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Chapter J

INTRODUCTION

Motivation

It is a national goal that the discharge of toxic pollutants in toxic amounts must be

prohibited [I]. Extensive effluent toxicity tests should be conducted to achieve this goal.

Toxicity tests are used to measure effluent toxicity and to estimate the safe concentration of

toxic effluents in receiving water [1]. There exists a set of standard methods to measure

toxicity of pollutants developed by the Environment Protection Agency (EPA). Thus, it is

useful to provide user-friendly analysis tools to automate this process and to help

researchers to obtain results accurately and efficiently.

Major Approaches

The objective of this thesis is to design and implement a software package with

Java to automate toxicity analysis. The implementation will include a user-friendly

graphics interface and a set of methods for toxicity analysis of water samples on freshwater

organisms. This enables average users who do not have much knowledge on statistics or

computer science to take fuD advantages of the tools. With features of Java and today's

Internet and Intranet technologies, the analysis tools can be posted on a network. Users

who have a Java-capable Web browser installed can do the analysis without having the



tools installed locally. This feature makes the analysis software more portable, and al 0

greatly reduces the maintenance cost. These advantage will help the EPA to carry out it

policy much easier than it has been done in the past.

Organization

Chapter 3 provides flow charts of six analysis methods, together with a detailed

description of each test as documented by the EPA. Chapter 4 explains the design and

implementation of the program. It includes design of the overall program structure and

classes that implement the tests. Chapter 5 summarizes the thesis, including the major

advantage of the project. The following chapter will discuss toxicity analysi methods and

Java programming language.
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Chapter 2

LITERATURE REVIEW

Statistics Analysis

According to Short-Term Methods for Estimating the Chronic Toxicity ofEffluents

and Receiving Waters to Freshwater Organisms [1] published by the EPA, hypothesis tests

and point estimates are used to analyze toxicity test data. These tests are used to determine

the highest "safe" or "no-effect concentration" of test data. The following arguments are

used to determine it.

1. No-Observed-Effect-Concentration (NOEC): NOEC is defined as the highest

concentration of toxicant, to which organisms are exposed in a fuIl life-cycle or partial

Me-cycle test. NOEC causes no observable adverse effects on the test organism [1].

2. Lowest-Observed-Effect-Concentration (LOEC): LOEC is defined as the lowest

concentration of toxicant, to which organisms are exposed in a life-cycle or partial Iife

cycle test, which causes adverse effects on the test organisms [I].

3. Effective Concentration (EC): EC i.s a point estimate of the toxicant concentration that

would cause an observable adverse affect on a quantal, "all or nothing," response in a

given percent of the test organisms. For example, EC lOis the point estimate that would

cause adverse effect in 10% of the organisms.

3



4. Lethal Concentration (LC): LC is a point estimate of concentration would cane an

adverse effect in a given percent of test population. The adverse effect i death. For

example, LC20 is the point estimate that would cause death in 20% of the organi ms.

5. Inhibition Concentration (IC): IC is a point estimate of the toxicant concentration that

would cause a given percent reduction in a non-quantal biological measurement.

NOEC and LOEC are determined by hypothesis tests: Dunnett's test, Bonferroni's

T-test, Steel's Many-One Rank test, and Wilcoxon Rank Sum test. LC, EC, and IC are

determined by point estimation techniques: Probit Analysis or Linear Interpolation Method.

It is required to determine if a hypothesis test is a parametric or non-parametric one.

If data are normally distributed and variances are homogeneous, a parametric test is

performed. Otherwise, a non-parametric test is performed. A parametric test is preferred

because the analysis is performed with the observed data and not a rank of the data, thus

increasing its credibility [I].

Point estimation of probit analysis or linear interpolation is used to predict the

toxicant concentrations at a predefined mortality or inhibited percentage [ I].

Introduction to the Programming Language

The Internet, a global network of computers that communicate using a common

protocol, consists of mjllions of hosts in the world. It provides users immediate information

and communication facilities. It takes an important part in many businesses in the world.

The Web consists of Web pages, which are located on Internet sites. The Web has been

proved to be good for the purpose of distributing information to widely distributed users.

4



With additional graphics, image maps and fonns, Web pag may become interactive, and

Java is an efficient language and tool to achieve this goal. A brief introduction to J va is

given below.

Java is an object-oriented programming language developed by Sun Microsystems,

Inc. Java is designed to be portable, i.e., Java executable files can be moved ea ily from

one computer system to another without recompiling. Platfonn independence is one of the

most significant advantages that Java has over other programming languages. It make Java

portable. More important, the advantage enables Java program to work over a network with

a Java-capable browser. Java is a high-level programming language similar to C and C++,

but it adds a few more features that C and C++ does not have, such as garbage collection

and multithreading. Java also supports most of the requirements by programmers. That

makes it suitable for about any application programming task [6]. Compared to C and C++,

it eliminates most of the complex parts in them. For example, there are no pointers in Java,

etc. Thus, it is easier to write, and also easier to debug [6]. In addition, Java virtual machine

has built-in restrictions to prevent most traditional ways of causing damage to the client

systems. Java is an object-oriented language. This helps to design programs in terms of

objects. Each of them ha'i a specific role in the program and all of them can talk to each

other in a predefined way, which means it allows abstract data type to be easily created and

used. It has capabilities of creating flexible, modular and reusable code. Java also has

classes to support user interface functions.

