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NOMENCLATURE

used to represent contributions of convection and diffusion in linearized transport
equations

constant

clearance in the seal, 1.27 mm

constant equal to 9.7

turbulent kinetic energy

normal distance from rotor surface

pressurc

AFIOMA STATE UNIVERSITY

Peclet number

Production of turbulent kinetic energy

pressure perturbation variable in SIMPLE method
Radius of rotating shaft

radial variable

non-dimensional wall variable

Reynolds number

linearized source term

linearized source term, multiplied by ¢

Taylor number=(wc/V )*(ch)O'S



L] axial mean velocity

u’ fluctuating axial velocity

u axial Reynolds normal stress

uv axial-radial Reynolds shear stress

uw  axial-azimuthal Reynolds shear stress
v radial mean velocity

v’ fluctuating radial velocity

v2 radial Reynolds normal stress

vw  radial-azimuthal Reynolds shear stress
w azimuthal mean velocity

w’ fluctuating azimuthal velocity

w’  azimuthal Reynolds normal stress

X axial variable

(1) Used to reference equation numbers in text
Greek Symbols

o under-relaxation constant

A dimensional variable

Bij del operator(=1 for i=j, =0 for i#j)

z summation

€ turbulent dissipation

] azimuthal variable, also used to represent many different variables

xi

1




diffusion coefficient

K constant in wall functions, = 0.42

A constant used 1n inlet boundary condition for dissipation
7} absolute viscosity

v kinematic viscosity

p fluid density

T shear stress

® shaft speed

Subscripts

11 axial component in axial direction

12 axial component in radial direction

21 radial component in axial direction

22 radial component in radial direction

31 azimuthal component in axial direction

32 azimuthal component in radial direction

33 azimuthal compenent in azimuthal direction
XX same as 11

Xr same as 12
X same as 21
T same as 22
zX same as 31

Xil

ANOMA STATE UNIVERSITY



same as 32
same as 33

east

north

center grid point
south

west

wall

xiii
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CHAPTER I

INTRODUCTION

1.1 Description of annular seals

Annular seals are widely used in industry to seal a fluid between a stationary and rotating
member. They are commonly used in pumps in all types of industry to prevent
recirculation inside the pump casing. Figure 1.1 below shows a typical multi-stage pump
that has several examples of annular seals. Annular seals between the pump casing and the
impeller are termed “wear rings” and those located directly on the pump shaft are simply

described as “bushings”.

The amount of leakage that passes through the seals can greatly impact the performance of
the pump. As the seals wear and open up they can cause so much recirculation that the
pump overloads the driver. The need to reduce the amount of leakage requires that the
clearance between the stationary and rotating members be kept at the absolute minimum.
Since large pressure drops sometimes exist across seals 3.5 MPa[500 psi], very high

velocities exist within the seals[2].

The small clearances seen in many seals (0.127 mm [0.005 in] for a 63.5 mm[2.5 in] diam
seal) and large pressure drops may cause the seals to act as hydrodynamic bearings (see

Figure 1.2). This can be both beneficial as well as detrimental to the operation of the



pump. Additional “bearings” in the center of a long multi-stage pump as seen in Figure

1.1 are a necessity to support the shaft due to the high tangential loads inflicted by the
impellers. However, if these “bearings” have the wrong internal stiffness due to very high
velocities (see Figure 1.2), the rotordynamic stability of the pump can be greatly effected.
The internal stiffness and dampening of a seal can be calculated if the pressure and velocity
profiles are known. A representation of the linkage between the fluid velocities, pressures,

and hydrodynamic characteristics is shown in (1) below [2,3,37].



Figure 1.1. Cross-section of 10 stage centrifugal pump
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Figure 1.2. Representation of fluid stiffness and dampening in an annular seal

R R ®

where F, and Fy are functions of the pressure profile inside the seal.
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1.2 Methods used to calculate pressure and velocity profiles in annular seals

There are many different methods to calculate the pressure and velocity profiles in annular
seals. They can be divided into two different groups. The first is a two dimensional
method with the addition of swirl velocity. The second is a three dimensional
computational method that allows for changes in the azimuthal direction[2].

The flow is highly turbulent with leakage Reynolds numbers in excess of 15,000 in most
cases. Both two and three dimensional models require additional equations to model the

flow besides the equations of continuity and momentum.

1.2.1 Two dimensional methods

Two dimensional models use the governing equations of continuity and momentum to
solve the velocity and pressure profiles. They solve for all three velocity components (U,

V, and W), but limit the changes with direction to the axial and radial direction only (i.e.

% = 0). They are based on the assumption that the inner rotating cylinder is centered

inside the outer stationary cylinder[37].

1.2.2 Three dimensional methods

The three dimensional models are much more complex because they allow for variations in
the azimuthal direction. This eliminates the need for the centered annulus assumption.
However, this method is quite difficult to model because the equilibrium position of the

shaft must be constantly calculated, which requires the inner boundary to move

AHOMA STATE UNLV RSILY



throughout the computation. This is usually accomplished by having the coordinate

system rotate with the shaft at a fixed speed, o[3].

1.3 Numerical approximation of Reynolds stresses

Computation of the time varying velocity components (i.e U(x,r,z,t)) for this type of flow

1s not feasible due to the enormous amount of computational time and memory required.

For this reason the velocity components are broken down into a mean and fluctuating

value (u=U+u’). Substitution of the mean and fluctuating components into the

conservation of continuity and momentum equations along with time averaging produces

the Reynolds equations, see (2),(3), and (4) below[10,38].

ou oV ow
e A e e

- 0
ox or oz
D

{au. aU,.J
where T, =MW —+—|-pu 0

)

(3)

4)

The second term on the right side of (4) is the product of the velocity fluctuations and is

termed the Reynolds stress. The numerical methods to solve for the Reynolds stresses are

called turbulence models. The types of turbulent models can be broken down into groups

that include: eddy viscosity, Algebraic stress, and Reynolds stress models.

The eddy viscosity models are based upon the Boussinesq assumption that the turbulent

stresses can be approximated as the product of the eddy viscosity and the mean strain, see

(5). By far, the most popular eddy viscosity model is a two equation model, called k-g,

JAFOMA STATE UNLV edSITY



which approximates the eddy viscosity as a function of the turbulent kinetic energy and

dissipation[38]. Eddy viscosity methods have been proven to be lacking due to their

inability to resolve normal-stress anisotropy, especially in swirling and/or recirculating

flows[6].

ou oV
Iaj = _pu:uj = ut\n’b(g + a) (5)

2

k-¢ model g = Cppk—- (6)

Algebraic stress models are located between eddy viscosity and Reynolds stress models in
both difficulty and accuracy[6]. They approximate the convective and diffusive
components of the stress transport equation with an algebraic expression that represents
them as a function of the turbulent kinetic energy, see (7) and (8) below. Each Reynolds
stress is calculated from an algebraic equation. The only differential transport equations
are for the turbulent kinetic energy and dissipation. (6) is still used for the eddy viscosity;
however, the Reynolds stresses are calculated and substituted into the momentum
equations, see (9) and (10) below [11,32].

