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PREFACE 

This thesis is made up of two chapters. Both chapters are written for submission 

for publication in the journal, Environmental Toxicology J!ld Chemistry. Fonnatting 

convensions for headings, references, tables, and figures follow "Instructions for 

Contributors," Environmental Toxicology and Chemistry, Vol. 16, pp. VI-XI, 1997 and 

the modification published in SETAe News, September 1997. 
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CHAPTER I 

A NON-LETHAL TECHNIQUE FOR MEASURING 

GENa TOXIC EFFECTS IN BIRDS 

Abstract - Data derived from mammalian. plant, and microbial models of genotoxicity 

may not be applicable to birds due to differences in avian genetic structure and physiology. 

The objective of this study was to develop a standardized, non-lethal genotoxicity assay 

for use with birds based on modification of a mammalian assay, flow cytometric 

measurement ofvari.ation in nuclear DNA content. Blood samples were collected from 

brachial veins of juvenile mallards (Anas platyrhynchos) before and after they were 

administered an oral dose of either methyl parathion (7.5, 15.0, or 30.0 mglkg body 

weight), triethylenemelamine (0.25,0.50, 1.0 mglkg body weight), or a solvent control. 

Cells were examined for nine parameters of DNA content and cell cycle kinetics. Results 

from blood samples were compared with results from spleen tissue, which is more 

corrunonJy used in flow cytometric assays. Results were divided into three analysis 

groups: pre-dose, post-dose, and difference between pre- and post-dose endpoints. 

Within triethylenemelamine dose groups, significant variation was seen only in the pre­

dose GIG! ratio. Methyl parathion groups varied significantly in two parameters: post­

dose coefficient of variation of the G2 peak and post-dose GIG! ratio. Dose levels of 

positive control groups may have been too low to elicit a definite genotoxic response. 
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Despite the limited response in the positive control, evidence of disturbance of normal cell 

cycle kinetics suggests flow cytometry is a viable alternative for genotoxicity analyses in 

birds. 

Keywords - Genotoxicity Birds Flow Cytometry Biomarker 

INTRODUCTION 

The time-consuming and expensive nature of classical toxicology testing makes the 

use of biomarkers highly desirable. Biomarkers can provide a rapid means to test for the 

presence or damaging effects of toxicants. Genetic damage has been suggested as a useful 

biomarker for the presence and action of environmental contaminants [1] because many 

contaminants are mutagenic [2]. Generally, taxa other than birds are used to determine 

genotoxic potential of contaminants in both laboratory and field settings [3,4]. The reason 

may lie in difficulties associated with application of standard genetics techniques to 

chromosomal aberration analysis of the avian genome. Examination of avian 

chromosomes can be difficult due to high diploid numbers that can exceed 100 [5] and the 

small size of numerous microchromosomes « If.lm) [6] that are not clearly resolved under 

light microscopy and can be lost completely or obscured by other chromosomes [6]. 

Extrapolation of data derived from other taxa to possible effects in birds may be 

questionable because of genetic and metabolic differences among taxa. Birds have the 

most conservative genomic size among vertebrate classes [7]. Despite large diploid 

numbers, birds possess about half the amount of DNA of most mammals and two-thirds 
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that of reptiles. [8]. Unlike mammals, birds do not possess large blocks of repetitive DNA 

[9], resulting in a smaller genome which may make them more wlnerable to damage in 

functional DNA sequences. Birds also may respond faster than mammals to 

genotoxicants because they possess a higher metabolic rate and a relatively larger liver 

compared with mammals [10]. Response may be in the form of rapid production of 

genetic damage as compounds are rapidly converted into genotoxic metabolites or quick 

metabolization of genotoxicants into harmless constituents. 

Microbes, such as Escherichia coli and Sa1monell~ which are used extensively in 

toxicity testing, lack a nuclear membrane to provide an additional barrier to genotoxins. 

Instead of consisting of multiple chromosomes, the prokaryotic genome is a circular 

molecule of DNA that is not linked so extensively with proteins and never exhibits the 

extensive coiling characteristic of eukaryoticchromosomes. Finally, prokaryotes often are 

not able to break. down toxicants into their equally or more toxic metabolites. Although 

metabolic activation systems have been developed that adequately mimic mammalian 

physiological systems, no such system for avian species has been developed for use with 

prokaryotic models of genotoxicity. Therefore, accurate extrapolation from mammalian 

and microbial genotoxicity data to probable effects in birds may be severely hampered. 

Developing a genetic toxicity assay for birds would eliminate the need to extrapolate from 

toxicology data derived from other taxa. 

Flow cytometry is used commonly to assess levels of genetic damage in other taxa. 

Flow cytometry (FCM) is a rapid and accurate means of detecting chromosomal 
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aberrations in large numbers of ceUs and is proven to detect mutagenic and clastogeruc 

insult in mammalian species [11-12]. It also has been used in reptilian and avian field 

experiments [13-15], but laboratory analyses have not been conducted to verifY the 

effectiveness of flow cytometry for use with birds in toxicological studies. Exposure to a 

chemical mutagen typically increases the coefficient of variation (CV) in the G, peak [16], 

shifts position of the G 1 peak, or produces a shoulder or separate peak [13, 17]. A 

dose-response relationship between a known mutagen and the CV of treated cells also has 

been demonstrated in bone marrow cells of mice (Mus sp.) exposed in vivo to 

cyclophosphamide [16]. 

Several studies have used flow cytometry to detect chromosomal aberrations in 

wildlife caused by environmental mutagens. McBee and Bickham [12] detected higher 

CVs in white-footed mice (Peromyscus leucopus) at a site contaminated with 

petrochemicals than in animals at a reference site. Slider turtles (Pseudemys scripta) 

exposed to radioactive and non-radioactive contaminants at a site in South Carolina 

exhibited elevated CV values compared to turtles from an uncontaminated farm pond [13]. 

Two studies used flow cytometry to examine effects of environmental toxicants on avian 

species. Adult mallards housed at an abandoned cooling reservoir for a nuclear reactor 

developed aneuploidy and/or an increase in CV [14]. Custer et al. [IS] attributed 

significantly higher and lower CVs in embryos and IO-day-old chicks of black-crowned 

night-herons (Nycticorax nycticorax) to genetic damage caused by exposure to 

petrochemicals. Based on those studies, flow cytometry seems to be a promising tool for 

use in assessing genetic damage in birds exposed to environmental contaminants. 
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A secondary goal of this study was to develop an assay that does not require 

killing the animal. A non-lethal assay would facilitate research on endangered species and 

could provide information on temporal effects in the same individuals [6]. Several studies 

examining the usefulness of various tissues in flow cytometric analysis among several taxa 

have found that spleen was consistently sensitive to toxicant exposure [15, 18, 19], but 

use of blood could eliminate the need to take biopsies of spleen tissue. Birds possess 

nucleated erythrocytes [20] that enable adequate quantities of DNA to be extracted from a 

minimal volume of blood, thereby reducing stress to the bird. Blood has been used 

successfully in various kinds of studies of avian genetics [5, 21, 22] and should provide 

accurate, consistent results in flow cytometric analysis of genotoxicity in birds. 

