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CHAPTER 1

Introduction

Decision support systems are software which are used to develop insight into
system behavior and help managers to make effective plans and decisions. Simulation
and modeling are the basic weapons which are used to simplify the problem, abstract
system behavior, state and explore the relationship among the components of the system,
understand system essence and behavior, predict the results and utilize knowledge to help
decision maker to make high quality decisions. One type of decision support system
addresses the problem to select a choice from many alternatives [George, 1996]. In other
words, the problem is to evaluate and rank a finite number of alternatives with respect to
a finite number of criteria. Rank computation depends on the values of the criteria
variables and their weight values which directly determine the influence of the variables.
How to weight each criteria and how the weights influence the preference of the
alternatives is a very important part in decision research. Much research has been done in
this area, but most of it is subjective. The best weight value should depict the
information of the data set and system behavior.

Principal component analysis (PCA) can reduce the dimensionality of the data set

and simplify the interrelated variables while retaining most of the information presented



in the data set. Much research has indicated principal component analysis has an
intuitively satisfying interpretation and illustrated its application in areas where
judgments are not easy to come by [Ahamad, 1967; Bailey, 1956; Cahalan, 1983; Chang,
1988; Cochran and Horne, 1977; Dawkins, 1989; Jolicoeur, 1959; Jolicoeur and
Mosimann, 1960; Kloek and Mennes, 1960; Lee and Chang, 1976; Rao, 1964; Sloan,
1983; Wold, 1976]. Dawkins [Dawkins, 1989], using the first principal component of the
national track records from principal component analysis, ranked the world track
performance. But principal components are influenced by roundoff error, sample data
variation and sampling error. How the rank value changes when the weight is changed
and what are the intervals of the weights with the restriction that the final ranking of the
alternatives does not change? The objective of this research is to explore the application
of PCA in decision support systems and investigate the model behavior under small
changes in its assumption and its parameters, understand the key variables and their
relationships which can most affect the model solutions and corresponding decisions,
validate the model and find better and robust solutions for some particular problems. A
decision support system is implemented as part of this research. It is implemented using
the MS Visual C++ programming language under the MS Windows 95 environment. The
system provides a graphical user interface (GUI) to view results.

The remainder of this thesis is organized as follows. Computation of PCA,
application of the PCA, sensitivity analysis of the decision systems are studied in Chapter
2. Design and implementation of the system are explained in Chapter 3, also the process,

class, architecture and key algorithms were briefly explained in this Chapter. The result



and the interface were shown in Chapter 4. Chapter 5 gives conclusion and some

directions for future work.




CHAPTER 11

Literature Review

As mentioned in the previous Chapter, decision support systems are software
which are used to develop insight into system behavior which in turn help people to make
effective plans and decisions. Generally, mathematical models are used to simplify the
problem, describe the essence of the problem, state the relationships between decision
variables, intermediate variables and outcomes. In large interrelated data information
systems, reduction of dimension and simplification of the interrelated variables is the first
and also the most important step to interpret the data, and thus to help people to make
right decisions. In this literature review, the author will explain the theory of principal

component analysis and its application in decision support systems.

Principal Component Analysis and Eigenvalues of Covariance Matrix

The central idea of principal component analysis (PCA) is to reduce the
dimension of a data set which consists of a large number of interrelated variables, while
retaining as much as possible the information presented in the data set [Jolliffe 1986].
Let us consider Figure 1, there are 15 observations on two highly correlated variables X,
and Y. There is considerable variation in both variables, though rather more in the

direction of X than Y. If the above observations are expressed in another coordinate



system, or the points are projected onto D1 and D2, then we can find that the variation in
D1 is increased and variation in D2 decreased. If the observations are different in X and
Y, then they are different in D1, but maybe not in D2. Also if the observations are
different in D1, then they are different in X and Y. D1 is also an important direction
because if two points are close on D1, then it is likely that they are close before they are
projected onto D1. This is not the case in D2. Many points which are close on D2 may
be originally quite far apart. So projections of the points on D1 are good representations
of the above observations because we can get most of the information represented by the
original data set. Why is D1 better than D2 in expressing the data? Because DI

preserves the variation of the data. In general, if the original data are expressed as

] o

Figure 1. The simple view of PCA

vectors in a P-dimensional space, then the transformed data are vectors in a subspace of

the P-dimensional space. If x is a vector of variables, then d1 (the projections of the



observations on D1) can be expressed as a linear combination of the components of x as

shown in equation (1) below:

dl =oy"x (1)

Var (d1) = Var (o, "x ) = o, "Var ( x Yoy =0 Ty, 2)

Where

dl is a scalar (a value of one direction in transfered coordinate system)

Cl.;T isa l x p vector

Z is p x p population covariance matrix of X.

The objective of PCA is to find the direction such that after the points are
projected onto it, the variance of the projected points is maximized. In other words
oy "Z oy is maximized. The maximum of o;"Z ey will be achieved for infinite o, so a
normalization constraint must be imposed for a;. The most convenient constraint here is
(I]TCM =],

To maximize o; Lo subject to o "oy =1, use the technique of Lagrange

multipliers [Jolliffe, 1986] and maximize

' Zay-Aoyoy- 1), (3)

where A is a Lagrange multiplier. Differentiation with respect to o gives




Toy-Aoay=0, or

(Z-AL) oy =0, @)

where 0 is p x ] vector with value of O for each element, and I, is the p x p identity
matrix. So A is an eigenvalue of T and q is the corresponding eigenvector. Note that

the quantity to be maximized is

(1sz[1| = (I.]Tl o= ;\.CllTOh = 2., (5)

so A must be as large as possible. Thus, o is the eigenvector corresponding to the largest

eigenvalue of Z, and Var(oy, "X) = o, "Var(X)a, =0, Za, = Ay, the largest eigenvalue.

A similar theory can apply for samples, for example, if n observations were
collected from a population with P-dimensional random variables, let X represent n

observations of P-dimensional random variables, then the projections of n points on the

direction of o are

D[=Xl1| (6)

Where D, is the n x 1 vector of the projections of X on DI

X is the n x p matrix which represents the original sample data




o is the projection direction

D,"=0,"X" (7N

So the variance of D,T is

Var (D) =Var (o,"X") = o, "Var(X") o, =, "T o, (8)

Where X is the p x p covariance matrix of sample X". The formula (8) is the same as
formula (3). Therefore, the procedure for population matrix can be used to derive the PC
for the sample covariance matrix. From this we can find that the essence of PCA is

actually to estimate the eigenvalues and eigenvectors of the covariance matrix.

Zis a p x p symmetric matrix, so there exists a p x p orthogonal matrix P such
that P"SP = D where D is a diagonal matrix whose diagonal elements are the eigenvalues
of Z and the columns of P are the normalized eigenvectors of £. The i column of P
corresponds to the i PC with variance equal to the diagonal elementof D fori=1,..., p

[Moser, 1996]. The variance of x (the original data) is the trace of Z, and

tr(Z)=tr ED) =tr EP'P)=tr (P"ZP)=tr (D)=3i/” i




so the variance of the original data is equal to the sum of the eigenvalues. For any integer
q (1 < g <p), if the eigenvectors of the largest g eigenvalues were used as the linear
transformation matrix, then the variance of the transformed variables will be maximized.
So the task of PCA is to find the g largest eigenvalues and their corresponding
eigenvectors.
In general, let X be a set of points, Z be the covariance matrix of X, the rank of £
be p, Dy, D3, ..., D, be the eigenvectors of Z corresponding to eigenvalues A, A3, ..., A,
where A; 24, > .2 A,. LetlIDjll = 1 for all i. The properties of D;’s are now summarized
as follows:
1 All D;Ts are mutually orthonomal. That is, D.-TDJ- =0 fori##jand D,-TD,-= L.
2) If the set X of points are projected on to D; , then the variance of the projected points
onD;is A;.
3) Among all possible directions, D; is the direction which will produce the largest
variance by projecting points onto it. D; is the direction in the space perpendicular to
D; which will produce the second largest variance by projects onto it. In general, D;
1 £i < pis the direction in the space perpendicular to Dy, ..., Di.; which will produce
the i*" largest variance by projecting points onto it. Because g <p and D;and D, 1 #
j» are perpendicular to each other, the PCA objective, reducing the dimension and

simplifying the data, are attained.




Correlation Matrix vs. Covariance Matrix

In practice, it often occurs that different elements of the original data set are
measured in completely different types of units which in turn results in widely different
variance among variables. For example in the NSN data [ George, 1996], the standard
deviation for MAN-HR, FAILURES, COST, CANN and MIC_HRS are 1315.3927,
70.0615, 47539.789, 17.3814 and 7347.9464, respectively. The principal components
based on the covariance matrix are given in Table 1.