Java programs have two groups: applications and applets. Java applications are

general programs written in Java. Java applets are special kind of Java programs that can be

downloaded from the Web server, and executed by a Java-capable Web browser on a client

5



machine. This makes Java applets to have the advantage of tructure a brow er upport,

such as graphics context, event-handling, existing window and surrounding user interface.

We are truly in an information society. Computers are popular more than ever. With

increasing number of computers, the total cost of ownership is becoming more en itive for

large organizations. One way to solve this problem is to construct a network with one or

more powerful centralized servers and relatively weak clients. Since major maintenance

work is done on the server, the cost of the ownership of the majority clients is low. Java fits

into this model very welL A Java applet is installed and maintained on a server. While other

computer systems connected to the network need to execute such a Java program, they

download the program over the network and execute it locally with a Java-capable browser.

This also helps to unload computing tasks from the servers.

However, Java has its own disadvantages. Compared to C and C++, its execution

speed is relatively slow because object code (bytecode) generated by a Java compiler is

intermediate code for the Java virtual machine, not for the real target machine. Yet, there

are also several solutions for it, such as just-in-time compiler, which converts Java

bytecode into the native machine code as it loads on a client machine.

Reasons for Choosing Java

After analyzing the requirements from the EPA, the author chooses Java as the

programming language for the implementation for the following reasons:

l. Java is an object-oriented language. The objected-oriented approach attempts to

manage the complexity inherent in real-world problem by abstracting out knowledge,

6



and encapsulating it within objects. It is much natural to organize and maintain than

traditional procedural languages.

2. Java includes a library called Abstract Windowing Toolkit (AWT). which provides a

set of building blocks for user interfaces. It provides a common base across all

platforms that support Java. It enables programmers to write one version of user

interface that appears identically on all different client platforms.

3. Java is designed based on a generic virtual machine. Its compiled code is stored as

bytecode of the virtual machine. Therefore, its object code is not tied to any particular

hardware. Thus. Java object code is platform independent. With this feature and the

technology of networking, it is possible to use Java as a means to deliver programs in

their executable forms, namely through Web to pass Java bytecode to a browser that is

capable of executing the program.

7



Chapter 3

ANALYSIS ALGORITHMS

Test Flow

The EPA has suggested the following six different experiments to analysis toxicity.

1. Fathead Minnow Embryo-Larval Survival and Teratogenecity test;

2. Ceriodaphnia Reproduction test;

3. Fathead Minnow Larval Survival test;

4. Fathead Minnow Larval Growth test;

5. Algal. Growth test; and

6. Ceriodaphnia Survival test.

Their flow charts are presented in Figure 1 to Figure 6. Algorithms for tests in Figure 1 to

Figure 6 follow. They are based on the EPA documentation, Short-Tenn Methods for

Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater

Organisms [1].

8
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Linear Interpolation

Total Mortality
Total Number of Dead Embryos

Dead Larvae and Deformed Larvae

Arcsin Transformation

Endpoint Estimate
ECI, EC5, EClO, ECSO

Non-Normal
Distribution

Normal Distribution

Homogeneous
Variance

Heterogeneous
Variance

T-Test with
Bonferroni
Adjustment

Dunnett's Test Steel's Many-One
Rank Test

Wilcoxon Rank Sum
Test With

Bonferroni Adjustment

Endpoint Estimates
NOEC,LOEC

Figure] : Flow Chart for Statistical Analysis of Fathead Minnow Ernbryo
Larva.l Data [I]
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Reproduction Data
Number of Young Produced

Linear Interpolation Hypothesis Testing
(Excluding Concentrations
Above NOEC for Survival)

Endpoint Estimate
IC25,leso Non-Normal

Distribution

Normal Distribution

Homogeneous
Variance

Heterogeneous
Variance

T-Test with
Bonferroni
Adjustment

Dunnett's Test Steel's Many-One
Rank Test

Wilcoxon Rank Sum
Te tWith

Bonferroni Adjustment

Endpoint Estimates
NOEC, LOEC

Figure 2: Flow Chart for Statistical Analysis of Ceriodaphnia
Reproduction Data [1]
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Survival Data
Proportion Surviving

Linear Interpolation Arcsin Transformation

Endpoint Estimate
LC1, LC5, LClO, LC50

Non-Normal
Distribution

Normal Distribution

Homogeneous
Variance

Heterogeneous
Variance

T-Test wiLh
Bonferroni
AdjusLment

Dunnett's Test Steel's Many-One
Rank Test

Wilcoxon Rank Sum
Test With

Bonferroni Adju tmenl

Endpoint Estimates
NOEC, LOEC

Figure 3: Flow Chart of Statistical Analysis of Fathead Minnow Larval
Survival Data [I]
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Linear Interpolation

Growth Data
Mean Weight

Hypothesis Testing

Endpoint Estimate
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Non-Normal
Distribution
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Homogeneous
Variance

Heterogeneous
Variance

T-Test with
Bonferroni
Adjustment

Dunnett's Tesl Steel's Many-One
Rank Test

Wilcoxon Rank Sum
Tesl With

Bonferroni Adju tmenl

Endpoint Estimates
NOEC,LOEC

Figure 4: Flow Chart of Statistical Analysis of Fathead Minnow Larval
Growth Data [I]
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Growth Response Data
CellslML

