
MULTIMEDIA VISUALIZATION OF

ABSTRACT DATA TYPE

By

CONGXU

Bachelor of Science

Ocean University of Qingdao

Qingdao, China

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1997

OKLAHOMA STATE UNIVERSITY

MULTIMEDIA VISUALIZATION OF

ABSTRACT DATA TYPE

Thesis Approved:

an of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and respect to my graduate advisor, Dr.

Jacques Lafrance, for his intelligent supervision, constructive guidance and friendship.

My sincere appreciation and respect ex.tend to Dr. J. P. Chandler and Dr. K. M. George

for serving on my committee. Their advice and support are invaluable throughout my

study. Without their encouragement and patience, this thesis would have been

impossible.

Moreover, I wish to express my sincere gratitude to Computer Science

Department, Oklahoma State University for supporting during my study.

My in depth gratitude and respect go to my parents Mr. Jiashu Xu and Ms. Junrui

Sun, for their love, encouragement, support and confidence on me. Without this, I

wouldn't have been what I am today. Last but certainly not least, I thank my brother, Mr.

Xiaoman Xu, and all other family members for their support and understanding.

ill

Chapter

TABLE OF CONlENTS

Page

I. INTRODUCTION .

il. LI'TERATURE REVIEW 4

2.1 Data Structure Fundamentals.......... 4

2.1.1 The List ADT 5
2.1.2 The Stack ADT 7
2.1.3 The Queue ADT.. 7

2.2 Visualization Fundamentals.. 8
2.3 Multimedia Fundamentals.. .. 9

ill. RELATED WORKS 12

N. DESIGN AND IMPLEMENTATION ISSUES................ 17

4.1 Implementation Platform and Environment.. 17
4.2 Visualization Design................. 18
4.3 User Interface Design 19
4.4 Project Design Decisions 21
4.5 Implementation Details...... . 29
4.6 Director 5 Controls , 32
4.7 Running the Simulator with Sample Inputs 33

V. SUMMARY AND FUTURE WORK 35

5.1 Surnmary 35
5.2 Future Work 36

iv

Chapter Page

BIBLlOORAP'HY 37

APPENDIX 43

SOURCE CODE 43

v

LIST OF FIGURES

Figures Page

1. A Linked List 6

2. A Stack ,. 7

3. A Queue 8

4. Welcome Window 22

5. Instruction Window. 23

6. File Menu 23

7. New Window 24

8. List, Stack and Queue Menu. . . 25

9. Run-time List with Disabled Stack and Queue Menu 26

10. Help Menu.. 27

11. Help-Instruction " 27

12. Alarm Dialog Box 28

13. List ADT with 10 Nodes 33

14. List ADT with Sample Input 34

vi

CHAPTER I

IN1RODUCTION

In order to understand the complexity of the real world, people build abstract

descriptions or models. By omitting details and including just the relevant factors, a

model can provide a useful tool for understanding a particular problem. A model must be

proved, tested and solved. Systematized techniques for analyzing models are called

algorithms [22]. Models and algorithms must be represented in a way that is clear and

informative.

"A picture is worth a thousand words." Visualization is a method of computing

[33]. It transforms the symbolic into the geometric, enabling researchers to observe their

simulations and computations. Today, the study of visualization has expanded greatly

with the variety of representations [33], such as computer multimedia, graphics, and

graphical user interfaces. Visualization uses carefully designed representations to help

people understand complicated models and algorithms. Nowadays visualization has

become one of the !I1Qst exciting and rapidly growing fields in computer science. It has---- - - - - ...- ~ ---

&!eatly affected su~h diverse areas as education, science, industry, business, and military

than ever before. One of the benefits of using visualization in education is that it involves

the right side of the human brain in the learning activity [21]. The perceptual work is

done by the right hemisphere of human brain that initially processes pictorial information.

Then the left hemisphere does the analysis work. If we use both graphics and wordst

more of the brain will be involved in processing the information. This results in better

and fast understanding of abstract concepts.

Anyone who has written or studied computer programs has encountered data

structures since every program has one or more data structures. An Abstract Data Type

(ADT) is a mathematical abstraction with data and a set of operations defined on that data

[1]. A data structure consists of data and the operations that can be applied to that data.

The use of abstract data types for data structures is very important for the development of

modular programs.

The study of data structures would be much easier if the student were able to

e structure and related

to the data Knowing of these benefits that graphics can provide encourages us

to explore vis .zation aided tools for learnin data s This study focuses on the

simulation of three of the basic data structures in computer science: lists, stacks and

queues. Virtually every significant program will use at least one of these structures

explicitly, and a runtime stack is always implicitly used in the program [46].

The list ADT has the fonn aI, az, a3, an with the size n t and ~+1 follows aj

(i<n). Associated with this data, some operations are' e delete and d. The stack

ADT is a list with the restriction that inserts and deletes can be performed at the end of

the list. Related operations are push and pop. The queue ADT is a list where insertion is

done at one endt and deletion is performed at the other end. The basic operations are

enqueue and dequeue.

2

'--A...........~rimary objective of this thesis is to build a. simulator to help the user execute

and visualize the immediate effects of each step of an operation on the ____

well as explain the changes in visualization using sound. The emerging representation

formats such as sound [3] [7] [13], and animation [44] are much less developed than

those for static graphics. I will ex lore both sound and animation representation formats.

sim tin data structures stated above. We called it "VisualADT 1.0" system. This

visualization system is built and run on the Microsoft Windows 95 operating system.

This means that the application is an eve t-driven program. This software will be

developed using Macromedia Director 5 PC versio a 32-bit a

runs under Wil1Qows 95, Windows NT authoring environments as well as MacOS on both

68K and PowerPC systems. Developers also can playback the movie on OS/2, SOl,

OS/9. many interactive TV formats, and the Internet with Shockwave plug-in for Director

[32]. This provides a smooth and flexible open system user interface at the time that

users are accustomed to window-style interfaces.

The remaining chapters of this thesis are arranged as follows: Chapter II provides

some background information in the areas of data structure, visualization and

multimedia. Chapter III describes related works and Chapter IV discusses software

design decisions and implementation issues. Finally, Chapter V summarizes the thesis

and suggests the future research possibility.

3

CHAPTERll

LITERATIJRE REVIEW

2.1. Data Structure Fundamentals

The computer has become an indispensable tool of scientific research, business

and industry during the 1960s. The computer is an automaton that executes

computational processes according to precisely specified rules [47]. The essence of the

computer's power lies in its ability to execute long sequences of instructions which

contain an almost infinite combination of elementary actions. Programming is the act

of incorporating such instruction sequences into "recipes" representing certain classes

of computational processes [47]. Computer programming has advanced from a craft to

an academic discipline in the early 1970s. The initial outstanding contributions

toward this development were made by E. W. Dijkstra and C. A. R. Hoare [36].

Structured Programming [14] opened a new view of programming as a scientific

subject. Programs are concrete formulations of abstract algorithms based on particular

representations and structures of data. Hoare brought order into the bewildering

variety of terminology and concepts on data structures. Wirth [47] introduced

programming as the art or technique of constructing and fonnulating algorithms in a

systematic manner.

In particular, data structures were commonly modeled by graphs because of

4

their generality [18]. However, such schemes didn't bundle a data structure and its

operations into a package. The language Simula was. the first to provide facilities for

constructing such packages of data types and associated operations, calling them classes

[I5] . Some languages that provide facilities for defining and using protected ADT's are

Alphard via forms [38], CLU via clusters [27], and Mesa and Modula via modules

[20][48]. The methods of specifying data abstraction in these languages are explicit.

The semantics of the new data type are modeled constructively in terms of operations

upon more basic data types [41].

ADT is a set of objects with a set of operations. The structure of an AnT

encourages modular programming. We can build new ADTs by writing new operations

and by using the object structuring operators such as union, list and struct. Each

program will use at least one data structure. Lists, stacks and queues are three

fundamental ADTs in the family of data structures. These data structures are linear

structures which means that there is a natural linear ordering among the elements of the

structure. There is another linear structure: deque (double-ended queue, pronounced

"deck"). The distinguishing characteristic of deques is that insertions and deletions are

made at either end and only at the ends. The major operation on deques are insertfront,

insertback, removefront and removeback. We can consider that queues and stacks are

special deques [49].

2.1. 1 The List ADT

A linear list is a sequence in which one can insert, delete or access items at any

point [49]. The general list has the form aI, a2, a3, , an with the size n. A special

5

list with size 0 is a null list Except the null list and the list of one element, the item ~+l

succeeds ~ (i< n) and aj.l precedes aj (i>1) in any list The elements in the list can be

integers or arbitrarily complex elements. To simplify matters, we assume that the

elements are characters. There are a set of operations that perform on the list ADT.

Insert and delete are the two important operations of the list, which inserts and deletes

the specified key from the list. Some operations are prinClist and make_Dull, which do

the obvious things; find, which returns the position of the first occurrence of a key. We

also can add some operations such as next and previous, which would take a position as

a argument and return the position of the successor and predecessor, respectively.

There is no rule telling us which operations must be supported for each ADT; this is a

design decision and up to the programmer.

All of the instructions on the list can be implemented by using an array. This is

limited by over-estimating the memory space and running time. Another way is using a

linked list. Figure 1 shows the general idea of a linked list. The linked list consists of a

series of structures. Each structure contains the element and a pointer to a structure

containing its successor, which is called the next pointer. The linked list is not stored

contiguously and it provides fast running time for insertions and deletions.