To test this technique, triethylenemelamine (TEM) and microencapsulated methyl 

parathion (MP) were used. TEM is a nitrogen mustard commonly used as a positive 

control in genetic toxicity research because it has been shown to be clastogenic and 

mutagenic in mammals at doses far below lethal levels [4, 23]. In mammals, occurrence of 

chromosomal fragments typically peaks within one day of treatment with TEM and 

decreases thereafter [24] . TEM has been tested as a sterilant in avian pest species because 

of the mutagenic effect on spermatozoa in chickens [25-27]. Bickham et al . [23] 

determined that CV values of affected tissues eventually returned to nonnal with some 

treated animals producing a lower CV than that of reference animals. This may indicate 

that some cells are hypersensitive to TEM and do not recover, so that only the cells 

resistant to damage from TEM are being measured [23]. 
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Despite heavy regulation, MP «O,O-dimethyl O-p-nitrophenyl) phosphorothioate) is 

one of the most widely-used agricultural insecticides across the U.S. [28] and therefore a 

compound that many avian species are likely to encounter. Habitat requirements and 

nesting schedules bring many avian species into the vicinity of agriculture crops during 

growing seasons, exposing adults and juveniles to pesticide use. MP has been linked to 

chromosomal lesions in cultured rat ceOs (Rattus sp.) [29], sister-chromatid exchanges in 

ovary cells of hamsters (Cricetus sp.), and mutations in lymphoma cells of mice ~ sp.) 

[3]. :MP belongs to the organophosphate group of pesticides that are highly toxic to birds 

through affects on cholinesterase levels [30, 31]. Exposure to organophosphates alters 

behavior, reduces reproductivity, and increases vulnerability to predation in birds [31-33]. 

Cholinesterase levels can recover [30], but possible long-term genetic effects are 

unknown. 

Most toxicology studies are conducted using pure compounds to demonstrate 

causality between administered dose and observed effect. However, most pesticides sold 

for use on crops contain complex mixtures that can be more toxic than the active 

ingredient [34]. Kale et al. [35] used field-ready mixtures to examine several widely-used 

pesticides for which government approval had been based on laboratory analyses using 

pure compounds. All compounds originally reported as not mutagenic in assays of pure 

compounds tested positive as field formulations. Results of the study by Kale et a1. [35] 

emphasize the need to carefully evaluate goals oflaboratory toxicity studies because 

studies conducted with purified substances can be misleading. 
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Flow cytometric analysis of nuclear DNA content variation was tested using two 

compounds and two tissues. Assuming the positive control (TEM) has the same effect in 

avian systems as it does in mammalian systems. exposure to TEM should result in 

increased genetic damage as indicated by an increase in the CV of birds. Additionally, if 

blood is a satisfactory substitute for spleen tissue, the degree of damage to both tissues 

should be similar. Because avian and mammalian systems differ in many aspects, variables 

for cell cycle kinetics as well as DNA damage were examined. Disruption of normal cell 

cycle processes could produce responses such as impaired initiation of DNA synthesis, 

increased or decreased rates of DNA synthesis, or inhibited division of replicated cells. If 

either of the test compounds affects cel) cycle kinetics, we would expect to see differences 

in percentages of cells in the Sand G2 regions of DNA histograms compared to references 

[12]. We might also expect to see differences in proliferation indices [14]. 

MA TERIALS AND METHODS 

Fifty-six mallard ducklings were purchased at six-weeks of age from Free Flight 

Game Bird Farm in Denton, Texas. Mallards were selected as the model species because 

they have low genetic variability [36], have met EPA approval as a model species for other 

types of toxicity assessments [37], and have been used in several toxicology studies 

investigating non-genetic endpoints [33, 38]. Ducklings were weighed to equally 

distribute sizes among seven dose groups. Individuals in a weight class were assigned 

randomly to dose groups. Each dose group was housed outside in 3 by 4 by 1.2-m pens 

located at the Oklahoma Cooperative Fish and Wildlife Research Unit's Wildlife Annex. 
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Separation of groups prevented ingestion of feces from birds given different doses. Pens 

were constructed of poultry netting with tarpaulin draped over the top to provide shade 

and protection from inclement weather and predators. Purina Game Bird Chow and fresh 

water were provided ad libitum in feed troughs and buckets. Ducks were given two 

weeks to adjust to their new surroundings before experiments were initiated. 

Because genetic background of ducks was unknown, blood samples were collected 

2 weeks after the animals arrived. Heparinized vacuum tubes were used to draw 2 m1 of 

blood from the brachial vein of each animal. Each animal was assigned a code number 

used to identifY all samples from that animal and keep the identity of dose groups 

unknown to the investigator until data were analyzed. After collecting pre-dose samples, 

a 1 month rest period enabled animals to recover from lowered blood levels and stress. 

Twenty-four hours after dosing, blood samples were collected again in the same manner. 

Feather pulp, liver, spleen, heart, kidney, and brain samples also were taken after animals 

were killed by CO2 asphyxiation. Of these tissues, only spleen was used for flow 

cytometric analyses~ other organ tissues were preserved for future research. Separate 

aliquots of two drops of blood were placed in cryotubes containing 1.5 mI offreezing 

media and stored at -80°C [15]. All organ samples were stored in l.5 m] cryotubes, 

placed in Liquid nitrogen for transport to the laboratory, and maintained at -80°C until 

analysis. 

Route of exposure for both test compounds was based on an attempt at a realistic 

route of exposure for the pesticide. Driver et aI. [39] found that dermal exposure and 
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preening were major routes of organophosphate uptake for bobwhite quail (Colinus 

virginianus). Inhalation was the major factor for only one hour after spraying. In 

mallards, percutaneous applications of methyl parathion are more toxic than oral doses 

(LD50 of an oral dose is 60.5 mg methyl parathionlkg body weight; dermal dose is 53.6 mg 

methyl parathion/kg body weight), so doses were administered orally [40]. Because 

mallards can detect contaminants in their food [38], doses were dispensed in gelatin 

capsules. TEM dosages were determined from previous experiments using this compound 

on avian species [25, 27]. Spermatogenesis was completely inhibited in yellow-throated 

sparrows ceetronia xanthocollis) injected daily with 1 mg TEMlkg body weight for five 

days [27]. An antifertility study in which male Japanese quail (Coturnix japonica) were 

given a single oral dose of 5 mg TEMlkg body weight [25] showed that fertility was 

reduced after several days. No information on mortality was provided in either study. 

Because the intent was to deliver a non-lethal dose to birds, dosages for TEM were 0, 

0.25,0.50, and 1.00 mglkg body weight. For microencapsulated MP, doses were 0, 7.5, 

15.0, and 30.0 mglkg body weight. Individual doses were calculated from weights of 

ducks measured the day prior to dosing. Each dose was pipetted into a capsule and the 

capsule topped offwith com oil. Reference groups were given a capsule containing only 

com oil. 

Methods for flow cytometric preparation and analyses were based on those used 

by McBee and Bickham [12], McBee [4], and Otto [41]. Chicken erythrocyte nuclei were 

used as an external reference standard and to check calibration of the flow cytometer after 

every fifth individual was analyzed. Samples of solid tissue were disrupted using a Tissue 
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Tearor- and then incubated in pretreatment solution (4.2 g citric acid, 0.5 ml Tween 20, 

100 mI ddH20) for 20 min. Samples were centrifuged for 10 min at lOOx g, supernatant 

was removed, and pellets were fixed by adding cold 70010 ethanol. Samples were filtered 

using 35-micron nylon cloth. Blood samples were prepared by placing 0.25 ml of freezing 

media-blood solution directly into cold 70010 ethanol for 10 min and then filtering. Filtered 

samples were kept at 4°C at least 24 h before staining. For staining, five drops from each 

sample were placed into glass culture tubes with 0.5 mI of pretreatment solution. After 

incubation for 10 min at room temperature, 2.5 ml of 4'-6-diaminido-2-phenylindole 

(DAPI) staining solution were added to each sample. Stained samples were stored for 

approximately 18 h in the dark before being examined. Three replicate samples were 

processed for each animal. New standard solutions were checked against old solutions to 

maintain machine consistency. 

