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CHAPTER I 

OVERVIEW OF ANALOG TO DIGITAL 
CONVERTERS 

Nature is continuous, i.e. analog. One of the important roles of analog circuits in 

the sub- micron era is the interface between VLSI systems and the physical world. 

With progress in portable electronic equipment and scaling down of design 

technologies, the necessity for low voltage (LV) /low power (LP) circuits has increased 

greatly, not only for digital circuits but also for analog circuits [ 1]. In the field of digital 

video signal processing and data acquisition there has been an increasing requirement for 

low cost and low power analog to digital converters (ADCs). In applications such as PCS 

(personal communication systems), cellular phones, camcorders and portable storage 

devices, low power dissipation and hence longer battery lifetime is a must. Sigma - Delta 

modulation is currently a popular technique for making ADCs. These oversampled data 

converters have several advantages over conventional Nyquist converters including 

insensitivity to analog component imperfections, elimination of quantization noise from the 

band of interest and reduced accuracy requirements in the sample & hold. Restricting 

Sigma - Delta approaches to one bit quantizers for second and third order 16 bit systems 
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requires higher oversampling ratios in excess of 128 and 50 respectively. These values are 

approximately three times higher for 20 bit systems [2]. Modulator power consumption is 

directly dependent on the oversampling frequency. Any effort to achieve a significant 

reduction in power consumption focuses on reducing the oversampling ratio, and using 

multi - bit quantizers. Thus gaining the benefits of reduced power consumption for both 

analog and digital components. 

The use of multi - bit quantizers is the only feasible approach when high dynamic 

range at high bandwidths are to be achieved in the light of limitations of oversampling due 

to process bandwidth (fT). Floating gate quantizers are the lowest power approach to 

achieve the goals of high dynamic range performance primarily due to the elimination of 

the conventional resistor string. 

Also the trend of increasing the integration level for integrated circuits has forced 

the ADC interface to reside on the same silicon with large DSP or digital circuits. By 

sharing the same supply voltage between ADC and digital circuit, it reduces the overhead 

cost for extra DC - DC converters to generate multiple supply voltages, however at the 

expense of greater cost in design and layout. Therefore an ADC operating at the same 

voltages is desirable. 

To achieve the above goals oflow voltage (LV), low power (LP) and high speed 

(HS), CMOS technology is very attractive. The lower cost and higher integration density 

have made CMOS technology superior over Bipolar. Several LP CMOS design techniques 

have been developed and by device scaling, CMOS technology can achieve higher speeds 

which was once reserved for Bipolar process. 
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1.1 OBJECTIVE 

The main objective of this thesis was validation of the floating gate approach to 

fabricating quantizers for ADCs including Sigma - Delta approaches. The main design and 

development challenge in realizing these quantizers in silicon was characterization of 

injector structures. To prove functional and concept feasibility it was necessary to build 

floating gate injector structures with comparators along with quantizers in silicon for both 

BULK and SOl technologies. Their performance was to be characterized in the time frame 

of this research. The characterization of injector structures will demonstrate the suitable 

models to be used as guidelines in future designs of floating gate quantizers as well as 

prove the validity of the approach to low power ADC design. 

1.2 ORGANIZATION 

This thesis is organized into five chapters. Chapter 2 deals with the overview of the 

floating gate applications. A summary of the literature review is presented along with the 

theory of the floating gate structure and the mechanism of operation. The characteristics 

ofthe injector structure is dealt with in detail. The evolution and overview of ADC 

systems is covered in later part of the chapter. 
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Chapter 3 deals with the BULK and SOS ADC architecture implementation. The 

circuit schematics, design, theory and layout issues of the comparator and injector circuits 

are presented. Specifications for both the comparators and injectors are also covered. 

The test setup for characterization ofFG comparator circuits, injector structures 

along with ADC systems are covered in chapter 4. The later half of the chapter 4 involves 

characterization results and inferences. A detailed study on the charge retention properties 

for the circuits is presented along with the results. 

Finally chapter 5 discusses the scope of the thesis along with the future prospects 

and conclusions based on the results obtained by characterization. The results of the 

feasibility study along with the validity of the approach adopted is presented 

4 
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CHAPTER2 

LITERATURE REVIEW AND THEORY 

This chapter focuses on the theory of floating gate injectors, factors limiting 

accuracy of floating gate structures and a literature review of these devices. Finally the 

flash architecture is reviewed along with schemes for reference voltage generation. 

2.1 OVERVIEW OF FLOATING GATE APPLICATIONS 

Floating gate (FG) MOS devices have found widespread use in neural networks, 

and several attempts have been made to develop FG analog memories. The main 

requirements of these devices is that they must be small, consume low power, be able to 

accurately control the stored analog data to high degree of resolution and also be able to 

retain stored charge over a long period of time. An increasing demand exists for these 

devices in applications where adjustable components are required. They are typically being 
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used to cancel offsets in differential amplifiers, in adaptive filters and in neural networks 

for weight storage [5]. It is not easy to control stored analog data with high resolution in 

FG devices. The data is represented by a certain amount of electric charge on the FG and 

this charge is injected through a tunnel junction by using Fowler Nordhiem (FN) tunneling 

process [3]. The tunneling current has nonlinear (exponential) dependence on the junction 

voltage making fine charge control difficult. It is possible to use feed back circuits for fine 

control. 

2.2 FOWLER NORDHIEM TUNNELING MECHANISM 

The FN tunneling mechanism can be explained as follows; there exists an energy 

barrier of approximately 3 .2 e V that prevents electrons in the silicon or polysilicon from 

entering Si02. At room temperature, the electrons can tunnel through only an oxide barrier 

of 50 Ao thickness. If the potential within a 50 A0 range of Si I Si02 interface is below 3.2 

eV, the electrons that tunnel through into the Si02 will always return to the Si and no 

current will flow. However ifthe electric field in the Si02 is strong enough (0.64V/nm), 

then the few electrons that tunnel into the Si02 will be carried away by the electric field 

and there will be a small current flow away from the Si surface. Increasing the electric 

field increases the electron flow and thus the electron current. It takes a gate to diffusion 

voltage of approximately 25V to remove electrons from the gate given an oxide thickness 

of 400 A0
. This voltage is well below the gate oxide breakdown voltage for a given 

process [ 1 7]. 

6 
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The current density through the tunneling injector can be represented by the 

following characteristic equation as [ 18] 

J = aE1 exp (-J3/E) (1) 

where a and J3 are characteristic constants given by 

a= 6.49- log(~s) (2) 

and 

J3 = 21.0 (~83)112 MV/cm (3) 

~B is the barrier height and E is the electric field. The equation implies that increasing the 

electric field, increases the current density exponentially. The electric field E is related to 

the voltage across tunneling oxide by the relation: 

E = V/tox (4) 

where tox represents the tunneling oxide thickness. The structure is programmed by 

injecting or removing electrons from the floating gate. This is done by applying a large 

voltage across the tunneling injector. 

2.3 FLOATING GATE DEVICES 

Unlike charge trapping devices, the floating gate device has charge stored in a 

conducting or semiconducting floating layer sandwiched between insulators. Three 

different types of floating gate devices are discussed in this section. 

• Avalanche Injection Floating Gate Device. 

7 
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• Thin Tunneling Oxide Floating Gate Device. 

• Thick Oxide Floating Gate Device. 

The first type is distinguished from the other two types by the charge injection mechanism. 

2.3.1 AVALANCHE INJECTION FLOATING GATE DEVICE 

A well known example of this type of structure is the F AMOS (floating gate 

avalanche injection MOS). A typical structure is shown in figure ( 1 ). F AMOS utilizes 

charge transport to the floating gate by avalanche injection of electrons from the p-n 

junction. For a p-channel F AMOS, a reverse p-n junction voltage in excess -30V will 

cause the onset of high energy electrons from the p-n junction avalanche region to the 

floating gate. The amount of injected charge is a function of the amplitude of the junction 

voltage [25]. Due to a relatively thick oxide, this type of device has good charge retention 

properties. However it is difficult to discharge or erase the stored charge on the floating 

gate. Also the injecting process is insufficient as only a small fraction of the avalanche 

current is injected into the floating gate. Floating gate 

P+ P+ 

n 

Figure 1: A typical p-channel F AMOS structure. 
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2.3.2 THIN TUNNELING OXIDE FLOATING GATE (Thin OX FG) 
DEVICE 

The device structure reported in [4] is a floating gate MOS structure, fabricated by 

a double polysilicon NMOS technology with a thin oxide tunneling region at the drain and 

an implant under the thin oxide. Poly 1 is the floating gate and poly 2 is the control gate. 

Analog Programming : Programming is achieved by applying a large voltage across the 

gate and drain, while floating the source and substrate to create a sufficiently high electric 

field across the tunneling oxide for FN tunneling to take place [7]. The tunneling current is 

predominantly due to electrons. This is because the Si - Si02 barrier height is much smaller 

for electrons than for holes [17]. Depending on the polarity ofthe programming voltage, 

the tunneling current either injects or removes electrons from the floating gate. Thus 

changing the stored analog information and its manifestation as a threshold voltage. 

Thin oxide -
tunneling oxide 
(80-100A0

) 

jPoly 2 "-i. 

jTop oxide I / ~ 
Gate oxide (500 
Ao) ( !Poly! 1)( 

' 

~ ( !Poly! h . 
/ " -- _j ,/~,-----

~~source! lwDrain I 
In- Implant 

[ill 

Figure 2: Layout and cross section ofThinOX FG device. 
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Several modified versions ofthe structure shown in figure (2) have been reported 

in the literature. In this particular structure poly1 on the right acts as a charge injection 

gate and poly 1 on the left is the floating MOS gate. Introduction of a high resistance of 

the order of 150 G- ohm between the floating MOS gate and charge injection gate of the 

above structure leads to fine control of injected charge up to a resolution of 1 0 bits [3]. 

2.3.3 THICK OXIDE DUAL POLY FLOATING GATE (ThickOX DP 
FG) DEVICE 

To fabricate thin oxide FG devices, special fabrication techniques like ultra - thin 

tunneling oxides are required. Furthermore, very thin tunneling area degrades the retention 

characteristics [12]. To overcome these drawbacks, the floating gate devices fabricated in 

a standard CMOS process with thick oxide have been reported by using a geometric trick 

to enhance the field strength at Si02 interface. It is also desirable to avoid the use of the 

drain of the transistor for programming the floating gate [ 11]. 

The bulk device reported here was fabricated using an inexpensive standard double 

polysilicon technology. Tunneling occurs at the crossover ofpoly1 and poly2. 

A coupling capacitor separates the floating MOS gate from the tunneling injector. 

Unlike in a capacitor layout the upper polysilicon layer overlaps the edge of the lower 

layer. The sharp edge of the bottom polysilicon slab causes field enhancement and the 

thinning of the oxide. A high voltage between the two polysilicon layers causes bi -

directional conduction to occur. Appropriate sizing of the transistors - capacitor ratios 

allows a controlled fraction of the potential developed across the divider circuit to appear 

10 
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across the oxide layer between the polysilicon layers. The amplitude of the voltage pulse 

appearing across the oxide layer depends on both the amplitude of the pulse applied to the 

capacitor divider and on the initial voltage of the floating gate before the pulse was applied 

[4]. 

Poly I Poly 2 

Coupling Capacitor 

Figure 3. Schematic drawing of the device. 