Fi,gure 1: A Linked List

6

Sometimes it is coavenient tottaverse lists backwards. By adding an extra field

to the data structure, containing a previous pointer, we get a doubly linked list. Another

convention is the circularly linked list, by making the last cell keep a pointer back to the

first. By joining the two, we can get the double circularly linked list.

2.1.2 The Stack ADT

A stack is a last-in-fust-out list, or LIFO data structure. Figure 2 shows a stack

model. A stack is a list with the restriction that inserts and deletes can be performed on

the top of the stack. The fundamental operations on a stack are push and pop. Push is

equivalent to an insert and pop deletes the latest inserted element, i.e. the top element.

Stacks only can access the top element. Stacks can use pointers or arrays to be

implemented.

top

"/ al

az

...

an

Figure 2: A Stack

2.1.3 The Queue ADT

Queues are first-in-first-out lists. or FIFO. The difference is that insertion is done at

one end and deletion is done at the oth.er end. The basic operations on a queue are

7

enqueue and dequeue. Enqueue inserts an element in the rear of the Ii t and dequeue

deletes the element at the front of the list Figure 3 shows the abstract model of a

queue. Queues can be implemented by the linked list and array.

QUEUE Q

Figure 3: A Queue

2.2 Visualization Fundamentals

Pro ram visualization system can be classified b whe or

displays are either interactive such as com uter-------- - - - - assive such as a videota e.------

Flowcharts are typical static displa s of ro ram codes and 10 ic. Static displays of
'---

program data structure are more difficult than static displays of code since there are

many different ways to implement a certain data structure. Dyna~J~ dis la s not only

have_ all the probl~ms that static dis la s have but also the have more roblems such

as how to u ate and show the changes in the dis la . How to create the effective
'-------

display involves many com lex factors, articularly includin human's vision. People--.
rememb,::e::.r-=2:.:::0~%~of:.-w::..::..ha=t:...:t=he::.:y~se::.::e::.,~40=-~:::..o...:0::f.....:w..:..:h:.:.:a=t-=th::::e~y..-:s::::e;;:.e...=:an=d...:::h:.::.ea=r:..:..,.::an::::.:d=.....:-70=-~=o.....:0=f.....:w..:..:h::.::~they

see,Jll~.ar:..and_do._Thisjs-alsO--tJ.:w..basis.iQrthe learn-b -doin philosophy embe4ded in
~- - -- -- -.

8

Graphics, text, and animation exploit only the human vision system. For

presenting complex information, to exploit more sense will be helpful Except vid 0

games, most computer graphic applications are silent. With the proliferation of more

capable sound hardware and software, it is now possible to use more and bette ound

in isualization. Some call the use of sound to support visualization sonification [22].

The goal of visualization is to affect existin scientific methods b roviding new

scientific insight through visual methods. Visualization offers a method for seeing the
. -
unseen. It enriches the process of scientific discovery and fosters profound and

unexpected insights. In many fields it is already revolutionizing the way scientists do

science. In computing, scientists are using graphics and animation to help visualize

data. McCormick [33] claims that the magnitude of scientific breakthrough with

visualization techniques is comparable to that realized from the introduction of the

supercomputer to scientific computing. We can only imagine how much more

information will be communicated and assimilated when interactivity and sound are

added to scientific visualization [6]. Visualization is a tool both for interpreting image

data fed into a computer, and for generating images for complex multi-dimensional

data sets. Visualization of data structures will help the user comprehend the task of an

algorithm and ex lore different scenes in the construction of the data structures. This

is suitab91aboratory exercises and distance learning as a teaching and research tool.-- - - "-------
.se I{ - '~"r v. \ n If

2.3 Multimedia Fundamentals

In the past 40 years, the computer has evolved from a complex adding machine to

a device that begins to reflect the mental and sensory abilities and demands of human

9

beings. The computer has become a ubiquitous component of modem life: computers

compete with us in games, teach children and entertain us. The flexibility and low cost

of the computer have enabled us to adapt the machine to our everyday needs.

However, computers lack the analogues of eyes, ears, voice and senses of touch.

Now we have video cameras, microphones, speakers to increase the communication

capability between computers and human. We realize that it is important to interact

with computers using all of our senses and communication abilities. ~B~__,-,f~o~un~d..:th:::a:.:-t

s:.:o:.:un:::::d~l=u:::.s~g:..:ra::!p::h::ic::s::...w..:.:.::as::::...:::m::::o::.:re:=.....:e~f::.:fe::.::c:=ti""""'-=='J..::::::.:...s;t:=J=~Voice annotation is also

now relatively easy, particularly since microphone input is becoming a common feature

of personal computers. Some applications are impossible without the use of

mu . edia interfaces. Sometimes multimedia enhances what would be cumbersome

task of input/output. For example, instead of typing commands, spoken commands can

leave the hands free to operate another device.

A medium is a carrier of information. A multimedia computer system is one that

is capable of the input or output of more that one medium [6]. Typically, the term is

applied to computers that support more than one physical output medium, such as a

computer display, audio and video. The goals of multimedia are to build better

communication between human and computers. Multimedia systems strive to take the

best advantage of human senses in order to facilitate communication. Communication

between users and computers takes on four different forms: human-to-human (via

computer), human-to-computer, computer-to-human, and computer-to-computer [6].

The stud of multimedia user interfaces has not matured into an in_dependent.----

10

discipline. So we must examine a range of research contributions in di parate areas that

contribute to our understanding of these new interfaces.

11

CHAPTER ill

RELATED WORKS

Visualization as a means to unders d models and algo' ms has been a subject

of stud since the 1960s. In the early days visualization of algorithms was done more in

video tapes and films. This means that the visualization was static. The user cannot

participate in the process of simulation. L6: Bell Telephone lAboratories Low-Level

Linked List Language, the first computer-generated movie, was produced by Knowlton

[24] in 1966. It showed how an assembly level list-processing language works.

There are three other important films: liQp,go.Qcr._~-=::.-=o=n-=h=as=h::.:in:::Jg~al~g::.on:.:·t=h=m=s.....

Hopgood's movie showed the ac~s accor .

.....:ta.=.b:.:l;=.e..=-__._g@ph.The si.,¥nificant valu~f this movie was th,1tE showed a data structure

~.Erge ,(Lh'!:ve been c9m uted b hand. Booth's film indicated sever!,l

algorithms on P - ees. When the PQ-tree is changing, the movie showed a smooth

transition. Baecker's Sorting Out Sorting illustrated a number of different s_~~!ng

algorithm~DJ..1lningJm...S~1and lar e data sets. When a chan e occurred in the data

tructure it d namically showed the chan ~~Th~o contained a sound track

even thou

12

In the mid-1970s, a lot of work in algorithm animation

U'

Toward program illustration [50] and De Boer's A systemfor animating micro-PUI

programs [16] are among those systems built in 1974.

__S_A_.... rown University Algorithm Simulator and Animator) algorithm

animation system was used in the "Electronic Classroom" at Brown University in the

1980s. BALSA-I [10] was developed in the early 1980s and influenced by Smalltalk. It

has good interactive environment and some Smalltalk techniques such as popup menus,

overlapping windows and changing the cursor's shape to give detailed feedback.

BALSA-II [10] was developed upon BALSA-I later which adopted a lot of the Macintosh

user interface such as zoom in/out, dialog boxes and presenting both detailed and.overall

views of an object simultaneously. London and Duisberg [28] simulated a collection of

algorithms by using Smalltalk's MVC(Model-View-Controller) paradigm and following

BALSA's approach of annotating the algorithm in 1985.

Duisberg, in his Ph. D. thesis, investigated using temporal constraints to describe

the appearance and structure of a picture as well as how those pictures evolve over time

in the Animus System in 1986 [17]. Bentley and Kernighan [5] followed the BALSA

paradigm implemented a set of tools for producing animation of algorithms in 1987.

Kleyn and Gingrich [23] applied the BALSA animation techniques in their object-

oriented system called GRAPHTRACE in 1988. PECAN program development system

(1988), primarily a program development system, presents multiple views of the user's

program and its semantics [37]. Early systems at Toronto, BALSA and the systems it- --
influenced use indirection

13

F

Researchers from computer science have focused on representations of data

structures. A variety of commercial systems, subroutine libraries are available to create,

store and draw graphs. Several systems have been built that automatically produce a

static graphical display of a program's data structure. The show which 0 ra 'on

~~ng.~rtoJaD.l~moUlll.W..tW:'-W~~J£!J~...c.b.aDJ~Incense: 11 system for displaying

data structure [35], built by Brad A. Myers (1983), is a prototype that lets the user view

the data structures in a desired fashion. The user can specify the variable name to get its

graphical display. The user also can select one of those formats associated with each data

type. The PV(Program Visualization, 1985) [11] project attempted to use graphics in all

phases of programming large systems. B~as~kJ~e~rvill:.!.!!·!Sw'L1~~..JWJ~A.JL:!J...2.Jj~,I,Io

provided ra hical displ~s of arbitrary data structures for de . GDBX ran on a

Sun Microsystems workstation integrated with the standard UNIX debugger, DBX.

PROVIDE [34] by Moher (1985) supported only direct views of data structures with non

user-defmed variables. Lee (1988), in his M.S. thesis, desi n

system which:

1. graphically displays a variety of data structures, including B-Tree, binary

search tree and link-list.

2. allows the user to execute and study the immediate effects of each ste of an

operation on a ticular data structure [26].