The flow cytometric endpoints inspected most commonly in studies of 

environmental genotoxicity are relative position ofG1 peak, coefficient of variation of the 

G1 peak (CVG,), proliferation index (PI). and DNA index (DI). Position of the G1 peak is 

a relative measure of DNA content of the cells in the G, stage of the cell cycle (Fig. 1). 

CVG1 is the coefficient of variation around the G, peak (one standard deviation on each 

side). PI is an indication of production of new cells in treated animals [14] and is 

calculated by combining percentage of cells in the S and G2 stages for each sample and 

dividing by the average of the same endpoints for the reference group. DI is calculated by 

dividing percentage of cells in G1 stage by the average of the same endpoint for the 

reference group. This analysis indicates if the relative proportion of cells in G, stage of 
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treated animals has been affected [14]. Additional endpoints included in this analysis were 

position ofG2 peak and CVG2, which are measurements of relative DNA content and 

coefficient of variation in the G2 stage of the cen cycle. Percent G2 refers to the 

proportion of cells within the sample that is in the G2 stage of the cell cycle. Percent S 

(synthesis) provides infonnation regarding the proportion of cells in the process of 

replicating DNA. The G/GJ ratio compares quantity of ON A in replicated cells to that in 

unreplicated cells. Replicated cells should contain twice the quantity of DNA, resulting in 

a ratio of 2.0 for healthy cell populations. 

Results for blood tissues were separated into three analysis groups: pre-dose, post­

dose, and difference between the two dose states. Pre-dose data were examined to define 

genetic conditions prior to dosing. We expected endpoint values to confonn to a normal 

distribution. Inspection of post-dose data from spleen tissue enabled comparison between 

tissue types. The use of change in pre- and post-dose endpoints could nullify the effect of 

pre-existing abnonnalities in DNA. 

All analyses were conducted using SASe [42]. Assumptions for parametric testing 

were not met (p < 0.05), so the KrusIcal-Wallis test based on rank sums was employed 

[43). Each chemical was analyzed separately. Dose groups that differed significantly for a 

variable were subjected to a pairwise comparison for Kruskal-Wallis rank sums. Numbers 

of individuals per dose group and tissue varied between 6 and 8, because of nonnal 

attrition and difficulties in collecting tissue. 
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RESULTS 

Prior to dosing, no parameters differed within dose groups assigned to TEM 

exposure, but mean values ofG/Gl ratio varied significantly (p = 0.0235) among groups 

designated for MP exposure (Table 1). Pairwise comparisons revealed that animals 

designated for the middle dose group for MP had significantly higher G/G! ratios than all 

other dose groups, although maximum variation among mean values was only 0.01. 

After exposure, two endpoints differed significantly in blood samples for each 

compound (Table 1). Pairwise comparisons of GIG! indicated a significantly lower ratio 

(p = 0.0454) in the low-dose group for TEM compared with the reference group. For 

animals exposed to MP, the low dose group produced a significantly smaller (p = 0.0274) 

eVG2 than the middle and reference dose groups. When comparing the change between 

pre- and post-dose blood, reference and high dose groups had lower eVG! among TEM 

dosed animals. No significant differences were found among any variables examined from 

spleen tissues. 

Several p-values derived from KruskaI-Wallis analyses were only slightly greater 

than the alpha value of 0.05 selected at the beginning of the study. If the confidence 

interval is reduced to 9()O/o, the null hypothesis (all dose groups are the same) was rejected 

eleven times. No pre-dose variables differed within dose groups assigned to TEM 

exposure, and no additional variables differed within dose groups assigned to MP 

exposure. Reducing the confidence interval to 90% did not change between-group 
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relationships for the G/G} ratio derived from blood samples collected prior to dosing with 

MP. For blood samples of animals dosed with TEM, %G2 and PI were significantly higher 

(respectively p = 0.0958 and 0.0814) in the middle dose group compared with the 

reference and high dose groups, and DI was significantly lower (p = 0.0979) in the middle 

dose group than the other groups. No additional differences were found among variables 

when comparing the change between pre- and post-dose. 

Within spleen samples, two variables differed within dose groups. For ducks 

exposed to TEM, the high dose group was significantly lower than the reference group for 

CVG2 and %G2 (respectively p = 0.0770 and 0.0975) . . For animals treated with MP, 

CVG2 values in spleen tissue again differed with the reference group significantly lower (p 

= 0.0645) than the low and high dose group but statistically similar to the mid-dose. 

A sub-diploid peak (Fig. 1) was observed in post-dose blood samples of several 

individuals; therefore, post-dose blood samples were reanalyzed. Percentages varied 

among dose groups, but there were fewer occurrences of subdiploid peaks in the higher 

dose groups (Fig. 2). The middle dose group for MP showed a higher percentage of 

individuals with the sub-diploid peak than the other two MP dose groups. Chi-square 

analysis indicated no significant difference in occurrence of peaks between dose groups, 

but samples were small (n < 9). A trend response could not be evaluated statistically 

because of low sample sizes. DNA was examined using agarose gel electrophoresis (DNA 

was loaded into a 1.0% agarose gel set at 96V for 1 h and stained with ethidium bromide) 
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to explore the possibility of an apoptotic population., but the DNA laddering characteristic 

of apoptosis was not observed. The subdiploid peak was not observed in spleen samples. 

DISCUSSION 

The lack of a definite dose response in positive control groups was unexpected. 

Doses and exposure duration selected for this study were based on those used for quail 

and sparrows [25, 26] and on those previously used with Rattus [18]. None of the 

investigators reported mortalities although doses given to quail and sparrows were several 

times that which would be lethal to a rat [44]. A longer duration of exposure may be 

necessary to elicit a dose response in spleen and blood tissue of mallards. More likely, 

concentrations used were not high enough. 

Based on mammalian data., a small change in CVG, was not surprising for the high 

dose group of TEM. However, the observed change in the reference group was not, and 

makes the results of this analysis suspect. The significant difference for GiG, ratio in pre­

dose samples of blood may be merely a random difference occuning among the many 

variables examined and did not appear to affect pose dose results. No dose response-like 

pattern was detected within all other parameters at either 0< = 0.05 or oc = 0.10 although 

many more variables differed among dose groups at the oc = 0.10 level. Seven of 11 of the 

variables differing at oc = 0.10 were in the post-dose data for blood, that could indicate 

blood tissue responds faster or at lower doses than spleen. Although statistical 

significance was limited, several cytometric parameters were altered. Some of these are 
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not normally examined in biomarker studies and have not been validated as biomarkers of 

exposure; however, these data may provide-valuable details about cell cycle disruption and 

should not be excluded from toxicological analyses. For example. mean values for %S of 

TEM-dosed animals showed a similar but more exaggerated pattern than in pre-dose 

values. Mean values increased from reference to the middle dose group, but the mean for 

the high dose dropped below the reference. This pattern appears similar to that in 

Bickham's study [23]. However, closer examination reveals that for four individuals in 

the low dose group, two in the middle dose group, and one in the high dose group, no 

cells were detected in the synthesis stage of the cell cycle. All animals in the reference 

group had detectable S-regions indicating nonnallevels of synthesis. The proportion of 

cells in the synthesis stage appeared to have been altered in animals exposed to TEM, but 

a clear dose response was not apparent. 