Homogeneous
Variance

Normal Distribution

Non-Normal
Distribution

Heterogeneous
Variance

T-Test with
Bonferroni
Adjustment

Dunnett's Test Steel's Many-One
Rank Test

Wilcoxon Rank Sum
Test With

Bonferroni Adjustment

Endpoint Estimates
NOEC,LOEC

Figure 5: Flow Chart for Statistical Analysis of Algal Growth Response
Data [1]
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Survival Data
Proportion Surviving

Linear Interpolation Fisher's Exact Test

Endpoint Estimate Endpoint Estimate
Let, LCS, LClO, LC50 NOEC, LOEC

Figure 6: Flow Chart for Statistical Analysis of Ceriodaphnia Survival
Data [1]

Algorithms of Hypothesis Tests

Shapiro-Wilk's test, Bartett's test, Dunnet's test, Bonferroni's T-test, Steel's Many-

One Rank test and Wilcoxon Rank Sum test with Bonferroni Adjustment are used in Figure

1 to Figure 5, and they are hypothesis tests. The algorithms for those tests are depicted

below according to the EPA document [I].

Shapiro-Wilk's Test [1]

Shapiro-Wilk's test is used to check whether the data are normally distributed or

not. The algorithm of the test is given below.

Step 1: For the total n observations, calculate centered observations, Xi, i={ 1,2, ... , n}, by

subtracting the mean of all observations within a concentration from all observations,

respectively.

Step 2: Calculate the overall mean of centered observations, Y.

14



-

Step 3: Calculate the denominator, D, for the test statistic:

n

D = "ex. - y)2£. , where n is the total number of the observations.
i=1

Step 4: Order the centered observations in ascending order and denote them as Xl, X2
, ...•

x..... X\ where X is the i lh ordered observation.

Step 5: Get coefficients, C,. , i = {I, 2, ... , k} ,from the table, where k is approximately

equal to nil.

Step 6: Compute the test statistics. W, as follows:

I k
W =-[L C

i
. (X n-;+I - Xi )]2 , where k is approximately nil.

D ;=1

Step 7: Find the critical value at significance level 0.0 I or 0.05 and total observations, n, in

the table given by the EPA. If the computed W is greater than or equal to the critical value.

then the data are normally distributed. Otherwise, the data are not normally distributed.

(Notes: The calculated W must be greater than zero and less than or equal to one. This test

is recommended for a sample size of 50 or less.)

Bartlett's Test [1]

Bartlett's test is used to determine the homogeneity of variance, and is balled on the

allsumption that the data are nonnally distributed. The algorithm of the test is depicted

below.

Notation:

15
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nj: the number of replicates for concentration i.

p: the number of concentration including the control.

s;: variance of group i.

~ S2 ·(n. -I)
~ ~ 1 ?-' 1

Step 1: Calculate sv =l../n i -1), dsv =L-.--, S2 = 1=1 ,

i=1 i=1 n i - 1 sv

of . 2 1 I sv·lnS 2 -cosv
COSy =£..J(n, -1) ·InS,. , C =1+ ·(dsv--) , B =-----

i=1 3( P - I) sv C

Step 2: Find the critical value with significance level 0.01 or 0.05 and p-l degrees of

freedom in the table given by the EPA. If B is less than the critical value, then the

homogeneity of variance is satisfied. Namely, the variances are equal.

Dunnett's Test [1]

Dunnett's test is used to determine whether the mean for i1h concentration

different from the mean for control. Namely, it is used to compare each concentration mean

with the control mean to decide if any of the concentrations differs from the control. This

test can detect a significant reduction in mean weight if there is any. The test requires that

the data are normally distributed and variances of the data obtained from each toxicant

concentration and the control are equal [I]. The number of repl icates for each concentration

is also required to be equal. Otherwise, Bonferroni's T-test is used as an alternative. From

results of Dunnett's test, the NOEC and the LOEC for growth can be determjned.

The algorithm of Dunnett's test is presented below according to the EPA

document [1].

Notation

16
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ni: the number of replicates for concentration i.

Ti : the total of the replicate measurements for concentration i.

G: the grand total of all sample observations.

N: the total sample size.

Yij: the jth observation for concentration i.

k: the number of groups including control.

N: the number of observations.

SST: total sum of squares.

SSB: between sum of squares.

SSW: within sum of squares.

Step 1: Calculate ~ = IYij ,
j=1

k

G= IJ~,
;=]

SST = f~.' y2 _ G
2

~~'J '
i=l j=1 N

k T
2

G
2

~ SSWSSB =I.-'--, SSW =SST - SSB , Sw = --.
i=) n i N N-k

Step 2: Calculate statistic t; ~ ~ for each concentration i and the control, where
I 1

S ---
IV

n 1 n i

Y1 is the control mean, Yi is the mean for the concentration i, Sw is defined as in Step),

n, is the number of replicates in the control, ni is the number of replicates for

concentration i.

Step 3: Get the critical value with significance level 0.0 I or 0.05 and N-k degrees of

freedom in the table. For every ti, if ti is greater than the critical value, then the group i (i.e.,

concentration i) is significantly different from the control. Namely, the concentration i has

significantly lower growth than the control.

17



Bonferroni's T-Test [1]

Bonferroni's T-test is used as an alternative to Dunnett's test when the number of

replicates is not the same for all concentrations. Like Dunnett's test, Bonferroni's T-test is

based on the assumptions of (i) the data is nonnally distributed, (ii) homogeneity of

variance. The result of Bonferroni' s T-test is also used to detennine the NOEC and LOEC.

