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CHAPTER I 

Introduction 

Decision support systems are software which are used to develop insight into 

system behavior and help managers to make effective plans and decisions. Simulation 

and modeling are the basic weapons which are used to simplify the problem, abstract 

system behavior, state and explore the relationship among the components of the system, 

understand system essence and behavior, predict the results and utilize knowledge to help 

decision maker to make high quality decisions. One type of decision support system 

addresses the problem to select a choice from many alternatives [George, 1996]. In other 

words, the problem is to evaluate and rank a finite number of alternatives with respect to 

a finite number of criteria. Rank computation depends on the values of the criteria 

variables and their weight values which directly determine the influence of the variables. 

How to weight each criteria and how the weights influence the preference of the 

alternatives is a very important part in decision research. Much research has been done in 

this area, but most of it is subjective. The best weight value should depict the 

information of the data set and system behavior. 

Principal component analysis (PCA) can reduce the dimensionality of the data set 

and simplify the interrelated variables while retaining most of the information presented 



in the data set. Much research has indicated principal component analysis has an 

intuitively satisfying interpretation and illustrated its application in areas where 

judgments are not easy to come by [Ahamad, 1967; Bailey, 1956; Cahalan, 1983; Chang, 

1988; Cochran and Home, 1977; Dawkins, 1989; Jolicoeur, 1959; Jolicoeur and 

Mosimann, 1960; Kloek and Mennes, 1960; Lee and Chang, 1976; Rao, 1964; Sloan, 

1983; Wold, 1976]. Dawkins [Dawkins, 1989], using the first principal component of the 

national track records from principal component analysis. ranked the world track 

perfonnance. But principal components are influenced by roundoff error, sample data 

variation and sampling error. How the rank value changes when the weight is changed 

and what are the intervals of the weights with the restriction that the final ranking of the 

alternatives does not change? The objective of this research is to explore the application 

of PCA in decision support systems and investigate the model behavior under small 

changes in its assumption and its parameters, understand the key variables and their 

relationships which can most affect the model solutions and corresponding decisions, 

validate the model and find better and robust solutions for some particular problems. A 

decision support system is implemented as part of this research. It is implemented using 

the MS Visual C++ programming language under the MS Windows 95 environment. The 

system provides a graphical user interface (GUI) to view results. 

The remainder of this thesis is organized as folJows. Computation of PCA, 

application of the PCA, sensitivity analysis of the decision systems are studied in Chapter 

2. Design and implementation of the system are explained in Chapter 3, also the process, 

class, architecture and key algorithms were briefly explained in this Chapter. The result 
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and the interface were shown in Chapter 4. Chapter 5 gives conclusion and some 

directions for future work. 
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CHAPTER II 

Literature Review 

As mentioned in the previous Chapter, decision support systems are software 

which are used to develop insight into system behavior which in tum help people to make 

effective plans and decisions. Generally, mathematical models are used to simplify the 

problem, describe the essence of the problem, state the relationships between decision 

variables, intermediate variables and outcomes. In large interrelated data information 

systems, reduction of dimension and simplification of the interrelated variables is the first 

and also the most important step to interpret the data, and thus to help people to make 

right decisions. In this literature review, the author will explain the theory of principal 

component analysis and its application in decision support systems. 

Principal Component Analysis and Eigenvalues of Covariance Matrix 

The central idea of principal component analysis (PC A) is to reduce the 

dimension of a data set which consists of a large number of interrelated variables, while 

retaining as much as possible the infonnation presented in the data set [Jolliffe 1986]. 

Let us consider Figure 1, there are 15 observations on two highly correlated variables X, 

and Y. There is considerable variation in both variables, though rather more in the 

direction of X than Y. If the above observations are expressed in another coordinate 
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system, or the points are projected onto D 1 and D2, then we can find that the variation in 

D 1 is increased and variation in D2 decreased. If the observations are different in X and 

Y, then they are different in D 1, but maybe not in D2. Also if the observations are 

different in D 1, then they are di fferent in X and Y. 01 is also an important direction 

because if two points are close on D 1, then it is likely that they are close before they are 

projected onto D 1. This is not the case in D2. Many points which are close on D2 may 

be originally quite far apart. So projections of the points on D 1 are good representations 

of the above observations because we can get most of the information represented by the 

original data set. Why is D 1 better than D2 in expressing the data? Because D 1 

preserves the variation of the data. In general, if the original data are expressed as 

Figure 1. The simple view of PCA 

vectors in a P-dirnensional space, then the transformed data are vectors in a subspace of 

the P-dimensional space. If x is a vector of variables, then dl (the projections of the 
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observations on D 1) can be expressed as a linear combination of the components of x as 

shown in equation (I) below: 

Where 

(1) 

(2) 

d1 is a scalar (a value of one direction in transfered coordinate system) 

alT is a 1 x p vector 

!. is p x p population covariance matrix of x. 

The objective of PCA is to find the direction such that after the points are 

projected onto it, the variance of the projected points is maximized. In other words 

alT!. al is maximized. The maximum of a}I: (XI will be achieved for infinite al. so a 

nonnalization constraint must be imposed for (Xl . The most convenient constraint here is 

atTal=l. 

To maximize a/!.at subject to a/al =1, use the technique of Lagrange 

multipliers [Jolliffe, 1986] and maximize 

(3) 

where A. is a Lagrange multiplier. Differentiation with respect to at gives 
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1: 0.1 - A 0.1 = 0, or 

(1: - Alp) 0.1 = 0, (4) 

where 0 is p x J vector with value of 0 for each element, and Ip is the p x p identity 

matrix. So A is an eigenvalue of 1: and 0.1 is the corresponding eigenvector. Note that 

the quantity to be maximized is 

(5) 

so A must be as large as possible. Thus, 0.1 is the eigenvector corresponding to the largest 

eigenvalue of 1:, and Var(o.lTX) = 0.1 TVar(X)a.] =0.) Tl:o.l = A), the largest eigenvalue. 