Lee's dis la ~st~m-i· lemented on VT100 type terminals which is rigid

because it displays graphics as characters rather than as a combination of pixels. Stastko

(1990) introduced the path-transition in TANGO animation systems [43]. TANGO is a

framework that simplifies animation design. The path-transition paradigm is based on

14

four abstract data types: Locations, images, paths, and transitions. A tool called DANCE

(Demonstration ANimation CrEation) was also created. Shimomura's (1991) program:

Linked-List Visualizationfor Debugging [40], which improved the visualization of

linked lists under VIPS system. VIPS system uses UNIX's symbolic debugger DBX to

execute the program to be debugged. S~hi~m~4Ul!~~"""":~~UU.LAO..~r~U1I'e~·~m~e~n~ts~:~e~as~y

~::,~·s~ua~l~iz~a~tl~·o~n~T.~o~o~ls~t~o~U~n'!!:.d~e~rs~t~an~d:..=C~o:.:.n~cu~r~r~en~c~b~5=l!ido.u.u~..QJ".~~";"used graphs to

provide a logical view of execution [51]. Views are organized by computational

messages, threads, and synchronization events. This tool provided a clear picture of

concurrency by overcoming the concurrency bugs.

Arra's (1992) thesis, Vb 'ec -Oriented Data Struct 1], displayed the

dynamic changes in the data structure and onl considered d n ro ram animation.

The system contains a user-friendly Graphical User Interface(GUI) and a library that aids

the animation of data structures. Knuth (1993) developed a set of standard data structures

and a subroutine library, the Stanford GraphBase [25], to allow programmers to

construct graph algorithms easily. The book is a collection of dataset and computer

programs that generate and examine a wide variety of graphs and networks.

Shen's (1994) TBDSV system, allowed the user to choose from a set of tree-

based algorithms and to explore~ic behavior of algorithms @2l. This system is

built on the X windows system and simulated AVL tree, Red-Black tree, B-tree and splay

tree.

The most recent work in al Orithill animation is done at the ' iversity of

Southern California. Their project "Animating Algorithms, f' (1997), developed
---~

15

f""

interactive animation of several types of binary search trees usin Java. The algorithm

implemented so far indude the following [45]:

1. Standard, garden-variety binary search trees.

2. Splay trees [Sleator and Tarjan], which are a self-adjusting data

structure based on the splay operation. The applet (also shown here) u es

bottom-up splaying. Another demo by Kindred and Sleator implements the

top-down version.

e - a k trees, an implementation of 2-3-4 trees based on binary trees.

4. Randomized binary search trees based on treaps [Aragon and Seidel]. These

provide an elegant BST-based alternative to Pugh's randomized skip lists.

The user can perfonn basic operations such as insertion, location and deletion on

these data structures.

16

CHAPTER IV

DESIGN AND IMPLEMENTAnON ISSUES

4.1 Implementation Platform and Environment

Macromedia Director 5 is the most powerful authoring tools for multimedia

production and for the Internet. It was introduced by Macromedia Inc., the leader in

digital arts, multimedia and Web publishing software, in March 1996. It runs on both the

Mac and Pc. Director 5 supports authoring on MacOS (68K and PowerPC), Windows

3.1, Windows95, and Windows NT systems, which creates true cross-platform

multimedia products. The Lingo scripting language of Director 5 can precisely control

text, sound, and digital video. Scripting languages are combinations of words that convey

information and instructions. Lingo has certain commands and rules that you follow to

create statements. Lingo also has some concepts which are very similar to object-oriented

programming language. The following table tells you which Lingo terms correspond to

which common object-oriented programming terms:

Lingo term

Parent script

Child object

Property variable

Object-Oriented term

Class

Class instance

Instance variable

17

Handler Method

Ancestor script Super class

Brown [12] noted. that "Small amounts of data are good for introducing a new

algorithm, whereas large amounts of data are good for developing an intuitive

understanding of an algorithm's behavior." Director 5 has 48 sprite channels, which

means we only can have 48 objects on the stage at the same time. I plan to animate the

three ADTs of 10 nodes each. This is enough to illustrate the operations on these ADTs

and introduce the new concepts. We also can insure thatthe growing data structure stays

inside the border of the window.

The VisualADT software package allows the user to view and study an abstract

data structure and its associate operations. The development process focuses on

visualization design and user interface design.

4.2 Visualization Design

In the visualization design, we must first take the human visual perception into

consideration. In order to enable the user to perceive the desired information efficiently,

we divide the system into two components: static displays and dynamic displays. Static

displays show the text of data, the image of data structure and the overall structures.

Dynamic displays show the behavior of an operation and indicate the changes in the data

SU1lcture.

My thesis also focuses on the use of color and sound, previously less explored areas

in animation. Color has the potential to communicate lots of information efficiently. We

use color for emphasizing patterns and highlighting activity. Director 5' s paint tools

18

--------------~--

work the same as paint tools in applications such as Photo hop. The paint window offers

a complete set of paint tools and inks to create cast members in the movie. The paint and

cast windows share a dynamic link that anything you draw in the paint window becomes a

cast member automa1ically and is displayed in the cast window.

We strongly concur with Gaver [19] that

"Auditory displays have the potential to convey information that is

difficult or awkward to display graphically. Sound can provide information

about events that may not be visually attended, and about events that are

obscured or difficult to visualize. Auditory information can be redundant

with visual information, so that the strengths of each mode can be exploited.

In addition, using sound can help reduce the visual clutter of current graphic

interfaces by providing an alternative means for information presentation."

In my thesis the most obvious use of audio is that it reinforces visual views. For

example, when the user clicks the list button on the stage, there is voice that says "You

selected list data structure." When the user inserts or deletes a node from the data

structure, there is voice message that says "You inserted or deleted a node." If you

perform some illegal operations, such as you try to delete when there is no node in the

list, there will be an alarm dialog box popped up with text message, a system beep and

voice message that says "Sorry, the list is empty, please insert node."

19

4.3 User Interface Design

For a software as a teaching and learning tool, the importance of the user interface

can not be overemphasize. Without the hardware limitations, the user interface has

become more important and thus, we place more of the effort on software usability.

During the design and development of the system, I consider the following principles

[42]:

a. The interface should be appropriately consistent.

b. The interface should use terms and concepts which are familiar to the anticipated

users.

c. The interface should include some mechanism which allows users to recover from

their errors.

d. The interface should incorporate some form of user guidance.

e. The interface should respond with an appropriate amount of information.

f. The interface should provide an easy way out.

g. The interface should allow the user to work in real time.

h. The interface should minimize loading.

1. The interface should make states visible.

J. The interface should detect the user actions quickly.

The whole idea is to build an easily used and reliable system. The user can control

the VisualADT system though the pull-down menus. There are two advantages of using

menus [26]: firstly, ex.plicit options are given, eliminating the possibility user typing

mistakes; secondly, displayed options also serve as memory aid. We keep the menus

short and include only the main operations on the three data structures. We have the

20

HELP menu which can provide instructions to the user on how to use the system. The

user can directly interact with the system and the system responds in real time. The user

is able to view the motions in a smooth way through the continuous transition. The

importance of continuous transition [28] is: "Often it is even better to show smooth

transitions between states; if a structure changes and the new state simply flashes on the

screen, the viewer is typically startled and cannot see immediately without some mental

effort how the new image evolved from the previous one." However, it is not an easy job

to achieve the smooth transitions of action. With the powerful animation software, we

get the most impressive smooth motion.

4.4 Project Design Decisions

Since I have started working on the data structure visualization project, I have

made some decisions on designing the system. This project is very flexible in the

following ways. Firstly, the user is able to select one of the three data structures (list,

stack and queue), and to select any operations associated with them. Secondly, the user is

able to input the test data at run-time. Thirdly, the user is able to watch the visualization

as well as listen to the explanation.

At the beginning, one data structure must be created. Before any operation is

executed, the user is able to select one of the three data structures to create it. The

following are the decisions:

a. The user is able to select the options from the pull-down menu. After the

"Welcome" window (Figure 4) moves out of the stage, the "Instruction"

(Figure 5) window moves in. Sound accompanies the changing windows,

21

such as "Welcome to the VisualADT 1.0. the software for learning data

structures stack, queue and list. Enjoy it!" and ''Please read the following

instructions." After the "Instruction" window moves out, there is voice

message "Please select the data structure from 'File' menu 'Newt option."

Figure 4: Welcome Window

22

Figure 5: Instruction Window

b. At the beginning, the user is able to create one data structure from "File"

menu, "New" option (Figure 6).

'.

Figure 6: File Menu

23

c. The user is able to select one of the three data structures by ,clicking one

button to simulate (Figure 7).

Figure 7: New Window

d. The user is able to execute operations by highlighting and clicking the

operation from menu.

24

e. The user is able to perform the related operations on the selected data structure

(Figure 8).

(a)

(b)

(c)

Figure 8: List, Stack and Queue Menu

25

f. The user is able to input the test data during the running time and see the

result. Since the user selected the list ADT, the operations related to stacks

and queues are disabled. This insures that the user performs correct

operations (Figure 9).

Figure 9: Run-time List with Disabled Stack and Queue Menu

g. For each of the three ADTs, the user is able to have at most 10 nodes.

26

h. A window in Help menu shows the instructions about how to use the

VisualADT simulator (Figure 10).

Figure 10: Help Menu

The following pattern shows the content of "Instruction" in Help menu which

explains the functions of all the menu (Figure 11).