The first component is a slight perturbation of the single variable COST which
has the largest standard deviation, the second component is almost the same as the

variable MIC_HRS with the second highest standard deviation, the third component is

Table 1. Principal Components Based On the Covariance Matrix for Five Variables

Component Number 1 2 3 4 5
MAN-HR (X1) 0.0275 -0.0007  0.9976 -0.0570  -0.0274
FAILURES (X2) 0.0012 0.0001 0.0539 0.9934 -0.1009
COST (X3) 0.9995 0.0159  -0.0275  0.0003 0.0006
CANN (X4) 0.0003 -0.0002  0.0329 0.0993 0.9945
MIC_HRS (X5) -0.0159  0.9999  0.0011 -0.0002  0.0002
Eigenvalue 2.26E9 547E7  1.69E4 1614.75  71.7292

also almost the same as the variable MAN_HRS with the third highest standard deviation,
and so on. Also the eigenvalues for components almost equal the variances of the

corresponding variables. The variance for COST is 2.26E9, the first eigenvalue is also
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2.26E9. Thus the first five components for the covariance matrix tell us almost nothing
apart from the order of sizes of the variances of the original variables. Also even in the
same data set, for example, the above data set, if the units of cost were changed to
thousand dollars, then the variance for it will change to 2.26E3. The PCs also changed
proportional to the change in the variance(Table 2). So the drawback of PCA based on
the covariance matrices is the sensitivity of the PCs to the units of measurement used for
each element [Jolliffe, 1986). Also another drawback for covariance matrices is that due
to the widely different variance, the covariance among the variables are relatively small
which cause the loss of information for the covariance due to roundoff errors because of
the inherently inaccurate computation of computer. So weighted covariance matrices are
used to eliminate this shortcoming. Most of the time standardized variables (the original
data divided by standard deviation of the variable) are used. Then the covariance matrix
for standard variables changes to correlation matrix of the original variables. The
principal components for the NSN data set using correlation matrix are listed in Table 3.
The first component has moderate-sized coefficients for four of the five variables. The
other components except for the second also have moderate-sized coefficients for several
variables. The eigenvalue of the first PC for the correlation matrix shows that certain
non-trivial linear functions of the standardized variables account for 71%, although less
than proportionate, 94%, of the first PC for the covariance matrix in the original
variables, proportion of the total variation in the standardized variables.

All the properties for the covariance are still valid for the correlation matrices,
except that we are now considering PCs of the standardized variable, instead of the

original variable [Jolliffe, 1988]. Although the PCs for the correlation matrix are from

11



Table 2. Principal Components Based On the Covariance Matrix for Five

Variables after the Units of Cost Changed

Component Number 1
MAN-HR (X1) -0.0191
FAILURES (X2) -0.0006
COST (X3) -0.0007
CANN (X4) -0.0004
MIC_HRS (X5) 0.9982
Eigenvalue 5.53E7

2

0.9981

0.0438

0.0359

0.0107

0.0192

1.72E6

3

-0.0445

0.9937

-0.0043

0.1023

-0.0002

1617.15

0.0015

-0.1010

-0.2097

0.9725

0.0002

82.04

-0.0365

-0.0189

0.9771

0.2088

0.0000

19.29

Table 3. Principal Components Based On the Correlation Matrix for Five Variables

Component Number 1

MAN-HR (X1) 0.5142
FAILURES (X2) 0.4831
COST (X3) 0.5106
CANN (X4) 0.4841
MIC_HRS (X5) -0.0851
Eigenvalue 3.5511

2

0.0546

0.0880

0.0609

-0.0357

0.9921

0.9881

3

-0.4582

0.4989

-0.5085

0.5306

0.0313

0.2652

4

0.0438

-0.7141

-0.0113

0.6932

0.0866

0.1912

5

-0.7217

-0.0092

0.6906

0.04732

-0.0002

0.0042

the standardized variable, the eigenvalues and eigenvectors of the correlation matrix have

no simple relationship with the corresponding covariance matrix. The PCs for covariance

and correlation do not give equivalent information, nor can they be derived directly from

12




each other{Jolliffe, 1986]. If the units for all the variables are the same, covariance are

preferred for PCs.

Application of Principal Component Analysis

The beginnings of principal component analysis are probably to be found in the
works of Karl Pearson in 1901 [Johnson and Wichemn, 1982]. The statistical properties of
principal components were investigated in detail by Hotelling in 1933 [Jolliffe, 1986].
Many researchers [Anderson, 1984; Jolliffe, 1986] have given comprehensive
expositions. Since then, PCA has been applied in agriculture, biology, chemistry,
climatology, demography, ecology, economics, food research, geology, psychology and
quality control and other areas [Ahamad, 1967; Bailey, 1956; Cahalan, 1983; Chang,
1988; Cochran and Home, 1977; Dawkins, 1989; Jolicoeur, 1959; Jolicoeur and
Mosimann, 1966; Kloek and Mennes, 1960; Lee and Chang, 1976; Rao, 1964; Sloan,
1983; Wold, 1976]. In the following paragraphs, the author reviews some typical
applications of PCA.

Principal Component Analysis combined with factor analysis was used to
interpret the data in biology and economics and other areas [Johnson and Wichern, 1982,
Jolliffe, 1986]. In biology, the growth of animals are determined by two different
unobservable factors: genetic and environmental. Bailey [Bailey, 1956] using principal
components analysis combined with factors successfully explained the morphogenetic
changes of mice according the observable characters (size and weight ). Principal
components were also used as the intermediate step in discriminant analysis, cluster

analysis and canonical correlation analysis [Duchene and Leclercq, 1988; Jeffers, 1967;
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Jolliffe, 1986; Johnson and Wichern, 1982; Lachenburch, 1975; Sloan, 1983]. In these
applications, the principal component analysis is used to reduce the data. Dawkins
[Dawkins, 1989] used principal component analysis to find the first principal component
which was used to rank the world track performance based on the national track records.
The analysis has an intuitively satisfying interpretation and illustrated well the application
of the principal component analysis in areas where judgments are not easy to come by.
Principal component analysis has been used in allocating multi-attribute records
on several disks so as to achieve high degree of concurrency of disk accessing when
responding to partial match queries [Chang, 1988]. The first principal component of a
record-query incidence matrix was used to rank the records and then similar records were
allocated to different disks. It was found that the average response time of retrieval was
less than that for random allocation. This method is very good for parallel searching.
Principal component analysis was also used in multikey searching [Lee and
Chang, 1976]. When the records are in the form of vectors and each key is in numerical
form, principal component analysis can be used to create new keys from a set of old keys.
These new keys were useful in narrowing down the search domain. The first principal
component could be viewed as hashing addresses for the best-match searching problem.
Instead of having to read in all the prototypes, one only had to read a few samples,

resulting in a tremendous saving of the secondary storage device access time.

Computation of Eigenvalue and Eigenvector
Due to the differences in the properties of the matrix (symmetric and asymmetric,

sparing and unsparing), requirement of calculation, flexibility of calculation, and

14




hardware and software availability, many methods (Power Iteration, Hessenberg and QR
methods, QZ algorithm, Jacobi Method, Divide and Conquer Methods and Lanczos
Methods) were invented to compute the eigenvalues and eigenvectors [Golub and Van
Loan, 1993; Johnson and Amold, 1989]. But here the author explains three methods: the

Power method, the QR method and the Bisection method with Hessenberg form.

1. Power Method

The easiest method for calculating the largest eigenvalue and corresponding
eigenvector is power method which uses an iterative procedure to estimate the dominant
eigenvalue of a matrix. Suppose that A is an (n x n ) matrix and A has eigenvalues A, A,,
A3, ... JAq, with corresponding eigenvectors uy, U, Us, ... ,Up; SO

Al.lj=ljll}' 1 Sj <n

We assume that { uy, uy, us, ... ,u,} is a set of linearly independent vectors. Let us choose
some initial vector vg, where vo #6, and let v; = Av;.,. By our linear independence

assumption we know that vp can be expressed in the form

Vp=au; + au; + azusz + ... + au,

v = Avp, then

v) = 3jAu; + aAw, + azAus + ... + 3,Au,

= a[lllh + az}.zllz + a3?t.3l13 + ok an?.,,un

vy = Av, = au'\.]Aul -+ azlellg + a3l3Au3 +.u+ anl.nAl.lﬂ

15



=a My + A7 + asha%us + ... + 2 AU,

Vi=A vV = a;?\.l"u] + azlzkuz + 3.313*1!3 Fiu anln"u,.

Now suppose the eigenvalues are ordered so that I 1 2 Ayl 21512 ... 2 1A,

V=M (2 + 2R/ uy + a3(Aa/A)  us + ... + a,(A/A) u,)

if IA;] > A5l , then the terms (A/A;)* are small for large k, where 2<i<n.

