
A RULE BASED EXPERT SYSTEM vmICH CONFIGURES

GAS CHROMATOGRAPHS

By

GEORGE ERIC WOLKE

Bachelor of Science

Syracuse University

Syracuse, New York

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1997

A RULE BASED EXPERT SYSTEM WInCH CONFIGURES

GAS CHROMATOORAPHS

Thesis Approved:

H. £

Dean of the Graduate College

ACKNOWLEDGEMENTS

This paper is the result of much sweat and tears. It seems as though I've been working on it forever, and

not just for eight months. While the paper's title suggests that it is simply an expert systems project, to

me it is much more than that. It is a 'cradle to grave' software engineering project. As you read this

paper you will see discussion of the software development process, software modeling, object oriented

development, relational databases, and rule based expert systems. Indeed, most of my effort was

expended making all the pieces of this complex puzzle fit together. I think it does all fit and I sincerely

hope that, after reading the paper, you will too.

I wish to offer my sincere appreciation to my major advisor, Dr. Jacques LaFrance. His devotion to the

teaching of Computer Science served to "keep me working" even when all I wanted to do was to sit and

watch Syracuse basketball. In addition. I my appreciation extends to my other committee members, Dr.

Blayne Mayfield and Dr. Huizhu Lu for taking the time to work with me throughout this process.

Finally, I would like to give special appreciation to my wife, Debbie, for her loving enCOlL--ageroent and

understanding throughout this whole process. I can certainly say that she was the single most important

reason this project was completed successfully. Thanks Deb and I love you.

iii

ACKNOWLEDGEMENTS

This paper is the result of much sweat and tears. It seems as though I've been working on it forever, and

not just for eight months. While the paper' s title suggests that it is simply an expert systems project, to

me it is much more than that. It is a 'cradle to grave' software engineering project. As you read this

paper you will see discussion of the software development process, software modeling, object oriented

development, relational databases, and rule based expert systems. Indeed, most of my effort was

expended making all the pieces of this complex puzzle fit together. I think it does all fit and 1 sincerely

hope that, after reading the paper, you will too.

I wish to offer my sincere appreciation to my major advisor, Dr. Jacques LaFrance. His devotion to the

teaching of Computer Science served to "keep me working" even when aU I wanted to do was to sit and

watch Syracuse basketball. In addition, I my appreciation extends to my other committee members, Dr.

Blayne Mayfield and Dr. Huizhu Lu for taking the time to work with me throughout this process.

Finally, I would like to give special appreciation to my wife, Debbie, for her loving encouragement and

understanding throughout this whole process. [can certainly say that she was the single most important

reason this project was completed successfully. Thanks Deb and I love you.

iii

TABLE OF CONTENTS

1 .. 0 IN"1R.ODUCTION _ .. -..........•.................. 1

2.0 LITERATURE REVIEW ... 4

2.1 RULE-BASED ExPERT SySTEMFuNoA}.ff.NTALS 4
2.2 Production Syslems , 6

2.3 REASONlNG STRATEGIES .. _ .. 11

2.4 CONFI.,ICT RESOLUTION STRATEGIES ... 13

2.5 THE DENDRALPROJECT , , , 15
2.6 THE XCON PROJECT 17
2.7 THE BON METHOD OF SOFIWARE DESIGN , ,' ,. 18

3.0 PROBLEM STATEMENT .. 21

4.0 RESULTS OF PROJECT AND FUTURE WORK ... 24

4.1 THE SYSTEM DEVELOP.MENT CYCLE 24
4.2 THE USERINrERf'ACE , 25

4.2. / The Main Application Window 27
4.2,2 The Application Specific Dialog 35
4.2.3 Stream Select Dialog , .. , , , , , , 39
4.2.4 Component Select Dialog " , 43

4.3 THE APPLICATION CLASSES 54
4.4 USER INTERFACE & APPLICATION OBJECT ScENARJOS 69

4.4.1 Creation o/the Application Objects , , , 69
4.4.2 Populating the GC_APPUCATlONObject, , , 70
4.4.3 Populating a STREAM Object " , , 7 f
4.4.4 Populating a COlvfPONENTObject 73

4.5 THE LEGACY D ATA BASE AND SUPPORTING C LASSES 76
4.5.1 The Relational Schema , " 76
4.5.2 Mapping the Database to Objects 78

4.6 THE CLIPS WRAPPERCLASSES , 93
4.7 THE KNOWIEOOE BASE ' , .. 100

4.7.1 Flow Control " , .. 100
4.7.2 Determining The Detectors 101
4.7.3 Determining The Carrier Gas , 103
4.7.4 Choosing the Correct Analyzer from the Candidate Soiutions J 05

4.8 THE MEsSAGE ROlITER, RULES FILE, AND FACTS Fn..E 110
4.9 RUNNING THE SySTEM 1 ! 7

5.0 CONCLUSIONS .. 125

BIBLIOGRAPHY ... 128

APPENDICES ... 132

iv

LIST OF FIGURES

Figure 1 - BON Static Architecture Diagram For the User Interface 26

Figure 2 - Main Application Window 27

Figure 3 - Application Select Dialog Box 35

Figure 4 - Stream Properties Dialog 39

Figure 5 - Component Select Dialog 43

Figure 6 - Component Specific Dialog Box 50

Figure 7 - Application Class Static Architecture 54

Figure 8 - Creating the Application Objects , 69

Figure 9 - Populating the GC _ APPLICA nON Object 70

Figure 10 - Populating a STREAM Object 72

Figure 11 - Populating a COMPONENT Object 74

Figure 12 - DB_WRAPPER Classes 78

Figure 13 - CLIPS Wrapper Classes 93

Figure 14 - BON Dynamic Model For Callback Mechanism 99

Figure 15 - Database Query Output 117

Figure 16 - Process Stream Yielding No Match 119

Figure 17 - System Output For No Match 120

Figure 18 - Process Stream Yielding an Imperfect Match 121

Figure 19 - System Output For an Imperfect Match 122

Figure 20 - Process Stream Yielding a Perfect Match 123

Figure 21 - System Output For Perfect Match 124

vi

APPENDIX A - BON SYSTEM CHART ... 132

APPENDIX B - BON CW STER CHARTS 133
APPENDIX C - BON CLASS CHARTS , , 13 5
APPENDIX D - BON CLASS DICTIONARy , , 154
APPENDIX E - BON CLAss lNTERF ACES 157

\'

1.0 INTRODUCTION

This paper discusses the application of expert system technology to the configuration of process gas

chromatographs (GCs). A GC is a tool for performing quantitative analysis of liquid and gaseous

mixtures by separating their constituents into individual compounds. The analysis is necessary to ensure

that the chemical plant is operating correctly and that the customer's product is meeting required levels of

purity and consistency. The instrument can measure chemical concentrations down to parts per billion.

The customer specifies the application in the form of a "process stream". The process stream describes

the type of chemicals that are present and the concentration range be analyzed. GC applications are

typically, but not limited to, analysis of environmental samples and hydrocarbons. Different combinations

of hydrocarbons require different combinations of hardware in order to be properly analyzed. There are

an enormous number of variables that need to be considered when configuring a GC system. This makes

the configuration problem a difficult one.

The GC consists of a core set of electronics that are part of every system plus custom hardware that is

chosen based on the application the GC will work on. The custom hardware includes:

• Detectors: The transducer that provides a measure of the concentration of a chemical in the process

stream.

• Columns: A1low the chemicals to separate into "bands". This allows the chemicals to elute from the

column to the detector at different times. This chemical separation is what allows the chromatograph

to measure the concentration of the component parts of the stream.

• Ovens: Allow the chemical stream to be elevated in temperature. This is important in order for the

columns and detectors to work efficiently.

• Valves: Used to route the chemical stream between the detectors and columns.

A typical process GC contains one oven, two detectors two valves and three columns.

The configuration task: requires a deep understanding of chemistry and chromatography and is performed

by chemists. In order to configure the GC a chemist will:

• Search an «application data base" consisting of historical data of applications developed by the GC

manufacturer. The database used for this project is a relational database housed within Microsoft

Access.

• If the search finds a perfect match to the customers needs, the matched configuration is chosen for

this application. Often, no match is found.

• Typically, the search will return a set of partial matches. These are configurations that match a part

of the current application. The chemist then uses their knowledge of chemistry and chromatography

to chose a configuration from a combination of these possible choices.

The amount of time necessary to configure a GC ranges from hours to days. As a result, it takes longer to

respond to customer requests for quotation. This can cause the customer to look elsewhere for a solution

to their problem.

As part of a emphasis towards increasing efficiency, GC manufacturers are interested in ways to reduce

the time and cost of configuring a GC. The ultimate goal is for configurations to be created by a sales

engineer who can then use this information to create a quotation for the customer. This would allow the

sales engineer to provide faster response to customer request and lead to increased sales. This paper

describes the system that was developed to meet this objective.

Section 2 deals with production systems, confiictresolution, and reasoning strategies. Then, two systems

that have bearing on this work are introduced. They are the Dendral[5] and XCON(13) systems. Finally,

2

the Business Object Notation (BON) method of Object-ilriented software design is discussed. Since this

method was used in my work, It is important that the tenninology of BON be introduced The BON

method is well suited to the design environment I used for this project (ISE Ei:ffel V3).

Section 3 then describes the project in further detail. Section 4 describes the result of my work. Section 5

presents conclusions drawn from my experiences gained through development of the system.

3

2.0 LITERATURE REVIEW

2.1 Rule-based Expert System Fundamentals

Rule-based expert systems are computer programs that solve domain specific problems. They perform

tasks that are normally performed by domain experts. Therefore, this technology is a branch of the area of

Artificial Intelligence. Rule-based expert systems have been used to sol.ve problems ranging from the

classification of chemical compounds, as in the Dendral Project [5], to the configuration of computer

systems, as in the XCON Project [13], to the control of airport traffic [17].

While the three tasks mentioned above differ with respect to their area of application, they are similar in

regard to the fact that they require domain specific information to petform their tasks. In the case of

Dendral, the domain was organic chemistry. In XCON, the domain was computer system configuration.

And in the final case the domain requires detailed understanding of airport logistics.

In each case the problem could not be solved using only the normal method of applying algorithms. The

programs needed to make decisions and adapt to their environment. McDermott and Forgy [19] make the

statement that expert systems must be able to deal with changes in their environment. As noted, this is

indeed a characteristic of all three systems.

Buchanan and Smith (3) define the following characteristics of an expert system:

• They reason with domain specific knowledge that is symbolic as well as numeric. In rule based

expert systems these symbolic representations are the domain specific rules of th.e system.

• They use domain specific knowledge that are heuristic as well as follow procedures that are numeric.

Expert systems tend not to use first principles, but rather, their rules are based on human experience.

4

• They perform well in their problem area. However, they generally will not reason as well as their

human counterparts. But they may perform better than the domain experts due to their systematic

method of solving the problem.

• They explain, or make understandable, both what they know and the reasons for their answers.

• They retain flexibility and are adaptable to change.

These last two properties are necessary for the system to achieve a high level of performance, but are

equally as important during the design and implementation process. Expert systems tend to be developed

incrementally since not all of the domain knowledge is known when a project starts. Therefore the system

must be flexible in order to allow for changes due to increased, or enbanced., knowledge throughout the

product lifecycle.

Explanation is important in that it can provide skeptical users an assurance that the system is performing

as promised and to aid users in understanding its results.

Generally, rule based expert systems utilize production systems (the rules and environment for making

decisions). They employ a specific strategy to reason towards their solution. And they require a method

of resolving conflict when more than one decision can be made. The following sections will examine

these properties of expert systems.

5

2.2 Production Systems

Production systems have their roots in the rules of formal language theory and formal grammars. They

were developed in order to represent knowledge in a general way, so that expert systems could be used to

solve a wide variety of problems using a "standard engine". Therefore, they are a programming tool that

has allowed AI systems to exist in more interesting environments [19}.

Production systems have logical adequacy. They use a formalism that allows the use of variables to

express knowledge. They have heuristic power. Along with well defined syntax and semantics, they can

reason towards a solution to their problem. Finally, they have notational convenience. They express their

knowledge in a way that is understandable [9}. Production systems consist of the productions themselves,

and an environment in which to operate on the productions.

A production P(CI, C2, C3, ... , Cn -> AI, A2, AJ, ... An) can be thought of as a condition-action pair.

For instance:

IF

the light is green

and no cars are coming towards you

TIffiN

cross the street.

If the conditions are met, then the actions described can take place. Another term used for the conditions

of the pair is the "premise" of the production. The many productions that make up the domain specific

knowledge of an expert system are referred to as the "rules" of the system. A typical system coDtains on

the order of hWldreds of rules.

6

The conditions of a rule are usually object-attribute-value triples (9). For example:

(Peter age 36)

In this case the object caU.ed Peter bas an attribute called age that bas a value of 36. These triples can be

used to create rules, such as:

IF

(Peter age 36) and (Peter employment none)

THEN

(peter claim unemployment-benefits).

The rule shown above is not very interesting in that is lacks generality. As mentioned above, production

systems allow the use of variables to bind values to the conditions of a rule. With this in mind the rule

can be rewritten as:

IF

and

THEN

(*person age *number) and (*person employment none) and (*number > 15)

(·number < 65)

(*person claim unemployment)

The *person and *number variables of the rules help to bind "'entities" to the rule. Notice that the *person

variable comes up twice in the premise of the rule. An important principle of production systems is that

the two instances of *person refer to the same entity. This property is tenned binding an entity to a rule.

7

- -

The entities of a production system are referred to as "facts". These are the data objeots that cause the

premise of rules to be made true. This results in the "firing", or "instantiation" of rules.

The rules of a production system are held in the system "production memory" or "knowledge base" . The

facts of the system are contained in '''working memory". As facts cause rules to be instantiated., the

contents of working memory change. This could cause the firing of additional rules, thus again changing

the contents of working memory.

It is the task of the production system interpreter, or "inference engine," to allow the process of rule

instantiation to proceed in an orderly and deterministic manner. The inference engine searches through

the production memory looking for rules that can be made to fire with the current contents of working

memory. This process has been termed the "Recognize - Act Cycle" by McDennott and Forgy [19]. The

inference engine matches patterns from the knowledge base with the:facts of working memory. Thus, this

procedure has also been tenned "pattern matching".

During the "'Recognize - Act" cycle the interpreter first attempts to pattern match its knowledge base

against the current contents of working memory. In the process of doing this, a set of possible rules, all of

which may be instantiated at the current moment, is identified. This is called the "conflict set" . The

interpreter then used a conflict resolution mechanism to choose a rule from the conflict set to fire. This

cycle continues until the system reached a conclusion or is stopped by the user.

Inference engines often match the conditions of the rule against facts, tenned "forward chaining" , or they

can match the action of the rule against a known goal and then check to see if the facts support this

hypothesis. This method is termed "backward chaining". Thus the inference engine chains together

inferences to solve the problem.

8

Giarranto and Riley [8J note that chaining can be illustrated using the rule of modus ponen:s, as illustrated

below:

IF P implies Q

ANDP

THENQ

For example, consider the following rules:

An elephant is a mammal

A mammal is an animal.

These rules can be used with forward chaining to fonn the following chain of inference:

IfDumbo is an Elephant

and an Elephant is an mammal

and a mammal is an animal

Then Dumbois an animal

Using backward chaining we would begin with the assertion that Dumbo is an animal and then see if the

facts are supported by the hypothesis. We are given the fact that Dumbo is an elephant, thus we ca.n apply

the rules to prove the hypothesis.

Giarratano and Riley [8] suggest that it is helpful to think of forward chaining as a path through a

problem space in which intermediate states are considered intermediate conclusions. In backward

chaining these intermediate states represent intennediate bypotheses.

9

An important point must be made ,concerning the architecture of the production system. This is the clear

separation of the knowledge base from the inference engine that acts upon the knowledge. Barr, Cohen,

and Feigenbawn [3] state that it is vital for the inference engine to be separate from the production rules.

This separation allows the inference engine to be independent of the problem. domain that is currently

being addressed Therefore the inference engine can easily be reused to solve problems in other domains.

Only in this way can a production system be constructed as a general tool that may be used to solve a

variety of problems.

The process of obtaining knowledge from a domain expert is termed "knowledge acquisition". Several

guidelines have be mentioned in order to allow a knowledge base to be developed in an effective manner.

I would like to mention three ofthese guidelines that I feel are important to the AAI Expert System.

First, it important that the rules be expressed in a modular and declarative way. This allows systems to

be developed in a scaled manner. The process of building an expert system has been equated to solving a

problem by breaking up the problem into several independent subproblems. Each piece of the whole

contains its own specific knowledge [3]. This allows the knowledge base to change in an orderly manner

over time and to remain flexible to change.

Second, when representing knowledge the objects of the system should be named and as closely as

possible match those used by the domain expert [3]. In this way, the expert can better understand the

rules, aiding in the troubleshooting of the system. This is important because the process of knowledge

acquisition is an iterative one involving the use of prototype systems to help solicit additional knowledge

from the human expert [13].

Finally, when developing a knowledge base it is important to interview more than one expert, as many

experts have a difficult time expressing their knowledge of the exceptional case. Tbey tend to have a

10

sparse but highly reliable picture of their domain [13]. Thus, interviewing multiple experts wiIllessen the

chance that implicit assumptions concerning the domain are not excluded from the knowledge base :(3].

Together, the three pieces of a modem production system are the production memo.ry which oontains

domain specific knowledge (in the form of rules), the working memory which contains the current state of

the system's environment (in the form of facts), and the inference engine which reasons about the current

state of the system. The inference engine binds facts, or objects, to rules and thus causes the system to run

(I believe this is why the interpreter has be called an inference engine since it causes the system to run or

infer actions based on the state of the environment).

2.3 Reasoning Strategies

As mentioned in the pr:evious section, the mode of chaining defines the way in which rules are fired. In

this section, the way that a system is organized will be discussed. Brownston, Farrell, Kant, and Martin

[4] state that most successful expert systems are organized around the method in which evidence is

gathered. This method is referred to as the "reasoning strategy" of the system.

In this proposal I want to focus on two particular reasoning strategies that I feel are appropriate to this

Expert System. In fact, a conibination of both strategies were be applied to the system. Theseare "Plan

- Generate - Test" and "Match". They both use pattern matching to solve their problem but approach

their problems in very different ways.

In "Plan - Generate - Test" the system first uses its domain specific knowledge to limit the problem search

space. lIDs process, called planning, uses the knowledge base and inference engine to apply constraints

on possible solutions [3]. For instance, in the Dendral system [5] the planner used input from the domain

in the form of the rules of mass spectrometry to apply as constraints on the problem. These constraints

become the contents of working memory and allow a chain of inference to form. The constraints allow a

II

-

"filter" to be applied to the problem search space. The result is that only a subset of the possIble solutions

(those that are not "filtered" out) are passed onto the generator.

The output of the planner is then a subset of the program search space. The Generate process uses the

production system to form further chains of inference and generates a possible soLution to the problem.

The test phase checks the hypothesis to verify it has met the requirements of solution. If a soilltion is

found then the process stops. If not, then the generate phase is entered again, but with a different set of

facts in working memory. This causes further chains of inference to be applied and another hypothesis

developed.

As can be seen, "Plan - Generate - Test" tends to reason toward a solution by creating inference chains,

checking their validity, and then "back-tracking" to the generate phase if the result is not valid. On the

other hand, the "Match'"' method applies rules of inference to generate a solution without back-tracking.

The "Match" technique is discussed by John McDermott [13] as a generalized fonn ofpattem matching.

Therefore, "Match" is analogous to "Plan - Generate - Test" in that it uses a search of the problem

solution space, but in a manner that does not require backtracking. If there is at least one solution to a

problem then the "Math" technique will find it without generating any false intermediate conclusions.

In "Match" the idea is to match facts against "fonns"' . A fonn is a set of instantiations of rules that when

taken together, fonn a successfu1 intermediate solution to the problem. The technique requires that all

conditions of the form be satisfied before it can move on. Thus, the chain of inference created guarantees

a successful conclusion. This eliminates the need for back-tracking. When one form is considered valid,

it generates a fact that causes the next Logical fonn to be processed.

12

-

"Match" requires. that forms be considered in isolation. One step must complete before another step can

proceed. This may be accomplished using "context facts". These facts limit the scope of search to the

form at hand Since the rules contain conditions that use context facts. they will only become instantiated

if the context fact is present in working memory. This prevents rules from firing out of context as doing

so could lead to invalid chains of inference being formed which could invalidate the solution.

Two requirements therefore exist in order to utilize "Match". These are the Correspondence Condition,

and the Propagation Condition [13]. The Correspondence Condition states that the elements of a form

must be able to take on a locally determined value. That is, local to the process of completing a fonn.

This is not to say that search space of the form is decomposed into a set of independent subtasks. As roles

are fired., working memory will be changed and this will have an effect on the final solution. However,

these changes in working memory will have no bearing on what has already been matched. This is the

Propagation Condition which states that a partial ordering on decisions must exist such that the

consequences of applying an operator can only effect the decisions that have not yet been made.

2.4 Conflict Resolution Strategies

As mentioned in Section 2.1.1 , the inference engine is responsible for ensuring that rules are fired in an

orderly and deterministic manner. This is simple if the contents of working memory are such that only

one rule can fire. However, in practical systems conditions will exist in which multiple rules may fire,

given the current contents of working memory. As was introduced earlier, the set of possible

instantiations is called the conflict set. The interpreter must be sensitive to the conflict set and take the

appropriate action. It must choose the appropriate rule from among the conflict set to instantiate if the

system is to retain a high level of performance. McDermott and Forgy[19] state that production systems

can reasonably be expected to solve their problems only if they utilize a carefully derived conflict

resolution strategy. The ability to resolve conflict by choosing the appropriate rule to fire at any given

time is therefore a fundamental property of a production system.

13

In the introduction to this chapter it was stated that expert systems must have the ability to learn, or to

alter their knowledge and actions based on their environment. The contents of working memory change

as rules are fired. This leads the system towards a solution by generating chains ofinference. Equally as

important is the ability to discern the properties of the working memory content, as this forms the basis for

the principles of conflict resolution. The rules of conflict resolution will now be discussed.

McDermott and Forgy [19] discuss five sets of rules that form the basis of the conflict resolution strategies

used in most modem production systems. They are:

• Production Order Rules. These rules place a priority on productions such that the highest priority

production is chosen to fire first, followed by the next highest, and so on.

• Special Case Rules. These rules allow the most specific production to be fired first. For instance if

one rule contains all of the conditions of another rule, plus additional constraints it is considered to

be the special case and is chosen to fire.

• Recency Rules. The inference engine will place time tags on the contents of working memory.

Recency rules use the time tags to chose a rule to fire. Recency rules favor the newest facts in

working memory as their presence follows the latest line of reasoning.

• Distinctiveness Rules. These rules chose a rule to fire based on if it has fired previously. If the rule

bas been fired, the facts causing the instantiation are deleted from working memory.

• Arbitrary Rules. These rules choose a rule at random from the set of rules waiting to fire.

None of these classifications of rules can perform conflict resolution by themselves. The possible

strategies discussed used a combination of distinctiveness, recency, and special case rules to provide a

comprehensive conflict resolution strategy. As mentioned in the beginning of the section, these rules

provide the basis for the conflict resolution strategies used in modem production systems. For instance

the OPS5 language, offers a strategy based on distinctiveness, special cases, and recency[4]. This is

termed the LEX strategy. The MEA strategy of OPS5 is similar to LEX and will not be discussed in this

paper.