Tunneling 
injector 

Several modifications of the structure shown in figure have been reported in 

literature. Use of two tunneling injectors that allows bi-directional programming of 

devices has been reported [ 11]. The device had two control gates for measurement 

purposes. This allowed a measurement of the floating gate charge or the threshold voltage 

as seen from the control gate without having to disconnect the device [8]. The injector 

area does not have any effect on the range of programming voltages, however the number 

of comers and perimeter does have an effect. Increasing the number of comers between 

poly 1 and poly2 from the conventional 4 to 28 resulted in smaller programming voltages 

as reported in literature [ 4]. 
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2.3.4 THICK OXIDE SINGLE POLY FLOATING GATE (ThickOX SP 
FG) DEVICE 

The proposed structure uses a single poly and the control gate of these devices is 

achieved by an NT diffusion layer under the polysilicon gate. The device was fabricated in 

a standard process. The polysilicon rectangle ends in the middle of the NT diffusion, the 

electric field at the corners of the poly rectangle is increased as explained earlier. A field 

enhancement factor of 2 to 4 has been reported in the literature. This factor is less than the 

value obtained by using textured polysilicon injector wherein it is suggested that spikes are 

introduced on the upper surface of the bottom plate of the poly - poly tunneling structure 

described earlier [I 7]. 

. ... 

lpwell: oxide 

lpolv ! iN'l 
·~' 

~------,- l ! 

/ I llJOV I ----
/ - --· -- --F=-----::::::=---,-=-----·-rl- ~ 

I_ i r:~ j :~.1~-I 
: I ll'!.._1 1 '- -I I ---' 
I 

iN'l L:..-'-J 

tP- wclJ1 

L__ _________ _ 

Figure 4. Top and cross- sectional view ofThickOX SP FG injector. 

As per A Thomson in [ 11], by using field enhancement at the corners of a 

polysilicon slab over a diffusion region, has the disadvantage of very different 

programming characteristics, for charging and discharging of the floating gate. The use of 

poly - island type injector makes the characteristics un - symmetric making bi - directional 

programming very difficult. However this behavior has not been observed in the devices 

fabricated on 1.2um NRaD SOS process. 
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Different types of floating gate devices are available in the literature. Depending on 

the fabrication process and the application modifications to the types discussed have been 

developed. 

2.4 CHARACTERISTICS OF FLOATING GATE 
INJECTORS 

When FG devices are used for digital memory, they are optimized for small area, 

high writing speed and low failure rate. In applications like circuit trimming and setting of 

reference voltages other requirements like accurate control ofFG charge and good charge 

retention properties are important [ 17]. Typically this requires moderate size injectors to 

maintain accuracy and high storage capacitor to injector ratio. There are several important 

properties that must be considered for design of a FG injector circuit [21]. 

VB Ym_i 

_L _L 
CB Crn.1 

L J 
Cg Cox 

T -=i Vs 

Figure 5. Simplified model of a floating gate MOS device. 

In the figure (5) C8 is the capacitance between the control gate and the floating 

gate (blocking capacitor), Cnj is the injector capacitance, Cg is the gate capacitance under 

the channel of a measuring transistor and Cox is the capacitance between the floating gate 
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and the substrate. Now the voltage across the tunneling injector can be calculated as a 

function of the applied voltage Vs and injector voltage Vini· 

The writing operation is defined as an operation to tunnel electrons into the 

floating gate through the oxide. The programming voltage for the operation is determined 

by the voltage coupling ratio (Kw = C8 /CT) and the internal charges [21]. 

Vtun = Kw VB + QfloatfCT (5) 

Here Qfloat represents the stored charge on the floating gate and Gr is the total capacitance 

given by (CT = Cs + C"'i +Cox+ Cg). 

Similarly for the erase operation the programming voltage is determined by the 

voltage coupling ratio (K., = (Cs +Cox+ Cg)/CT) and the internal charges [21]. 

Vtun = Ke Vinj - QfloatfCT (6) 

For the structure C8 is designed to be an order larger than Cg and C"'i is small as compared 

to Cg. Hence most of the applied voltage V 8 appears across the tunneling capacitor by 

capacitance division. 

The main design goal is the characterization of floating gate injector structures. 

In the following section the properties of injector structures are developed and discussed. 

2.4.1 PROGRAMMING ONSET (V.yh V1_) 

This is the minimum programming voltage to initiate charge injection into the 

floating gate. The tunneling current is controlled by the voltage across the tunneling 

injector [8]. 
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ltunnel = f(Vti- Vrg) 

Yti is the voltage across the tunneling irljector, 

Vrg is the potential C?fthefloating gate. 

The drain current In ofthe FG MOS device can be modeled as: 

In= f3(Vrg- V,- VTf~ 

Pis the transconductance parameter, 

Ys is the source potential 

VT is the threshold voltage. Equation (8) is valid onlyfor saturation mode. 

(7) 

(8) 

Tunneling through Si02 exhibits an exponential relationship between programming voltage 

and tunneling current. A simplified behavior of the tunneling injector is given below [8]. 

For programming voltages below a 'tunneling threshold' no noticeable charge 

transfer occurs due to the fact that in this region the exponential is practically zero. The 

effects are considered on the same level as leakage. Including the leakage factor into the 

Fowler Nordhiem equation discussed earlier, we get 

J = aE2 exp (-f3/E) + GsV (9) 

where Gs is the leakage resistance per square area and V is the programming voltage. At 

programming voltages less than the onset of programming the leakage term dominates and 

this is normally for small values programming voltage. At the onset of charge injection 

into the floating gate the exponent dominates. This value of programming voltage is 

defined as programming onset Vy+ & Vy- for charging and discharging respectively and it 

is the point of departure from the ohmic or resistive region of the injector. 
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For high programming voltages tunneling occurs until the voltage across the 

floating gate is at the tunneling threshold I programming onset. If the programming pulses 

are of long enough duration that is : 

ltunnel X tpulse >> Qfg• 

For this case tunneling will happen until : 

Vrg - Vti = Vr+ (lOa) 

or 

Vrg- Vti = Vr- (lOb) 

For intermediate voltages incremental charge transfer occurs according to the 

exponential relationship. In reality there is a small tunneling current flowing when the 

programming voltage is slightly below the programming onset. This current is similar to 

the charge leakage from the floating gate. It is of no importance during programming, but 

is crucial for long term accuracy expectations [8]. 

The underlying idea of operation is that although high voltages are required for 

tunneling it is actually a low voltage range required to control tunneling. A wide range of 

voltages exists in which no tunneling occurs. 

The dead band can be described as: 

ltunnel = 0 for Vr+ > Vrg- Vti > V1- (11) 
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2.4.2 MAXIMUM PROGRAMMING VOLTAGE (VIBK+, VIBK-) 

This is the maximum programming voltage that can be applied to the tunneling 

injector without breakdown of the oxide. This depends on the quality of the oxide. 

Refer to figure 6 for plot ofln(programming current) +/-ln(Ipgm) and programming 

voltage+/-Vpgm. As can be seen the plot has a dual slope. The programming onset and 

maximum programming voltage parameters are marked. The tunneling currents are 

normally of the order of pA. FN tunneling current increases with increase in applied 

voltage. The dual slope on the characteristic can be attributed to the field enhancement 

tunneling currents occurring at the onset of the tunneling process. 

Vr~ 

VrnK-

[vpgm- I 

!+ln(lp~. 

:; 

f-ln(lpgm) 

!~pgm+_! 

VrnK+ 

V,~ 

Figure 6. Programming current characteristics. 

17 

----=---=__.~, 



2.4.3 AGING CHARACTERISTICS 

The charge retention of analog memory depends on the property of the oxide and 

chemical processing involved in fabrication of the device. Thicker the oxide, better the 

retention characteristics. However thick oxide FG devices will have better charge 

retention properties as compared to thin oxide FG devices. The FG devices with a 

standard thick oxide of 400 A o have charge loss of the order of 0. 1% in 1 0 years at 

operating temperatures of 100 °C [ 1 7]. The results from this work confirms similar results. 

Therefore precise voltages can be stored over a long period of time. In this section long 

term stability characteristics and short term stability characteristics will be considered. The 

two main charge retention characteristics for FG devices are : 

• Long Term Charge Retention and 

• Short Term Charge Retention. 

2.4.3.1 LONG TERM CHARGE RETENTION 

The retention characteristics at elevated temperatures can be described by a 

thermionic emission model [17]. 

<l>s Q(t) 
Q(O) 

= ( exp ( -ty exp (-)) 
kT 

where <!lB is the Energy barrier at the polysilicon- oxide interface, 

y is the dielectric relaxation frequency of electrons in polysilicon, 
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k is the Boltzmans constant, 

T is the temperature in degree Kelvin, 

t is the charge retention time. 

The above equation describes the ratio of the retained charge at time 't' Q(t) to charge at 

time 't = 0' Q(O) at elevated temperatures T. For thick oxides, i.e. 400A
0 

the charge loss 

would be in the range of 0. 1% in 1 0 years [ 1 7]. 

2.4.3.2 SHORT TERM CHARGE RETENTION 

After inducing a voltage change at the floating gate, one observes that the gate 

tends to move back towards to its original voltage over a period oftime. It has been 

speculated that this short term drift is due to trap sites with long time constants near the 

Si02 interface settling to a new equilibrium. The size of the return appears to be 

proportional to the change in gate voltage induced. This implies slower programming 

voltage increments and hence greater accuracy. As described in [ 17] the observed change 

in the gate voltage for the prototype structure reported was less than 1% of the change in 

the floating gate voltage and was smaller for slower rates of change in the FG voltage. If 

the error described above is unacceptable for the application, it can be decreased at the 

system level by simply taking longer time in the trimming process. 
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2.4.4 ENDURANCE CHARACTERISTICS 

As described in [7] temperature and cycling effects are important reliability issues 

to be considered for analog FG applications. They require high precision and good 

stability and thus the behavior of the structure over time and performance due to cycling 

induced temperature effects are of concern. The change in threshold due to stressing can 

be positive or negative and is rather in random in nature. However this random nature is 

not due to charge loss or gain but is a consequence of noise. Though theoretically the 

change in threshold can occur due to the addition of a single electron, but the true limit 

imposed by noise is around +/-SmV. The decrease in threshold of the FG structure with 

temperature occurs at a constant rate of2.8mVt'C and this does not indicate charge loss 

but change in the fermi level of the FG and the substrate as descried in [7]. The effects 

described in [7] are cycling induced temperature effects leading to changes in threshold. 

But the application that the structures described in this thesis will be subjected to is rather 

static. The FG voltage is set to a particular value and subsequent operation causes only a 

small change in the value. 

2.4.5 RESOLUTION 

The resolution is theoretically very high because the minimum injection charge 

could be a single electron. However it is difficult to control the amount of injected charge, 

because it depends on temperature, charge concentration and the process variation 
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induced effects. The smallest changes will be limited by the ability of the external circuit to 

detect the change. For example 25 million electrons (equivalent capacitance of20pF) 

injected onto the floating gate will cause a 2V change in threshold. To date the best 

resolution is approximately 8 - 10 bits [3]. 

In order to control the stored analog value precisely, programming will have to be 

done in 4 -5 iteration steps to set the threshold to the desired value. Based on our 

experience the programming speed is not an issue as only 4-5 trims are necessary to set to 

the necessary values. In a production environment it is estimated that trimming could be 

completed in a few mSec. Due to temperature and age variations it must be anticipated 

that these circuits will have to be recalibrated 2-3 times only over a 15 year period to 

maintain the desired accuracy. 