The algorithm of Bonferroni's T-test is presented below. The notation used in this

algorithm is the same as in Dunnett's test.

~ k k

Step 1: Calculate T; = L Yij , G = LT; , N = Lnr.
j=l ;=1 r=l

k "i G 2 k y2 c2

Step 2: Calculate SST =LLY;f - -, SSB =L-i - -, SSW =SST - SSB.
;=1 j=l N ;=1 n; N

~ SSWStep 3: Calculate Sw = --.
N-k

~ - 1';
Step 4: Calculate ti, the statistic for each concentration and control: t; =--==""==

s.~ I + I .
n l n;

Step 5: Find the critical value, with N-k degrees of freedom in the Bonferroni's T table. If Ii

is greater than the critical value, then group i is significantly different from the control.

Namely, the mean of concentration i is significantly less than the control mean.

Steel's Many-One Rank Test [1]

lfthe data is not normally distributed and/or variances are not equal, then Dunnett's

test and Bonferroni' s T-test can not be used. In those cases, Steel's Many-One Rank test

18
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can be carried out if the number of replicates for each concentration are the same.

Otherwise, Wilcoxon Rank Sum test is used.

Steel's Many-One Rank. test is a multiple comparison method for comparing

several treatments with a control. The data are ranked, and the analysis is performed on the

ranks rather than on data themselves. It is necessary to have at least four replicate per

toxicant concentration to use Steel's test. This is a non-parametric test and therefore the

assumptions of normality and homogeneity does not need to be met. The sensitivity of the

test can not be stated in terms of the minimum difference between treatment means and the

control mean.

The algorithm ofthe Steel's Many-One Rank test is described as follows [I].

Step 1: Combine the data and arrange the observations in order of size from the smallest to

largest b. Assign ranks to the ordered observations.

Step 2: Calculate the sum of the ranks, Rio at each concentration and the control.

Step 3: For each Ri, if Ri is less than or equal to the critical rank sum in the table of Steel's

Many-One Rank Sum test, then the group i is significantly different from the control. Test

results are used to detennine the NOEC and LOEC.

Wilconxon Rank Sum Test [1]

Wilcoxon's Rank Sum Test is used a'l an alternative to Steel's Many-One Rank

Test when the numbers of replicates are not the same at each concentration. The control is

used to set an upper bound of alpha on the overall error rate, in contrast to Steel's Many

One Rank test. Thus, Steel's test is a more powerful test.

19
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The Algorithm is depicted as follows.

Step 1: Combine the data and arrange the observations in the order of size from the smallest

to largest. Assign ranks to the ordered observations.

Step 2: Calculate the sum of the ranks, Rj , at each concentration and the control.

Step 3: For each rank R i , find the critical rank sum at the significance level 0.05 or 0.01

from the table of Wilcoxon Rank Sum test. If Ri is less than or equal to the critical rank

sum, then the group (concentration) i is significantly from the control. The NOEC and

LOEC can be determined from the test result.

Fisher's Exact Test [1]

Fisher's Exact test is a statistical method based on the hypergeometric probability

distribution that can be llsed to test if the proportion of successes is the same in two

Bernoulli populations [1]. The te t is for Ceriodaphnia Survival data as shown in Figure 6.

To perfonn this test, each replicate value must be between aand 15.

# Successes # Failures # Observations

Row 1 A A-a A

Row 2 B B-b B

Total a+b [( A + B ) - a - b] A+B

Table 1: Format for Contingency Table

20
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Arrange Contingency Table (Table I) so that the total number of ob ervations for

row one is greater than or equal to the total number for row two (A ~ B). Categorize a

success such that the proportion of successes for row one is greater than or equal to the

proportion of successes for row two (alA ~ biB). Then find the critical value with A, B, a,

and the significance level 0.05 or 0.01 from the table. If b is less than or equal to the critical

value, then the group is significantly different from the control.

Algorithm of Point Estimation

The Le, BC, or IC is derived from a mathematical model that a'isumes a continuous

dose-response relationship. This is the reason why any LC, EC, or IC value is an estimate

of some amount of adverse effect. Thus, to use a point estimate such a'i LC, EC, or IC to

determine a "safe" concentration would require the specification by biologists or

toxicologist of what level of adverse effect would be deemed acceptable or "safe". Point

estimation techniques have the advantage of providing a point estimate of the toxicant

concentration causing a given amount of adverse (inhibiting) effect.

The linear interpolation method is used for the point estimate of the effluent or

other toxicant concentration that causes a given percent reduction (e.g., 25%, 50%, etc.) in

the reproduction or growth of the test organisms (Inhibition Concentration, or IC). The

linear interpolation method assumes that the responses are monotonically non-increasing,

where the mean response for each higher concentration is less than or equal to the mean

response for the previous concentration. If the data are not monotonically non-increa'iing,

they are adjusted by smoothing (averaging). The IC is estimated by linear interpolation

between two concentrations whose responses bracket the response of interest, the p percent

21
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reduction from the control. To obtain the estimate, detennine the concentrations Cj and q+1

which bracket the response M] (l-p/lOO), where M/ is the smoothed control mean response

and p is the percent reduction in response relative to the control response. The algorithm of

linear interpolation method used for the point estimate is presented below according to the

EPA document [1].