14

--

The LEX strategy first uses a technique called "refraction" to eliminate aU instantiations that have been

previously fired from the conflict set. This is an example of the distinctiveness rules. Next, it uses

recency to group the remaining elements of the conflict set according to their time tags. The time tag

represents the amount of time an instantiation has been in working memory. The groups are considered

in decreasing time order. The group with the largest recency number, is kept and the .remaining elements

are discarded from the conflict set. Finally, the remaining members ofllie conflict are sorted with regard

to their "specificity" according to the special case roles.

2.5 The Dendral Project

The Dendral Project[5] was among the first expert systems. It was developed by Buchanan and

Feigenbaum at Stanford University beginning in 1965. The application domain was the structure

elucidation of organic compounds. It used knowledge of organic chemistry and mass spectrometry to

solve its problem. The project was active until 1983 and provides invaluable insight into the process of

developing an expert system.

The goal of the Dendra! project as to produce "intelligent agents" to assist in the solution of problems

within their program domain that required complex symbolic reasoning [5]. This involved both short

term and long term goals. In the short term the system should useful to organic chemists working on the

structure elucidation problem. In the long term, the system should provide a platform for further research

into the study of expert systems. By aU accounts, it succeeded in meeting all of its objectives,

As a bit of background. although I am by no means an organic chemist, may be helpful in understanding

the discussion that follows. Dendral approached the elucidation problem by applying constraints from

the principles of mass spectromet.ry. A mass spectrometer bombards a chemical compound with

electrons, causing the compound to partly disintegrate into charged particles which are separated and

collected by mass. These collections of compound fragments are referred to as spectra. The mass

15

spectrum for a specific compound is often unique, however it is frequently impossIole to infer the

chemical structure from just the output of a mass spectrometer. Therefore, simply using a mass

spectrometer is not sufficient to solve the elucidation problem.

Dendra!, or Heuristic Dendral as it is sometimes referred, utilized the "Plan - Generate - Test" reasoning

strategy. This approach was chosen since, while it was not the method used by the domain experts, the

domain experts understood it. It also complemented the methods used by an organic chemist by

supplying a highly reliable group of possible solutions for the chemist to work with.

The Dendral planner contained domain specific knowledge of mass spectrometry as a set of production

rules. It used input from a mass spectrometer and applied its knowledge to rule out chemical structures

that could not be represented by the input spectra. The output of the planner was then used by the

Dendral generator program to produce a set of possible stru.ctures. The generator allowed. the chemist to

input information to the program to aid in the generation process. This input could come from any

source, not just mass spectrometry. Thus the chemist was able to assist in the generation process. The

test phase used further knowledge of mass spectrometry to rank the possible solutions.

This work had bearing on the expert system I developed in that it demonstrated that a potentially infinite

search space can be narrowed. down to a manageable level through the use of a ' 'front end filter" . The

filter can use domain specific knowledge to remove possibilities that are not valid from the search space.

This removed unnecessary burden from the inference process allowing it to focus only on potentially

correct facts. It also is an example of how production systems can be used to implement expert systems.

Lastly, it introduced the concept of an "'intelligent assistant" by allowing the domain expert guide the

generation process by providing input to the program.

16

"

,
I ' ,

2.6 The XCON Project

The XCON [13] project applied expert system technology to tbe configuration of VAX 1InSO computer

system manufactured by Digital Equipment Company (DEC). It is among the first successful

implementations of such a system in a commercial environment. XCON is the cornerstone of the expert

knowledge system at DEC and bas resulted in a net return to DEC in excess of $40M a year [l]. It also

provided for the development of the OPS4 production language, the precursor to OPS5 and many current

prodnction systems. XCON was developed due to tbe complexity involved with configuring a VAX

system. The number of variations of hardware configurations was so vast as to make the task difficult,

time consuming and error prone. Tbe input to the XCON program was an order for a system

configuration. It produced a configuration in the form of drawing that could be used to configure the

order for shipment.

XCON differs from DENDRAL in that it utilized "Match" as its resolution strategy. It contained

knowledge in the fonn of production rules, and database entries. Constraint knowledge or knowledge of

how the configuration process worked was contained as productions. Component knowledge, or

information on tbe actual hardware to be configured, was held in the database.

Constraint knowledge consisted of operator rules which helped the system move towards a solution,

sequencing rules that determined the firing sequence of rules (tbese are context rules as discussed earlier),

and infonnation rules which were used to access the database. XCON proceeded through a predefined

series of states, one having to complete before another could begin, to reacb a conclusion. As such it

demonstrated that the "Match' method could be successfully implemented.

Over time the scope of XCON expanded due to new product introductions, increases in functionality, and

rule revisions. XCON now contains over 10,000 sequencing and operator rules in its knowledge base.

The component database contains over 30000 records. XCON demonstrates that a large scale expert

system can meet the demands of a large commercial enterprise.

17

Equally as important was the insights the project gives with respect to knowledge acquisition. McDermott

[13] makes the following observations, among others:

• Experts tend to have a sparse but highly reliable picture of their domain.

• They tend to describe the configuration task in terms of subtasks.

• They have a deep understanding of how partial configurations effect future decisions.

The use of prototype systems at frequent points during the development process is necessa.ty to extract

knowledge of the exceptional case.

XCON has bearing on this Expert System due to its use of context rules to guide the inference process.

The configuration process followed by our domain experts is similar to this approach and therefore I

implemented a form of "Match" using context rules for the project. The guidelines for knowledge

acquisition are also interesting, especially the use of prototype systems to help solicit implicit knowledge.

2.7 The BON Method of Software Design

The BON [18] method is an object~riented design method that supports the concepts of "seamJessness",

"reversibility", and "software contracting". It is implemented in a commercial software package available

from Integrated Software Engineering (ISE), called EiffelCase.

In classical software models, such as the "Waterfall Model", software development proceeds through a

series of well defined steps. First requirements are established, followed by the generation of a

specification. Only then does implementation begin. However, software development is very o~..en

iterative, since requirements change over the course of a large project. The "Waterfall Model" requires

that when a change is made to requirements, the process loops back to the specification step. This process

oflooping back to the beginning of the process when requirements change is unnatural. In fact., with

BON, the line between design and implementation is grayed, lending itself to more natural software

development.

18

F

Seamlessness refers to the ability to easily move from the analysis phase to the design phase and then to a

running system. For example, EiffelCase will take the design and create a set of classes, written in Eiffel.

that may be compiled and run directly.

Reversibility is the ability to iterate through the design and implementation phases easily. One can

modify the Eiffe] code and then bring these changes into the design model directly, without user

intervention. This feature is also implemented in the EifIelCase product.

Software contracting refers to the method of placing pre- and post-conditions on the features of a class.

Preconditions of a class feature are the conditions that the user of the feature must meet in order for the

feature to operate correctly. Post-conditions are used to inform the user of how the feature will respond to

his request given that the pre-condition has been met. This method is referred to by Meyer [16) as "design

by contract". EiffelCase allows pre- and post-conditions to be specified in the design model. In addition

to placing conditions on the features of a class, the method also allows class invarients to be specified.

These are conditions that must be followed in order to use objects of the class properly.

The BON method includes two models, the "static" and the "dynamic" model. The "static" model shows

how classes of the system are organized. This model shows the inheritance structure of the system and the

various client-server relationships between classes. As such, the "static" model shows what the system is.

It does not attempt to show how objects of the classes interact. This is the diagrammed using the

"dynamic" model which shows how objects communicate and use the features of one another. It specified

"how" the system operates through the generation of a set of interesting scenarios showing object

interaction.

The BON method specifies a number of required deliverables. These are:

19

• Static Architecture - A set of diagrams showing the relationship between the classes of the system.

• Class Interfaces - A description of each class in. the system showing the features of the class., and their

contracts. The class interfaces are the heart of the BON method as they represent a detailed view of

the classes and fonn the specification for these classes.

• Scenario Chart - A list of the scenarios that illustrate the dynamic operation of the system.

• Object Scenarios - A set of diagrams illustrating the scenarios listed on the scenario chart.

Each of these deliverables were produced during the development of the system. They will be presented

later in this paper.

20

3.0 PROBLEM STATEMENT

The development of the GC Expert System was a software engineering project whose goal was to produce

an embedded rule-based expert system. It was implemented using the following commercial software

products: ISE Eiffel Version 3.3.9, ISE EiffelCase Version 3.3.9, Microsoft Access, and CLIPS (3

production system developed by NASA for use on the Space Shuttle program). The target operating

system is Windows 95. These tools were used as follows:

• ISE Eiffel - This is the software development environment for the system. It allows the production of

32-bit applications that can be executed on 3 target computer numing Windows 95 or Windows NT,

The Eiffel source code is compiled within this environment to C source code. Microsoft Visual

ClC++, Version 2.0 is used to compile the C source code to Object files and to link these into an

executable application.

• ISE EiffelCase - This tool implements the BON method that was discussed earlier in this paper.

• CLIPS - This is a production system that contains the features discussed in the literature review. It is

implemented as a 32-bit Windows Dynamic Link Library (DLL). The DLL is callable from the C

language. Therefore, I created an Eiffel "wrapper" that interfaces between the rest of the system and

the inference engine of CLIPS.

• Microsoft Access - This is a commercial DBMS that contains the application database that was

introduced earlier in this paper. Eiffel can communicate to the DBMS using Open Database

Connectivity (ODBC) protocol.

A block diagram showing the configuration of the system is shown on the following page.

• The GUI is the users view of the system. It allows the user to supply process stream information for a

customers application. This data is passed to the message routing mechanism for further processing.

The GUI will also shows the user the result of the reasoning session, including the oonfiguration

21

chosen to meet these requirements. If no solution to the problem was found, this is also be reported to

the user.

CLIPS System Access DBMS

CLIPS Interface Access Interface

1
I

Message Routing Mechanism

I

Graphical User Interface (GUI)

• The message router allows information to be exchanged between the Gill, ACCESS and CLIPS. This

piece of code provides a gateway to the other parts of the system.

• The CLIPS interface allows messages to be passes between CLIPS and the message router.

• The ACCESS interface allows the DBMS to be queried for data pertinent to this configuration

session.

It is always important to specify what a computer program will do. It is equally as important to state what

it won't do. Earlier in this paper I discussed tbe process an application chemist uses to configure a GC.

22

This is what the expert system does. It automates the existing process. If a solution can be reasoned using

data taken from the application database, then the expert system will find this solution. However, if no

solution can be reasoned from existing historical data, then the expert system will not be able to find a

solution. This will be the case if the system is given a process st:ream, whose characteristics do not match

any given in the database, as input. It is expected that this will happen. In the future, as the knowledge

base matures and becomes more sophisticated, this constraint may be lifted.. But for the moment it defines

the system's capacity to reason.

The next section will present the results of my work in detail. It will discuss each of the comJXlDents of

the system and include:

• Screen captures of the user inteJface.

• BON static and dynamic architecture diagrams.

• Details of the systems data structures.

• Details of the application database a queries used to perform the Generate step of the reasoning

process.

• Details of the knowledge base.

23

-

4.0 RESULTS OF PROJECT

4.1 The System Development Cycle

This section of the paper discusses the results of my work done in developing the expert system.

The following steps were performed. to develop the GC Expert System:

• Interviews with users of the system were performed. in order to obtain their requirements for the GUl.

I felt it was important that the system be easy for the user to use. If not, then the system would

remain unused. regardless of how well it performed. it's job.

• As a result of these interviews, a prototype user interface was developed and presented. to the users for

evaluation of look and feel. This was an iterative process, repeated until the user was satisfied. with

the interface.

• In addition, development of the user interface led. to a model for the systems data structures. These

were developed in EiffeiCase. The resulting BON models were used. to implement the data structure

classes. These classes will be discussed in detail later in this paper.

• Interviews "'lth domain experts were performed in order to gather domain knowledge for the rule

base. I planned on interviewing at least three different application chemists in order to solicit

information with which to generate the knowledge base and on using the initial results to generate a

prototype knowledge base for use by the experts. Unfortunately I was unable to complete interviews

with more than two experts before I left my position at the GC manufacturer The results of these

interviews represents the knowledge based presented in this paper. The development of the

knowledge base was an iterative process that was repeated until the knowledge base supplied valid

results to sample problems.

• Knowledge Base development led to the enhancement and refinement of system data structures. It

also let me begin to understand how the application data base would be queried and allowed the next

step to proceed.

24

-

• Next, the CLIPS and ACCESS interfaces were designed and implemented These were tested tc

verify that they can properly perform their functions using stubs to simulate the communication

between them and their targets.

• Design and implemention of the message router.

• Integration and test the system.

The process described above most closely approximates a Spiral Development Process.

4.2 The User Interface

The first part of the expert system developed. was the user interface. Interviews with potential system

users were conducted in order to determine requirements for the interface. In summary, the following

requirements were levied on the user interface:

• It should contain windows that mimic the way in which the sales engineer specifies an application.

These windows include: a main application window, a stream properties window, a stream

composition \\<indow, and a component properties window.

• It should prompt the user for missing information before continuing the input session.

• It should not allow a user to begin a application search until the entire application stream is specified.

• It should allow tbe input session to be stored on disk.

• It should have a standard Windows look and feel.

Before discussing the user interface components in detail it will be useful to examine the overall

architecture of the interface. The BON static architecture of the user interface is shown in the figure

below:

25

,-

,.---- , , \

~THESIS ,'
,--- --------------------------, ,

,

,...------------, ,
',ROOT CLUSTER:

~ ~-- ...

----------------~
{WRAPPER CLASSES ~ , - ,
~------------------, , , , , , ,

: ', ------------- _____ .,1

.,.-----------

:APP CLASSES :
,,_... "' ... "
, ' , .

... _- -- ---------'"

---------- {DB_CLASSES,~ ,------------- ..

------ ... , \

',ROUTER,'

,
• ,

,-- ------- ... ,

,- ------ - - ------ ------------------------------------- ------------------~

, ,

I

',------------ --- -------- ------- ---, '

Figure 1 - BON Static Arcbitecture Diagram For tbe User Interface

The root class of the system is the APPLICATION class. This class is derived from the WEL library class

WEL_APPLICATION. The APPLICATION class uses the services of the MAIN_ WINOOW class. The

MAIN _ WINOOW class contains an object of type MY_MENU which is derived from the WEL library

inherit from the class APP _IDS. APP _ IDS contains the definition of system GUI constants.

Each of the user interface components wiU now be described in detail to describe bow these requirements

were implemented as an Eiffel application.

4.2.1 The Main Application Window

The main application window is shown in the figure below.

Figure 2 - Main Application Window

1bis window is created when the user starts the application. It contains a standard Windows menu that is

accessed in order to begin an input session. Only the File menu item is active at start up, indicating to the

user that he or she must select a File operation to continue. The valid options within the File menu item

are:

• New: Used to enter a new application.

27

• Open: Used to open an existing application that was saved to disk.

• Save: Used to save the current input session to a file on disk.

• Save As: Used to save the current input session to a file under a different file name.

• Print: Used to print the current input session to the printer. This option is not yet implemented.

• Exit: Used to terminate the program.

The main window is an instance of class MAIN _WINDOW which inherits the properties of WEL classes

WEL JRAME _ WINDOW is the library class that abstracts the Windows API for a framed window.

APP _ IDS is the class that contains system wide constants (including menu ids).

WEL _ OFN _ CONT ANTS is the library class that contains file operation constants.

The Eiffel source code for the MAIN_WINDOW class is:

class

inherit

creation

MAIN WINOOW

WEL FRAME WINOOW - -
redefine

end

APP IDS
export

end

export

end

make

class_icon,
on_rnenu_conunan~

closeable

{NONE} all

{NONE} all

feature {NONE} -- Initialization

make is

28

do

end

make_top (fide)
set_menu (main_menu)
current_stream := 0
app_sclected := false
!! router. make

" obj mak .. app_ ect. e
!! app_spec.make (Current)
!! comp_scl.make(Current)
!! stream _spec. make(Current)

feature {NONE} -- Attributes

app_spec
comp_sel
stream_spec
current_stream
app _selected
app_object
router

APP SPEC DIALOO - -
COMPONENT _SELECf _DIALOG
STREAM_SPEC PlALOG
lNTEGER
BOOLEAN
GC _APPLICATION
MESSAGE_ROUTER

feature {NONE} - Implementation

check_configuration is
local i : INTEGER

configured: BOOLEAN

do

end

-- check to see if all streams are configured

from i:= 0
configured := true

until i = app_object.number_streams

loop

end

if app _ object. streams.item(i). get_ configured = false then
configured := false

end
i := i + 1

if configured then
main_menu.enable_item(1dj1o)

else

end

oD_menu_command (menu_id: INTEGER) is
do

inspect
menu id

when Id_file_exit then
if closeable then

destroy

29

-

end

end.
when IdJlle_new then

if app _selected then
if save_current then

end

app _ object. make
app_selected. := false
reset_menu
end
app _spec. activate

when Id _ configure ~hromatograph _1 ..
Id _ configure ~hromatograph _15 then

current_stream := menu_id - Id_configure~schromatograph_ l
comp _ sel.activate

when Id_strea.m_l .. Id_strealn_15 then

stream _ spec. activate
when Id_file_open then

if app _selected. then
if save current then

end
end

open_system
app _ spec.activate

when Id_file_sabe then
save_system

when Id_file_close then
if app _selected. then

if save current then

end
end.

set_text(Title)
app _object. make
app_selected := false
reset_menu

when Id~o then

else

end

-- Debug stuff
router.sta.rt_session(aplulbject)

not_implemented

-- open the GC _ APPLICA 'fION object
local file_name: STRING

RAW FILE file_object:
file window: WEL _OPEN]ll..E _DIALOO

30

do

end

GC _ APPLICATION

! !file_ window. make
file_window. seUitle("Open Configurationlt)
file _window. set _ initial_directory _ as_current
file _window .seUJefault_ extension(ltcfg")
file_window. set_filter « <"CFG Filelt»,« It* .cfg"»)
file _ window. set_ tlags(Ofn -Plthmustexist +

Ofn _ filemustexist)
file_window.activate(Current)

if fi Ie_wi ndow. selected = true then
!! file_namc.make(80)

end

!! temp_app.make
file _ name.copy(file _ window. file _name)
!I file _ object. make _ open _ read(file _ name. out)
app_object ?= temp_app.retrieved(file_object)
file_object. close
update _ title(file _window. file_name)
check_configuration

save_system is
-- save the GC_APPLICATION object

local file_name: S1RING

do

end

file_object: RAW]JLE
file_window: WEL_SA VE_Fll..E_DIALOG

! !file_ window. make
file_window.set_titJe("Save Configuration")
file_window. seUnitial_ directory_as _current
file_window.set_default_extension(ltcfg")
file_window. set_filter «<"CFG File"»,« "·.cfg"»)
file_window.set_tlags(Ofn_overwriteprompt)
file_window.activate(Current)

iffile_window.selected = true then
!! file _name. make(80)

end

file _ name.copy(file _ window.file _name)
!! file _ object.make _open _ write(file _name. out)
app _ object. general_ store(file _object)
file_ object. close
update_titJe(file_window.file_name)

update_title(file_name : S1RING) is

do

- update the project title
local new_title: STRING

!!new _ title.make(80)
new_title.copy(TiUe)

31

end

new_title.append(" -")
new _ title.append(file _name)
set_ text(new _title)

not_implemented is

do

end

- Message to inform that the feature is not implemented

information_messageJx)x("Feature Not Implemented Yet",
"Not Implemented")

closeable: BOOLEAN is
- When the user can close the window?

do
Result := message_box ("Do you want to exit?",

"Exit", Mbyesno + Mb_iconquestion) = Idyes

end

save current: BOOLEAN is
-- Don't intentionally lose an objects data

do
Result := message_box ("Save current configuration",

"Exit", Mbyesno + Mb_iconquestion) = Idyes
end

class_icon: WEL_ICON is
- Window's icon

once

end

nurin_menu:1fY_~~is

- Window's menu
once

ensure

end

setup_menu is

do

local i : INTEGER
-- enable the stream and configure menus
- based on the nwnber of streams attribute
-- oftbe GC_APPLICATION object

main_menu. enable _item JJ)' --'position{ 1)
main_menu. enable _ item_by JIOSition(2)
main _ menu. enable _item(ld _ file _ sabel
main _ menu. enable _ item(ld _file _ saveas)
main_menu.enable_item(ld_file.-PJint)
main_menu. enable _ item(Id _ file_close)

32

end

from i := al:J(ulbject.oumber_streams
until i = 15

loop
main _ menu. disable _ item(ld _ oonfigure ~hromatograph _1 + i)
main_menu.disable)tem(ld_streanl_l + i)
i := i + 1

reset menu is

do

end

local i : INTEGER
- reset the menu to power_up state

from i := 0
until i = 15

loop
main_menu.enable_item(ld_configure"'pschromatograph_ l + i)
main_menu.enable_item(Id_stream_ 1 + i)
i := i + 1

end
main_menu.disable_item_by-....PIJsition(l)
main _ menu. disable _item_by -....PIJsition(2)
main _ menu. disable _item(Id _file _ sabe)
main _ menu. disable _ item(Id _ file _ saveas)
main _ menu.disable _item(Id _file -print)
main _ menu. disable _ item(Id _file_close)
main_menu.disable_item(ld~o)

draw menu

Title: SlRING is "George Wolke's Gas Chromatograph Configuration System"
-- Window's title

feature {APP _SPEC_DIALOG} -- Access

set_app_object(app: GC_APPLICATION) is

do

end

-- set the GC application object
-- finalize the window setup

aPJulbject := app
app _selected := true
setup_menu

gct_app_object: GC_APPLICATION is
-- to give access to the GC object

do

end

33

-

get_stream_object: STREAM is
-- to give access to the current stream

do
Result := app _ object. get _ stream(current_stream)

end

set_stream_object.(obj: STREAM) is

do

end

- give the data to the app object
- look to see if the system is ready
- to run a configuration session

app_object.set_stream(obj,current_stream)
cheCk_configuration

end -- class MAIN _ WlNOOW

Notice that the MAIN _ WINOOW class contains objects of type GC _ APPLICA nON and

MESSAGE_ROUTER. These are used to implement important system data structures and messaging

capabilities and will be discussed later in this section.

34

4.2.2 The Application Specific Dialog

If the user chooses to enter a new application (by selecting File-New) or to open an existing application
(by selecting File-Open) then the following dialog box is displayed:

r N_

Figure J - Application Select Dialog Box

This dialog box is an instance of class APP _ SPEC_DIALOG, which is derived from the WEL library cLass

WEL_MODAL_DIALOG. WEL_MODAL_DlALOG abstracts the API for a modal dialog. The dialog

allows the user to input important information concerning the application. The Customer Name and

Customer Location edit boxes are used to store the name and location of the customer. The No. Streams

edit box contains the number of streams associated with this application. The Cycle Time edit box stores

the time required to perform the analysis. The Carrier Gas combo-box is used to select the carrier gas for

the application. After entering this information and selecting the OK pushbutton this information is

stored in the GC _ APPLICATION class and the dialog box is removed from the screen. At this point the

Configure and Stream menu items of the MAIN_WINDOW are enabled.