Diffusion

b, k du,u; uu, 2 ;
c, —u,u =Cyl(l+a)—L-a =3, (7)
Exk(’s T ox ] '{( ) k 3 ’l

Convection
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éU, uu

U =DK[(1+B)u—:{’—-B%5.}} ®)

0x,

where Cy, Dy, a, and [ are constants determined by the type of flow.

— 2 ou

P=Zpk - 2u g — 2,
pu 3D i 3 ®)
— ou 6VJ
=~ | — +— 10
puv udf( + (10)

Reynolds stress turbulence models have transport equations for each of the six Reynolds

stresses, T;, instead of approximating them as a function of the mean strain or turbulence

energy[19].
e = wu - 25, k
oU, uu ) ( Kk du,u. 2 il 3%
! = c,—uu —=|+P-=8,e-c g ————
ax, OX, \ € ax, 37 k

(1)

(o1
—CELPU“Eﬁ‘J P,

Approximations are made for the pressure-strain and third order correlations, but the
convection terms are exact. They are much more complicated to calculate but have
exhibited better performance than both the eddy viscosity and algebraic stress models

especially in swirling/recirculating flows[6,23]. For example, the convection term for the

uv equation in the Algebraic stress model is represented by

=
ok 6k] (12)

uv
Co=p—|U—+V—
12 pkL % ay

Note, that it is entirely independent of the swirl velocity W. The exact convection term, as

calculated in the Reynolds stress model is shown below:

AHOMA STATE UNAVERSILY



ouv duv —W
Cis =pUa~+pV—aT~puw-—r- (13)

1.4 Previous computational and experimental work

1.4.1 Work of Stoff

In 1980, Stoff[36] modeled the flow of an incompressible fluid through a labyrinth seal
with a cavity Reynolds number of 30,000 and a Taylor number of 12,000 using the
SIMPLE[29] method for the mean velocity equations and a k-¢ turbulence model. This
study was made using the assumption of a centered annulus, i.e. 2-D with swirl velocity.
The main objective of this study was to estimate the leakage through the labyrinth seal.
Overall, the model predicted the leakage rate well.. No comparisons were made to the

turbulence quantities because this was not the objective of the work. Likewise, they were

not available from the computational model.

1.4.2 Work of Demko

In 1986, Demko[4] modeled the flow of an incompressible fluid through a labyrinth for
several different leakage rates, which gave a Reynolds range of 33,000 -55,000 and a
Taylor(Ta) number range of 0 to 19,000. The computational model used the QUICK[21]
differencing algorithm and a k-¢ turbulence model. He compared his computational data
against hot-film experimental data. His model did a good job of predicting the axial and
azimuthal velocity profiles, but overpredicted the turbulent kinetic energy profiles past the

labyrinth teeth in the cavity, especially at higher Reynolds and Taylor numbers. No

AHOMA STATE UNLV isIiLXY
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comparisons were made to Reynolds stresses because they were not available from the

computational model.

1.4.3 Work of Dietzen and Nordmann

In 1987, Dietzen and Nordmann[3] modeled incompressible flow through an annular seal
using a perturbation solution. This study did not assume a centered annulus and was
comprised of a full 3-D solution with a k-g turbulence model. A rotating coordinate
system was used that turned at the rotational speed of the shaft. This model produced

rotordynamic coefficients, see (1), that agreed closely with expenimental data.

1.4.4 Work of Morrison, et al.

In 1991, Mormson, et al.[27] conducted 3-D laser Doppler anemometer measurements
inside an annular seal (see Figure 1.3 below). The rotor was rotated at 3600 rpm which
results in a Taylor number of 4500 and an azimuthal velocity for the rotor surface of 28.7
m/s. For the leakage rate of 4.86 kg/s, the leakage Reynolds number is 18,600 with an
average axial mean velocity of 7.3 m/s. Both the Reynolds and Taylor numbers are well
within normal operating values obtained in production turbomachinery. The ratio of rotor

speed to average leakage velocity is 3.9. Velocity and Reynolds stress data was provided

in both graphical and tabular format.

OKLAHOMA STATHE UNIVRROSLIL X



Figure 1.3. Experimental setup of Morrison, et al [27]
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1.4.5 Work of Rhode

In 1993, Rhode[32] used a full three dimensional model which contained a modified
bipolar coordinate system, QUICK differencing scheme, and k-€ turbulence model to
simulate compressible flow through a labyrinth seal. Due to the large computational
requirements, the computational domain consisted of cnly one labyrinth cavity. The shaft
speed was 7000 rpm and the whirl orbit frequency was 3500 cpm. The working fluid was
air at 3.0 atm and 294 K. The axial Reynolds number was 19,200. The calculated

rotordynamic coefficients compared favorably against experimental measurements.

11

-
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1.5 Objective

All of the previous computational work for flow through seals in turbomachinery utilized
an eddy viscosity turbulence model of some type. Due to the largely anisotropic nature of
the flow and the inability of the eddy viscosity models to predict anisotropic turbulence,
the objective of this research is to apply an existing Reynolds stress turbulence model to

the flow geometry of a rotating annular seal.

1.6 Description of computational model

A computational model, based on the SIMPLE[29] and TEAM[11] methods, is developed
to simulate the flow of water through a rotating annular seal. The annular seal is
geometrically represented by a cylindrical annulus in which the inner cylinder rotates at a
fixed speed and has a forward facing step as illustrated in Figure 1.4 below. A computer
code 1s written in C that uses a staggered grid method for the continuity, momentum, and
Reynolds stress equations. Reynolds stress turbulence models can produce instabilities in
the iterative calculation process if they are substituted directly into the Reynolds equation,
see (3) above. These instabilities are avoided by representing each stress as a function of
the mean strain as well as an additional source term. This creates an "apparent"” viscosity
term in the momentum equations that is numerically forced to be positive at all times to
prevent the solution from diverging[11]. The computed data is compared against mean
flow and turbulence data obtained from the laser Doppler anemometer experiment of
Morrison, et al.[27]. The inlet conditions to the computational model are provided from

the experimental data.