Figure 11: Help - Instruction

27

1. When the user performs some illegal operations, such as try to delete node

from the empty list, an alarm dialog box pops-up with a system beep (Figure

12).

Figure 12: Alann Dialog Box

J. When the scene is changing in the stage, the user is able to listen to the

explanation.

28

4.5 Implementation Details

Correctness and efficiency are the most important concerns of the

implementation of an education aided simulator. To ensure the correctne •

memory efficiency. we made the following decisions:

a. Parent scripts and child scripts are the two important concepts. We create ten

nodes for each data structure that are similar in some ways like same shape

and color, but different in others like spriteNurn and valueNum properties.

We can create a set of similar objects by calling parent script each time. A

parent script contains a set of handlers and property variable declarations.

Property variables are shared among handlers in a parent script the same way

that global variables are shared among handlers in an entire movies. We have

three parent scripts for creating list, stack and queue nodes respectively.

b. Lingo scripting language has a definite order of objects that it passes the

message to when looking for a corresponding handler. In general. the

sequence is primary event handler, sprite script, script of a cast member, frame

script, and movie script. To get fast memory access speed, we use the high

priority script as much as we can.

c. Instead of using statements for each instance, we write a handler once and then

call it from different places in the movie. In addition, when we revise the

handler, we revise every instance where the handler is called. Also, we can

place the handler's scripts in an external cast and use the cast in other movies.

d. Instead of creating the handlers and global variables for each object in a set of

29

similar objects, we use parent script and child script to avoid unnece ary

allocation of the memory. The effectiveness of parent scripts comes from

Lingo's ability to create multiple copies, or instances, of the script's content.

Each child object is an instance. This also increases the memory efficiency.

e. Instead of using arrays, we use lists to keep track of and update a set of data.

This provides efficient use of the storage space and saves memory access time.

Director offers two types of lists:

• Linear list, in which each element is a single value.

• Property list, in which each element consists of a property and a value

separated by a colon.

Both linear and property lists can be unsorted or sorted in alphabetical order.

Lingo can create, sort, add to, or reorder a list's elements.

f. Instead of using a self-defined list, we use a build-in list: the actorList. The

actorList is a list of all child objects currently in the movie. We can clear child

objects from the actorList by setting the actorList to empty. Then we can

generate new child objects with the property we need.

g. We use the text of member property to display messages and record what the

user types as input generator. We also can edit, test and set the field cast

member property.

h. To get a smooth transition, we use a for loop to change the horizontal or

vertical position of an object by one pixel a time. The user is able to watch

the object moving to its destination.

30

1. We use an alert dialog box to provide error messages in the movie. The

dialog box causes a system beep and displays a message which can contain up

to 255 characters.

J. We create custom pull-down menus which give the user flexibility to choose

the items provided. We define the menu in on StartMovie handler in a movie

script, therefor it's available during the entire movie.

k. We use appropriate purge priority of the cast member if the memory is low.

Purge priority has four levels.

I-Last

2-Next

O-Never

3-Normal

Purge Priority Description

The selected cast member will be removed from

memory as necessary. This is the default.

The selected cast member will be among the next

to be removed from memory.

The selected cast member will be among the last to

be removed from memory.

The selected cast member remains in memory and

is never purged.

1. We use Astound Sound software version 2.01 to add sound through

microphone. Astound Sound is developed for Gold Disk Inc. by NIME

Enterprises Company. There is "Record Sound" option inside "File"

menu of Astound Sound.

31

4.6 Director 5 Controls

I have used the following Director 5 Controls [29] [30] [31]:

a. Paint Window: It provides the same tools in a paint application such as

Microsoft paint. It supports Photoshop filters and new tweenable filters for

graphic effects. This creates and edits the user interface.

b. Cast Window: It is a multimedia database of graphics, text, sound effe.cts,

music and Lingo scripts. It contains all the information in a movie.

c. Score Window: It keeps track of each cast member on the stage in each frame

of a movie and controls tempos and the timing of sounds, transitions, and

palette changes.

d. Control Panel: It provides a set of controls similar to those on VCR. The

user can use them to play, stop, or rewind a movie.

e. Stage Window: It is where the movie appears. It is always open.

f. Sound Control: The user can import the sounds and music jnto a movie and

can control it with Lingo script language or a temp setting.

. g. Lingo Script: It is director's scripting language that adds interactively to the

multimedia project. It can combine animation and sound in ways that scor

alone can't.

32

4.7 Running the Simulator with Sample Inputs

a. The list data structure with 10 nodes with voice message "The list is full,

please delete fIrst." (Figure 13).

Figure 13: List ADT with 10 Nodes

33

b. The user input a data, "gg", select "Insert" operation from the "List" menu

(Figure 14).

Figure 14: List ADT with Sample Input

34

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

The purpose of this thesis is to develop a flexible, efficient, interactive and

user-friendly data structure simulator as a teaching and learning tool. For better

understanding of the abstract concepts and algorithms, scientific visualization

technology, such as smooth transition and dynamic display, are used in the

animation. To get the best learning result, we explore not only the human vision

system by animation but also the sense of listening by using sound. To let the

user learn while doing, we provide a good interactive user interface. Color and

sound do not merely enhance the beauty of the presentation; they can be used to

give fundamental information. We can conclude that dynamic animation, audio

and color convey more information than static, silent and black-and-white.

This simulator is developed on Microsoft Windows 95 Operating System

with Micromedia Director 5 software and Lingo scripting language as a 32-bit

application which has good software reusability, maintainability and accessihility.

35

5.2 Future Work

In addition to these three linear data structures we animated, there are also

many non-linear, tree-based data structures which are important in computer

science. There will be a lot work to do in simulating the tree-based data structures

and their related operations.

The VisualADT simulator has limited nodes for each data structqre. The

number of nodes can be unlimited by letting the user select which part of the

simulator to be shown on the screen.

Also, we can put the simulator on the Internet with Shockwave plug-in as

an Internet multimedia movie for distance learning.

36

BffiLlOORAPHY

[1] Arra, S. K., "Object-Oriented Data Structure Animation", M.S. Thesis,

Computer Science Deparunent, Oklahoma State University, Stillwater, OK,

1992.

[2] Baecker, Ronald M., Sorting Out Sorting, 16mm color sound film, 25

minutes, Computer Science Department, University of Toronto, Toronto,

ON, 1981.

[3] Baecker, R. M. and Buxton, W. A, Reading in Human -Computer

Interaction: A Multidisciplinary Approach, I os Altos, CA: Morgan

Kaufmann, 1987.

[4] Baskerville, David B., "Graphic Presentation of Data Structures in the DBX

Debugger", Report No. UCBICSD 861260, Computer Science Department,

University of California at Berkeley, CA, 1985.

[5] Bentley, Jon L. and Kernighan, Brian W., "A System for Algorithm

Animation: Tutorial and User Manual", Computer Science Technical Report,

No. 132, Murray Hill, NJ: AT&T Bell Laboratories, 1987.

[6] Blattner, M. M. and Dannenberg, R. B., Multimedia Tnterface Design, New

Yark: ACM Press, 1992.

37

[7} Blattner. M. M. and Greenberg. D. A, "Earcons and Icons! Their Structure

and Common Design Principles". Human -Computer Interaction 4(1): pp. 11

44, 1989.

[8} Bly, B. A, "Presenting Information in Sound", In Proceedings ofCm '85

Conference on Human factors in Computing Systems, pp. 371-375, New

York: ACM Press, 1985.

[9] Booth, K S., PQ-Trees, 16m.m color silent film, 12 minutes, 1975.

[10} Brown, M. H., Algorithm Animation, Cambridge, MA: The MIT Press,

1988.

[II} Brown, G. P., Carling, R. T.. Herot, C. F., Kramlich, D. A, and Souza, P.,

"Program Visualization: Graphical Support for Software Development",

IEEE Computer, 18 (2): pp. 27-35, 1985

[12] Brown, M. H., Hershberger, 1., Color and Sound in Algorithm Animation,

Palo Alto, CA: Systems Research Center, Digital Equipment Corporation,

1991.

[13} Buxton, W., BIy, S. A., Frysinger, S. P. and Lunney, D., "Communications

with Sound", Proceedings of the ACM SIGCHI Human Factors in

Computing Systems Conference, pp. 115-119, New York: ACM Press,

1984.

[14] Dahl, O. 1., Dijkstra, E. W., Hoare, C. A R., Structured Programming, New

York: Academic Press, 1972.

[15] Dahl, O. J., Nygaard, J., "SIMULA - an ALGOL-Based Simulation

38

Language", ACM Communications 9: pp. 671-678, 1966.

[16] DeBoer, James M., "A System for the Animation of Micro-PUI Programs",

M.S. Thesis, Department of Computer Science, Univer ity of Toronto,

Toronto, ON, 1974.

[17] Duisberg, Robert A., "Constraint-Based Animation: Temporal Con traints in

the Animus System", Ph.D. Thesis, Computer Science Department,

University of Washington, Seattle, WA, 1986.

[18] Earley, J., ''Toward an Understanding of Data Structures", ACM

Communications, 14: pp. 617-627,1971.

[19] Gaver, W. W., "The SonicFinder: An Interface that Uses Auditory Icons",

Human-Computer Interaction, 4(1), 1989.

[20] Geschke, eM., Morris, 1. H., Satterwaite, E. H., "Early Experience with

Mesa",ACMCommunications, 20: pp. 540-553, 1977.