35

1-

-' -

The Eiffel source code for the dialog box is:

class

inherit

creation

WEL_MODAL_DIALOG
redefine

end

APP IDS
export

end

make

on_ok,
setup_dialog

{NONE} all

feature {NONE} - Initialization

make (a.Jlarent: MAIN_WINDOW) is
do

end

owner := aj)3rellt

makeJ,)'jd (aj)3!ent, Idd_appl_selecl)
!! customer.make _by _id (Current, Ide_customer)
!! location. make_by _ id (Current, Ide _ customerlocation)
!! nO_SU'eamS.make_by_id (Current, Ide_streams)
!! cycIe_time.make_by_id (Current, Idc_cycletime)
!! carrier~. make_by _ id (Current, Ide _ carriergas)

feature {NONE} -- Attributes

customer: WEL SINGLE LINE EDIT - - -
-- Customer Edit control

location: WEL _SINGLE_LINE _EDIT
-- Customer Location Edit control

no streams: WEL SINGLE LINE EDIT - - --
- Number Streams Edit control

cycle_time: WEL _ SINGLE_LINE_EDIT
-- Cycle Time Edit Control

36

carrier -.ps: WEL _SIMPLE _ COMBO_BOX
-- Carrier Gas List box

local_application: GC_APPLICATION
- the main application object

owner: MAIN_WINDOW
- the owner of this object

feature {NONE} - Implementation

setup_dialog is

on okis

local index: INIEGER

do

end

- setup the dialog

carrier -'ps.add _ string("NITROGEN")
carrier ~s.add _ string("HELIUM")
carrier ~.add _ string("HYDROOEN")

index := ca.rrier~.find_string_exact(O,]ocal_application.carrier~)
if index /= -1 then

carrier ~.select_item(index)
else

carrier ~.select _item(O)
end

customer. set_ text(Jocal_ aA>licati on. customer _name)
location.set_tex:t(local_application.customer_location)
no_streams. set_text (local_application. number_streams. out)
cycle_time. seuext(local_appJication. cycle_time. out)

local stream, c _time : INIEGER

do
-- Save the application data

if no _streams. text.is _integer and cycle_time. text.is _integer then
stream:= no_streams. text. to)nteger
c_time := cycle_time. text. to_integer
if stream > 15 or stream < 1 then

information_message_box("Set number of streams (1 - 15)",
"Required Entry")

no_streams. select_all
elseif c time <= 0 then

else

information_message_box("Cycie time must be greater than 0",
"Required Entry")

cycle_time. select_aU

local_ application. set_ customer _ name(customer.text)
local_application. set_customer _location(location. text)
local_ aA>lication. set _ streams(no _streams. text. to_integer)
local_application. set_cyclc_time(cycle_time. text. to_integer)

37

-

end

signal_owner is

end

local_application.set_carrier~carrier~.selecte(tstring)

signal_owner
tenninate (look)

elseif not no_streams. text.is _integer then
infonnation_message_box("Streams must be an integer (I-1St,

"Entry Error")
no_streams. select _all

else
information_message -',ox("Cycle time must be greater than 0".

"Entry Error")
cycle_time. select_all
end

-- inform the owner that the app object is filled
do

end

The feature of most interest in this class is ' on_ok'. This is called when the user selects the OK push

button. This feature verifies that all of the required information has been entered, stores this information

in a GC_APPLICATION object and calls the 'signal_owner' feature. The 'signal_owner' feature is used

to inform the MAIN_WINDOW that the application specific data has been entered. This is accomplished

by calling the 'set_app_object' feature of MAIN_ WINDOW, passing as a parameter an object of type

GC _ APPLICATION.

38

4.2.3 Stream Select Dialog

After completing the Application Select Dialog, the Stream and Configure menu items are enabled.. At

this point the user may choose to select the Stream menu item. A sub-menu containing entries for each of

the streams specified in the No. Streams edit field will be displayed.. If one of the sub-menu items is

selected the dialog box shown below will be displayed.. This dialog box is an instance of class

WEL _MODAL _ DlALOO abstracts the API for a modal dialog. The dialog box is used to specify

important parameters for the application stream.

T....-__ 5 ... _Preawe PI-. 5 ... ,T ...

125 10 It ! pH AetwnPr_e rConeli¥e
11 10 r DiaaGInd Soida

rp~

P 0& I

Figure 4 - Stream Properties Dialog

The EiffeJ source code for this dialog box is:

class
STREAM_SPEC _DIALOG

inherit

39

-

creation

end

APP IDS
export

end

make

{NONE} all

feature {NONE} - Initialization

make (a.Jment: MAIN_ WINOOW) is
do

end

owner := aJ)llrent

make_by _ id (a -P'lrent, Idd _stream --PfOperties)
!! temp.make_by_id(Currenl, I&Uemperature)
!! pH.make_by_id (Current, Ide-ph)
!! s-press.makeJJy_id (Current, Ide_streampress)
!! r....J'fe5S.make_by_id (Current, Idc_retumpress)
!! tag.make _by _id (Current, Ide_tag)
!! phase. make _ by _id (Current, Ide -phase)
!! corrosive. make_by _ id (Current, Ide_corrosive)
!! solids.make_by_id (Current, Idc_dissolids)
!! poly.make_by_id (Current, Idcj)Oly)

feature {NONE}- Attributes

temp: WEL_SINGLE_LINE_EDIT
-- stream temp Edit control

pH: WEL_SINGLE_LINE_EDIT
- stream pH Edit control

s-press: WEL_SINGLE_LINE_EDIT
-- stream pressure Edit control

r-press: WEL_SINGLE_LINE_EDIT
-- return pressure Edit Control

tag: WEL_SINGLE_LINE_EDIT
-- the app specific name for this stream

phase: WEL_SIMPLE_COMBO_BOX
- stream phase List box

corrosive: WEL _CHECK_BOX
-- is the stream corrosive

40

- are dissolved solids in the stream

poly: WEL_CHECK_BOX
-- does the stream polimerize

local_stream : STREAM
- used to store the changes to the stream
- attributes

owner: MAIN_WINDOW
- the owner of this object

feature {NONE} -- Implementation

setup_dialog is
local index: INTEGER

do

end

-- setup the dialog

temp.set_text(local_streamget_temperature.oul)
pH. set _ text(local_ stream. get j)H. out)
sj>ress.set_text(1ocal_stream.get_spress.out)
rPress. seuext(local_ stream. get_ rpress .. out)
tag. set _ text(1ocal_ stream. get _tag)

phase.add _ string("Liquid")
phase. add _ string("Vapor")

index := phase.find_string_exact(O,local_stream.getj)hase)
if index /= -1 then

phase.seJect_item(index)
else

phase.selecUtem(O)
end

if local_stream. get_corrosive = true then
corrosive.set checked

end

if local_stream. get _ disolids = true then
solids.set checked

end

iflocal_Slream.getj)Olimer = true then
poly. set_checked

end

-- Save the stream data

41

-

do

number",

number",

end

signal_owner is

if temp. text.is _ real and pH. text.is jnteger and
s-press.text.is_real and ryress.text.isJea,l then
local_stream.seUemperature(temp.text.to_real)
local_stream. set -.PH(pH. text. to _integer)
loca1_streanl.set_spress{S-.PfeSS.text.toJea.l)
local_stream. set_spress(T-.PfeSS. text.to_real)
local_stream. seUag(tag. text)

else

end

local_stream. set-phase(phase. selected_string)
local_stream. set_corrosive(corrosive.checked)
local_stream. set-'polimer(poly. checked)
local_ stream. set_ disolids(solids.checked)
signa.l_ owner
terminate (Idok)

if not temp.text.isJeal then
information_messageJ)()x(HTemperature must be an real number",

"Entry Error")
temp. select_all

eLseif not pH. text.is _integer then
information_message_box("pH must be an integer",

"Entry Error")
pH. select_all

elseif not s -PTess. text. is _real then
information_message _ box("Stream Pressure must be a real

"Entry Error")
SPfCSS. select_all

else
information_message_box("Retum Pressure must be a real

"Entry Error")
r....PJ"ess.select_all

end

- inform the owner that the stream object is filled
do

end

The 'on_ok' and 'signal owner' features are used in the same manner as for the APP _SPEC_DIALOG

class. The 'on_ok' feature is called when the OK push button is selected. It verifies that important

information has been fully defined, slores this information in a STREAM object and then calls

STREAM object within the GC_APPLICATION object.

42

-

4.2.4 Component Select Dialog

After completing the Application SeI(X;t Dialog, the Stream and Configure menu items are enabled. At

this point the user may choose to select the Configure menu item. A sub-menu containing entries for each

of the streams specified in the No. Streams edit field will be displayed. If one of the sub-menu items is

selcx;ted the dialog box shown below will be displayed. lIDs dialog box is an instance of class

COMPONENT_SELECT _ DIALOO, which is derived from the WEL library class

box is used to specify the component make-up of this application stream.

ACETYlENE
AIR
AR.60N
BTU
0+
ClD+
ClU'S
Cll+
Cll'S
C12+

Figure ~ - Component Select Dialog

The dialog box contains two list boxes. The ·Select' list box contains the possible components of a stream

and the 'Chosen Components' list box contains the components that make up this process stream. The

43

user may select a component by either 'double clicking' on the item or by selecting the item and then

pushing the 'right arrow' push button. The ' left arrow' push button is used to remove a component from

the 'Chosen Components' hst box. The '% of Stream' edit box shows the total percentage of the stream

that has been specified. A reasoning session may only be run for a completely specified stream.

The EifIel source code for the dialog box is:

class

inherit

creation

redefine

end

APP IDS
export

end

on_ok,
setup_dialog,
notify

{NONE} all

WEL LBN CONSTANTS
export

{NONE} all
end

WEL BN CONSTANTS
export

{NONE} all
end

make

feature {NONE} -- Initialization

make (aj)3fent: MAIN _ WINOOW) is
do

owner := a "....Parent
make_by _ id (a ,J)arent, Ickt comp _select)

!! comp_list.make_by_id (Current, Ide_chosen)
!! seUist.make_by_id (Current., Ide_select)
!! stream --.JX!rcent. make_by jd (Current, Ide _ streampercent)
!! insert._button.make_by _id(Current,Ide_tochosen)
!! removed_button.make_by_id(Current.lde_toselect)
! !Jocal_ component. make

44

-

end

feature {NONE}- Attributes

comp_list: WEL_SINGLE_SELECTION_LIST_BOX
- list of possible components List box

sel_list: WEL_ SINGLE_SELECTION _LIST_BOX
- list of possible components List box

stream --.JX!rcent: WEL _ SINGLE _LINE _EDIT
- edit showing total % of stream defined

insert_button: WEL_PUSH_BlTITON
- add items to the selected list

removed_button: WEL_PUSH_BUITON
- remove items from the selected list

comp _dialog: COMPONENT_SPECIFIC _DIALOG
- the popup that configures a component

local stream: STREAM
-- used to store tbe changes to the stream

local_component: COMPONENT
- used to store the component we are working on

owner: MAIN WINDOW
- the owner of this object

feature {NONE} - Implementation

setup_dialog is
local ij : INTEGER

do
- setup the dialog

calculate j)ercent_ stream
sel Jist. add _string("HYDROGEN")
sel_list.add _ string("HELIUM")
seUist.ad(t string("NITROOEN")
seUist.add _ string(" AIR")
se)Jist.adt string("BTU")
seUist.add_string(" ACETONE")
sel_list.add _ string(" ARGON")
sel_liSl.add_string("CARBONDIOXIDE")
se)Jist.add _ string("CARBONMONlXIDE")
se)Jist.add _ string("CARBONTETRACHLORIDE")
sel_list.add_string("CARBONTETRAFLORIDE")
seIJist.add_string("CHLORINE")

45

-

seUist.a£kC string("C 1 +")
seI_list.add _ string("C2+")
sel_list.add _ string("C3+")
sel_list.add_string("C4+")
sel_Iist.ad(Cstring("C5=+")
setlist.a(ktstring("C6+")
sel_list.a&:t string("C7+")
sel_list.acktstring("C8+1t)

sel_list.adct string("C9+")
sel_list.add_string("ClO+")
seUist.adl;tstring("Cll+")
sel_list. add_string("C 1 2+")
scUist.add_string(ItC2'S")
sel_list.add._string("C3'S")
sel_list.add_string("C4'SIt)
seUist.add_string("C5'S")
sel_list.add_string("C6'S")
seUist.add _ string("C7'S")
sel_list.add._striog("C8'S")
sel_list.add_string{"C9'S")
sel_list.add_string("CIO'S")
sel_list.add_string("Cll'S")
sel_list.add_string("C12'S")
sel_list.add. _ string("METHANE")
sel_Iist.add._ string("ETHANE")
sel_Iist.add. _ string("ETIIYLENE")
seUist.add._string(" ACETYLENE")
sel_listadd_string("PROPANE")
sel_listadd. _ string("PROPYLENE")
sel_list.add_string(" CYCLOPROPANE ")
sel_list.add_string("PROPADIANE")
sel_Iist.add _ string("MElHYLACETYLENE")
sel_list.add _string("ISOBUT ANE")
sel_list.add_string("NORMALBUTANE")
sel_Iist.add_string("I-BUTENE")
sel_list.add_string("lRANS-2-BUTENE")
sel_list.add_string("ETIlYLACETYLENE"}
sel_list.add _ string("VINYLACETYLENE")
sel_list.selecUrem(O)

- update the list boxes
from i := I
until i > local_stream.get_number_of_components
loop

oomp _list.a£i(t string(1ocal_ stream. get _ oomponenUJ:)' _ index(i) . get_name)
j := seUist.find_striog{O,

local_stream.get_oomponentJJ)'_index(i).get_name)
ifj /= -1 then

sel_list.delete _ string(j)
end
i := i + 1

end

ifi = 1 then

46

-

> 100",

remove(UJUtton.disabJe
else

end
end

calculate ---IJercent_ stream is
local percent : REAL

do

end

-- walk through the components and
- calculate the percentage of the stream
- that has been defined. Set the configured
- state of the stream

percent := local_stream.get---IJercent_stream
stream ---IJercent. set _ text(percent. out)
if percent >= 100 then

insert button. disable
else

insert button. enable
end

if percent> 100 then
information_message J)ox(" An error exists in the stream. Stream %%

"Stream Composition Error")
end

if percent = 100 then
local_ stream.set3onfigured

else
local_stream. reset_configured

end

add _ component_to _Jist is
- add a component to the component list

local buffer : STRING

do
selection : INTEGER

! !buffer.make(80)
buffer := sel_Iist.selected_string
selection := sel list. selected item - -

local_stream.add_component(buffer)
local_component: = locaJ_ stream. get _ component_by _ name(buffer)

comp_Iist.add_string(buffer)
sel_Iist.delete _ string(selection)

seUist.select_item(O)
comp_list.selec1_item(O)
if comp _list. count = 1 then

removed JJUtton.enable

47

-

end

end

! !comp _ dialog.mak:e(Current,buffer)
comp _ dialog. activate

remove_componentJrom_list is
- remove a component from the list

local buffer : STRING

do

end

selection : INTEGER
comp : COMPONENT
percent : REAL

! !buffer.make(80)
! !comp.make
buffer := comp_list.selected_string
selection := comp_Iist.selectedjtem

comp := local_ stream. get _component_by _ name(buffer)
local_ stream. remove _component(comp)

sel_list.add _ string(buffer)
comp_Iist.delete_string(selection)

seUi st. select _item(O)
if comp_list.count = 0 then

remoYe(UMton.disable
else

compJist.select_item(O)
end

calculate j)ercent _stream

notifY (control: WEL_CONTROL; notifY_code: INTEGER) is
local buffer: STRING

do
if control = sel list then

if notify _code = Lbn _ dblclk then

end

-- add the component to the component list
add_component _to_list

elseif control = insert button then
if notify _code = Bn _clicked then

end

- add the component to the component list
add_component _to_list

elseif control = comp _list then
if notifY_code = Lbo _ dblclk then

-- Bring up the component properties dialog
! !buffer.make(80)

48

-

buffer := romp _list.selected...;stting
local_component :=

local_ stream.get _component_by _ name(buffer)
!!comp_dialog.make(Cun:ent,buffer)
comp _ dialog. activate

end

on ok is

do

end

end
elseif control = removed_button then

if notify_code = Bn _clicked then

end

end

-- remove the component from the component list
remove _ componentJrom _list

-- Save the application data

signal_owner
terminate (look)

signal_owner is
- inform the owner that the stream object is filled

do

end

feature {COMPONENT _ SPECIFIC_DIALOG} - ACCESS

get_component_object: COMPONENT is
- get the current component _object

do
Result:= local_component

end

update_component_list(comp: COMPONENT) is

do

end

- update the list with new component specific information
-- update the stream percent dialog

local_ stream. replace _ component(comp)
calculate yercent_ stream

end - class COMPONENT SELECT DIALOG - -

When the user selects a component by double-clicking or selecting the 'Right Arrow' push button, the

'add_component_to_list' feature is called and the following dialog box is displayed:

49

~
V.
PPB I

, PPM

----~.-.

Figure 6 - Component Specific Dialog Box

This dialog allows the user to specify the concentration of this component within the stream. The

'Upper', 'Lower' , and 'Nomtal ' edit fields contains the upper. lower, and Donnal concentrations of the

component within the process stream. The 'measured' check box specifies if this component is to be

analyzed or not. Only measured components are considered by the knowledge base.

The Eiffel Source code for this class is:

class

inherit
WEL MODAL DIALOG - -

redefine

end

APP IDS
export

end

on_ok,
setup_dialog

{NONE} all

50

creation
make

feature {NONE} -Initialization

make (a-.J)arent: COMPONENT_SELECT_DlALOO; component: STRING) is
do

end

o~er :=a~nt

make_by _ id (a -.J)arent,ldcC comp yrop)

!! upper_Iimit.make_by_id (Current, Idc_upperlimit)
!! lower _limit. make J~' _ id (Current, Ide _lowerlimit)
II measured.makeJJ}'_id (Current, Ide_measured)
!! nonnal.make _by _ id(Current, Ide_normal)
!! units.make _by jd(Current,Idc _units)
!!my _ title.make(80)
my_title.copy(componeot)

feature {NONE}- Attributes

upper_limit: WEL_SINGLE_LINE_EDIT
- edit showing upper concentration limit

lower limit: WEL SINGLE LINE EDIT - - --
- edit showing upper concentration limit

normal: WEL SINGLE LfNE EDIT - --
-- edit showing normal concentration

units: WEL _SIMPLE_COMBO _BOX
-- combo box listing the possible units

measured: WEL CHECK BOX - -
-- Is this component analyzed?

my_title: STRING

owner: COMPONENT SELECT DIALOO - -
- the owner of this window

local_component : COMPONENT
- this component

feature {NONE} - Implementation

setup_dialog is
local index : INTEGER

- setup the dialog
do

local_component := donee owner. get_ componenU>bject)

units. add _ string("PPM")

51

-

end

on ok is

do

number",

number",

units.add_string("PPB")
units.add_string("Vol%%")

lower _limitsel_ text(local_ component. get _ minimum. out)
upper _limit.seUext(locaJ _componentgeunaximum.out)
normal. sel_text(local_component. get_Dormal. out)

if local_component.get_m.easured = true then
measured set_ checked

end

index := units.find_string_exact(O,local_component.get_units)
if index /= -I then

units.select_ilem(index)
else

units.selectjtem(O)
end
set_lext(my _title)

-- Save the application data

ifnot normal.text.is_real or not upper_limittext.isJeal
or not lower _limittext.is _real then

if not normal.text.is real then
information_message Jx)x("Normal concentration must be a real number",

"Entry Error")
normal. select _all

elseif not upper_limit.lext.isJeal then

else

end

informatioD_message_box("Upper limit concentration must be a real

"Entry Error")
upper _limit. select _all

information _message J)ox("Lower limit concentration must be a real

"Entry Error")
lower _limit. select_all

elseif upper _limiuextto _ real < lower_limit. text. to _real then
information_message_box("Upper Limit must be greater than lower 1imit",

"Entry Error")
elseifupper_limittext.toJeaJ < 0 then

information_message _ box("Upper Limit must be greater than or equal to 0",
"Entry Error")

elseiflower limit.text.to real < 0 then - -
information_message_box("Lower Limit must be greater than or equal to Oil,

"Entry Error")
elseif normaHext.to real <= 0 then

information_message...:box("Normal concentration must be greater than 0",
"Entry Error")

elseif lower _limittext.lo _ real >= normaUext. to_real then

52

...

concentration" .

concentration" ,

end

signal_owner is

do

information_messageJ,ox("Lower Limit must be less than normal

"Entry Error")
elseifupper_limit.texl.lo_rea1 <= normal.text.toJeal then

infonnation _message _ box:("Upper limit must be grt'3ter than normal

"Entry Error")
else

local_component. set _ normal(normal. text. to_real)
local_component. set _ maximum(upper _limit. text. to_real)
Local_component. set_minimum(Lower_limit. text. to_real)
local_component. set_measured(measured. checked)
local_component. set_units(units. selected_string)
signal_owner
tenninate (Idok)

end

- update the component object

owner. update _ componenUiS1(Jocal_ component)
end

end - class COMPONENT_SPECIFIC_DIALOG

The 'on ok' feature is used in the same manner as described earlier. It verifies that data has been

properly entered, copies the data into a COMPONENT object, and then calls the 'signal_owner' feature.

The 'signal_owner' feature calls ' updatc_componentJist' of COMPONENT_SELECT_DIALOG loadd

the component to the STREAM object.

When 'update_component_list' is called the COMPONENT_SELECT_DIALOG object will call the

'getjlCrcent_stream' feature of cLass STREAM to update the percentage of the stream that has been

specified. When the entire stream has been specified then the OK push button of the

COMPONENT_SELECT _DIALOG window is used. to signal the MAIN_WINDOW that the stream has

been configured. At this point the updated STREAM object is inserted into the GC_APPLICATION

object and the GO menu item is enabled. This signifies that a reasoning session can now take place.

53

po

4.3 The Application Classes

The Application classes are the main data structures for the expert system. Together they model the

structure of a GC and are used to create queries of the application data base in order to perform the

'generate' phase of the reasoning session. The BON static architecture ·of the Application classes is

shown in the figure below.

----- ,
',THESIS: ,J --- _____________ ------- ______ ,

-------------. '
~ROOT CLUSTER ;

~----------- ...
:APP CLASSES :
;---~- -----_&_---- ----------- -----------------------------------

geUltrl:am. streams: ARRAY (••.]
S~I~====================~·C_APAUCATIO

I ,

I ,

I , , ' , , ,-- - --- - ------- - ------- ~ ,
~-------- - - - ---- - -- -- -- --- -- --- - - - ---- -- ---- - -------------- - ------~

-- - ------ ~

FtgUre 7 - Application Class Static Arcbitecture

The three classes that comprise the Application classes will now be discussed in more detaiJ.

