5 6

LSR: 2.36 2.86 3.17 3.39 3.56
STEP 6
LARGEST VS SMALLEST A-B 1.30 < 3.56
LARGEST VS 2ND SMALLEST A-C Se27 > 3.39
LARGEST VS 3RD SMALLEST A-D 16.77 > 3.17
LARGEST V5 4TH SMALLEST A-E 16.86 > 2.86
LARGEST VS 5TH SMALLEST A-F 22.88 > 2.36
2ND LARGEST VS SMALLEST B~C 3.97 > 3.39
2ND LARGEST VS 2ND SMALLEST B-D 15.47 > 3..179
2ND LARGEST VS 3RD SMALLEST B-E 15..56 > 2.86
2ND LARGEST VS 4TH SMALLEST B 21.58 > 2.36
3RD LARGEST VS SMALLEST =1 11.50 > 317
3RD LARGEST VS 2ND SMALLEST C-E 11.59 > 2.86
3RD LARGEST VS 3RD SMALLEST C=F 17.61 > 2.36
4TH LARGEST VS SMALLEST D-E 0.09 < 2.86
4TH LARGEST VS 2ND SMALLEST D-F 6.11 > 2.36
STH LARGEST V5 SMALLEST E-F 6.02 > 2.36

From the above results all six means are significantly
diffrent from each other, except 20 % curve of toluene is
not significantly different from 20% curve of TCE and

40% curve of toluene is not significantly different from
B0% curve of TCE.
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Test 9
Statistics Test on
Effect of Frequency on Destruction

of Toluene and Trichlorcethylene
(Data Centained in Table 18)

Residence Time = 5sec
Temperature = 60 F
100 % = 148 ppm

Frequency % Alteration
(Hz) TCE Toluene
200 0 0
400 0 0
600 12.45 10.38
800 88.7 93.4
1000 10 13.23
Anova: Single-Factor
Alpha = 0.05
Summary
Groups Count Sum Average Variance
Column 1 5 121.15 24.23 1765.29
Column 2 5 117.01 23.40 1567.01
Source of Variation
Ss df MsS F P-value
Between - -
Groups) 1:72 1.00 1.72 0.0010 0.98
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Test 10
Statistics Test on
Effect of Frequency on Destruction
of Toluene and Trichlorocethylene
(Data Contained in Table 19)

Residence Time = 5sec
Temperature = 60 F
100 % = 200 ppm

Frequency % Destruction
(Hz) TCE Toluene
200 0 0
400 0 0
600 10.23 12.04
800 99.02 94.2
1000 9.66 14.5

Anova: Single-Factor
Alpha = 0.05

Summary
Groups Count Sum Average Variance
Column 1 5 118.91 23.782 1793.753
Column 2 5 120.74 24.148 1578.306

Source of Variation

SS df MS F P-value 1 ol o s )

Between
Groups) 0.3348 1.0000 0.3349 0.0002 0.9891 5.3176
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Time
(Min)

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
S0

Between
Groups

Test 11

Statistics Test on
Reproducibilty of Results for Three Separate Duplicates
(Data Contained in Table 21)

% Parts Per Million
Effluent Influent
I ITT I1T I LY I1I
i 100.5601 100.0365 99.9394
100.0721 99.9312 100.1153
44.0449 40.0365 41.5607
le.1165 14.7387 15.5199
B8.0855 6.9952 8.0203
101.7712 100.1117 102.7907
3.9756 4.2154 4.5241
3.9874 3.4328 4.3222
100.2171 105.45%8 101.3636
4.2853 3.2411 3.5143
2.4593 3.7529 2.0833
99.4238 100.4326 99.7544
1.5338 1.8631 11757
1.5954 1.4623 1.0203
102.4311 100.6046 99.2276
1.5429 1.4361 1.2134
1.5344 1.6742 1423
1.4991 1.4731 1.1612
1.5186 1.4634 1.8034
Anova: Single-Factor for T = 35 to T = 90
Alpha = 0.05
Summary
Groups Count Sum Average Variance
Column 1 9 19.96 222 1.28
Column 2 9 19.80 2.20 0.95
Column 3 9 LT 1.97 1.38
Source of Variation
85 df MS F P-value F crit
.35 2 0.18 0. 15 0.87 3.40
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APPENDIX H

COLLECTED DATA
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Table 6

Effect of Frequency and Primary
Voltage on Power Consumed by the Circuit (Watt)

