
USING FORMAL METHODS TO DE IG AND

IMPLEME T AN OBJECT-ORIENTED

UNIVERSITY SPORTS CENTER'S

INFORMATION MANAGEMENT

SYSTEM

By

YI XIE

Bachelor of Engineering

Computer Institute, Beijing Polytechnic University

Beijing, P. R. China

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1997

Oklahoma State University Library

USING FORMAL METHODS TO DESIG AND

IMPLEMENT AN OBJECT-ORIE TED

UNIVERSITY SPORTS CENTER S

INFORMATION MANAGEMENT

SYSTEM

Thesis Approved:

Thesis Advisor

Dean of the Graduate College

ii

ACKNOWLEGMENTS

I sincerely thank my graduate advisor Dr. Huizhu Lu for the guidance, help,

encouragement and time she has given me toward the completion of my thesis work. I

would like to express my sincere thanks 10 Dr. 1. P. Chandler and Dr. K. M. George for

serving on my committee. Their guidance, encouragement and friendships are very

helpful to improve the quality of this thesis.

My respectful thanks go to my parents Mr. Jinlai Xie and Mrs. Zhaohua Xie, and my

husband, Sheng Xu, for the love, encouragement and confidence they have given me.

I would also like to express my appreciation to all those people who have contributed

by giving many valuable suggestions.

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

Formal Methods , 1
Z and Object-Z 4
Microsoft Visual Basic 4.0 GUI and OOP 7
The Objective of the Thesis 9
The Organization of the Thesis 10

II. LITERATURE REVIEW 12

Formal Methods and CICS 12
Formal Methods and Computer Network Protocols 13
Formal Methods and Telephony 14
Formal Methods and Computer Hardware Design 15
Other Specification languages in Formal Methods 16
Z and Object-Z 18

Ill. SPECIFICATION OF UNIVERSITY SPORTS CENTER'S
INFORMATION MANAGEMENT SYSTEM 20

Z: basics and notations 20
Object-Z: An Extension of Z 23
Requirement Analysis , 26
Specification Analysis 28

IV. SYSTEM IMPLEMENTATION 41

General Design in Visual Basic 41
Database Design in Visual Basic 4.0 42
Implementation of the Management System 43

IV

Chapter Page

V. SUMMARY AND CONCLUSIONS 59

BIBLOGRAPHY 61

APPENDIXES 64

APPENDIX A - Z AND OBJECT-Z NOTATIONS USED 65

APPENDIX B - SPECIFICATION 66

v

LIST OF TABLES

Table Page

1. List of Tables in the Database File 46

2. List of Fields in All Tables 47

3. List of Indexes for All Tables 47

4. List of All Forms And Their Functions in the System 48

5. List of All Controls on the User Form 51

6. List of All Controls on the Equipment Form 53

7. List of All Controls on the Return Form , .. , 55

8. List of All Objects Which Have Event-Procedures Embedded 57

vi

Figure

LIST OF FIGURES

Paoeo

1. Factors to be balanced when deciding whether or
not to use fonnal methods 3

2. Diagram of various transactions in the system 27

3. The structure of University Sports Center's
Information Management System .44

4. The main screen of the University Sports Center's
Information Management System 45

5. The view provided by the user form 50

6. The view provided by the equipment form 53

7. The view provided by the return fonn 55

VII

CHAPTER I

INTRODUCTION

Formal Methods

The goal of the software engineering process is to create high quality software. High

quality software should be maintainable, reliable, and efficient, and should offer an

appropriate user interface [Bruno, 1995]. In recent years, much research in software

engineering has been focused on how to produce high quality software quickly and

economically.

Two crucial stages in the software engineering process are software specification and

verification. The software specification describes the problem which is to be solved and

makes statements about what the solution of the problem should be like. The features that

a good software specification should display are clear and unambiguou , accurate and

complete. The software verification is actually the answer to the question "are we making

the product right 1". The software specification and verification could be based on natural

languages such as English, or on computer languages such a'i ADA or Pascal. The

specifications which are based on these languages are informal. The word "informal"

means that the ways in which things are described depend to at least some extent on a

common understanding of what is written among those people reading the statement. If

that assumed common understanding is not present, then the staternent'i will become

either meaningless, ambiguous, or incorrect. Formal methods can b v ry h lpful m

solving this problem [Scharbach, 1988].

FOITIlal methods are the mathematical foundation for the specification, implementation,

and verification of computer systems. The mathematical notation in formal methods can

standardize the software specification and design. Formal methods consist of two parts:

formal specification and verified design. FOITIlal specification uses the notation which is

derived from formal logic to describe assumptions about the world in which a system will

operate, requirements that the system is to achieve and a design to meet those

requirements. Specifications in formal methods can provide a direct simulation of the

system behavior and this simulation can be passed to the clients so that developers can get

some early feedback which can be compared with user requirements for verification. In

this way, a formal specification can make the software easy to maintain and reduce the

risk of a piece of software not meeting its requirements. Formal methods are

distinguished by their specification languages. These specification languages exploit

representations with formally defined semantics and they can describe abstractly and

independently the details of implementation of the desired functional behavior of a

system to be developed.

Although fannal methods have been studied in academia for a long time and some

examples of industrial applications have been reported in the literature, a recent survey of

twelve applications of formal methods showed that people are still at the early stages of

using formal methods in industry [Berg, 1982]. The principal arguments against the use

of formal methods are those based on the cost of the projects, the time taken to develop

software and the availability of qualified and experienced staff [Ford, 1993]. The factors

2

which need to be balanced when deciding whether or not to use fonnal methods are

shown in Figure 1.

Figure 1. Factors to be balanced when deciding whether or not to use fonnal methods

[Ford, 1993].

3

Z and Object-Z

As mentioned before, fonnal methods are distinguished by their p ification

languages. The Z specification language is one of the most well developed sp cification

languages. It was developed in the late 70's and early 80's by Jean-Raymond Abrial et al.

of Programming Research Group in Oxford University [Spivey, 1988).

The Z specification language is based on the mathematical disciplines of fust-order

logic and set theory. One of its key features is the notion of a "schema". A chema

consists of a collection of named objects with a relationship specified by several axioms.

Z provides notations for defining schemas and later combining them by using schema

calculus, so that the specifications of sizable software systems can be built up in stages.

We will briefly introduce the basic concepts of Z and the notations in Z later. Schemas

can have generic parameters, and there are operations in Z for creating instances of

generic schemas. Schemas are used to describe all aspects of the system under

development, such as the states it can occupy, the transitions it can make from one state

to another, and even the relationship between one view of the state and another as we

transform the specification into a design for implementation.

The formal semantics of the Z notation is favored for several reasons. The first is that

the compactness and regularity of the formulae make them easy to manipulate

algebraically in a way that English text is not. The second is its consequences for the

practice of specification. Formal semantics provide a foundation for a logical calculus for

reasoning about specifications and deriving consequences from them. Deriving

consequences from a specification is an important aid in checking that a specification

4

captures a customer's requirements correctly, and helps in validating propos d

implementations. Finally, formal semantics also provides a view of specification which

abstracts from inessential details of syntax and presentation . Z is a necessary and

relatively successful attempt to devise a notation for building models of software systems

and for proving that programs meet their specifications. Let us look for an example at the

comparison between software engineering and civil engineering. You can not imagine

that civil engineers would build a bridge by specifying the problem in natural language

instead of using sophisticated mathematical techniques. While civil engineers use

structural mechanics and dynamics in building a bridge, software engineer use Z which

includes the knowledge of discrete mathematics, set theory and logic in specifying

computer systems.

Since a number of different styles of mathematical specification are gaining popularity,

it is worthwhile to compare Z with some of these [Berg, 1982]. These different styles are

divided into model-oriented methods, where the aim of a specification is to construct an

abstract model of the information system being specified, and property-oriented or

algebraic methods, where the aim is to describe a system in terms of its desired

properties, without constructing an explicit model. Among the model-oriented methods

are Z and VOM (Vienna Development Method). The prominent property-oriented

methods are Clear, OBJ and ACT ONE. Actually, the distinction between model-oriented

and property-oriented methods is not so clear-cut. In practice, Z specifications often

describe certain aspects of systems by giving axioms which must be satisfied by the

system, and this amounts to property-oriented specifications. Property-oriented

5

specifications often describe a collection of basi data-typ in a pr p rty- ri nted way,

then use these to build a model of the system being specified.

Object orientation is a way of structuring software and promises many b n fits [Booch,

1991]. An object can be regarded as something that encap ulates a piece of a stat

together with some behavior such as the operations that access and modify that state.

Objects provide a way to structure a system specification by partitioning an otherwise

global state space into meaningful chunks. In addition objects are instances of classes,

which are arranged in inheritance hierarchies. Classes can inherit properties from their

parents, as well as define new states and behaviors of their own. Inheritance is an

abstraction mechanism that can be used to structure a specification. Properties of similar

classes are described once, in the specification of a common superclass, and hence

complex classes can be specified incrementally. These object oriented concepts can be

used to provide a structure for Z specifications, and this results in Object-Z. Object-Z is

an extension of Z in which the existing syntax and semantics of Z are retained but new

constructs are introduced to facilitate specification in an object-oriented style. This

enhanced structuring improves the readability of large specifications. It also enables the

possibility of modular verification and refinement. Object-Z has features such as

inheritance, composing classes, adding a constant or a state invariant, modifying and

redefining an operation, etc.