A similar theory can apply for samples, for example, if n observations were 

collected from a population with P-dimensional random variables, let X represent n 

observations of P-dimensional random variables, then the projections of n points on the 

direction of 0.1 are 

(6) 

Where DI is the n x 1 vector of the projections of X on D I 

X is the n x p matrix which represents the original sample data 

7 



L 

UI is the projection direction 

(7) 

So the variance of n? is 

Where :E is the p x p covariance matrix of sample XT• The fonnula (8) is the same as 

formula (3). Therefore, the procedure for population matrix can be used to derive the PC 

for the sample covariance matrix. From this we can find that the essence of peA is 

actually to estimate the eigenvalues and eigenvectors of the covariance matrix. 

:E is a p x p symmetric matrix, so there exists a p x p orthogonal matrix P such 

that pT:EP = n where D is a diagonal matrix whose diagonal elements are the eigenvalues 

of:E and the columns of P are the nonnalized eigenvectors of :E. The jlh column of P 

corresponds to the ith PC with variance equal to the diagonal element of D for i = I, ... , P 

[Moser, 1996]. The variance of x (the original data) is the trace of:E, and 

tre:E) = tr e:EI ) = tr (LpTp) = tr ( pT:EP) = tr (D) = Li=l ~ 
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so the variance of the original data is equal to the sum of the eigenvalues. For any integer 

q (1 $ q $ p), if the eigenvectors of the largest q eigenvalues were used as the linear 

transfonnation matrix, then the variance of the transfonned variables will be maximized. 

So the task of PCA is to find the q largest eigenvalues and their corresponding 

eigenvectors. 

In general, let X be a set of points, L be the covariance matrix of X, the rank of L 

be p, Db D2, "., Dp be the eigenvectors of L corresponding to eigenvalues AI, A.20 ... , Ap 

where AI ~ A2 ~ ... ~ Ap. Let IIDjll = 1 for all i. The properties of D/ s are now summarized 

as follows: 

1) All DiTS are mutually orthonomal. That is, D/Dj = 0 for i;¢; j and D/Di= 1. 

2) If the set X of points are projected on to D j , then the variance of the projected points 

on Dj is Ai. 

3) Among all possible directions, DJ is the direction which will produce the largest 

variance by projecting points onto it. D2 is the direction in the space perpendicular to 

D1 which will produce the second largest variance by projects onto it. In general, Di 

1 S i $ P is the direction in the space perpendicular to DJ, ... , D/-1 which wi)] produce 

the ith largest variance by projecting points onto it. Because q $ p and Di and Dj , i ;¢; 

j, are perpendicular to each other, the PCA objective, reducing the dimension and 

simplifying the data, are attained. 
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Correlation Matrix vs. Covariance Matrix 

In practice, it often occurs that different elements of the origina1 data set are 

measured in completely different types of units which in turn results in widely different 

variance among variables. For example in the NSN data [ George, 1996], the standard 

deviation for MAN-HR, FAll...URES, COST, CANN and MIC_HRS are 1315.3927, 

70.0615,47539.789, 17.3814 and 7347.9464, respectively. The principal components 

based on the covariance matrix are given in Table I. 

The first component is a slight perturbation of the single variable COST which 

has the largest standard deviation, the second component is almost the same as the 

variable MIC_HRS with the second highest standard deviation, the third component is 

Table 1. Principal Components Based On the Covariance Matrix for Five Variables 

Component Number 1 2 3 4 5 

MAN-HR(Xl) 0.0275 -0.0007 0.9976 -0.0570 -0.0274 

FAILURES (X2) 0.0012 0.0001 0.0539 0.9934 -0.1009 

COST (X3) 0.9995 0.0159 -0.0275 0.0003 0.0006 

CANN(X4) 0.0003 -0.0002 0.0329 0.0993 0.9945 

MIC_HRS (X5) -0.0159 0.9999 0.0011 -0.0002 0.0002 

Eigenvalue 2.26E9 5.47E7 1.69E4 1614.75 71.7292 

also almost the same as the variable MAN_HRS with the third highest standard deviation, 

and so on. Also the eigenvalues for components almost equal the variances of the 

corresponding variables. The variance for COST is 2.26E9, the first eigenvalue is a1so 

10 



2.26E9. Thus the first five components for the covariance matrix tell us almost nothing 

apart from the order of sizes of the variances of the original variables. Also even in the 

same data set, for example, the above data set, if the units of cost were changed to 

thousand dollars, then the variance for it will change to 2.26E3. The PCs also changed 

proportional to the change in the variance(Table 2). So the drawback of PCA based on 

the covariance matrices is the sensitivity of the PCs to the units of measurement used for 

each element [Jolliffe, 1986]. Also another drawback for covariance matrices is that due 

to the widely different variance, the covariance among the variables are relatively small 

which cause the loss of information for the covariance due to roundoff errors because of 

the inherently inaccurate computation of computer. So weighted covariance matrices are 

used to eliminate this shortcoming. Most of the time standardized variables (the original 

data divided by standard deviation of the variable) are used. Then the covariance matrix 

for standard variables changes to correlation matrix of the original variables. The 

principal components for the NSN data set using correlation matrix are listed in Table 3. 

The first component has moderate-sized coefficients for four of the five variables. The 

other components except for the second also have moderate-sized coefficients for several 

variables. The eigenvalue of the first PC for the correlation matrix shows that certain 

non-trivial linear functions of the standardized variables account for 71 %, although less 

than proportionate, 94%, of the first PC for the covariance matrix in the original 

variables, proportion of the total variation in the standardized variables. 