54

GC_APPLICATION

This is the root of the application class and models a GC. It contains an array of STREAM objects. An

array representation was chosen instead of a linked-list because the maximum number of streams a GC

may contain is fixed. When a GC_APPLICATION object is created, an array of STREAM objects is also

created and initaIized to a known, empty, state. The STREAM in tum creates an empty linked list of

COMPONENT objects. The GC _ APPLICA nON class inherits from the library class STORABLE This

allows the object and its components to "Ix: stored in a platfonn independent manner. Exactly one

GC _APPLICATION object exists within the system. It is created within the MArN _ WlNOOW class and

accessed from the APP _ SPEC _DIALOG. The Eiffel source code for the GC _APPLICATION class is:

indexing
description: "The main application class"

class GC APPLICATION

inherit

STORABLE

creation make

feature - creation

feature

make is

do

end

-- initialize the object

! !customer _ name.make(80)
!! customer _location.make(80)
! !carrier _gas. make(80)
!!streams.make(O,14)
fill_streams

cycle_time := 0
num"lx:r streams := 0

customer_name: STRING
-- The customer name

customer Jocation: STRING

55

•
~
1\

--

- The customer location

number_streams: INTEGER
- The number of streams in this application

cycle_time: INTEGER
- The application cycle time

carrier~: STRING
-- The carrier gas for the application

streams: ARRA Y[STREAM]
-- The stream aggregate attribute

set_customer_name (name: STRING) is
-- Set the customer name

require
exists: name /= void

do
customer name := name

ensure
configured: customer_name = name

end

set_customer_location (location: STRING) is
- set tbe customer location

require
exists: location /= void

do
customer location:= location

ensure
configured: customer Jocation = location

end

set_streams (number: INTEGER) is
-- set the number of streams

require
exists : number /= void

do
number streams := number

ensure
configured: number_streams = number

end

set_cycle_time (time: INTEGER) is
- set the cycle time in seconds

require
exists: time /= void

do

ensure
configured: cycle_time:=: time

end

56

set_carrier...E3s (gas: STRING) is
- set the carrier gas for the application

require
exists: gas /= void

do
carrier~ := gas

ensure
configured: carrier ~ = gas

end

get_stream(index : INTEGER) : STREAM is
-- get the indexed stream object

require

do

valid index: index >= 0
exists: index /= void

Result := strearns.ilem(index)
ensure

stream_obtained: result = streams.item{index)
end

set_stream(s : STREAM; index: INTEGER) is
-- put the stream into the array

require

do

stream exists: s /= void
index exists: index /= void
index valid: index >= 0

streams.put(s, index)
ensure

stream_set: streams.item(index) = s
end

fill streams is
local s : STREAM

i : INTEGER

do

end

- fill the stream array

from i := 0
until i = 15
loop

end

!!s.make
streams. pul(s, i)
i := i + 1

end -- class GC_APPLICATION

57

STREAM

The STREAM class models a GC process stream. A process stream is a unique set of components for

which an analysis is perfonned. Up to 15 STREAM objects may be defined for the GC _ APPLlCA TlON

object and the number of components within a stream is variable. Therefore, the components are

contained within a linked-list of COMPONENT objects. The attributes of this class are updated from the

STREAM_SPEC_DIALOG class described earlier. The Eiffel source code for the class is:

indexing
description: "The application stream"

class STREAM

creation make

feature -- creation

make is

do

end

- initialize the object

!! components. make
configured := false
temperature := 25.00
pH:=7
s.J)ressure := 0.00
r.-PTessure := 0.00
corrosive := false
dis_solids := false
polimer := false
!! phase.make(20)
! !tag.make(80)

feature {NONE} -- attributes

components: LINKED_LIST[COMPONENT]
- the list of components for this stream

corrosive: BOOLEAN
-- is the stream corrosive

dis solids : BOOLEAN
-- does the stream have disolved solids

polimer : BOOLEAN

58

- does the stream polimerize

temperature: REAL
- The stream temperature

pH: INTEGER
-- The stream pH

s--.Pfessure: REAL
- The stream pressure

r-pressure: REIUL
-- The return pressure

phase: STRING
-- The phase of the gas in this stream

tag: STRING
-- The customer specific tag of this stream

configured: BOOLEAN
-- set true if 100% of the components are
- specified

feature -- ACCESS

set_configured is
- set the configured state

do
configured := true

ensure
configured: configured = true

end

reset _configured is
- reset the configured state

do
configured := false

ensure
configured: configured = false

end

set-POlimer (state: BOOLEAN) is
-- set the polimer state

require
exists: state /= void

do
polimer := state

ensure
configured: polimer = state

end

set_corrosive (state: BOOLEAN) is
-- set the corrosive state

59

,

j~
-~
I~ • • · ..
r~'
• II
~ •

F'

require
exists: state /= void

do
corrosive := state

ensure
configured: corrosive = state

end

set_disolids (state: BOOLEAN) is
-- set the solids state

require
exists: state /= void

do
dis solids := state

ensure
configured: dis_solids = state

end
set_temperature (t : REAL) is

-- Set the temperature
require

exists: t /= void
do

temperature := t
ensure

configured: temperature = t
end

setj)H (p : INTEGER) is
-- Set the pH

require
exists: p /= void

do
pH :=p

ensure
configured: pH = P

end

set_spress (number: REAL) is
-- set the stream pressure

require
exists: number /= void

do
s j)ressure := number

ensure
configured: S j)ressure = number

end

set_rpress (number: REAL) is
-- set the return pressure

require
exists: number /= void

do
rj>ressure := number

ensure

60

a

).

"'""

configured: r j)res5ure = number
end

set--'phase (p: STRING) is
-- set the phase for the stream

require
exists: p /= void

do
phase:= p

ensure
configured: phase = P

end

set_tag (t: STRING) is
-- set the tag for the stream

require
exists: t /= void

do
tag:= t

ensure
configured: tag = t

end

get_configured: BOOLEAN is
-- get the configured state

do
Result := configured

ensure
result = configured

end

geuemperarure : REAL is
-- get the temperature

do
Result := temperature

ensure
result = temperature

end

get --'pH : INIEGER is
-- get the pH

do
Result:= pH

ensure
result = pH

end

get_spress : REAL is
- get the stream pressure

do
Result := s ---PTessure

ensure
result = S --'pressure

end

61

get_rpress: REAL is
- get the return pressure

do
Result:=r~

ensure
result = r J>ressure

end

getJ>hase: STRING is
- get the phase for the stream

do
Result := phase

ensure
result = phase

end

get_tag: STRING is
- get the tag for the stream

do
Result := tag

ensure
result = tag

end

getJlOlimer: BOOLEAN is
-- get the polimer state

do
Result := polimer

ensure
result = polimer

end

get_corrosive: BOOLEAN is
-- get the corrosive state

do
Result := corrosive

ensure
result = corrosive

end

get_ disolids : BOOLEAN is
-- get the solids state

do
Result := dis solids

ensure
result = dis_solids

end

add_cornponent(name: STRING) is
-- add a component to the
-- list of components

require
exists: name /= void

62

I ..
, ..

local comp : COMPONENT
do

ensure

! !oomp.make
comp.sct_name(name)
components.extend(comp)

one_more_comp: components. count = 1 +
old components. count

end

get_component_by_name(name: STRING) : COMPONENT is
-- get a component from the
-- list having the name attribute
-- given in name

require
exists: name j= void

local position: INTEGER

do

end

from components. start
until compooents.item.get_name.is_equal(name)
loop

components.forth
end

Result := components.item

remove _ component(comp : COMPONENT) is
-- remove a component from the list

require
exists: comp /= void

do

ensure

components.search(comp)
comp:ments. remove

oneJcss_comp: components. count = old components. count - I
end

replace_component(comp: COMPONENT) is
-- replace the previous comp with this name
-- with the new comp

require
exists: comp /= void

do

ensure

from components.start
until components.item.ge1_name.is_equaI(comp.gct_name)
loop

components. forth
end

components. replace(comp)

item_changed: components.item = comp

63

I ..

, "'. j '",
I ~

l ~
; it
' ..
;~ .:
' ..

end

get~rcent_stream : REAL is
local percent value : REAL

units : STRING

do

end

-- calculate the percentage of the stream
-- that has been defined

! ! units. make(20)

from components. start
percent := 0.0

until components.after
loop

end

units.copy(components.itcm.get_units)
value := componcnts.item.get_normal

ifunits.is_equal("Vol%%,,) = true then
percent := percent + value

elseif units.is _ equal(rrpPM") = true then
percent := percent + (valuellOOOO)

elseifunits.is_equal("PPB") = true then
percent := percent + (valuellOOOOOOO)

end

components. forth

Result := percent

get_component_by_index(i : IN1EGER) : COMPONENT is
-- get a component from the List by its index

require
valid_index: i >= 0
exists: i /= void

do

end

components.go_i_th(i)
Result := components.item

get_nurnber_oCcomponents: INfEGER is
- get the number of components in the stream

do
Result := components.count

ensure
valid count: result >= 0

end

end -- class STREAM

64

I , ,
I ')

~ ~ 1
; ;a t-
.oj

...
; ,~ ...
I ~ ...
• f.

COMPONENT

The Component class models a component of a GC process stream. The attributes of this class are

accessed from the COMPONENT _SELECT _DIALOG and COMPONENT _ SPEC_DIALOG classes

described earlier. The EifIel source code for this class is:

indexing
description: "The component specific class"

class COMPONENT

creation make

feature - creation

make is

do

end

-- initialize the object

normal:= 50.00
minimum := 0.00
maximum := 100.00
measured := true
! !name.make(80)
! !units.make(20)

feature {NONE} -- attributes

name :STRlNG
- the component name

units : STRING
- the units for this component

nonnal : REAL
-- normal concentration of this component

minimum : REAL
- min concentration of this component

maximum : REAL
-- max concentration of this component

measured: BOOLEAN
- Is the component measured?

feature -- ACCESS

set_measured (state: BOOLEAN) is

65

' .

, oj '

: r;
. ~

l :t
' ..
' f.
! =I
:~ '. : . , t
! ~
' iii

:!

-

- set the measured state
require

exists: state /= void
do

measured := state
ensure

configured: measured = state
end

set_normal (t : REAL) is
- Set the nonnal concentration

require
exists: t /= void

do
normal:= t

ensure
configured: normal = t

end

set_minimum (t : REAL) is
-- Set the minimum concentration

require
exists: t /= void

do
minimum:= t

ensure
configured: minimum = t

end

set_maximum (t : REAL) is
-- Set the maximum concentration

require
exists: 1 /= void

do
maximum :=1

ensure
configured: maximum = t

end

set_name (t: STRING) is
-- set the name for the stream

require
exists: t /= void

do
name := t

ensure
configured: name = t

end

set_units (t: STRING) is
-- set the units for the stream

require
exists: t /= void

do

66

. iI

: ; ~
. :: f
. .. J

units:= t
ensure

configured: units = t
end

get_measured: BOOLEAN is
-- get the measured state

do
Result := measured

ensure
result = measured

end

get_normal: REAL is
-- get the normal concentration

do
Result := nonnal

ensure
result = nonnal

end

get_minimum: REAL is
-- get the minimum concentration

do
Result := minimum

ensure
result = minimum

end

get_maximum: REAL is
-- get the maximum concentration

do
Result := 1lUlXimum

ensure
result = maximum

end

gel_name : STRING is
- get the name for the stream

do
~lt := fUiDlC

ensure
result = name

end

get_units : STRING is
-- get the units for the stream

do
Result := units

ensure
result = units

end

67

end -- class COMPONENT

68

'-

. ,
. ~

· f
'! .
: I
1

"

!l
"

4.4 User Interlace & Application Object Scenarios

This section presents interesting scenarios that occur between the user interface and application objects.

These scenarios illustrate the message passing that takes place between the objects of these classes and are

components of the BON Dynamic Model of the expert system.

4.4.1 Creation of the Application Objects

This scenario takes place when a MAIN_ WINOOW object is created The message passing sequence is:

.. ,
1. MAIN _ WINOOW creates the GC _ APPLICA nON object.

2. The GC_APPLICATION object creates an array of STREAM objects.

3. Each STREAM object creates a linked list of COMPONENT objects.

The BON dynamic diagram for this scenario is:

:2

I L...,-_s_n:E_AM----'h3u-~ I COMPONE~ h
IL-_____ ~--'

Figure 8 - Creating the Application Objects

69

F

4.4.2 Populating the GC_APPLICATION Object

This scenario takes place after the GC _APPLICATION object is created. The message passing sequence

is:

1. User chooses New or Open from the File menu.

the GC_APPLICATION object.

4. APP _SPEC_DIALOG sends 'get_xx' messages to GC_APPLICATION to get its current contents.

The current contents are placed in the dialog box edit fields .

5. User sends • on_ok' message to APP _SPEC_DIALOG.

6. APP _SPEC_DIALOG sends 'set_xx' messages to GC_APPLICATION to populate the object.

updated GC_APPLICATION object.

The BON dynamic diagram for this scenario is:

0 --· -------\

GC APPLICATION

4, 6

2
- ----- ---- - ---_ .. . -.. . -_. -- -, --.,.

MAIN WINDOW ~ 3, 8 - . . ,- .-.---- ----- --APP_SPEC_DIALOG~- ·~ · ··- - · -- ·-O
~]-.--

Figure 9 - Populating the GC_APPLICATION Object

70

Ii ,

4.4.3 Populating a STREAM Object

This scenario can take place at any time after the GC_APPLICATION object is populated. The message

passing sequence is:

1. User chooses Stream from the menu.

2. MAIN_ WINDOW sends 'Activate' message to STREAM_SPEC_DIALOG.

copy of the STREAM object.

4. MAIN_WINDOW sends a 'get_stream' message to the GC_APPLICATI0N object, passing the

currently accessed stream number to retrieve the STREAM object for STREAM_SPEC_DlALOG.

5. STREAM_SPEC_DlALOG sends 'get_xx' messages to STREAM to gel its current contents. The
.~
I,.

current contents are placed in the dialog edit fields.

6. User sends 'on_ok' message to STREAM_SPECJ)IALOG.

7. STREAM_SPEC_DIALOO sends 'set_xx' messages to STREAM to populate the object.

of the updated STREAM object.

10. MAlN_ WINOOW sends 'set_stream' message to GC_APPLICATION, passing the updated

STREAM object.

71

The BON dynamic diagram for this scenario is:

GC APPLICATION STREAM

~

4, 10 5, 7

~ __________ ~ 2

....

0········ .. \ 3
~

9
L-_____ ~ L--------z----'

~

MAIN WINOOW

Figure 10 - Populating a STREAM Object

72

..

4.4.4 Populating a COMPONENT Object

This scenario can take place at any time after the GC _APPLICATION object is populated. It is the most

complex message passing scenario that occurs between the user interface and application objects. The

message passing sequence is:

1. User chooses CONFIGURE from the menu.

2. MAIN_WINDOW sends 'Activate' message to COMPONENT_SELECT.J)IALOO.

3. COMPONENT_SELECT_DIALOG sends 'get_stream_object' message to MAIN_ WINOOW in

order to get a copy of the STREAM object.

4. MAIN_ WINOOW sends a 'get_stream' message to the GC_APPLICATION object, passing the

currently accessed stream nwnber to retrieve the STREAM object for STREAM_SPEC_DIALOG.

5. COMPONENT_SELECT_DIALOG sends 'get.J)ercent_stream' message to STREAM to get its

current percentage defined value. This is placed in the % Stream edit field

6 . COMPONENT_SELECT_DIALOG sends 'get_component_by_index' messages to STREAM in

order to get the names of all of the COMPONENTS of the STREAM. These are placed in the Chosen

Components Jist box.

7. User selects a component name from the Select list box.

8. COMPONENT_SELECT_DIALOG sends 'get_component_by_name' messages to STREAM in order

to get a copy of the selected COMPONENT of the STREAM. The COMPONENT is stored in the

local component feature.

9. COMPONENT_SELECT_DIALOG sends 'Activate' message to COMPONENT_SPEC_DIALOG.

10. COMPONENT_SPEC_DIALOG sends ' get_component_object ' to

COMPONENT_SELECT _DIALOG to get a copy its local COMPONENT object

11. COMPONENT_SPEC_DlALOG sends 'get_xx' messages to COMPONENT in order to get its

current contents. These are placed in the dialog box edit fields.

12. User sends 'on_ok' message to COMPONENT_SPEC_DIALOG.

73

13. COMPONENT_SPEC_DIALOO sends 'set_xx' messages to COMPONENT to populate the object.

COMPONENT _SELECT -.DIALOG, passing its copy of the updated COMPONENT object.

16. COMPONENT_SELECT_DIALOG sends 'replace_component' message to STREAM, passing the

updated COMPONENT object.

11. User sends 'on_ok' message to COMPONENT_SELECT_DIALOO

18. COMPONENT _ SELECT_DIALOG sends 'signal_owner' message to itself.

passing its copy of the updated STREAM object.

20. MAIN_WINDOW sends 'set_stream' message to GC_APPLICATION, passing the updated

STREAM object.

The BON dynamic diagram for this scenario is:

GC APPLICATION STREAM

4, 19 5,6,8, 16

2
... ,.

O .. ·J ··,
1.110

MAIN_WINDOW 3, 19 COMP_SELECT_DIALOG ~
~ 18

.

~

10, 15 9

11,13
~

COMPONENT COMP_SPEC_DIALOO

14

Figure 11 - Populating a COMPONENT Object

74

..
"

'" d ,
" " ,

<t,

'"
'"
I(:

'" '. , ..
It.
"
1 .

75

------------------.............

4.5 The Legacy Data Base and Supporting Classes

The physical makeup of a GC is modeled by the Application classes which were discussed in the previous

section. These data structures contain the properties of the GC a customer wishes to purchase and are

used to query a legacy database, called GC_DATABASE, containing historical data on GC

configurations that have been successfully fielded. by the GC manufacturer. This is a Microsoft Access

database and as such can be queried via any ODBC compliant application. By querying the database, a

set of possible solutions to the configuration problem can be obtained. The set of possibJe solutions are

then asserted as facts to the inference engine to determine the optimal solution to the configuration

problem. This set of possible solutions represents the 'Generate' portion ofllie reasoning strategy used in

the project.

This section discusses the legacy data base used by the expert system. It will describe the relations of the

database and discuss the mapping of relational tables to Eiffel objects.

4.5.1 The Relational Schema

The database contains two relations. They are the Analyzer and Components tables. The Analyzer table

contains data relating to the configuration of the GC. This table contains attributes such as oven

configuration., column type, sample valve type, and carrier gas type. The Components table contains

attributes related to a chemical component such as component name, and measured concentration. The

Component table contains an attribute, AnalyzerSerialNumber, which is a foreign key reference to the

Analyzer table.

76

-

The SQL data definition statements for the schema of the database are as follows:

CREATE TABLE ANALYZER
(

ProjectNumber CHAR.,
AnalyzerSerialNumber CHAR,
OVCONAG C~

SVI TYPE CHAR,
SVIMODEL CHAR
SVlSIZE CHAR,
SPLITIER CHAR.,
ME1HANATOR CHAR.
VORTEX CHAR
PROOTEMP CHAR.,
ISOTHERZO CHAR,
INITIAL TEMP CHAR.
flNAL TEMP CHAR
TEMPRA TE CHAR.,
DETCTI CHAR,
CARRIERA CHAR
CARRIERS CffAR,
CYCLETIME CHAR,
APPLNtThAB CH~

TYPECOLUMN CHAR,
PRIMARY CHAR,
PROCESS CHAR,
COMMENT CHAR

) PRIMARY KEY (ProjectNumber)

CREATETABLECOMWONENTS
(

AnalyzerSerialNumber CHAR,
StreamNu.mber INT,
ComponentName CHAR.
Concentration DOUBLE

) PRlMARY KEY (AnalyzerSerialNumber),
FOREIGN KEY(AnalyzerSerialNumber) References ANALYZER

77

'\

ij

-

4.5.2 Mapping the Database to Objects

As mentioned earlier, the Application classes are used to perform queries on the GCPATABASE in

order to generate a set of possible solutions to the configuration problem. The results of these queries are

relations that are mapped to EifIel objects via the facilities of the EifIelStore library. This library is a set

of classes that allow an EifIel application to access an ODBC compliant database. Within the context of

the expert system. the DB_WRAPPER classes are used to perform the database access operations.

The BON static architecture for the DB_WRAPPER classes is shown in the following figure .

...-----, , ,
',THESIS,'
,------ -- --- ----- ------ --- -------,

,------------- ...
',ROOT CLUSTER :
~ ~-- -- ------ --~ , , , ,

-------- --... , . , , , ,
' DB CLASSES ' , ,
~------'- _ _ "'''''''" : :

<ti[CO"PON~.

, ' , , ' , , ' , I : I
,

· ' · : : .
, :

, , , · , , , , , , ,
: I t , · : : , , ,

- -- ------- ------------------------ ------- --- ---------- ---- - -------- _____ ~I : :

I ,

,---------- - ----- ----------- - ----------- - ------------------------. - - -- ----- ----- - -- --~

The DB WRAPPER class uses the services of the EifIelStore library classes to perfonn SELECf queries

on the database. The DB_ANALYZER class contains attributes which match those of the Analyzer table.

It is used to store the results of selection queries on that table. The DB_COMPONENTS class is used to

78

' ~
I

-

store the results of selection queries on the Components table. It bas attriootes which mimic those of the

Components table, The DB_ANALYZER class also contains an attribute of type

LINKED _ LI ST [DB _COMPONENT]. This mirrors the Application classes, where class

GC_APPLICATJON contains an attribute of type STREAM. STREAM in turn con1:ains a

LINKED _ LIST[COMPONENT).

The Eiffel source code for the DB_WRAPPER class is:

class DB WRAPPER

inherit

ACTION

redefine
execute

end

RDB HANDLE

creation

make

feature {NONE}

base selection: DB SELECTION - -

session control: DB CONTROL - -

myOwner : MESSAGE ROUfER

query_mode : INTEGER

: INTEGER is 1

COMP _QUERY : INTEGER is 2

index : INTEGER

feature {MESSAGE_ROUTER}

make(owner : MESSAGE_ROUTER) is
local

do
myOwner := owner

79

end

set_data_source("GC_DATA_BASE")
login("admin", "")

-- Initialization of the Relational Database:
- This will set various informations to perfonn a correct
-- connection to the Relational database
seU)3se

- Create useful classes
-- 'session_control' provides infonnation control access and
- the status of the database.
-- 'base_selection' provides a SELECT query mechanism.
!! session_control.make
!! base_selection. make

- Start session: establishes connection to database
session_ control.connect
if not session _ control.is _connected then

end

session_control. raise_error
-- Something went wrong, and the connection failed
io.putstring ("Can't connect to database.%N-)

make_analyzer_selection(ax_string: STRING) is
require

do

end

require

do

end

execute is

exists: ax _string /= void

-- Query database.
base_selection. set _ action(Current)
base_selection. query (ax_string);
query_mode:= AX_QUERY
-- Iterate through resulting data., and display them
base _ selection.1oad _result

exists: comp _string /= void

--Query the database
base_selection. set _ action(Current)
base _ selection. query (comp _string)
query_mode:=COMP_QUERY

-- Iterate through resulting data, and display them
base _ selection.load _result

-- gather the query results
local analyzer : DB_ANALYZER

80

component: DB_COMPONENT
do

end

io.put_string(". ")
index := index + I
if (index \\ 60) = 0 then

end

if quer:Lrnode = AX_QUERY then
!I analyzer.make

else

end

base _ selection. object _ convert(analyzer)
base _ selection. cursor _to_object
rnyOwner.add _ candidate(analyzer)

!! component.make
base_selection.object_convert(component)
base_selection.cursor_to_object
myOwner . add _component(component)

anaJyzer_query(application: GC_APPLICATION) is
-- test the interface
require

exists: application /= void
local s : STREAM

do

c : COMPONENT
n : REAL

: INTEGER
query : S1RING
multiplier: REAL

! !query.make(1024)

-begi.n making the select query
s := application.get_stream(O)
query.copy("SELECT Analyzer.· FROM Analyzer INNER JOIN components ON

Analyzer.AnalyzerSerialNumber = components.Ana1yzerSerialNumber WHERE ")

--add the component names/concentrations to the query
from i:= 0
until i = s.get_number_of_components
loop

-- component name stuff
query.append("«components.ComponentName= III)
c := s.gel_component_by_index(i + 1)
query.append(c.get_name)
query.append("I) AND ")

-- component concentration stuff
-- scale concentration based upon unit
if c.get_units.is_equal("PPM") then

multiplier := .000001

81

"')

end

end

elseif c.get_units.is_equal("PPBtt) then
multiplier := . OOOOOOOO 1

else
multiplier : = 1. 0

end

query.append("(components. Concentration> ")
query.append((c.get_minimum) • multiplier) .out)
query.append(tt AND components. Concentration < ")
query.append«(c.get_maximum) • multiplier).out)
query.append(ft» tt)

ifi < s.get_number_of_components - 1 then
query.append(" OR H);

end

i := i + 1

query.append("; ")
make_analyzer_selection(query)

component_query(ax_string: string) is

close session is

- create a query for each candiate to fill its components
require
exists: ax_string /= void

local query: STRING
do

end

! ! query. make(120)
query.copy("Select· from components where anaJyzerserialnumber =

query. append(ax_string)
query. append(tt'; ");
make_component_seloction(query)

- terminate the session
do

session _ control.disconnect
end

end - class DB WRAPPER

DB_WRAPPER contains attributes of type DB_CONTROL and DB_SELECTION. These are EiffelStore

library classes that allows an application to connect to an query an ODBC database. A more detailed

discussion of EiffelStore is given by Meyer in [22].