6

Microsoft Visual Basic 4.0, Gill and OOP

Visual Basic was first released by Microsoft in 1991. At that time, it was the most

exciting computer language product to hit the market in a while. It is an easy-lo-use, yet

extraordinarily powerful tool for developing Windows applications. The latest version of

Visual Basic, Microsoft Visual Basic 4.0, adds many new features, such as the ability to

build 32-bit executables for both Windows 95 and Windows NT.

Graphical User Interfaces, or Gills, have revolutionized the microcomputer industry.

Instead of the cryptic C:> prompt that DOS users have long seen, users are presented with

a desktop filled with icons and with programs that use mice and menus. Users can spend

more time mastering the application and less time worrying about which keystrokes do

what within menus and dialog boxes. Beginning users seem to like GUIs very much.

Windows programs are expected to be based on the GUI model to have the right look and

feel. You will want a tool to develop GUI-based applications efficiently when you need to

develop programs for any version of Windows.

There were no such tools for a long time before Visual Basic was introduced in 1991.

Since then, Visual Basic has made the programming for Windows not only more efficient

but also more fun. The latest Microsoft Visual Basic 4.0 has many advantages over the

first three versions of Visual Basic:

• We have the ability to generate 32-bit applications for both Windows 95 and

Windows NT.

• We can take advantage of Microsoft's OLE (Object Linking and Embedding)

technology.

7

• We can build programs using some of the t.echniques of obj ct-oriented pro ramming.

• We have the ability to extend the Visual Basic programming environment.

• We have conditional compilation which allows you to do muJtiplatform d velopm nt

more easily.

The general steps to design a Visual Basic application are the following. First of all, we

customize the windows that the user sees. Secondly, we decide what events the controls

on the window should recognize. Finally, we write the event procedures for those events

and the subsidiary procedures that make those event procedures work.

Visual Basic 4.0 is the first version of Visual Basic that gives people access to some of

the power and advantages of object-oriented programming (OOP), although it is not a

fully OOP language like c++ or Delphi. OOP seems to be the dominant programming

paradigm these days, having replaced the structured programming techniques that were

developed in the early 70's.

Several important concepts 10 OOP are classes, encapsulation, inheritance, and

polymorphism. A class is usually described as the template or blueprint from which the

object is actually made. When you create an object from a class, you are said to have

created an instance of the class. For example, all forms in Visual Basic are instances of

the fonn class and an individual fonn in the application is actually a class you can use to

create new forms. The controls on the toolbox represent individual classes, but an

individual control on a form does not. Encapsulation is a key concept in working with

objects; it is combining the data and behavior in one package. Encapsulation is the way to

give an object its "black box"-like behavior and is fully supported by Visual Basic.

Inheritance is the ability to make classes that descend from other classes. The purpose of

8

inheritance is to make it easier to build code for specialized tasks. Visual Basic do not

support inheritance for creating new subclasses. Subclasses will usually inherit the same

methods as the parent classes. OOP allows people to define a new method in a subclass

but give it the same name (so-called overriding). A true OOP language like C++ allows

people to go beyond simply overriding a method into what is usually called

polymorphism. The idea behind polymorphism is that while the message may be the

same, the object determines how to respond. Polymorphism can apply to any method that

is inherited from a base class. Visual Basic does not support polymorphism in any form

for the objects people create.

The Objective of the Thesis

Motivated by the fact that formal methods are gaining popularity in industry and

business applications, the author will use formal methods and the object-Z specification

language to design and write a specification for the University Sports Center's

Information Management System. The author will use Microsoft Visual Basic 4.0 to

implement the corresponding software based on the specification written down. The

completed Windows-style software will provide a friendly user interface for both

professional and non-professional users.

The case above is totally new, and the completed software is believed to be applicable

in the real world. The author received good training in software design and Visual Basic

programming through this work.

9

-

The Organization of the Thesis

This thesis presents the introduction and literature reviews of the research, the detailed

steps of the specification analysis, and how it leads to the system implementation by

using Microsoft Visual Basic 4.0. The detailed description of Z notations and schemas in

our specification are presented in Appendix A and Appendix B, respectively.

Chapter 1, which is the current chapter, is an introduction that gives an overview of

formal methods, Z and Object-Z specification languages, and Microsoft Visual Basic 4.0

and its relation to Graphical User Interface (Gill) and Object-Oriented Programming

(OOP).

Chapter 2 includes the literature reVIews for this research. We present a few

applications of [annal methods in industry and business, such as formal methods and

CICS, and formal methods and telephony, etc.

Chapter 3 is the requirement and specification of the University Sports Center's

Information Management System. In this chapter, we state the requirements and present

and analyze the specification of the University Sport-5 Center's Information Management

System.

Chapter 4 is the system implementation of the University Sports Center's Information

Management System. We will see how many database tables there are in the system,

what the system screens look like, and how the developed system satisfies the

specification stated in Chapter 3.

10

Chapter 5 is the summary and condu ion of the thesis. It is followed by r t ren

Appendix A, and Appendix B. Appendix A gives a detailed description of Z notation.

Appendix B gives schemas in our specification.

11

--

CHAPTER II

LITERATURE REVIEW

As mentioned earlier, much research has been focused on using formal methods to

design a computer application system, due to the fact that formal methods are very useful

design approaches in designing an application program. Using formal methods to design

application software is very helpful in reducing the risks of misunderstanding, especially

when a group of people collaborate on a large project. It is also helpful in hardware

design.

In the following sections, we name a few applications of formal methods and Z

/Object-Z specification languages.

Formal Methods and CICS

CICS (Customer Information Control System) is an IBM family of software products

which is used by businesses world wide to manage and process their business

information. CICS comprises a monitor system providing generic facilities for online

transaction processing, which can be tailored to meet customers' exact business

requirements by means of an application programming interface (API) used to invoke

CICS services from within the customer's own business applications.

12

The application of mathematical methods to the dev-el pment of CICS be an in 1982

with a collaboration between Hursley and the Programming Research Group at Oxford

University on the use of the Z notation for specification [Collins et al., 1989]. Initially, Z

was used in the CICS code restructuring initiative for version 3.1.1 and since th n it has

been used for the specification of the most new components of CICS as well as parts of

the API. The CICS restructuring initiative is aimed at providing future CICS

implementations with a frame work for modular design. Within this new structure, code

modules are grouped according to the data upon which the code operates. Such a group of

code modules is given the name domain. Z is well suited to the specification of CICS

domains, and consequentLy a considerable degree of success has been achieved with its

use for specification by CICS designers. The use of Z results in a tangible increase in the

quality of the CICS product while maintaining the overall programmer productivity.

Although extra work is involved in writing the formal specifications and holding

inspections, this additional effort is offset by a reduction in the amount of rework required

during the subsequent design and coding stages. The majority of the actual savings which

have been realized so far through the use of formal methods have resulted from a

reduction in service costs after the product's release.

Formal Methods and Computer Network Protocols

Dahai Li and T.S.E. Maibaum applied formal methods to the specification and

verification of computer network protocols. In order to build a large and complex

computerized system, adequate specifications of the requirements and implementations

13

-

are essential to ensure the quality of the system. Accurat but flexible specifications in the

design of protocols in distributed computer systems are needed, because the sy terns are

usually large in size and involve some quite sophisticated protocol algorithms. These

protocols can provide the necessary service to their users. Li and Maibaum present d a

logic formalism for the formal specification and verification of protocol probl ms. A

token passing protocol on a ring network was developed, following the top-down step

wise refinement methodology, to demonstrate the practicality of formal methods in the

process of protocol design [Li and Maibaum, 1988]. They benefited very much from one

of the advantages of using formal methods: the elimination of ambiguities in system

specification.

Formal Methods and Telephony

As mentioned before, Z is one of the specification languages in formal methods that

has been widely used recently. Peter Mataga and Pamela Zave used Z to specify telephone

features, specifically the call processing and subscriber database aspects. The

specification was decomposed into two major parts: the telephone interface specification

and the connections specification. The telephone interface part of the specification

described the way in which features were invoked by the user via the telephone. The

connection specification described the consequences of call processing and the

maintenance of subscriber database information [Mataga and Zave, 1995]. Mataga and

Zave sketched enough of the structure to allow a discussion of their experiences with the

multiparadigm specification technique with feature specification and especially with Z.

14

•

-

They proved that it was possible to write a compact specification of a group of reali tic

subscriber telephone features in a framework which was suitable for extension. The use

of Z can meet many of the goals for the specification, and it is significantly more concise

than the corresponding English language feature sp cification documents. Becau e Z

provides the abstraction, the feature descriptions are better suited to the requirements

phase of a software development process.