OKLAHOMA STATK UNLVERROLL i



Figure 1.4. Computational geometry
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CHAPTER II

NUMERICAL METHOD

2.1 Governing Equations

The governing equations for the fluid flow through the seal are the time averaged
continuity, momentum, and turbulence transport equations. The governing equations for
the flow model are simplified by assuming incompressible {p=constant), steady state
conditions(6/0t=0). Likewise the axisymmetric condition allows the equations to be

reduced to two dimensions (0/0¢=0) with three velocity components.

2.1.1 Continuity and Momentum Equations

The time averaged incompressible continuity and momentum equations for the mean flow

quantities (U,V, and W) in cylindrical polar coordinates are given below.

a(rU) " orV) -0 (14)
o0x or

U . dU 18P & oU & vdaU vaVv o’ 1druv
Ue—t V—e—= vV—+

et L St (15)
o0x ar pox O0x O0x Orrodr rodr O0x r €r

~ 2 o
vV, oV W' 19P 8 oV

X or r p or ox  Ox
o voV vavV vV _dw 19ty w
drrdr rdr r° &6x r Or r

QD

(16)

14
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oW cW VW c oW d voW
(3 g i N s oy O go it ST

ax or r éx O0x oOrr Or (17)
LYOW Wov vW duw 1drvw wvw

rér 1 dér r’ 6x 1 Or r

These are the equations that govern the mean flow quantities (U,V,W, and P). However,

since the products of the fluctuating velocities (u* , v’

: u_v w, u_w,a.nd V_w)are
unknown, these equations are not a closed set. These unknown terms are called Reynolds

stresses. An additional set of six transport equations is required for the solution of the

Reynolds stress terms.

2.1.2 Reynolds Stress Transport Equations

The Reynolds stresses mentioned in section 2.1.1 are solved by using the Reynolds stress

transport equation [22,31] for each individual stress (shown below in tensor notation):

= iy, - 28, k

oU, uu du,u S R ]
e R _\e c,Euku1 ’ +Pu—25ua—c,a e i “Cg[P,J‘“ﬁl, Pu:)
0X, o0 x, € 0x, 3 k 3

“

- 4 LS e S \u—,.—f ‘_\‘_/ ~
Convection Diffusion Prod- Dissi-

uction  pation

Re-distribution

where production is exact and is defined as

oU éu
P, = -uu, _axj -uu, _axl (19)
k

k

and ;=1 for i=j, and ;=0 for i#].

The model is closed with the introduction of the turbulence-energy dissipation (g)

transport equation.

Ceiladii i
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16,3 ¢ k e £ g?
U = ¢. —uu —|+¢c,—P,-c, — 20
k 5%, 0x, [ s — Ul 3)(,] Cy K Ce K (20)

16

These seven additional equations along with the continuity and momentum equations from

2.1.1 form a closed set of eleven equations and eleven unknowns. The constants in the

models above are recommened to be the values shown below in Table 2.1 [11,19,31] .

Table 2.1. Turbulence transport equation constants

C 1 CZ Cc 1 Csz Cﬂ CS

1.8 0.6 1.44 1.9 1.16 0.22

2.2 Finite Difference Equations

All of the above equations can be represented in the following common form:

3 3 _ 2 a¢J a( o
— o5, 1) IOl it | e
ax(rU:b)-t—ar(r ) ax[rl'mUa +6r Loy 81']

(21)
)
+i(rrx.,ug] +E[ T U%} +S,1+S, 41

where ¢=1(continuity), U, V, W, u_2, v, w?, uv, uw, vw,ande. The Syand Sp
terms represent the linearized source term of each equation. The finite difference
equations for each ¢ are obtained by integrating (21) over each control volume and
approximating each differential with a Taylor series expansion. This results in an

expression for each node point in terms of the neighboring grid point values of the form:

agde + awdw + anx + ashs + Su = apdp (22)

OMA STATK Uf
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where ag=U¢-T'd fﬂ , along the eastern boundary of the control volume and ap= ag + ay
ox

+ ay + as- Sp. The solution procedure for the U,V,W, and P values is based on the

SIMPLE method[29]. Formulas for I'y, S,,and S, for all of the variables are given below

in Tables 2.2 and 2.3[11,34]:

Table 2.2. Diffusion coefficients for transport equations

¢ ]._‘xj; r‘W r,;j- rlrx
U T vV, + V), 0 0
A% V) + WV, v, +V,, 0 0
W V| + Vy, V; + Vi 0 0
e = k= k — kK —
3 v, +c,—u V, +¢,—V c, —uv c, —uv
u
£ 5 > €
ki~ — k — k —
- vy e, —n V, +C, —V ¢, —uv c, —uv
£ € € €
_ | Sime-y o= k — k—
7 Vv, +c,—u V,+C,—V c,—uv c, —uv
£ € £ E
k—= | k— k—
= v, +¢c,—u v, +¢,—V c.—uv C, —uv
uv s 5 s L]
£ € £ E
k — k= k— —
— v, ¥¢, —u v, +¢,—V c,—uv c, —uv
uw € £ € £
K= k— k — k —
— v, +¢c. —Uu vy +C,—V cC, —uv c, —uv
v € E > £
k= k= k— £—
v, +¢,—Uu vV, +C,—V c, —uv c.—uv
€
€ £ € €

i o i wia e gy _ \"
maiﬁi Ta s hToT faimsd s 2

o ———

OrLANRDO
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Table 2.3. Source terms for transport equations
¢ S, S,
& 18P 38, 1018, 0
poOx ox 1 0y
M W 18P 0S5, 1018, ww Y
r pody ©0Ox r Oy r r’
w VW 85, 1918, ww v
r ox r ay r r’
u? 2 2 p
. (1 _CE)PII+§c2Pk+§(C1_ e ol E
! (I - CI) P2°+ gc"Pk—{h ;-(01" 1)8 hi 2&2 + zcsk (W;)‘ H‘Ci E + zcsk w
~ 3 3 r € r k e T
2 — — —
(e B SRl T e ot 0 | B Bakw
B 3 3 T £ r k € r..
— - .
v (1-c,)P,+uw— _ck
r £
My (1—c2)Pu—ELV- _ck
I £
vw el T W csk
oy (I=c, )P, ~(v* =w?) — 2K
r £
g £ &
A oy —
el k =2 k
where
P” = —Z(E{I‘BTI:J*'*FLEa—U') (233)
ox or
e — 0 — W
B, =By o v e Ty (23b)
- ox or r
B, =2t et W= (23c)
0 X or r
3 = sy ==\
P, ="(U“*a-\—}+V' ——-uw—-uv—) (23d)
) ox or r r
P, :-(F@-+Eaﬂ+ﬁf—u-ﬁﬂ) (23€)

X or cr or

-
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oV -
VW—+UuwW—+w" — 23
or ox ox r) &0

The turbulence transport equations have an additional set of cross diffusion terms that

only appear in cylindrical polar coordinates. These terms are added to the source term

Su,s and are shown below in Table 2.4[34].