All the properties for the covariance are still valid for the correlation matrices, 

except that we are now considering PCs of the standardized variable, instead of the 

original variable [Jolliffe, 1988]. Although the PCs for the correlation matrix are from 
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Table 2. Principal Components Based On the Covariance Matrix for Five 

Variables after the Units of Cost Changed 

Component Number 1 2 3 4 5 

MAN-HR (Xl) -0.0191 0.9981 -0.0445 0.0015 -0.0365 

FAILURES (X2) -0.0006 0.0438 0.9937 -0.1010 -0.0189 

COST (X3) -0.0007 0.0359 -0.0043 -0.2097 0.9771 

CANN (X4) -0.0004 0.0107 0.1023 0.9725 0.2088 

MIC_HRS (X5) 0.9982 0.0192 -0.0002 0.0002 0.0000 

Eigenvalue 5.53E7 1.72E6 1617.15 82.04 19.29 

Table 3. Principal Components Based On the Correlation Matrix for Five Variables 

Component Number 2 3 4 5 

MAN-HR (Xl) 0.5142 0.0546 -0.4582 0.0438 -0.7217 

FAILURES (X2) 0.4831 0.0880 0.4989 -0.7141 -0.0092 

COST (X3) 0.5106 0.0609 -05085 -0.0113 0.6906 

CANN(X4) 0.4841 -0.0357 0.5306 0.6932 0.04732 

MIC_HRS (X5) -0.0851 0.9921 0.0313 0.0866 -0.0002 

Eigenvalue 3.5511 0.9881 0.2652 0.1912 0.0042 

the standardized variable, the eigenvalues and eigenvectors of the correlation matrix have 

no simple relationship with the corresponding covariance matrix. The PCs for covariance 

and correlation do not give equivalent information, nor can they be derived directly from 
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each other[Jolliffe, 1986]. If the units for all the variables are the same, covariance are 

preferred for PCs. 

Application of Principal Component Analysis 

The beginnings of principal component analysis are probably to be found in the 

works of Karl Pearson in 1901 [Johnson and Wichern, 1982]. The statistical properties of 

principal components were investigated in detail by Hotelling in 1933 [Jolliffe, 1986]. 

Many researchers [Anderson, 1984; Jolliffe, 1986] have given comprehensive 

expositions. Since then, PCA has been applied in agriculture, biology, chemistry, 

climatology, demography, ecology, economics, food research, geology, psychology and 

quality control and other areas [Ahamad, 1967; Bailey, 1956; Cahalan, 1983; Chang, 

1988; Cochran and Home, 1977; Dawkins, 1989; Jolicoeur, 1959; Jolicoeur and 

Mosimann, 1966; Kloek and Mennes, 1960; Lee and Chang, 1976; Rao, 1964; Sloan, 

1983; Wold, 1976]. In the following paragraphs, the author reviews some typical 

applications of PCA. 

Principal Component Analysis combined with factor analysis was used to 

interpret the data in biology and economics and other areas [Johnson and Wichern, 1982; 

Joll iffe, 1986]. In biology, the growth of animals are detennined by two different 

unobservable factors: genetic and environmental. Bailey [Bailey, 1956] using principaJ 

components analysis combined with factors successfully explained the morphogenetic 

changes of mice according the observable characters (size and weight). Principal 

components were also used as the intennediate step in discriminant analysis, cluster 

analysis and canonical correlation analysis [Duchene and Leclercq, 1988; Jeffers, 1967; 
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Jolliffe, 1986; Johnson and Wichern, 1982; Lachenburch, 1975; Sloan, 1983]. In these 

applications, the principal component analysis is used to reduce the data. Dawkins 

[Dawkins, 1989] used principal component analysis to find the first principal component 

which was used to rank the world track performance based on the national track records. 

The analysis has an intuitively satisfying interpretation and illustrated well the application 

of the principal component analysis in areas where judgments are not easy to come by. 

Principal component analysis has been used in allocating multi-attribute records 

on several disks so as to achieve high degree of concurrency of disk accessing when 

responding to partial match queries [Chang, 1988]. The first principal component of a 

record-query incidence matrix was used to rank the records and then similar records were 

allocated to different disks. It was found that the average response time of retrieval was 

less than that for random allocation. This method is very good for parallel searching. 

Principal component analysis was also used in multikey searching [Lee and 

Chang, 1976]. When the records are in the form of vectors and each key is in numerical 

form, principal component analysis can be used to create new keys from a set of old keys. 

These new keys were useful in narrowing down the search domain. The first principal 

component could be viewed as hashing addresses for the best-match searching problem. 

Instead of having to read in all the prototypes, one only had to read a few samples, 

resulting in a tremendous saving of the secondary storage device access time. 

Computation of Eigenvalue and Eigenvector 

Due to the differences in the properties of the matrix (symmetric and asymmetric, 

sparing and unsparing), requirement of calculation, flexibility of calculation, and 
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hardware and software availability, many methods (Power Iteration, Hessenberg and QR 

methods, QZ algorithm, Jacobi Method, Divide and Conquer Methods and Lanczos 

Methods) were invented to compute the eigenvalues and eigenvectors [Golub and Van 

Loan, 1993; Johnson and Arnold, 1989]. But here the author explains three methods: the 

Power method. the QR method and the Bisection method with Hessenberg fonn. 