Formal Methods and Computer Hardware Design

Fonnal methods are used not only in software design, but also in some hardware

design. C.J. Dodge and P.E. Undrill used Z to create an application in digital hardware

design. They presented an experiment using Z in the development of a hardware system.

Giving part of the specification as an example, they showed how it was used to verify

certain aspects of the hardware's behavior. They also showed "the refinement process

from the abstract specification statements into realized hardware and programmable logic

[Dodge and Undrill, 1996]." Dodge and Undrill concluded with a discussion of the merits

of an abstract specification using Z for hardware design. They used Z in the FFT

accelerator design in their project. The FFf accelerator is a combination of a dedicated

Digital Signal Processing (DSP) based FFT processor with a multitransputer system. In

Dodge and Undrill's project, they proved that Z provided a precise method of stating the

required operations of the system, which, as they said, "dramatically helped systematic

thought concerning the decomposition of the accelerator into more manageable blocks

and subsequently the concise expression of the operation of each block [Dodge and

15

-

-

Undrill, 1996]." They showed that Z enabled a useful Level of abstraction during d ign.

Because the designer had a good grasp of the total system stage by stage, it was very

straightforward for the designers to make decisions about the implementation during th

refinement of the specification, and it was also straightforward for them to understand the

implications of each decision. Using the Z specification language for hardware design

also helped them in the derivation of control signals, and provided "a precise set of

documentation notes which had been used as a reference while building the board and

forming the basis of the accelerator documentation [Dodge and Undrill, 1996]." In

Dodge and Undrill's project, the accelerator was simply expressed as a set of states or

functions bringing about state changes. By using Z, the notation in the project was well

suited to the hierarchical decomposition of both structure and behavior. By using Z, it

allowed details to be put at various levels of abstraction and permitted logical reasoning

about the behavior of signals.

Some Specification Languages in Formal Methods

Because formal methods are useful in computer design, people have developed several

kinds of specification languages in formal methods. In K. Lana and H. Haughton's

research, they described development techniques for B Abstract Machine Notation

(AMN), including the "formalization of requirement'S, specification construction, design

and implementation [Lano and Haughton, 1995]." The B AMN specification language is

used widely in formal methods. B AMN has robust, commercially available tool support

for the development life-cycle from specification to code generation. B AMN inherits the

16

•

-

advantages of its predecessor, the Z specification language. Today, B AMN is al 0 widely

used in both industry and academia as a software development tool.

LOTOS is a process-based fonnal specifi,cation language developed by the ISO for the

formal description of OSI (Open System Interconnection) service and protocol st.andards.

It is a type of formal description language which AJ. Tocher used to describe a

communication standard. In the communication service which was developed by Tocher,

users may establish, maintain, and relinquish communication conn.ections between each

other. Connections are established between named addresses. The messages are

communicated at the endpoints. As Tocher writes, "The presentation of a relatively

complete specification in LOTOS of a real distributed communications service has shown

that the language is sufficiently expressive to address problems [Tocher, 1988]." This

practice shows that using fonnal specification languages to design practical applications

can represent the need for the development and expression of industrial standards. There

are also some benefits to be gained from the use of formal methods in the development

and expression of industrial standards.

There are several otber specification languages, such as CCS, CSP, and VDM

mentioned by the International Electrotechnical Commission. CCS stands for Calculus of

Communicating Systems. It is very effective in expressing the composition of subsystems

into a global system, but it prohibits any intermediate development steps [Bruns and

Anderson, 1995]. CSP stands for Communicating Sequential Processes. It is a process

based formalism for the description of concurrent systems, and possesses a rich set of

mathematical laws for their analysis[Hinchey and Bowen, 1995]. VDM is the Vienna

Development Method. Its specification language (VDM-SL) is currently being

17

standardized under the auspices of the ISO and the British Standards In titution. It is

model-oriented and has the large user community. A number of tool have been

developed to support VDM-SL [Hinchey and Bowen, 1995].

The author chose the Z specification language (strictly speaking, Object-Z) because it.

is popular with governments, academics, and parts of industry, especially those

developing critical systems where the reduction of errors and quality of software is

extremely important. The other benefits people can gain from using Z have been stated in

chapter I and the following part of chapter II.

Z and Object-Z

Because an object-oriented approach to software development is becoming popular,

some people have started to use Z to create object-oriented applications. K. Periyasanmy

and C. Mathew did a mapping from a functional specification to an object-oriented

specification. They described a methodology to transform the Z specification into an

Object-Z specification [Periyasamy and Mathew, 1996]. The implementation derived

from the Object-Z specification is easy to maintain, enhance, and reuse.

MooZ (Modular Object-Oriented Z) is also an object-oriented extension of the Z

specification language aimed at the specification of large software systems. By using

MooZ, P. Duarte de Lima Machado and S.L. Meira presented an object-oriented formal

specification of artificial neural networks used in the development of a simulation

environment called EASY (An [E]nvironment for [A]rtificial Neural [SY]stems

Simulation) [Machado et al., 1994]. We know that neural networks are fault tolerant

18

because the failure of one or more neurons or connections may not result in a loss of

knowledge. However, software implementations of neural networks must be reliable,

because bugs may change, as in the behavior of a learning algorithm, compromising the

final results. Mooz made possible a precise and unambiguous description of artificial

neural network properties. Concerning the theory of neural networks so far, a great

number of researchers around the world have been extending or creating new concepts

and paradigms. Very little effort has been done to establish standards or to formalize

concepts. The formal specification presented in their work represents a formalization of

some of the basic neural network concepts. In Machado's work, the inclusion of new

concepts and paradigms was done via the reuse of abstract class definitions in a formal

way. This avoids the respecification of all basic features of neural networks and, indeed,

reduces the development effort.

19

-

CHAPTER III

SPECIFICATION OF UNIVERSITY SPORTS

CENTER'S INFORMATION MANAGEMENT

SYSTEM

z: basics and notations

Z is a set-theoretic specification language. Specifications in Z describe sets, and their

constructs have their meaning in operations on sets. It is natural to know what are sets

theory, what essential properties they have, and what operations can be performed on

them. Mathematicians have established the foundations of set theory as an axiomatic

theory of first-order logic. The following are basics of and notations in Z that will be used

in our specification. A detailed description of Z notations is presented in Appendix A.

Three built-in sets

Z recognizes three built-in sets: the natural numbers N, the integers Z (whole numbers

which range from minus infinity to plus infinity), and the natural numbers excluding 0

which are defined as:

20

-

I number: PN
1-----------------------
I number = N \ {O}

All the standard operators on sets are defined in Z, such as difference, union, and

intersection.

Schema

Schema is one of the principal features of Z . A schema has two sections, the part

above the middle line in the figure is known as signature and the part below the middle

line is known as predicate.

----SchemaNarne-----------------
I signatures
1----------------------
1 predicates

For example, here is a schema called PieceOwned

---PieceOwned---------- ------------- -----
Ipiece? : PIECE
1--------------------------
Ipiece? E available u checkedout

in our specification, piece is the signature of the schema PieceOwned, and piece ? E

available u checkedout is the predicate of the schema. There are many schemas in this

specification (see Appendix B). In Objecl-Z, the schema is called the member function of

a class. The declarative information in a schema is captured in its signature. This records

the names of the schema's components or local variables, their types, and the given-set

21

-

names assumed by the schema. Signatures are finite objects and are suitable for

mechanical representation and manipulation. A schema contains more information than

just the declarations. The axiom part of the schema can describe a relationship among the

variables. The relationships among the variables in a schema are written as predicates.

These predicates must always be true in every state of the system.

Basic Type Sets

Z specification provides a number of facilities which enable system specification to be

built up easily. The first facility allows the specifier to declare the sets which are basic

types in a specification. Those sets which are assumed to exist can be used in

specifications and do not require any further definition. These sets are declared by

enclosing them in square brackets. For example, in the specification of the University

Sports Center's Information Management System, in order to describe the information of

users in the system, we introduced the sets ill, NAME, ADDRESS, PHONE#, and TYPE

to represent user's id, user's name, user's address, user's phone number, and user's type

(staff or student), so we have:

[ID, NAME, ADDRESS, PHONE#, TYPE] .

In order to describe the information of equipment in the system, we introduced the sets

ill, NAME, PLACE, PIECE, and SUBJECT to represent equipment's id, equipment's

name, equipment's place, equipment pieces, and equipment's subject (indoor or outdoor),

so we have:

[ill, NAME, PLACE, PIECE, SUBJECT].

22

--

-

Relations and Functions

Relations are also used in Z specifications. A relation between two types T1 and T2 i

written in the signature part of a Z schema as

T1 +-+ T2,

Functions are a special type of relation; the set and relational operators can be used

with Z objects that are described as functions. In the specification of the University Spons

Center's lnfonnation Management System. we have partial functions and total functions

for which the corresponding symbols are +- and --1'

Object-Z: An Extension of Z

Object-Z is an object oriented approach to Z. It offers plenty of help with structure as

objects which can be used to split up a system's state space and inheritance to build up

complexity. Object-Z makes it possible to write clear, abstract specifications of c1as es

and inheritance hieracbies that are readily comprehensible.