If a; # 0, then
Vi = &;qul.l]
To obtain an estimate to A; , we utilize two vectors v, and v, calculated iteratively,
where we expect that
k+1
Vier =aA

Now if we form the quotient

Pi= Wi/ wivg, where w is any vector such that wiu, #0,

k T
Bk =WTV;¢+;!'WTW¢ = l|k+| ainll] /;\.1 aawu = 1.1 s

16




The approximation in the above formula is the essence of the power method.
With respect to the above formula, we note that the reasonable choice for w is the vector
vi itself. This choice leads to the approximation
Bk = Vi Viss/ Vi Vi = Ay

It can be shown that if a; # 0 and IA| > IA,l , then limit value of B, is,

lim Bk =M.

k=00
Generally, a scaling method is used to find the eigenvector and avoid the overflow. The

scaling is shown below:

vl =1.
Ly = A v
T
Bk = Vi Zker = A

Vie) = Zia1 Mzgsll

In summary, the power method proceeds as follows:
1. Guess the initial vector zg, vo = 2o /lizgll.
2. Form the sequence z, = A v;.; , k=1, 2, ...
3. For each k calculate the By = v, 'z, Vi =z Nzl
Then By converges to the dominant eigenvalue, that is the largest in absolute value, of the
matrix A.
The power method has several severe restrictions and shortcomings. The choice

of an initial vector vo must make sure that a; # 0. This method is only suitable when A

17




has a single dominant eigenvalue, I\l > [A,l . Also the method can find just the dominant
eigenvalue and the corresponding eigenvector. In practice, the usefulness of the power
method depends on the ratio IA,l/IA1 , since it dictates the rate of convergence. Moreover,
it is typically the case in applications where the dominant eigenvalue and eigenvector are
desired. Note that the only thing required to implement the power method is a subroutine
capable of computing matrix-vector products. It is not necessary to store A in an n-by-n
array. For this reason, the algorithm can be of interest when A is large and sparse and

when there is a sufficient gap between IA;l and A, [Golub and Van Loan, 1993].
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2. Hessenberg and Inverse Power Method
Another basic method is to reduce A to Hessenberg form, H, to find the estimates
of the eigenvalues of A from H and then apply the inverse power method to the original
matrix A to refine these estimates by iteration.
We know that eigenvalues are calculated using
p(t) = det (A - tI)
The roots of p(t) = O are the eigenvalues of A. The polynomial p(t) may be difficult to
calculate. If S is a nonsingular n x n matrix and B= S"'AS, then the eigenvalues for B are
given by:
p(t) = det (B - tI) = det (S'AS - tI) = det (S'AS - t §7'S)
=det [S"'(A - t)S] = det (™) det(A - tI) det(S)
=det (S™') det(S) det(A - tI) = det(A - tI).
which are the same as that for A. So, A is generally reduced to Hessenberg form, a
simpler form to compute the eigenvalues of A. Householder transformations are used to

transform A into Hessenberg form. The Householder matrix is

Q=1-2uu"/u"u

where u is a nonzero vector in R" and 1 is an (n x n ) identity matrix.

QQ = - 2uu"u"u)(I - 2uu/u"w)

=1-2un"/u"u - 2un’/u"u + (ZuuT!uTu)(2uuT/uTu)

19



=I-2un"u"u - 2uu"uu + 4(uuTuuT)/(uTuuTu)
=1-2uu"u"u-2uu"u"u + 4(uuT)( uTu)/ (uTuuTu)
=1-2un"/u"u - 2uu"uTu + 4(uuT)f (uTu) =1

So Q'=Q

Qx =(I - 2uu"/u"w)x = x - 2uu"x/u"u = x - 2(u"x/u"wu
=X-yu
where Y= 2u'x/u’u and x is a nonzero vector.
A=[A, Ay ..., Al
QA =[QA, QA;, ..., QA,]
QA=A - %u T =2u"A /u'u
u = [u), up, us, ..., Un]T
For any non-zero vector v = [v,, v, V3, ..., v,,]T,
choose
u; =up; =u3=uy; =0 and
Uk =Vg-S
where

S=F (V2 + Vi 12 + Viggo + ... + V)

the sign of s to be chosen so that vys <0
and

u; = V; fori=k+1,k+2, ..., n.

20




then
QV= v-u= [Vl, V2, . VK15 S, 0, 0, ...O]T

so using this method the matrix A can be transformed to Hessenberg form.

Qn-2Qn-1 ---Q2Q1AQ|-!Q2'l...Qn,I'l Qn‘2'|
=0Qn2011.-Q:20A0:Q:..Q,.,Q,2=H

The method to estimate the eigenvalues for a symmetric H is easier than that for a
non-symmetric H. Generally bisection method is used to estimate the eigenvalues of
symmetric H and QR method for non-symmetric H. Bisection and QR algorithms are

explained below:

I) Bisection Method

Suppose H is an (n x n ) symmetric Hessenberg matrix. Then H is tridiagonal and

has the form

_dl b, 0 0
b d, b, 0
0 b, d, b -
0 0 b, d. b,
H,=|0 0 0 p, d,

o o O O O
o O O O QO

0 0 0 0 0 0p, d._ b.,
0 0 0 0 0 0 bn—-l dﬂ
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Suppose we define the sequence of polynomials [Jacob, 1995]

Po(t) = 1

pi(t) =d, - t=det (H,-tI)

PoD) = (dz - 1) Pi(t) - by? po(t) = det (Ho-tT)
pi(t) = (di - 1) Pii(t) - biy” pia(t) = det (Hi-th)

Pa(t) = (dp - 1) Pa.1(t) - byt Paa(t) = det (Hy-tI)

pa(t) is the characteristic polynomial for H.
If the subdiagonal entries by, by, ..., by, are all nonzero, then the algorithm is as
follows:
1. Let ¢ be some real number.
2. Calculate the values of po(c), pi(c), pa(c), ..., pa(c).
3. Let N(c) be the number of agreements in sign in the sequence po(c), pi(c), p2(c), ...,
Pa(©).
4. N(c) is equal to the number of roots of p,(t) = O that are in the interval [c, oc).
In the event that py(c) = 0 for some k, we take the sign of pi(c) to be that of py.i(c).
To use the above algorithm for computational purposes, we would first determine an

interval [a, b] that contains all the roots of p,(t) = 0; generally
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Il < (El,d + 225?}05

where [Al is the maximum range between a and b.

Next, let c be the midpoint of [a, b]. If N(c) > N(b), then there is at least one eigenvalue
in [c, b]. Let d be the midpoint of [c,b]. If N(d) > N(b), then there is at least one
eigenvalue in [d, b]; on the other hand, if N(d) = N(b), then any eigenvalue in [c, b] must
in [c, d]. In this fashion, by repeatedly halving and testing subintervals we can determine
a small subinterval [r, s] that contains N(r) - N(s) eigenvalues of H. This process can be
terminated when we have determined k small subintervals, I;, I, I, ..., I, whose union
contains all the eigenvalues of H. The midpoint of subintervals are the estimates of the

eigenvalues.
II). QR algorithm for non-symmetric Hessenberg matrix

For a given ( n x n ) Hessenberg matrix H, let H" = H. For each positive integer
k, using the same algorithm that transforms a ( # x n ) matrix to Hessenberg form

transform matrix H* into an upper triangular matrix R®, Then the matrix H* can be

written as:
H(k) - Q{k)R(k} , (1)

where Q% is an orthogonal matrix [Jacob, 1995] and,
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K K K K K
Q*® = Q™ Qx® Qi Qun™® (2)

Then set

From (1), we can get

& _ (k) ) x) K) 1) _ eyl k
R®=Qu1¥ Qu2® .-Qx™ Quy® HY = (Q¥)y'H®

and

H(lt+l) - REk)Q(I:) = (Q(k))-IH(k}Q{k)

so H®*" is similar to H* . When the above procedure is repeated, H*' will converge to
an upper-triangular matrix with the eigenvalues of H on the diagonal.

Unfortunately, the above approach (Hessenberg Form) may lead to severe errors
due to roundoff during the process of reducing the matrix to Hesserbeng form. To
overcome this difficulty, inverse power method is applied to the original matrix to refine

the estimates by iteration. The inverse power method is explained below:
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3) Inverse Power Method for the Eigenvalue Problem

The inverse power method is nothing more than power method applied to the
matrix (A - ol)™” [ Johnson et. al., 1989]. If o, estimated by H, is a reasonably good
estimate to an eigenvalue A of A, then several steps of the inverse power method will give
a very accurate estimate to A and a corresponding eigenvector. If A is an eigenvalue of A,

then

Au=Au

Au - otu= Au - qu

(A-oDu=(\A-)u

Since a is not an eigenvalue of A, (A - o) is nonsingular; and we can write

(A-oD'u= -

so 1/(A - o) is an eigenvalue of (A - o) and u is a corresponding eigenvector. Suppose
A has eigenvalues A, Ay, ..., A, and o; is a good estimates to A; (1 < i < n), the eigenvalues

of (A - o) are Wy, Wy, ..., do, Where

Wi=1/(h-oy) forl1 <i<n
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if oy = Ay, then W, is the dominant eigenvalue of (A - (1[)", the power method can be used

to compute |l ,

?L] =0y + l/[.l.] .