Relative Humidity = 80 %
Temperature = 67 F
Frequency
(Hz) @30V @40V @50v @60V @70V
200 68.4276 B82.4681 93.7365 106.86 133.106
250 66.5529 83.4255 99.3607 113.421 142.479
300 72.1771 92.7991 113.421 136.855 176.225
350 B7.1749 113.421 147.166 173.413 225.905
400 103.11 140.605 176.225 206.22 267.149
450 119.983 159.352 202.471 240.903 325.266
500 139.667 190.285 243.715 311.205 420.877
550 171.538 239.028 307.456 422.752 575.542
600 211.6844 309.33 409.629 532.423 721.771
650 261.525 396.505 525.862 628.972 1769.577
700 332.765 486.492 584.916 676.778 769.577
750 389.944 524.924 608.35 ©91.775 753.641
800 408.691 530.549 609.287 682.402 721.771
850 397.443 511.801 593.352 ©64.592 688.026
S00 373.071 485.555 562.419 630.847 649.594
950 334.639 448.998 522.112 589.603 614.911
1000 296.207 393.693 476.18B1 546.484 583.978
1050 253.089 345.888 424.626 493.054 541.797
1100 225.905 300.8%4 373.071 442.436 503.365
1150 202.471 269.024 332.765 398.38 459.309
1200 182.786 240.903 300.894 358.073 418.065
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Table 7

Effect of Frequency and Primary
Voltage on Secondary Voltage (Volts x 2000)

Humidity = 80 %
Temperature = 67 F

Frequency
(Herz) @3ov R40V @s50v @eov
50 2.46 3.33 3.88 4.9
58 2.51 3.35 3.88 4.9
60 2351 335 3.89 4.9 5.56
65 2.51 3.36 3..93 4.9
70 2.49 3.35 3.92 4.92 5.56
75 2.49 3.34 392 4.93 5.57
80 2.49 3,33 3.91 4.91 5.57
90 2.47 3.32 3.89 4.89 5.54
100 2.46 3.28 3.87 4.83
110 2.44 3.25 3.87 4.78 5,81
120 2.41 2,211, 3.85 4.75
130 2.38 3.18 3.84 4.67 5.46
140 2.306 315 3.81 4.69 5.43
150 2033 3,12 3.79 4.65 5.41
175 2.28 3.04 3.75 4.49 5.34
200 2.22 2.96 3.68 4.44
250 2.11 2.84 357 4.32 5.16
300 2.04 2.74 3.52 4.24
350 1.99 27 3.5 4.21 5211
400 1.97 2.68 3.8 4.2 5..09
450 1.83 2.67 3.5 4.24
500 1.96 2.69 3.58 4.44 5.25
550 2.01 2.82 3.8 4.66 5.3l
600 2.09 3.04 4.08 4.73 5.02
650 2.22 3.27 4.11 4.56 4.65
700 2.39 3.27 3.91 4.11 4.25
750 2.41 3.08 3.52 3.7 3
800 2.22 2.75 3.1 3.27 3
850 1.94 2.43 2.8 25295 3
900 1.68 2.15 2.47 2.66 2
950 1.34 1.87 2.16 2.34 2.
1000 1.04 1.44 1.81 2.06 2.
1050 0.78 1.14 1.49 1.69 1.
1100 0.63 0.89 1.8 1.41 1.
1150 0.52 0.73 0.97 1.17 :
1200 0.44 0.6 0.81 0.97 s
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Effect of Primary Voltage and
on Current

Frequency
(Hz)
50
55
60
65
70
75
80
90
100
110
120
130
140
150
175
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200

Table 8

(Amperes) Consumed by

Relative Humidity = 80 %
Temperature = 67

@3ov

.103903
.06795
.01045
.96116
.9283
.B9544
.87079
.82972
.78864
. 74757
.72292
.69828
.67363
0.6572
0.61613
0.5997
0.58327
0.63256
0.764

. 90365
.05152
.22404
.50335
.85659
.291899
.91633
.41744
.58174
.48316
. 26957
.93276
.59594
.21805
.97982
.17444
.60193

- ©F P

O 000 o000 o 0o

oo NN N WWw W W NN = RO

@40v
0.0115
.01076
.24047
.16653
.13367
.06795
.04331
0.9858
0.93651
0.88722
0.84615
0.8215
.79686
77221
.73114
« 12292
.73114
.81329
.89402
.23225
.39655
.66765
.09483
+ 71095
.47495
4.26359
4.6004
4.64969
4.48539
4.25537
3.93499
3.4503
3.03134
2.63702
2.35771
2.11126