1. Power Method 

The easiest method for calculating the largest eigenvalue and corresponding 

eigenvector is power method which uses an iterative procedure to estimate the dominant 

eigenvalue of a matrix. Suppose that A is an (n x n ) matrix and A has eigenvalues 1..1,1..2, 

1..3, ••• ,/..n, with corresponding eigenvectors UI, U2. U3, ... ,Un; so 

We assume that { UJ. U2, U3, ... ,un} is a set of linearly independent vectors. Let us choose 

some initial vector Vo. where Vo -:1=8, and let Vj = AVj.l. By our linear independence 

assumption we know that Vo can be expressed in the form 

VI = Avo, then 

VI = alAu] + a2Au2 + a3Au3 + ... + anAun 

= all..lUI + a2A2112 + a3A3u3 + ... + <tnAnun 

15 



Now suppose the eigenvalues are ordered so that IAII ~ IA21 ~ IA31 ~ ... ~ IAnI , 

if IA]I > IA21 , then the terms (I •. /A])k are small for large k, where 2 $ i $ n . 

If al '# 0, then 

To obtain an estimate to AI , we utilize two vectors Vk and Vk+1 calculated iteratively, 

where we expect that 

Now if we form the quotient 

where w is any vector such that WTUI * 0, 

A T / T '\. hi T I '\ k T '\ 
pk = W Vk+1 W Vk::= 1\.1 alW UI 1\.1 alw Ul = 1\.[ . 
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The approximation in the above formula is the essence of the power method. 

With respect to the above formula, we note that the reasonable choice for w is the vector 

Vk itself. This choice leads to the approximation 

It can be shown that if a, -:;:. 0 and 1,) .. ,1> 11..21 , then limit value of ~k' is, 

Generally, a scaling method is used to find the eigenvector and avoid the overflow. The 

scaling is shown below: 

Zk+l = A Vk 

In summary, the power method proceeds as follows: 

1. Guess the initial vector Zo. Vo = Zo IlIZolt 

2. Form the sequence Zk = A Vk-] , k= 1,2, ... 

A T 3. For each k calculate the pk-l = VIc-l Zt, 

Then ~k converges to the dominant eigenvalue, that is the largest in absolute value, of the 

matrix A. 

The power method has several severe restrictions and shortcomings. The choice 

of an initial vector Vo must make sure that a, -:;:. O. This method is onJy suitable when A 
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has a single dominant eigenvalue, IAII > IA21. Also the method can find just the dominant 

eigenvalue and the corresponding eigenvector. In practice, the usefulness of the power 

method depends on the ratio IA2111Ali , since it dictates the rate of convergence. Moreover, 

it is typically the case in applications where the dominant eigenvalue and eigenvector are 

desired. Note that the only thing required to implement the power method is a subroutine 

capable of computing matrix-vector products. It is not necessary to store A in an n-by-n 

array. For this reason, the algorithm can be of interest when A is large and sparse and 

when there is a sufficient gap between IAII and IA21 [Golub and Van Loan, 1993]. 
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2. Hessenberg and Inverse Power Method 

Another basic method is to reduce A to Hessenberg fonn, H, to fi nd the estimates 

of the eigenvalues of A from H and then apply the inverse power method to the original 

matrix A to refine these estimates by iteration. 

We know that eigenvalues are calculated using 

pet) = det (A - tl) 

The roots of pet) = 0 are the eigenvalues of A. The polynomial pCt) may be difficult to 

calculate. If S is a nonsingular n x n matrix and B= S·I AS, then the eigenvalues for 8 are 

given by: 

pet) = det (8 - tl) = det (S·IAS - tI) = det (S·1 AS - t S·lS) 

= det [S·l(A - tI)S] = det (S·') del(A - tI) det(S) 

= det (S'l) det(S) det(A - tl) = det(A - tl). 

which are the same as that for A. So, A is generally reduced to Hessenberg form, a 

simpler fonn to compute the eigenvalues of A. Householder transfonnations are used to 

transfonn A into Hessenberg fonn. The Householder matrix is 

where u is a nonzero vector in Rn and I is an (n x n ) identity matrix. 

QQ = (I - 2uuTluTu)(I - 2UUT/UTU) 

= I - 2UUT/UTU - 2UUT/UTU + (2UUT/UTU)(2uUT/UTU) 
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So 

= x -"y'll 

where y = 2u T xlu T u and x is a nonzero vector. 

For any non-zero vector v = [VI, V2, V3, ... , vn]T, 

choose 

where 

( 2 2 2 2)0.5 
S = ± Vk + Vk+l + Vk+2 + ... + Vn 

the sign of s to be chosen so that VkS $ 0 

and 

Ui = Vi for i = k+l, k+2, ... , n. 

20 



then 

Qv = v - U = [Vb V2, '" Vk-l, S, 0, 0, ... of 

so using this method the matrix A can be transfonned to Hessenberg form. 

The method to estimate the eigenvalues for a symmetric H is easier than that for a 

non-symmetric H. Generally bisection method is used to estimate the eigenvalues of 

symmetric Hand QR method for non-symmetric H. Bisection and QR algorithms are 

explained below: 

I) Bisection Method 

Suppose H is an (n x n ) symmetric Hessenberg matrix. Then H is tridiagonal and 

has the form 

dl hi 0 0 0 0 

hI d2 b2 0 0 0 

0 b2 d3 h3 0 0 

0 0 b3 d4 b4 0 0 

Hn= 0 0 0 b4 ds 0 0 

o 0 0 0 0 0 bll -2 d II-I bn- I 

o 0 0 0 0 0 ° bn- I d n 
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Suppose we define the sequence of polynomials [Jacob, 1995] 

poet) = 1 

p,(t) = d, - t = det (H,- tl) 

P2tt) = (d2 - t) PICt) - b]2 poet) = det (H2-tI) 

Pi(t) = (di - t) Pi-I(t) - bi_,2 Pi-2(t) = det (Hi-tI) 

Pn(t) = (dn - t) Pn-,(t) - bn_12 Pn-2(t) = det (Hn-tl) 

Pn(t) is the characteristic polynomial for H. 