82

..

DB_WRAPPER is used to implement a two phase approach to querying the GC OAT ABASE. The

approach is:

1. Determine which Analyzer tuples are referenced by Component tuples which have a concentration

within the range of the Component objects of the Application classes. Map the results of this query to

DB_ANALYZER objects. The sql statement for this query is of the form:

SELECT Analyzer. * FROM Analyzer INNER JOIN components ON

Analyzer .AnalyzerSeriaINumber= componenfs.AnalyzerSerialNumber WHERE

components.componentname = 'name of first component of application' OR

components. componentname = 'name of second component of application' ...

2. For each DB _ ANALYZER object obtained in step I), select all Components of the A nalyzer. Map the

results to DB_COMPONENT objects. The sql statement for this query is of the form:

SELECT· FROM components WHERE analyzerserialnumber where anaiyzerserialnumber =

'my serial number'

The feature 'analyzer_query' is used to create the sql statement which implements step I) while

'component_query' creates the sql for step 2). These features create the sql string, register the query with

EiffelStore, and then initiate the query. EiffelStore will then call the feature 'execute' for each returned

tuple of the query and map the resultant tuple to an Eiffel object. These features are called by the

MESSAGE_ROlITER object. MESSAGE_ROUTER will be discussed later in the paper. The resultant

object is then added to the list of candidate solutions through the 'add_candidate' and ' add_conponent'

features of MESSAGE _ROUTER.

83

The Eiffel source code for DB_ANALYZER is:

indexing
description: "The root of a candidate solution"

class DB ANALYZER
inherit.

ANY
redefine

out
end

creation make

feature -- creation

make is

do

end

feature {NONE}

-- initialize the db_object

! !components.make
llprojectnumber.make(80)
! !analyzerserialoumber.make(80)
I !ovconfig.make(80)
!! svl type.make(80)
Ilsvlmodel.make(80)
Ilsvlsize.make(80)
I lisotberzo.make(80)
I! initaltemp.make(80)
!!finaltemp.make(80)
lltemprate.make(80)
! ldetctl.ma.ke(80}
! !carriera.make(80)
llcarrierb.make(80)
I !cycletiJne.make(80)
! !typecolumn.make(80)
! !apploumh.make(80)
! !process.make(80)
! ! comment. make(80)

projecl11umber: STRING

analyzerserialnumber: STRING

ovconfig: STRING

sv Hype: STRING

84

feature

svlmodeI:STRING

svlsize: STRING

splitter: BOOLEAN

methanator: BOOLEAN

vortex: BOOLEAN

progtemp: BOOLEAN

isotherzo: STRING

initaltemp: STRING

finaltemp: STRING

temprate: STRING

detctl: STRING

carriera: STRING

carrierlb: STRING

cycletime: STRING

applnumb: STRING

typecolumn: STRING

primary: CHARACTER

process: STRING

comment: STRING

components: LINKED _ LIST[DB _COMPONENT]

out: STRING is

do
- Display contents

!! Result.make (100)
uprojectnumber /= Void then

Result.append ("project:")
Result.append (projectnumber)
Result.extend ('o/oN')

end
if analyzerserialnumber /= Void then

Result.append ("SerialNumber:")
Result.append (anaJyzerserialnumber)

85

Result.extend ('o/oN')
end
Result.extend COloN')

end

set---'projectnumber (t : STRING) is
- Set 'projectnumber' with 't'

require
argument_exists: not (t = Void)

do
projectnumber:= t

ensure
projectnumber = t

end

set_analyzerserialnumber (t: STRING) is
-- Set 'analyzerserialnumber' with 't'

require
argument_exists: not (t = Void)

do
analyzerserialnumber := t

ensure
analyzerserialnumber = t

end

set_ovconfig (t: STRING) is
-- Set 'ovconfig' with 't'

require
argument_exists: not (t = Void)

do
ovconfig := 1

ensure
ovconfig = t

end

set_svltype (t: STRING) is
-- Set ' svltype' with 't'

require
argument_exists: not (t = Void)

do
svltype:= t

ensure
svltype = t

end

set_svlmodel (t: STRING) is
-- Set 'svlmodel' with '('

require
argument_exists: not (t = Void)

do
svlmodel := t

ensure
svlmodel=t

86

end

sct_svlsize (t: STRING) is
- Set 'svlsize' with 't'

require

argument_exists: not (t = Void)
do

svlsize := t
ensure

svlsize = t
end

set_splitter (t: BOOLEAN) is
- Set ' splitter' with 't'

require
argument_exists: not (t = Void)

do
splitter := t

ensure
splitter = t

end

set_methanator(t: BOOLEAN) is
- set ' metbanator' with '1'

require
argument_exists: not (t = Void)

do
metbanator := t

ensure
methanator = t

end

set_vortex(t: BOOLEAN) is
- set 'vortex' with 't'

require
argument_exists: not (t = Void)

do
vortex:= t

enmre
vortex = t

end

setJlrogtemp(t: BOOLEAN) is
- set 'progtemp' with 't'

require
argument_exists: not (t = Void)

do
progtemp := t

ensure
progternp = t

end

seUsotberzo (t: STRING) is

87

- Set 'isotherzo' with 't'
require

argument_exists: not (1 = Void)
do

isotherzo :"" t
ensure

isotherzo = t

end

seUnitaltemp (1: STRING) is
- Set 'initialtemp' with ' t'

require
argument_exists: not (t = Void)

do
initaltemp := t

ensure
initaltemp = t

end

set_fioaltemp (t: STRING) is
- Set 'finaltemp' with ' t'

require
argument_exists: not (t = Void)

do
fioaltemp := t

ensure
finaltemp = t

end

seUempratc (t: STRING) is
-- Set 'temprate' with 't'

require
argument_exists: not (t = Void)

do
temprate := t

ensure
temprate = t

end

seUietctl (t: STRING) is
-- Set 'detctl' with 't'

require
argument_exists: not (t = Void)

do
detctl := t

ensure
detctl = t

end

set_ carriera (t: STRING) is
-- Set 'camera' with ' t'

require
argument_exists: not (t = Void)

do

88

carriera := t
ensure

camera = t
end

set_carriero (t: STRING) is
- Set 'carriero' with 't'

require

argument_exists: not (t = Void)
do

carriero := t
ensure

carriero = t
end

set_C)'detime (t: STRING) is
-- Set 'cycletime' with 't'

require
argument_exists: not (t = Void)

do
cycletime := t

ensure
cycletime = t

end

set_applnumb (t: STRING) is
-- Set 'applnumb' with 't'

require
argument_exists: not (t = Void)

do
applnumb := t

ensure
applnumb= t

end

seUypecolumn (t: STRING) is
-- Set 'typecoJumn' with '1'

require
argument_exists: not (t = Void)

do
typecolumn := t

ensure
typecolumn = t

end

set-"primary (t: CHARACTER) is
- Set 'primary' with 't'

require
argument_exists: not (t = Void)

do
primary:= t

ensure
primary = t

89

end

set....process (t: STRING) is
-- Set' process' with 't'

require
argument_exists: not (t = Void)

do
process := t

ensure
process = t

end

set_comment (t: STRING) is
-- Set ' conunent' with 't'

require
argument_exists: not (t = Void)

do
comment := t

ensure
conunent= t

end

add_component(comp: DB_COMPONENT) is
- add a component to the list

do

if not components.has(comp) then
components.extend(comp)

end
end

end - class DB ANALYZER

The Eiffel source for DB_COMPONENT is:

class DB COMPONENT

creation make

feature -- creation

make is

do

end

-- initialize the db _ objecL

!! analyzerserialnumber. make(80)
! !componentname.make(80)
init_strings

90

--

feature {NONE}

analyzerserialnumber: STRING

streamnumber: IN1EGER

componentname: STRING

concentration: DOUBLE

measurement: DOUBLE

feature

'set_streamnumber (t: INTEGER) is
-- Set 'streamnumber' with 't'

require
argument_exists: not (t = Void)

do
streamnumber := t

ensure
stream number = t

end

set_concentration (t: DOUBLE) is
-- Set' concentration' with 't'

require
argument_exists: not (t = Void)

do
concentration := t

ensure
concentration = t

end

set_measurement (t: DOUBLE) is
- Set 'measurement' with 't'

require
argument_cxists: not (t = Void)

do
measurement := t

cnsure
measurement = t

end

sct_analyzerserialnumber (t: STRING) is
- Set 'analyzerserialnumber' with 't'

require
argument_exists: not (t = Void)

do
analyzerserialnwnber := t

ensure
analyzcrserialnumbcr = t

91

end

set_componentname (t: STRING) is

end

- Set 'componentname' with . t'
require

argument_exists: not (t = Void)
do

componentname := t
ensure

componentnarne = t
end

analyzerserialnumber.copy("None")
componentname.copy("None")

end -- class DB COMPONENT

92

4.6 The CUPS Wrapper Classes

Once the legacy database has been queried, generating a set of possible solutions to t.he configuration

problem, the results must be asserted as facts to the CLIPS inference engine for the reasoning session to

continue. The mechanisms for asserting the facts, running the inference engine, and reporting results of

the reasoning session reside in the CLIPS Wrapper Classes. These are Eiffel classes wroch interface to

the CLIPS DLL.

The BON static architecture for these classes is shown in the figure below.

-- -- - ...
:THESIS ~
'~~-------.-- - -------, : ':R~~T- CLUSTER':

,--.----~-------.- - --- - ---------- - - '. ,

- ---- ----- ------ ' ,
:WRAPPER CLASSES'
~ --------~--------~----------------- - -------------------- - -------------------- ,

~-INSTAHCE~ :-___ a.. ____ -!-.. ~STRATE~

---- ------- ------ --- ---_._-----

Figure 13 - CLIPS Wrapper Classes

93

-

The CLIPS _WRAPPER class is the main interface to the CLIPS DLL. It contains an instance of each of

the other wrapper classes and other features that implement bigh level operations on the inference engine.

The features of CLIPS _WRAPPER are used by the MESSAGE _ROUTER.

The Eiffel source code for the CLIPS_WRAPPER is:

indexing
description:

"Provides the interface to the CLIPSDLL"

class CUPS_WRAPPER

inherit

creation
make

SHARED_LIBRARY _ CONSTANTS

feature -- Lnitialization

make is

do
- create the wrapper objects

end

! !interface.make
! lenv.make
! !deb. make
! !facts.make
!! ins. make
! ! strat.make
initialized := false

feature {NONE} -- Implementation

deb: CLIPS_DEBUG_FNS
facts: CLIPS] ACT_ FNS
env: CLIPS_ENV _FNS
ins: CLIPS_INSTANCE]NS
strat : CLIPS _ STRATEGY _FNS
interface : DLL _ INTERFACE
initialized: BOOLEAN
rule file: STRING is "c:\SChool\thesis\project\system.clp"
fact)ile : STRING is "c:\SChool\thesis\project\facts.clp"

94

feature {MESSAGE_ROmER}

clear is
- clear the CLIPS environment
do

eov.c1ear
end

load Jule _ fi.le is
- load the rule file
do

env Joad(rule _file)
end

start_clips is
- start up clips
do

if initialized /= true then
env. initialize
cnv.add_route
initialized := true

end
end

loadJacUile is

run is

end

-- load the facts file
do

end

-- run a inference session
local r : INTEGER
do

cnv.reset
env.run

end -- class CLIPS_WRAPPER

The features of CLIPS_WRAPPER represent the minimum requirements necessary to control a reasoning

session. At the present time, only the facilities of the CLIPS _ ENV]NS class is utilized by the

CLIPS_ WRAPPER The CLIPS_ENV _FNS class contains features that configure the CLIPS DLL.

These include:

1. Loading rules into CLIPS.

2. Loading or asserting facts.

95

.....

3. Clearing the contents of working memory and the rule base.

4. Resetting the contents of working memory.

5. Running the inference engine.

The other wrapper classes each implement a subset of the CLIPS API. The Eiffel source code for these

classes will not be presented now. Instead the Eiffel short fonn for each of these classes is presented in

the appendices of this paper.

CLIPS_WRAPPER also contains an attribute of type DLL_INTERFACE. This class is used to implement

a callback procedure used by CLIPS to report the results of the reasoning session. The manner in which

the callback is implemented is very interesting in that the DLL _ INTERFACE is called indirectly by an

external C routine, not by CLIPS. The C routine implements the callback and is called by CLIPS. This

routine in turn, sends a message to the DLL _lNTERF ACE. This scenario will be discussed in detail in a

moment.

The Eiffel source code for the DLL_INTERFACE is:

indexing
description:

"Provides the interface to the CLIPSDLL %
o/oprint router."

class DLL_INTERFACE

creation
make

feature -- Initiabzation

make is
do

end

! ! message. make(80)

get _ obj(current)
getJlfOC(SCLIPS _ PRINfER)

96

message : STRING

get--'proc(function : POINTER) is
external

"COl
end

get_obj(obj : ANY) is
external

PlC"
end

CLIPS]RJNTER(charJ)Ointer: POINTER) is

do

end

- this feature is called indirectly by the clips dll

message.from _ c(char ""'pointer)
io.put_string(message.out)

end - class DLL _ INTERFACE

97

The external C routines referenced in DLL _ INTERFACE are implemented as follows:

/****.**.* •• *** •• **.***** •• ****.**.*************
* *
* *
*
*
*

C Calls Used to interface
with the CLIPS DLL

******.**.***************** •••• *****.***********/

#include <stdlib.h>
#include Ic:\Clips\source\clips\clips.h"
#include "c: \eiffe13 \bench \spec\w3 2msc\include\eiffel. h II

int _declspec (dllexport) printFunction(char *, char *);
int _declspec (dl.lexport) que.ryFunction(char *);
int ad(C route(void);
void get...proc(EIF _PROC);
void get_obj(EJF _REFERENCE);
void run(void);

int add _ routeO
{

*
*
*

AddRouter("print", 20, queryFunction, printFunction,
NULL, NULL, NULL);

return (CLIPS_TRUE);
}

void runO
{

Run(-I);
}

int _declspec (dllexport) queryFunction(char * logicalName)
{

}

if (strcmp(logicalName, "stdout") == 0)
return (CLIPS _TRUE);

return (CLIPSJALSE);

ElF_REFERENCE eiffel_ messenger,
EIF _PROC c _clips --printer;

void get.J)foc(EIF _PROC p)
{

}

void get_obj{EIF _REFERENCE e)
{

98

paz

}

int _declspec (dllexport) printFunction(char. Jogica1Name, char· str)
{

if (strJen(str) > 0)
{

str[strlen(str) + 1] = '\0';
(c_clips-'printer)(eiCaccess(eiffel_messenger), (EIF _REFERENCE) str);

return (CLIPS_TRUE);
}

When a DLL_INIERFACE object is created, it passes a reference to itself and it's CLIPS_PRlNTER

feature to the extell13J C code. The printFunctionO of the external C code uses these references to signal

the DLL _ INTERFACE oQject when CLIPS needs to report the results of a reasoning session. The BON

dynamic model for the callback mechanism is:

1. CLIPS_WRAPPER creates DLL _INTERFACE

2. DLL_INTERFACE sends 'get_obj' and 'get-proc' message to external c code.

3. CLIPS _WRAPPER sends 'run' message to CLIPS _ ENV _ FNS.

4. CLIPS_DLL sends 'printFunction' message to external c code whenever it needs to perform an

output operation.

5. External c code sends 'CLIPS_PRINTER' message to DLL_INTERFACE.

1 2

CLIPS WRAPPER DLL INTERFACE
5

EXTERNALC

3 4

CLIPS ENV FNS - -

Figure 14 - BON Dynamic Model For Callback Mechanism

99

.....

4.7 The Know/edge Base

The results of the database queries are asserted as facts to the CLIPS inference engine. These facts are

then caused to fire according to the rules defined in the system's knowledge base. The knowledge base

contains a set of rules that implement the "match" reasoning strategy discussed earlier in the paper as

implemented to solve the GC configuration problem.

The knowledge base consists of rules to solve the various stages of the configuration process. These stages

are:

1. Determining the detector make up of the solution.

2. Determining the carrier gas type of the solution.

3. Determining the analyzer that most closely matches the target application.

4. Reporting the results of the reasoning session.

Each of these steps will now be discussed in detail.

4.7.1 Flow Control

The knowledge base contains a set of rules that are responsible for allowing the reasoning session to

proceed in an orderly and deterministic manner. These rules help to implement the flow control

mechanism that is characteristic of the "Match" reasoning strategy.

A!5 an example, here is one of the flow control rules that is present in the knowledge base:

(defrule determine-detectors
(declare (salience -10))
?phase <- (phase detectors)
=>
(retract ?Phase)
(assert (phase carrier~»)

This particular rule will file only if the current reasoning phase is the detector phase and no other rules

are ready to fire. This is due to the use of the 'salience' operator which controls the priority ofa rule. A

100

...

salience of -10 is used to set the flow control rules to the lowest priority of the rules .on the firing stack.

The rule then fires and changes the e)o.lccution mode t.o the carrier.-EaS detenoination phase. Flow control

rules liIre this exist in the knowledge base to control execution through each of the following phases of

reasoning.

4.7.2 Determining The Detectors

The first phase of the reasoning session is concerned with detennining tbe correct detectors for the target

application. The following hueristics are implemented in the knowledge base:

• lIthe target application contains component concentrations in the percent level, then a TCD

detector is appropriate.

• If the target application contains inert components, then a TCD detector is appropriate.

• If the target application contains trace level (concentrations in the ppm range) components

that aJe not inert, and not Sulfer, then a FID detector is appropriate.

• If the target application contains a trace level (concentrations in the ppm range) component

that is Sulfer, then a FPD detector is appropriate.

• lfthe target application contains trace level (concentrations in the ppm range) components

that are inert, then a TCD deleaoJ is appropriate.

In the form of CLIPS rules, these huristics are represented as:

; If an inert component is present
; and its concentration level is trace
; assert a trace-inert fact

(defrule trace-inert-present
(phase detectors)
(components (name ?n&HeliumINitrogen) (nonnal ?c&:«?c .000009» (measured true»

=>
(assert (trace-inert»)

; If an inert component is present
; and its concentration level is trace
; assert an inert fact

(defrule inert-present
(phase detectors)
(components (name ?n&HeliumINitrogen) (normal ?c&:(> ?c .0000(9» (measured true»

101

-

=>
(assert (inert)))

; If all components are not trace level
; or an insert fact is present
; or a trace-insert fact is present
; choose a TeD detector

(defrule TeD
(phase detectors)
(or

(forall
(components (normal ?concentration) (measured true»
(test (> ?concentration .00009»

=>
)

)
(inert)
(trace-inert)

(assert (cbosen-detector TeO»
(printout t "detector is TeD" crlf)

; If all components are trace level
; and an inert fact is not present
; and a trace-insert fact is not present
; choose a FID detector

(defrule FID
(phase detectors)
(foraU

(components (normal ?concentration) (measured true»
(test « ?concentration .OOOl»

=>

)
(not (trace»
(not (trace-inert»

(assert (chosen-detector FJD»
(printout t "detector is FID" crJf)

; If a component with the name Sulfer is present
; and the concentration is trace level
; choose a FPD detector

(defrule FPD
(phase detectors)
(exists

(components (nonna) ?concentration) (name Sulfer) (measured true»
(test « ?concentration .0001))

=>
)

(assert (chosen-detector FPD»
(printout t "detector is FPD" crlf)

102

....

4.7.3 Determining The Carrier Gas

The following hueristics are used to determine the proper carrier gas for the target application:

• If the solution contains a TCD or FlO detector and the customer is in North America, then

use Helium as the carrier gas.

• If the solution contains a TCD or FID detector and the customer is not in North America,

then use Hydrogen as the carrier gas.

• lfthe target application contains Hydrogen or Helium as a measured component, then use

Nitrogen as the carrier gas.

• If the solution contains a FPD detector and the target application contains no measured

Hydrogen or Helium, then use Helium as the carrier gas.

• If the solution contains a FPD detector and the target application contains measured

Hydrogen or Helium, then use Nitrogen as the carrier gas.

In the fonn of CLIPS rules, these huristics are represented as:

; If a component with the name Hydrogen exists
; assert a has-hydrogen face

(defrule has-hydrogen
(phase carrier~)
(exists

(components (name ?n&Hydrogen»
)

=>
(assert (has-hydrogen»)

; If a component with the name Helium exists
; assert a has-helium face

(defruIe has-helium

=>

(phase carrier~)
(exists

(components (name ?n&Helium»
)

(assert (has-helium»)

; If the chosen detector is FPD
; and no helium or hydrogen is present

103

; or
; If the customer is located in North America
; and the chosen detector is FID or TCD
; and no helium or hydrogen is present
; select Helium as the carrier gas

(defrule Carrier-Gas-Helium
(phase carrier~s)
(or

(and
(applications (customer_location NA»
(or (chosen-detector F1D) (chosen-detector TCD»
(not (has-helium»

=>
)

)
(and

)

(not (has-hydrogen»

(chosen-detector FPD)
(not (has-helium»
(not (has-hydrogen»

(assert (chosen-carrier-gas Helium»
(printout t "carrier gas is Helium" crlf)

; If the customer is not located in North America
; and the chosen detector is FID or TCD
; and no helium or hydrogen is present
: select Hydrogen as the carrier gas

(defrule Carrier-Gas-Hydrogcn
(phase carrier~)
(and

(applications (customer_location ?lOC&-NA»
(or (chosen-detector FlO) (chosen-detector TeD))
(not (has-helium»

=>

(not (has-hydrogen»
)

(assert (chosen-carrier-gas Hydrogen»
(printout t "carrier gas is Hydrogen" crlf)

; If helium or hydrogen is present
; select Nitrogen as the carrier gas

(defrule Carrier-Gas-Nitrogen
(phase carrier~)
(or

=>

(has-helium)
(has-hydrogen)

(assert (chosen-carrier-gas Nitrogen))
(printout t "carrier gas is Nitrogen" crtf)

104

,.....

4.7.4 Choosing the Correct Analyzer from the Candidate Solutions

The choice of the candidate solution to the target application is highly dependent on the concentration of

the components in the process stream. The hueristics used to select the analyzer are:

• Find the smallest component in the target application.

• Find the largest component in the target application.

• If the set of candidate solutions contains an analyzer with same smallest and largest

components as the target application, and these are at the same concentration, then this

candidate solution is a perfect match for the application.