Conducting a dosing experiment on birds allowed us to collect baseline genetic 

data for each individual and examine the change after dosing. With small sample sizes the 

probability increases that randomly selected groups will be inherently different. The 

absolute change between pre- and post-dose samples was analyzed (Table 1,2) with one 

parameter, G:!G~ ratio for blood ofMP-exposed animals, differing at the ex = 0.10 level. 

This indicates that variables did not change significantly after treatment and supports the 

use of blood as a sensitive tissue for non-lethal studies. These results stress the 

importance of collecting pre-exposure data whenever possible, especially when sample 

sizes will be small. 
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Presence of sub-diploid peaks such as those observed in histograms of blood tissue 

can be indicative of aneuploidy or apoptosis [14, 17]. Frequency of occurrence of sub­

diploid peaks from ducks exposed to TEM (Fig. 2) indicates a reverse dose trend similar 

to that seen by Bickham et aI. [23]. They observed that high doses ofTEM in Rattus 

produced a narrower CV in the G1 peak than in reference animals and suggested that 

sensitive cells are being damaged to the point of necrosis and have been removed from the 

population. Remaining cells produce a narrower peak than normally observed because 

inherent variation within the cell population has been reduced. Similarly, low doses of 

TEM may slightly disrupt cellular kinetics resulting in the production of subdiploid peaks. 

With increasing dose, occurrence of subdiploid peaks decreases as sensitive cells die in 

response to increased disruption of cellular kinetics. 

Aneuploidy is an unlikely explanation for the sub-diploid peak because of the 

length of time for exposure. George et aI. [14] also observed subdiploid peaks in mallards 

exposed to radiation, but only 2 out of 14 ducks in their study develop aneuploid peaks 

after nine months exposure to 137Cs. Such a high frequency of aneuploidy as detected in 

my study is unlikely after only a 24-h exposure period. Apoptosis may have been induced, 

but examination of DNA extracted from the same animals did not produce the 

characteristic ladder in agarose gels indicative of apoptosis. 

This study supports the feasibility of using flow cytometry as a standard biomarker 

of exposure to mutagens for avian species. Cell-cycle kinetics were disrupted in the 

positive control groups although a definite dose response was not observed. Interference 
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with normal cell cycling would be lethal to developing embryos and chicks and would 

reduce normal replacement and repair mechanisms of tissues in both juveniles and adults. 

If the level of significance are relaxed slightly (ex = 0.10), 6 parameters are significantly 

different. TEM appears to be an adequate positive control, but dose levels should be 

doubled or tripled from those that we administered. The high dose ofMP was half the 

LDSO for mallards. At this dose, one individual exhibited toxic symptoms of 

disorientation, trembling, and inability to stand. Increasing the dose may have defeated the 

intent of the study by killing several individuals. Unfortunately, because the positive 

control failed to produce a distinct dose response, we are unable to make definite 

statements about the genotoxicity ofMP. Occurrence of subpeaks in both chemicals may 

indicate a similar affect on DNA. 

Avian populations are exposed regularly to genotoxins that may alter genetic 

configuration and ultimately affect long-term survival. Birds nesting within and around 

agricultural crops and forests are particularly susceptible to pesticide exposure [4S]. In 

North Dakota, 13 of 16 of the most common pesticides used were toxic to waterfowl or 

aquatic invertebrates [32]. Neotropical migrants may be receiving additional pesticide 

exposure in South America. With further development, FCM has the potential to facilitate 

identification ofxenobiotic damage in wild populations of birds, and its development as a 

possible genetic toxicity assay for birds should be pursued. 
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Table 1. Mean values for flow cytometric parameters measured from blood samples of 

ducks before and after treatment with either TEM or MP. Standard deviations are in 

italics underneath each corresponding mean. Statistical analyses of TEM and MP dose 

groups were conducted separately. 

DI Pre 

Post • 

DifT 

PI Pre 

Post • 

DifT 

Pre 

Post 

Reference 

(n=8) 

1.00 

0.04 

0.96 

0.04 

0.04 

0.05 

1.00 

0.23 

1.00 

0.21 

0.00 

0.29 

57.10 

3.15 

54.38 

2.25 

TEM 

0.25 

(n=7) 

1.00 

0.04 

1.02 

0.09 

0.03 

0.11 

1.02 

0.20 

1.07 

0.24 

0.05 

0.39 

57.54 

3.04 

53 .22 

3.00 

TEM 

0.50 

(n=7) 

0.99 

0.03 

0.95 

0.04 

0.04 

0.05 

1.03 

0.16 

1.27 

0.25 

0.24 

0.27 

58.61 

3.54 

54.44 

1.87 

24 

TEM 

l.00 

(n=8) 

1.01 

0.05 

1.01 

0.04 

0.00 

0.06 

0.93 

0.24 

0.93 

0.25 

0.00 

0.33 

56.63 

3.36 

56.63 

2.60 

MP 

7.50 

(n=6) 

0.99 

0.04 

0.96 

0.02 

0.03 

0.05 

1.03 

0.21 

1.22 

0.09 

0.19 

0.24 

56.28 

3.74 

MP 

15.00 

(n=7) 

1.00 

0.04 

l.01 

0.04 

0.02 

0.08 

1.06 

0.22 

1.02 

0.17 

0.04 

0.33 

56.96 

2. 72 

52.97 55.92 

1.86 2.49 

MP 

30,00 

(n=7) 

0.97 

0.05 

1.00 

0.07 

0.03 

0.06 

1.15 

0.27 

0.98 

0.37 

0.17 

0.35 

55.96 

3.21 

55.47 

2.70 



Diff 

CVG1 Pre 

Post 

Difft 

G2 Pre 

Post 

Diff 

CVG2 Pre 

Post t 

Diff 

Pre 

Post • 

2.81 

4.91 

3.97 

0.55 

3.98 

0.51 

0.01 

0.39 

83.90 

3.65 

84.82 

3.22 

4.82 

9.29 

3.27 

0.69 

3.30 

0.30 

0.03 

0.65 

15.63 

3.67 

14.60 

2.91 

4.32 

3.44 

4.49 

0.49 

3.84 

1.01 

0.65 

0.68 

83.59 

3.26 

86.77 

7.76 

8.42 

6. 71 

3.15 

0.24 

3.60 

0.50 

0.46 

0.5/ 

16.02 

3.18 

15.63 

3.67 

4.18 

3.30 

4.48 

0.95 

3.79 

0.64 

0.69 

1.03 

83.46 

2.55 

80.74 

3.80 

7.52 

6. 73 

3.53 

0.89 

3.10 

0.30 

0.40 

1.15 

16.04 

2.52 

18.66 

3. 74 

25 

0.00 

3.40 

4.25 

0.95 

3.70 

0.71 

0.55 

0.76 

84.95 

3.80 

85.82 

3.72 

0.13 

6.98 

3.38 

0.89 

3.10 

0.60 

0.19 

0.81 

14.56 

3.89 

13.86 

3.61 

3.31 

4.31 

3.85 

0.48 

3.59 

0.47 

0.26 

0.80 

83.38 

3.34 

81.41 

1.40 

5.99 

8.51 

2.95 

0.50 

2.60 

0.20 

0.27 

0.74 

15 .99 

3.16 

18.21 

1.53 

1.03 

3.40 

3.75 

0.21 

3.65 

0.46 

0.10 

0.65 

82.91 

3.57 

85.44 

4.05 

2.59 

6. 72 

2.91 

0.42 

3.20 

0.40 

0.31 

0.57 

16.74 

3.55 

15.27 

2.59 

0.49 

5.09 

4.27 

0.37 

3.69 

0.32 

0.57 

0.46 

81.55 

4.39 

85.14 

5.63 

0.44 

9.86 

3.31 

0.51 

3.00 

0.60 

0.27 

0.83 

18.10 

4.47 

14.3] 