If the subdiagonal entries b l , b2, ... , bn-, are all nonzero, then the algorithm is as 

follows: 

1. Let c be some real number. 

2. CaJculate the values of Po(c), PICC), P2(C), ... , Pn(c). 

3. Let N(c) be the number of agreements in sign in the sequence poCe), PI(e), P2(C), ... , 

Pn(e). 

4. N(e) is equaJ to the number of roots of Pntt) = 0 that are in the interval [c, oc). 

In the event that PIeCe) = 0 for some k, we take the sign of Pk(C) to be that of Pk-'(C). 

To use the above algorithm for computational purposes, we would first determine an 

interval [a, b] that contains all the roots of Pn(t) = 0; generally 
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where II..I is the maximum range between a and b. 

Next. let c be the midpoint of [a. b] . If N(e) > N(b). then there is at least one eigenvalue 

in [c , b]. Let d be the midpoint of [c,b]. If N(d) > N(b), then there is at least one 

eigenvalue in [d, b]; on the other hand, if N(d) = N(b), then any eigenvalue in [c, b] must 

in [c, d]. In this fashion, by repeatedly halving and testing subintervals we can determine 

a small subinterval [r, s] that contains N(r) - N(s) eigenvalues of H. This process can be 

terminated when we have detennined k small subintervals, 1),12, h, ... , It. whose union 

contains all the eigenvalues of H . The midpoint of subintervals are the estimates of the 

eigenvalues. 

II). QR algorithm for non-symmetric Hessenberg matrix 

For a given (n x n ) Hessenberg matrix H. let H(I) = H. For each positive integer 

k, using the same algorithm that transfonns a ( n x n ) matrix to Hessenberg fonn 

transfonn matrix H(k) into an upper triangular matrix R (k). Then the matrix H(k) can be 

written as: 

(1) 

where Q (k) is an orthogonal matrix [Jacob, 1995] and, 
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Q(k) _ Q (k) Q (k) Q (k) Q (It) 
- (I) (2) (3) (n- I) (2) 

Then set 

(3) 

From (1), we can get 

R (k) _ Q (k) Q (k) Q (It) Q (k) H(k) _ (Q(k})-IH(k) 
- (n-I) (n-2)··· ( 2) (1) -

and 

SO H(k+l) is similar to H{It) _ When the above procedure is repeated, H(k) will converge to 

an upper-triangUlar matrix with the eigenvalues of H on the diagonal. 

Unfortunately, the above approach (Hessenberg Form) may lead to severe errors 

due to roundoff during the process of reducing the matrix to Hesserbeng form. To 

overcome this difficulty, inverse power method is applied to the original matrix to refine 

the estimates by iteration. The inverse power method is explained below: 
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3) Inverse Power Method for the Eigenvalue Problem 

The inverse power method is nothing more than power method applied to the 

matrix (A - aIr i [ Johnson et. al., 1989]. If a, estimated by H, is a reasonably good 

estimate to an eigenvalue A of A, then several steps of the inverse power method will give 

a very accurate estimate to A and a corresponding eigenvector. If A is an eigenvalue of A, 

then 

Au=Au 

Au - au= Au - au 

(A - aI)u = (A - a)u 

Since a is not an eigenvalue of A, (A - aI) is nonsingular; and we can write 

so lI(A - a) is an eigenvalue of (A - aIr l and u is a corresponding eigenvector. Suppose 

A has eigenvalues At. A2, ,." An and a; is a good estimates to ~ (1 $ i $ n), the eigenvalues 

of (A - aIr l are Ill, 112, .'" Iln, where 
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if al == A.I, then III is the dominant eigenvalue of (A - alr t , the power method can be used 

to compute III , 

The same procedure can be used to compute the other eigenvalues and their 

corresponding eigenvectors. 

Sensitivity Analysis of the Estimates and Decision Systems 

Sensitivity analysis consists of identifying the relatively sensitive parameters (i.e., 

those which can not be changed without changing the outcome), try to estimate those 

parameters more closely. and then select a solution which remains a good one over the 

range of likely values of the sensitive parameters [ Hillier and Liebennan, 1986]. Due to 

roundoff errors and finite steps of iteration during the process of estimating parameters, 

the eigenvalues and their corresponding vectors will not be accurate. Also the outliers 

and influential observation, sampling error, even man-made error during the collection of 

data will also make the estimates more questionable. Then the application of these 

estimates in decision support systems (here in ranking decision system) will result in 

changing the final ranking of the alternatives. In the fol1owing sections the author will 

briefly explain the influence of roundoff error, outliers and influential data to the 

estimates and their influence on the decision system. 
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1). Roundoff Error 

The advent of the computer has greatly increased the range of problems in which 

matrix theory and linear algebra are applicable to find solutions. However, every 

computer has computational limitations which result in a potential source of error for 

every arithmetic operation in the computer [Johnson et. aI., 1989]. In particular, when a 

matrix is reduced to Hessenberg form, roundoff error will occur, and the Hessenberg 

matrix found by the machine will not be quite what it would be (if exact arithmetic were 

used) . So the eigenvalues which are estimated from Hessenberg form of A are not the 

same as those of the original matrix A (and may differ substantially from the eigenvalues 

of A). For example: 

1 

1 

0 

H= 

0 

0 

H+E= 

0 0 

1 0 

1 1 

0 0 

0 0 

0 0 

1 1 0 

0 1 

000 

000 
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0 0 

0 

0 

0 

0 
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Then 

det(H - tl) = (I-tt 

and det(H + E - tI) = (I_t)n + (-It+ IE 

Suppose n=lO and E = 2-10, then the eigenvalue for H is equal 1 with multiplicity of 10, 

but the eigenvalues for H + E are 1.5 or 0.5. A change in H of amount 2- 10 produces a 

50% change in eigenvalue. But not every perturbation of entries in H will lead to such a 

large change in the eigenvalues. Golub and Van Loan [Golub and Van Loan, 1993] has 

done comphensive analysis of perturbation theory for eigenvalues and eigenvectors. 