The same procedure can be used to compute the other eigenvalues and their

corresponding eigenvectors.

Sensitivity Analysis of the Estimates and Decision Systems

Sensitivity analysis consists of identifying the relatively sensitive parameters (i.e.,
those which can not be changed without changing the outcome), try to estimate those
parameters more closely, and then select a solution which remains a good one over the
range of likely values of the sensitive parameters [ Hillier and Lieberman, 1986]. Due to
roundoff errors and finite steps of iteration during the process of estimating parameters,
the eigenvalues and their corresponding vectors will not be accurate. Also the outliers
and influential observation, sampling error, even man-made error during the collection of
data will also make the estimates more questionable. Then the application of these
estimates in decision support systems (here in ranking decision system) will result in
changing the final ranking of the alternatives. In the following sections the author will
briefly explain the influence of roundoff error, outliers and influential data to the

estimates and their influence on the decision system.
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1). Roundoff Error

The advent of the computer has greatly increased the range of problems in which
matrix theory and linear algebra are applicable to find solutions. However, every
computer has computational limitations which result in a potential source of error for
every arithmetic operation in the computer [Johnson et. al., 1989]. In particular, when a
matrix is reduced to Hessenberg form, roundoff error will occur, and the Hessenberg
matrix found by the machine will not be quite what it would be (if exact arithmetic were
used). So the eigenvalues which are estimated from Hessenberg form of A are not the
same as those of the original matrix A (and may differ substantially from the eigenvalues

of A). For example:

1 00 . . . 0 0]
1 0 00
01 1 00
H= ,
0 0 0 . 1 0
0 00 1 1]
(1 0 0 0 €]
110 . 0 0
01 1 . 0 0
H+E=
0 00 1 0
000 1 1
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Then

det(H - tI) = (1-)"
and detH +E - tI) = (1-)" + (-1)™'e
Suppose n=10 and € = 2"'°, then the eigenvalue for H is equal 1 with multiplicity of 10,
but the eigenvalues for H + E are 1.5 or 0.5. A change in H of amount 10 produces a
50% change in eigenvalue. But not every perturbation of entries in H will lead to such a
large change in the eigenvalues. Golub and Van Loan [Golub and Van Loan, 1993] has

done comphensive analysis of perturbation theory for eigenvalues and eigenvectors.

2). Influence of Outliers and Influential Observations on Estimates

During the process of the data collection, some atypical factors {systematic and
random errors) may influence the values of the data set which can, but need not, have a
disproportionate effect on PCs. If PCA is used blindly, then the results can be largely
determined by a few influential observations [Jolliffe, 1986].

Outliers are generally viewed as observations which are a long way from, or
inconsistent with, the remainder of the data [Jolliffe, 1986]. There are two kinds of
outliers: the extreme data on the original variable and the data which does not conform
with the correlation structure of the remainder of the data. It is impossible to detect the
second outlier by looking solely at the original variables one at a time. Numerous
procedures have been suggested for detecting outliers with respect to a single vanables
[Jolliffe, 1986]. Generally, the PCs themselves were used to detect potential outliers.
Gnanadesikan and Kettering [Gnanadesikan and Kettering, 1972] found that the outliers

which inflate variance and covariance can be detected from a plot of the first few PCs.
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By contrast, the last few PCs may detect observations which violate the correlation
structure imposed by the bulk of data, which are not apparent with respect to the original
variables [Jolliffe, 1986]. But in a small sample data set, the best way to detect outliers is
to compute PCs leaving out one (or more) observation(s) [Jolliffe, 1986]. The other
possible methods that can be used to detect outliers are test statistics [Gnanadesikan and
Ketterning, 1972; Hawkins, 1974; Jolliffe, 1986].

Outliers whose removal has a large effect are called influential observations.
Whether or not an observation is influential depends on the analysis being done on the
data set; observations which are influential for one type of analysis or parameter of
interest may not be so for a different analysis or parameter. There are two methods which
can be used to detect influence of the observations. One is removal of the observations;
the other is to use influence function [Jolliffe, 1986]. The two methods matche each
other very well [Jolliffe, 1986]. Jolliffe [Jolliffe, 1986] also found that observations
which were most influential for a particular eigenvalue need not be so for the
corresponding eigenvector, and vice versa. Observations may be influential for PC in the
covariance matrix, but may not be in the correlation matrix. An observation may be
influential for one PC only in covariance matrix, but more than one value in correlation

matrix is likely to be affected because the sum of the eigenvalues remains the same.

3. Sampling Error:
Due to the sampling variation, the eigenvalues and eigenvectors from the sample
covariance matrix will differ from their underlying population counterparts. Some

research on the sampling distribution of the eigenvalues and eigenvectors has been done
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[Anderson, 1984]. Anderson [1963] has developed “large sample distribution theory” for

the eigenvalues and eigenvectors.

4. Sensitivity of Decision Systems

Principal component analysis was applied in one type of decision system which
evaluates and ranks a finite number of alternatives with respect to a finite number of
criteria [George, 1996]. Rank computation depends only on the values of the critical
variables. Therefore the computed weights of the critical variables directly determine the
influence of the variables and the contribution of the variables to the rank computation.
How to weight each criterion and how the weight influences the preference of the
alternatives is a very important aspect in decision support system research. The best
weight value should depict the information of the data. Principal component is a good
way to evaluate objectively each criterion [Dawkins,1989]. But principal components are
influenced by roundoff error, sample data variation and sampling error. How does the
rank value change when the weight changes, and what are the intervals of the weights in
which the final ranking of the alternatives does not change? For example, consider n
alternatives with m criteria. Let the (m x 1) column vector A; denote the values for each
record and let (m x /) column vector W represent the weight value of the criteria. Then

the ranking value for each alternative is

Ri = (A W)/(1'W)
where 1 is the (m x 1) column vector with value of 1 for each element. The relationship

of weight value and ranking can be formulated as below:
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When the weight value for criteria i is wie [w,, wj], the interval of the ranking

value for each alternative is [A;', A;" ] where

A" = max (A,W)/(1™W))  and

A = min (A"W)Y/(1™W))

In fact the above two formulae are linear fractional programming problems. The A;" and
A\ are not necessarily upper bound or lower bound values for W. Much research has
been done for solving this problem [Ben-Israel, 1968; Ben-Irseal and Robers, 1970;
Charnes and Cooper, 1962, 1973; Zionts, 1968]. The detailed derivation and proof will
be omited in this thesis. Ben-Israel and Charnes [Ben-Israel and Chames, 1968] has
proved that the maximum and minimum values are located at the vertices of the convex
volume (denominator).

Sometimes, we may be interested in determining the intervals with the restriction
that the final ranking of the alternatives does not change. Another option is following:
With the restriction that final top 100, 50, 20 or 10 items in the ranking do not change,
what percentage (d) of the weight W can be changed?

Let

w, € [[1 -d)w,,(1+ d)wl.]

where d is the percentage value of weight value that can be changed when the rank does

not change.

31



Then, the largest value of d satisfies the expression:
. AW ALW
minymax| ————— (>0
d|d(1w 1w

where i is the ith alternative in the ranking.

Also, considering a subset of the alternatives in which the change of the final
ranking values is allowed, in what intervals are the weight allowed to vary, and how will
these modifications effect the final ranking values in the entire set of the alternatives? A
similar linear fractional programming problem can be used to solve the above problems.

Up to this point, the author briefly explained the computation and application of
PCA and sensitivity analysis of the decision support systems from the theoretical point of

view. In the next Chapter, the design and implementation of the software will be given.
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CHAPTER III

Design and Implementation

In this thesis, the author has implemented a software package to compute ranking
based on PCA. The software also implemented sensitivity analysis.

As mentioned earlier, there are many methods to estimate eigenvalues and
eigenvectors and to solve linear fractional programming problem. All the methods are
problem-dependent. So, the author has selected algorithms and data structures based on
previous experience. For the data set representation, an observation is viewed as a class
(RowClass). Intuitively, an observation is a row in a matrix, and so, the matrix can be
treated as a collection of instances of RowClass.