5.67 



Di.tl 1.03 0.38 2.61 0.66 2.21 1.46 3.79 

4.40 5.61 4.39 5.27 3.68 5.27 5.41 

%S Pre 0.48 0.39 0.49 0.49 0.62 0.35 0.35 

0.41 0.32 0.24 0.21 0.36 0.10 0.15 

Post 0.58 0.56 0.61 0.32 0.37 0.26 0.55 

0.46 0.85 0.59 0.20 0.J6 0.29 O.lI 

Diff 0.l0 0.16 0.12 0.17 0.25 0.09 0.20 

0.75 0.95 0.52 0.27 0.33 0.33 0.22 

GIG) Pre t 2.00 1.99 2.00 2.01 2.00 2.01 2.00 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Posq§ 2.02 2.00 2.01 2.01 2.02 2.00 2.01 

0.01 0.01 0.02 0.01 0.00 0.02 0.00 

Diff 0.02 0.00 0.01 0.00 0.01 0.01 0.01 

0.01 0.01 0.02 0.01 0.01 0.02 0.01 

t = Indicates significant difference in triethylenemelamine data at oc = 0.05. 

* = Indicates significant difference in triethylenemelamine data at oc = 0.10. 

t = Indicates significant difference in methyl parathion data at oc = 0.05. 

§ = Indicates significant difference in methyl parathion data at oc = 0.10. 
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Table 2. Mean values for flow cytometric parameters measured from spleen samples of ducks treated with either TEM or MP. 

Standard deviations are in italics underneath each corresponding mean. Statistical analyses ofTEM and MP (mglkg body weight) dose 

groups were conducted separately. 

Dose DI PI G. CYG. G2 CYG2 * .%G2 + .%S GvG • 

Reference 1.00 1.00 55.86 4.41 111.38 3.50 2.73 2.95 2.00 

(n=8) 0.03 OA8 3.49 0.60 6.56 0.73 1.60 1.81 0.03 

rEM 0.25 0.97 1.52 56.82 4.46 114.12 3.01 5.20 3.45 2.01 

(n=7) 0.03 0.56 1. 76 0.94 3.6/ 0.91 3.50 1.73 0.02 
tv 
--l 

rEM 0.5 0.98 1.35 56.20 4.14 112.40 3.00 4.71 2.98 2.00 

(n=7) 0.03 0.57 2.03 0.84 3.76 0.41 2.16 1.30 0.01 

rEM 1.0 1.01 0.92 56.76 4.10 113.38 2.69 2.43 2.78 2.00 

(n=8) 0.03 0.42 4.98 1.09 10.27 1.23 1.85 1.07 O.OJ 

MP7.5 0.98 1.40 57.34 5.18 113.l7 5.29 4.28 3.67 1.91 

(n=6) 0.03 0.54 3.43 1.25 6.19 2.11 2.59 1.49 0.02 

MP 15 0.98 1.25 56.89 4.82 113.65 3.68 3.45 3.66 2.00 

(n=8) 0.04 0.68 3.92 0.99 6.83 0.72 2.31 2.50 0.04 

MP30 0.97 1.45 56.62 4.37 112.82 4.56 4.74 3.48 1.99 

(n=7) 0.05 0.78 1. 78 0.71 3.25 1.16 3.24 1.67 0.04 

* = Indicates a significant difference in methyl parathion and triethylenemelamine data at <X = 0.10. 

t = Indicates a significant difference in triethyleneme1amine data at cc = 0.10. 



Fig. 1. Histogram produced by flow cytometer depicting location of cell cycle stages and 

displaying a subdiploid peak. 

Fig. 2. Occurrence of subdiploid peaks within dose groups from each chemical. All samples were 

examined twice. Values above bars indicate number of animals in dose group. 
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CHAPTER II 

DEVELOPMENT OF AN AVIAN GENOTOXICITY TEST 

USING AGAROSE GEL ELECTROPHORESIS 

Abstract - Testing the capability ofxenobiotics to induce genetic lesions generally 

involves use of microbes, mammals. or plants. Extrapolation to avian species may be 

unrealistic due to physiological and genetic differences among these taxonomic groups. 

Assays that permit collection of DNA samples without sacrificing birds will allow 

researchers to monitor temporal effects, obtain larger sample sizes for field studies, and 

assess impact on endangered species. My goal was to develop a standardized genotoxicity 

assay for birds using a non-lethal technique based on electrophoretic analysis of DNA 

double-strand breaks. Juvenile mallards were dosed orally with either methyl parathion 

(MP), triethylenemelamine (TEM), or com oil. Blood and feather pulp samples were 

collected prior to dosing. At 24-h after dosing. blood, feather pulp, and liver samples 

were collected. Nonparametric tests of pre-dose samples from TEM dose groups detected 

significant differences in molecular length (kb) for both blood and pulp tissues and right 

half percent of blood tissue. but no significant differences occurred in MP dose groups or 

post-dose TEM dose groups. Results of analyses were inconclusive with no apparent 

dose response observed in groups administered the positive control. Dose levels of TEM 

may have been too low to induce a definite response. Analysis techniques need to be 
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further refined for use of constant field &garose gel electrophoresis of double-strand 

breaks as a non destructive biomarker in avian species. 

Keywords - Genotoxin Avian Double-strand breaks Electrophoresis 

INTRODUcnON 

Although several prokaryotic and eukaryotic models have been developed to 

measure genotoxicity of environmental contaminants, few have been designed for avian 

species. Inconsistent responses within tissues of the same taxonomic group (i.e., 

mammals, microbes) are not unusual and when crossing phylogenetic lines inconsistencies 

are even more common. For example, Jenssen and Renberg [1], Mullison [2], and 

Zetterburg et al. [3] tested the herbicide, 2,4-0, in bone marrow erythrocytes of mice 

(Mus sp.), brain tissue of rats (Rattus sp.), and Salmonella, respectively. The herbicide did 

not increase frequency of chromosomal aberrations in erythrocytes of mice, did increase 

frequency of brain tumors in rats, and had no effect on reversion rate in Salmonella at pH 

6.8. The lack of response from Salmonella is particularly striking because this study was 

conducted with the widely accepted Ames test for bacterial mutagenesis. Accurate 

extrapolation from genotoxicity data derived from other taxa to probable effects in birds 

may be hampered severely due to differences in chromosome size, relative proportion of 

functional DNA, gametic arrangement, metabolic rates, and degree of response from the 

liver [4-8]. Application of standard techniques for examining chromosomal genotox.icity 

to the avian genome is difficult because of high diploid numbers [9] and existence of 

numerous microchromosomes [10]. An avian genotoxicity assay that permits easy 
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collection of samples under field or laboratory conditions and rapid, inexpensive analysis 

would help reduce the need to extrapolate from data derived using other taxa. My goal 

was to develop a standardized genotoxicity assay for birds using a non-lethal technique 

based on electrophoretic analysis of DNA double-strand breaks. 