Table 2.4 Cross diffusion coefficients for turbulence quantities in cylindrical coordinates
02 _ad o3
! li rCsEuvaL +£CsEu\arcru
r or € ox ox & or
2 a2 == o -y a3
Y e LG i yat L B gy
ox rer T
L L o2
chi{u Brw | B v w)}
T £
2 ) = - a2
o iCsk(w +2uw—)+ii rCSE( o +2(Vw)) -
ox ror T
ECSE{EGVW+V—WEJ\TW ‘T( ~W")}
r £
— - = =
Uy _c;_C‘E(uva_uxi__(uw) )+1£ rCsE(uvaﬁ—vwE‘i +
ox € or T ror ox r
1 k[—ouw —ouw —uv
-C, —{uw ——+ VW ——+ W —
r 8{ ox r}
= —_

(S SR . i %
LA LS wrAS

S
s A

MA

-
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vw 6 .k — — vV -w, 13|  k—0w —vi-w?
—C,—(wW—t+uw—)+ ——<1C, —(uv—+ +
ox ’a( or r ) é‘T{ g r )}
LR el o sy =, L xc e O e
r € ox or r

2.2.1 Approximation of convection/diffusion operator

The convective and diffusion terms in (21) cannot be represented by a central, forward, or
backward difference approximation alone. The physical characteristics of the flow require
that sometimes the convective contributions upwind of a particular grd point affect it
more than those downwind. The convective and diffusive terms are represented by the
power law scheme which is a combination of the upwind differencing and exponential
methods. It provides better representation of the non-linear effects than the hybrid scheme
which is a combination of upwind and central differencing (see Figure 2.1 below). The

power law scheme is outlined below for the range of Peclet (Pe) numbers [29].

For P.<-10

ag=- Pc * Dc

for-10 <=P. <=0

ag={ (1+0.1*P.)’-P, }*D.

for0<=Pe<=10

ag=(1 - 0.1¥P,)5*D,
for P.> 10

Adilsti » " b
BALLE WAAS

-
— A

4
r
A

redat .

OKLAHUN



where D= I—, and Pe= pUd)
dx r

dx)

= ratio of convection/diffusion

Figure 2.1. Approximations of convection/diffusion operator[29]
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2.3 Grid System

A staggered grid system is used for both the mean quantities as well as the turbulence
quantities. Note that the U velocity is staggered in the horizontal direction only (Figure
2.2), likewise the V velocity is staggered in the vertical direction only (Figure 2.3). The

normal turbulence stresses are centered, but the shear stresses are all staggered. The
uv stress is staggered in both the horizontal and vertical directions. The control volumes

for the uw and vw stresses are the same as those for the U and V velocities

respectively(see Figure 2.4)[11,22,29].

The staggered grid for the mean flow quantities is required so that the continuity equation
will produce a realistic velocity field [29]. It also allows the U velocity to be defined

directly on both the inlet western and outlet eastern boundaries.

The staggered location of the turbulence quantities allows the largest mean strain
production term for each to be calculated without interpolating. Likewise, the
contributions from each Reynolds stress to the momentum equations can be made with

less interpolation. This will be discussed in more detail in later sections.
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Figure 2.2. U momentum cell (control volume)

Figure 2.3. V momentum cell (control volume)
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Figure 2.4. Reynolds stress cell (control volume)
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The staggered grid causes U and uw to be defined on all eastern and western boundaries;

likewise, the V and vw on all southern and northern boundaries. The uv stress is defined

on all boundaries. W, u®,v?, w?, and ¢ are not defined on any boundaries and therefore

must be interpolated.

2.4 Stability Enhancing techniques

The stability of the solution is maintained by three different methods in combination.

2.4.1 Apparent viscosity

The stress transport equations can be re-arranged so that each stress is equal to a quantity
(called apparent viscosity) times the mean strain plus an additional source term. This
apparent viscosity is added to the laminar viscosity in the mean flow equations which

increases the connection between the mean flow strain and the turbulent stresses. It

24

-

P -
LI AT JIVALA s A

. e



25

improves the stability of the equations by increasing the magnitude of the diagonal terms

in the solution matrix instead of having large source terms[11]. The stresses are

represented in the following form:

— ou
-ut =y, gx_" Su,u (24a)
— ou
-uv =v,, o Suiz (24b)
—uv = v, % ~ 855 (24¢)

== oV
-y =y, —-=S,. ., 24d
z 5 " Suaz (24d)

C— oW
—UW =¥y *a_x‘ =Sy (24e)
VW = Vs, —EH“ Sy (24f)

or



Table 2.5. Apparent viscosities and source terms

apparent viscosity

additional source

term*
vit | (2-1333¢c,)u? | Sen TF ., AU
11
0x
AnptC o
v | (2-1333c,)v? | Sz oy, L
€ oy
8,,4+C; —
ok S. —
viz (I-c,)v 12 -uv-v, oy
€ ay
au_P + ¢ -l;
Vai (1-c,)u’ Suz —UvV =V ov
S 255
an'p + < E .
V3 (1-c,)u’ Sus1 oW v oW
€ T 0x
anlp +C, 'i("
| ament [Se| 5o, W
€ ay
a;,+¢ E

*Source terms shown represent remainder of terms from each individual transport

equation

2.4.2 Staggered grid arrangement

Examination of Figure 2.5 shows that the normal stresses are at the nodal points of each
control volume, but the shear stresses are located on the borders. This has two benefits.
First, when the stresses are calculated at these locations they can be directly substituted

into the momentum equations without being interpolated (i.e. v;; 1s needed on the south

26

and north U control volume faces and v,; is needed on the east and west U control volume
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faces, see Figure 2.5). Second, this arrangement relates the stresses and their major
strains more directly. With the shear stress Uv defined between both the U and V
velocity grid points (see Figure 2.6 ) it adjusts immediately to changes in the velocity
gradient. If during the iteration sequence a large gradient is generated between Uy and Us
the value of Uv increases immediately. Since the uv stress appears explicitly in the U
momentum equation it would result in a decrease in the velocity gradient. If the uv
stress was not located between the velocity grid points it would not “feel” the entire effect

of an increase in velocity gradient as quickly because the calculation of the gradient would

involve interpolation[11].