• if the set of candidate sol utions contains an analyzer with same smallest and largest

components as the target application, and their concentrations are within a factor of two of

the target concentrations. then this candidate solution is a match for the application.

• If the set of candidate solutions contains an analyzer with same smallest component, and

another analyzer with the same largest component as the target application, and the

concentrations are within a factor of two of the target concentrations, then a combination of

these candidate solutions may be a match for the application.

• If the set of candidate solutions contains an analyzer with same smallest component as the

target application, and the concentration is within a factor of two of the target concentration,

then this candidate solution is a partial match for the application.

• Otherwise, no matches exist.

In the form of CLIPS rules, these huristics are represented as:

; Find the component of the target application with
; the smallest concentration. Store this into a
; 'smallest--component' fact

(defrule find-smallest --component
(phase component)
?ac <- (components (name 1n) (normal ?c2) (measured true»
?sc <- (smallest-component (concentration ?c»
(test (> ?c ?c2))

=>
(modify ?sc (name ?n) (concentration ?c2))

)

105

....

; Find the component of the target application with
; the largest concentration. Store this into a
; 'largest~mponent' fact

(defmle find-largest~mponent
(phase component)

=>

?ac <- (components (name ?n) (normal 'tc2) (measured true»
?lc <- (largest~mponent (concentration ?c»

(test « ?e ?e2»

(modify ?lc (name ?n) (concentration ?c2»

; Check for a perfect match

(defrule perfect_match
(declare (salience 10»
(phase component)

=>

)

(largest-romponent (name ?lc_name) (concentration ?lc_conc»
(smallest -component (name ?sc _name) (concentration ?sc _cone»
?acl <- (actual_component (analyzerserialnumber ?sn) (eomponentname ?Ie_name)

(concentration ?Ic_cone) (measurement --D»
?acs <- (actual_component (anaJyzerserialnumber ?sn) (componentname ?sc_name)

(concentration ?sc_conc) (measurement--D»
?ees <- (closest~mponent-small)
?eel <- (closest-romponent-Iarge)

(mOOifY ?ees (sn ?sn) (name ?sc_name) (delta 0.0»
(modify ?eel (sn ?sn) (name ?Ic_name) (delta 0.0))
(retract ?acl)
(retract ?acs)

; Find the component within the soLution space with
; the same name as the 'smallest-component' such that
; it's concentration is closest to that of the
; 'smallest-component'. Store this into a 'closest-component-small'
; fact.
(defrule find-closest-analyzer-small

(phase component)

=>

(srnallest-component (name ?n) (concentration ?c»
?ac <- (actual_component (analyzerserialnumber ?serial)(componentname ?n)

(concentration ?c2) (measurement --D»
?ee <- (closest-romponent-small (concentration ?c3) (delta ?c4»
(test (> ?c4 (abs(- ?c ?c2»»

{modify ?cc (sn ?serial) (name 'tn) (concentration ?c2) (delta (abs(-?c ?e2))))

; Find the component within the solution space with
; the same name as the 'largest-romponent' such that
; it's concentration is closest to that of the

106

; 'largest-component'. Store this into a 'closest-component-iarge'
; fact.
(defrule find-closest-analyzer-large

(phase component)

=>

)

(largest-component (name ?n) (concentration ?c»
?ac <- (actual_component (analyzerserialnumber ?serial)(componentname ?n)

(concentration 1c2) (measurement -0»
?cc <- (c1osest-component-Iarge (concentration ?c3) (delta ?c4»
(test (> ?c4 (abs(- ?c ?c2»»

(modify?cc (sn ?serial) (name ?n) (concentration ?c2) (delta (abs(- ?c ?c2))))

;Ifthe 'ciosest-componeot-smaU' is within a factor of 2
; oftbe smallest component then we have a match.

(defrule within-range-small
(phase component)

=>

)

(closest-component-small (so ?s) (concentration ?c»
(smallest-component (concentration ?c2»
?ax <- (analyzer (analyzerserialoumber ?s»
(and

)

(test (> ?c (/ ?c2 2»)
(test « ?c (ot: ?c2 2»)

(assert (within-range-small»

; If the 'closest-component-large' is within a factor of 2
; of the largest component then we have a match .

(defrule within-range-Iarge
(phase component)
(closest-component-Iarge (sn ?s) (concentration ?c»)
(largest-component (concentration ?c2»

)

?ax <- (analyzer (analyzerserialnumber ?s»
(and

)

(test (> ?c (I ?c2 2»)
(test «?c (* ?c22»)

(assert (within-range-Iarge»

107

""""

",,,,,,,,, ,,,,, '" ,.".""., ".""""",.,., ,."",.,,.

Solution rules

., ",." ""."", ,,,.,.,.,,,,,,, """.,., ",,,., ",.".,.",.,

; If the closest components are within range and
; the closest components are from the same analyzer
; then we have a perfect match

(defrule finish-up-with-perfect -solution
?p <- (phase solution)
(closest-component-small (sn ?s) (delta 0.0»
(c1osest-component-large (so ?s) (delta 0.0))

=>
(retract ?p)
(printout t "Analyzer SN: " ?s" matches application perfectly" cdt)

; If the closest components are within range but
; the closest components are from the different analyzers
; then we have a imperfect match

(defrule finisb-up-with-partial-solution

=>

?p <- (phase solution)
(closest-componenl-smaU (sn 1s»
(closest-component-Iarge (sn ?s2&-?s»
(withi n -range-large)
(within-range-small)

(retract ?p)
(printout t "Analyzer SN: " ?s " matches smallest component" erlt)
(printout 1 "Analyzer SN: " ?s2 " matches largest component" crlf)
(printout t "A combination ofthese analyzers may match the application" crtt))

; If one of the components matches

(defrule finish-up-with-partial-solution -small
?p <- (phase solution)
(closest-component-small (so ?s»
(not (exists (within-range-Iarge)))
(within-tange-small)

=>
(retract ?p)
(printout t "Analyzer SN: " ?s " matches smallest component" crlf)
(printout t "No match for the largest component" cdt)
(printout t "Application is only partially matched" crlf))

(defrule finish-up-with-partial-solution-large
?p <- (phase solution)
(closest-component-Iarge (sn. ?s))
(not (exists (within-range-small)))

108

(within-range-Iarge)
=>

(retract ?p)
(printout t "Analyzer SN: " ?s " matches largest component" crlf)
(printout t "No match for the smal:Jest component" crIf)
(printout t "Application is only partially matched" cdt))

; If an analyzer does not exist that contains the
; closest component, then we do not have a match.

(defrule finish-up-with-nosolution
?p <- (phase solution)

=>

(not (exists(within-range-large»)
(not (exists{witlrin-range-small)))

(retract ?p)
(printout t "Application has no match." crlf)

109

4.8 The Message Router, Rules File, and Facts File

The Message Router class is responsible for interfacing between the other classes of the system in order to:

1. Pass data from the GC_APPLICATION class to CLIPS.

2. Query the database.

3. Pass data from the DB_WRAPPER classes to CLIPS.

This is accomplished by storing the contents ofthe GC_APPLICATION and DB_ANALYZER objects in

an ASCII file called the 'facts fLle'. This representation was chosen for two reasons. First. it allowed to

fLle to be run from within the CLIPS interactive environment Second, having the data stored persistently

aided in the debugging of the application. The 'assert_application' feature is used to create the file and

write the GC_APPLICATION data to the file and the 'assert_candidates' feature appends the

DB ANALYZER data to the file .

The EiffeJ source code for this class is:

indexing
description:

"Routes Messages to ODBC and CLIPS"

class MESSAGE ROUTER

creation
make

feature {MAIN _ WINOOW} -- Initialization

make is
- create the router objects

do
! !clips.make
! !db.make(Current)

end

start_session(application: GC_APPLICATION) is
- begin a CLIPS session
require

app _exists : application /= void

llO

p

do

end

! !candidates. make
clips. start_clips
clips.load _ rule_file

- reinitialize data structures

io.put_string("Qucrying Database")
io.newJine
db. analyzer _ query(application)

from candidates.start
until candidates. after
loop

end

db. component_ query(candidates. item. analyzerseri ainumber)
candidates. forth

io.put_string("Query Complete")
iO.new line

io.put_string("Building Facts File")
iO.oew line

assert _ application(application)
assert_candidates
io.put_string(" Asserting Facts")
iO.new line

clips.1oadJactJJ..le

io. put_ string("Running CLIPS ")
io.new_line

clips. run
clips.c1ear

feature {NONE} - Attributes and private features

clips
db
candidates
file
fact file

: CLIPS WRAPPER
: DB_WRAPPER

: LINKEDJJST[DB_ANALYZER]
: FACTFILE
: STRING is "c:\SChool\thesis\project\facts.clp"

assert _ application(application: GC _ APPLICA nON) is

require
-- the target application facts are written to the facts file

exists : application /= void
local fact_string

comp
str
str _index, comp _index

III

: STRING
: COMPONENT
: STREAM
: INTEGER

"""""

do
multiplier

! !fact_string. make(255)
! !comp.make
!lstr.make
! ! file. make_open _ write(fact _ file)

- construct the application facts
fact_string.copy("(deffacts applications ")
file. to_factjile(fact_string, FALSE)

: REAL

-- construct the single application fact
fact_string.copy("(applications (customer_name ")
fact_string. append(appli cation. customer_name)
fact_string.append(")")
file .tojact_file(fact_string, FALSE)

fact_string.copy("(customer_location ")
fact_string. append(application. customer_location)
fact_string. append("t)
file. to jact _ file(fact _string, FALSE)

fact _ string.copy(" (number_streams ")
fact_ string. append(application. number _ streams. out)
fact _ string.append(")")
file.tojact_file(fact_string, FALSE)

fact_string.copy("(cycle_time ")
fact_string.append(application.cyde_time.out)
fact _ string.append(")")
file.tojact_file(fact_string, FALSE)

fact_string.copy("(carrier~s ")
fact _ string. append(application. carrier ~s)
fact _ string.append("»")
file. to jact _ file(fact _string, FALSE)

- create the component and stream facts
from str_index := 0
until str _index == application. number_streams
loop

-- create the stream facts
str :== application.get_stream(stUndex)
fact_ string.copy("(stream (tag ")
fact _string. append(str _ index.out)
fact_string. append(")")
file . to jact _ file(fact _string, FALSE)

fact_string.copy("(corrosive ")
fact_string.append(str.get_corrosive.out)
fact_string. append(H) ")
file. to_fact _ file(fact _string, FALSE)

112

fact _ string.append(str. geu iisolids. out)
fact _ string. append(") ")
file.toJact_file(fact_string, FALSE)

fact_string.copy("(polimer ")
fact_string.append(str.get~limer.out)
fact_string.append(")")
me. to Jact _ file(fact _ string, FALSE)

fact_string.copy("(temperature ")
fact_ string.append(str.geuem.perature.out)
fact_string.append(fI)")
file.toJact_file(fact_string, FALSE)

fact_string.copy("(pH ")
fact _ string.append(str. get J)h. out)
fact_string. append(")")
file. to Jact _ file(fact _ string, FALSE)

fact_string.COpy("(sJ)ressure ")
fact_ string. append(stT.get_ spress.out)
fact_ string.append(It)It)
file.toJact_file(fact_string, FALSE)

fact_string.copy("(rJ)ressure ")
fact_string.append(str.get_rpress.out)
fact _ string.append(") ")
file. to Jact _ file(fact _string, FALSE)

fact_string.copy("(phase ")
fact_ string.append(str. get.....phase)
fact_string.append("»")
file.toJact_file(fact_string, FALSE)

str index := str index + 1 - -

from comp jndex := 1
until comp_index > str.get_number_of_components
loop

comp := str.get_component_by_index(comp_index)
fact_string, copy(.. (components (tag ")
fact _ string.append(str _index. out)
fact _ string,append(")")
file. to Jact Jile(fact _string, FALSE)

fact _ string.copy("(name ")
fact _ string.append(comp.get_ name)
fact _ string. append(") ")
file.toJact_file(fact_string, FALSE)

-- scale concentration based upon unit
if comp.get_units.is_equal("PPMIt) then

multiplier := ,00000 1
elseif comp.get_units.is_equal("PPB") then

113

end

end
end

multiplier : = . ()()()()()O()() I
else

multiplier : = 1.0
end

fact_string.copy("(normal ")
fact_string.append«comp.get_normal • multipLier).out)
fact _ string.append(")")
file. toJact_file(faCl_string, FALSE)

fact_string. copy("(measured ")
fact_string. append(comp. get_measured,. OUL)
fact_ string.append("))")
file. to Jact _file(fact_string, FALSE)

-- terminate the detracts
fact_string. copy(lt) ")
fiJe .toJact_file(fact_string, FALSE)

assert_candidates is
-- the candidate facts are written to the facts file
local fact_string : STRING
comp : LINKED J-IST[DB _COMPONENT]
do
! !fact_string.make(255)

- construct the application facts
fact_striog.copy("(defIacts candidates ")
file. to jacUile(fact_ string, FALSE)

-- create the db_analyzer and db_component facts
from candidates,start
until candidates. after
loop

-- create the analyzer facts
fact_string.copy(I/(anaJyzer (projectnumber ")
fact_string.append(candidates,item.projectnurnber)
fact _ string.append(") ")
file. to_fact _ file(fact _string, FALSE)

fact _ string.copy("(analyzerserialnumber ")
fact _ string. append(candidates.item.analyzerserialnumber)
fact_string.append("»")
file .to Jact _ file(fact _ string, FALSE)

comp ;= candidates.item.components
from comp,start
until comp.after
loop

114

")

end

end

end

fact_ string. copy(" (actual_ component (analyzerserialnumber

fact_ string. append(comp. item. analyzerserialnumber)
fact _ string. append(") ")
file. to Jact _ file(fact _string, FALSE)

fact_string.copy("{ componentname ")
fact _ string.append(comp.item.componentname)
fact _ string. append(") ")
file.toJact_file(fact_string, FALSE)

fact_string.copy("(concentration ")
fact_string.append(comp.item.concentration.out)
fact _string. append(") ")
file. to Jact jile(fact_ string, FALSE)

fact_string.copy("(measurement ")
fact_string.append(comp.item.measurement.out)
fact _ string.append("»")
file. to_fact _ file(fact _ string, FALSE)

comp.forth

candidates. forth

-- tenninate the deffacts
fact _ string. copy(") ")
file. to_fact _ file(fact _string, TRUE)

The 'start_session' feature is called when the user selects 'GO' from the MAlN_ WlNOOW menu. This is

the feature that starts a reasoning session by calling features of the DB_WRAPPER class to:

1. Query the database, taking tbe results of the query and writing them to an ASCn file called the ' facts'

file.

2. Call features of the CLIPS_WRAPPER to assert the knowledge base and facts file.

3. Start the reasoning session, and report back the results.

The facts me contains the results of the database queries and the target application data in a format that

can 1:x: understood by the CLIPS inference engine. The facts are stored according to the following fact

templates:

115

; Target application (what we are solving for)

(deftemplate applications "The target application"
(multis10t customer_name) ~ the customers name
(slot customer_location) ; the customers country
(slot number_streams) ; the number of streams
(slot cycle_time) ; application cycle time
(slot carrier~) ; the carrier gas desired

)

(deftemplate stream "Applications contain streams"
(slot tag) ; the tag for this stream
(slot corrosive) ; is the stream corrosive
(slot dis_solids) ; does the stream have disolved solids
(slot polimer) ; does the stream polimerize
(slot temperature) ; The stream temperature
(slot pH) ; The stream. pH
(slot s-pressure) ; The stream pressure
(slot r-pressure) ; The return pressure
(slot phase) ; The phase of the gas in this stream

)

(deftemplate components "Streams contain components"
(slot tag) ; the tag for this stream
(slot name) ; the component name
(slot normal) ; normnal concentration of this component
(slot measured) ; Is the component measured?

; These templates are for the generated solution set

(deftemplate analyzer "An actual GC"

)

(slot projectnumber)
(slot analyzerserialnumber)
(slot ovconfig)
(slot sv I ty'JX:)
(slot svlmodel)
(slot svlsize)
(slot detctl)
(multislot carriera)
(multislot cycletime) ,'-
(multislot typecolumn)

; Where this analyzer was used
; Identifier for this analyzer
; oven configuration
; ty'JX: of first sample valve
; model of first sample valve
; size of first sample valve
; type of first detector
; type of first carrier gas
; actual cycle time
; the type of column

(deftemplate actual_component "A component of an analyzer~
(slot analyzerserialnumber) ; binds the component to an analyzer
(slot streamnumber) ; analyzers contain more than 1 stream
(slot componentname) ; the name of this component
(slot concentration) ; normal concentration for this component
(slot measurement) ; is this component measured

)

116

Again, the 'assert_application' featurel creates the facts file and writes templates of type applicatio~

stream, and component. to the file. These templates are filled with. GC_APPLICATION STREAM, and

COMPONENT data respectively. The 'assert_candidates' feature writes templates of type analyzer, and

actual_component. These templates are filled with DB_ANALYZER and DB_COMPONENT objects

respectively.

4.9 Running the System

We are :finally in a position to examine the output of running the system. In order to run the syst.em, the

user will select the 'Go' menu item from the main menu. At this point the system will query the database

and display the output shown in the figure below.

Figure IS - Database Query Output

When the database query is complete the system will begin building the facts file and the output \\-ill be as

shown in the figure on the following page.

117

. Querv Caaplete
1diD9 Facts File

Figure 16 - Database Query Output

118

...

After the facts .file is created,. the facts are asserted to CLIPS and a reasoning session started. Consider

the process stream shown in the figure below, with normal concentrations:

• Air: 99.999"10

• Ethane: 4.5 ppm

• Methane: 5.5 ppm

This process stream represents a case where no match may be found.

SeIIIct

ACETYUNE
ARSON
BTU
el+
elO+
elI'S
ell+
ell'S
el2+
el2"S

AIR

METHANE

Figure 16 - Process Stream Vielding No Match

The system output using the process stream shown above is given in the following figure.

119

"""

. QuI!rV '-UJ.l'
lding Facts File

.. """.....·r.ing Facts
' i .m.Wll'~D<J CLIPS

ion has no .atch.

Figure 17 - System OlltPllt For No Match

120

Consider the process stream shown in the figure below, with normal concentrations:

• Ethane = 91%

• Methane = 9010

This process stream represent a case where an imperfect match may be found

a....n Ca ... n.--ta

I H<\tll

Figure 18 - Process Stream Yielding an Imperfect Match

The system output using the process stream shown above is given in the following figure.

121

..

:tlo:!~!rrtin9 Facts
11 LI .. '.::/ CI.IPS

is TeD
.Icc!r~~;u:tr gas is Heliu •
.. 1.1:"" ""' .. '" SN : i.V0862 .atches saallest coaponent

SN : i.V1684 .atches largest caaponent
COIlbinatian of these analyzers -v _tch the application

Figure 19 - System Output For an Imperfect Matcb

122

..

Finally, consider the process stream shown in the figure below, with normal concentrations:

• Ethane = 99%

• Ethylene = 1%

This process stream represent a case where a perfect match may be found

Figure 20 - Process Stream Yielding a Perfect Match

The system output using the process stream shown above is given in the following figure.

123

ting Facts
:1l'<l.J.D.ll;LDg CLIPS

is TeO
~""ClU.-L .L"'.I.- gas is Hydrogen
, a.cLa.L'VZII:!r 5N : A.V1290 ~tches

Figure 21 - System Output For Perfect Match

124

5.0 Conclusions

This section will discuss the conclusions I've reached concerning the work that made up this project.

To begin, I believe that the results of my project have met the goals described in my thesis proposal. I

believe that I have succeeded in designing and implementing a rule based expert system that solves the

configuration problem., as was detailed earlier in this paper.

Next, I would like to discuss the positive impact that the Eiffel programming language (and the BON

design method) made in the success of the project I began work on the program in May of 1996 and

completed work in November of 1996. This equates to a 6 + calendar month development cycle. The

project consists of 28 application specific classes. During final testing of the project I was unable to make

the system crash. For a project of this complexity, that says a lot.

I made extensive use of the BON method throughout the development process. I believe that the

program's robustness is due to the use of BON and the robust static architecture it allowed me to develop

through 'design by contract'. As is evident in my source listings, r made use of pre- and post-conditions

whenever they IWlde sense. These contracts allowed me to discover logical flaws in my progrdlTl early in

the development process. This most certainly decreased the overall development time of the project.

Eiffel's strong type checking made it close to impossible to introduce the type of bugs that would cause

system crashes due to type mismatches and misplaced polymorphism. This limited my bugs to those that

were semantic in nature, rather than syntactic. I'm sure that if C++ or Smalltalk had been used as the

target language, I would not have seen the benefits listed above and the resulting program would not be as

robust.

Eiffel's ability to interface to C in a clear and efficient manner can not be overstated. For this project I

used software from three different vendors. These pieces of the puzzle had a single common denominator,

an interface to C. Because I \\-'35 able to write Eiffel wrappers that easily interfaced to these different

125

software packages I was able to glue them together into a single solid software solution to the

configuration problem .. For these reasons I would recommend Eiffel as a great choice for a course in

programming languages and object oriented programming.

The reasoning strategy used in the project is hybrid in nature. The data persented earlier in the paper

show that this approach is indeed sound and can be used to implement an ex-pert system. Relational

database queries are used to 'Generate' a set of possible solutions to the problem. These are passed onto

an inference engine to detennine if a viable solution to the problem exists. Therefore, the overall

performance of the system is tied to the ability to perform these queries in a timely manner. I must admit

that the performance oftbe EiffelStore libraries is less than ideal. For this reason it is important to trade

off the generality of the database queries versus the execution time of the program.

Lastly, I want to comment on the development of my knowledge base. This was by far the most difficult

part of my project as it required me to interface with persons not familiar with software development, or

software in general. Also, it required me to enter a problem domain that I was not familiar with. A great

deal of time was spent up front, between the Chemists and myself, discussing and clarifying jargon so that

we had a set of tenninology all understood .

I feel as though I underestimated the level of effort required for this task. The good news IS that my

experience has shown me that it is easy to 'scale up' a knowledge base if it is designed \\-i th 'scaleability'

in mind The knowledge base used for this project was designed to be scaleable and as a result I was

easily able to create a base knowledge base that solved the simple cases of this project. The knowledge

base may be enhanced in the future to handle more sophisticated cases without having to start again from

scratch. I would recommend that a knowledge base developer pay particular anention to its ' design in

order to ensure it can be scaled-up as required

126

In closing I want to acknowledge that this was a very challenging project. It certainly wasn't easy and, for

the most part, occupied all of my offworlc time for 6+ months. But I wouldn' t trade it for any other

project of lesser scope. Thi.s project allowed me to design and build an industriaI strength application.

This is an experience that any graduate level student should certainly have prior to entering the real world

of software development.

127

""""

Bibliography

1. Barker, V.E., O'Connor D.

Expert Systems for Configuration at Digital: XCON and Beyond,

Communications ofllie ACM, 32 (3), 298 - 318, March 1989

2. Barr, A, Cohen, P.A, Feigenbaum, EA

The Handbook of Artifical Intelligence, Volume II.

Kaufmann, Los Angeles, CA, 1981, 1982

3. Barr, A , Cohen, PA, Feigenbaum, E.A

The Handbook of Artifical Intelligence, Volume N.

Addision-Wesley, Reading, MA, 1989

4. Brownston, L., Farrell, R., Kant, E., Martin, N.

Programming Expert Systems in OP5.