[21] House, W. C, Interactive Computer Graphics Systems, Princeton, NJ:

Petrocelli Books Inc., 1982.

[22] Jones, C v., Visualization and Optimization, Norwell, MA: Kluwer

Academic Publishers, 1996.

[23] Kleyn, M. E, Gingrich, Paul C., "GraphTrace-Understanding Object

Oriented Systems Using Concurrently Animated Views", OOPSLA J 88

Conference, pp. 191-205, ACM/SIGPLAN, New York, 1988.

[24) Knowlton, K. C, "L6: Bell Telephone Laboratories Low-Level Linked List

Language, Two Black and White Sound Films", Murray Hill, NJ: Bell

39

Telephone Laboratories, 1966.

[25] Knuth, D. E., The Stanford GraphBase: A Platformfor Combinatorial

Computing, Reading, MA: Addison-Wesley Publishing Co., 1993.

[26] Lee, Wilson, "An Implementation of A Data Structures Display System",

M.S. Thesis, Computer Science Department, Oklahoma State University,

Stillwater, OK, 1988.

[27] Liskov, B. H., Snyder, A., Atkinson, R. and Schaffert, c., "Abstraction

Mechanisms in CLU",ACM Communications, 20: pp. 564-576. 1977.

[28] London. R. L., Duisberg, R. A, "Animating Programs Using Smalltalk",

Computer, 18: pp. 61-71,1985.

[29] Macromedia Director Lingo Dictionary (Version 5), Macromedia, Inc.,

1996.

[30] Macromedia Director Using Director (Version 5), Macromedia, Inc.• 1996.

[31] Macromedia Director Using Lingo (Version 5). Macromedia, Inc., 1996.

[32] Macromedia Inc. WWW page,

URL: http://www.Macromedia.com/macromedialprIl996/dir5 .html

[33] McCormiCk, B. H., DeFanti, T. A and Brown, M. D., "Visualization in

Scientific Computing", Computer Graphics 21(6): pp. 1-14, 1987.

[34] Moher, Thomas G., "PROVIDE: A Process Visualization and Debugging

Environment", Technical Report, Computer Science Department,

University of Illinois at Chicago, Chicago, IL, 1985.

[35] Myers, B. A, "INCENSE: A System for Displaying Data Structures",

40

Computer Graphics 17(3)~ pp. 115-125, 1983.

[36] Wirth, N., Algorithms and Data Structures, Englewood Cliffs, New

Jersey: Prentice-Hall International, 1986.

[37] Reiss, Steven P., "Graphical Program Development with PECAN Program

Development Systems", ACM Transactions on Software Engineering,

14(6): pp.849-1988.

[38] Shaw, M., Wuli, W. A, and London, R. L., "Abstraction and Verification in

Alphard: Defining and Specifying Iteration and Generators", ACM

Communications, 20: pp. 553-564, 1977.

[39] Shen, Hung-che, "A Visual Aid for the Learning of Tree-Based Data

Structure", M.S. Thesis, Computer Science Department, Oklahoma State

University, Stillwater, OK, 1994.

[40] Shimornura, T.and Isoda, S., "Linked-List Visualization for Debugging",

IEEE Software, 17: pp. 44-51,1991.

[41] Smith, H. E, Data Structures: Form and Function, San Diego, CA:

Harcourt Brace Jovanovich, Inc., 1987.

[42] Sommerville, 1., Software Engineering(third edition}, Reading, MA:

Addison-Wesley Publishing Co., 1989.

[43] Stasko, John T., "TANGO: A Framework and System for Algorithm

Animation", IEEE Computer, 23(2): pp. 27-39, 1990.

[44] Thomas, F. and Johnston, 0., Disney Animation: The Illusion of life, New

York: Abbeville Press, 1984.

41

[45] University of Southern California WWW page,

URL: http://langevin.usc.edulBST/

[46] Weiss, M. A., Data structures and Algorithm Analysis in C, Menlo Park,

CA: Addison-Wesley Publishing Co., 1996.

[47] Wirth, N., Systematic Programming: An Introduction, Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1973.

[48] Wirth, N., Prograrruning in Modula-2 (fourth edition), New York: Springer

Verlag Inc., 1988.

[49] Wulf, W. A., Shaw, M., Hilfinger, P. N. and Flon, L., Fundamental

Structures ofComputer Sdence, Reading, MA: Addison-Wesley Publishing

Inc., 1981.

[50] Yarwood, Edward, "Towards Program illustration", M.S. Thesis,

Department of Computer Science, University of Toronto, Toronto, ON,

1974.

[51] Zernik, D., Snir M. and Malki, D., "Using Visualization Tools to

Understand Concurrency", IEEE Software, 18: pp. 87-92, 1992.

42

APPENDIX SOURCE CODE

Main Script

on startMovie
-- Main script
installMenu 2

puppetSound "welcome5"
updateStage

-- global variable declarations
global nodeList,maxNodes,firstNode,counter,queList,stackList
global popCount,queCount,v1,linkList,insertPosition,deletePos
global stackAag,queFlag,deICount,index,delList,stackCount
globallistFlag,nodePos,linkCount,tempList

set maxNodes to 10
set firstNode to 29
set counter to -1
set stackList to [: l
set popCount to 0
set vI to 0
set deletePos to 0
set insertPosition to 0
set queList to [:l
set delList to [:l
set linkList to [:]
set tempList to [:l
set nodeList to 0
set queCount to 1
set stackCount to 29
set stackFlag to TRUE
set queFlag to TRUE
set listFlag to TRUE
set delCount to 0
set nodePos to 0
set index to TRUE

43

set linkCount to FALSE

put "" into field "Word"
set the stageColor to 43

repeat with i =firstNode to (maxNodes + firstNode - I)
-- nodes 0 - 9 are sprites 29 - 38
puppetSprite i, TRUE

end repeat
repeat with i =(maxNodes + firstNode) to (maxNodes * 2 + firstNode -I)

-- values are sprites 39 to 48
puppetSprite i, TRUE
set the text of member (38 - rnaxNodes - firstNode + i) to '"'

end repeat

repeat with i =29 to 48
set the backColor of sprite i to 43

end repeat

--alarm box if the user didn't select a data structure
set the script of menultem "Insert" of menu "List" to "listHandler"
set the script of menuItem "Enqueue" of menu "Queue" to "listHandler"

end startMovie

--stack push handler
on stackPush Token

global nodeList,root,maxNodes,v 1

set newToken to pushToken(root,Token)
end stackPush

--enque handler
on Enq Token

global nodeList,root,maxNodes,vI ,delList

set newToken to pushToken(root,Token)

--check if newToken is blank or a space
if newToken<>"" or newToken<>" " then

addProp(delList,newToken,v I)
end if

end Enq

--list insert handler
on Insert Token

44

global root

set newToken to pushToken(root,Token)
end Insert

Menu Definition

menu: File
NewlNl go to frame "New"
Close/CI go to frame "Close"

(-
ExitIXl go to frame "Exit"
menu: List
Insertl go to frame "Insert"
Deletel go to frame "Delete"
menu: Stack
Pushl go to frame "Push"
Popl go to frame "Pop"
menu: Queue
Enqueuel go to frame "Enque"
Dequeuel go to frame "Deque"
menu: Help
Instruction/II go to frame "Ins"
About VisualADTI go to frame "About"

Start Script

on enterFrame
--move the welcome window and instruction window into or
--off the stage
puppetSprite 6, TRUE
puppetSprite 5, TRUE

set the 10cV of sprite 5 to the stageBottorn
set the locH of sprite 5 to 74

startTimer
repeat while the timer <6*60

nothing
end repeat

--move the welcome window
repeat with i = I to 350

4S

set the 10cV of sprite 6 to (the loeV of sprite 6 - 1)
updateStage

end repeat

puppetSound "instruc"
updateStage

--move the instruction window
repeat with i =1 to 430

set the 10cV of sprite 5 to (the loeV of sprite 5 - 1)
updateStage

end repeat

startTimer
repeat while the timer <8*60

nothing
end repeat
repeat with i =1 to 350
set the lacY of sprite 5 to (the loeV of sprite 5 - I)
updateStage

end repeat

puppetSound "new"
updateStage
startTimer
repeat while the timer <5*60

nothing
end repeat

end

on exitFrame
puppetSprite 6, FALSE
puppetSprite 5, FALSE

pause
end

New Handler

on enterFrame
global firstNode,maxNodes,h,nodeList
repeat with i = firstNode to (maxNodes + fiIstNode - I)

-- nodes 0 - 9 are sprites 29 - 38
puppetSprite i, TRUE

end repeat

46

repeat with i = (maxNodes + firstNode) to (maxNodes * 2 + fir tNode -1)
-- values are sprites 39 to 48
puppetSprite i, TRUE
set the text of member (38 - maxNodes - firstNode + i) to ""

end repeat

repeat withj=(firstNode+maxNodes) to 48
set h to the locH of sprite j
set v to the 10cY of sprite j
--move the valuebox out the stage
repeat with i=firstNode to (firstNode+maxNodes-I)
set the visible of sprite i to FALSE
set the locH of sprite (i+maxNodes) to (h+600)
set the locY of sprite (i+maxNodes) to (v+600)

end repeat
end repeat

updateStage
end

on exitFrame
global firstNode,rnaxNodes,stackList,nodeList,counter,stackCount
global queCount,popCount,tempList,queList,deIList,deICount
global insertPosition,index,linkCount,stackFlag,queFlag,listFlag
global vI ,deletePos,linkList,nodePos

set counter to -1
put 10 into field "Que Nodes left"
put 10 into field "Nodes left"
set stackCount to 29
set stackList to [:]
set nodeList to []
set tempList to [:]
set queList to [:]
set delList to [:]
set delCount to 0
set popCount to 0
set queCount to 1
set insertPosition to 0
set the actorList to []
set index to TRUE
set linkCount to FALSE
set stackFlag to TRUE
set queFlag to TRUE
set listFlag to 1RUE