Figure 2.5. Location of apparent viscosity in relation to mean velocity control volume
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Figure 2.6. Location of velocities relative
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to shear stress

2.4.3 Positive normal stresses

As can be seen in (24), the apparent viscosities have the same sign as the normal stresses.

Besides being physically impossible, a negative apparent viscosity during the iteration

process would cause the solution to diverge. The positive value is maintained by ensuring

that the S, term 1s always positive and the S; term is always negative for the normal stress

equations. This is accomplished with the following algorithm:

Sue = max(S, terms,0) + min(S, terms,0)/$

Sp, $=max(S, terms,0) + min(S, terms,0)¢

where max(a,b) returns the maximum value of a and b, likewise min(a,b) returns the

minimum of a and b.

1 w - F 3% L AVa

AR M

R ATIVIvIO Al



29

2.5 Boundary Conditions

2.5.1 Inlet

The inlet boundary conditions for U,V,W, u®, v*, w?,uv, uw, and vw are provided by
the experimental data. A simple linear interpolation is used to calculate the values at the
required gridpoint locations. However, with 20 uniform grid points in the radial direction,
there is one grid point next to the north wall and two on the southern wall that must be
extrapolated due to the coarseness of the experimental data. In the case of the U velocity,
these three points are further adjusted so the volumetric flow rate agrees with the

experimental data.

The turbulence dissipation is calculated from the given turbulence quantities. The

following equation for dissipation is used[26]:

kl.S
Eiler = ow (25)

where A=0.005 and w=width of the inlet.

The pressure fluctuation value is set equal to zero at the inlet boundary[29].
2.5.2 Walls

The above mentioned turbulence model is only valid for high Reynolds numbers[11,19].
In the area close to a wall (both stationary and moving) viscous effects become more
important. Therefore, the turbulence models have to be modified to take this into

account. To accurately model the flow near the wall, a large number of grid points would
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be required which would consume both computational memory and time. The best
alternative to this is to use a function that adequately predicts the wall effects. The most

common of these is the Launder and Spaulding Law of the Wall[38].

The law of the wall is essentially a logarithmic representation of the velocity profile
parallel to the wall. The velocity at the node point, P, is determined by the wall shear
stress, Ty. The control volume adjacent to the wall is divided into two sections, see Figure
2.7 below. The area from r = 0 to r =r, is the fully viscous sub-region where the turbulent
shear stress is equal to zero. The area from r =r, to r = A is the fully turbulent

region[11,26]. The thickness of the sublayer (1) is defined as

Re_ p
R 2= (26)
pVk
where Re, is a constant, set equal to 20. The non-dimensional form is
1 1
k2CZA
= pRSpty (27)
K

Note: r,” = 11 when Ap=r..

For r,’< 11, the grid point is inside the sublayer and the mean velocity parallel to the wall

1s defined as:
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Figure 2.7. Grid point inside the viscous sublayer

FAAASRLERELE LSRN

Forr,” > 11, the gridpoint is outside the sublayer and the mean velocity parallel to the wall

is assumed to vary with distance from the wall according to:

EA, |-

= —ln| ——— (29)
T K v

w

p

In local equilibrium, where

k, = —> (29a)

e,

the velocity at the node point P can be expressed in the following form:

&cﬁ'“k%s = lln[wJ (30)
Tw K A%
P

E and k are constants defined as 9.7 and .42 respectively. This gives an explicit equation
for 1, that can be used to approximate the viscous shear on the northern face of the

control volume[11,26].
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Figure 2.8. Gridpoint outside the viscous sublayer
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The W momentum equation is modified in the same manner as above, with Wp and 1,

substituted for Up and T, respectively, in the above equations.

The value of the wall shear stress calculated above is also used for the axial-radial

turbulent shear stress, where

__J..
FINRCD s a

Y (RIY

— T
UWw = —

sl (31)
p

This is not physically correct because on the wall surface, the turbulent stress is actually

!- l.:"4. |

zero. However, when the viscous sub-layer is very thin (as in this case), the gradient of

uv across the control volume is represented very well by this approximation[11]. Note,
(31) 1s for the northern wall, see Figure 2.9. The wall shear stress on the northern and
southern walls have the same sign since the wall shear stress has the opposite sign of the
velocity adjacent to the wall. The boundary condition for the southern wall has a sign
change because the U velocity gradient has a change in sign but the shear stress must

always be opposite the velocity vector, see Figure 2.10.
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Figure 2.9. Axial-radial Reynolds shear stress b.c. on northern wall
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Figure 2.10. Axial velocity profile on southern wall
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Likewise, the radial-azimuthal wall shear stress, 7 , , provides the boundary condition for

the azimuthal-radial turbulent shear stress,

VWw = z2 (32)

Note, unlike the uv boundary condition, there is no sign change for the vw boundary
condition because there 1s no change in the W velocity gradient from northern to southern
boundaries.

The axial-azimuthal shear stress, uw is set equal to zero at the wall since the main

production term, w? % , 1s very small near the wall.

FEFAT AT PN b Al mn =
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The normal turbulent stresses are calculated at the gridpoints adjacent to the wall with the

following modifications:

e The values of the wall shear stress divided by density are substituted for the turbulent

shear stresses in the production terms.

e The aﬂ—U and ﬁ terms that appear in the production terms are not approximated by
or or

their normal finite difference representation. Since the values of U and W are equal to

zero along the northern boundaries, the normal gradients are represented by (see

Figure 2.11 below):

A
A

oU _ -U; W
or

Figure 2.11. Approximation of velocity gradients normal to wall
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e The value of € used in the turbulent transport equations at the wall is determined by

the following equations[29]:

R

. ¢, ”Vkp In(y")
KA

P

(33)
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0.25 +
C k
S e s 24 (34)

P
e Turbulent diffusion is set equal to zero at the wall.
The boundary condition for the dissipation equation is forced instead of being calculated

by the dissipation equation. This imposed value is shown below. Note, this is the value of

gp (1.e. the value of € at the grnidpoint closest to the wall) not €ya.

€p = (35)

Figure 2.12. Definition of dissipation on boundaries
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The methods described above apply for both stationary and rotating boundaries with the
following modifications for the rotating boundary:
1. The Wp velocity parallel to the wall in the log-law equation, (30) is the relative

velocity with respect to the rotating boundary.
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1.5 T, . . m i G .
E(v2 + w*)is used for the value of kp in (29a), instead of %* (u* +v? +w?). This

modification is based on the assumption that u” does not contribute very much to the

radial-azimuthal wall shear stress, 7, This is based on the assumption that close to the

wall convection and diffusion of turbulence kinetic energy is negligible, which allows

the following assumption:

twa!l = UT)IQ‘ + Ti = (CDCu )pk

where Cp and C,, are constants equal to 1.0 and 0.09 respectively.