Linear Interpolation Method [1]

Step 1: Calculate the smoothed mean by averaging adjacent means as follows. Let Yi be the

control mean. If Yi+/ is less than or equal to Yi , then Yi+l is used. Otherwise, the average Yi

and Yi+/ is used as the new mean for group i and i+ I. If Yi+2 is greater than Yi , the average

of Yi ,Yi+J and Yi+2 is used as the new mean for group i, i+1 and i+2. This continues till all

means are in decreasing order.

P C'+I -C.
Step 2: Calculte rcp as follows: ICp =Cj + (M] . (1- -) - M)· J J, where

100 M j +1 -M J

ICp the percent reduction,

p
q: the 1st concentration whose observed mean response is greater than MI' (I - 100) ,

Cj + I: the Ist concentration whose observed mean response is less than MI' ( J - 1~O) ,

M J: the smoothed mean for control,

M/ the smoothed mean for concentration},

Mj +J: the smoothed mean for concentration}+ 1.

22
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Data Transformation

When the assumptions of nonnality and homogeneity of variance are not met, input

data may be transfonned by an Arc Sine Root Transfonnation. Then, the data may be

analyzed by parametric procedures, rather than a non-parametric technique such as Steel's

Many-one Rank Test or Wilcoxon's Rank Sum Test. After the data have been transformed,

Shapiro-Wilk's and Bartlett's tests should be performed on the transfonned observations to

detennine whether the assumptions of normality and/or homogeneity of variance are

met [1].

Arc Sine Square Root Transformation [lJ

Arc Sine Square Root Transformation is used in Fathead Minnow Larval Survival analysis

as shown in Figure 3 for hypothesis testing, which deal with survival proportion. When the

proportion is 0 or 1, the Arc Sine Square Root Transformation (arc sine fP:) is commonly

used to stabilize the variance and satisfy the normality requirements, where Pi is the

expected proportion (response/no response or live/dead) for the treatment. Following are

detail explanation and examples of the Arc Sine Square Root Transformation, which is

based on the EPA document [1].

Step I: Calculate the response proportion (RP) at each effluent concentration, where

RP = (number of dead or "affected" organisms) / (number exposed).

For example, if 8 of 20 animals in a given treatment die, RP = 8120 = 0.4.

Step 2: Transform each RP to arc sine.

(1) If RP =OA, Angle =arc sine ~OA =arc sine 0.6325 =0.6847 radians.

23
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(2) If RP =0, special modification on procedures as follows:

Angle (in radians) = arc sine ~1 /(4N), where N = Number of animals/treatment.

Assume 20 animals are used. Then, Angle =arc sine ../1/80 =arc sine 0.1118 =O. I 12

radians.

(3) If RP = I, a special modification on the Angle is made as follows:

Angle =1.5708 - (radians for RP =0). Using previous data, Angle = 1.5708 - 0.112 =

1.4588 radians.

Minimum Significant Difference [1]

The minimum significant difference (MSD) is used to detennine the sensitivity of a test [I].

The MSD is calculated after either Dunnett's or T-test with Bonferroni Adjustment is used.

1. Calculate the MSD for each group MSD = cSw ~1 / N + 1/ N j , where c is the critical

value for either Dunnett's or T-test with Bonferroni Adjustment, SI<' is the square root of

within mean square, N is the number of observations in control, and M is the number of

observations in group i.

2. If the data has been transformed, then the untransformed MSDu is calculated as the

following example given in the EPA document [1 ].

An example: if the transformed control mean ControlMean = 0.714 and MSD in

transformed unit =0.087.

(a) Calculate untransformed units UMSD.
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UMSD = [sine (0.714)f.

(b) Calculate untransfonned difference DMSD.

DMSD =[sine (0.714-0.087)f =0.344.

(c) Calculate untransformed MSDI/'

MSDu =UMSD - DMSD =0.429 - 0.344 =0.085.
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Chapter 4

DESIGN AND IMPLEMENTATION

Structure Design

The thesis presents an object-oriented approach using Java for the toxicity analysis

of water samples on freshwater organisms. Object-oriented design decomposes a program

into objects. Each object knows how to perform its own operations and remembers its own

information. Meanwhile, objects have a private side. The private side of an object is not a

concern of other objects. With this, objects are free to change their private sides without

affecting other objects. If the software has been designed with rigorous consistency,

interfaces can be extended and entities can be added. Programmers can add new entities

that re ponse to old requests in ways appropriate to the new system of which they are now

a part. If the interfaces between entities have been rigorously controlled, new portions of

the system can be created to use the same interface, but to do different thi~gs with them [9].

Thus, object-oriented design can be easily reused, refined, tested, maintained, and

extended.

The whole project is divided into three independent parts: model (statistical

analysis), controller and view (graphical user interface) (Figure 7). According to the

heuristics implied by Jacobson's Objectory methodology, the policy infonnation should not

be placed inside of classes involved in the policy decision because it renders them
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unreusable by binding them to the domain that set the policy [9]. To realize !hi heuri tics,

there should be a special type of class called controller. It only contains behavior. It gets

data from outside the class and is used to decouple classes from their policy. On th.e other

hand, controller classes do render their host classes more reusable, because those classes

are mindless. In our case, the design is as Figure 7.

View
(User Interface)

PasslnputO

Controller

Model
(Statistics Analysis)

GetlnputO

ValidateDataO

Figure 7: Connections between UI and Statistics

A controller handles data between VIew (user interface) and model (statistics

analysis). For example, it checks the data getting from view, converts them into its COf/'ecl

type (usually changing from string to float in this case). This type of design is as the

artificial separation of data and behavior in a bi-directionally related package. A controller

is clearly a useful facility. If changes are made to the statistical analysis part, only the

functions relating to it have to be changed, and leave the user interface part unchanged.