2.5 EVOLUTION AND OVERVIEW OF ADC 
ARCHITECTURES 

Since the existence ofDSP, ADCs have been playing an ever increasingly 

important role in interfacing between analog and digital domains. They perform 

digitization of analog signals at fixed time period (frequency) which is defined as the speed 

of the ADC. This fixed time period is generally specified by the application. As per the 

Nyquist sampling theorem : 

"A band limited signal having no spectral components above fm Hz can be determined 

uniquely by values sampled at uniform intervals of Ts seconds, where Ts = 112/m"· 
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This condition needs to hold in order to reconstruct the original analog signal completely. 

Since algorithms can be implemented very inexpensively in the digital domain and if 

samples acquired satisfy the Nyquist sampling theorem, signals can be reconstructed 

perfectly after DSP within a desired dynamic range. Hence the ADC acts as a very critical 

bridge between the 2 domains and its accuracy is very critical to the performance of the 

system. In simple terms the performance of most if not all systems is limited by the 

accuracy of the ADC and the MIPS of the processor. 

2.5.1 FLASH ARCHITECTURE 

The most straight forward way to perform analog to digital conversion is to 

compare the sampled analog signals with different reference levels. Figure 6 shows a 

conceptual diagram of such a converter. 

The input signals is first acquired by the sample and hold (SIH) circuit. During the 

hold cycle the comparators make decisions as to whether or not the sampled value is 

greater or smaller than the reference voltages. The output digital data is then typically 

encoded and latched. 

Assuming aN bit ADC, the number of comparators required is 2N. Due to direct 

comparison, each reference level needs to be one LSB apart from each other. If we 

assume a full scale voltage input of 1 V, then the LSB size is TN. Therefore the offset of 

the comparator needs to be much less than this value. For a 10 bit resolution this has to be 

less than 1mv. In a CMOS process this offset requirement is often difficult to achieve. 
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Special offset compensation techniques are necessary to achieve this. However these 

circuits are power hungry and may not be practical due to speed requirements. 
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Figure 7. A Conceptual diagram of a Flash ADC. 

The advantage of this architecture is that fast conversion rate. Simulations of this 

type of architecture indicate conversion rates in excess of 1 GSPS. 

2.6 REFERENCE VOLTAGE GENERATOR 

In many ADC systems, reference voltage generators are required to set the 

reference for a sampled input to be compared to. The accuracy of the references need to 

be as linear as the converter itself in most cases. Any error present in the references 

directly reflects on the non - linearity of the ADC. The problem becomes more severe at 
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higher resolution. At higher speeds switching noise can be coupled onto the reference lines 

and can corrupt the conversion process. 

Traditionally there have been two ways to generate reference voltages either by 

using a resistor string or a capacitor array. Each has its own limitations. Floating gate 

references introduced in this thesis are free from power consumption and switching noise 

effects. Higher resolution at lower power can be achieved by this novel approach. 

2.6.1 RESISTOR STRING REFERENCE VOLTAGE GENERATOR 

By using multiple passive resistors, one can generate several potentials between 

supply and ground. In the case of flash converters the number of reference voltages 

needed are 2N, where N is the resolution of the ADC. By using 2N equal value resistors in 

a string, one can interpolate different potentials. The major problems with this method are 

matching of resistors, the large power dissipation and lack of desired performance at 

higher speeds of operation. 

Since flash converters rely on the absolute accuracy of the reference voltages, 

mismatch between the resistors due to process fabrication will directly effect the linearity 

of the ADC. For higher resolution where the LSB is smaller, the tolerance on the 

reference voltages becomes even more tighter. 

For high speed operation, many sampling capacitors might be switched to a 

reference voltage on the resistor string. The reference string, needs to settle (with the RC 

time constant) to the required accuracy within the period allowed. The largest RC time 

constant appears on the center tap of the resistor string, where the equivalent resistor 
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ill 

value is 2N-IR II 2N-lR. In order to settle fast enough a small resistor value can be used_ 

however this leads to large power dissipation. 

2.6.2 CAPACITOR ARRAY REFERENCE VOLA TGE GENERA TOR 

Another way to generate reference voltages is to use an array of binary weighted 

capacitors. The input is first sampled onto capacitors and then compared with a reference 

voltage to determine the MSB. Then the quantized MSB is added or subtracted from the 

input signal to zoom into the next bit resolution. 

This method does not require static power but still depends on the matching of the 

capacitors. 

2.6.3 FLOATING GATE INJECTOR REFERENCE VOLTAGE 
GENERATOR 

The proposed method to generate reference voltages is to store charge on floating 

gates to set the different potentials. Charge injection is used to remove or inject charge 

from the floating gate. A trimming circuit can be used to accurately set the values. The 

scheme does not suffer from any power dissipation. Matching is not an issue as feedback 

in conjunction with programming adjustments can be used to store the required charge for 

each reference value. 
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CHAPTER3 

BULK AND SOS ADC ARCHITECTURE 
IMPLEMENTATION 

This chapter describes the implementation of the floating gate ADC architecture 

for both the MOSIS BlJLK and NRaD 0.5um SOS technologies. The circuit schematics, 

layout procedures, functional description and factors effecting performance are covered. 

The first part of the chapter deals with the MOSIS BULK implementation followed by the 

NRaD process quantizer architecture. The proposed ADC, quantizer and injector 

structures have been built in silicon to verify the functional concept of implementing 

reference voltage generators using floating gate injector structures and for the purpose of 

developing injector models. Chapter 4 summarizes the test procedures and results in 

detail. 

3.1 BULK ADC AND INJECTOR IMPLEMENTATION 

MOSIS is a multiproject fabrication service run by ARPA (The Advanced 

Research Projects Agency). It stands for Metal Oxide Semiconductor Implementation 
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Service. The process handles full custom VLSI chip fabrication in a double poly, double 

metal BICMOS 2-um feature size process with buried channel CCD implant. The above 

process was chosen for fabrication of the proposed ADC as the service was available from 

the university at an economical cost. The following section summarizes the building blocks 

for the proposed ADC implementation. 

3.1.1 ADC ARCHITECTURE 

YIN 
QUANTIZER 

30% 
INJECTOR PROGRAMMING LINES 

ENCODER 

+---BIT(-l) 

-. -BIT(3) 

;___BIT(2) 

L_ _________ .---BIT(1) 

"---------

OUT 
1 OF 15 

DECODER 
~ 

Figure 8. Block Schematic for 4-bit BULK-ADC with Encoder and Decoder. 

The proposed BULK-ADC architecture is a 4 bit flash with encoder and decoder 

circuits. The quantizer resolves 4 bits of the input signal. To determine all of the possible 

quantization levels 24-1 ie 15 comparators are needed. A reference decision level for each 

comparator is typically generated by each voltage division of a reference. The comparator 

bank generates thermometer coded outputs. Suitable digital logic in the encoder is then 
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used to obtain the digital word equivalent to the value of the detected quantization level. 

The decoder is a 1 of 15 decoder is used to verifY the trip point setting of each comparator 

after setting the reference values, by suitable programming of the injector structures. 

Encoder and decoder blocks used in this architecture are the straight forward digital logic 

functions and will not be discussed in this thesis. 

3.1.2 COMPARATOR DESIGN 

The function of the comparator is a crucial, and often a limiting component in the 

design of data conversion systems due to its finite accuracy, comparison speed and power 

consumption [24]. This section describes the design considerations to obtain comparator 

amplification, analysis of the comparator with floating gate injectors and the concept of 

trip point control using trimming. The following comparator circuits are proposed. 

• Dual Blocking Dual Injector Comparator. 

• Single Blocking Single Injector Comparator. 

• Stacked Comparator. 

3.1.2.1 DESIGN CONSIDERATIONS 

Power consumption is a critical design issue that has to be weighed carefully. One 

of the simplest circuits that can be used as a comparator in CMOS is an inverter. As one 
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of the transistors is always off during the inverter circuit operation, there is no de path 

from V00 to Yss. Hence the static power dissipation is always zero. However there will be 

dynamic power dissipation during the transition from V 00 to V ss and vice versa (transition 

between the logic levels) as both the transistors will be on during this short period of time. 

The power dissipation during this period is given by : 

Pd = CL ( Vnn- Vss )2 fp (13) 

where fp is the clock rate of the circuit. For a given sampling rate and supply voltage the 

power dissipation is only a function of the capacitance. This capacitance is now a function 

of the input capacitance of the following stage or the load capacitance. 

The general techniques to obtain amplification using a simple inverter circuit is 

either by single stage amplification or a multistage amplification. The amplification 'A' for 

one stage of the circuit is defined as the ratio of the output Yo to an input step amplitude 

Vi after an amplification time T a if the transistor output conductance are neglected. The 

relationship between T a and A for a single stage amplification approach is given by [22]: 

CL 
Ta=-xA 

gm 
(14) 

Gain A is the small signal gain and depends on process parameters and equals gmR). Gain 

is a very important characteristic describing comparator operation, for it defines the 

minimum amount of input voltage change necessary to make the output voltage swing 

between the two logic levels. 

For a multistage approach, that consists of identical single stage amplifiers 

cascaded, the relationship between T a and A is given by [22]: 
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I CL ·-; 
Ta=-x (AXN}"' 

gm 
(15) 

N is the number of stages. For such an approach there exists an optimum number of stages 

for which T a is minimized. The relationship is given by [23] and is valid for A < 1000 : 

Nop = 1.1 X ln(A) + 0.79 (16) 

To obtain an insight into the amount of gain required for amplification, say for a 4 

bit quantizer, with logic levels defined as +/-1.65V and noise margin of 70%, then (VoH-

VoL) is approximately 2.3V. For the 16level quantizer with an input of2V FS, 1 LSB is 

equal to 125m V. The required amplification for a 1 LSB difference in inputs of the 

comparator, is approximately equal to (2.3V/125mV) that is 19. This amplification may 

be obtained in 2 stages for an SOS approach as compared to a single stage amplification 

for the BULK process. This indicates the minimum gain the quantizer should have to 

achieve the amplification function. Summarizing, the minimum gain required for the 

comparator is given by : 

Amin= 0.7(VoH-VoL) 
VFS 

2n 

3.1.2.2 DUAL BLOCKING DUAL INJECTOR COMPARATOR 

The proposed circuit schematic for the comparator is shown in figure 9. The 

comparator is a 'Dual Blocking Dual Injector' type. It consists of ( 1) current injector 

(17) 

pairs CINn, CINJ2 for injecting and removing electrons to and from the floating gate, (2) a 
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bootstrap capacitor Cs1, C82 to allow external control and programming ofthe floating 

gate voltages without having an electrical connection between programming and the 

floating gate and (3) basic inverter circuit with transistors M1, M2 that acts as the 

comparator. 

Yrmv!P 
YDD 

j i CINn 

I 130/6.0 
I !4--CB: 

- : 
M2 J 

I' 
I ,_ I 

YIN 
I Yom 

·-
I i M1 

CB: 
I r----+: 

65/6.0 
-' ..... 