As to the computation of eigenvalues and eigenvectors, the bisection method and
the inverse power method were used due to the accuracy of these methods. The
correlation matrix was transformed to a Hessenberg matrix by using Householder
transformations and then the estimates of the eigenvalues were calculated using the
bisection method. The estimates of the eigenvalues and their corresponding eigenvectors

were refined by using inverse power method.
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The computation for linear fractional programming varies depending on the
conditions of the denominator and numerator. Meszaros and Rapcsak [Meszaros and
Rapcsak, 1996] provided a simplex iteration method to do sensitivity analysis. This
algorithm requires O(n log n) arithmetic operations. Ben-Israel and Chamnes [Ben-Israel
and Charnes, 1968] has proved that the maximum and minimum values of the linear
fractional programming problem is located at the vertices of the convex volume. An
algorithm based on the above fact is implemented in this software. Several test data were
used to verify the correctness of this implementation.

The remainder of this Chapter gives the design and implementation. The software
1s implemented as a “project” in MS Visual C++. Software design is described in terms of
C++ classes. Their relationship also is shown as a graph. Key algorithms are also

described.

1. Classes

The project implements the following classes: application class, document class,
main frame class, view class, some dialog classes, row class, table class, matrix class,
square matrix class and sensitivity class. The main framework of the first five classes are
generated by using AppWizard and ClassWizard provided by MS Visual C++
environment. The row class is designed to represent the data for each record and table
class represents the whole data set. The matrix class is used to manipulate and manage
the data set, for example, mulitplication of the data set. The square matrix class is used to
estimate the eigenvalues and eigenvectors for correlation matrix. The attributes and

methods for the last five classes are listed below:
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a. RowClass

Instance Variables:

Array (double) /I Address of an array.

Length (Unsigned) /I Length of the array.
Methods:

RowClass(void);

RowClass(unsigned N); // Initialize array length to N.

RowClass (const RowClass& OrigRow);

/* This is copy constructor. The value of length is set to OrigRow.Length, and the
Array member contains the address of an array that is a copy of OrigRow’s array
(or the NULL address). */

~RowClass(void); // Destructor method.

double& operator[](unsigned i);

/* This function performs the subscript operation on a RowClass object. It returns
the element of the array pointed to by the instance variable Array whose index is i.
*/

RowClass& operator=(const RowClass& RowObj);

/* This function assigns to an instance of RowClass, a distinct copy of RowObj. */
friend ostream& operator<<(ostream&, const RowClass& RowObj);

/* Prints the RowObj to the output stream. */

friend istream& operator>>(istream&, RowClass& RowOb});
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/* Reads a row from the input stream into the RowObj. */

b. TableClass
protected:

Instance variables:

RowNum (unsigned) // Number of rows in the table
ColNum (unsigned) // Number of columns in the table
ChangeRate (double) /! Change in weight
weight (double) // Weight value
Grid (RowClass *) // Address of a table

Public:

Methods:

TableClass (unsigned NumRows, unsigned NumCols, Double InitVal);
TableClass (void);

/* This two constructors set RowNum to NumRows, ColNum to NumCols (their
default values are zero). */

TableClass (const TableClass& Original);

/* This copy constructor returns a copy of original object. */

~ TableClass(void); /I Destructor method, reallocation storage
RowClass& operator[] (unsigned i);

/* This method returns the i™ row of an instance of TableClass. */

TableClass& operator=(const Table* Tan);
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/* The RowNum and ColNum of the target object are set to Tan.RowNum and
Tan.ColNum, respectively. Its data members contain the copies of those of Tan.
*/

double RowSum( unsigned r) const;

/* This method computes the sum of the elements of the r'™ row */

double ColSum( unsigned r) const;

/* The function computes the sum of the elements of the ™ column. */

/* Other ”get” and “set” methods for the data members are also included in
TableClass. */

Boolean Load(const strings& FileName);

/* This function loads the data in the file referred by FileName into the instance
variables of the receiver. If load is successful, the function returns a value of true,
otherwise it returns the value false. */

Boolean Write(const strings& FileName) const;

/* This function writes the data from the TableClass to the file specified by
FileName. */

void WeightValue(double* weight);

/* This function sets the weight value for each criteria. */

void CalculateRankVal (void);

/* This function calculates the rank value for each record. */

void QuickSort (unsigned i);

/* This function sorts the table using i column as key. */
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friend istream& opertor>>(istream& In, TableClass& InTab);

/* The table InTab is initialized appropriately with the number of rows and
columns needed to store the input value. */

friend ostream& operator <<(ostream& out, const TableClass& T);

/* This function overloads the output operator for the TableClass object. */

c. class matrix:TableClass
friend matrix& operator+ (const matrix& matl, const matrix& mat2);
/* This function adds two matrices. */
friend matrix& operator- (const matrix& matl, const matrix& mat2);
/* This function subtracts the matrix named mat2 from the matrix named matl. */
friend matrix& operator* (const matrix& matl, const matrix& mat2);
/* This function multiplies two matrices. */
matrix& operator**(double k) const;
/* This function transforms a matrix into another matrix whose elements are k"
powers of the original elements. */
matrix& operator/(double k) const;
/* This function returns a matrix whose elements are k™ roots of the

corresponding elements of the matrix it receives. */
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d. SquareMatrix: public matrix
Row& DomEigenVect( void) const;
/* This function computes the eigenvector corresponding to the dominant
eigenvalue. */
double DomEigVal(void) const;
/* This function computes the dominant eigenvalue. */
Long double Det(void) const;
/* This functions computes the determinant of a matrix */
SquareMatrix& Diag(void) const;
/* This function transforms a square matrix into a new square matrix whose
diagonal elements are the same as the original matrix and whose off diagonal

elements are all zeros. */

e. class Sensitivity
Instance Varibales:
RowClass* Weight; // The weight for attributes.
RowClass* RankValue, *HighRank, *LowRank;
// The rank, high rank and low rank values for a record.
TableClass *data; //Pointer to the start address of the data set.
SquarMat *correlation;
//Pointer to the correlation matrix of the data set.

TableElement range;
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/! Change in weight with the restriction that the final rank will not be changed.
Methods:

Sensitivity(void);

/* This function constructs the sensitivity class with the default values zero for

scalar instance variables and NULL for address instance variables.*/

~Sensitivity(); // Destructor method, deallocates storage.

/* Two functions “set” and “get” are also defined to set and get instance variables

of the receiver. */

void CalculatePC ();

// This function is used to calculate the rank for each record.

void CalculatePClnterval();

/* This function is used to estimate the maximum and minimum rank values for

each record with the restriction that the weights can be changed within a range. */

void CalculateMaxWeight();

/* This function is used to estimate the maximum range with the restriction that

the final rank will not be changed. */
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2. Software architecture

The relationship among classes and information exchanges is shown in figure 2.

Figure 2 is based on the classes described in the previous section.

has a
Class Table Class Row
isa
Class Matrix
is a has a has a
Class SquareMat
has a

Class Sensitivity

has/

information _

class mainframe

class document

exchange

| class view

-

Figure 2. The relationship among the classes in the project

class dialog

Each observation is stored in a row and the data set has many observations which

are stored in a table. The estimated correlation matrix is stored in a square matrix

represented by the class SqrareMatrix. Weight values and rank values are calculated and

stored in row.
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3. Abstract Level Algorithm

An abstract view of the software control flow is shown in Figure 3.

| Load the Data |

1
[Compute Covariance matrix |

y
| Compute Correlation Matrix |

QAQ''

\

Compute Hessenberg Form

Bisection | Method

Y
Estimate Eigenvalues

Inverse |Power

Y
Compute Eigenvalue and Eigenvector

Y
| Calculate the Rank]

Y
Perform Sensitivity Analysis

Figure 3. Abstract level control flow
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A TableClass variable is declared to store the data in the table. The covariance
matrix and correlation matrix are calculated for the data set. Then the eigenvector and
eigenvalues were estimated for the correlation matrix which were used to calculate the
rank values. Two kinds of sensitivity analyses described in Chapter 2 were done using

the algorithms given in the next section.

4. Key algorithms
a. Rank value interval calculation

(adopted from Meszaro and Rapcsak [Meszaro and Rapcsak, 1996] and modified):
Input: the data set and weight value and their range for each critical variable.

Output: the data set with rank value, high rank value, low rank value.