The major extension in Object-Z is the class schema which captures the object-oriented

notion of a class by encapsulating a single state schema with all the operation schemas

which may affect its variables. The class schema is not simply a syntactic extension but

also defines a type whose instances are object references, i.e., identifiers which reference

objects of the class. By declaring variables of class types within a class, objects which

refer to and use other objects may be specified.

23

-

Class schema in Object-Z

An Object-Z class schema, often referred to simply as a class, is represented

syntactically as a named box possibly with generic parameters. In this box there may be

local type and constant definitions, at most one state schema and associated initial state

schema, and zero or more operations. In addition to these explicit definitions, a class may

inherit the definition of one or more other classes. The basic structure of a class is as the

following.

-----ClassName----- ---------------- -----
I inherited class designators
I local type and constant definitions
I state schema
I initial state schema
I operations

The various components of the class definition are described below.

Inherited class desienators: When a class is inherited, its local types and constants are

implicitly available in the inheriting class. Any types or

constants with the same name occumng in both the

inherited and the inheriting class are semantically

identified and hence must have compatible definitions. The

inherited class' state schema and initial state schema are

implicitly conjoined with those declared explicitly in the

inheriting class. The inherited class' operations are implicitly

available except where the name of an operation in the

inheriting class is the same as that of an operation of the

24

--

State schema:

""'"

inherited class,

Local type and constants: The local type and constant definitions of a class have the

same syntax as global type and constant definitions in Z.

Their scope, however, is limited to the class in which they

are declared. A constant is associated with a fixed value

which cannot be changed by any operation of the dass.

They may be different for each instance of the class, but do

not change during the lifetime of an object.

The unnamed schema defines the state and any state invariant.

Initial state:

Operations:

The state invariant is assumed to hold both before and after

any operation.

The initial state schema is named with the keyword INIT

and has only a predicate part. It implicitly includes both the

declarations and the predicates of the state schema. It specifies

the initial state of the object.

The operations are defined either as operation schemas

or operation expreSSIOns. They are interpreted in the class'

local environment enriched with the declarations and

predicates of the state schema. An operation schema extends

the notion of a schema in Z by adding to it a delta-list. The

/1 list gives all those state components that can change during

the operation; all the others remain the same.

25

Requirement Analysis

Requirement analysis is the base for the system design. The requirement of the syst m

developed is as the following:

• The university sports center has two types of users. Staff are responsible for recording

transactions, retrieving, and lending sports equipment, and ordinary users include

enrolled students and staff who can borrow sports equipment.

• When a user borrows sports equipment, the university sports center needs to record

his or her ill number, name, address, and phone number, so that appropriate action

may be taken if the sports equipment is not returned on time.

• Sports equipment is classified by ill number, number of pieces available, location,

and subject, such as indoor sports equipment or outdoor sports equipment. The

equipment may have several pieces available or may have only one available.

The developed system must satisfy the following requirements:

• Each piece of equipment can only have one status, either it is available for checkout

or it has been already checked out.

• A user can only borrow up to the maximum number of equipment pieces at one time.

There are several actions which are transactions conducted by the university sports

center.

• A user borrows a piece of equipment.

• A user returns a piece of equipment.

26

• Staff adds a piece of equipment to the university spans center.

• Staff removes a piece of equipment from the university sports center.

• Staff can get a list of equipment currently checked out by a particular us r.

• Staff can find out who last checked out a particular piece of equipm nt.

The various transactions included in the system can be described by the following

diagram.

i.

rmlu

~~mtffil

U~j,mjt1 ~~~r~ rf~rel

I
I

~f~ere

~~mliol

Mo~ inCllioD

~~ml~n

I

!

i ~~D~me~t I~rorm Ilion

Figure 2. Diagram of various transactions in the system

27

-

Specification Analysis

Based on the requirement stated above, the formal specification of the University

Sports Center's Information Management System is created. In the procedure, the

corresponding mathematical statements which describe a view of the specification are

developed.

We use Object-Z to write an object-oriented specification for the University Sports

Center's Information Management System. In this specification, there are three major

classes: UserClass, EquipmentClass and SportsCenterClass. UserClass includes most

operations which have relation with users of the university spons center, such as

searching the information about a user of the university sports center. EquipmentClass

contains most operations which are performed to the equipment oJ the university sports

center, such as stock operation which deals with adding and removing actions.

SportsCenterClass inherits properties from UserClass and EquipmentClass and

implements counter operations, that is, users of the university sports center can borrow or

return a piece of equipment, but these operations can only be handled by the staff.

Abstract Classes

In the University Sports Center's Information Management System, there are two types

of basic data that need to be manipulated: USER and EQUIPMENT, so there are two

abstract classes in the specification to describe these two types:

28

------------ USER -------------------
I id: ill
I name: NAME
I address: ADDRESS
I phone#: PHONE#
I type: TYPE

and

---- EQUIPMENT --------------------
I id: ill
I name: NANIE
I place: PLACE
I piece: PIECE
I subject: SUBJECT

Classes

In the specification of University Sports Center's Information Management System,

there are three classes: EquipmentClass, UserClass and SportsCenterClass.

EquipmentClass:

State Schema

In the EquipmentClass, there are seven declarations.

I instanceof: PIECE +- EQUIPMENT
I belong : ID -+ EQUIPMENT
I about: EQUIPMENT ++ SUBJECT
I available: F PIECE
I checkedout: F PIECE
I stock: P PIECE
I equipment-info: ID -+ EQUIPMENT

where instanceo! is a partial function mapping from PIECE to EQUIPMENT. It means

which equipment a piece is an instance of. instanceo! describes that a piece can only be

29

-

an instance of one equipment but one equipment may have several pieces. The domain of

this function is the set of all pieces of equipment in th university sports cent r, and th

range of this function is the set of all the equipment in the university sports cent r.

Because each kind of equipment is distinguished by its ill number, belong is a total

function mapping from ill to EQUIPMENT, it tells us the one to one correspondence

between every ID number and each kind of equipment. ID is a set of equipment's IDs in

the university sports center. abollt is a partial function mapping from EQUIPMENT to

SUBJECT, it tens us whether equipment is indoor or outdoor. available and checkedout

are sets of all finite subsets of PIECE of equipment, these subsets contain all the pieces

of equipment which haven't been checked out or have been checked out respectively. The

intersection of checkedout and available is the empty set, that is, checkedout n. available

=0 . stock is the set of all subsets of PIECE of EQUIPMENT. The union of checkedout

and available is the set stock, that is, checkedout u available = stock. equipment-info is a

function mapping from equipment ID number to specific equipment. It is a total function

which describes that each kind of equipment corresponds to one ID number and can only

have one description. The range of this function is stock, so ran equipment-info = stock.

The initial value of those variables are set in the initial state schema.

Initial State Schema

----INIT-------------------------------

I checkedout n. available = 0

I checkedout u available =stock

30

Operations

According to the requirements stated, we need to have the following operation in the

EquipmentClass: AddNewEquipment, AddNewPiece, RemoveEquipment, RemoveAPiece,

and Search.

* AddNewEquipment operation

-----AddNewEquipment------------------------------------ --------------
I J3. (belong, instanceof, about, available, stock, equipment-info)
I equipment ?: EQUIPMENT
lid?: TO
I piece 7: PIECE
I subject 7: SUBJECT

1--
I id 7 ~ dom belong
I equipment 7 ~ ran instanceof

I belong' = belong u { id ? ~ equipment? }
I available'= available u { piece 7}

I instanceof = instanceof u { piece 7 f-7 equipment 7 }

I about' =about u { equipment 7~ subject? }
I stock' = stock u { piece 7 }

I equipment-info' = equipment-info u { id ? ~ equipment 7 }
I checkedout' = checkcdout

In this member function, the values ot variables belong, instanceo/, about, available,

stock and equipment-info of EquipmentClass wiD be changed after the operation. In this

operation, we have input variables: equipment, id, piece, subject. The equipment is a new

type of equipment which is going to be added to the university sports center, so it i.s not in

the range of function instanceof, id is the ID number of new type of equipment, it is not

in the domain of function belong. To implement the adding operation, the pair (id,

equipment) is added to the belong function, and the pair (piece, equipment) is added to

31

the instanceof function. available is equal to the union of pieces owned by the university

sports center and the new added pieces. stock is equal to all the pieces of equipment in the

university sports center including the newly added pieces. The corresponding information

about the new type of equipment is also added to the equipment-info function. The

variable checkedout is unchanged. In order to implement adding new equipment to the

university sports center, we need to have two auxiliary operations NotNewEquipment and

NewEquipment in the class to justify whether the input equipment is already in the

university sports center or not.