R S S R

WwhMNeEk2,H+HOO0OOOO OO

150

@50v
1.62657
1.48692
1.37191
1.3144
1.22404
1.19118
1.1501
1.06785
1.01866
0.96937
0.9283
0.90365
0.87079
0.84615
0.80507
0.8215
.87079
.99402
.28976
.54442
.77444
2.1359
2.69452
3.58996
4.60862
5.12616
5.33154
5:33975
5.2001
4.929
4.575786
4.17322
3.7214
3.26957
2.91633
2.63702

= H = O o

F

@60V
.02911
.B84838
.67586
.57728
.48692
.38834
.32262
.21582
.15832
.10803
.05974
.05974
0.9858
0.96937
0.9283
0.93651
0.99402
1.19939
1.51978
1.8073
2.11126
2.72738
3.70497
4.66612
5.51227
5.93123
6.06267
5.98052
5.82444
5.5287
.16724
.78835
.32109
.87748
.49138
.13813

L I = S S e e

W W W s &,

Frequency
the Circuit

@70v
2.56308
2.21805
2.03732
1.86481
1.75801

1.643
1.55264
1.42941
1.35548
1.29797
1.24868
1.20761
L. X7475
1.15832
1.14189
1.16653
1.24868
1.54442
1.97982
2.34128
2.85061
3.68854
5.04401
6.32555
6.74452
€.74452
6.60486
6.32555
6.02981

5.693
5.38904
5.:11795
4.74827
4.41146
4.02535
3.66389



Table 9

Calibration Data for Trichloroethylene

Theoretical
Values

Time

(min) Areas from the GC
5 0.199
10 0.205
15 0.212
20 0,215
25 0.217
30 0.216
35 0:2%7
40 0.217
45 0.217
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Table 10

Calibration Data for Toluene

Theoretical
Value

Time

{min) Areas from the GC
5 0.61
10 0.635
15 0.647
20 0.663
25 0.679
30 0.681
35 0.682
40 0.68
45 0.682
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Table 11

Feasibility of Parafilm for Calibration Data of TCE

Time Areas from the GC
(Min) Plastic Cap Parafilm
5 0.199 0.2
10 0.208 0.209
15 0.212 0.211
20 0.215 0.216
25 0.217 0.217
30 0.211 0.217
35 0.218 0.218
40 05217 0.218
45 0.218 0.217
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Table 12

Feasibility of Parafilm for Calibration Data of Toluene

Time Areas from the GC

(Min) Plastic Cap Parafilm
5 0.622 0.618
10 0.635 0.632
15 0.651 0.651
20 0.665 0.666
25 0.674 0.675
30 0.682 0.681
25 0.682 0.68
40 0.681 0.681
45 0.682 0.681
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Table 13

Feasibility of Parafilm for Calibration Data of TCE*

Time
(Min) Areas from the GC
30 0.218
35 0.217
40 0.218
45 0.216

* From the same bottle with parafilm
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Table 14

Effect of Residence Time of Three, Five, and Ten Seconds
on Destruction of Trichloroethylene

Relative Humidity = 20 %
Temperature = 50 F

100 % = 300 ppm

% Parts Per Million

Time 3 Seconds 5 Seconds 10 Seconds
(Min) Effluent Influent Effluent Influent Effluent Influent
0 100.42 104.70 103.21
5 100.79 100.79 101.30

10 42,51 56.09 36.79

15 15.21 18.33 16.00

20 T.16 99.30 108.37
25 102.79 163 5.67

30 4.42 4.60 4.28

35 4,37 if 0 AT 5.16

40 111.26 102.37 103.77
45 6.33 4.79 5.12

50 2.79 3.67 6.84

55 88.47 107.86 100.28
60 1.07 2.88 3.16

65 0.98 2,93 3.07

70 100.60 101.30 102.23
75 17,35 63.07 5.95

80 46.14 79.49 18.19

85 94.60 97.16 33.53

90 839.16 101.67 100.28

85 99.77 100.74 101.77
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Table 15

Effect of Residence Time of Three, Five, and Ten Seconds
on Destruction of Toluene

Relative Humidity = 20 %
Temperature = 50 F
100 % = 300 ppm

% Parts Per Million

Time 3 Seconds 5 Seconds 10 Seconds
(Min) Effluent Influent Effluent Influent Effluent Influent
0 99.15 99.15 101.35

5 101.04 99.29%9 99.87

10 49.13 47.34 50.66

15 12.18 10.49 16.49

20 87.22 97.22 101.35
25 9.65 8.28 16.68

30 B.62 6.74 10.99

35 99.83 99.30 7.82 100.25
40 6.19 6.63 B8.84

45 6.37 5.40 6.04

50 101,22 101.22 101.22
55 6.35 4.75 4.69

60 6.32 6.06 6.32

65 58.98 101.04 4.57

70 75.03 63.87 100.79
70 101.12 70.76 51.85

B0 91.07 82.53 62.04

85 97.04 89.87 94.60

90 11§ 0 ) e 99.16 100.19

95 100.64 96.57 101.04
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Table 16