1 CINJ: 

1 
-

Yss YrG!vf:' 

Figure 9. Circuit Schematic for Dual Blocking Dual Injector Comparator 

The gain and time constant for the comparator circuit are given by equation ( 18) 

and (19). 

gain = 
gml + gm2 

gdsl + gds2 

CLoad 
't = 

gmt+ gm2 

(18) 

(19) 

The injector structures along with the blocking capacitors control the amount of 

stored charge on the floating node and hence the trip point of the circuit. The narrow 

range where both the transistors in the inverter circuit are in saturation is exploited for use 

in analog comparison. 
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At the 'trip point' change over between the two logic levels occurs. The value of 

Yin equals Yout at the trip point. Both the transistors M 1, M2 are in saturation, in this 

region and they act as current sources. The equivalent circuit in this region of operation is 

two current sources between the supply rails, with the output at their common point. This 

region is highly unstable and the change over between the two logic levels at the trip point 

is very rapid. Thus a small input voltage change causes a large effect at the output. 

ANALYSIS: 

The saturation currents for the two transistors including a floating gate charge of +I- Y q is 

given by: 

Iosn 

Iosp 

~n 2 = - (Vin ± Vq - Vss - VTN) 
2 

= ~ (Vin ± Vq - Vdd - VTP)
2 

2 

where ~n, ~p, Y TN, Y TP take on their standard notations and Yin is the applied input 

voltage. 

The trip point can be derived as the point where the currents of the two transistors are 

equal, ie. : losn = losp 

Solving for Yin, based on the above condition and assuming that the sum of the total 

charge on the two floating nodes is +/-Yq, gives: 

Vin 

~ (Vss + VTN)V~ + VTP + Voo 

= ±Vq + = VTRIP 
2 

Now ifYq is written as the sum of the charges on floating gates ofMl and M2, ie. 

± Vq = ±Vqn± Vqp 
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and assuming ~" = ~P and V oo = -V ss gives: 

VTRIP = ±Vqn + ± Vqp 
V'l'N + VTP (24) 

2 

As is clear from equation (24) the trip point is now a function of floating gate 

charge on the two floating nodes. Ideally for an inverter under the above conditions with 

no charge on the floating gates, and equal and opposite thresholds for the transistors the 

trip point is at zero. 

The trip point can be shifted either in a positive or in a negative direction based on 

the following conditions : 

• A positive charge on the floating node of Ml, and M2 will shift the Trip point in a 

positive direction. 

• A negative charge on the floating node of Ml and M2 will shift the Trip point in a 

negative direction. 

• An equal and opposite charge on the floating nodes of the transistors will shift the 

Trip point to zero (assuming equal and opposite thresholds for the transistors). 

• Unequal and opposite charge on the floating nodes of the transistors will shift the 

Trip point in a direction governed by the magnitude of the charges and specified as 

per equation (24). 

This shift in trip points is achieved by the effective change in the thresholds of the 

two transistors. The effective threshold voltage of the NMOS is varied in a positive 

direction by injecting electrons onto the gate. The effective threshold of the PMOS is 

varied in a negative direction by injecting electrons onto its gate. Removing electrons 

from the gates, will shift the trip point towards zero in a negative direction for the NMOS, 
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and towards zero in a positive direction for the PMOS. To validate the theory explained 

earlier simulation was performed to NMOS and PMOS devices in PSPICE with positive 

and negative charges stored on a capacitor and connected to the gate of the devices. The 

simulation results are shown below, the dotted lines on the curves indicate the actual 

threshold of a naive device without any FG charge. 

SHIFT IN THRESHOLD VOLATGE FOR NMOS DUE 
TO A +0.5V CHARGE ON THE GATE. 

o~~--------------------------------~------. 
in 'f 0.04 +·~--------~---
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Figure 10. Simulated effective threshold voltage shift in NMOS due to a +ve charge. 
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Figure 11. Simulated effective threshold volatge shift in NMOS due to a -ve charge. 
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To summarize: 

• The threshold voltage shifts in a negative direction due to a positive charge on gate. 

• The threshold voltage shifts in a positive direction due to a negative charge on gate. 
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Figure 12. Simulated effective threshold voltage shift in PMOS due to a-ve charge 
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Figure 13. Simulated effective threshold voltage shift in PMOS due to a +ve charge 

To summarize : 

• The threshold voltage shifts in a negative direction due to a positive charge on gate. 
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• The threshold voltage shifts in a positive direction due to a negative charge on gate. 

3.1.2.3 SINGLE BLOCKING SINGLE INJECTOR COMPARATOR 

The use of dual blocking dual injector structure for the comparator has the 

disadvantage that there are a large number of programming lines for the ADC architecture. 
YoD 

VpoM r 
j_ ~ 130/6.0 

M2 
C!l'u . ____, 

VLWT 

YIN ~ 
' . 
I 

CB I r---

l_____:l Ml Optional Buffers 

i ~ 65/6.0 
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Figure 14. Circuit Schematic for Single Blocking Single Injector Comparator 

The number of programming lines can be reduced in halfby using a single blocking 

single injector structure for the comparator as shown in figure (14). This has the additional 

advantage of better control of trip point as the amount of stored charge on the two 

floating nodes now is equal and charge injection and removal now occurs through only 

one injector. The trip point for the circuit shown in figure (14) is now specified by 

equation (25). 

VTRIP = ±2Vq + Vm + VTP 

2 
(25) 
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The analysis for the gain, time constant, setting of trip point analysis remain same as 

discussed before. An optional buffer stage may be incorporated into the design to achieve 

the amplification by using a multistage approach. This approach may be essential to realize 

a comparator with a resolution in excess of 4 bits. 

3.1.2.4 STACKED COMPARATOR 

The circuit shown in figure (15) is a stacked comparator circuit. Transistors M1, 

M2 form the basic inverter circuit and transistors M3, M4 act as a variable resistor. 
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Figure 15. Circuit Schematic for Stacked Comparator. 

As the control voltage V ctr increases (electrons are removed from the floating gate), the on 

resistance of transistor M3 increases and that ofM4 increases. This reduces the effective 

power supply range for the basic inverter. As V ctr increases the inverter threshold 

decreases. 
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3.1.2.5 INJECTOR STRUCTURE 

The proposed injector structure is a thick oxide dual poly floating gate device as 

shown in figure ( 16). 

Poly 1 Poly 2 

Coupling Capacitor 

Figure 16. Proposed Injector Structure. 

Tunneling 
injector 

The comparator amplifies the difference between the input and the reference voltage, 

generating a decision bit. The reference voltage in this case is stored on the floating gate. 

Corresponding to the various values of reference voltages ie. stored charge, the trip points 

for the inverter are set. This is achieved by varying the effective threshold voltages of 

either Ml or M2. 

The percentage of programming voltage that appears across the floating gate, 

assuming no charge on the floating gate depends on the capacitive coupling ratio K, and is 

given by: 

1 (26) K = 
1 + Cgs 

Cs 
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where C8 is the bootstrap capacitor between the floating gate and the control gate, and Cgs 

is the floating gate to source capacitance. Cgd (gate to drain capacitance) and Cin.i (injector 

capacitance across the gate oxide) are assumed to be relatively small based on the 

assumption that the transistor is in saturation. 

For a given tunneling voltage tighter coupling minimizes the required programming 

voltage. For this reason the it is desired that C8 be at least one order of magnitude larger 

than Cgs· Taking into account the circuit area, proper trade offbetween the size of the 

capacitor and the programming voltages should be made. The chosen coupling ratio used 

in this design is 9/1 0. 

3.2 NRaD SOS QUANTIZER AND INJECTOR 
IMPLEMENTATION 

The NRaD CMOS/SOS (silicon on sapphire) is a mesa isolated, double level metal, 

single poly salicide process. The cornerstone of the process is the use of improved 1 OOnm 

thick silicon films on sapphire which allow for fully depleted, low leakage operation. 

These MOSFET's are different from conventional BULK MOSFET's because the body is 

thin and floating. These differences make the devices behave slightly different. The most 

commonly observed difference is the 'Kink effect' which occurs at high drain to source 

voltages. This calls for low voltage operation. Also due to a very short channel length the 

intrinsic self gain of the transistor is small (of the order of 20-25db) as compared to 40-
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50db for a long channel BULK MOSFET. A very important advantage of these devices is 

the elimination of junction capacitance at the source and drain of the transistor. 

3.2.1 ADC ARCHITECTURE 

The proposed ADC architecture is very similar to the one proposed earlier, except 

for an important difference that the architecture has a DAC block for loop back. 

VIN 
OUANTIZER 

30% 
INJECTOR PROGRAMMING LINES 

DAC 

ENCODER 

ANALOG OUT 

i---BIT(4) 

-, -BIT(3) 

-, -BIT(2) 
I 

_________ t--BIT(1) 

1 OF 15 
DECODER 

OUT 

Figure 17. Block Schematic for NRaD-SOS ADC with Encoder, Decoder and DAC. 

The proposed architecture shown above is for a 4-bit ADC. The quantizer, encoder and 

decoder blocks serve the same functions as explained earlier. The digital output of the 

quantizer is then fed into the DAC that converts it to an analog signal. 
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3.2.2 COMPARATOR DESIGN 

The comparator circuit implementations discussed in the previous section suffers 

from a major drawback that the trip point of the circuit is dependent on the power supply 

voltage as indicated by equation (22). There is a limited range in which the circuits can be 

placed while still maintaining adequate gain. The use of a differential approach to obtain 

comparator amplification gives the advantages of good CMRR (common mode rejection 

ratio), CMR (common mode range) and PSRR (power supply rejection ratio) in addition 

to setting of the trip points independent of the power supply voltages. 

A regenerative amplifier can also be used as a non-linear gain stage. The large 

signal amplification A can be defined as the ratio of the differential output to the initial 

unbalance, ie. : 

A= 
V1(t) - V2(t) 

v 1(0) - v 2(0) 

The amplification time T a is then related to A by : 

CL 
Ta = -X ln (A) 

gm 

(27) 

(28) 

The use of a differential amplifier stage has the key attribute that the circuit has the 

ability to amplifY the difference between the inverting and non-inverting inputs. As a result 

the trip point can be made independent of the process and supply variations to the first 

order. 

The comparator circuit is shown in figure (18)[24]. The comparator circuit 

consists of a differential input pair (M3, M4), a CMOS latch circuit and a bias circuit. The 
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CMOS latch is composed of an-channel flip flop (MN6, MN7) with a pair ofn-channel 

pre-charge transistors (MNS, MN8). An-channel switch MN9 is used for resetting and a 

pair ofp-channel flip flop (MPS, MP6). CLKl and CLK2 are two overlapping clocks, 

with CLK2 being a delayed version of CLK 1. 

The dynamic operation of the circuit is divided into a reset time interval and a 

regenerative time interval. During the reset interval current flows through the resetting 

switch MN9, which forces the two logic states to be equal. After the pre-amplifier settles, 

a voltage proportional to the input voltage difference is established between the two nodes 

X and Y. This voltage will act as the initial unbalance for the regeneration time interval. 

The regeneration period is started by opening of the switch MN9. In the meantime as the 

p-channel flip flop is set, the n-channel flip flop is reset by the two closed pre-charge 

transistor pairs (MNS, MN8). This pre-charges the two nodes to the negative power 

supply voltage. As a result the CMOS latch is set to an astable high-gain mode. 

Since the transistor pairs (MP7, MP8) isolate the n-channel flip flop from the p

channel, the use of two overlapping clocks performs the regenerative process in two steps. 