-----NotNewEquiprnent------------------
I equipment ?: EQUIPMENT
1-----------------------
I equipment? E ran instanceof

-----NewEquipment-----------------------
I equipment ?: EQUIPMENT
1-------------------------
I equipment ? ~ ran instanceof

Input equipment is the type of equipment which is going to be added to the university

sports center. If it belongs to the range of the function instanceof, then it should be

already in the university sports center, otherwise it is a new type for equipment of the

university sports center.

* AddNewPiece operation

----AddNewPiece---------------- ------------------ ------ -- ---- ----
I !!. (available, instanceof, stock)
I piece ?: PIECE
I equipment ?: EQUIPMENT
1--
I piece ? ~ available u checkedouc
I equipment? E ran instanceof

32

-

Iavailable' = available u { piece? }
1stock' =stock u { piece? }

Iinstanceof = instanceof u {piece? H equipment? }
I about' =about
Icheckedout' = checkedout

In the member function EquipmentClass, we implement adding new pieces of

equipment into the university sports center. We assume the equipment is contained in the

university sports center, so we only need to add pieces to the certain equipment. In this

case, the values of three variables available, stock, and instanceof have been changed.

The two input variables are piece whose value is going to be added, and equipment which

refers to the type of equipment that the pieces are going to be added to.

The operation of removing is split into two cases: one is removing all of the pieces of

one type of equipment from the university sports center, and the other is removing a piece

of equipment from the university sports center.

* RemoveEquipment operation

RemoveEquipment is a member function used to describe the action of removing a type

of eyuipment from the university sports center.

----RemoveEquipment---
1~ (belong, instanceo£)
lid ?: ID
Iequipment?: EQUIPMENT
1---
I id ? E dom belong
I equipment? E ran instanceof

I belong' = belong \ { id ? H equipment?}

I instanceof =instanceof \ {equipment.piece H equipment?}

33

In this state, the values of variables belong and instanceo! are changed. Since each type

equipment is distinguished by its ID number, we have the variables id and equipment as

the input, The remove action is to remove the pair (id, equipment) from the belong

function and in the meantime remove the pair (piece, equipment) from the instanceo!

function.

* RemoveAPiece operation

RemoveAPiece describes the action of removing a piece of equipment from the

university sports center.

------RemoveAPiece---------------------------------------
I/).(available, stock)
I piece ?: PIECE
1--
Ipiece? E available
I# (instanceof -1 d{ instanceof (piece ?) }I)) >1
Iavailable' =available \ { piece? }
, stock' = stock \ {piece? }
Icheckedout' =checkedout

In this state, we need to check whether the piece is in the available set or not. If it is in

the available set and the number of pieces of this type of equipment is greater than one,

then this piece is removed from the available and stock set. If the number of pieces of the

equipment is equal to one, then this operation is the same as RemoveEquipment.

* Search operation

Another member function of EquipmentClass is Search. According to the input id

value, we can get the information about this equipment.

34

-

-----Search--
lid ?: ID
I info !: equipment-info
1---
I id ? E ran belong
I info! =equipment-info(id)

UserClass

In the UserClass, there are four declarations: student, staff, member and user-info.

student and staff are sets of all finite subsets of users. member is a function from user ID

to USER and user-info is a function mapping from user ill to USER, used to get

infonnation about a specific user according to the user ID.

I student, staff: F USER
I member: ID ~ USER
Iuser-info: ID ~ USE

UnauthorizedRequestor operation

Only the staff of the university sports center are authorized to manipulate the

operations In the information system, so we have a member function

UnauthorizedRequestor to check whether the operator is staff or not.

----UnauthorizedRequestor------------
I requester ?: USER
I rep 1: REPORT
I ----------------------------------
I requester? Ii!: staff
I rep! = "Not authorized"

35

UnregisteredUser

We have another member function called UnregisteredUser to ch ck wheth r a us r

is registered to use the facility of the university sports center or not.

----Unregiste red-----------------------------
I person ?: USER
I rep !: Report

1 -----------------------------

I person? It: student A person? e staff

I rep! ="Not registered"

AddNewUser

In the UserClass, we need to implement adding a new user to the university sports center.

----AddNewUser--------------------------------
I/).(member, staff, student)
lid ?: ID
I user ?: USER

1-----------------------------------
lid? It: dam member
I user? It: student u staff

I member' = member u { id? ~ user? }
I user ?type =staff
I staff = staff u { user? }
I user?.type =student
I student' =student u { user? }

A new user is not a current user of the university sports center. This means he or she is

not in the domain of the function member and he is not in the union of the sets student

and staff, but we need to add this new information into the university sports center. In this

state, a pair (id, user) is added into the membN function. If the user's type is staff then it

will be added it into the staff set, otherwise it will be added into the student set.

36

RemoveUser

To implement removing a user from the university sports center, we have the following

specification:

-----RemoveUser----------------------------------
I /1. (member, user-info)
lid ?: ill
I user?: USER

1------------------------------------
I id? E dom member
I user? E ran member

Imember' = member \ { id ? f-7 user? }
I user-info' =user-info \ { id ? Huser? }

We input the ill number of the user who is going to be removed. ill is in the domain of

the function member, and the corresponding user belongs to the range of the function

member. So we delete (id, user) from the member function, and at the same time, we

delete it from the user-info function. The infOImation about the deleted user is not

included in the university sports center anymore.

Search operation

The member function Search in the University Sports Center's Information

Management System describes the function of querying the information about a specific

user. The user's ID number is input, and information about this user is output.

--- Search--------------------------------
lid?: ID
I info !: user-info

1-----------------------------------
I id ? E dam user-info
Iinfo! = user-info (id?)

37

SportsCenterCJass

In SportsCenterClass, we implement checking out equipment and returning equipment

operations. In this class, we declare a constant

IMaxPieceAllowed: N

MaxPieceAllowed is a local constant in the SportsCenterClass, which means the number

of pieces borrowed by a user cannot exceed the limit set by MaxPieceAllowed.

State Schema

We have the following state schema:

Iborrowedby, previouslyborrowedby: PIECE ~ USER
IEC: EquipmentClass
I UC: UserClass

--------~1r--

IEC.available n EC.checkedout = 0
I UC.student n Uc.staff = 0
Idom borrowedby f: EC.checkedout
Iran borrowedby c UC.student u UC.staff
Idom previouslyborrowedby ~ UC.available u UC.checkedout
Iran previouslyborrowedby c UC.student u UC.staff
I V user: USER Iuser E UC.student u UC.staff
I • # borrowedbfJa { user }I) ~ maxPieceAHowed

where Borrowedby and Previouslyborrowedby are two partial functions mapping from

PIECE to USER. They tell us who is the current borrower of a piece of the equipment and

who previously borrowed this piece of equipment. A piece of equipment can be borrowed

by only one user, but a user can borrow several pieces at the same time. In this class we

38

declare two variables. One is EC, declared as EquipmentClass type, and the other one is

UC, declared as UserClass type. In this case, we can use all variables in class

EquipmentClass and class UserClass. In the initial state schema we assume the union of

the sets available and checkedout cannot be an empty set. The union of sets student and

staffcannot be an empty set either. The pieces which are borrowed by someone are in the

checkedout set of EC class. The user who borrowed the pieces of equipment is in the

union of sets student and staff of the UC class. The user who is borrowing the equipment

cannot borrow more than a limited number of pieces.

There are two member functions in the SportsCenterClass, which are used to

implement the counter operations of the university sports center.

CheckoutPiece operation

The member function CheckoutPiece describes the procedure of checking equipment

out.

-----CheckoutPiece--
1 L\ (borrowedby, EC.available, EC.checkedout)
I user ?: USER
1 piece?; PIECE
1------------------------------------
I user? E UC.student u UC.staff
I piece? E EC.available
I # borrowedbi1q { user?}!) < maxPiecesAllowed
I EC.available' = EC.available \{ piece? }

I EC.checkedout' = EC.checkedout u { piece ?~ user? }

I borrowedby' =borrowedby u{ piece ?~ user? }
I previouslyborrowedby' = previouslyborrowedby
I UC.student' =UC.student
I UC.staff =UC.staff

39

-- --

The check-out operation requires that a piece of equipment be available for checking out,

and that users be eligible for borrowing. The number of pieces that the user has borrowed

must not exceed maxPiecesAllowed. Mter the transaction, the piece that has been

borrowed is removed from the set available, and added to the checkedout set. The pair

(piece, user) is added to borrowedby. Other variables in the EC and UC have not been

changed.

Return operation

To implement the retum transaction, we have:

----l(etuIll--
IL1 (EC, borrowedby, previouslyborrowedby)
Ipiece?: PIECE
Iuser?: USEI(
1---------------------------
Ipiece? E EC.checkedout
Iuser? E ran borrowedby
IEC.available' = EC.available u { piece? }
Iborrowedby' = borrowedby \ {piece?~ user? }
IEC.checkedout' = EC.checkedout \ { piece? }
IUC.student' =UC.student
IUC.staff =UC.staff

The piece of equipment must belong to the checkedout set. After the implementation of

the return transaction, the returning piece is added back to the available set. The

borrowedby inf01mation is changed by deleting the pair (piece, user). The returning piece

is deleted from the checkedout set. Other variables are not changed in this state.