Exposure to clastogens can result in detectable levels of genetic damage in a short 

period of time [11]. Because DNA damage such as single-strand breaks (SSBs) and 

double-strands breaks (DSBs) can occur naturally in an individual, measurements of DNA 

from exposed animals should be compared with those of a reference group. Although, 

SSBs are more likely to occur than DSBs, the latter are less likely to be repaired or 

repaired correctly [12]. Therefore, DSBs have a greater potential to be maintained and 

are more likely to be lethal to cells than SSBs [11]. 

Agarose gel electrophoresis appears to be a sensitive technique for detecting DSBs 

in DNA molecules [B-14]. Migration rates of DNA through an agarose gel are 

dependent on molecular size, with smaller fragments traveling faster through the gel 

matrix [14] . Therefore, clastogenic damage will result in greater dispersion of DNA 

through the gel matrix. Spread of DNA on the gel can be quantified using scanning 

densitometry [13]. Although pulsed-field electrophoresis is considered very sensitive, 

especially for high molecular weight DNA, constant-field gel electrophoresis (CFGE) is 

equally sensitive under optimal conditions and is simpler, faster, and less expensive [13]. 

A common obstacle with constant-field electrophoresis is the inability of large DNA 

fragments to exit the loading well. Volume of DNA migrating out of the loading well can 
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be maximized using a low voltage electrical field as recommended by Wlodek et al. [13] 

and a low percentage agarose gel. Wlodek et al. [13] did not find that cell concentration 

or agarose gel concentration altered results significantly. although this is contradictory to 

other research [15]. 

Liver is frequently the tissue of choice for electrophoretic analysis of DNA, 

because it is the primary organ of biotransformation [14, 16]. Unfortunately, collecting 

this tissue requires sacrificing the animal, and liver DNA can degrade rapidly once 

isolated. Strand-break analysis using gel electrophoresis has been conducted successfully 

with DNA extracted from blood offishes [14]. Like fish, birds possess nucleated 

erythrocytes [17] enabling adequate quantities of DNA to be extracted from a minimal 

volume of blood, thereby reducing stress to the bird. Actively proliferating pulp of 

growing feathers also provides another easily obtained source of nucleated cells. This 

tissue can be collected readily with minimal stress to the animal. Because of declines in 

avian populations and interest in long-term monitoring programs, nondestructive 

biomarkers are becoming increasingly important [18]. 

CFGE has not been used extensively in genetic toxicology studies for wildlife. 

Theodorakis et al. [14] conducted a laboratory study in which several genotoxic 

compounds were investigated using blood cells of bluegill sunfish (Lepomis macrochirus) 

exposed in vivo. Exposure to contaminated sediments were found to be correlated 

positively with a decrease in median molecular length (mm1) of DNA. This measurement, 

mml, was developed by Freeman et 31. [19] to quantify number of single-strand breaks 
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under the theory that as DNA is fragmented, the mmI will decrease. It has been used in 

field studies by Husby [20] examining DSBs in Peromyscus leucopus induced by exposure 

to metals and by Theodorakis et al. [21] to correlate DSBs with population changes using 

mosquitofish (Gambusia affinis). Husby [20] did not find a consistent pattern which 

correlated well with data derived from flow cytometry and chromosomal analyses of other 

tissues from the same animals, but Theodorakis et a1. [21] found correlative relationships 

between occurrence of strand breaks, reproductive measurements, and exposure to 

radionuc1eotides. 

The main objective of this study was to determine the usefulness of agarose gel 

electrophoresis for analysis ofDSBs in avian species. I used one compound 

(triethylenemelamine, TEM) proven to be c1astogenic in mammalian taxa and one 

compound (methyl parathion, MP) that is an environmental contaminant to which avian 

species are likely to be exposed. In birds, TEM is an effective sterilant, because of its 

mutagenic effect on spermatozoa [22-24]. MP (O,O-dimethyl 0-(4-nitrophenyl) 

pho sphorothio ate ) is a heavily regulated organophosphate insecticide known to produce 

chromosomal lesions, sister-chromatid exchanges, and mutations in mammals [25,26]. 

Furthermore, I examined levels of strand-breakage in three different tissues to determine if 

non-lethal sampling methods provided similar results to those obtained from tissues 

requiring death of individuals sampled. For agarose gel electrophoresis, a standard 

method of data analysis is to calculate median molecular length of DNA samples based on 

the assumption that damaged DNA will create a broader smear when visualized in an 

agarose gel and therefore have a lower median molecular length [14, 20). This does not 
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take into account the shape of the DNA smear. Two samples could have the same median 

molecular length, but may have undergone different amounts of genetic damage (Fig. I). I 

evaluated the use of three measurements of area covered by each DNA band for providing 

additional information regarding the extent of strand-breakage (Fig. 2). 

Assuming TEM produces c1astogenic responses in birds similar to those 

documented in mammals and DSB analysis using &garose gel electrophoresis is a reliable 

way to document those c1astogenic effect, I would expect DNA samples from animals 

exposed to TEM to display increasing levels of diffusion in the agarose gel corresponding 

to increasing dose. Clastogenic damage should be detectable in all tissues examined. If 

MP is clastogenic in birds similar results also should be obtained for this compound. 

MATERIALS AND METHODS 

The mallard (Anas platyrhynchos) is designated by the EPA as an acceptable 

model species [27] for toxicology studies. For genotoxicology studies, the mallard has the 

additional advantage oflow genetic variability [28]. Six-week old ducklings were 

purchased from Free Flight Game Bird Fann in Denton, Texas. Individuals were weighed 

and randomly divided among seven dose groups of eight individuals based on weight. 

Individuals were given a code number used to identify all samples from that animaJ and 

mask the identity of dose groups during processing and analysis of tissues. Ducks were 

housed by dose group in outdoor pens constructed of chicken wire and t-bars. Food and 

water was given ad libitum. Two weeks after arrival, blood and feather pulp samples were 
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taken for baseline genetic information. Heparinized vacuum tubes (2 ml) were used to 

draw blood from the brachial vein of each animal. About 0.2 g offeather pulp was 

collected from primary feathers by cutting the distal tip off of freshly plucked feathers and 

scraping the pulp out. Aliquots of each tissue (0.25 ml of blood and 0.2 g pulp) were 

placed into separate tubes containing 5ml oflysis buffer [29]. 

Animals were dosed one month after initial samples were collected. Doses were 

administered orally in gelatin capsules. Dose levels for TEM were set at 0, 0.25, 0.50, 

1.00 mg/kg body weight based on previous studies of Jones et al. [22]. MP doses were 0, 

7.5, 15.0, and 30.0 mg/kg body weight based on an oral LD30 of60.5 mglkg body weight 

for mallards [30]. Ducks were weighed the day before capsules were made. Doses were 

pipetted into individual capsules and capsules were topped offwith com oil. Reference 

groups were given a capsule containing only com oil. Ducks were dosed within 3 h of 

making the capsules. Post-dose samples were coJlected 24 h later. Blood and feather pulp 

were collected as described above. After asphyxiation by CO2• liver, spleen, heart, kidney, 

and brain samples also were taken. Organ samples were stored in cryotubes and placed in 

liquid nitrogen for transport to the laboratory. Only blood, liver, and feather pulp samples 

were used for electrophoretic ana1yses~ other organ tissues were preserved for future 

research. 