The first regenerative process is within the short time interval between <1>1 getting low and 

<1>2 getting high. The second regeneration is when <1>1 gets high. The voltage difference 

between nodes C and D is amplified to a voltage swing nearly equal to the power supply 

voltage. 
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3.3 SPECIFICATIONS OF CONVERTERS 

To obtain insight into the design for converters it is important to arrive at a 

unanimous definition of specifications. The DC specifications for converters are well 

known in literature. In this section the DC and dynamic specifications are discussed. 

3.3.1 DC SPECIFICATIONS 

Accuracy of converters should not be confused with linearity and resolution. In 

addition accuracy includes the errors of quantization, non-linearity's. short term drift, 

offset, harmonic distortion and noise [26]. 

3.3.1.1 ABSOLUTE ACCURACY 

The absolute accuracy of a converter is the actual full-scale input or output (analog 

to digital or digital to analog) signal (voltage, current or charge) referred to the absolute 

standards. This absolute accuracy is mostly related to the reference source used in the 

converter. This reference source should have a low noise with respect to the resolution of 

the converter. Temperature coefficients in the ideal case should be so small that the 

accuracy of the reference source over the specified temperature range stays within the 

resolution ofthe converter (1/2 LSB over the full temperature range) [26]. 
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3.3.1.2 RELATIVE ACCURACY 

The relative accuracy is the deviation of the output signal or code from a straight 

line drawn through zero and full scale. Output signal or output codes must be corrected 

from a possible zero offset. This relative accuracy is called Integral Non Linearity (JNL) 

or sometimes linearity. The boundaries for the non linearity deviation should be not more 

than +/-1/2 LSB of a straight line through zero and full scale. This +/-1/2 LSB INL 

definition implies a monotonic behavior for the converter. Mono tonicity of a converter 

means that the output of the DAC never decreases with an increasing digital input code. A 

minimum increase of zero is allowed for I LSB increase in input signal ofthe DAC. In an 

ADC monotonicity means that no missing codes can occur. It can be pointed out that 

converters can be designed that are guaranteed monotonic but do not have the 1 /2LSB 

linearity specification [26]. 

Thus the monotonic specification does not include that a converter has a +/ -1/2 

LSB INL error. However a converter is always monotonic when the INL specification is 

less than or equal to +/-1/2 LSB. But when a converter is specified to be always 

monotonic, then this specification does not automatically imply an INL error of less than 

or equal to +/-l/2LSB. 
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3.3.1.3 DIFFERENTIAL NONLINEARITY 

Differential non-linearity (DNL) error describes the difference between the two 

adjacent analog signal values compared to the step size (LSB weight) of a converter 

generated by transitions between adjacent pairs of digital code numbers over the full range 

of the converter. The DNL is zero if every transition to its neighbors equals lLSB. In a 

monotonic converter [26]. 

3.3.1.4 OFFSET 

Input amplifiers, output amplifiers and comparators have inherently built in offset 

voltage and offset current. This offset is caused by the mismatch in components. The 

offset results in non-zero input or output voltage, current or digital code although a zero 

signal is applied to the converter [26]. Off~et can be minimized by trimming or auto 

zeroing procedures, adopting careful layout procedures and avoiding thermal coupling or 

thermal gradients over an integrated circuit. 

3.4 INJECTOR SPECIFICATIONS 

For characterization of floating gate comparator circuits it is essential to 

characterize the injector structures. This characterization will aid in setting the 
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programming voltages necessary to inject or remove charges. The specifications 

developed for these structures were specific to the application they are being used. The 

injector specifications are as follows: (refer to Figure 4, chapter 2) 

• PROGRAMMING ONSET: Minimum programming voltage to initiate charge 

injection or removal into or from the floating gate. The onset is indicated by both 

positive and negative programming voltages and specified as V r+ and V1_ respectively. 

• OBSERVABLE QUANTUM : Minimum observable unit of charge injection per 

0 l d 0 d" d I!!VTRIP POINT SHIFT Thi programmmg eye e an m 1cate as - Qobs = - - . s parameter 
c 

sets the LSB of the ADC system as the trip point is to be shifted in a positive or 

negative direction by one quantum. 

• LONG TERM CHARGE RETENTION: This parameter specifies the charge 

retention on the floating gate in terms of the number years and indicated as tLR· The 

variation of floating gate charge over a period of time, say 10 years is specified as 

- tLR < Yz(LSB). This specification dictates the feasibility ofbuilding floating gate 

ADC systems. 

• SHORT TERM CHARGE RETENTION: The variation of charge on the floating 

gate during a 15 minute recovery post programming is indicated as a shift in the trip 

point voltage and the notation used is /!! V sR • 

• MAXIMUM PROGRAMMING VOLATGE :This parameter specifies the 

maximum programming voltage that can be applied to the floating gate injector's 

programming terminals without breakdown of the oxide - V IBK+' V IBK-· 
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• DC PROGRAMMING VOLTAGE: The magnitude ofthe programming voltage 

that has to be applied tor a fixed duration to get the desired trip point shift is indicated 

by- V pgm· 

• PROGRAMMING TIME: This parameter indicates the duration of the 

programming voltage to get a desired trip point shift- tpgm· 

3.5 LAYOUT ISSUES 

The layout process should be carried out very carefully to preserve the matching 

properties and to minimize the parasitic capacitance. The most common ways in which the 

layout influences matching are through device proximity and device orientation. Matching 

of components is degraded by placing them apart. Therefore two devices intended to 

match should be placed in close proximity, decreasing their mismatch. 

One technique for improving the matching is called "common centriod" layout 

style. Both the differential pair, p-channel and n-channel pair oflatch in the regenerative 

comparator are laid out using this technique. Each transistor, capacitors in all the layouts 

are have been divided into fingers. Dividing a single transistor into fingers diminishes the 

sensitivity of mismatch to quadratic spatial variations in the process parameters and in tum 

unproves accuracy. 

Any sufficiently large capacitance mismatch between nodes X andY in the latch of 

the regenerative comparator leads to an erroneous result due to charge injection and clock 
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feed through error of switch MSW. To guarantee that two parts ofthe symmetric circuit 

match, all the wires on each side must contain the same length at each wiring layer and 

have the exact crossings with other devices or wires. The whole latch structure is laid out 

symmetrically, the left part of the latch is just the mirror image of the right part. This 

reduces the dynamic offset errors. It is also necessary to pay extreme attention to prevent 

noisy interaction of analog circuit (pre - amplifier) and digital circuit (latch). 
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CHAPTER4 

TEST PROCEDURES AND 
CHARACTERIZATION RESULTS FOR 

FLOATING GATE CIRCUITS 

This chapter describes the testing procedures developed for the characterization of 

floating gate injector structures along with a detailed overview of the results obtained. The 

main purpose of developing the test procedures is for the purpose of developing injector 

models that will determine the feasibility of the approach being adopted along with 

building significant insight into the behavior of the floating gate injector structures. Thus 

the main design and development issue for a 4 bit floating gate injector trimmed is the 

characterization of the injector structures in the process of interest. Comparators and 

quantizers were fabricated as per the designs explained in chapter 3. The two main 

fabrication technologies of interest were the MOSIS BULK process and the NRaD SOS 

process. Circuits in these two technologies were fabricated with a packaged IC being 
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made available from the MOSIS process and a wafer test structure from the NRaD SOS 

process. However the test setup and procedures were nearly identical for the two with 

minor variations. 

4.1 GENERALIZED TEST SETUP 

DAC DEVICE UNDER ADC 
TEST 

: 
: 

.. -------- ------··········· ----- ----············----

OVEN 

I 

PC 
DC PROGRAMMING & 

CIRCUIT SOFTWARE 

Figure 19: Test setup for characterization of Quantizers and Injectors. 

The figure above shows a generalized test setup for characterization of floating 

gate injector circuits. The "DEVICE UNDER TEST -DUT" in this setup can be a simple 

injector structure, a floating gate comparator or a quantizer test structure. The ADC/DAC 

blocks along with the PC and its related test routine software serve the purpose of data 

acquisition and applying the required inputs in terms of voltages. A DC programming 
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circuit block is also included that serves the purpose of generating a DC programming 

pulse for programming the injector structure. The DUT block may be baked in a oven to 

study the charge retention properties of the injector structure. Detailed test procedure for 

the characterization of floating gate injector structures is explained in the following 

sections. 

4.2 TEST MODES FOR CHARACTERIZATION 

The following test modes have been designed for the purpose of characterization 

of injector structures. 

• INPUT SWEEP MODE: With the injector programming lines shorted to the inputs 

this mode is used to determine the comparator/quantizer characteristics like the trip 

point-V TRIP, along with the injector parameters like short term charge retention-L1 V sR 

and the observable quantum-Qobs· 

• DC-PROGRAMMING MODE: To get either+/- injection a programming voltage 

of magnitude +/-V pgm is applied across the input and the appropriate injector terminal 

for a required duration tpgm to store the desired amount of charge on the FG. The 

range of programming voltages needed is ascertained based on parameters like 

programming onset-Vy+Nr- and maximum programming voltage-VIBK+/VIBK- that are 

obtained by injector characterization. 
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• OVEN EXPOSURE MODE: The DUT is baked for a required duration to infer the 

long term charge retention tLR· 

4.3 TEST PROCEDURE FOR CHARACTERIZATION 

To ascertain the injector parameters explained in chapter 3 and characterize the 

comparator/quantizer test structures the following test procedures have been developed. 

4.3.1 TEST PROCEDURE FOR INJECTOR CHARACTERZATION 

For characterization of floating gate comparator circuits it is essential to 

characterize the injector structures. This characterization will aid in setting the 

programming voltages necessary to inject or remove charges. The fabricated injector 

structures in both the BULK and SOS process was a two terminal device with poly as one 

terminal and poly2 as the other in the case ofBULK and island in the case of the SOS 

process. The charge injection and removal occurred across this interface by means of a 

tunneling mechanism as explained in chapter 2. As the injection current is of the order of a 

nA. it was essential to fabricate at least 1 000 such injectors in parallel in order to enable 

the available test equipment to sense significantly larger currents. The injector was to be 

characterized based on the parameters explained in chapter 3 and the Fowler Nordhiem 

equivalent model. 
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The two terminal test structure was grounded on one end and a linear sweep 

ranging from +/-15V was applied at the other end in increments ofO.IV using the HP-

4145 semiconductor parametric analyzer. The current was sensed to characterize the 

structure. 

4.3.1.1 BULK INJECTOR CHARACTERIZATION RESULTS AND 
INFERENCES 

The two terminal injector structure in the MOSIS BULK technology was a polyl -

poly2 test structure composed of cells described previously in section 2.3.4. The test 

procedure explained in the previous section was performed on the DUT and the results are 

summarized as follows. 

• MOSIS BULK POLY1-POLY2 INJECTOR CHARACTERIZATION 

-Maximum Programming Voltage VIBK+NIBK- = +27V/-27V 

-Measurable Programming Onset= +12V/-12V 

-The injector structure was observed to be symmetrical in nature (refer to 

the data characteristic plot in figure 20) 
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Figure 20 : Injector characteristics obtained by testing. 
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Injector Modeling :The values for a and ~ in equation (9), section 2.4.1 can be 
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estimated based on the injector characteristics obtained by testing. Repeating the Fowler 

Nordhiem equation : 

J = aE2 exp ( -13/E) + Gs V (29) 

Based on the estimate of <j>8 obtained by baking comparator test structures to project 

charge retention time as explained in section 4.3.5.2, the values for a and~ can be 

calculated as per equations (30) and (31 ). 

a= 6.49- log(<j>B) (30) 

and 

13 = 21.0 (<j>B3
)

112 MV/cm (31) 

The values obtained: a= 6.027 and 13 = 0.93 X 109 V/m. The leakage resistance was 

estimated as 160Mohm/unit injector. It can be noted that for values ofthe programming 
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voltages given by equation (32) the current density term is dominated by the a term. that 

isJ=aE2
• 

V > (~ Tox)/ln[lO] (32) 

For an oxide thickness of 400A0 this value of programming voltage was 16.2V for the 

structure. Based on the extracted data from the 1 000 injector in parallel structure the 

effective injector area for a single injector was calculated as 2.25 X 10- 19!lm2
• From this 

estimate of the injector area it can be inferred that tunneling occurs at the edges of the 

interface of polyl and poly2 where oxide thinning occurs. Increasing the number of edges 

between the interface will lead to a larger effective injector area and hence lower 

programming voltages. 