Tbis specification presented above shows one possible way in which we can use the

Object-Z specification language to write a specification to satisfy the requirement of the

University Sports Center's Information Management System.

40

-

CHAPTER IV

SYSTEM IMPLEMENTATION

The software of UDiversity Sports Center's Information Management System is

implemented by using Visual Basic 4.0. Programming under Visual Basic 4.0 can

provide an advanced Windows interface. The University Sports Center's Information

Management System is running on Windows 3.1. Windows is a very popular operating

system, because the user interface is the same for all Windows applications, so the users

who are going to operate this applicatio.n of the University Spons Center's Information

Management System would not be taught how to operate the system. They can minimize

and maximize the windows and complete other conventional Windows operations.

General Design in Visual Basic

Visual Basic 4.0 is a tool to develop GUT-based applications efficiently. The objects

placed on the windows are called controls. Controls in Visual Basic will recognize events

like mouse clicks; how the objects respond to them depends on the code written on it. The

core of a Visual Basic program is a set of independent pieces of code that are activated

by, and respond to, the events they have been told to recognize [Cornell and Strain,

1995]. The programming code in Visual Basic that tells the program how to respond to

events like mouse clicks is called an event procedure. An event procedure is a body of

41

--

code that is only executed in response to an external event. Everything that is x utabl

in a Visual Basic program is either in an event procedure or is us d by an v nt proc dur

to help the procedure carry out its job.

To design the University Sports Center's Information Management Sy t m by using

Visual Basic 4.0, we use the following steps:

• Customize the windows that the user sees.

• Decide what events the controls on the window should recognize.

• Write the event procedures for those events.

Database Design in Visual Basic 4.0

Based on its requirements, the University Sports Center's Information Management

System is a database management system. The reason for using a database as the media to

store the data is because it is easy to set up and manipulate and doesn't require massive

resources. The database model used by Visual Basic 4.0 is a relational database. The

Data Manager supplied by Visual Basic 4.0 is a handy too) for maintaining and creating

databases. By using Data Manager we can implement the create, restructure , index,

modify, copy, and query database tables. The Data Manager is the only way supplied with

Visual Basic to build a database.

Visual Basic 4.0 can work with an existing database through the data control. By

setting properties of the data control, the data control can be hooked to a specific

database, then add controls to a form that will display the data. The data control itself

42

-

displays no data, it only conducts the flow of information back and forth between project

and database. The ordinary Visual Basic controls are used to display the data. Control

that can work with the data control to access data are said to be data-aware, and the

process of tying a data-aware control to a data control is called binding the data-aware

control. Among Visual Basic Standard controls, the only intrinsic data-aware controls are

text boxes, labels, check boxes, image controls, List boxes, Combo boxes, DBGrids,

Masked edit, 3D Panel, and 3D check box. Data-aware controls must be on the same form

as the data control, but they need not be visible in order to pick up the information. Once

these controls pick up the information sent to them by the data control, the information

will be stored as values of properties of the controls.

Implementation of the Management System

Structure

Design the functions of the University Sports Center's Information Management

System. In order to satisfy the requirements, we have the following structure to describe

the system:

43

-

y

Un ive rsity
S ports Center's

Inform ation Management
System

H User Status I

H Staff Inform ation I
H Players Inform ation I
y Sea rch Ope ration I

H User Man agem ent I

H Update inform ation I
H Add a n evv user I
y Delete a us.er I

rl Equipment Status !

~ General Inform ation I
H Search !
H Borrovved By I

t
By 1"-i Previously B orrovved

H E quip JTI en t Management!

H Mod ify Inform atien I
I I

~ Add Nevv Piece !I

--l Delete I
H Berrovv Operation

,
1

H R e tu rn Operation j

-r- .
Exit S ste rn !

-

Figure 3. The structure of the University Sports Center's Information Management

System

According to this structure, we design tbe main screen of the system to look like Figure

4.

44

-

Figure 4. The main screen of the University Sports Center's Information Management

System

The items in the menu and submenus on the mam screen correspond to different

functions in the specification of the University Sports Center's Infonnation Management

System. UserStatus, UserManagement, and their submenus implement functions of

UserClass in the specification. EqStatus, EqManagement, and their submenus implement

functions of EquipmentClass in the specification. Borrow and Return implement

functions of SportsCenterClass.

45

Tables

In this University Sports Center's Infonnation Management System, we have thr

tables to manage the data:

Table 1. List of Tables in the Database File

Table Name Function Number of Fields

User Management of user information 6

Equipmentinfo Management of equipment information g

Equipment Management of counter transactions 4

Based on the requirements, we need to track the users' ill number, name, address,

phone number, and type (staff or student). We have a table named user to record this

infonnation about all users who are eligible to use the facilities in the university sports

center. We also create a table named equipmentinjo to record information about all the

equipment in the university sports center, such as equipment ill (because a type of

equipment is distinguished by its II) number), equipment name, subject, location, how

many pieces of this equipment that the university sports center owns, how many pieces

are available, and how many pieces have been checked out. The counter transactions of

the university sports center include borrowing and returning a piece of equipment. In

order to record this information, we have the table equipment to record which type of

equipment is currently borrowed, by whom, the borrowing date, and who previously

borrowed this type of equipment.

46

-

Table 2. List of Fields in All Tables

Table Name Fields

user id, name, address, phone, type, memo

equipmentinfo id, name, place, subject, pieces, available, borrowed, memo
,

equipment id, borrowedby, preborrowedby, date

Index

In order to accelerate the searching speed, we create several indexes. Index IDBorrow

is used to speed up searching for who is currently borrowing a type of equipment. Index

Equipld is used to speed up searching for the information about a type of equipment

according to its ill number. Index EquipName is used to speed up seeking the information

about a type of equipment according to its name. Indexld and Mylndex are used to seek

the information about a user according to his id number and name respectively.

Table 3. List of Indexes for All Tables

Index Name Table Name Field Name

IDBOITOW equipment id

Equipld equipmentinfo id

EquipName equipmentinfo name

MyIndex user name

Indexld user id
.

47

-

These indexes are all in ascending order.

Forms

Visual Basic responds by displaying various windows on the desktop. One of the

windows displayed is fonn. Forms will also respond to different events. There are five

forms developed for the University Sports Center's Information Management System

corresponding to the classes in the specification, and the events that occur in each form

correspond to the operations in the class. The following table describes the functions of

the different forms.

Table 4. List of all forms and their functions in the system

Name Form File Name Function

frmmain THESIS.FRM There is a menu in this fonn; each item in

the main menu will conduct to a fonn.

fnnUser USER.FR.J\1 In this fonn, the operations of userCla s in

the specification will be implemented,

including browsing the information about all

users, adding and deleting a user, and

searching the information.

fnnEquip EQUIPMENT.FRM In this fonn, the operations of

48

--

fnnBorrow

fnnReturn

BORROW.FRM

RETIJRN.FRM

equipmentClass in the specification will b

implemented, including browsing th

information about all equipment, adding,

deleting equipment, and searching the

information.

In this form, the borrow operation of

SportsCenterClass In the specification will

be implemented.

In this form, the return operation of

SportsCenterClass in the specification will

be implemented.

In each form, there are several controls. We have text boxes, labels, DBGrids, data

controls, and Combo list. At run time, the fonn provides the view to the user who is

going to operate the system.

The user fonn looks like the following at run time when the user clicks the item Add in

the UserManagement.

49

-

University Sports Center Information Management S stem
UserManagement EqStatus EqManagement Borrow Return

Figure 5. The view provided by the user form

Visual Basic 4.0 provides the facility (data control) to connect the controls with

database table fields. Most controls on the forms are connected with a data control.

The controls on the user fonn are summarized in the following table:

50

Table 5. List of AIl Controls on the User Fonn

Control Types Control Name Data Source Record Source Data Field

Text Box txtUserld data3 id

txtUserNarne data3 name

txtUserAddress data3 address
I

txtUserPhone data3 phone

txtUserType data3 type

Label IbluserId

IbluserName

I

IbluserAddress

IbluserPhone

IbluserType

IblBorrow

DBGrid DBGridBorrow dala2

Data Datal user

Data2 equipment

Data3 user

Button cmdAdd

cmdDelete

cmdUpdate I

Sl

-

Among the three data comrols on the user form, the Recordset type of datal and data2

are Dynaset. The dynaset-type Recordset is an object of type Recordset object that can b

used to manipulate data in an underlying table or tables. The dynaset-type Recordset is a

dynamic set of records that can contain fields from one or more tables or queries in a

database and may be changed. The dynaset-type Recordset is different from the snapshot

type Recordset because only a unique key for each record is brought into memory, instead

of actual data. As a result, a dynaset is normally updated with changes made to the source

data, while a snapshot is not. Like the table-type Recordset, a dynaset's current record is

fetched only when its fields are referenced. The Recordset type of data3 is table. A table

type Recordset object is a representation in code of a base table that can be used to add,

change, or delete records from a table. Only the current record is loaded into memory. A

predefined index is used to detennine the order of the records in the Recordset object

When clicking the item AddNew in EqManagement, we get the following screen:

52

--

University Sports Center Information t.4anagement S stem
UserStatus Usert.4anagement EqStatus Eqt.4anagement :Borrow Return

Figure 6. The view provided by the equipment form

There are two forms in this screen. One is frmmain, and the other one is frmEquip We

cannot switch to the frmmain until the frmEquip form is closed, which is called modality.