2). Influence of Outliers and Influential Observations on Estimates 

During the process of the data collection, some atypical factors (systematic and 

random errors) may influence the values of the data set which can, but need not, have a 

disproportionate effect on pes. If peA is used blindly, then the results can be largely 

detennined by a few influential observations [Jolliffe, 1986]. 

Outliers are generally viewed as observations which are a long way from, or 

inconsistent with, the remainder of the data [Jolliffe, 1986]. There are two kinds of 

outliers: the extreme data on the original variable and the data which does not conform 

with the correlation structure of the remainder of the data. It is impossible to detect the 

second outlier by looking solely at the original variables one at a time. Numerous 

procedures have been suggested for detecting outliers with respect to a single variables 

[Jolliffe, 1986]. Generally, the pes themselves were used to detect potential outliers. 

Gnanadesikan and Kettering [Gnanadesikan and Kettering, 1972] found that the outliers 

which inflate variance and covariance can be detected from a plot of the first few pes. 
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By contrast, the last few PCs may detect observations which violate the correlation 

structure imposed by the bulk of data, which are not apparent with respect to the original 

variables [Jolliffe, 1986). But in a small sample data set, the best way to detect outliers is 

to compute pes leaving out one (or more) observation(s) [Jolliffe, 1986). The other 

possible methods that can be used to detect outliers are test statistics [Gnanadesikan and 

Ketterning, 1972; Hawkins, 1974; Jolliffe, 1986]. 

Outliers whose removal has a large effect are called influential observations. 

Whether or not an observation is influential depends on the analysis being done on the 

data set; observations which are influential for one type of analysis or parameter of 

interest may not be so for a different analysis or parameter. There are two methods which 

can be used to detect influence of the observations. One is removal of the observations; 

the other is to use influence function [Jolliffe, 1986]. The two methods matche each 

other very well [Jolliffe, 1986]. Jolliffe [Jolliffe, 1986] also found that observations 

which were most influential for a particular eigenvalue need not be so for the 

corresponding eigenvector, and vice versa. Observations may be influential for PC in the 

covariance matrix, but may not be in the correlation matrix. An observation may be 

influential for one PC only in covariance matrix, but more than one value in correlation 

matrix is likely to be affected because the sum of the eigenvalues remains the same. 

3. Sampling Error: 

Due to the sampling variation, the eigenvalues and eigenvectors from the sample 

covariance matrix will differ from their underlying population counterparts. Some 

research on the sampling distribution of the eigenvalues and eigenvectors has been done 
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[Anderson, 1984]. Anderson [1963] has developed "large sample distribution theory" for 

the eigenvalues and eigenvectors. 

4. Sensitivity of Decision Systems 

Principal component analysis was applied in one type of decision system which 

evaiuates and ranks a finite number of alternatives with respect to a finite number of 

criteria [George, 1996]. Rank computation depends only on the values of the critical 

variables. Therefore the computed weights of the critical variables directly determine the 

influence of the variables and the contribution of the variables to the rank computation. 

How to weight each criterion and how the weight influences the preference of the 

alternatives is a very important aspect in decision support system research. The best 

weight value should depict the information of the data. Principal component is a good 

way to evaluate objecti vely each criterion [Dawkins,1989]. But principal components are 

influenced by roundoff error, sample data variation and sampling error. How does the 

rank value change when the weight changes, and what are the intervals of the weights in 

which the final ranking of the alternatives does not change? For example, consider n 

alternatives with m criteria. Let the (m x 1) column vector Ai denote the values for each 

record and let (m x 1) column vector W represent the weight value of the criteria. Then 

the ranking value for each alternative is 

where 1 is the (m x 1) column vector with value of 1 for each element. The relationship 

of weight value and ranking can be formulated as below: 
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When the weight value for criteria i is WiE [wu, WI], the interval of the ranking 

value for each alternative is [Ail, Aiu ] where 

AjU = max ((AiTW)/(lTW)) and 

Ail = min ((A?W)/(lTW) 

In fact the above two formulae are linear fractional programming problems. The A jU and 

Ail are not necessarily upper bound or lower bound values for W. Much research has 

been done for solving this problem [Ben-Israel, 1968; Ben-Irseal and Robers, 1970; 

Chames and Cooper, 1962, 1973; Zionts, 1968]. The detailed derivation and proof wiU 

be omited in this thesis. Ben-Israel and Charnes [Ben-Israel and Chames, 1968] has 

proved that the maximum and minimum values are located at the vertices of the convex 

volume (denominator). 

Sometimes, we may be interested in determining the intervals with the restriction 

that the final ranking of the alternatives does not change. Another option is following: 

With the restriction that final top 100, 50, 20 or 10 items in the ranking do not change, 

what percentage (d) of the weight W can be changed? 

Let 

where d is the percentage value of weight value that can be changed when the rank does 

not change. 
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ow 

Then, the largest value of d satisfies the expression: 

where i is the ith alternative in the ranking. 

Also, considering a subset of the alternatives in which the change of the final 

ranking values is allowed, in what intervals are the weight allowed to vary, and how will 

these modifications effect the final ranking values in the entire set of the alternatives? A 

similar linear fractional programming problem can be used to solve the above problems. 