Forie—1lton { /I n alternatives
WeV // V' is the low bound weight value
G« A™W /I Ai is the standard data for alternative i and G is a
// scalar.
He1W // H is a scalar, the sum of weight value

Sorting the components of Ai, determine a permutation p of (1, 2, ..., m)
such that the sequence {Ai()} is monotone nonincreasing (m is the number
attributes).

forje 1tom { // Evaluate each criteria for each alternative

set ¢ « G/H;
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k — p()); /I The j'h largest component of Ai
if Ai < @ then break; // @ is the maximum value A
else |
W = Vi // V¥is the k™ upper bound weight value.
GG+ Aimw* Vi — Vi)

H « H + (Vi — Viw);

J
This algorithm can calculate the max ((AiTW)f(lTW)), and the min ((AiTW):‘(lTW)) is

estimated by changing the sign of A, .

b. Interval weight value estimation
(adopted from Meszaro and Rapcsak [Meszaro and Rapcsak, 1996] and modified):
Input: the data set with rank value.
Output: the data set with rank value and degree of tolerable weight change.
Sort the rank value in monotone nonincreasing order. Rank(i) > Rank(i+1)

Amin < ]00,

forie—lton-1 {

Die— Ai— Aivi // Ai the standard data of alternatives with
// rank 1.
Gi < ABS(D)) ; // Each component in Gi is greater than or



// equal to zero.

D'V :
A ———x100; // 'V the weight value.
%

if A < Amin then Amin < A ;

¢. Matrix inverse computation
Input: Square matrix A of dimension n
Output: Inverse of A if it exists
Check the matrix’s dimension;
D =det (A);
if (D ==0) return error ;
temp=AllI // A Il B means the matrix [A B]
/1 11s the identity matrix of dimension n.
for (unsigned i=0; i<dimension; i++) {
find the partial pivot value;
if ( pivot row !=1i) then swap the rows;
pivot = temp[i][i];
for (unsigned j=t; i<2*RowNum; j++)
temp[i][j]=temp[i][j}/pivot;
for (j=0; j<RowNum; j++) {
if (j==i) continue;

pivot = temp[j][i]*(-1);
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for (unsigned k=0; k<2*RowNum; k++)

temp[j][k] +=templ[i][k]*pivot;

}

/1 The right half of the matrix temp is the inverse of the original matrix.

46



CHAPTER IV

Results and Discussion

The data published by George [1996] were used as a sample to test the program.
The first PC accounted for 3.54/5=70.8% of the variation in the standard variables. The
weight values of the standard variables are 0.513, 0.484, 0.513, 0.482 and 0.084 for
MAN_HR(), FAILURES(), COST(), CANN() and MIC_HRS() respectively. In fact the
first PC is the average of the first 4 standardized variables (the original value of the
variable divided by their standard deviation). The importance, (i.e. the correlation
between the variable and the first PC [Sarkar, handout in STAT5063, 1997]), for each
standard variables are 0.965, 0.911, 0.965, 0.907 and 0.158 respectively. Also for the
sample data set when the weight varied within 0.4%, the final rank will not be changed.

Figures 4 through 19 illustrate the interface provided by the software. They also
show the results obtained using the test data. Figures 4 and 5 illustrate how to load the
input data. Figure 6 shows the input data. Figures 7 through 11 show intermediate steps
that can be viewed if the user prefers to view them (In the current implementation, the
user is required to go through all steps.). Figure 12 shows the ranked data. Figure 13

illustrates the pull down window interface for sensitivity analysis. Figure 14
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illustrates the window for specifying weight range for sensitivity analysis. Figure 15
shows the minimum and maximum rank values for the change specified for weight values
in Figure14. Figures 16 and 17 show the sorting facility. Figures 18 and 19 show for each

item the percent of weight value for which the ranking will not change.
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Figure 4. The window before loading data
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Figure 6. Data loading window
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petreo e 143244.18 47.00 1166.00
0.00 0.80 9.00 0.00  43530.00
2877.00 186.80  104050.28 55.00 936.00
1051.00 196.00  38000.20 11.00 9581.00
3327.00 91.00 120330.40 32.00 171.00
1861.00 144.00  67323.20 49.00 .00 |
1009.00 181.00  36495.50 6.00 3464.00 ,
2520.00 48.00  91137.50 9.00 4318.00 '
1957.90 100.89  70799.20 30.00 26.00 |
1511.00 104.00  58638.40 38.00 1156.00 '
1680.90 73.00  60765.60 21.08 1530.00 -
Bhk.00 109.00  30520.20 27.60 3%15.00
1560.00 79.00  56407.10 21.98 377.00
1560.00 79.08  56407.10 21.80 0.00
1024.00 84.00  370uB.9Q 25.00 9.00
758.00 51.00  27409.60 13.00 %650.00
8.00 0.00 0.00 8.00  14643.00 '
662.00 84.00  23962.60 38.00 333.00
827.00 58.88  29905.48 12.80 60.80
1368.00 20.00  49473.30 8.00 250.00
875.00 51.08  31634.38 25.00 |
0.00 .00 0.90 10716.80 !
317.08 38.00  11473.18 3119.90 .
266.00 31.00 9628.50 18.00 2890.00 .
266.00 33.00 9639.30 11.08 2593.80 '
649.00 18.00  23881.60 10.00 663.00 '
e.00 0.00 0.09 e.00 5542.80
530.00 18.80  15567.60 10.00 e.00
222.80 3s5.00 8037.00 8.08 8.00 l
669.00 2.0  25205.00 8.00 .00
223.68  33.00  8062.3@ 1.00 123.89 ) B ;
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«= Unhilled - project

his 1s the correlation matrix for the data

1.e08 8.815 1.808 8.803 -0.899 !

2.815 1.000 0.815 9.803 -0.067

1.800 0.815 1.800 8.803 -9.099 |

0.803 0.803 9.883 1.000 -9.165 |
-8.099 -0.867 -0.099 -8.165 1.000

Figure 8. Correlation coefficient window
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Htrix for the data

1.008
8.815 0.803 -0.867

1.000 9.803 -0.099
0.803 0.803 1.000 -08.165 |
-0.899 -0.067 -8.099 -0.165 1.000 [

Figure 9. The window before estimating eigenvalue and eigenvector
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<" Untitled - project

his is the eigenvector fFor the data

8.513 -0.0860 -0.481 8.040 8.707 |
0.484 -0.085 0.h85 -0.737 -0.000 |
0.513 -0.860 -8.481 0.080 -8.707 [
9.4B2 0.040 0.565 0.668 8.000

-Q.085 -0.992 B.841 0.085 8.e00

This 1s the eigenvalve for the data
3.5m 0.989 0.2880 8.194 0.0800

Figure 10. Eigenvalue and eigenvector window
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<"« Unlitled - projectl

- e |

the data
-0.481

— vt 0.k64 -0.737 -0.000

2.513 -0.080 -0.5B1 0.o40 -0.707
0.h882 0.040 0.565 9.668 o.oee
-9.084 -0.992 8.941 8.085 g8.000

[This is the eigenvalue for the data
3.581 8.989 0.280 9.190 8.000

Figure 11. The window before calculating rank value
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<= Untitied - projectl

HAN_HR AILURE COST CANN HIC_HRS Rank

843500 317.88  232764.88 68.00 7538.08 1.A9
3960.00 174.00  143254.10 §7.00 1166.00  0.91
0.80 0.00 8.00 0.00  43530.08  0.08
2877.00 186.00 184050.20 55.00 936.08  9.82
1851.00 196.00  38000.20 11.00 9581.80  0.42
3327.00 91.00 120330.40 32.00 171.00  0.67
1861.00 185.88  67323.28 89.00 2.00  8.62
1009.00 181.088  36495.58 6.00 3464.00  0.36
2520.00 48.80  91137.58 9.00 %318.00  ©.%2
1957.00 100.00  78799.20 30.08 26.00  0.49
1511.00 104.00  5k5638.40 38.00 1156.00  ©8.48
1680.00 73.00  60765.60 21.80 1530.00  0.39 _
844,00 109.00  39520.20 27.00 3515.00  9.36 |
1560.00 79.00  56%07.10 21.00 377.00  9.38
1560.00 79.00  56507.10 21.80 .00 9.38 ‘
1025.00 B4.00  37048.90 24.00 0.90 9.33 i
758.88 51.08 27809 .60 13.00 k450.80 8.22 |
0.00 6.00 0.08 8.00  1h4643.00  ©.03
662.80 Bh.00 23942 .68 38.600 333.08 8.35
827.00 58.80  29905.k0 12.00 60.00  8.22 \
1368.00 20.88  k9573.30 s.00 250.00  0.20
875.00 31634.30 11.00 25.00  0.22 i
0.00 .80 9.00 107156.80  8.02 ,
317.00 11473.10 21.00 3119.00  9.18 :
266.00 9628.50 18.80 2890.80  8.15 :
266.00 9639.30 11.80 2593.88  9.12
649.80 23481.60 10.80 663.00 9.15 |
0.00 .00 8.00 5542.00 ©9.01 !
%30.00 15567.58 9.00  8.12 '
222.00 2037.00 0.00  9.10 |
669.00 25205.00 B.00  98.99 [
223.00 8062.30 123.00  0.07
154.00 ___5562.98