2.5.5 Outlet

The outlet boundary condition for the V, PP, u’, v*, u_v, and € equations is a zero

gradient in the axial direction (i.e. -:; =0). Since the swirl velocity profile across the

annulus is constantly growing with increasing axial distance, the W, w” , uw , and vw
transport equations have a constant axial gradient at the boundary (see Figure 2.13

below).

i

-
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Figure 2.13. Exit gradient boundary condition for swirl terms
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OUTLET BOUNDARY

The outlet boundary condition for the U momentum equation involves taking the upstream
value and adjusting it so that the exit volume flow equals the total inlet volume flow. A

detailed description of the outlet U velocity boundary condition is given by Lilley[26].

2.6 Under-relaxation

Under-relaxation is used to reduce-the size of oscillations of the calculated values during
the iteration process. This is required due to the non-linear characteristics of the
equations which may cause large oscillations or even divergence if not dampened. Two

methods are used to under-relax the different variables.

The first method is to simply reduce the change between the new calculated value and the
old value by a percentage (usually 30 to 50%). The equation representing this adjustment
is shown below:

¢nm = f¢¢r.alculalcd + (l 'f¢)¢old (36)

Lrie2ry i s
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Typical values of (f) are 0.7 and 0.5 for 30% and 50% reduction respectively. This can be

done implicitly without having to store the ¢cajcunea Values with the following equation:

aP new

(1~1})
£ p = dy ¢N +ag ‘bs +ag ¢'E +aw¢w+su+ :
¢ ¢

3, 0, (37)

The second method of under-relaxation is commonly called the “inertia method.” This
method relaxes each individual cell differently based upon the mass unbalance of the cell.
Cells that have a large mass unbalance are relaxed more than cells that have little mass
unbalance. This allows the cells that are “well-behaved” to converge quickly and slows
down the oscillations of the more active cells. This method is accomplished by modifying
(37) as shown below, where M is the mass unbalance of the individual cell and c is a

constant[11,26].

apde + awdw+ andn + asds + Su + cMdp®'= (ap+cM)dp (38)

Values of ¢ and M are given below in Table 2.6, as suggested by Huang[11] and
Lilley[26].

Table 2.6. Under relaxation and inertia relaxation constants

P B D, i . Vi

U Vv W P u’ v’ w? uv uw vw €

fy 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

M, 5 5 5 N/A 0 0 0 0 0 0 0

2.7 Convergence criterion
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The solution is considered converged when the sum of the normalized residuals for each
variable as well as the mass residuals for the pressure fluctuation equation are less than

0.009. The residuals for all of the individual variables (¢) and mass are defined as:

resory = Sl i | 205 + SU - app | (39)
Qind

FESOTimas = . &ijoiimini | mass unbalance | (40)
Qunp

2.8 Numerical Solver

The 11 partial differential equations are solved using an alternating direction Tridiagonal
Matrix Algorithm (TDMA) numerical solver. The algorithm alteratingly walks in the
axial direction sweeping in the radial direction, then walks in the radial direction and
sweeps 1n the axial direction. The number of sweeps can be varied for each independent
variable. Different numbers were experimented with but the best combination to minimize
the of number of iterations and convergence time but maintain accuracy is given below in

Table 2.7[11,29].

Table 2.7. Number of sweeps for each vanable
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2.9 Flow diagram of code
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CHAPTER III

RESULTS AND DISCUSSION

3.1 Profiles of RSM results along seal length

Contour and profile plots along the length of the seal are shown for U,V,W, u* | v ,

w” ,uv, uw, and vw in Figures 3.1-3.18. The axial location is non-dimensionalized with
the seal clearance(c). The radial location is displayed as a function of n/c, where n is the
normal distance from the rotor surface, see Figure 3.0 below.

Figure 3.0. Computational geometry

NN ANANNNANNN  p/e=1.0

— NN \\Q\\ ok, — et
: |
x/c=0 x/c=29.5

As can be seen in Figure 3.2, the axial velocity begins with an entrance region where the
centerline velocity is approximately 15 percent larger than the average. By x/c=29.5, the
axial velocity profile is approaching the fully developed flow. The mean radial velocity (V)
is negligible except immediately adjacent to the forward facing step, see Figures 3.3 and
3.4. The flow could actually be approximated using only U and W if the resuits were
taken at x/c > 10. The W velocity profiles show how the momentum from the rotating

inner annulus is being transferred to the fluid as the axial distance increases, see Figure 3.5
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and 3.6. Eventually we should expect the W velocity profile to approach Couette flow

between the two cylinders.

As can be seen in Figure 3.7 and 3.8, the magnitude of the axial Reynolds normal

stress(u’ ) is greatest adjacent (but not immediately close) to the walls. The u? values
close to the rotating wall are approximately twice the value of those close to the stationary
wall and continue to grow along the length of the seal. This is obviously caused by the

transfer of turbulent kinetic energy from the azimuthal Reynolds normal stress which has a

very large production term near the rotating wall. Likewise, values of u’® are lower in the

centerline of the annulus where the mean strain terms are lower.

The radial Reynolds normal stress contours show that the magnitude of v2 is highest

close to the rotating wall as well (Figures 3.9 and 3.10). All of this turbulence is produced

by the rotating wall since the values of v? are nearly zero at the inlet. The v’ values

become quite low away from the rotating wall, this is to be expected since all of the terms

in the v? production equation are negligible except for the vw i term, see (23b). As
r

will be seen below, the vw values are highest immediately close to the wall and of course
the azimuthal velocity is greatest there as well. Likewise, diffusion of turbulence
quantities close to the wall is very low.

The azimuthal Reynolds normal stress profiles are very similar to the radial normal stress
profiles, just larger in magnitude (Figures 3.11 and 3.12). This is reasonable since the

production terms are similar; however, the radial normal stresses are not dampened by the

SEIN N TEER .
B A, s .
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horizontal walls as much as the v values[10]. This can be seen in Figures 3.10 and 3.12
close to the rotating boundary. The v? values decrease rapidly close to the wall, but the

w? values do not change dramatically.

The axial-radial Reynolds shear stress contours/profiles (Figures 3.13 and 3.14)
demonstrate that uv is zero close to the center of the flow and has a sign change across

the centerline. This is very reasonable since the largest production term for uv (see

equation 23d) , v’ %, changes sign across the flow as well[10,18]. Likewise, the values

= . . : — W
of uv are higher close to the rotating wall due to the swirl term, uw —, as well as the
r

fact that v* is higher close to the rotating wall than the stationary wall.