Based on the extracted values the plot in figure (20) shows the actual data fit curve 

(dotted lines) and the curve obtained from real characterization data. 

4.3.1.2 SOS INJECTOR CHARACTERIZATION RESULTS AND INFERENCES 

The two terminal injector structure in the NRaD SOS technology was a polyl to 

island overlap test structure. The test procedure explained in the previous section was 

performed on the DUT and the results are summarized as follows (refer to figure 21 ). 

• Programming Onset = +/-8V. 

• Maximum Programming voltage is approximately= +/-13V. 
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Figure 21: Injector characteristics obtained by testing. 

• The plot ofVpgm and Ipgm indicated a symmetrical injector structure. 

l. 

~0.00 

• A current of 1.641 nA was sensed on the test structure at a programming voltage of 9.8V. 

Injector Modeling : The characteristic constants in equation (29) was extracted based on 

the data obtained. The values obtained: a= 6.07 and J3 = 1.2 X 109 V/m. The leakage 

resistance was estimated as 50Mohm/unit injector. For an oxide thickness of 120A0 the 

value of programming voltage at which the current density is dominated by the a term (as 

per equation 32) , was 6.5V for the structure. Based on the extracted data from the 1000 

injector in parallel structure the effective injector area for a single ~ector was calculated 

as 4.05 X 10-19Jlm2
• A similar inference as given earlier on the tunneling interface can be 

drawn based on the above result. 
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SOS POLY- ISLAND INJECTOR CHARACTERISTICS 
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Figure 22 :Injector characteristics obtained by testing & extracted data plot. 

Figure (22) shows the plot obtained by characterization in comparison with the plot 

obtained from data extraction. The actual data fit curve (dotted lines) is in close agreement 

with the characterization results indicating the validity of the values of the characteristics 

constants in Fowler equation obtained. 

4.3.2 TRANSFER CURVE CHARACTERIZATION FOR 
COMPARATOR 

Before trip point characterization by programming can be done on floating gate 

comparator circuits it is essential to demonstrate functionality. The test structures used 

were a 'Dual blocking dual injector type comparator' circuit from the MOSIS BULK 

process and a 'Clocked regenerative comparator' from the NRaD SOS process. To 

characterize the test structures the circuits were placed in the 'Input sweep mode' with the 
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injector programming lines shorted to the input. The transfer curve characterization 

indicates the trip point of the circuit. Since these devices have FG structures on the gates. 

it is essential to erase the DUT using UV light for a specified period of time before 

characterization can be done. 

Ypgmp 

CLK 
YOUT 

YIN 

YREF YIN DUT DUT 
YOUT 

Ypgmn Ypgm+ Ypgm-

Figure 23. Test setup for dual injector comparator and regenerative comparator. 

The trip point thus obtained is inferred as the 'Trip point before any charge has 

been transferred to the gate'. An alternate method to infer this information is to 

characterize a circuit that does not have any FG structures on it. 

4.3.2.1 BULK COMPARATOR CHARACTERIZATION RESULTS AND 
INFERENCES 

The DUT was 'Dual blocking dual injector type comparator' circuit with a polyl-

poly2 injector structure. The DUT was placed in the input sweep mode as shown in figure 

23 The DUT had power supplies that ranged from +/-2.5V (refer to the circuit schematic 

in chapter 3 -figure 9). 

In this mode the trip point of the comparator is measured. 

59 

1 



• The programming terminals VPGMP and VPGMN are grounded in this entire 

mode of operation. 

• The comparator input VIN is swept in increments of 1 Omv starting from V ss 

to Vdd. 

• The output is measured for each input voltage and a plot ofVin versus Vout 

$" 
0 
> 
i=" 
:::::1 
0 
> 

gives the transfer characteristics. 

TRANSFER CURVE CHARACTERIZATION OF DUAL BLOCKING 
DUAL INJECTOR CONPARATOR 

-2.5 -2 -1.5 -1 1.5 2 

VIN(volts) 

Figure 24: Transfer curve characterization obtained by testing. 

215 

Transfer curve characterization results: Prior to device characterization in input sweep 

mode the DUT was UV erased for a period of24 hours. Functionality was obtained when 

the DUT was operated in this mode. The circuit was able to trip with Vin resolutions of 

1 Omv (refer to the transfer curve plot in figure 24). 
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4.3.2.2 REGENERATIVE COMPARATOR CHARACTERIZATION RESULTS 
AND INFERENCES 

The DUT here was a clocked regenerative comparator with injector terminals for 

programming (refer to the attached schematic).The circuit operated in two modes: - trip 

point measurement mode and programming mode. To demonstrate functionality the DUT 

was operated in the trip point measurement mode as shown in figure 18. The comparator 

has +/-3.3V analog power supplies for the pre-amplifier and +/-1.65V digital power 

supplies for the digital latch. The clock levels for CLKl and CLK2 ranged from -1.65V to 

+3.3V (refer to the circuit schematic in chapter 3, figure 18). 

Programming mode test setup : 

• The programming terminals V _PGMP & V _PGMN are grounded along with 

V _REF in this entire mode of operation. 

• Comparator is reset with CLKl LOW and CLK2 HIGH before each 

measurement. During reset operation VIN is also grounded. 

• A particular value of VIN is then applied (VIN is swept in the desired range of 

operation). 

• Comparator is clocked with CLKl HIGH & CLK2 LOW. 

• The output Q or Q_BAR is measured. 

• The comparator is reset again and VIN incremented in the range of operation. 

• A plot of Q_ BAR vs VIN gives an indication of the trip point. 

• For coarse trip point measurements VIN is incremented in 500mv- lOOmv 

steps. 
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• For fine trip point measurements YIN is incremented in lOmv- lmv steps. 

Transfer curve characterization results: No UV erasure was done on the DUT as the 

they were wafer structures. Functionality was obtained when the DUT was operated in 

this mode. The circuit was able to trip with Vin resolutions of 500mv, 250mv, 1 OOmv, 

IOmv and lmv (refer to figure 25 for a lOmv resolution transfer curve plot in figure 24). 
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Figure 25: Transfer curve characterization obtained by testing. 

1.~0 

4.3.3 TRIP POINT CHARACTERIZATION FOR COMPARATOR 

To demonstrate trip point characterization by programming the comparator is 

programmed and trip point measurements were made alternately between each 

programming epic. It is essential to demonstrate both fine and coarse trip point shifts with 

programming. For this purpose a program was written that incremented programming 
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voltages with the desired resolution and measured the trip point with a fine degree of 

resolution. The program thus set the test circuit in the programming mode and trip point 

measurement were made alternatively to characterize the trip point with programming 

increments. 

Initially programming is done with a positive pulse and the trip point is shifted in a 

positive direction. The range of programming voltages is based on the desired range of the 

trip points. Negative programming pulses are then applied to shift the trip point in a 

negative direction. 

To build a 4-bit ADC it is necessary to shift the trip points by 125mv with +/-1 V 

range of operation. Finer shifts in trip points would indicate the feasibility of building an 

ADC with larger number of bits. However it is necessary for the injector structures to 

retain charge over a short period of time as well as over a long period oftirne. Before fine 

programming increments can be applied it is essential to know whether the trip point can 

be shifted with coarse programming increments. This gives an indication of the range in 

which the trip points can be shifted. The quantum of charge that can be injected or 

removed can be inferred from fine programming voltage increments trip point 

characterization. It is essential that we are be able to inject/remove at least lLSB 

or125mV equivalent of charge to use the comparator as a building block for our ADC. 
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4.3.3.1 BULK COMPARATOR CHARACTERIZATION RESULTS AND 
INFERENCES 

The comparator trip points were programmed in incremental steps of 50mv. The 

plot on figure (26) shows the trip point characteristics obtained by negative programming. 

Programming mode : Programming on the DUT here can be done either on 

negative programming terminal VPGMN or on the positive programming terminal 

VPGMP or on both together to get the desired trip point shift based on the set of 

conditions and governed by the equations presented in chapter 3. 

• During the programming mode power supply terminals are set to ground or 

their respective values. However the setup has to remain essential consistent 

for each programming epic. 

• Programming on VPGMN is done by grounding the input VIN and VPGMP. 

A DC programming pulse that is either positive or negative in magnitude is 

applied to VPGMN for a fixed duration of time. Programming on VPGMP is 

done similarly by grounding VPGMN. 

• Choice of programming voltages can be inferred from the ~jector 

characteristics obtained earlier. 

• Programming time ranged from 1 sec. to 30sec. duration with no noted 

variation in performance. 

The shift in trip point with programming voltage increments was observed to be 

approximately 1 OOmv. This indicated that the quantum for the ADC can be set to a fair 
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degree of accuracy with 1 00-125mV range. The range of trip point shifts observed were 

as far as +/-2.5V or 5 plus bits of accuracy. 

4.3.3.2 REGENERATIVE COMPARATOR CHARACTERIZATION RESULTS 
AND INFERENCES 

To obtain the trip point characterization by programming the DUT is repeatedly 

set between the trip point measurement mode and a programming mode with 

programmmg increment between each trip point measurements. The trip point 

measurement mode has already been explained in the earlier section. 

Programming mode : In this mode the comparator is programmed to shift the trip 

point in a specific direction. 

• Programming is done by charge injection or removal by applying a DC 

programming voltage for a fixed time only on the V _REF end. 

• In this mode VIN, V _PGMP & V _REF are grounded for the entire mode of 

operation. 

• Comparator is in a reset mode during this entire mode of operation. 

• A DC programming pulse for a fixed duration is applied to V _PGMN. 

• A positive pulse is applied to remove electrons from V _REF floating 

node.( this shifts the trip point in a positive direction) 

• A negative pulse is applied to inject electrons onto the V _REF floating node. 

(this shifts the trip point in a negative direction) 
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• Choice of programming voltages must be inferred from the il1iector 

characterization results shown earlier. 

• Programming time ranges from tOms to lsec (a O.Sms rise time on the pulse 

was used). It is better to use programming pulses of longer duration as the 

programming current saturates with time. 

• Repeated programming at the same voltage will not shift the trip point. 

After programming, the comparator is switched to the Trip point measurement mode. 

Trip point measurements with coarse programming increments : 

• Trip point was shifted in a positive and negative direction with coarse programming 

voltage increments of 500mv and 250mv. 

• The shift in trip point with coarse programming voltage increments was observed to be 

linear in both the positive and negative directions. 

• Trip point shifts as far as +/-2.5V were observed. 

(refer to figure 27 ). 

Trip point measurements with fine programming increments : 

• The trip point was shifted in the positive and negative direction with fine programming 

increments of 1 Omv. 