47

set vI to 0
set deletePos to 0
set linkList to [:]
set nodePos to 0

pause
end

"File-Close" Menu Script

on enterFrame
-- "File-Close" script
global firstNode,maxNodes,h,nodeList
repeat with i = firstNode to (maxNodes + firstNode - 1)

-- nodes 0 - 9 are sprites 29 - 38
puppetSprite i, TRUE

end repeat
repeat with i = (maxNodes + firstNode) to (maxNodes * 2 + firstNode -1)

-- values are sprites 39 to 48
puppetSprite i, TRUE
set the text of member (38 - maxNodes - firstNode + i) to ",'

end repeat

--set the nodes out the stage
repeat with j=(firstNode+maxNodes) to 48

set h to the locH of sprite j
set v to the IocV of spri te j

repeat with i=firstNode to (firstNode+maxNodes-l)
set the visible of sprite i to FALSE
set the locH of sprite (i+maxNodes) to (h+600)
set the locV of sprite (i+maxNodes) to (v+600)

end repr-at
end repeat

end

on exitFrame
pause

end

Push Frame Script

on enterFrame
global root,nodeList,firstNode,rnaxNodes,stackCount,stackFlag

48

set stackCount to firstNode

if count(stackList)=O then
set the locH of sprite firstNode to 250
set the locV of sprite firstNode to (the stageTop-140)
set the locH of sprite (maxNodes + fustNode) to 245
set the loeV of sprite (maxNodes + firstNode) to (the stageTop-l50)
set stackFlag to TRUE
set root to new(script"Stack Parent Script",O,O,O,O,O)
add nodeList,root

end if

set the script of menultem "Push" of menu "Stack" -,
to "pushHandler"

updateStage
end

on exitFrame
pause

end

Push Handler

on pushHandler
set Token to field "Word"
put "" into field "Word"
stackPush(Token)

end pushHandler

Stack Parent Script

--Parent script for creating a stack node and value box
property level, number, Boxes, Values, valueList, spriteNum, valueNum

on new me, nodeNumber, oldLevel, c1oneNum, cloneNode, leftChild
global nodeList, maxNodes, firstNode,counter,stackFlag
if count (nodeList) >= maxNodes then
puppetsound "staful"
updateStage

repeat with i = I to 4
beep (1)
put "no" into field "Nodes left"

49

updateStage
startTimer
repeat while the timer < 30

nothing
end repeat
put 1111 into field "Nodes left"
updateStage
startTimer
repeat while the timer < 30

nothing
end repeat

end repeat
put "a" into field "Nodes left"
abort

end if
set number to nodeNumber
set level to oldLevel
set spriteNum to (nodeNumber + firstNode)
set valueNum to (nodeNumber + 38)
if stackFlag=TRUE then

set Boxes to new (script "stackNode Parent" , count(nodeList), cloneNum)
set Values to new (script "stackValue Parent", count(nodeList), cloneNum)

else
set Boxes to new (script "stackNode Parent" ,(count(stackList)-l), cloneNum)
set Values to new (script "stackValue Parent",(count(stackList)-l), cloneNurn)

end if

set valueList to [:]
set the visible of sprite (firstNode+counter) to TRUE
return me

end

on pushToken me, Token
global nodeList, root, newNode,vI ,stackList,firstNode,maxNodes

set newToken to Token

if newToken = "" or newToken=" II then
alert"Please input data!"
puppetSound "input"
updateStage
startTimer
if level = 0 then set i to 4
repeat while the timer < i * 60

nothing

50

end repeat
else

puppetSound "push"
updateStage

--check if the stack has more than ten nodes
if count(stackList)<lO then

addProp (stackList,newToken,vI)
end if

if count(stackList)<=1 then
set the text of member valueNum to getPropAt(stackList,l)

repeat with i = 1 to (the stageTop+lO)
set the locV of sprite 29 to ...,

(the 10cV of sprite 29 + 1)
set the 10cV of sprite 39 to ...,

(the locV of sprite 39 + 1)
updateStage

end repeat
put maxNodes count (nodeList) into field "Nodes left"
-- Show the insert
updateStage

else
set newToken to splitNode (me,newToken,vl)

end if

end if

updateStage
return newTok n

end pushToken

on splitNode me, Token, lac
global nodeList, maxNodes, firstNode, newNode,,,tackList,vl

set newNode to new (script "Stack Parent Script", count(nodeList),level,number, me,
vI)

add (nodeList, newNode)
set the text of member 38 to getPropAt(stackList, I)
--add the values to the display sprite for me

Sl

set the text of member the valueNum of newNode to
getPropAt(stackList,count(stackList»

-- Move new node into position
if level = 0 then
moveDown getAt(nodeList, I)

end if
put maxNodes - count (nodeList) into field "Nodes left"
startTimer
if level = 0 then set i to I
repeat while the timer < i * 60

nothing
end repeat

return newToken
end splitNode

on moveDown me
global maxNodes

repeat with i = 29 to (29+(count(stackList)-2»
repeat with j = 1 to 30

set the loeV of sprite i to -,
the loeV of sprite i + 1

set the loeV of sprite (i+maxNodes) to -,
the loeV of sprite (i+maxNodes) + 1

updateStage
end repeat

end repeat
end moveDown

Pop Frame Script

on enterFrame
global nodeList,firstNode,maxNodes,newNode,counter,stackCount,spriteNurn
global stackFlag

set stackFlag to FALSE
if count(stackList)=O then

alert "There is no node to pop!"
beep

else
puppetSound "pop"
updateStage
--move the top node out

52

repeat with i = 1 to (the stageTop+3(0)
set the locV of sprite (stackCount+maxNodes+count(stackList)-I) to (the 10cV of

sprite (stackCount+maxNodes+count(stackList)-I) - 1)
set the locV of sprite (stackCount+count(stackList)-I) to...,

(the 10cV of sprite (stackCount+count(stackList)-l) - 1)
updateStage

end repeat

deleteAt(stackList,count(stackList»
deleteAt(nodeList,count(nodeList»

--move the rest node up one location
repeat with j=O to count(stackList)

repeat with i=l to 30
set the locV of sprite (stackCount+j) to (the locV of sprite (stackCount+j)-l)
set the 10cV of sprite (stackCount+maxNodes+j) to (the locV of sprite

(stackCount+j)-5)
updateStage

end repeat
end repeat

put (maxNodes-count(nodeList» into field "Nodes left"
put ,,,, into field "Word"
updateStage
startTimer
repeat while the timer <2*30

nothing
end repeat

if count(stackList)=O then
puppetSound "staemp"
updateStage
startTimer
repeat while the timer < 7*30

nothing
end repeat

end if

end if
end

on exitFrame
go to "Push"

end

53

Stack Node Box Parent

-- Create new stack node box
property valueList

on new me, nodeNumber, cloneNode
global firstNode,counter,stackFlag
set spriteNum to (nodeNumber + firstNode)
set cloneSprite to (cloneNode + firstNode)
set the castNum of sprite spriteNum. to the number of cast IstackNode"
if stackFlag=TRUE then

if count(nodeList)=O then
set the locH of sprite spriteNum to the locH of sprite cloneSprite
set the 10cV of sprite spriteNum to the 10cV of sprite cloneSprite

else
set the locH of sprite spriteNum to (the locH of (sprite (spriteNum-1)))
set the 10cV of sprite spriteNum to «the 10cV of sprite (spriteNum-1)))

end if
else

set the locH of sprite spriteNum to 250
set the locV of sprite spriteNum to 86

end if

set counter to (counter+1)

return me
end

Stack Value Parent

-- create a new stackValue slot
on new me, nodeNumber, cloneNode

global maxNodes, frrstNode,stackFlag
set i to nodeNumber + firstNode + maxNodes
set valueNum to nodeNumber + 38
set cloneSprite to cloneNode + firstNode + maxNodes
set the castNum of sprite i to valueNum
if stackFlag=TRUE then
if count(nodeList)=O then

set the locH of sprite i to the locH of sprite cloneSprite
set the 10cV of sprite i to the 10cV of sprite cloneSprite

else
set the locH of sprite i to (the locH of sprite (i-I))
set the 10cV of sprite i to (the 10cV of sprite (i-I))

end if

54

else
set the locH of sprite i to 245
set the locV of sprite i to 76

end if

end

Enqueue Frame Script

on enterFrame
global root,nodeList,firstNode,maxNodes

if count(nodeList)=O then
set stageWidth to (the stageRight- the stageLeft)
set the locH of sprite frrstNode to (stageWidth+32)
set the loeV of sprite firstNode to 230
set the locH of sprite (maxNodes + firstNode) to (stageWidth+21)
set the 10cV of sprite (maxNodes + firstNode) to 220
set root to new(script"Queue Parent Script",O,O,O,O,O)
set the text of member 38 to " "

end if

set the script of menuItem "Enqueue" of menu "Queue" -,
to "enqHandler"

updateStage
end

on exitFrame
pause

end

Deque Frame Script

on enterFrame
global nodeList,firstNode,maxNodes,newNode
global counter,popCount,queCount,deICount,queFlag

set queFlag to FALSE
if count(queList)=O then

alert "There is no node to dequeue!"
beep

else
puppetSound "deq"
updateStage

5S

-

repeat with i = I to (the stageLeft+290+33*(count(nodeList»)
set the locH of sprite (the spriteNum of getAt(nodeList,I» to -,