Figure 12. The data and rank window

57



6435.00
3960.00
0.00
2877.00
1051.00
3327.00
1861.080
1009.00
2529.08
1957.00
1511.00
1680.00
844 .00
1560.00
1560.00
1024. 00
758.00
0.00
662.00
827.00
1368.00
875.00
0.00
317.00
266.00
266.00
659.00
0.00
430.00
222.00
669.00
223.00
154.08

186.00
196.00
91.80
1s5.80
181.080
kB.oe
100.080
184.80
73.80
189.00
7%9.080
79.80
B4.00
51.09
p.oe
8h.00
58.88
20.00
51.00
.00
3s.e0
31.80
33.e0
18.80
0.80
18.08
35.80
2.00
33.80

Figure 13. The window before calculating rank interval

cosT
23276h4.80
1432k4.10
a.80
164050.20
38000.29
120330.40
67323.28
36495.58
91137.58
70799.28
54638.48
60765.60
38520.28
56407.18
56407.18
37e48.90
27509.60
0.00
23962.60
29905.k0
h9473.30
31634.30
g.90
11473.18
9428.58
9639.38
23481.680
0.00
15567 .68
8037.00
25285.00
8062.30

___5562.90

CANH
68.00
57.00
0.00
55.00
11.00
32.00
49.00
6.900
9.98
30.90
38.a0
21.08
27.40
21.00
21.00
25.00
13.00
0.00
3e.ae
12.00
.80
11.80
8.88
21.00
18.80
11.00
10.80
9.00
10.80
8.00
8.00
1.0

10.00
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HIC_HRS
7538.00
1166.00
R3530.80
936.00
9581.09
171.09
8.09
Ah6h.00
k318.09
26.00
1156.80
1530.00
ani15.00
a77.08
B.00
8.80
k650.00
186k3.00
333.00
60.00
248.00
25.00
19716.880
3119.00
2870.88
2593.00
a63.00
5542.00
8.e8
8.00
8.00
123.00
1684 . 01

Rank
1.49
M
9.08
0.82
0.52
0.67
8.62
9.36
B.42
2.49
.48
8.39
8.36
8.38
8.38
8.33
8.22
0.03
8.35
8.22
8.20
8.22
8.02
8.18
8.15
80.12
8.15
.
0.12
8.180
.09
0.07
0.07




6535.00
3960.00

a.08
2877.00
10851.08
3327.00
1861.00
1009.00
2520.900
1957.00
1511.080
1680.00
Bhs. 08
1560.00
1560.00
1025.00
758.00

o.o0
662.00
827.00
1348.00
B75.00

.00
317.00
266.00
266.00
649.00

g.00
h30.08
222.00
669.00
223.00
154.00

FAILURE

317.90
175.00
9.080
186.00
196.08
91.00
144 .08
181.40
4B.00
100.00
104.498
73.00
109.408
79.00
79.08
BL.00
51.00
8.00
B4 .08
58.00
20.080
51.00
0.08
38.00
31.08
33.00
18.08
8.00
18.88
35.00
2.00
33.00
6.08

CANN MIC_HRS

232764 .80 és.m0 7538.00 1.49
143244.10 N7.00 1166.00 9.91

0.08 0.00 43530.00 9.08
108050.280 55.80 936.00 0.82
38000.20 11.80 9581.00 9.52
120330.%0 3z.e0 171.08 0.467
67323.20 Ro.00 e.e0 .62
36495.50 6.00 3k6h.00 0.36
21137.58 9.00 h318.00 9.42

-~ nm .- nr mam

Ske3l Choose the Range o1 Weight Value

— e ——

A9473.30 9.80 2h0.00 .20

31634.30 11.80 25.00 .22

a.80 8.8 18716.00 8.02
11473.18 21.00 3119.00 .18
9628.58 18.80 2898.00 8.15
9639.30 11.080 2593.00 0.12
23481.68 663.00 8.15

0.00 5542.00 ".m
15567 .68 8.0p 8.12
8037.00 8.00 a.10
25205.80 8.00 0.9
8062.30 123.98 8.97
5562.98 1684.00 0.87

Figure 14. Weight choose window
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== Untitled - projectl

HAH_HR FAILURE cOST MIC_HRS  Rank H_Rank L_Rank
543580 317.00 23276%.80 68.00 7538.00  1.59 1.5  1.22
3968.00 174.00  143244.10 47.00 1166.00  0.91  0.92  0.7h

.00 .00 0.00 9.00  43530.08 0.08 0.10 Q.07
2877.00 186.00  104050.20 55.00 936.00 0.82  0.83  0.67
1951.80 196.00  38000.20 11.00 9581.08  0.52 6.5  0.38
3327.00 91.00 120330.40 32.00 171.00 0.67  0.68  0.56
1861.80 184.00  47323.20 59.00 9.00 8.62 0.6  9.55
1009.00 181.00  36495.50 6.00 3464.00 0.36 0.39  0.33
2520.080 48.80  91137.50 9.00 4318.00  0.52  0.5%  0.3%
1957.00 100.00  70799.20 30.00 26.00 0.9  0.50  0.k0
1511.680 104.00  54638.40 38.00 1156.08 8.58  0.49  0.43
1680.00 73.00  60765.60 21.00 1530.00 0.39  0.39  0.32

Bk4. 080 109.00  30528.20 27.00 3,815,890  9.36  9.37  8.31
1560.00 79.00  56407.10 21.00 377.00 0.38  0.38  0.31
1560.80 79.00  56407.18 21.90 9.99 9.38  0.38  0.31
1025.80 85.00  370uB.90 25.00 9.00 ©8.33 9.35  0.30

758.80 51.00  27509.60 13.00 %650.80 8.22 9.22 9.20

.00 0.00 0.00 0.00 146h3.00 9.83  0.03  0.02

662.80 84.00  23962.40 38.90 333.00 8.35 8.37  0.30

827.00 58.00  29905.k0 12.90 60.80 0.22 8.23 0.18 .
1368.09 20.80  W9K73.30 0.90 2%0.80 08.28 0.21  0.16 |

875.00 51.00  3163k.30 11.00 25.80 9.22 0.22 0.18

0.00 0.00 9.60 0.08 16716.80 0.92  9.02  0.82

317.00 38.08  11a73.10 21.00 3119.80 98.18  0.19  0.16

266.08 31.88 9628.50 18.00 2899.80 8.15 08.16  8.1A

266.00 33.00 9639.30 11.00 2593.00 8.12  8.13 .11

649.00 18.08  23481.60 10.80 663.08  8.15  8.15  8.13

0.00 0.00 0.00 9.00 5542.00 @.01  0.81  0.81

430.80 18.08  15567.60 0,88 0.12 9.12  68.18

222.00 35.00 8037.80 0.00 8.1 9.09

669.80 2.08  24205.00 0.00 0.10  8.97

223.00 33.00 8062.30 123.00 0.97  0.06

154.80 6.00 5562.90 1684.00 9.08  9.97

Figure 15. Data and rank interval window

60



HAN_HR
643500
3966.00
8.00
2877.00
1851.88
3327.00
1861.00
1809.00
2520.80
1957.00
1511.00
1689.00
845,00
1560.00
1509.00

266.00
649.00

g.00
430.00
222.60
669.88
223.00
154.889

FAILURE

317.00
178.00
8.680
186.00
196.00
91.00
1hh_00
181.00
4B.00
100.00
104.00
73.00
109.00
79.00
79.00
Bh.00
51.08
8.00
B4.00
58.00
20.80
51.00
e.00
38.00
31.00
33.00
18.08
e.00
18.00
35.00
2.8
33.00
6.00

COST CANN MIC_HRS
232764.80 68.80 7538.00 1.59 1.50
153285.10 §7.90 1166.00 8.91 0.92
.00 o.e8 53530.00 9.08 0.1
104050.28 55.80 936.00 0.82 0.83
3sese.28 11.80 2581.080 0.42 9.45
120330.540 3z2.00 171.00 0.67 9.68

67323.20 49.00

Choose the Drder Column and Drder Rule
P —— Y p—————-o p—————

8.00 8.62 0.64

.00 0.00 18716.08 8.82 8.02

11573.10 21.80 3119.00 0.18 8.19
9628.5@ 18.00 8.15 8.16
9639.30 11.00 0.12 8.13

23481.60 10.80 8.15 8.15

0.08 0.80 .0 .

15567.60 10.00 9.12 0.12
8037.08 8.00 0.10 8.11

24205.00 0.0 Lw 8.18
8062.30 1.80 8.97 8.07
5562.90@ 10.80 .97 9.08

Figure 16. Data sort dialog and window
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H_Rank L_Rank

1.22
.74
0.97
.67
8.38
0.56
8.55
0.33
4.36
9.40
8.43
0.32
8.31
9.31
.31
0.38
.20
0.02
.38
8.18
8.16
0.18
8.02
0.16
8.1y
.11



== Untitled - project!