• The shift in the trip point with fme programming increments was observed to be more 

linear in the negative direction than in the positive direction. 

• A 20mv shift approximately was observed in trip point with every 1 Omv step m 

programming voltages. 

(refer to figure 28, 29 &30) 
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4.3.4 SHORT TERM CHARGE RETENTION STUDY ON FG 
COMPARATORS 

To characterize floating gate circuits for short term retention, the variation in trip 

point with time is to be measured at room temperature. There is no fixed choice of time 

when measurements have to be made [11]. However trip point measurements every tew 

minutes, few hours, and few days of completing programming is a good measure of 

charge retention. It is essential for our application to measure the trip point with at least a 

1 Omv accuracy or less. A program that can do repeated measurements in short intervals 

of time and run overnight is a good way to characterize the circuit for short term 

variation in charge. It is critical that the variation of charge on the FG be maintained less 

than Y2(LSB) for use as a building block for an ADC. The test setup allowed measurement 

to 1m V accuracy. 

4.3.4.1 SHORT TERM CHARGE RETENTION STUDY ON BULK DEVICES 

The short term charge retention for the bulk devices was done during a 15 minute 

recovery period as well as over extended periods of time lasting a few days. The following 

observations were made: 

• Variation of charge during a 15 minute recovery period post programming was < +I-

2.5mv. 
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• Negligible variation within constraints of the test setup was observed on the devices 

over extended periods oftime, in this case 15 to 30 days. 

4.3.4.2 SHORT TERM CHARGE RETENTION STUDY ON SOS DEVICES 

At this point it is believed that an exposed M2 layer on the floating node of the 

comparator circuit is the cause of significant charge loss in addition to the lack of 

passivation on the wafers. In future designs and fabrication runs it is desirable to eliminate 

this exposed M2 layer from the floating node before any more retention tests can be done. 

Alternatively the existing wafer could be passivated. 

Test wafers were programmed and left overnight with and without storage in a dry 

box and the following observations were made. 

SHORT TERM RETENTION STUDY WITH MEASUREMENTS IN lhr 

INTERVALS & WITHOUT STORING IN A DRY BOX: [wafer- 11, die 2 3] 

• TRIP point before programming = +0.1 V 

• TRIP point after programming -ve VTRP(o)= -0.39V 

• TRIP point after lhr ofthe above measurement VrRP(Jhrl = -0.35V 

The shift in trip point by 40mv can be attributed to a charge (electrons) loss. 

• TRIP point after 2hrs of completing programming VrRP(2hrs) = -1.1 V 

73 

_ __._ 



This significant shift in the trip point can be attributed to a charge gain in some 

unknown manner. 

All the above measurements were made with the wafer on the probe station and probes on 

the circuit. 

SHORT TERM RETENTION STUDY WITH MEASUREMENTS MADE IN 72hrs 

& WITHOUT STORING IN A DRY BOX: [wafer- 11, die 1_1, 1_2, 2_2, 2_3] 

4 devices were programmed in and around +/-1 V and left in a wafer carrier. The devices 

were probed after 72 hours. 

• Significant shift of the order of 900mv in trip points were observed on all the devices. 

All shifts were in a direction to indicate charge loss. 

SHORT TERM RETENTION STUDY WITH MEASUREMENTS MADE IN 16hrs 

& WITH STORING IN A DRY BOX: [wafer- 11, die 1_ 4, 1_3] 

2 devices were programmed and placed in a wafer carrier to be stored in a dry box 

overnight. Measurements were made by probing the circuit after this period on the probe 

station. 

DEVICE 1:[die 1_ 4] 

• TRIP point before programming= +0.25V 
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• TRIP point after programming +ve V TRP(o)= + 1. 07V 

• TRIP point after 16hrs ofthe above measurement VrRP(I6hrsl = +1.04V 

DEVICE 2:[die 1_3] 

• TRIP point before programming = +0.40V 

• TRIP point after programming -ve VrRP(o!= -0.78V 

• TRIP point after 16hrs ofthe above measurement VrRP(I6hrsl = -0.69V 

A drastic reduction in charge loss/gain was observed. This validates the need for 

passivation and I or preferable removal of the exposed M2 layer from the floating node. 

SUMMARY: 

• Probing the wafers on the probe station did not have any significant influence on 

charge retention as repeated measurements were made on the same device with 

negligible variation in trip point. 

• Storing the wafers in a dry box did have significant control on the charge retention. 

• Future designs need removal of exposed M2 layer from floating node. 

• Passivation of wafers is essential for charge retention study. 

4.3.4.3 TECHNIQUES FOR SUPERIOR DATA RETENTION 

It has become well known through out the industry that the use of oxy-nitride or 

UV transparent nitride passivation is a general technique to improve data retention. The 

use of LPCVD (low pressure chemical vapor deposition) nitride between the double poly 

75 

------L 



gate structure and the poly metal isolation dielectric is the proposed technique suggested 

in the literature to reduce the possibility of contamination of the floating gate area. 

INTE 

F 

u>OLYOXIDE 

LOATING 
:JATE 

150A NITRIDE 

N+ 7 

PREN+ 

\: 

TE 

E 

Figure 31: Schematic cross section showing LPCVD 250A Nitride passivation on FG 

device. 

4.3.5 LONG TERM CHARGE RETENTION STUDY 

A good measure of long term charge retention of floating gate comparator circuits is to 

bake the circuits at elevated temperatures and measure the variation in trip point. Based on 

the amount of charge on the floating gate before and after bake, we can predict circuit 

charge retention at room temperature. This is based on the assumption that the retention 

time characteristic at elevated temperatures is described on the following thermionic 

emission model [ 17]. 

··(~~n = -~. ~T In tv 

Q(t) VTRP(t)- VTRPO 

Q(O) = VTRP(O)- VTRPO 
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where, 

fjJ 
8 

is the Energy Barrier at the polysilicon - oxide interface. 

y is the dielectric relaxation frequency of electrons in polysilicon. 

K is the Boltzmans constant. 

T is the temparature in degree kelvin. 

VrRPo is the TRIP POINT before any charge has been transferred onto the floating gate. 

(best results are obtained when UV erasure preceeds measurement of VrRPo) 

VrRP<Ol is the initial TRIP POINT obtained and set by programming. 

V7RP<tl is the TRIP POINT after time oven exposure at timet. 

We can extrapolate a straight line based on aLMS fit of atleast three different readings 

when plotting : 

(
Q(O)) 

ln Q(t) _1 
ln vs KT 

ty 

From the slope and Y- intercept ofthe above plot we can obtain fjJ 8 and y. 

METHODOLOGY FOR BAKING CIRCUITS: 

1. To ascertain the TRIP point before any charge has been transferred to the gate is a) 

UV erase the circuit or b) measure the TRIP point of a naive circuit without any injector 

devices on them. The later is the only approach when charge cannot be erased using UV 

light on wafer structures. 

2. Programming the devices to trip at +1-1 Vis a good choice as the comparator is desired 

to operate within this range. This is the initial TRIP point. The choice of programming 

voltages must be inferred from the floating gate comparator characterization results 

obtained previously. Any voltage exceeding full scale reference but not forcing the circuit 

out of its linear range of operation is acceptable. 
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3. The choice of bake temperatures is critical in the experiment. Analysis has shown that 

temperature is the most critical parameter effecting charge retention measurements. A 1 % 

variation in temperature causes a 7 % variation in estimate of tjJ 8 and a 1 % variation in 

the estimate of tjJ 
8 

leads to 16 % variation in the estimate of retention time. Thus setting 

the temperature to a high degree of accuracy is essential. It is also essential to keep the 

bake temperatures less than 200c to ensure that Fowler Nordhiem is the dominant 

tunneling mechanism[2]. At this point it has been determined to bake the circuits at four 

different temperatures to ensure best LMS fit for a fixed period of time. The temperatures 

being 120c to 180c in 20c intervals were selected for best results. 

4. A good choice of bake time is probably a 2hr time with a 15min interval before 

measurement and after bake. Care has to be taken to make sure that the wafer is placed 

on a cold chuck after oven exposure to ensure that wafer equilibrates to room temperature 

in the same amount of time that it took to equilibrate to oven temperature when placed on 

a hot chuck to ensure a known time - temperature exposure or dose. Thus the wafer has 

equally quick rise and fall times as far as temperature changes are concerned. Thus 

placing the wafer on the probe station chuck after oven exposure is a simple approach 

taking into consideration the above concerns. 

To summarize the procedure : 

• Measure V TRPO from a naive circuit or an UV erased circuit with injectors. 

• Measure V TRP(Ol based on the trip point set by programming the circuit. 

• Bake the wafer to start with at a temperature 120c for a 2hr period. 

• Measure VTRP(tl after 15min of taking the wafer out of oven and placing on a cold 

chuck. 
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• Repeat baking the wafer at an elevated temperature. (20c increment in temp each time) 

• Ensure temperature setting to a 1 %accuracy. 

• Ensure trip point measurements to a 1mv accuracy. 

• Analysis and inference of retention time can be done based on the analysis given 

earlier. 

4.3.5.1 LONG TERM CHARGE RETENTION STUDY ON NRaD SOS 
TECHNOLOGY 

Due to lack of passivation and an exposed M2 layer on the floating node charge 

retention study could not be done effectively on the FG regenerative comparator 

structures. However the study was performed on neural test weights fabricated in the 

same process to infer the data retention properties. The results that were obtained are 

expected to be same for the FG injector structures as well as the data retention is a highly 

process dependent parameter. 

TEST PROCEDURE FOR CHARGE RETENTION OF WEIGHT MATRICES 

To measure the charge retention ofthe weight matrices, TEST_ WEIGHT_1 cells 

of neural net TEST CHIP 1 were used. All the tests were completed avoiding as much 

light exposure as possible. The following procedure was used to collect the data for 

determining charge retention, 

1) The wafer was exposed to ultra violet light before making the measurement for the 

naive current referred to as I(NC). 
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2) All the weights were programmed "Up" and "Down" four times before programming 

to a specific current. Then, four of the weights were programmed "Up" and the others 

were programmed "Down" for a fifth programming cycle. These programmed currents 

were referred to as l(initial). 

3) After programming the weights, they were baked for lhr time at 120c, 140c and 160c 

respectively. Each time after baking the wafer it was cooled on a cold chuck for about 20 

minutes and the currents were then measured. These currents are referred to as I(t-120), 

I(t-140) and I(t-160). 

Now, with the values ofl(NC), l(initial), l(t-120), l(t-140) and l(t-160) charge retention 

of weight matrices was evaluated using the procedure explained below. 

The table below shows the temperature bake data obtained from the test weights. 

DIE NC I( initial) l(t-120) l(t-140) l(t-160) Q(t1)/Q(O) Q(t2)/Q(O) Q(t2)/Q(O) 
_{-10,-7) -1.61 -0.679 -0.77 -0.95 -1.57 0.902256 0.708915 0.042965 
(-9,-5) -1.66 -0.7 -0.749 -0.903 -1.54 0.948958 0.788542 0.125 
(-9,-6) -1.64 -0.678 -0.719 -0.848 -1.51 0.95738 0.823285 0.135135 
(-9,-8) -1.59 -0.685 -0.72 -0.926 -1.53 0.961326 0.733702 0.066298 

Table 1: Physical data from the neural test weights. 