(the locH of sprite (the spriteNum of getAt(nodeList,l»-l)
set the locH of sprite (the valueNum of getAt(nodeList,l)+l) to..,

(the locH of sprite (the valueNum of getAt(nodeList,1)+I)-1)
updateStage

end repeat

repeat with i=2 to count(nodeList)
repeat with j=l to 32

set the locH of sprite (the spriteNum of getAt(nodeList,i» to (the locH of sprite (the
spriteNum of getAt(nodeList,i»-l)

set the locH of sprite (the valueNum of getAt(nodeList,i)+ 1) to (the locH of sprite
(the valueNum of getAt(nodeList,i)+l)-l)

updateStage
end repeat

end repeat

deleteAt(queList, 1)
deleteAt(nodeList,l)
put (maxNodes-count(nodeList» into field "Que Nodes left"
set counter to (counter-I)
set popCount to (popCouflt+l)

updateStage
startTimer
repeat while the timer < 4*30

nothing
end repeat

if count(queList)=O then
puppetSound "queemp"
updateStage
startTimer
repeat while the timer < 8*30

nothing
end repeat

end if

end if
end

on exitFrame
go to "Enque"

56

end

Enque Handler

on enqHandler
set Token to field "Word"
put "" into field "Word"
Enq(Token)

end enqHandler

Queue Parent Script and pushToken Handler

--Parent script for creating a queue node
property level, number, Boxes, Values, valueList, spriteNum, valueNum

on new me, nodeNumber, oldLevel. cloneNum, cloneNode, leftChild
global nodeList, maxNodes, firstNode,counter,deICount,queFlag
if count (nodeList) >= maxNodes then

puppetSound "queful"
updateStage

repeat with i = 1 to 4
beep (1)
put "no" into field "Que Nodes left"
updateStage
startTimer
repeat while the timer < 30

nothing
end repeat
put "" into field "Que Nodes left"
updateStage
startTimer
repeat while the timer < 30

nothing
end repeat

end repeat
put "0" into field "Que Nodes left"
abort

end if
set number to nodeNumber
set level to oldLevel
set spriteNum to (nodeNumber + firstNode)
set vaJueNum to (nodeNumber + 38)
if queFlag=TRUE then

57

set Boxes to new (script "queNode Parent", count(nodeList), cloneNum.)
set Values to new (script"queValue Parent",count(nodeList), cloneNum)

else
set Boxes to new (script "queNode Parent", delCount, cloneNum)
set Values to new (script "queValue Parent",deICount, cloneNum)

end if

set valueList to [:]
set the visible of sprite spriteNum to TRUE
return me

end

on pushToken me, Token
global nodeList,root,Order,vI ,newToken,maxNodes,queFlag,delCouDt,delList

set newToken to Token
if newToken = "" or newToken=" "then

alert"Please input data!"
puppetSound "input"
updateStage

else
if count(queList)<1 0 then

puppetSound "enq"
updateStage

addProp (queList, newToken, vI)
--addProp(delList,newToken,v I)
if queFlag=FALSE then

set deICount to count(deIList)
if count(delList»= 10 then

set deICount to (count(delList) mod 10)
end if

end if
end if

if count(queList)<=l then
-- put the values into the sprite
set the text of member valueNum to getPropAt (queList,l)

add nodeList,root
put maxNodes - count (nodeList) into field "Que Nodes left"
--move the firstNode and value box out of stage
repeat with i = 1 to (the stageLeft+290)

set the locH of sprite 29 to ..,
(the locH of sprite 29 - 1)

58

set the locH of sprite 39 to -,
(the locH of sprite 39 - 1)

updateStage
end repeat
-- Show the insert
updateStage

else
set newToken to splitNode (me, newToken,vl)

end if

end if

updateStage
return newToken

end pushToken

on splitNode me, Token, loc
global nodeList, Order, maxNodes, firstNode,newNode,vl,delCount,queFlag

if queFlag=TRUE then
set newNode to new (script "Queue Parent Script" ,count(nodeList), level, number, me,

vI)
else

set newNode to new (script "Queue Parent Script",deICount,level, number, me, vi)
end if

updateStage
add (nodeList, newNode)
put maxNodes - count (nodeList) into field "Que Nodes left"

-- add the values to the display sprite for newNode
set the text of cast the valueNum of newNode to getPropAt (queList,count(queList»

-- Move new node into position
moveLeft newNode

startTirner
repeat while the timer < 1 * 60

nothing
end repeat

return newToken
end splitNode

on moveLeft me

59

global maxNodes
set valueSprite to spriteNum + maxNodes
repeat witb i = 1 to (the stageLeft+290-33*(count(nodeList)-1»
set tbe locH of sprite spriteNum to ..,

(the locH of sprite spriteNum - 1)
set the locH of sprite valueSprite to ..,

(the locH of sprite valueSprite - 1)
updateStage

end repeat
end moveLeft

Queue Value Parent Script

--create a new queue value slot

on new me, nodeNumber, cloneNode
global maxNodes, firstNode,delCount
set stageWidth to (the stageRight- the stageLeft)
if delCount>=lO then

s.et ito (delCount mod lO)+firstNode + maxNodes
else
set ito nodeNum.ber + firstNode + maxNodes

end if

set valueNum to nodeNumber + 38
set cloneSprite to cloneNode + firstNode + maxNodes
set the castNum of sprite i to valueNum
set the locH of sprite i to (stageWidth+21)
set the locV of sprite i to 220

end

Queue Node Parent Script

-- Create new que node box
property valueList

on new me, nodeNumber, cloneNode
global firstNode,counter
set stageWidth to (the stageRight- the stageLeft)
set spriteNum to (nodeNumber + firstNode)
set cloneSprite to (cloneNode + firstNode)
set the castNurn of sprite spriteNum to the number of cast "queNode"
set the locH of sprite spriteNum to (stageWidth+32)
set the locY of sprite spriteNum to 230
set counter to (counter+1)

60

return me
end

List Insert Frame Script

on enterFrame
global root,nodeList,firstNode,maxNodes,listFlag,linkCount,linkList
global tempList,vI

if count(linkList)=O then
set the locH of sprite firstNode to -30
set the locV of sprite firstNode to 260
set the locH of sprite (maxNodes + firstNode) to -49
set the locV of sprite (maxNodes + frrstNode) to 250

set root to new(script"List Parent Script" ,0,0,0,0,0)
add the actorList,root
set the text of member 38 to " "
add nodeList,root

end if

set the script of menultem "Insert" of menu "List" ...,
to "insertHandler"

updateStage
end

on exitFrame
pause

end

List Parent Script and pushToken Handler

--Parent script for creating a list node
property level, number, Boxes, Values, valueList, spriteNum, valueNum

on new me, nodeNumber, oldLevel, cloneNum, cloneNode, leftChild
global nodeList, maxNodes, firstNode,counter,listPlag,nodePos,linkCount
global deletePos

if count (nodeList) >= maxNodes then
puppetSound "listful"
updateStage

repeat with i =1 to 4

61

beep (1)
put "no" into field "Que Nodes left"
updateStage
startTirner
repeat while the timer < 30

nothing
end repeat
put .tll into field "Que Nodes left"
updateStage
startTimer
repeat while the timer < 30

nothing
end repeat

end repeat
put "0" into field "Que Nodes left"
abort

end if
set number to nodeNumber
set level to oldLevel

set spriteNum to (nodeNurnber + firstNode)
set valueNum to (nodeNumber + 38)

set Boxes to new (script "listNode Parent", count(nodeList), cloneNum)
set Values to new (script "listValue Parent", count(nodeList), cloneNurn)

if listFlag=TRUE then
set the visible of sprite (firstNode+counter) to TRUE

else
set the visible of sprite (firstNode+nodePos-l) to TRUE
set the visible of sprite (firstNode+counter) to TRUE

end if

return me
end

on pushToken me, Token
global nodeList,root,Order,newNode,linkList,vI ,tempList,linkCount
global maxNodes,counter,firstNode

if linkCount=TRUE then
set tempList to [:]
set the actorList=[]
set counter to -1
if count(linkList)<>O then

62

repeat with i=29 to 38
set the locH of sprite ito -20
set the locV of sprite i to -10
set the text of member (i+maxNodes-l) to ""
set the locH of sprite (i+maxNodes) to -20
setthe locY of sprite O+maxNodes) to -10
updateStage

end repeat
repeat with i=1 to count(linkList)

addProp(tempList,getPropAt(linkList,i),vI)
add the actorList, new (script "List Parent Script",(i-l), level, number, me, vI}
set the locH of sprite (i+29-1) to 40+49*(i-l)
set the locY of sprite (i+29-1) to 260
set the locH of sprite (i+38) to 21+49*(i-l)
set the lacY of sprite (i+38) to 250
set the text of member (38+i-l) to getPropAt(linkList,i)
updateStage

end repeat
end if

set linkCount to FALSE
end if

set newToken to Token

if newToken = "" or newToken="" then
alert"Please input data!"
puppetSound "input"
updateStage
startTimer
if level = 0 then set i to 4
repeat while the timer < i * 60

nothing
end repeat

else
if count(linkList)<1 then

puppetSound "insert2"
updateStage
addProp (linkList,newToken,vl)
putlinkList
sort linkList
addProp(tempList,newToken,v1)
sort tempList
-- put the values into the sprite