Up to this point, the author briefly explained the computation and application of 

PCA and sensitivity analysis of the decision support systems from the theoretical point of 

view. In the next Chapter, the design and implementation of the software will be given. 
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CHAPTER III 

Design and Implementation 

In this thesis, the author has implemented a software package to compute ranking 

based on PCA. The software also implemented sensitivity analysis. 

As mentioned earlier, there are many methods to estimate eigenvalues and 

eigenvectors and to solve linear fractional programming problem. All the methods are 

problem-dependent. So, the author has selected algorithms and data structures based on 

previous experience. For the data set representation, an observation is viewed as a class 

(RowClass) . Intuitively, an observation is a row in a matrix, and so, the matrix can be 

treated as a collection of instances of RowClass . 

As to the computation of eigenvalues and eigenvectors, the bisection method and 

the inverse power method were used due to the accuracy of these methods. The 

correlation matrix was transformed to a Hessenberg matrix by using Householder 

transformations and then the estimates of the eigenvalues were calculated using the 

bisection method. The estimates of the eigenvalues and their corresponding eigenvectors 

were refined by using inverse power method. 
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The computation for linear fractional programming varies depending on the 

conditions of the denominator and numerator. Meszaros and Rapcsak [Meszaros and 

Rapcsak. 1996] provided a simplex iteration method to do sensitivity analysis. This 

algorithm requires O(n log n) arithmetic operations. Ben-Israel and Charnes [Ben-Israel 

and Charnes, 1968] has proved that the maximum and minimum values of the linear 

fractional programming problem is located at the vertices of the convex volume. An 

algorithm based on the above fact is implemented in this software. Several test data were 

used to verify the correctness of this implementation. 

The remainder of this Chapter gives the design and implementation. The software 

is implemented as a "project" in MS Visual C++. Software design is described in terms of 

C++ classes. Their relationship also is shown as a graph. Key algorithms are also 

described. 

1. Classes 

The project implements the following classes: application class, document class, 

main frame class, view class, some dialog classes, row class, table class, matrix class, 

square matrix class and sensitivity class. The main framework of the first five classes are 

generated by using AppWizard and ClassWizard provided by MS Visual C++ 

environment. The row class is designed to represent the data for each record and table 

class represents the whole data set. The matrix class is used to manipulate and manage 

the data set, for example, mulitplication of the data set. The square matrix class is used to 

estimate the eigenvalues and eigenvectors for correlation matrix. The attributes and 

methods for the last five classes are listed below: 
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a. RowClass 

Instance Variables: 

Array (double) 

Length (Unsigned) 

Methods: 

RowClass(void); 

RowClass(unsigned N); 

/I Address of an array. 

II Length of the array. 

/I Initialize array length to N. 

RowClass (const RowClass& OrigRow); 

1* This is copy constructor. The value of length is set to OrigRow.Length, and the 

Array member contains the address of an array that is a copy of OrigRow's array 

(or the NULL address). *1 

-RowClass(void); /I Destructor method. 

doubJe& operator[](unsigned i); 

I'" This function performs the subscript operation on a RowClass object. It returns 

the element of the array pointed to by the instance variable Array whose index is i. 

*/ 

RowClass& operator=(const RowClass& RowObj); 

1* This function assigns to an instance of RowClass, a distinct copy of RowObj. * / 

friend ostream& operator«(ostream&, const RowClass& RowObj); 

1* Prints the RowObj to the output stream. *1 

friend istream& operator»(istream&, RowClass& RowObj); 

35 



1* Reads a row from the input stream into the RowObj. "I 

b. TableClass 

protected: 

Instance variables: 

Public: 

RowNum (unsigned) 

ColNum (unsigned) 

ChangeRate (double) 

weight (double) 

Grid (RowClass *) 

II Number of rows in the table 

1/ Number of columns in the table 

II Change in weight 

II Weight value 

II Address of a table 

Methods: 

TableClass (unsigned NumRows, unsigned NumCols, Double InitVal); 

TableClass (void); 

1* This two constructors set RowNum to NurnRows, ColNum to NumCols (their 

default values are zero). *1 

TableClass (const TableClass& Original); 

1* This copy constructor returns a copy of original object. *1 

- TableClass(void); /I Destructor method, reallocation storage 

RowClass& operator£] (unsigned i); 

1* This method returns the jth row of an instance of TableClass. *1 

TableClass& operator=(const Table* Tan); 
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/* The RowNum and ColNum of the target object are set to Tan.RowNum and 

Tan.CoINum, respectively. Its data members contain the copies of those of Tan. 

*/ 

double RowSum( unsigned r) const; 

1* This method computes the sum of the elements of the rth row */ 

double ColSum( unsigned r) const; 

/* The function computes the sum of the elements of the rth column. */ 

/* Other "get" and "set" methods for the data members are also included in 

TableClass. */ 

Boolean Load(const strings& FileName); 

1* This function loads the data in the file referred by FileName into the instance 

variables of the receiver. If load is successful, the function returns a value of true, 

otherwise it returns the value false. */ 

Boolean Write(const strings& FileName) const; 

1* This function writes the data from the TableClass to the file specified by 

FileName. */ 

void WeightValue(double* weight); 

1* This function sets the weight value for each criteria. */ 

void CalculateRankVal (void); 

1* This function calculates the rank value for each record. */ 

void QuickSort (unsigned i); 

1* This function sorts the table using ith column as key. */ 
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friend istream& opertor»(istream& In, TableClass& InTab); 

1* The table InTab is initialized appropriately with the number of rows and 

columns needed to store the input value. *1 

friend ostream& operator «(ostream& out, const TableClass& T); 