This property makes it safe to add a new type of equipment to the university sports center.

The controls on the frmEquip form are descri bed in the following table.

Table 6. List of All Controls on the Equipment Form

Control Types Control Narne Data Source Record Source Data Field

Text Box txtEuserid data3 id

txtEname data3 name

txtEplace data3 place
I

53

I"""

txtEcategory data3 subject

txtEpiece data3 pIeces

txtEavailable data3 available

Label IblEid

IblEname

IblEbor

lblEpre

lblEplace

lblEcategory

lblEpiece

IblEavailable

DBGrid DB GridBorr data4

DB GridEquip data3

Data Datal user

Data2
,

equipment
I
I

Button cmdAdd

cmdDekte

cmdUpdate

The Recordsct type of data controls (data3 and data4) on this form are all dynaset.

The view of frmBorrow and frmRetum arc the same, but each form implements

different work. frmBorrow implemenl') borrowing operations and frmRetum implements

returning operations.

The view of frmBorrow and frmReturn looks like the following:

54

-

-

University Sports Center Infonnation Management System
UserManagement EqStatus EqManagement Borrnw Return

Figure 7. The view provided by the return form

Table 7 List of All Controls on the Return Form

Control Types Control Name Data Source Record Source Data Field

Text Box txtBPlace dataS place
,

I, txtBPiece data5 pieces

txtBAvailable data5 available
,

txtBMemo dataS memo

Label lblRname

S5

IblRborr

IblRplace

IblRpiece
I

IblRavailable

IblRmemo

DBCombo DBComboNarne data6

DBComboBorr data7

Data DataS equipmentinfo

Data6 equipment

Data? user

Button cmdOk

cmdCancel

Among the three controls in the [onn frmRetum, the Recordset type of data5 and data?

is table, so we can use indexes for quick searching. The Recordset type of data6 is

dynaset.

Event Procedures

After placing the objects in the fonn and setting their properties, the visual

programming part of the job is completed. Visual Basic is an event-driven programming

language. This means that code is executed as a response to an event. In order to

56

-

implement the functions of the University Sports Center's Information Managem nt

System, we generated appropriate codes and attached them to the obj cts and events.

Table 8. List of All Objects Which Have Event-procedures Embedded.

Form Name Objects

frmmain mnuStaff, mnuS tudent, mnuFind, mnuUpdate, mnuAdd,

mnuDelete, mnuGeneral, mnuSearch, mnuPreBorowedBy,

mnuBorrowedBy, mnuModify, rnnuAddNew, nuDeleteEquipment,

mnuBorrow, mnuReturn, mnuExit.

frrnuser cmdAdd, cmdDelete, cmdUpdate.

frmEquip crndAdd, cmdDelete, cmdUpdate, cmdOk.

fnnBorrow DBComboName, DBComboBorr, cmdOk, cmdCancel.

fnnRetum DBComboName, DBComboBorr, cmdOk, cmdCancel.

Security and Error Detection

Security and Error detection is provided in the University Sports Center's Information

Management System. We have several security and error detection methods, such as:

• When a user tries to operate stock and counter operations, he needs to input his user

ID number to prove that he is staff, since only staff have this privilege.

• When a user is doing the searching operation, an error message will appear if the

input value is not right or the input value is not included in the system.

57

• When a staff member is doing stock and counter operations, the input value will not

be accepted if the input data does not satisfy a cenain standard.

• When a user tries to borrow more than a maximum number pieces of equipment, th

borrow action is not allowed.

58

-

CHAPTER V

SUMMARY AND CONCLUSIONS

In this the is we used formal methods and the Object-Z specification language to

design and write a specification for the University Sports Center s Information

Management System. We used Visual Basic 4.0 to implement the software according to

the specification.

Formal methods are very helpful to create high quality computer software and

hardware. Formal methods are sets of mathematical notations and tools which can

standardize the computer system's specification and design. Formal methods are one of a

number of techniques that have been demonstrated that, when applied correctly, re ult in

sy terns of the highest integrity.

The Object-Z specification language is one of the specification languages in formal

methods. Object-Z is object extension to the Z specification language. It provides

ufficient support for either encapsulation or inheritance. We used Object-Z specification

language to write the forma} specification for the University Sports Center's Information

Management System.

Formal Spec.ification is the use of notations derived from formal logical to describe:

(I) assumptions about the world in which a system will operate, (2) requirements that the

system is to achieve, and (3) a design to meet those requirements. We created such a

specification for the system which we developed.

59

We used Visual Basic 4.0 to implement the software of University Sports Center s

Infonnation Management System because it can provide a Graphic User Interface (QUI).

The GUI can usually provide users with several convenient data input and output formats,

such as windows, menus, mice, image, and voice. With QUI, the system is more us r

friendly, easy to learn, and easy to use. This is very imponant for non-professional u ers.

After the system was developed, we observed the advantages of formal methods. The

system developed provides the user a friendly interface and is easy to use. The system is

also easy to maintain.

The specification of University Sports Center's Information Management System

presented here is only one possible route. It still needs improvement and optimization.

One suggestion of future work is to divide the University Sports Center's Information

Management System into two parts: one for the users of the university sports center to

retrieve the information, and the other one for the staff of the university sports center for

infonnation retrieving and managing. This will make this system more convenient and

efficient to use.

60

Cliffs, NJ: Prentice-Hall

BmLIOGRAPHY

Barden, R., Stepney, S., Cooper D. (1994). Z in practice Englewood Cliffs, NJ: Prentice

Hall International Limited.

Berg, H. E., Boebert, W. E., Franta W.R., Moher T. G. (1982) Formal Methods of

Pro2:rarn Verification and Specification. Englewood Cliffs, NJ: Prentice-Hall

International Limited.

Booch, G. (1991). Object Oriented Design with applications Redwood City, CA: The

Benjamin/Cummings Publishing Company, Inc.

Bowen, J. & Gordon, M. (1995). A shallow embedding of Z in HOL. Information and

Software TechnoloQY. 37(5),269-276.

Bruno, G. (1995) Model-based Software En2ineering. London, UK: Chapman & Hall.

Bruns, G. & Anderson, S. (1995). Gaining Assurance with Formal Methods. Application

of Formal Methods (pp. 33-54). Englewood

International Ltd.

Collins, B. P., Nicholls, J. E. and Sorensen, 1. H. (1989) Introducing Formal Method:

The CICS Experience with Z. IBM Technical Report TR12.260, IBM UK

Laboratories Ltd., HUfsley Park, UK.

Davis, H. (1996) Visual Basic 4 Secrets. Chicago: IDG Books WorldWide, Inc.

Dodge, C. 1., Dndrill, P. E., Allen, A. R. & Ross, P. G. B. (1996). Application of Z in

digital hardware design. IEEE Proceeding Computers and Digital Techniques,

143(1), 79-86.

Ford, N. 1., Ford, 1. M. (1993) Introduciol! fonnal methods a less mathematical approach.

61

New York: Ellis Horwood Limited.

Gurewich, N., Gurewich, O. (1995) Teach yourself Visual Basic 4 In 21 days.

Indianapolis, Indiana: Sams Publishing.

Hinchey, M. G., Bowen, J. P. (1995). Applications of Formal Methods FAQ. Application

of Formal Methods (pp. 1-5). Englewood Cliffs, NJ: Prentice Hall International

Ltd.

Ince, D. C (1992) An introduction to discrete mathematics. fonnal system specification.

and Z. Oxford, UK: Oxford University Press, Inc.

Jones, CB. (1986). Systematic Software Development Using VDM. Englewood Cliffs,

NJ: Prentice-Hall lnternational, 1986.

Lano, K., Haughton, H. (1995). Formal development in B Abstract Machine Notation.

Information and Software Technology, 37(5),303-316.

Li, D.H., Maibaum, T.S.E. (1988). Developing a high level specification formalism.

Fonnal methods: Theory and Practice (pp. 53-102). Boca Raton, FL: CRe Press,

Inc.

Machado, P. D. L., Meira, S. R. L., Gomes, H. M. (1994). EASY - an Environment for

Artificial Neural Systems Simulation. In Proceedings of 4th Irish Neural Network

Conference - INNC'94, Dublin, Ireland, September.

Mander, K. C, Polack, F. A. C (1995). Rigorous specification using structured systems

analysis and Z. Infonnation and software technology, 37(5), 285-29:1.

Mataga, P., Zave, P. (l995). Using Z to specify telephone features. Infonnation and

Software Technology, 37(5), 277-283.