Effect of Relative Humidities of 20 , 40 , and 80

Time
(Min)

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

on the Destruction of Trichlorcethylene

Residence Time = 5 sec
Temperature = 50 F
100 % = 300 ppm

% Parts Per Million

Percent

3 Seconds 5 Seconds

10 Second;__
EffluentInfluentEffluentInfi&ggﬁEfflueﬂgxnfluent

104.70 99,56

100.79 100.32

56.09 58.93

18.33 22.14
99.30 100.24

1.63 17.98

4.60 14.47

7 1 12.51
102.37 99.28

4.79 10.05

3.67 8.98
107.86 100.05

2.88 8.79

2.93 8.09
101.30 100.53

63.07 65.10

79.49 82.09

97.16 93.22

101.67 99.00
100.74 99.39
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99.47
59.85
28.47

23.86
22.65

22.09

20.98

21.16
20.84

55.04
78.49
84.30
98.05

100.

100.

100.

99,

100.

100.

98.

11

26

10

12

05

48

98



Table 17

Effect of Relative Humidities of 20 , 40 , and 80 Percent
on the Destruction of Toluene

Residence Time = 5 sec
Temperature = 50 F

100 % = 300 ppm

% Parts Per Million

Time 20 Percent 40 Percent B0 Percent
{Min) EffluentInfluentEffluentInfluentEffluentInﬁ}pent
0 99.15 100.28 99.86

5 99.29 100.47 99.74
10 47.34 57.65 72.40
15 10.49 26.93 34.07
20 97.22 100.53 99. 38
25 B.28 24.57 28.28
30 6.74 22.56 29.59
35 99,30 99.60 98.60
40 6.63 22.85 2775
45 5.40 21.04 27.13
50 101.22 100.47 99.74
55 4.5 20.57 27.99
60 6.06 20.24 26.28
65 101.04 100.33 101.54
70 63.87 68.98 72.72
75 70.76 75.03 76.84
80 82.53 78.10 86.62
85 89.87 86.63 89.72
90 89.16 99.47 100.54
100 96.57 98.03 97.29
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Table 18

Effect of Frequency on Percent Destruction
of TCE and Toluene Mixture

Residence Time = 5sec
Temperature = 60 F

100 % = 148 ppm

Frequency TCE Toluene
(Herz) (%) (%)
200 0 0
400 ol 0
600 12.45 10.38
800 98.7 93.4
1000 10 13.23

160



Table 189

Effect of Frequency on Percent Destruction
TCE and Toluene Mixture

Residence Time = 5sec
TCE = 200 ppm
Toluene = 200 ppm

Frequency TCE Toluene
Herz % %
200 0 0
400 0 0
600 10.23 12.04
800 99.02 94.2
1000 9.66 14.5
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Table 20
Power Over a Single Run

Trichloroethylene
Relative Humidity = 20%
Temperature = 45 F
Residence Time = 3 seconds
Primary Voltage = 40 Volts
Frequency = 800 Hertz

Time Power Current
{(Min) (Watts) (Amperes)
0 512.6 4,66
5 495 4.5
10 493.9 4,49
15 493.9 4.49
20 492.8 4.48
25 489.5 4.45
35 488.4 4,44
40 489.5 4.45
45 4%0.6 4,46
50 489.5 4.45
55 489.5 4,45
60 490.6 4.46
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Table

21

Reproducibilty of Results for Three Separate Duplicates

Time
(Min)

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
1135
120

(Trichloroethylene Destruction Data)

Relative Humidity = 20 *%

Temperature

=54 F

Residence Time = 3 sec

300 ppm =

% Parts Per Million

100 %

Effluent Influent
I 11 IIT I 5
- 100.56 100.04
100.07 99.93 100.12
44,04 40.04 41.56
g 12 14.74 15,52
8.09% 7.00 8.02
LOL.. 77 100.11
3.98 4.22 4,52
3.99 3.43 4.32
100.22 105.46
4.29 3.24 B8
2.46 3.75 2.08
99.42 100.43
153 1.8B6 1.18
1.60 1.46 1.02
102.43 100.60
1.54 1.44 1:21
153 1.67 1.41
1.50 1.47 1.16
1252 1.46 1.80
99.87 100.12
20.12 16.66 19.39
48.72 45,92 49,04
89.G3 93.64 91.13
100.21 99.02
103 .12 100.03 99.19
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99.94

102,78

101.36

99.75

99.23

100.62
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