Addison-Wesley, Reading, MA,1985

5. Buchanan, B.G., Feigenbaum, EA

DENDRAL and Meta-DENDRAL: Their Applications Dimension. Artifical [ntelIigence. 11 ,

5-24, 1978

6. Forgy, C.L

Rete: A Fast Algorithm For the Many Pattern, Many Object Pattern Match Problem. Artificial

Intelligence, 19, 17-37, 1982

128

.....

7. Forsyth, R (1984)

Expert Systems - Principles and Case Studies

Chapman and Hill Computing

8. Giarratano, J., Riley, G.

Expert SYstems Principles and Programming

PWS-Kent Publishing Company, Boston 1989

9. Jackson, Peter

Introduction to Expert Systems

Addison Wesley Co, Reading, MA, 1986

10. Johnson Space Center.

CLIPS Reference Manual: Volume 1 Basic Programming Guide

JSC-25012, 1993

It. Johnson Space Center.

CLIPS Reference t-.1atlUal: Volume 2 Advanced Programming Guide

JSC-25012, 1993

12. Kline, P., Dolios, S.

Designing Expert Systems - A Guide to Implementation Techniques

John Wiley and Sons, NY 1989

13. McDermott,J.

RI: A Rule Based Configurer of Computer Systems. Artificial Intelligence, 12, 39-88, 1982

129

....

14. Meyer, B.

Reusable Software: The Base Object-Oriented Component Libraries.

Interact ive Software Engineering, Goltea, CA. 1995

15. Meyer, B.

ISE Eiffel: The Environment.

Interactive Software Engineering, GoItea, CA, 1993

16. Meyer, B.

Object-oriented Software Construction.

Prentice Hall, NY, NY, 19&8

17. Schlatter, U. Real-Time Knowledge-Based Support For Air Traffic Management.

IEEE Expert, £(3), 21 -24 1994

18. Walden, K., Nerson, Jean-Marc.

Seamless Object-oriented Software Architecture.

Prentice Hall, NY NY, 1995

19. Watennan, D.A, Hayes-Roth, F.

Pattern Directed Inference Systems.

Academic Press, NY, 177-199, 1978

20. Poole, Colin F., Schuette, Sheila A.

Contemporary Practice of Chromatography.

Elsevier, Amsterdam, 1984

130

21. Sund, WE

Process Gas Chromatography Fundamentals.

Applied Automation Inc., BartlesviUe. OK. 1987

22. Meyer, B.

ISE EiffelStore Library Manual.

Interactive Software Engineering, GoJtea, CA, 1996

131

Appendices

Appendix A - BON System Chart

system_chart APP
cluster APP CLASSES
cluster DB CLASSES
cluster ROOT CLUSTER
cluster ROU1ER
cluster THESIS
cluster WRAPPER CLASSES

132

Appendix B - BON Cluster Charts

cluster_chart APP
cluster THESIS

cluster_chart APP _CLASSES
class GC APPLICA nON
description

liThe main application class"

class COMPONENT
description

"The component specific class"

class STREAM
description

"The application stream"

cluster chart DB CLASSES - -
class DB ANALYZER
description

"The root of a candidate solution"

class DB COMPONENT
description

"The components of a candidate solution"

class DB WRAPPER
description

"The main interface to the Eiifel ODBC classes"

cluster chart ROOT CLUSTER - -
class COMPONENT SELECT DIALOG

- -
description

"Allows the user to select components from a list box."

class COMPONENT SPECIFIC DIALOG - -
description

"Allows the user to specify component properties. fI

class STREAM SPEC DIALOG - -

133

description
"Allows the user to specifY stream properties."

class APP IDS
description

"Contains user interface constants."

class MAIN WINDOW
description

"The main application window."

class MY MENU
description

"The application menu. II

class APP SPEC DIALOG -- -
description

"Allows the user to specify application properties."

class APPLICA TION
description

"The root class."

cluster APP CLASSES
cluster WRAPPER CLASSES
cluster DB CLASSES
cluster ROUTER

cluster chart ROUTER
class MESSAGE ROUTER
description

"Routes Messages to OOBC and CLIPS"

class FACTFILE
description

"Manages the CLIPS deffacts table. "

cluster chart THESIS
cluster ROOT CLUSTER

134

Appendix C - BON Class Charts

class_chart APPLICAnON
cluster ROOT CLUSTER
description

"The root class."
queries

Create the application's main window

class chart AP P IDS - -

cluster ROOT CLUSTER
description

"User interface constants."

class_chart APP_SPEC_DIALOG
cluster ROOT CLUSTER
description

" Allows the user to specify application properties. "
inherits APP IDS
queries

Carrier Gas List box

Customer Edit control

Cycle Time Edit Control

the main application object

Customer Location Edit control

Number Streams Edit control

the owner of this object
commands

inform the owner that the app object is filled

class chart CLIPS DEBUG FNS - - -
cluster WRAPPER CLASSES
description

"Provides the interface to the CLIPSDLLdebug functions . "
queries

Gets the current Dribble State

135

Gets the state of a watch item in the
CLIPS system

The DLL object that provides access to the
clips environment functions

Accessor function to the CLIPS DribbleActive command

Accessor function to the CLIPS DribbleOff command

Accessor function to the CLIPS DribbleOn command

Accessor function to the CLIPS GetWatchltem command

Accessor function to the CLIPS Unwatch command

Accessor function to the CLIPS watch command
commands

Commands the CLIPS Dribble state to off

Commands the CLIPS Dribble state to on

Commands the CLIPS Watch off for the item

Commands the CLIPS Watch on for the item

setup the DESC objects

class chart CLIPS ENV FNS - --
cluster WRAPPER CLASSES
description

"Provides the interface to the CLIPSDLLevironment functions . II
queries

Remove. the CLIPS environment

Run the system

Accessor function to the CLIPS Bload command

Accessor function to the CLIPS BSave command

Accessor function to the CLIPS Clear command

The DLL object that provides access to the

136

clips environment functions

Accessor function to the CLIPS exit command

Accessor function to the CLIPS lnit command

Accessor function to the CLIPS load command

Accessor function to the CLIPS reset command

Accessor function to the CLIPS Run command

Accessor function to the CLIPS save command
commands

Adds a router to the system

Load the binary rule file

save the knowledge base to a binary file

Clears the CLIPS environment

Initializes the clips system

Load the rule file

Resets the CLIPS system

Run a CLIPS session

save the knowledge base to a file

setup the DESC objects

class chart CLIPS FACT FNS - --
cluster WRAPPER CLASSES
description

"Provides the interface to the CLIPSDLLfact functions. "
qUeries

Assert a fact given by a string

Creates a fact pointer from a deftemplate

Decrements the fact count for the given fact

137

gets the fact duplication behavior flag

gets the fact list changed flag

gets the fact in pretty print form
uses an ANY object as a parameter since
Eiffel won't allow parameters of calls to
be changed

gets a fact from the fact list

gets the number of facts in the fact list

Retract a fact

Accessor function to the CLIPS Assert command

Accessor function to the CLIPS AssertString command

Accessor function to the CLIPS AssignFactStlotDefaults command

Accessor function to the CLIPS CreateFact command

Accessor function to the CLIPS DecrementFactCount command

The DLL object that provides access to the
clips environment functions

Accessor function to the CLIPS Factlndex command

Accessor function to the CLIPS Facts command

Accessor function to the CLIPS GetFactDuplication query

Accessor function to the CLIPS GetFactListChanged query

Accessor function to the CLIPS GetFactDuplication query

Accessor function to the CLIPS GetNextFact query

Accessor function to the CLIPS GetNumberOfFacts query

Accessor function to the CLIPS IncrementFactCount command

Accessor function to the CLIPS LoadFacts command

138

Accessor function to the CLIPS RemoveAUFacts command

Accessor function to the CLIPS Retract command

Accessor function to the CLIPS SaveFacts command

Accessor function to the CLIPS SetFactDuplication command

Accessor function to the CLIPS SetFactListChanged conunand
commands

Assert a fact given by a fact pointer object

Assigns defaults to a fact

Decrements the fact count for the given fact

increases the fact count for this fact by 1

Loads the fact file

Remove all facts that are in the WM

Save the facts

sets the fact duplication behavior flag

sets the fact list changed flag

setup the DESC objects

class chart CLIPS INSTANCE FNS - - --
cluster WRAPPER CLASSES
description

"Provides the interface to the CLIPSDLLdeftemplate functions."
queries

Creates an empty instance of a class

Deletes an instance

Find an instance in a class

gets the total number of instances in all modules

gets the class reference for this instance

139

gets the class name for this instance

gets the instance in pretty print form
uses an ANY object as a parameter since
Eiffel won't allow parameters of calls to
be changed

gets a instance from the instance list

gets a instance from the class

Make an instance using a command string

Determines if the instance is still vaild

Accessor function to the CLIPS CreateRawInstance command

Accessor function to the CLIPS DeleteInstance command

The DLL object that provides access to the
clips environment functions

Accessor function to the CLIPS Findlnstance command

Accessor function to the CLIPS GetGlobalNumberOfInstances query

Accessor function to the CLIPS GetInstanceClass query

Accessor function to the CLIPS GetInstanceName query

Accessor function to the CLIPS GetInstancePPForm query

Accessor function to the CLIPS GetNextInstance query

Accessor function to the CLIPS GetNextlnstanceInClass query

Accessor function to the CLIPS Loadlnstances query

Accessor function to the CLIPS MakeInstance command

Accessor function to the CLIPS Savelnstances query

Accessor function to the CLIPS ValidInstanceAddress query
commands

140

Loads the instance file

Save the instances

setup the DESC objects

class_chari CLIPS_STRATEGYJNS
cluster WRAPPER CLASSES
description

queries
"Provides the interface to the CLIPSDLLstrategy functions. "

return the current reasoning strategy

gets the number of memory requests

gets the amount of memory used

sets the current reasoning strategy

The DLL object that provides access to the
clips environment functions

Accessor function to the CLIPS GetStrategy command

Accessor function to the CLIPS MemRequests command

Accessor function to the CLIPS MemUsed command

Accessor function to the CLIPS Set Strategy command
commands

setup the DESC objects

class chari CUPS WRAPPER - -
cluster WRAPPER CLASSES
description

"Provides the interface to the CLIPSDLL"
commands

create the wrapper objects

clear the CLIPS environment

load the facts file

load the rule file

141

run a inference session

start up clips

class_ chart COMPONENT
cluster APP ClASSES
description

"The component specific class"
queries

get the maximum concentration

get the measured state

get the minimum concentration

get the name for the stream

get the nonnal concentration

get the units for the stream

max concentration of this component

Is the component measured?

min concentration of this component

the component name

normnal concentration of this component

the units for this component
commands

Set the maximum concentration

set the measured state

Set the minimum concentration

set the name for the stream

Set the nonnal concentration

set the units for the stream

142

initialize the object

143

class_chart COMPONENT_ SELECT_DIALOG
cluster ROOT CLUSTER
description

" Allows the user to select components from a list box. II

inherits APP IDS
quenes

get the current component_object

the popup that configures a component

list of possible components List box

add items to the selected list

used to store the component we are working on

used to store the changes to the stream

the owner of this object

remove items from the selected list

list of possible components List box

edit showing total % of stream defined
commands

update the list with new component specific information
update the stream percent dialog

add a component to the component list

Save the application data

remove a component from the list

inform the owner that the stream object is filled

144

class_chart COMPONENl,-SPECIFIC_DIALOG
cluster ROOT CLUSTER
description

" Allows the user to select components specific properties. "
inherits APP IDS
queries

this component

edit showing upper concentration limit

Is this component analyzed?

edit showing normal concentration

the owner of this window

combo box listing the possible units

edit showing upper concentration limit
commands

Save the application data

update the component object

class chart DB ANALYZER - -
cluster DB CLASSES
description

"The root of a candidate solution"
queries

Display contents
commands

add a component to the list

Set 'analyzerserialnumber' with 't'

Set' applnumb' with' t'

Set 'carriera' with 't'

Set' carrierb' with' t'

Set' comment' with 't'

Set 'cycletime' with '1'

145

Set ' detct I' with 't'

Set 'finaltemp' with 't'

Set 'initialtemp' with ' 1'

Set 'isotherzo' with ' 1'

set ' methanator' with ' t'

Set ' ovconfig' with 't'

Set 'primary' with 't'

Set ' process' with '1'

set ' progtemp' with 't'

Set 'projectnumber' with ' 1'

Set ' splitter' with ' t'

Set 'sv 1 model' with ' t'

Set 'svlsize' with ' t'

Set ' sv 1 type' with ' t'

Set ' temprate' with 't'

Set ' typecolumn' with 't'

set 'vortex' with 't'

initialize the db_object

146

class _chart DB_COMPONENT
cluster DB CLASSES
description

"The components of a candidate solution"
commands

Set' analyzerserialnumber' with' l'

Set 'component name' with 't'

Set' concentration' with 't'

Set 'measurement' with 't'

Set 'streamnumber' with 't'

initialize the db_object

class chart DB WRAPPER - -
cluster DB CLASSES
description

" The main interface to the Eiffel ODBC classes"
commands

test the interface

terminate the session

create a query for each candiate to fill its components

gather the query results

class chart DLL INTERFACE - -
cluster WRAPPER CLASSES
description

"Provides the interface to the CLIPSDLLpnnt router."
commands

this feature is called indirectly by the clips dB

class chart FACTFILE
cluster ROUTER
description

"Manages the CLIPS deffacts table, "
commands

operate on the fact file

147

class_chart GC_APPUCATION
cluster APP CLASSES
description

"The main application class"
queries

The carrier gas for the application

The customer location

The customer name

The application cycle time

get the indexed stream object

The number of streams in this application

The stream aggregate attribute
commands

set the carrier gas for the application

set the customer location

Set the customer name

set the cycle time in seconds

put the stream into the array

set the number of streams

initialize the object

class chart MAIN WINDOW - -
cluster ROOT CLUSTER
description

"The main application window. "
inherits APP IDS
queries

to give access to the current stream

to give access to the GC object

Window's icon

148

When the user can close the window?

Window's menu

Don't intentionally lose an objects data

Window's title
commands

give the data to the app object
look to see if the system is ready
to run a configuration session

set the GC application object
finalize the window setup

Message to inform that the feature is not implemented

open the GC_APPLICATION object

save the GC _APPLICATION object

update the project title

class chart MESSAGE ROUTER - -
cluster ROUTER
description

"Routes Messages to ODBC and CLIPS"
commands

add a new analyzer to the candidates list

add a new component to the current candidate

the target application facts are written to the facts file

the candidate facts are written to the facts file

create the router objects

begin a CLIPS session

149

class_chart MY_MENU
cluster ROOT CLUSTER
description

"The main application menu."
commands

disable 'position

Enable 'position

class_chart STREAM
cluster APP CLASSES
description

"The application stream"
queries

get a component from the list by its index

get a component from the
list having the name attribute
given m name

get the configured state

get the corrosive state

get the solids state

get the number of components in the stream

get the pH

get the phase for the stream

get the polimer state

get the return pressure

get the stream pressure

get the tag for the stream

get the temperature

the list of components for this stream

150

--
set true if 100010 of the components are
specified

is the stream corrosive

does the stream have disolved solids

The stream pH

The phase of the gas in this stream

does the stream polimerize

The return pressure

The stream pressure

The customer specific tag of this stream

The stream temperature
commands

add a component to the
list of components

remove a component from the list

replace the previous comp with this name
with the new comp

reset the configured state

set the configured state

set the corrosive state

set the solids state

Set the pH

set the phase for the stream

set the polimer state

set the return pressure

151

set the stream pressure

set the tag for the stream

Set the temperature

initialize the object

class_chart STREAM_SPEC _DIALOG
cluster ROOT CLUS1ER
description

"Allows the user to specify stream properties. "
inherits APP IDS
queries

is the stream corrosive

used to store the changes to the stream
attributes

the owner of this object

stream pH Edit control

stream phase List box

does the stream poJimerize

return pressure Edit Control

stream pressure Edit control

are dissolved solids in the stream

the app specific name for this stream

stream temp Edit control
commands

Save the stream data

inform the owner that the stream object is filled

152

cluster_chart WRAPPER_CLASSES
class CLIPS INSTANCE FNS - -
description

"Provides the interface to the CLIPSDLLdeftemplate functions. "

class CLIPS STRATEGY FNS - -
description

"Provides the interface to the CLIPSDLLstrategy functions."

class CLIPS WRAPPER
description

"Provides the interface to the CLIPSDLL"

class DLL INTERFACE
description

"Provides the interface to the CLIPSDLLprint router. "

class CLIPS ENV FNS - -
description

"Provides the interface to the CLIPSDLLevironment functions. II

class CLIPS FACT FNS
- -

description
"Provides the interface to the CLIPSDLLfact functions. "

class CLIPS DEBUG FNS - -
description

"Provides the interface to the CLIPSDLLdebug functions."

153

Appendix D - BON Class Dictionary

class_dictionary APP
class APPliCATION cluster ROOT CLUSTER
description

"The root class."

class APP IDS cluster ROOT C'LUSTER
- -

description
"User interface constants."

class APP SPEC DIALOG cluster ROOT CLUSTER - - -
description

" Allows the user to specify application properties. "

class CLIPS DEBUG FNS cluster WRAPPER CLASSES - - -

description
"Provides the interface to the CLIPSDLLdebug functions. II

class CliPS ENV FNS cluster WRAPPER CLASSES
- - -

description
"Provides the interface to the CLLPSDLLevironrnent functions."

cl(l$s CLIPS FACT FNS cluster WRAPP.c""R CLASSES
- - -

description
"Provides the interface to the CLIPSDLLfact functions. II

class CUPS INSTANCE FNScluster WRAPPER CLASSES - - -
description

"Provides the interface to the CLIPSDLLdeftemplate functions. "

class CLIPS STRA TEGY FNS cluster WRAPPER CLASSES - - -
description

"Provides the interface to the CLIPSDLLstrategy functions. "

class CLIPS WRAPPER cluster WRAPPER CLASSES - -
description

"Provides the interface to the CLIPSDLL"

class COMPONENT cluster APP CLASSES
description

"The component specific class"

154

class COMPONENT SELECT DIALOG cluster ROOT CLUSTER
- - -

description
" Allows the user to select components from a list box. "

class COMPONENT SPECIFIC DIALOG cluster ROOT CLUSTER - - -
description

" Allows the user to select components specific properties. "

class DB ANALY2ER cluster DB CLASSES
- -

description
"The root of a candidate solution"

closs DB COMPONENT cluster DB CLASSES - -
description

"The components of a candidate solution"

class DB WRAPPER cluster DB CLASSES
- -

description
" The main interface to the Eiffel ODBC classes"

class DLL INTERFACE cluster WRAPPER CLASSES
- -

description
"Provides the interface to the CLIPSDLLprint router."

class FA CTFILE cluster ROUIER
description

"Manages the CLIPS deffacts table. "

class GC APPLICATION cluster APP CLASSES - -
description

liThe main application class"

class MAIN WINDOW cluster ROOT CLUSTER - -
description

"The main application window."

class MESSAGE ROUTER cluster ROUTER
description

"Routes Messages to onBC and CLIPS"

class MY MENU cluster ROOT CLUSTER - -

description
"The main application menu. "

155

class SlRr<Aft,{ cluster APP CLASSES
description

"The application stream"

class S1REAM SPEC DIALOG cluster ROOT CLUSTER
- - -

tkscription
IIAllows the user to specify stream properties."

156

Appendix E - BON Class Interlaces

indexing
description: " The root class. "

implemented class APPLICATION

inherit

WEL

WEL SUPPORT

WEL APPLICA TION

feature

redefined idle _action

effective main_window: MAIN_WINDOW
-- Create the application's main window

end -- class APPLICA TION

indexing
description: " User interface constants. "

class APP IDS

feature

id_configure -.Kaschromatograph: INTEGER

id_ configure -.Kaschromatograph _0: INTEGER

id __ configure -.Kaschromatograph _ I: INTEGER

id _configure JJaschromatograph __ 11: INTEGER

id _configure JJaschromatograph _12: INTEGER

id _configure JJaschromatograph _13: INTEGER

id _configure -.Kaschromatograph _14: INTEGER

l57

id _configure JJaschromatograph _i5: iNTEGER

id _configure .-Easchromatograph _2: INTEGER

id _configure .-Easchromatograph _3: INTEGER

id _configure JJaschromatograph _ 4: INTEGER

id _configure JJaschromatograph _ 6: INTEGER

id _configure JJaschromatograph _ 7: INTEGER

id _configure JJaschromatograph _8: INTEGER

id _configure J5aschromatograph _9: INTEGER

id _configure yeripheral: INTEGER

id Jile _close: INTEGER

idJile _exit: INTEGER

id Jile _new: INTEGER

id Jile _open: INTEGER

idJile yrint: INTEGER

id JiJe yrintsetup: INTEGER

id Jile _sabe: INTEGER

idJiJe_saveas: INIEGER

id ~o: INTEGER

id ico application: INTEGE"'R

id main menu: INTEGER
- --

id stream 1: INTEGER - -.-

id stream 10: INTEGER
- -

158

id stream 11: INTEGER
-- -

id stream 12: INTEGER - -

id stream 13: INTEGER
- -

id stream J 4: INTEGER - -

id stream 15: INTEGER - -

id stream 2: INTEGER - -

id stream 3: INTEGER
- -

id stream 4: INTEGER - -

id stream 5: INTEGER
- -

id stream 6: INTEGER
- -

id stream 7: INTEGER - -

id stream 8: INTEGER - -

id stream 9: INTEGER
- -

ide _ carrier gas: INTEGER

ide chosen: INTEGER

ide corrosive: INTEGER

ide customer: INTEGER

ide customerloeation: INTEGER

ide eycletime: INTEGER

ide dissolids: INTEGER

ide lowerlimit: INTEGER

ide measured: INTEGER

159

ide normal: INTEGER

ide yh: INTEGER

ide yhase: INTEGER

ide yoly: INTEGER

ide _return press: INTEGER

ide select: INTEGER

ide _stream percent: INTEGER

ide _ stream press: INTEGER

ide streams: INTEGER

ide _tag: INTEGER

ide _temperature: INTEGER

ide toehosen: INTEGER

ide toseleet: INTEGER

ide units: INTEGER

ide __ upperlimit: INTEGER

idd_appl_seleet: INTEGER

idd_eomp yrop: INTEGER

idd _camp_select: INTEGER

id,(stream yroperties: INTEGER

end -- class APP IDS

160

indexing
description: " Allows the user to specify application properties. I,

class APP SPEC DIALOG - -

inherit

WEL

WEL WINDOWS

APP IDS

WEL MODAL DIALOG - -

end -- class APP SPEC DIALOG - -

indexing
description: "Provides the interface to the CLIPSDLLdebug functions. II

class CLIPS DEBUG FNS
- -

inherit

BASE

DESC

DESC GENE.'RAL

SHARED LIBRARY CONSTANTS - -

feature

active: INTEGER
-- Gets the current Dribble State

ensure
dribble Jailure: Result > = 0

end

dribbleoff
-- Commands the CLIPS Dribble state to off

161

ensure
dribble Jailure: clips _ dribbleoff. integer_result = J

end

dribbleon
-> filename: STRING
-> state: BOOLEAN

-- Commands the CLIPS Dribble state to on
require

ensure

end

state exists: state /= void
file _exists: filename / = void

drj bble Jai lure: clips _ dri bbleon. integer _result = 1

getwatchitem: INTEGER
-> item: STRING

-- Gets the state of a watch item in the
-- CLIPS system

require
item exists: item / = void

ensure
watchitemJailure: Result /= - 1

end

unwatch
-> item: STRING

-- Commands the CLIPS Watch off for the item
require

item exists: item /= void
ensure

watch Jailure: clips _ unwatch. integer _result > = 0
end

watch
-> item: STRING

-- Commands the CLIPS Watch on for the item
requIre

item exists: item /= void
ensure

watch Jailure: clipS _ watch. integer _result > = 0
end

make

162

end -- class CUPS DEBUG FNS
- -

163

indexing
description: "Provides the interface to the CLIPSDLLevironment functions. "