62

McKelvy, M. (1995). Using Visual Basic 4, The Fast and Easv W y to Learn. Boston:

Que Corporation.

Periyasamy, K., Mathew, C. (1996). Mapping a functional specification to an Object

Oriented specification 10 software Re-engineering. CSC '96 (pp. 26-33),

Philadephia.

Scharbach, P.N. (1988). Formal Methods: Theory and Practice. Formal methods: Theory

and Practice (pp. 1-4), Boca Raton, FL: CRC Press, Inc.

Spivey, J.M. (1988). Understandin~ z: a specification langua2e and its formal semantics,

Cambridge, UK: Press Syndicate of the University of Cambridge.

Tocher, A. J. (1988). LOTOS and the formal specification of communication standards:

An example. Formal methods: Theory and Practice (pp. 5-51). Boca Raton, FL:

CRC Press, Inc.

63

APPENDIXES

64

APPENDIX A

Z AND OBJECT-Z NOTATIONS USED IN THIS THESIS

P power set

o empty set

cardinality of a set

-4 partial function

total function

u distributed union

EEl relational override

H maps to

~ D relational image

x? input variable x

y! output variable y

ll.(...) state variables modified by an operation

65

APENDIXB

SPECIFICATION OF THE U TVERSITY SPORTS CENTER'S INFORMATION

MANAGEMENT SYSTEM

[ill, NAME, ADDRESS, PHONE#, TYPE] ;

[ill, NAME, PLACE, PIECE, SUBJECT].

----- User-----------------------
lid: ID
I name: NAME
I address: ADDRESS
I phone#: PHONE#
I type: TYPE

---- Equipment -----------------
lid: ID
I name: NAME
I place: PLACE
I piece: PIECE
I subject: SUBJECT

----EquipmentClass-------- ------- -------------- -------- ----- ---- -- -- ------ -- -- -- -- -- -- ----------

I instanceof: PIECE t+ EQUIPMENT
I belong: ill -+ EQUIPMENT
I about: EQUIPMENT t+ SUBJECT
I available: F PIECE
I checkedout: F PIECE
I stock: P PIECE
I equipment-info: 10 -+ EQUIPMENT

-----INIlr------------------------------------
I checkedout (\ available =0
I checkedout u available = stock

66

-----AddNewEquipment----- --
I L1 (belong, instanceof, about, available, stock, equipment-info)
I equipment ?: EQUIPMENT
1id ? : ID
I piece ?: PIECE
1subject ?: SUBJECT
1--
1id ? (,!; dam belong
1equipment? e ran instanceof

I belong' =belong u { id ? ~ equipment? }
1available'= available u { piece?}

1instanceof = instanceof u { piece ?~ equipment? }

I about' = about u { equipment ?~ subject? }
I stock' = stock u { piece? }

1equipment-info' = equipment-info u {id? ~ equipment? }
I checkedout' = checkedout

-----NotNewEquipment--- -----------
I equipment ?: EQUIPMENT
1-----------------------
I equipment? E ran instanceof

---- NewEquipment------------------
I equipment?: EQUIPMENT
1--------------------------
1equipment? e ran instanceof

----AddNewPiece-------------- ---------------------------------
I Do (available, instanceof, stock)
I piece ?: PIECE
I equipment ?: EQUIPMENT
1----------------------------
I piece? e available u checkedout
1equipment? E ran instanccof
1available' = available u { piece? }
1stock' = stock u { piece? }
I instanceof = instanceof u {piece?~ .equipment ? }
I about' = about
I checkedout' = checkedout

67

-----PieceCheckedOut-------------------------
I piece?: PIECE
1--------------------------------------
I piece? E checkedout

-----PieceAvailable-----------------------------
1piece ?: PIECE
1---------------------------------
1 piece? E available

----------------- RemoveEquipment----------------
I L1(belong, instanceof)
lid ?: ill
I equipment ?: EQUIPMENT
1---
I id ? E dom belong
I equipment? E ran instanceof

I belong' = belong \ { id ? f--7 equipment}

1 instanceof =instanceof \ {equipment.piece H equipment}

-----Remo veAPiece------------ ---------- ---- ------ ------
I L1 (available, stock)
I piece ?: PIECE
1---
I piece? E available
I # (instanceof -I (I { instanceof (piece ?) }D) >1
I stock' =stock \ {piece? }
1 available' =available \ {piece?}
I checkedout' =checkedout

-----Seareh---------------------------- -------- -----------
1id ?: ill
1info !: equipment-info
1--------------------------------------
1id ? E ran belong
1info! =equipment-info(id)

68

---------------- UserClass---
I ---------------------------------------
I Istudent, staff: F USER
I I member: ill ~ USER
1 I user-info: ill ~ USER
I --
I
I -----UnauthorizedRequestor-----------
I I requestor ?: USER

I rep !: REPORT
1 ----------------------------------

I requestor? ~ staff
1 rep! = liNot authorized"

-----------UIlfegistered--------------------
1 person ?: USER
1 rep !: REPORT
1 ----------------------------

1 person ? ~ student A person ? ~ staff
I rep! = "Not registered"

------AddNewUser-----------------------------
I d (member, staff, student)
I id ?: ill
I user ?: USER
1-----------------------------
1 id ? ~ dam member
1user ? ~ student u staff
1 member' =member u { id?~ user? }
I user ?type =staff
1 staff =staff u { user? }
Iuser ?.type = student
Istudent' =student u { user? }

-----RemoveDser----------------------------------
I ~ (member, user-info)
lid ?: ID
Iuser?: USER
1----------------------------------
1ld? E dam member
Iuser? E ran member

69

I member' = member \ { id ? t----7 user?' }
I user-info' = user-info \ { id ? t----7 user? }

------ Search------ ---------------------------------
lid ?: ill
I info !: user-info
1------------------------------------
I id ? E dom user-info
I info! = user-info (id?)

--------------------Sports(:enterC:lass---
I I MaxPieceAllowed:\ N
I --- --------------------------------,--------------------------------
I I borrowedby, previouslyborrowedby: PIEc:E 4+ USER
I I EC Equipment<=lass

I UC UserC:lass

-------~1l---

I ECavailable (l ECcheckedout = 0
I UCstudent (l UCstaff= 0
I dom borrowedby ~ ECcheckedout
I ran borrowedby c UC.student u UCstaff
I dom previouslyborrowedby c UCavailable u UCcheckedout
I ran previouslyborrowedby s UC.student u UCstaff
I "if user: USER I user E UC.student u UCstaff •
I # borrowedby· Jd{user) [) ~ maxPieceAllowed

-----CheckoutPiece--
I fj, (borrowedby, EC.available, ECcheckedout)
I user ?: USER
I piece ?: PIECE
1------------------------------------
I user? E UCstudent u UCstaff
Ipiece? E ECavailable
I # borrowedbi1~ {user? 1I) < maxPiecesAllowed
I ECavailable' = ECavailable \{ piece? }
I ECcheckedout'=EC.checkedout u { piece?}

I borrowedby' = borrowedby u { piece? Huser? }

70

I previouslyborrowedby' =previouslyborrowedby
I UC.student' =UC.student
I UC.staff = UC.staff

------------------------EquipmentBorrowedBy-------------------
I user?: USER
lout!: F PIECE
1 --------------------------

J user? E UC.student
lout! = borrowedby" 1 Q{ user ?}!)

-----------------------PreviousBorrower-------------- ---------------
I piece ?: PIECE
I user !: USER
1---------------------------------------
I piece? E EC.available u EC.checkedout

I {piece? Huser! } E previouslyborrowedby

-----Retull1---
l!:l (EC, borrowedby, previouslyborrowedby)
I piece?: PIECE
I user ?: USER
1------------------------
I piece? E EC.checkedout
I user? E ran borrowedby
,I EC.available' = EC.available u {piece? }

1borrowedby' =borrowedby \ { piece? Huser? }
1EC.checkedout' =EC.checkedout \ {piece? }
1UC.student' = UC.student
1UC.staff' =UC.staff

71

,......

VITA

YiXie

Candidate for the Degree of

Master of Science

Thesis: USING FORMAL METIIODS TO DESIGN AND IMPLEMENT AN OBJECT
ORIENTED UNIVERSITY SPORTS CENTER'S INFORMATION
MANAGEMENT SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Beijing, P. R. China on July 30, 1969, the daughter of
Jinlai Xie and Zhaohua Xie.

Education: Graduated from Computer Institute, Beijing Polytechnic University in
July, 1992; received Bachelor of Engineering degree in Computer Software
Engineering. Completed the requirements of the Master of Science degree
with a major in Computer Science at Oklahoma State University in May,
1997.

Professional Experience: Software Engineer, Hi-Tech Company, Computing
Center, Chinese Academy of Sciences, 1992 to 1994; Graduate Teaching
Assistant, Oklahoma State University, Department of Computer Science
1995.

Honor and Membership: Citgo Computer Science Scholarship; Member of The
Honor Society of Phi Kappa Phi by election of the Chapter at Oklahoma
State University.