SUMMARY OF CALCULATIONS FOR LONG TERM DATA RETENTION 
STUDY ON TEST WEIGHTS: 

Based on the test data that was obtained by baking the wafer at elevated 

temperatures the following procedure was adopted to project the charge retention time: 

The following equations were used to describe the characteristics: 

Q(t) l(t)-I(NC) 
-=----
Q(O) I( initial)- I(NC) 

(35) 

I(NC) is the Naive Current. 
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(best results are obtained when UV erasure precedes measurement ofl(NC)) 

!(initial) is the initial current set by programming. 

l(t) is the current after time oven exposure at timet. 

We can extrapolate a straight line based on a LMS fit of at least three different readings 

when plotting: 

ln(Q(q)J 
ln Q(t) vs 

ty 

1 

KT 

From the slope andY- intercept of the above plot we can obtain «Ps and y. 

From the 3 different bake temperature measurements Q(t1)/Q(O), Q(t2)/Q(O), Q(t3)/Q(O) 

was calculated based on l(t-120), l(t-140), l(t-160). Now, using the equation of a 

straight line and considering, 

and 

Q(t) ) 
y = -ln(-ln[Q(O)] (36) 

X=__!_ kT ~n 

three data points (Xl,Yl; X2,Y2; X3,Y3) were determined based on the 3 bake 

temperatures from the above two equations. 

Slope and intercept was then inferred from a linear regression fit on the 3 points for each 

data set. 

Slope indicated the value of the barrier height, ( «Ps ). From the intercept, 'gamma ( y )' the 

dielectric relaxation frequency was calculated using the equation, 
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e- intercept 

y=-------
bake- time 

(38) 

The table below gives the three points obtained from a linear regression fit of the above 

data as explained earlier. 

Y1 Y2 Y3 X1 X2 X3 SLOPE INT GAMMA 
2.274412 1.067057 -1.14657 1.59E+16 1.51E+16 1.44E+16 2.26E-15 -33.5059 9.88E+10 
2.949032 1.437293 -0.7321 1.59E+16 1.51E+16 1.44E+16 2.44E-15 -35.7183 9.03E+11 
3.133744 1.637564 -0.69389 1.59E+16 1.51E+16 1.44E+16 2.53E-15 -36.7851 2.62E+12 
3.232931 1.172304 -0.99827 1.59E+16 1.51E+16 1.44E+16 2.82E-15 -41.4647 2.82E+14 

Table 2: Linear regression fit data. 

Based on the above values the retention time (considering a 1% effective charge loss at 

room temperature and a 6-7 bits accuracy for the system) 't' was estimated using the 

equation (39) derived from the model equation (33) & (34) : 

ln(t) =~+In[- In( Q(t))] -ln(y) 
kT Q(O) 

The terms ofthe equations were considered as 

A= ln(t) 

B = cl>s , T is room temperature -300K 
kT 

Q(t) 
C = -ln(-ln[Q(O)]) 

D=ln(y) 

and the equation is reduced to, A=B-C-D. So, the projected time is, 

t = e-A in seconds 
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The projected time indicates the retention time at room temperature. 

Based on the linear regression fit obtained earlier in table 2 the data retention time is 

projected as explained before. The results are summarized below in table 3. 

B c D A TIME PROJECTED 
47.13323 4.91 25.31636 16.90687 254 DAYS ON DIE (-10, -7) 
50.84852 4.91 27.52899 18.40953 3YRS ON DIE (-9, -5) 
52.64542 4.91 28.5942 19.14122 6.5 YRS ON DIE (-9, -6) 
58.64584 4.91 33.27293 20.46291 24 YRS ON DIE (-9, -8) 

Table 3: Projected data retention time. 

RESULTS: 

• Using the procedure described above and data obtained the mean values of 

<Ps andy were found to be 1395.034 ev & 5.7E+l3 s·1 respectively. 

• The projected long term charge retention with an accuracy of 6-7 bits ( 1%) is 6.8 

years (mean) at less than 27C o • 

• Projected performance for the 4 bit quantizer that comprised of the regenerative 

comparator is expected to track that ofTEST_ WEIGHT_! after the replacement of 

metal 2 in the comparator cell. 
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4.3.5.2 LONG TERM CHARGE RETENTION STUDY ON MOSIS BULK 
TECHNOLOGY 

Using a similar procedure as explained in the earlier section the dual blocking dual 

injector comparator was exposed to bake temperatures in the range of 160C to 200C for a 

period of 1 hour with 3 bake turns. Trip point measurements were made before and after 

bake to infer the charge retention time. The charge variation was estimated using equation 

(34). 

The results ofthe study are summarized below. 

Summary: 

At room temperature, a 50% yield was estimated (from a lot of8 device measurements 

made) with a charge retention of\12 quantum. The mean ofthe charge retention time was 

estimated to be in excess of 10 years. Also consistency was observed in terms ofthe 

retention time for the devices that were on the same die. 

4.3.5.3 SUMMARY OF SENSITIVITY OF PARAMETERS IN THE LONG TERM 
CHARGE RETENTION STUDY MODEL 

The various parameters that are involved in the model play a significant role in 

estimating the charge retention time. Accurate estimation of trip points, currents as 

explained earlier are essential. A summary of the sensitivity issues are presented below. 

1. Variation in estimate of trip point measurements by 1% leads to variation in estimate 

of $s by 0.011%. 
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2. Variation in temperature by 1 °C leads to variation in the estimate of tl>s by 7%. 

3. The variation in estimate by tj>8 by 1% in tum leads to a variation in the estimate of 

time by 30 to 40 minutes. 

The above observations calls for accurate measurements of the trip points, and setting of 

the temperatures in the oven. Hence measurement oftrip points was done with a lmv 

resolution and temperature settings were accurately monitored to +/-1 °C. 

4.3.5.4 EFFECT OF OXIDE THICKNESS ON CHARGE RETENTION TIME : 

The charge retention time offloating gate devices depends on the property ofthe 

oxide and the chemical process involved in fabrication of the device. Thicker the oxide, 

better the retention characteristics. Thick oxide floating gate devices will have better 

charge retention properties as compared to thin oxide floating gate devices [1,2]. The 

addition of thin layers of silicon nitride is naturally used in commercial processes to greatly 

enhance retention time. 

The charge retention characteristics will be drastically degraded, if oxide thickness of 

less than 60A0 are used, because of the direct tunneling effect in the oxide. However 

up to this thickness, the retention characteristics are mainly dominated by the barrier 

height of the Field Oxide (FOX) layer, surrounding the floating gate, rather than that 

of the gate oxide. 
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Figure 32: Dominating effect of gate oxide over field oxide. 

4.4 SUMMARY OF CHARACTERIZATION RESULTS 

This section summarizes the characterization results for both the BULK and SOS 

technologies based on the characterization results obtained by testing and inferences on 

the feasibility of the approach are presented. 

4.4.1 MOSIS BULK RESULTS 

• Programming Onset: The Onset of charge injection into and out of the floating gate 

was determined empirically to be approximately+/- 12.00 Volts. A symmetrical 

injector structure was laid out and tested. The maximum programming voltage on the 
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structure was estimated as +/-27V. The Fowler Nordhiem characteristic constants 

were extracted to be a= 6.027 and 13 = 0.93 X 10
9 

V/m. 

• Comparator Trip points were programmed in incremental steps with programming 

Steps of 50 mVolts. The comparator trip points were set to a good degree of accuracy 

to a 1 OOmv resolution indicating the feasibility of building a 4-bit quantizer at +/-1 V 

full-scale. 

• Short Term Degradation: Variation ofthe charge during a 15 minute recovery 

period post programming was less than +/-2.5 mVolts. Thus the structures had good 

charge retention properties as far as short term effects are concerned. 

• Long Term Degradation: At room temperature, a 50% yield was estimated for the 

comparators from a lot of 8 devices tested. The mean charge retention time for 1/2 

Quantum ( 62.5 mv) was in excess of 10 years. A 50% yield on the devices tested 

within the constraints of the test measurements was observed to be good as the no 

special processing techniques were employed. The projected Accuracy for the 

quantizer at +/-1 Volt FS, in-situ calibration offloating gate voltages, +/-2.5 mVolts of 

Short Term Degradation, the accuracy is greater than 6 bits. 

4.4.2 SOS RESULTS 

• INJECTOR CHARACTERIZATION : Programming voltage to initiate charge 

injection or removal was observed to be +/-8V. The maximum programming voltage 

was approximately +/-13V before breakdown. The injector structure was observed to 
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be symmetrical in nature. The Fowler Nordhiem characteristic constants were 

extracted to be a= 6.07 and p = 1.2 X 109 V/m. 

• COMPARATOR CHARACTERIZATION : Functionality of the comparator was 

demonstrated Trip point measurements were made with VIN resolutions of 500mv, 

250mv, lOOmv, lOmv & lmv. 

• COMPARATOR TRIP POINT CHARACTERIZATION & PROGRAMMING: 

Comparator trip points were shifted in the positive and negative direction. 

Approximately a 20mv shift in trip point was observed with every 1 Omv step in 

programming. Effects of the test measurement setup, or lack of passivation on the 

wafers has to be identified to explain the erroneous drift in certain trip points with 

programming. The overall observations made leads to the inference that a 6-7 bit 

quantizer is feasible. 

• SHORT TERM RETENTION STUDY: It is believed that an exposed M2 layer on 

the floating node and lack of passivation on the wafers is causing this significant 

charge loss. Future designs will require removal of this exposed M2 layer. For further 

data retention study existing wafer passivation is essential. 

• LONG TERM RETENTION STUDY : The projected long term charge retention 

with an accuracy of 6-7 bits ( 1%) is 6.8 years (mean) at less than 27C o • Projected 

performance for the 4 bit quantizer that comprises of the regenerative comparator is 

expected to track that ofTEST_ WEIGHT_! cells after the replacement ofmetal2 in 

the comparator cell. 
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CHAPTERS 

CONCLUSION AND FUTURE PROSPECTS 

Validation of the approach ofbuilding floating gate references for ADCs through 

investigation and development of injector models by means of device characterization has 

indicated a clear possibility of a scope for an application. The designed devices though 

have certain critical limitations in terms of their charge retention time, special fabrication 

procedures as suggested in chapter 4 can be extended to future designs to overcome the 

inherent limitations. 

Future designs in bulk can aim at achieving a higher number of bits on the order of 

7-8 bits by either thinning of the oxide, increasing the irregularities at the tunneling 

interface by means oflaying out poly slabs with 8 to 10 edges versus 4 edges for the 

current design or decreasing the relative area of the injector. Irregularities in the texture 

of the poly interface has revealed the feasibility of a resolution of 10 bits as suggested in 

the chapter 2. Future designs can explore this possibility. These modifications not only 

explore the possibility of realizing larger number ofbits of resolution, but also lower 

programming voltages due to field enhancement. 
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The developed injector structures can be extended to use in neural network weights and 

other wide area of applications as analog memory. 

Future SOS injector designs can aim at lower programming voltages by any of the 

techniques mentioned above. Also techniques for superior data retention have to be 

utilized to improve the charge retention time on these structures. 

An in-situ programming algorithm should be developed and extended to silicon to 

build a fully self calibrating quantizer with programmable references based on the 

methods verified in this research. The designed ADC will find wide applications in low 

power applications, especially in telecommunications. 

For the charge retention properties, future designs will have to utilize Nitride 

passivation of the structures as explained earlier which in turn will greatly improve the 

retention characteristics. 
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