The method of DNA extraction and purification was that described by Longmire et 

aI. [29]. Proteinase-K was added to each tube oflysis buffer and tissue. Tubes were 

placed on a rotator and incubated overnight at 37°C. To remove proteins, samples were 
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treated with equilibrated phenol, and the aqueous layer containing DNA was dialyzed 

against IX TE for at least 24 h. Because repeated freezing and thawing of ON A can 

cause some degradation, an aliquot of the purified sample for analysis was maintained at 

4°C. The remainder was stored at -80°C. 

Although, Wlodek et aI. [13] did not find concentration ofagarose or DNA 

concentration to alter results, preliminary tests on excess DNA from reference and dose 

groups indicated both parameters affected the rate that DNA fragments moved into and 

through the gel. An aliquot of 10 til (O.OStIg of DNA) was adequate for DNA to exit the 

well readily while remaining visible when stained with ethidium bromide. All samples 

were electrophoresed through a 0.4% agarose gel containing O.Smglml ethidium bromide 

with 1 X TBE used as the running buffer. 

Using size standards to bracket DNA bands from samples increases precision of 

measurements (31). After several preliminary experiments with various size standards, a 

combination of Saccharomyces cerevisiae and High Molecular Weight DNA Marker~ 

(Gibco BRL) loaded in separate wells was selected for this study. The band that emerged 

from the S. cerevisiae well was assumed to be the smallest band of this size standard, but it 

could have been several bands together. £. cerevisiae was purchased embedded in agarose 

blocks. No more than 1116 ofa block of£. cerevisiae was loaded into a well, and 0.3 til 

of High Molecular Weight DNA Marker~ (Gibco BRL) was loaded into the adjacent well. 

A maximum oftive samples were loaded between sets of standards. To compare variation 

between gels, four replicates of three samples were run for each tissue. Percent variation 
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of each replicated sample was calculated by dividing standard deviation by mean for each 

parameter by tissue and then averaging for the three replicates. 

Based on recommendations ofWlodek et aI. [13] for low voltage settings when 

examining large fragments of DNA, gels were run at 24 V. At this voltage, High 

Molecular Weight DNA MarkerCl required at least 18 h for bands to separate which was 

sufficient time for the S. cerevisiae band to become distinct from the well. Gels were 

photographed under ultraviolet light and negatives were scanned by a laser densitometer 

into the Molecular AnalystCl (Bio-Rad) computer program. Image resolution was adjusted 

to 300 dpi, pixel depth was set at 12, and filter color was set to grey scale for film. 

Molecular Analyst~ creates a histogram of the optical density (OD) readings versus 

distance (mm) on a gel for each sample. Background noise was removed manually from 

the graph produced for each lane. A logistic regression equation was automatical1y 

calculated from size standards bordering the sample lanes. Distance along the X axis 

corresponding to the point of greatest intensity of fluorescence in each sample peak was 

used to compute molecular length (kilobases). Boundaries of sample peaks were defined 

manually. 

Because small fragments of DNA move through the gel matrix faster than large 

fragments, the region on the histogram to the right of the highest OD reading should 

represent smaller strands of DNA (Fig. 2). Right half area of a peak may provide more 

information about peak shape than whole area under the peak. Clastogenic damage 

should increase right half area; however, for comparisons among different types of tissue, 
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absolute area values could produce erroneous results because some tissue types may 

produce a broader band on a gel (Fig. 3). This problem may be alleviated by examining 

the proportion of peak area composed of smaller fragments (right half percent, Fig. 2). 

Therefore, I determined mean molecular length, entire area under the peak, right half area. 

and right half percent. nata were divided into three categories for each chemical: pre­

dose tissues, post-dose tissues, and the difference between post- and pre- dose results. 

Tissues in each category were analyzed separately by dose compound. The Shapiro-Wilks 

test for normality was run on all parameters using the SASe [32] software package. 

Results indicated that most of the data met assumptions for the Kruskal-Wallis Rank Sum 

Test, so for consistency it was used for all statistical analyses. 

RESULTS 

All statistically significant differences occurred in TEM dose groups prior to 

exposure (Table 1,2). Those differences were found in molecular lengths of pre-dose 

blood (p=O.0420) and pre-dose pulp (p=O.0439), and in right half percent of pre-dose 

blood (p=O.0265). Pairwise comparisons on ranked data indicated that in pre-dose blood 

samples, the average molecular length of the high dose group was significantJy smaller 

than for the mid- and low dose groups. Right half percent measurements of pre-dose 

blood were significantly larger in both the reference and high dose than for the low and 

mid-dose. In pre-dose pulp samples, the molecular length in the mid-dose was 

significantly smaller than the low and high dose. The pattern of statistical significance was 

inconsistent among tissues and endpoints. No parameter varied significantly among TEM 
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dose groups for the liver samples or for any tissues of dose groups exposed to MP. 

Comparison of proportion of standard deviations for replicated samples indicated that the 

values obtained for right half percent and molecular length tended to be less variable than 

whole area and right half area measurements (Table 3). Liver samples were the least 

variable of all tissues. 

DISCUSSION 

The scarcity of standardized assays for the study of genotoxicity in birds has been 

problematic for researchers. Avian species are exposed regularly to environmental 

contaminants including pesticides, primarily during the nesting season which may coincide 

with the agricultural growing season [33]. Exposure typically occurs when 

aerially-applied pesticides are sprayed directly on juveniles and any adults remaining in the 

nest vicinity. Nests do not necessarily have to be in close proximity to agricultural fields. 

Under aerial application, pesticide deposits have been detected 85 km from the application 

site [34]. Many pesticides can directly or indirectly affect immediate survival, but few 

studies have investigated what long-term genetic damage may occur that could alter 

reproduction or adult survival. My goal was to develop a technique for detecting effects 

from sub-lethal doses of genotoxins without having to sacrifice the bird. 

For CFGE to become a standardized technique used to measure DSBs in high 

molecular weight DNA, analytical methods need to be further developed. One problem of 

using CFGE on high molecular weight DNA is that size standards possessing bands of 
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sufficient length to bracket large fragments of DNA typically will not exit the well or the 

portion that does emerge will not separate into distinct bands. Both Husby [20] and 

Theodorakis et aI. [14,21] used a size standard (A-phage DNA digested with Hind III) 

that did not bracket the DNA bands from their samples. The median molecular length that 

they calculated was extrapolated from a regression equation that did not encompass their 

sample bands. For those studies an accurate measurement of average DNA strand size 

may not have been necessary because comparisons were confined within each experiment, 

but precision was important. The magnitude of error produced by this method remains 

unknown. Calculating molecular weights will be more precise by deriving a regression line 

based on size standards that bracket the DNA. 

Results from Kruskal-Wallis analysis indicated all significant differences involved 

pre-dose samples from dose groups exposed to TEM and tissues with high mitotic rates. 

It should be noted that although feather pulp is a rapidly dividing tissue, it is impossible to 

collect without some contamination from blood [35]. The differences seen in median 

molecular lengths of pre-dose feather pulp may be due to the presence of blood that 

differed also in pre-dose molecular length rather than actual variation in the tissue. Those 

results did not conform with my predictions. The pattern of response is confusing in that 

significant differences were found only in pre-dose samples from groups assigned to TEM 

exposures. 