Uses interfaces display the internals of a model, allow a user to update those internals, and

put the internals back into the model.
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The program is implemented in such a way that the arne bytecode can be used a

either an applet or an application. An applet is a class derived from the Applet class. It can

only be run with a browser. An applet shares the same frame (window) with the browser

that launches it. Java virtual machine first calls initO method in the applet. then startO. A

Java application is executed using a different way. It uses a static method mainO as its

entry point. It is not given a frame automatically. We need to simulate an environment as

what a browser provides in order to let an applet run under an application environment. To

do so, we need to create a frame in mainO. Then create an instance of the applet and put it

on the frame just created. The mainO should also call initO and startO of the applet.

Implementation

To run an applet, a Web page should be created. It tells the browser where and how

to load the program. The HTML file in the package is created for this purpose (Figure 8).

While running the application. we use Java loader to load the pro!!ram.

<html>

<head>

<title>Toy</title>

<lhead>

<body>

<hr>

<applet code=Toy.c1ass id=Toy widtih=600 height=600>

<lapplet>

<hr>

<lbody>

<!html>

Figure 8: HTML Code for the Project
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Base on the structure design and the documents of the EPA, we create twelve

classes for the model module, five classes for the view module, and some other classes.

They are presented in detail.

Toy: it is the entry point of the project.

AppFrame: When we run the project as an application, this is the frame object that i

created in mainO. It is not used when we run the project as an applet.

The Model Module

The following twelve classes belongs to the model module. Except for BadDataException,

TestData, ModuleClass and Fisher, the rest eight classes, derived from BaseClass, specify

different tests

1. BadDataException: this class defines an exception type for the project.

2. TestData: this class holds all test data. It also validates the test data when an instance of

the class is created.

3. ModuleClass: it is the class to judge which single test shou~d use during the whole test

procedure. It controls the flow of the test.

4. BaseClass: it handles the basic functions of the statistical test. For example,

GetInput( ... ) is for getting input data; DataTrans( ... ) is for handling mathematical

transformation of test data before they are used for testing. All methods in BaseClass

can be inherited by its child classes. Table 2 is the description of BaseClass.
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Methods Attnoutes

BaseClass(int) ; int lastRep;

int GetInput(float[], int, int, float, float[]); int lastCct;

void DataTrans(int, int); int curRep;

int NumOfRepO; int curCct;

int CurRepO; int totalObs;

int CurCctO; float p_value;

int LaslRepO; float mean[];

int LastCctO; float variance[];

float Mean(int); float sumSquarerPerCct[];

float Variance(int); float squareSumPerCct[];

float SumSquare(int); float cctArray[];

float SquareSum(int); int missingDataFlagOn[ I;

int TotalNumsO; float concctionLevel[];

int ConLevel(float[]); float inputData(Jll;

void SetCurRep(int);

void SetCurCct(int);

int ComputeGrandTotalObsO;

float ComputeMean(int, int);

float ComputeVariance(int. int);

float ComputeSumSquare(int. int);

float ComputeSquareSum(int. int);

Table 2: A Description of Base Class

5. ShapiroWilk: it checks for the normality of the test data. Two methods ExistW(... ) and

TestW( ... ) are used to check the nonnality. ExistW(... ) gets the W value from the

existing table while TestW( ... ) calculates the W value from the input data. If

ExistW( ... ) is less than or equal to TestW( ... ), the test data are normal. Otherwise it is

abnonnal. Table 3 is the description of ShapiroWilk cla'is.
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Methods Attributes
I

ShapiroWilkClass(int, int); float orderedCenteredData[];

int ShaptestO; float coeffs[];

float GetDO; float cenleredDataf] [];

void ShapQuick(float[], int);

void ShapQuicksort(float[), int, int);

void AscendingOrderO;

void GetCoeffO;

float TestWO;

float ExistWO;

Table 3: A Description of ShapiroWilk Class

6. Bartlett: it determines whether variances are equal or not for the test data. Its class

structure is similar to ShapiroWilk class. Two methods, ExistB( ... ) and TestB( ... ), are

used to judge the equality. ExistB(... ) gets the B value from the existing table while

TestB( ... ) calculates the B value from the input data. If ExistB( ... ) is greater than or

equal to TestB( ... ), the test data have equal variance. Otherwise it is unequal. Table 4 is

the description of Bartlett class.

Methods Attributes

Bartlett(int); inl sumON;

void SetVO; inl vI];

intSumVO;

float SetCO;

float TestBO;

float ExistBO;

int BartestO;

Table 4: A Description of Bartlett Class
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7. Bonferroni: it is the class used as a parametric test to calculate the values of NOEC and

LOEC when the test data have an equal number of replicates. Several methods such as

CaISST(... ), CaISSW(... ), etc., calculate the values of SST, SSW, etc. according to the

document of the EPA. Then we have the values of NOEC and LOEC. Table 5 is the

description of Bonferroni class.

Methods Attributes

BonferroniClass(int); floal totalSamples;

void SetSampO; inl numOfObsPerCon[];

float CaISSBO; float NOECfJ;

float CaISStO; float LOEC[];

float CaISSWO; float MSD[]; !

float CalMSBO;

float CalMSWO;

float TestT(int);

float ExistTO;

void Bonitest(float[], float[]);
I

I
Table 5: A Description of Bonferroni Class

8. Dunnett: The class structure is similar to Bonferroni class. It is used when the number of

replicates is equal for parametric testing. Table 6 is the description of Dunnett class.