As would be expected, the axial-azimuthal and radial-azimuthal Reynolds shear stresses
(Figures 3.15,16,17, and 18) are largest close to the rotating wall. Likewise, these larger

values spread across the flow area as the axial distance increases. The increasing

‘ — ) o — W ;
magnitude of uw at the rotating wall is a direct result of the fact that the uv ¥y term in

its production equation is increasing along the wall as well. Likewise, the fact that the vw

values decrease immediately close to the rotating wall is due to a decrease in its largest

; — OW < T
production term, v> — , because of the large decrease in v* in the same area.
or
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Figure 3.3. Radial Velocity Contours
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Figure 3.5. Azimuthal velocity contours
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Figure 3.11. Azimuthal Reynolds normal stress
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Figure 3.12. Azimuthal Reynolds normal stress profiles
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Figure 3.13. Axial-radial Reynolds shear stress
contours (m%s?)
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Figure 3.14. Axial-radial Reynolds shear stress profiles

-1.50 -1.00 0.50 0.00

Axial-radial shear stress (m?/s?)

0.50

1.00

[—B—y/c=3.7 —A—x/c=9.3 —¥—x/c=185 —O—x/c=28 |

1.50

50



1.0

51

Figure 3.15. Axial-azimuthal Reynolds shear
stress contours (m?/s?)
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Figure 3.16. Axial-azimuthal Reynolds shear stress profiles
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Figure 3.17. Radial-azimuthal Reynolds shear
stress contours (m?/s?)
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3.2 Comparison of computational and experimental data

Figures 3.19-3.34 compare the data from the RSM and the published experimental data of
Morrison, et al. [27] at various axial positions along the seal. Additionally, mean velocity
data from a standard k-e turbulence model[26,31] is compared against the RSM data in

Figures 3.19-3.24.

As can be seen in Figures 3.19-3.21 the RSM overpredicts the viscous drag of the walls.
The profile 1s more accurate adjacent to the stationary wall. This may indicate that the
method used to model the rotating wall is producing too much “apparent viscosity”. This

would mean that the j,, term has a higher magnitude than necessary. Since p,; is directly
proportional to v2 and k this indicates that turbulence energy levels may be too high

close to the wall due to the large production of u? and w? which are relatively high close
to the rotating wall. Another possible reason for this discrepancy is any inaccuracies in
measurement of the volumetric flow rate which is used to extrapolate the inlet U velocity
values next to the walls[26]. The RSM data agrees well with the k-¢ data at low values of
x/c. However, at x/c=29.5 the RSM data has a much different profile than the k-¢ data.

This is a result of the isotropic nature of the k- model.

Figures 3.22-24 demonstrate the good agreement between the RSM, k-g, and
experimental mean azimuthal velocity profiles. As can be seen the W velocity profile
predicted by RSM is less linear across the channel which may indicate that viscous effects

have too dominant a role over convective components. As with the U velocity profiles
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seen above, this can be accounted for by large values of turbulence energy adjacent to the

rotating wall.

The RSM does a poor job of predicting the azimuthal Reynolds normal stress at x/c=5 and

x/c=13 (Figures 3.25 and 3.26), especially close to the rotating wall. The large “dip” in

the w? profiles generated by the RSM is a result of the azimuthal turbulence spreading

upward from the rotating inner cylinder as the axial distance along the seal increases.

Since the inlet values of w” are quite low, it is interesting that at x/c=5 the experimental

data shows that w’ has already spread across more than half the flow domain. Since the

largest production term for w is vw % , and the computed W profiles agree well with

the experimental data, this indicates that the vw profile adjacent to the wall is not correct

for x/c <20. The RSM does a much better job of predicting the w? values closer to the

seal outlet (see Figure 3.27).

A comparison between the computational and experimental axial-radial Reynolds shear

stress data for three axial positions is shown in Figures 3.28-30. The inflection point in

the uv curves close to the rotaiting wall in Figures 3.29 and 3.30 is caused by the large

values of v* aﬂ—U at that location. These figures indicate that there may be an
or

inconsistency in the experimental data because unlike the computational data, the

experimental uv profiles do not pass through zero. The largest production term for uv in



55

; : ; — ouU ; ; 2 : ;
this particular flow is the v* Etenn. Since the U velocity profile has an inflection point

(i.e. goes through zero) close to the center of the channel, the uv should as well.

As can be seen in Figure 3.31 the computational and experimental data both show that the

magnitude of u® s higher close to the walls than in the center of the channel where the

mean strain terms are lower. Overall, the RSM predicts higher values of u® than are

shown in the experimental data.

The RSM underpredicts the values of v2 in comparison to the experimental data,
especially close to the rotating wall(Figure 3.32). The experimental values seem very

large considering the fact that the values of the radial velocity are very low throughout the

flow and the only production term in the v equation involving the azimuthal velocity 1s

==\ ; . s ‘
vw — . It is also difficult to understand the value of v- being so large close to a solid
T

boundary where the radial velocity is zero.

The comparison between computational and experimental data for uw is shown in Figure
3.33 Overall the RSM overpredicts the value of uw in comparison to the experimental
data but the profiles are very similar in shape and magnitude. The actual difference

between the two sets of data is only about 1.5 m%/s’.
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The radial-azimuthal profiles at x/c=29.5 are shown in Figure 3.34. The computational
data is larger in magnitude close to the rotating wall because it is set equal to the wall

shear stress term, T32/p, at n/c=0. This value is quite large close to the rotating wall

because the magnitude of % (which 1s part of the largest production term for vw) is

very high in this region. The experimental data does not indicate the larger values of VW

close to the rotating wall even though the experimental data does show that % 1S very

large in this area. As indicated above, this is a possible reason for the discrepancy in the

w? data.