Differences among dose groups in pre-dose results may indicate a bias in assigning 

ducklings to dose groups~ however, assignment was based on weight prior to the first 
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sampling period in an effort to reduce bias created by a few days difference in age of 

ducklings. Because ducklings were not separated according to sex., a sex bias may have 

been created in some groups. Animals were processed by pen (dose group), so another 

possibility is that during the first round of tissue collection, blood and feather pulp samples 

were somehow mishandled during coUection from particular pens causing damage to the 

DNA. Samples were stored together and processed in random order for each tissue, 

starting with pre-dose samples. It is possible, although not plausible, that blood and 

feather pulp tissues collected prior to dosing from TEM dose groups received rougher 

handling during extraction and processing. Unfortunately, it is infeasible to test for sex 

bias and impossible to test for the other potential causes of variation within the scope of 

this study. 

Regardless of the reason for significant differences among pre-dose samples, the 

lack of a dose response in the animals administered the positive control is likely a result of 

dose concentrations that were too low. The literature regarding use ofTEM as an avian 

sterilant reported doses several times greater than the lethal dose for rodents [22, 24, 36]. 

A conservative approach was taken in selecting dose ranges to ensure survival of test 

subjects. Methyl parathion doses were probably at reasonable levels to prevent killing the 

ducks. At the highest dose level (MP30), one duck exhibited toxic exposure symptoms of 

lack of muscle control and trembling. 

Due to the lack of response from positive control groups, I cannot verify the 

usefulness of this technique for avian research. Future research should repeat the study 
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using higher doses of TEM. This is a critical area of research that needs to be further 

explored to develop an adequate test for genotoxicity in avian species and to develop an 

analysis technique that will be used consistently by researchers. 
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Table 1. Mean values for parameters measured from blood samples of ducks before and 

after treatment with either TEM or MP (mglkg body weight) and the difference between 

values (Difl). Standard deviations are in italics underneath each corresponding mean. 

Statistical analyses of TEM and MP dose groups were conducted separately. 

rEM rEM TEM MP MP MP 

Reference 0.25 0.50 1.00 '.50 15.00 30.00 

(n=8) (n=6) (n=7) (n=8) (n=6) (n=7) (n=7) 

Whole Area Pre 1.30 l.25 1.10 l.l9 1.04 1.03 1.29 

0.46 0.49 0.53 0.38 0.36 0.16 0.35 

(OD*mm) Post 0.85 0.98 0.89 l.09 1.02 0.91 l.01 

0.28 0.25 0.25 0.19 0.47 0.27 0.21 

Diff 0.59 0.45 0.43 0.27 0.62 0.48 0.51 

0.52 0.16 0.32 0.13 0.30 0.33 0.31 

RtHalf Pre 0.84 0.70 0.58 0.80 0.66 0.67 0.78 

Area 0.33 0.33 0.31 0.33 0.34 0.17 0.32 

(OD·mm) Post 0.37 0.43 0.41 0.50 0.43 0.45 0.45 

0.17 0.11 0.16 0.10 0.25 0.18 0.11 

Diff 0.55 037 0.20 0.36 0.79 0.37 0.40 

0.30 0.19 0.19 0.22 0.20 0.23 0.21 

Rt Half Pre * 63.22 54.00 52.00 66.00 60.25 65.14 59.03 

Percent 12.49 7.90 3.60 11.70 15.69 10.79 12.63 

Post 42.97 44.00 46.00 45.03 40.69 48.86 45.03 

8.92 9.40 7.30 3.25 6.78 12.59 8.74 

Diff 22.47 12.86 11.85 20.97 22.77 27.33 14.53 

11 .70 8.39 12.70 11.74 17.3l 18 .27 6.80 
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Molecular Pre • 62498 63056 64018 49170 55439 53726 57848 

Length (kb) 24470 13581 13028 5726 8395 8892 13935 

Post 64216 66564 62988 70511 62086 68800 64116 

8966 9741 7287 15972 7634 18598 5882 

DifI 20105 10793 20914 21341 13043 28644 14191 

14936 7627 23432 13539 8534 24997 9826 

• Indicates significantdifferences between TEM dose groups (0< = 0.05). 
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Table 2. Mean values for parameters measured from feather pulp samples of ducks before 

and after treatment with either TEM or MP (mglkg body weight) and the difference 

between values (Diff). Standard deviations are in italics underneath each corresponding 

mean. Statistical analyses ofTEM and MP dose groups were conducted separately. 

rEM rEM rEM MP MP MP 

Reference 0.25 0.50 1.00 7.50 15.00 30.00 

(n=7) (n=7) (n=6) (n=5) (n=5) (n=7) (n=6) 

Whole Pre 1.13 1.03 0.88 1.03 1.11 1.05 1.02 

Area 0.32 0.38 0.24 0.51 0.33 0.37 0.36 

(OD*mrn) Post 1.84 1.51 1.34 1.33 2.42 2.73 l.39 

0.85 0.76 0.46 0.55 0.84 1.68 0.67 

DifI 0.88 0.65 0.42 0.84 1.30 1.62 0.61 

1.03 0.79 0.32 0.48 0.71 1.73 0.63 

R1 Half Pre 0.79 0.69 0.63 0.73 0.79 0.70 0.69 

Area 0.24 0.32 0.18 0.40 0.28 0.31 0.29 

(OD*mrn) Post 1.40 1.19 1.05 1.03 1.83 2.11 1.10 

0.72 0.63 0.39 0.46 0.73 1.40 0.53 

Diff 0.75 0.60 0.39 0.69 1.01 1.38 0.56 

0.83 0.66 0.28 0.39 0.68 1.47 0.48 

R1 Half Pre 69.52 65.00 72.00 70.00 69.68 64.49 66.64 

Percent 5.56 8.90 1.90 4.80 7.97 8.69 6.52 

Post 74.94 78.00 77.00 77.00 74.29 76.16 79.40 

10.61 6.10 4.30 7.30 9.85 10.65 4.73 

Diff 14.10 13.72 6.37 7.98 11.92 15.25 12.73 

5.66 7.81 3.62 5.82 10.88 10.00 9.47 
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Molecular Pre· 42635 44499 39376 44440 41576 46179 44463 

Length (1cb) 4179 3977 3368 2521 3227 4098 2838 

Post 39147 35221 28981 30647 45132 46051 38078 

12597 10066 2924 9183 17506 11878 9941 

DitT 9782 11701 10152 15392 12988 9428 7611 

9702 9666 5922 9458 13265 7941 7461 
* Indicates significant differences between TEM dose groups (0< = 0.05). 
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Table 3. Averaged percent variation of standard deviations for replicated samples by 

tissue type. 

Tissue Dose Whole Right Half Right Half Molecular Weight 

Area Area Percent 

Blood Pre 21% 32% 16% 18% 

Post 31% 32% 20% 5% 

Pulp Pre 26% 32% 9% 5% 

Post 23% 24% 4% 3% 

Liver Post 4% 4% 3% 2% 
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Fig. 1. Depiction of two different peak shapes with similar median molecular lengths. 

Fig. 2. Sample histogram produced by Molecular Analyste (Bio-Rad) computer program 

depicting separation of peak attributes used to analyze data. 

Fig. 3. Comparison of histograms from liver and pulp samples. 
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