9. Steel: this class is used when it is a non-parametric test with equal number of replicates.

It is also for calculating values of NOEC and LOEC. The class structure is similar to

Bonferroni class. Table 7 is the description of Steel class.
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Methods Attributes

DunnettClass(int); float totaJSamples;

void SetSampO; float MSW;

float GetSampO; float meanControl;

void ObsPerConO; int numOfObsPerCon[];

float CaISSBO; float NOEC[];

float CaISSTO; float LOEC[];

float CaISSWO; float MSD[];

float CalMSBO;

float CalMSWO;

noat TestT(int);

float ExistTO;

void Dunntest(float[], float[], int, int, float[], floal[]);

Table 6: A Description of Dunnett Class

Methods Attributes

SteelClass(int, int); float groupO;

void SArrayofRankO; float rankedArraylL

void SGroupNum(inl, int); floal NOEClI;

void StQuicksort(int, int); noal LOEc[J;

void StQuick(int);

void SRankNum(int);

void Stest(floal[], float[]);

float TestSt(int);

float ExistStO;

Table 7: A Description of Steel Class

10. Wilcoxon: this class is used when it is a non-parametric testing and the test data have an

unequal number of replicates. Values of NOEC and LOEC can be detennined from the

results. Table 8 is the description of Wi [coxon.
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Methods Attributes

WilcoxonClass(int, int); float group[];

void WarrayofRank.(); float rankedArray[];

void WgroupNum(int, int[]); float NOEC[];

void WilQuicksort(int, int); float LOEC[];

void WiIQuick(int); float MSD[];

void WrankNum(int); float MSD[];

void Wtest(float[], float[]);

float WrankSum(int);

int WrepPerCct(int);

float ExistW(int, int);

Table 8: A Description of Wilcoxon Class

1]. Fisher: This is the only test class that is not derived from BaseCl.ass. This test is to

determine if each concentration group mean differs from the control group mean, and

further determine NOEC and LOEe. The method GetB( ... ) gets the b value in the

statistics table. The method, TestB (... ) returns the b value calculated from the test data.

By comparing two bs, we get the value of NOEC and LOEe. Table 9 is the description

of Fisher class.

12. Interpolation: it is a point estimation class. The concentration means must be noo-

increasing to perform the test. If montoninity is not met, the means can be smoothed.

Methods CaISmoothedMean( ... ), CalBaseMean( ... ) and CaIICp( ... ) etc. are

employeed to calculate the value of IC, Ee and Le. Table lOis the description of

Interpolation class.
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Methods Attributes

FisherClass(int); Int numOfCct;

void Getlnput(floal, float[], inl[]); Float significantLevel;

int GetB(int, int, int); Int deadData[] ;

String Ftest(float, float[], int[], int); Int aliveData[];

String TestB(int, int, int[], intO, int[], int[J); Int totalForDeadAliveO;

float effluenCCt[];

Table 9: A Description of Fisher Class

Methods Attributes

InlerpolationClass(int); float smoothedMean[];

void CalSmoothedMeanO; floal percentile;

float CaIBaseMean(float, int[], float[], float[]); Int neededlndex();

int ConcenlNum(float[], float[], float); float lowLimit();

float CaIICp(float); float upLimit(J;

float Itest(f1oat, float);

Table 10: A Description of Interpolation Class

The View Module

The following five classes belong to the view module.

I. InputWindow: The functionality of InputWindow is to receive input (Figure 9).

InputWindow contains the following fields:
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ChartReporb

Toy --- A Toxic ity Analysis Utility

Figure 9: The Input Window

(1) Test Type: a choice field that contains a list of test types for users to choose.

(2) P-Value: a text field in which users enter the specific P-value.

(3) Animalsffreatment: a text field In which users enter the number of animals per

treatment.

(4) Analysis Type: a choice field for users to specify a specific analysis type.

(5) File: a text field for users to enter the file name to be loaded from or saved to.

(6) Load: a button for loading a data file whose name is specified in the File field.

(J) Save: a button for saving data into a data file whose name is specified in the File field.
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(8) Row++: a button for adding a row at the bottom of the table.

(9) Col++: a button for adding a column at the right of the table.

(10) Row--: a button for deleting a row at the bottom of the table.

(11) Col--: a button for deleting a column at the right of the table.

(12) Clear All: a button for users to clear all data in the data table.

(13) Data Table: a table for users to enter test data. The initial window contains a table with

six columns and six rows. The number of rows and columns can be changed

dynamjcally by users.

(14) Report: a button for users to output the test result to a report.

(15) Chart: a button for users to get the test result in a chart.

Figure 10 shows a sample of the InputWindow with test data loaded.
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Chart..

147.0

Report...

P-Value:

Test Type:

Figure 10: The Input Window with Data

2. OutputWindow: OutputWindow provides a skeleton of a output window. It is used with

other components, such as TextArea and Chart, to construct a complete output window.

If Analysis Type is NOEC and LOEC, the report window contains a trace of all

tests and their results as shown in Figure II. The values of NOEC, LOEC and MSD

(Minimum Significance Difference) are included at the end of the report. If the Analysis

Type is EC, IC and LC, report window would display the interpolation values of the test

data.
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··-Shaplro·Wilk's test····
Normal this time!