Another possible reason for the discrepancy between the turbulence data predicted by the
RSM and the published experimental dafa is the exclusion of the “wall reflection” terms
from the current model[11,19]. These “wall reflection” terms account for the
simultaneous influence of both x and r walls. This has the net effect of increasing the

impact mean strain production terms have on all of the stresses, not just the principal

stresses. For instance, the u? transport equation would be effected by not only Py;, but by
P,; and P3; terms as well. The addition of these wall reflection terms would improve the
RSM’s ability to predict the return to more isotropic flow at larger X/C values. This
should cause the axial velocity profile predicted by the RSM to look more like the

published experimental data.
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Figure 3.19. Comparison of Axial velocity data at X/C=5

09 €
08 +

06 t+
n/c05 4
04 +
03
0.2 -
01 +

T

0.0 20 4.0 6.0 8.0 100
U velocity (m/s)

RSM———KE O Momison[27] |
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Figure 3.21. Comparison of Axial velocity data at X/C=29.5
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Figure 3.22. Compariscn of Azimuthal velocity data at X/C=5
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Figure 3.25. Comparison of azimuthal Reynolds normal
stress data at X/C=5
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Figure 3.26. Comparison of azimuthal Reynolds normal
stress data at X/C=13
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Figure 3.27. Comparison of azimuthal Reynolds normal
stress data at X/C=29.5
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Figure 3.28. Comparison of axial-radial Reynolds shear
stress data at X/C=5
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Figure 3.29. Comparison of axial-radial Reynolds shear
stress data at X/C=13
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Figure 3.30. Comparison of axial-radial Reynolds shear
stress data at X/C=29.5
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Figure 3.31. Comparison of axial Reynolds normal stress
data at X/C=29.5
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Figure 3.32. Comparison of radial Reynolds normal stress
data X/C=29.5
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Figure 3.33. Comparison of axial-azimuthal Reynolds shear

stress data at X/C=29.5
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Figure 3.34. Comparison of radial-azimuthal Reynolds
shear stress data at X/C=29.5
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3.3 Computation time

Due to the lack of recirculation in the flow field (which requires a large number of
iterations), the computational time for the RSM was not prohibitive. All of the
calculations were executed on a 100 Mhz Pentium PC using a Borland Turbo C++
compiler optimized for speed. Table 3.1 below shows a comparison between the
computation times and number of iterations for different grid sizes. Note that the larger
grid sizes converged with lower numbers of iterations, but comparable computational
times. The model under-relaxation methods were increased 30% for the 15x15 grid to
prevent the solution from diverging. Figures 3.35-3.37 below show the residuals of 10 of

the transport equations for three of the grid sizes examined (20x20, 30x20, and 40x20).

As can be seen the u” residual was the slowest to converge in all three cases, especially in

the 20x20 gnd case.

Table 3.1. Computation time

Gnid size # of iterations computational time (secs)
15x15 262 49
20x20 337 88
30x20 151 17
40x20 149 117
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3.4 Grid dependence

Due to the large number of two dimensional arrays required for the RSM (3 5 vs only 16
for k-€) the maximum grid size was limited to 40x20 because of memory constraints. This
was only possible after 25 of the arrays were dynamically allocated locally instead of being
stored as global arrays. All of the results shown above were made using a 20x20 uniform
grid. The 40x20 grid size did not improve the comparison with the published experimental
data over the 20x20 grid. The model will not converge for grid sizes smaller than 15x15
due to the large W velocity gradient in the radial direction that causes the vw equation to

diverge with this coarse a grid.

3.5 Sumary of Results

Overall, the RSM does only a mixed job of predicting the values published from the laser
Doppler anemometer experiment. The largest discrepancy of concern is the axial velocity
profiles. The RSM appears to overpredict the viscous drag of the walls on the fluid. As
mentioned above, the axial velocity profile is greatly affected by the specified volumetnic
flowrate. The RSM and k-¢ results for the axial velocity are very similiar for x/c=5 and 13
but not x/c=29.5. Neither the RSM or k-e model compares well with the experimental
data at x/c=29.5. The k-¢ data has the same shape as the experimental data, but lower
values. This is somewhat strange since the axial flowrate is fixed. The only explanation is
that the k- values immediately close to the walls are too large, this causes the values in

the center of the channel to be below the experimental data. In summary, the k-g model
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underpredicts the viscous drag immediately close to the wall because it cannot predict the
anisotropic nature of the flow and the RSM overpredicts the viscous drag. Both the RSM

and k-e models do a good job of predicting the azimuthal velocity profiles.

The RSM does a good job of predicting the azimuthal normal stresses. Comparisons
between the RSM and the published experimental data for the radial normal stress and
axial-radial shear stress cannot be made without an in-depth look into why the published

experimental data for these two quantities contradicts what appears to be logical

assumptions. Likewise, this affects the uw and vw data as well.

The geometry could be modeled as a two velocity. problem without much loss in
computational accuracy. The values of V are so low in comparison to the U and W values

throughout the flow that they do not have a substantial effect.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Agreement between the computational and published data varies in quality. The published
experimental axial mean velocity (U) profile at the exit is very similar to fully developed
turbulent channel flow. The RSM data shows that the U velocity profile is more laminar
like. The radial mean velocity (V) is negligible throughout the seal. The centerline
azimuthal velocity (W) continues to increase along the length of the seal. The azimuthal
velocity profile is almost linear at the exit. This is confirmed by both the published
experimental and RSM data. The published experimental data shows that the radial
normal turbulent shear stress is the most dominant. In comparnison, the RSM shows that
the azimuthal normal stress is the most dominant. Overall levels of turbulence energy do
correlate between the experimental and computational data. The axial-radial turbulent
shear stress is the most dominant of all the turbulent shear stresses. This is confirmed by
both the experimental and computational data. As would be expected , the computational
data predicts a sign change in the axial-radial turbulent shear stress at the same location as
the change in the slope of the axial velocity profile. This change in sign is not shown in

the published experimental data.

It is believed that the principal reasons for the differences between the RSM predictions
and the published experimental data is the boundary conditions for the Reynolds stresses

at the rotating wall. All of the boundary conditions used are extended from k-e models



70

where the total wall shear stress is proportional to the total turbulent kinetic energy

adjacent to the wall. Obviously for this type of flow, the individual wall shear stresses (i.e.

T, Tar, and Tx) have large differences in magnitude and are not all equally proportional to

the total turbulent kinetic energy. This has been accounted for to some degree (see

section 2.5.4), but only in a very empirical method.

4.2 Recommendations

The following recommendations can be made to improve the accuracy and applicability of

the RSM to annuiar seals:

1.

Improve the boundary condition at the rotating wall for all of the turbulence quantities.
A method to correlate the relationship between the normal stresses and the three
different wall shear stresses would improve the performance of the RSM near the
rotating wall.

Implement wall reflection terms in the production terms for the turbulence
quantities[11,19]. This may improve the comparison between the RSM and published
data by allowing the normal stresses to interact more.

Apply this method to a full three dimensional model that does not assume the inner
annulus is centered. This will be more difficult computationally, but will provide

results that are more applicable to industry.
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4. Apply this method to labyrinth seals. The Reynolds stress turbulence models could
possibly predict the axial and azimuthal velocity profiles better in the labyrinth cavities

than the eddy viscosity models used to date.
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