63

set the text of member valueNum to getPropAt (linkList,l)

repeat with i = 1 to 70
set the locH of sprite firstNode to (the locH of sprite firstNode+ 1)
set the locH of sprite (maxNodes + firstNode) to «the locH of sprite (maxNodes +

firstNode»+ I)
updateStage

end repeat
put maxNodes-count(nodeList) into field "Que Nodes left"

-- Show the insert
updateStage
return ""

else
repeat with i=l to count(linkList)

if getPropAt (linkList,i) = Token then
alert"Please input a new data!"
puppetSound "inputnew"
updateStage
startTimer
if level = 0 then set i to 4
repeat while the timer < i * 60
nothing

end repeat

exit
end if

end repeat
puppetSound "insert2"
updateStage

set newToken to splitNode (me, newToken, vI)
end if

end if

updateStage
return newToken

end pushToken

on splitNode me, Token, loc
global nodeList, Order, maxNodes, firstNode, insertPosition
global newNode,vl,linkList,tempList

set newNode to new (script "List Parent Script", count(nodeList), level, number, me, vI)

64

add the actorList,newNode
add (nodeList, newNode)
put maxNodes - count (nodeList) into field "Que Nodes left"

addProp(linkList,Token,vl)
put linkList
sort linkList
addProp(tempList,Token,vl)
sort tempList

repeat with i=l to count(linkList)
set the text of member (38+i-1) to getPropAt(linkList,i)
if getPropAt OinkList,i) = Token then

set insertPosition to i
end if

end repeat

-- Move inserted node into position
set insertNode to getAt(nodeList,insertPosition)
if insertPosition >1 then

set the locH of sprite (firstNode+insertPosition-1) to 40
set the 10cV of sprite (firstNode+insertPosition-1) to 260
set the locH of sprite (maxNodes + firstNode+insertPosition-l) to 21
set the locV of sprite (maxNodes + firstNode+insertPosition-l) to 250

end if

moveRight insertNode

startTimer
if level =0 then set i to 1
repeat while the timer < i '" 60

nothing
end repeat

return newToken
end splitNode

on moveRight me
global maxNodes,insertPosition,firstNode,nodeList
set valueSprite to spriteNum + maxNodes

repeat with i = 1 to 49*(insertPosition-1)
--repeat with i = 1 to 49
set the locH of sprite (firstNode+insertPosition-l) to ..,

65

«the locH of sprite (firstNode+insertPosition-I»+ 1)
set the locH of sprite (maxNodes + firstNode+insertPosition-l) to-,

sprite (maxNodes + frrstNode+insertPosition-I»+ I)
updateStage

end repeat

end moveRight

Insert Handler

on insertHandler
set Token to field "Word"
put "" into field "Word"
Insert(Token)

end insertHandler

List Node Parent Script

-- Create new list node box
on new me, nodeNumber, cloneNode

global firstNode,counter,listFlag,linkList

set spriteNum to (nodeNumber + firstNode)

set the castNum of sprite spriteNum to the number of cast "listNode"
if count(linkList)=O then

set the locH of sprite spriteNum to -30
set the loeV of sprite spriteNum to 260

else
set the locH of sprite spriteNum to (40+49*(count(nodeList»)
set the 10cV of sprite spriteNum to 260

end if

set counter to (counter+I)

return me
end

List Value Parent SClipt

-- create a new list value slot
on new me, nodeNumber, cloneNode
global maxNodes, firstNode,listFlag,linkList
setj to nodeNumber + firstNode + maxNodes

66

«the locH of

set valueNurn to (nodeNurnber + 38)
set the castNum of sprite j to valueNum

if count(linkList)=O then
set the locH of sprite (j) to -49
set the 10cV of sprite (j) to 250

else
set the locH of sprite (j) to (21 +49*(count(nodeList»)
set the 10cV of sprite (j) to 250

end if

end

List Delete Frame Script

on enterFrame
global nodeList,listFlag,firstNode,maxNodes,newNode,counter,linkList
globallinkCount

set listFlag to FALSE
set linkCount to TRUE
if count(linkList)=O then

alert "There is no node to delete!"
beep

end if

set Token to field "Word"
put "" into field "Word"
Delete(Token)

end

on Delete Token
global nodeList,maxNodes,deletePos,firstNode,linkList,tempList,counter
global nodePos,linkCount

set x to TRUE
set sound to TRUE
if Token <> "" then

set sound to FALSE
repeat with i=l to count(linkList)
if getPropAt (linkList,i) = Token then

set deletePos to i
set x to FALSE
--find the first node to delete and exit the repeat loop

67

exit repeat
end if

end repeat

if x=TRUE then
alert"There is no such node in the list!"
--go to frame "Insert"
exit

end if
else

if count(linkList)<>O then
alert "There is no input data to delete!"
puppetSound "input"
updateStage
startTimer
repeat while the timer < 6*30
nothing

end repeat

exit
end if

end if

if count(linkList) > 0 then
--play sound
puppetsound "delete"
updateStage

repeat with i=l to count(tempList)
if getPropAt (tempList,i) = Token then

set nodePos to 0+1)
set the text of member (firstNode+maxNodes+nodePos-3) to ""
--set the nodes out the stage
set the locH of sprite (firstNode+maxNodes+nodePos-2) to -20
set the 10cY of sprite (firstNode+maxNodes+nodePos-2) to -10
set the locH of sprite (firstNode+nodePos-2) to -20
set the locV of sprite (firstNode+nodePos-2) to -1 ()
set counter to (counter-I)
updateStage
exit repeat

end if
end repeat
repeat with i=nodePos to count(tempList)

repeat with j = I to 49
set the locH of sprite (firstNode+i-l) to ((the locH of sprite (firstNode+i-l»- 1)

68

set the locH of sprite (firstNode+maxNodes+i-l) to (the locH of sprite
(fIrstNode+maxNodes+i-I))- 1)

updateStage
end repeat

end repeat
startTimer
repeat while the timer < 4*30

nothing
end repeat

else
alert "There is no node to delete!"

exit
end if

if count(linkList)=maxNodes and Token='''' then
exit

else
deleteAt(linkList,deletePos)
deleteAt(nodeList,deletePos)
put (maxNodes-count(linkList» into field "Que Nodes left"
updateStage
if count(nodeList)=O then

puppetsound "listemp"
updateStage
startTimer
repeat while the timer < 7*30

nothing
end repeat

end if
end if

end Delete

on exitFrame
go to "Insert"

end

"Help-Instruction" Frame Script

on enterFrame
global firstNode,maxNodes,h,nodeList
repeat with i = firstNode to (maxNodes + fIrstNode - 1)

-- nodes 0 - 9 are sprites 29 - 38

69

puppetSprite i, TRUE
end repeat
repeat with i = (maxNodes + firstNode) to (maxNodes * 2 + firstNode -1)

-- values are sprites 39 to 48
puppetSprite i, TRUE
set the text of member (38 - maxNodes - firstNode + i) to ""

end repeat

repeat with j=(firstNode+maxNodes) to 48
set h to the locH of sprite j
set v to the locV of sprite j

repeat with i=firstNode to (firstNode+maxNodes-l)
set the visible of sprite i to FALSE
set the locH of sprite (i+maxNodes) to (h+600)
set the locV of sprite (i+maxNodes) to (v+600)

end repeat
end repeat

updateStage
end

on exitFrame
pause

end

"Help-About ADT" Frame Script

on enterFrame
global firstNode,maxNodes,h,nodeList
repeat with i = firstNode to (maxNodes + firstNode - 1)

-- nodes 0 - 9 are sprites 29 - 38
puppetSprite i, TRUE

end repeat
repeat with i = (maxNodes + firstNode) to (maxNodes * 2 + firstNode-1)

-- values are sprites 39 to 48
puppetSprite i, TRUE
set the text of member (38 - maxNodes - firstNode + i) to ""

end repeat

repeat with j=(firstNode+maxNodes) to 48
set h to the locH of sprite j
set v to the 10cV of sprite j

70

repeat with i=firstNode to (firstNode+maxNodes-l)
set the visible of sprite i to FALSE
set the locH of sprite (i+maxNodes) to (h+600)
set the locV of sprite (i+maxNodes) to (v+600)

end repeat
end repeat

updateStage
end

on exitFrame
pause

end

71

1
V

VITA

Cong Xu

Candidate for the Degree of

Master of Science

Thesis: MULTIMEDIA VISUALIZATION OF ABSTRACT DATA TYPE

Major Field: Computer Science

Biographical:

Personal' Data: Born in Qingdao, China, On August 3, 1970, the daughter of
Mr. Jiashu Xu and Ms. Junrui Sun.

Education: Graduated from No.9 High School, Qingdao, China in July 1988;
Received Bachelor of Science degree in Chemistry from Ocean University
of Qingdao, Qingdao, China in July 1992. Completed the requirements for
the Master of Science degree with a major in Computer Science at
Oklahoma State University in December 1997.

Professional' Experience: Computer Assistant, Computing and Information
Services, Oklahoma State University, August 1996 to December 1997;
Teaching Assistant, Computer Science Department, Oklahoma State
University, August 1997 to December 1997.

Professional Membership: The Association for Computing Machinery (ACM)