! FAILURE coSsT MIC_HRS Rank H_Rank L_Rank
6435.00 317.88 232764.80 68.00 7538.00 1.49 1.58 1.22
a960.00 174.00 143254 .10 47.00 1166.80 0.91 0.92 0.74
2877.00 186.00 105050.20 55.00 936.00 8.82 8.83 0.67
33z7.m 91.00 120330.40 32.00 171.080 0.67 9.68 0.56
1861.00 185 .80 67323.20 h9_ 08 B.00 8.62 8.64 8.55
1511.00 105.00 5h638.40 3B8.00 1156.00 0.58 0.49 9.43
1957.00 100.88 70799.20 3e.00 26.00 0.89 8.58 9.40
2520.00 k8.00 921137.50 9.00 k318.00 0.42 0.44 0.36
1051.00 196.00 368000.20 11.00 9581.00 0.42 B.45 9.38
1680.00 73.00 60765.60 21.00 1539.00 8.39 0.39 0.32
1560.00 7%.m 56407.10 21.00 arz.me §8.38 5.38 2.9
1560.00 79.00 S56407.10 21.00 0.00 8.38 8.38 2.3
1089.00 181.08 36495.50 6.00 3u6h.00 8.38 8.39 8.33 |

Bhy .00 109.00 30520.20 27.00 B8.36 8.37 0.31
662.00 B5.00 23962.60 3B.080 8.35 8.37 8.30
1025.00 84.00 370h88.90 25.00 8.33 8.3% 8.30
B27.00 58.00 29985.40 12.00 8.22 8.23 .18
758.00 51.00 27409.60 13.00 9.22 8.22 8.20 |
875.09 51.80 31635.30 11.00 0.22 0.22 0.18
1368.00 20.00 §9473.30 0.00 250.00 8.20 .21 8.16 5
3M7.m 38.00 11473.19 21.00 J119.a0 8.18 8.19 B.16
266.00 31.00 9628.50 18.00 2890.00 8.15 8.16 0.1%
649.00 18.018 23481.68 10.880 663.80 8.15 68.15 8.13
266.00 33.00 9639.30 11.00 2593.00 8.12 8.13 0.11
&30.00 18.80 15567.60 10.90 0.80 8.12 8.12 8.19
222.00 35.00 B037.00 B.00 8.00 8.18 8.1 8.89
669.00 2.00 242085.90 0.8 .80 8.09 8.18 .87
6.00 g.80 p.op 0.0 §3530.00 0.08 8.10 8.07
154.00 6.00 5562.90 10.00 1684 .00 .87 5.08 .
15800 6.00 5562.90 23.00 807 5.08 0.06
223.m8 33.00 B042.30 123.08 0.87 097 0.96
165.00 28.00 5978.90 72.00 0.e5 8.06 8.085
126.80 17.688 k564.70 178.00 0.84 8.0 8.03

[: R o RN L1 A A SR R RIS # 3 e ST ST ot 6 S A #, 32 0| a3
Figure 17. Sorted data and rank window
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HAN_H
643500
3960.00
2877.00
3327.00
1861.80
1511.00
1957 .00
2520.00
1051.00
1689.00
1560.00
1560.00
1009.00

B44.00

662.08
1024.00

827.00

758.00

875.08
1368.08

317.00

266.00

649.08

266.00

430.00

222.00
669 .00

g.o0

154.00
154.00
223.00
165.00
126.00

317.80
174.00
186.00
91.00
1a4.00
104.00
180.00
48.00
196.90
73.00
79.08
79.00
181.00
109.00
BL4.00
Bhk.00
58.e8
51.00
51.00
20.00
38.00
31.00
18.08
33.00
18.@8
35.80
2.00
9.00
6.00
6.00
33.m
28.00
17.80

232764.80
153244.10
104050.20
120330.40
67323.20
54638.40
70799.20
91137.50
38000.29
60765.69
56407.10
56407.10
36495.50
30520.20
23962.60
37048.90
29905.40
27409.60
31634.30
h9473.30
11473.180
9628.50
23481.68
9639.30
15567.60
8037.00
25205.00
0.00
5562.90
5562.90
8862.30
5978.98
456h.70

68.00
&7.00
55.00
3z.00
49.80
38.00
3e.00

2.00
11.00
21.00
21.00
21.00

6.00
27.00
38.400
24.00
12.68
13.00
11.00

9.q0
21.00
18.00
10.680
11.00
10.80

B.g0

8.e8

8.e0
16.00
10.80

1.00

.80

e.80

MIC_HRS
7538.00
1166.00
936.00
171.00
8.00
1156.00
26.00
%318.00
9581.00
1530.90
ar7.00
0.
3Ju6h. 00
3n15.00
333.80

663.00
2593.00
9.08

&3530.00
1688.00
23.00
123.00
72.00
178.00

Rank H_Rank

1.49
0.91
0.82
0.67
0.62
[}
]
0
e

1.58
0.92
0.83
2.68
9.64
0.489
0.58
D. Ly
.45
.39
.38
.38
.39
.37
37
8.34
9.23
9.22
8.22
.21
8.19
9.16
8.15
0.13
8.12
8.11
a.19
9.10
8.88
0.08
9.07
9.06
9.04

20000000
sasessse

[Eakcudaia e rariod of e woiahd alon ¥asiotion vth reabichon Thatit ik vl o Ehanced LU T Y S S M T ]
Figure 18. The window before calculating weight interval
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~= Unhitled - projectl

This is the maximun weight value: .40, that the final rank will not changed.

MAN_HR FATLURE COST CANN MIC_HRS Rank H_Rank L_Rank WT %
6435.00 317.00 232764 .80 68.00 7538.00 1.49 1.50 1.22 100.60
3960.09 174.08 153254 .10 57.00 1166.08 8.91 8.92 0.74 §7.10
2877.00 186.00 104050.20 55.00 936.00 0.82 0.83 0.67 57.54
3327.00 91.080 120330.40 32.00 171.00 0.67 0.68 0.56 15.52
1861.00 145.00 67323.20 K9.00 0.00 .62 D.64 B0.55 B3.h0
1957.00 160.00 70799.29 30.00 26.00 B.49 0.50 0.k0 14.86
1511.00 105.00 Su638.40 38.00 1156.00 0.48 0.49 0.43 18.29
2520.00 LB.08 91137.580 9.00 &318.00 0.42 0.54 B8.36 8.h8
1051.80 196.00 3Bpoe.20 11.00 9581.00 0.42 0.55 0.38 18.07
1680.00 73.00 60765.60 21.00 1538.00 8.39 9.39 9.32 k4 .12
1560.00 79.00 S6407.10 21.90 377.00 0.38 9.38 0.31 100.00
1560.008 79.00 56407 .18 21.00 e.00 0.38 8.38 B.31 6.4y
1009.00 181.00 36K95.50 6.00 3464 .00 0.36 0.39 8.33 3.62

Buah. @B 109.00 30528.20 27 .00 315.80 9.36 0.37 8.9 6.72

662.00 84.00 23962 .60 38.00 333.m0 8.35 0.37 8.30 16.29
1024.08 B85.00 37848.99 24.00 8.00 2.33 8.3% 0.38 99.80

B27.00 58.00 29905.40 12.00 60.00 9.22 8.23 8.18 12.87

758.00 51.68 27h09.60 13.00 4650.00 0.22 8.22 8.20 B.35

875.00 51.00 31634.30 11.08 25.00 0.22 0.22 9.18 1%.58
1368.00 20.00 59573.30 0.00 250.00 0.280 8.21 9.16 5.15
317.00 38.00 11473.10 21.00 3119.00 0.18 0.19 8.16 100.00

266.00 31.00 9628.50 18.00 2890.00 8.15 8.16 8.1% 6.00

6u9.00 18.00 23n81.60 10.00 663.00 8.15 8.15 8.13 az.21

266.00 33.00 9639.380 11.00 2593.00 8.12 8.13 8.1 11.35

830.00 18.00 15567 .60 10.00 0.oo0 g.12 B.12 a.10 29.97
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Figure 19. Data, rank interval and weight interval window



CHAPTER V

Conclusion and Future Work

In this thesis, a decision support system based on PCA is developed. The system
provides a GUI to view results. The software is implemented using MS Visual C++. The
software loads data from a file and ranks them. It also provides methods for performing
sensitivity analysis on the ranking.

From the sample data we can find this method is a good way to objectively
evaluate and interpret the data to generate accurate and correct information for a manager
to make effective decisions. Due to the limitations on accessing actual data sets, the
author could not perform extensive tests of the model. Further tests and enhancements

are suggested as future work.
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