···-Bartlett's test····
Equal variances this time!

····Dunnett's test····
< NOEC , LOEC > = <: 5.0 , 10.0 >

Minimum significant difference MSD =223.57672

Figure 11: The Report Window
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Figure 12: The Chart Window

3. Chart: it displays the critical value and mean replicates by two curves (Figure 12).

4. InputTable: it is a class used to implement an input table. It contains an ObjectTable.

ObjectTable contains a vector. Objects can be dynamjcally inserted into or deleted from

a vector. InputTable specializes ObjectTable to be a table of text fields. It is also

responsible for displaying the table.

InputTable and ObjectTable uses an observer and observable synchronization

model. ObjectTable is an object that can be observed. Whenever a change is made to the
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ObjectTable, it notifies its observer, which is the InputTable in this case. When InputTable

is notified, it updates the screen according to the current state of the ObjectTable.

The Controller Module

Controller is a coordinator between model and view modules. It controls the program flow.

When the view module receives input, the controller is the one to contact models for further

operations. For example, if the view wants to save a data file, it should pass input data

together with a file name, to the controller. The controller converts input data to its correct

type, and invokes the model module to validate the input data. If there is any error in the

input data, controller will generate an exception and return it back to the view. The view

will display an error message.
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Chapter 4

CONCLUSIONS

In this thesis, the design and implementation of a software package for tox.icity

analysis with Java are presented. The analysis methods are based on documents provided

by the United States Environmental Protection Agency (EPA).

The software package uses an object-oriented design. It is easier to be extended and

maintained. The graphical user interface is user-friendly and provides a means for users to

interact with the program. The software package handles a set of statistical tests.

Since the whole package is written in Java, it can be posted on a Web server.

Anyone who has Java compatible browser installed can download it from the server and

run it locally. This approach reduces local maintenance cost. On the other hand, the

package can also be installed locally and run on a Java virtual machine.
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APPENDIX

User's Manual

The software package implements a set of toxicity analysis tests documented in

Slwrt-Term Methodsfor Estimating the Chronic Toxicity ofEffluents and Receiving Waters

on Freshwater Organisms by the Environment Protection Agency (EPA). Any platfonns

with Java capability are able to use this tool.

Installation

The program can be run as an application or an applet. Client-based installation is,

used when the tool is run as an application. Server-based installation is used when the tool

is run as an applet.

When do a client-based installation, copy the whole software package into the local

storage of a client machine. For server-based installation, a Web server is needed to serve

aU clients. A link to the Java program should be implemented on a Web page. When client

browser loads the page, it loads the program automatically. The advantage of server-based

installation is that no matter how many clients run the tool, only one installation on the

server is needed.

45



Usage

Starting the program

1. Server-based

Download the program from the server and run it locally. To run the program in this way,

users should have Java compatible browser installed. Then type the correct URL address to

start the program.

2. Client-based

Install the program (tool) locally and run it by a Java loader. Namely, using a Java loader to

load the tool to run on a Java virtual machine.

After the software starts (Start up window is as Figure 9), the following steps can be

applied to both server-based and client-based cases.

Entering Data

I. Choose Test Type, users can choose the test type by clicking the choice field drophsL

button (Figure 13).

2. Enter p-value in P-Value text field.

3. Enter animals per treatment in Animalsffreatment text field.

4. Select Analysis Type. Users can choose the analysis type by clicking the choice field

droplist buLton (Figure 14).
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Figure 13: Choice Fields of Test Type

Test Type:

P-Value.

Row++
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Report... Chart.•

Figure 14: Choice Fields of Analysis Type
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5. Enter test data in the input table. The initial size of the table is six by ix (6x6). U ers

can adjust the size of the table to meet their needs by clicking Row++, Col++, Row-- or

Col-- button.

6. Instead of typing data into the input table, if users have existing data file, they can enter

the data file name in File text field and click Load button. Data file will be loaded, and

the size of the table will be adjusted automatically.

Chart..

0.669

164.0

0.626 0.669 0.558

I==~~~l--I0;;;;;;;.72;;;;;;;3=l11=0'"",,69;;;;;;;4~~""","""~1:--0=.60",",,,6~
L-_---','-_---JI_O_.7_--l1_0_.6_7_6--l~ ____JL_0_.5_08_____'

P-Value:

Test Type:

Figure 15: Load an Existing Data File

7. Users can also save the data table into a file. (Type the file name in File text field, click

Save. The data file will be saved with the name in File text field.)

8. If users want to clear data in the input table, click Clear ALL button. Data in the input

table will be erased.
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9. Users can get the test report by clicking Report button. If the t t data is not proper,

error message will be displayed.

10. If users want to display test results in a chart, Chart button is the correct one to click.

Figure 15 is the window after inputting all fields for Fathead Minnow Larval Growth test,

Figure 16 is its corresponding report, and Figure 17 is its corresponding chart.

----Shapiro-Wilk's test---
Normal this time!

----Bartlett's test----
Equal variances this time!

----Dunnett's test----
< NOEC , LOEC > = < 64.0, 128.0 >

Minimum significant difference MSD = 0.08740206

Figure 16: A Report for Fathead Mmnow Larval Growth Test
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Figure 17: A Chart for Fathead Minnow Larval Growth Test Result

Exiting from the program

Users using browser to run this software package can exit from the program by closing the

browser. For users running application version locally, click x at the up-right corner of the

window will exit from the program.
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