class CLIPS ENV FNS - -

inherit

BASE

DESC

DESC GENERAL

SHARED LIBRARY CONSTANTS - -

feature

add route
-- Adds a router to the system

bload
-> filename: STRING

-- Load the binary rule file
requlFe

exists: filename / = void
ensure

failure_to _lood: clips_ bload integer_result = I
end

bsave
-> filename: STRING

-- save the knowledge base to a binary file
require

exists: filename /= void
ensure

failure_to _save: clips _ bsave. integer _result = J
end

clear
Clears the CLIPS environment

exit: INTEGER
-- Remove the CLIPS environment

initialize

164

-- Initializes the clips system

load
-> filename: STRING

-- Load the rule file
require

exists: filename /= void
ensure

failure _to _load: clips _load. integer _result = 1
end

reset
-- Resets the CLIPS system

run
-- Run a CLIPS session

runs: INTEGER

save

make

-> cycles: INTEGER
-- Run the system

require
exists: cycles /= void

ensure
failure_to _ron: Result /= - 1

end

-> filename: STRING
-- save the knowledge base to a file

require
exists: filename /= void

ensure
failure_to_save: c/ips_save.integer_result = 1

end

end -- class CLIPS ENV FNS - -

165

indexing
description: "Provides the interface to the CLIPSDLLfact functions. "

class CLIPS FACT FNS - -

inherit

BASE

DESC

DESC GENERAL

SHARED LIBRARY CONSTANTS - -

feature

assert
-> factytr: ANY

-- Assert a fact given by a fact pointer object
require

exists: fact ytr /= void
end

assert string: ANY
-> fact: STRING

-- Assert a fact given by a string
require

exists: fact /= void
end

assignfactslotdefaults
-> fact: ANY

-- Assigns defaults to a fact
require

exists: fact /= void
ensure

assignfsd Jailed: clips _ assignfsd. integer_result /= 0
end

createfact: ANY
-> fact: ANY

-- Creates a fact pointer from a deft em plate
require

exists: fact /= void

166

ensure
createfact Jailed: Result /= void

end

decrementfactcount
-> fact: ANY

-- Decrements the fact count for the given fact
require

exists: fact /= void
end

factindex: INTEGER
-> fact: ANY

facts

-- Decrements the fact count for the given fact
require

exists: fact /= void
ensure

factindex Jailed: Result /= void
end

-> output_device: STRING
-> fact: ANY
-> start: INTEGER
-> stop: INTEGER
-> max: INTEGER
require

end

output_device _exists: output_device /= void
fact_exists: fact /= void
start exists: start /= void
stop _exists: stop /= void
max exists: max /= void

getfactduplication: INTEGER
-- gets the fact duplication behavior flag

ensure
getJactdup Jailed: Result = 0 or Result = 1

end

getjactlistchanged: INTEGER
-- gets the fact list changed flag

ensure
getJactlistchanged Jailed: Result = 0 or Result = J

end

167

getfactppform: STRING
-> fact: ANY

-- gets the fact in pretty print form
-- uses an ANY object as a parameter since
-- Eiffel won't allow parameters of calls to
-- be changed

require
exists: fact / = void

ensure
getppform Jailed: Result /= void

end

getnextfact: ANY
-> fact: ANY

-- gets a fact from the fact list

getnumberoffacts: INTEGER
-- gets the number of facts in the fact list

ensure
getrmmberoffacts Jailed: Result > = 0

end

incrementfactcount
-> fact: ANY

-- increases the fact count for this fact by 1
require

exists: fact /= void
end

loadfacts
-> filename: STRING

-- Loads the fact file
require

exists: filename /= void
ensure

loadfacts Jailed: clips _loadfacts. integer_result /= 0
end

removeallfacts
-- Remove all facts that are in the WM

retract: INIEGER
-> fact: ANY

-- Retract a fact

168

-

require
exists: fact /= void

ensure
retract Jailed: Result /= void

end

savefacts
-> filename: STRING
-> scope: lNTP,GF:R

-- Save the facts
require

ensure

end

exists: filename /= void
scope_exists: scope /= void

loadfacts Jailed: clips _savefacts. integer_result /= 0

setjactduplication
-> state: INTEGl!-""R

-- sets the fact duplication behavior flag
require

exists: state /= void
valid: state = 0 or state = 1

ensure
setjactdup Jailed· clips_setfactduplication.integer _result /= state

and (clips _setfactduplication. integer Jesu.it = 0 or clips_setjactduplication. integer_result
= 1)

end

setjactlistchanged
-> state: INTEGER

-- sets the fact list changed flag
require

exists: state /= void
valid: state = 0 or state = 1

end

make

end -- class CUPS FACT FNS
- -

169

indexing
description: "Provides the interface to the C1JPSD1Jdejtempiate junctiom. "

class CLIPS INSTANCE FNS

inherit

feature

BASE

DESC

DESC GENERAL

SHARED LIBRARY CONSTANTS - -

createrawinstance: ANY
-> instance: ANY
-> name: STRING

require

ensure

end

-- Creates an empty instance of a class

exists: instance /= void
name exists: name /= void

createrawintancejailed: Result /= void

deletein<;tance: INTEGER
-> instance: ANY

-- Deletes an instance
require

exists: instance /= void
ensure

delete Jailed: clips _ delete instance. integer_result > = 0
end

findinstance: ANY
-> module: ANY
-> name: STRING

-- Find an instance in a class
require

end

exists: module 1= void
name exists: name /= void

170

-

getgJobalnumberofinstances: INTEGER
-- gets the total number of instances in all modules

ensure
getinstanceciass Jailed: Result /= void and Result > = 0

end

getinstanceciass: ANY
-> instance: ANY

-- gets the class reference for this instance
require

exists: instance / = void
ensure

getinstanceciass Jailed: Result /= void
end

getinstancename: STRING
-> imtance: ANY

-- gets the class name for this instance
require

exists: instance /= void
ensure

getinstancename Jailed: Result /= void
end

getinstanceppform: STRING
-> instance: ANY

gets the instance in pretty print fonn
uses an A NY object as a parameter since
Eiffel won't allow parameters of calls to
be changed

require
exists: instance /= void

ensure
getppform Jailed: Result / = void

end

getnextinstance: ANY
-> instance: ANY

-- gets a instance from the instance list
require

exists: instance /= void
end

171

gefnextinstanceinclass: A NY
-> instance: ANY
-> cname: ANY

-- gets a instance from the class
require

end

load instances

exists: instance /= void
class exists: cname /= void

-> filename: STRING
-- Loads the instance file

require
exists: filename /= void

ensure
load Jailed: clips _ load instances. integer_result /= 0

end

makeinstance: ANY
-> command: STRING

-- Make an instance using a command string
require

exists: command / = void
ensure

make Jailed: Result /= void
end

saveinstances
-> filename: STRING
-> scope: INTEGER

-- Save the instances
require

ensure

end

exists: filename /= void
scope _exists: scope /= void

save Jailed: clips _ saveinstances.integer _result /= 0

validinstanceaddress: INTEGER
-> instance: ANY

-- Determines if the instance is still vaild
requITe

exists: instance /= void
ensure

validity Jailed: Result /= void

172

end

make

end -- class CLIPS INSTANCE FNS - -

indexing
description: "Provides the interface to the CLIP SDUstrategy functions. "

class CLIPS STRATEGY FNS
- -

inherit

BASE

DESC

DESC GENERAL

SHARED LIBRARY CONSTANTS - -

feature

getstrategy: INTF,GF,R
-- return the current reasoning strategy

ensure
exists: Result /= void

end

memoryrequests: INTRGF,R
-- gets the number of memory requests

ensure
exists: Result /= void

end

memoryused: INTF.GF,R
-- gets the amount of memory used

ensure
exists: Result /= void

end

setstrategy: INTF:GF,R
-> strategy: INTEGER

-- sets the current reasoning strategy
require

exists: strategy / = void

173

ensure
exists: Result /= void

end

make

end -- class CLIPS STRA TEGY FNS - -

indexing
description: "Provides the interface to the CI1PSDf],"

class CLIPS WRAPPER

inherit

BASE

DESC

DESC GENERAL

SHARED LIBRARY CONSTANTS - -

feature

make
-- create the wrapper objects

end -- class CLIPS WRAPPER

174

indexing
description: "The component specific class. II

class COMPONENT

feature

get_maximum: RFA I,
-- get the maximum concentration

ensure
Result = maximum

end

get _ meamred: ROOI,FA N
-- get the measured state

ensure
Result = measured

end

get_minimum: RFAI-
-- get the minimum concentration

ensure
Result = minimum

end

get_name: STRING
-- get the name for the stream

ensure
Result = name

end

get_normal: RFAI,
-- get the normal concentration

ensure
Result = normal

end

get_units: STRING
-- get the units for the stream

ensure
Result = units

end

set maximum
-> t: REAL

175

-- Set the maximum concentration
require

exists: t / = void
ensure

configured: maximum = t
end

set measured
-> state: BOOLEAN

-- set the measured state
require

exists: state / = void
ensure

configured: measured = stale
end

set minimum
-> t: REAL

-- Set the minimum concentration
require

exists: t /= void
ensure

configured: minimum = t

end

set name
-> t: STRING

-- set the name for the stream
require

exists: t /= void
ensure

configured: name = t
end

set normal
-> t: REAL

-- Set the normal concentration
require

exists: t /= void
ensure

configured: normal = t
end

set units
-> t: STRING

176

-

-- set the units for the stream
require

exists: t /= void
ensure

configured: units = t
end

make
-- initialize the object

end -- class COMPONENT

indexing
description: /I Al10ws the user to select components from a list box."

class COMPONENT SELECT DIALOG - -

inherit

WEL

WEL WINDOWS

WEL CONSTANTS

APP IDS

WE'L BN CONSTANTS

WEL LBN CONSTANTS

WEL MODAL DIALOG - -

end -- class COMPONENT SELECT DIALOG - -

indexing
description: " Allows the user to select component specific properties. "

class COMPONENT SPECIFIC DIALOG - -

inherit

WEL

WEL WINDOWS

APP IDS

177

WEL MODAL DIALOG - -

end -- class COMPONENT SPECIFIC DIALOG - -

indexing
description: " The root of a candidate solution"

class DB ANALYZER

feature

add_component
-> comp: DB COMPONFNT

-- add a component to the list

analyzerserialnumber: STRING

applnumb: STRING

carriera: STRING

carrierb: STRING

comment: STRING

components: LINKED_LIST [GJ [DB_COMPONENT}

cycletime: STRING

detcti: STRING

jina/temp: STRING

inita/temp: STRING

isotherzo: STRING

methanator: BOOLEAN

effective out: STRING
-- Display contents

ovconjig: STRING

primary: CHARACTER

178

process: STRING

progtemp: BOOLEAN

projectnumber: STRING

set _ analyzerserialnumber
-> t: STRING

-- Set ' analyzerserialnumber' with ' t'
require

argument_exists: not (I = void)
ensure

analyzerserialnumber = t
end

set _ applrmmb
-> I: STRING

-- Set' applnumb' with 't'
require

argument _exists: not (I = void)
ensure

applnumh = t
end

set carriera
-> t: STRING

-- Set ' caniera' with 't'
require

argument_exists: not (I = void)
ensure

carriera = t
end

set carrierb
-> t: STRING

-- Set' carrierb' with 't'
require

argument_exists: not (I = void)
ensure

carrierb = t
end

set comment
-> t: STRING

179

-- Set' comment' with 't'
require

argument_exists: not (t - void)
ensure

comment = t
end

set _ eye/elime
-> t: STRING

-- Set' cyc1etime' with 't'
require

argument_exists: not (t = void)
ensure

eye/elime = t
end

set detetl
-> t: STRING

- Set' detcO' with 't'
require

argument_exists: not (t - void)
ensure

detetl = t
end

set Jinaltemp
-> t: STRING

-- Set' finaltemp' with 't'
require

argument_exists: not (t = void)
ensure

./inaltemp = t
end

set _inttaitemp
-> t: STRING

-- Set' initialtemp' with ' t'
require

argumenl_ existfi: not (t - void)
ensure

initaltemp - t
end

set isotherzo
-> t: STRING

180

s

-- Set' isotherzo' with 't'
require

argument_exists: not (t - void)
ensure

isotherzo = I
end

sel methanator
-> t: BOOLEAN

-- set ' methanator' with 't'
require

argumenl _exists: not (t = void)
ensure

methanalor = t
end

sel _ ovconfig
-> I : STRING

-- Set ' ovconfig' with . t'
require

argument _ ext . ..,·ts: not (I - void)
ensure

ovconfig - t
end

setyrimary
-> t: CHARACTE"R

-- Set ' primary' with ' t'
require

argument_exists: not (t = void)
ensure

primary = t
end

setyrocess
-> I: STRING

-- Set 'process' with ' t'
require

argument_exists: not (t - void)
ensure

process - t
end

set yrogtemp
-/ t: BOOLEAN

181

-- set 'progtemp' with ' t '
require

argument exists: not (I - void)
ensure

progtemp = t
end

set yrojectnumber
-> t: STRING

-- Set' projectnumber' with 't'
require

argument exists: not (t = void)
ensure

projectnumber = t
end

set_splitter
-> t: BOOLEAN

-- Set' splitter' with ' t'
require

argument_exists: not (t - void)
ensure

splitter - t
end

set svlmodel
-> t: STRING

-- Set' sv 1 model' with 't'
require

argument_exists: not (t = void)
ensure

svlmodel = t
end

set svlsize
-> t: STRING

-. Set 'svlsize' with 't'
require

argumenl_exist~: not (t - void)
ensure

svlsize = t
end

set_svJtype
-> t: STRING

182

-- Set ' sv 1 type' with 't'
require

argument_exists: not (t - void)
ensure

svltype = t

end

set _temprate
-> t: STRING

-- Set 'temprate' with 'f
require

argument_exists: not (I = void)
ensure

temprate = t
end

set _ typecolumn
-> J: STRING

-- Set ' typecolumn' with 't'
require

argumen(.exists: not (t - void)
ensure

typecolumn - t
end

set vortex
-> t: BOOLEAN

-- set ' vortex' with ' t'
require

argument _exists: not (t = void)
ensure

vortex = t
end

splitter: BOOLEAN

svlmodel: STRING

sv 1 size: STRING

.~vltype: STRING

temprate: STRING

typecolumn: STRING

183

vortex: BOOLEAN

make
-- initialize the db_object

end -- cla.1iS DB ANALYZER

indexing
description: "The components of a candidate solution. "

class DB COJ.vIPONENT

feature

analyzerserialnumher: STR1NG

componentname: STRINe;

concentration: DOUBLE

measurement: DOUBLE

set _ analyzerserialnumher
-> t: STRING

-- Set' analyzerserialnumber' with' t'
require

argument_exists: not (t - void)
ensure

analyzerseriainumher - t
end

set _ componentname
-> t: STRlNG

-- Set' componentname' with 't'
require

argument _ exi!)ts: not (I = void)
ensure

componentname = t
end

set concentration
-> t: DOUBLE

Set 'concentration' with 't'

184

-

require
argument_exists: not (t = void}

ensure
concentration = t

end

set measurement
-> t: DOUBLE

-- Set' measurement' with 't'
require

argument_exists: not (t = void)
ensure

measurement = t

end

set streamnumber
-> t: INTEGER

-- Set' streamnumber' with 't'
require

argument _exists: not (t = void)
ensure

streamnumber = t
end

streammlmber: INTEGER

mak.e
-- initialize the db_object

end -- class DB COMPONENT

185

indexing
description: "The main interface to the Eiffel OOBC classes. "

cla.ss DB WRAPPER

inherit

STORE

UTILITIES

RDBMS HANDLE

DBMS

ESTORE SUPPORT

ACT70N

RDB HANDLE

end -- class DB WRAPPER

indexing
description: " Provides the interface to the CLIPSOLLprint router. "

dass DLL INTERFACE

feature

clips flinter
-> char pointer: POINTFR

-- this feature is called indirectly by the clips dll

get_obj
-> ohj: ANY

getJJroc
-> function: POIN1ER

make

message: STRING

end -- class DLL INTERFACE

186

indexing
description: "Manages the CLIPS detracts table. "

class FACTFILE

inherit

BASE

KERNEL

PLAIN TEXT f7LE
- --

feature

toJactJile
-> fact _string: STRING
-> state: BOOLEAN

-- operate on the fact file
requIre

exists: fact_string / = void
end

end -- class FACTFILE

indexing
description: II The main application class. "

class GC APPLICA TION

inherit

BASE

KERNEL

STORABLE

feaJure

carrier 1as: STRING
-- The carrier gas for the application

customer location: STRING
-- The customer location

customer name: STRING

187

-- The customer name

cycle_time: IN1EGER
-- The application cycle time

fill streams

getytream: STREAM
-> index: INTEGER

-- get the indexed stream object
require

ensure

end

valid index: index > = 0
exists: index /- void

stream _obtained: Result = streams.item (index)

mJmber streams: INTEGER
The number of streams in this application

set_carrier JIas
-> gas: STRING

-- set the carrier gas for the application
require

exists: gas /= void
ensure

configured: carrier JIm, = gas
end

set customer location
- -

-> location: STRING
-- set the customer location

require
exists: location / = void

ensure
configured: customer _location = location

end

set customer name
- -

-> name: STRING
-- Set the customer name

require
exists: name /= void

ensure
configured: customer _name = name

188

end

set_cycleJ ime
-> time: INTEGER

-- set the cycle time in seconds
require

exists: time /= void
ensure

configured: cycle_time = time
end

set stream
-> s: STREAM
-> index: INTEGER

-- put the stream into the array
require

ensure

end

stream exists: s /= void
index exists: index /= void
index valid: index > = 0

stream_set: streams. item (index) = s

set streams
-> number: INTEGER

-- set the number of streams
require

exists: number /= void
ensure

configured: number _streams = number
end

streams: ARRA Y [GJ [STRF.AMj
-- The stream aggregate attribute

malre
-- initialize the object

end -- class GC APPLICATION

189

indexing
description: " The main application window. "

class MAIN WINDOW

inherit

WEL

WEL WINDOWS

WEL CONSTANTS

APP IDS

WEL OFN CONSTANTS - -

WEL FRAME WINDOW
- -

end -- class MAIN WINDOW

indexing
description: " Routes messages between OOBC and CLTPS. "

class MESSAGE ROUTER

end -- class MESSA GE ROUTER

190

indexing
description: "The main application menu. II

class MY MENU

inherit

WEL

WEL SUPPORT

WEL MENU

feature

disahle _item _ hy yosition
-> position: INTEGER

-- disable 'position

enahle _item _ hy yo!~ition
-> position: INTEGER

-- Enable 'position

end -- class MY MENU

indexing
description: " The application stream"

class STRFAM

feature

add_ component
-> name: STRING

require

ensure

end

add a component to the
-- list of components

exists: name /= void

one_more_comp: components. count = 1 + oldcomponents.count

get_component _ hy _index: COMPONF;NT
-> i: INTEGER

get a component fTom the list by its index
require

19l

end

valid index: i >= 0
exists: i /= void

get_component _ hy _name: COMPONF:NT
-> name: STRING

-- get a component from the
-- list having the name attribute
-- gIVen In name

require
exists: name / = void

end

get_configured: BOOLEAN
-- get the configured state

ensure
Result = configured

end

get_corrosive: BOOLEAN
-- get the corrosive state

ensure
Result = corrosive

end

get _disolids: BOOLEAN
-- get the solids state

ensure
Result = dis solids

end

get _ mlmber _01_ components: INTEGER
-- get the number of components in the stream

ensure
valid count: Result > = 0

end

getyercent_stream: REAL

get yh: INTEGER
-- get the pH

ensure
Result = ph

end

192

get yhase: STRING
-- get the phase for the stream

ensure
Result = phase

end

ge(yolimer: BOOLEAN
-- get the polimer state

ensure
Result = polimer

end

get Jpress: REAL
-- get the return pressure

ensure
Result = r_pressure

end

get _ spress: REAL
-- get the stream pressure

ensure
Result = s "'pressure

end

get _tag: STRING
-- get the tag for the stream

ensure
Result = tag

end

get _temperature: REAL
-- get the temperature

ensure
Result = temperature

end

remove _ componenl
-> comp: COMPONENT

-- remove a component from the 1i st
require

exists: comp /= void
ensure

one_Jess _comp: components.coullt = old components',count - J
end

193

replace_colnponent
-> COlnp: COMPONENT

require

replace the previous comp with this name
-- with the new comp

erists: COlnP /= void
ensure

iteln _changed: COlnpOllents. item = COlnP
end

reset_conj1gured
-- reset the configured state

ensure
conj1gured: conj1gured = false

end

set the configured state
ensure

conj1gured: conj1gured = true
end

set corrosive
-> state: BOOLEAN

-- set the corrosive state
require

exists: state /= void
ensure

conj1gured: corrosive = state
end

set disoJid ..
-> state: BOOLEAN

-- set the solids state
require

exists: state /= void
ensure

conj1gured: dis_solids = state
end

setyh
-> p: INTEGER

-- Set the pH
require

exists: p /= void

194

ensure
configured: ph = P

end

setyhase
-> p : STRING

-- set the phase for the stream
require

exists: p /= void
ensure

configured: phase = p
end

setyolimer
-> state: BOOLEAN

-- set the polimer state
require

exists: stale /= void
ensure

configured: polimer = state
end

set_rpress
-> number: REAL

-- set the return pressure
require

exists: number /- void
ensure

configured: r yressure = number
end

set_spress
-> number: REAL

-- set the stream pressure
require

exists: number /= void
ensure

configured: s ""'pressure = number
end

set_tag
-> t: STRING

-- set the tag for the stream
require

exists: t /= void

195

ensure
configured: tag = t

end

set~tef,njOerature

-> t: REAL
-- Set the temperature

require
exists: t /= void

ensure
configured: temjOerature = t

end

make
initialize the object

end -- class STREAM

indexing
descrption: " Allows the user to specify stream properties. 11

class STREAM SPEC DIALOG - -

inherit

WEL

WEL WINDOWS

APP IDS

WEL MODAL DIALOG - -

end -- class STREAM SPEC DIALOG
- -

196

Thesis:

Major Field:

Biographical:

VITA

George Eric Wolke

, .. ,
\,

Candidate for the Degree of

Master of Science

A RULE BASED EXPERT SYSTEM WIDCH CONFIGURES GAS
CHROMATOGRAPHS

Computer Science

Education: Graduated from W. T. Clarke High School, Westbury, New York in June 1980; received
Bachelor of Science degree in Electrical Engineering from Syracuse University. Syracuse, New
York in :May 1984. Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in May 1997.

Experience: Over ten years experience as a professional Software Engineer. Currently employed as
a Staff Software Engineer with Lockheed-Martin Astronautics, Denver, C..olorado.

Professional Memberships: IEEE Computer Society, Association for Computing Machinery.