1* This function overloads the output operator for the TableClass object. *1 

c. class matrix:TableClass 

friend matrix& operator+ (const matrix& matt, const matrix& mat2); 

1* This function adds two matrices. */ 

friend matrix& operator- (const matrix& matt, const matrix& mat2); 

1* This function subtracts the matrix named mat2 from the matrix named matI. */ 

friend matrix& operator* (const matrix& matt, const matrix& mat2); 

1* This function multiplies two matrices. *1 

matrix& operator**(double k) const; 

1* This function transfonns a matrix into another matrix whose elements are kth 

powers of the original dements. *1 

matrix& operator/(double k) const; 

1* This function returns a matrix whose elements are klh roots of the 

corresponding elements of the matrix it receives. *1 
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d. SquareMatrix: public matrix 

Row& DomEigenVect( void) const; 

1* This function computes the eigenvector corresponding to the dominant 

eigenvalue. *1 

double DomEigVal(void) const; 

1* This function computes the dominant eigenvalue. *1 

Long double Det(void) const; 

1* This functions computes the determinant of a matrix *1 

SquareMatrix& Diag(void) const; 

1* This function transfonns a square matrix into a new square matrix whose 

diagonal elements are the same as the original matrix and whose off diagonal 

elements are all zeros. *1 

e. class Sensitivity 

Instance Varibales: 

RowClass* Weight; /I The weight for attributes. 

RowClass* RankValue, *HighRank, *LowRank; 

II The rank, high rank and low rank values for a record. 

TableClass *data; 

SquarMat *correlation; 

IlPointer to the start address of the data set. 

IlPointer to the correlation matrix of the data set 

TableElement range; 
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1/ Change in weight with the restriction that the final rank will not be changed. 

Methods: 

Sensitivity( void); 

1* This function constructs the sensitivity class with the default values zero for 

scalar instance variables and NULL for address instance variables. *1 

-SensitivityO; /I Destructor method, deallocates storage. 

1* Two functions "set" and "get" are also defined to set and get instance variables 

of the receiver. *1 

void CalculatePC 0; 

/I This function is used to calculate the rank for each record. 

void CalculatePClntervalO; 

1* This function is used to estimate the maximum and minimum rank values for 

each record with the restriction that the weights can be changed within a range. *1 

void CalculateMaxWeightO; 

1* This function is used to estimate the maximum range with the restriction that 

the final rank will not be changed. *1 
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2. Software architecture 

The relationship among classes and infonnation exchanges is shown in figure 2. 

Figure 2 is based on the classes described in the previous section. 

has a 

IS a 

Class Matrix 

is a has a 

Class SquareMat 

Class Sensitivity class mainframe 

has a 
infonnation 

class document exchange class view class dialog 
~-------=--~ ~----~ 

Figure 2. The relationship among the classes in the project 

Each observation is stored in a row and the data set has many observations which 

are stored in a table. The estimated correlation matrix is stored in a square matrix 

represented by the class SqrareMatrix. Weight values and rank values are calculated and 

stored in row. 
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3. Abstract Level Algorithm 

An abstract view of the software control flow is shown in Figure 3. 

I Load the Data 

!Compute Covariance matrix I 

I Compute CorrelatIOn MatrIX I 

QAQ'I 

I Compute Hessenberg Fonn I 

Bisection Method 

I Estimate Eigenvalues I 

Inverse Power 

, 
I Compute Eigenvalue and Eigenvector I 

I Calculate the Rankl 

I Perfonn Sensitivity Analysis I 

Figure 3. Abstract level control flow 

42 



A TableClass variable is declared to store the data in the table. The covariance 

matrix and correlation matrix are calculated for the data set. Then the eigenvector and 

eigenvalues were estimated for the correlation matrix which were used to calculate the 

rank values. Two kinds of sensitivity analyses described in Chapter 2 were done using 

the algorithms given in the next section. 

4. Key algorithms 

a. Rank value interval calculation 

(adopted from Meszaro and Rapcsak. [Meszaro and Rapcsak, 1996] and modified): 

Input: the data set and weight value and their range for each critical variable. 

Output: the data set with rank value, high rank value, low rank value. 

For if-I to n { 

Wf-V' 

II n alternatives 

II VIis the low bound weight value 

1/ Ai is the standard data for alternative i and G is a 

1/ scalar. 

1/ H is a scalar, the sum of weight value 

Sorting the components of Ai, determine a permutation p of (1, 2, ... , m) 

such that the sequence {Ai(p)} is monotone nonincreasing (m is the number 

attributes). 

for j f- I to m II Evaluate each criteria for each alternative 

set <p f- GIH; 
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k f- pm; II The jth largest component of Ai 

if Ai(k) ~ q> then break; II q> is the maximum value A.u 

else { 

W (k) = yUCk) II VU is the kth upper bound weight value. 

G f- G + Ai(k) * (Vu(k) - V'(k); 

H f- H + (V"(k)- VI(k); 

} 

This algorithm can calculate the max «AjTW)/(lTW», and the min «AjTW)/(lTW » is 

estimated by changing the sign of Ai . 

b. Interval weight value estimation 

(adopted from Meszaro and Rapcsak [Meszaro and Rapcsak, 1996] and modified): 

Input: the data set with rank value. 

Output: the data set with rank value and degree of tolerable weight change. 

Sort the rank value in monotone nonincreasing order. Rank(i) ~ Rank(i+ 1) 

Amin f- 100; 

for i f- 1 to n -1 

Dif-Ai-Ai+i; 

Gi f- ABS(Di) ; 

II Ai the standard data of alternatives with 

II rank i. 

II Each component in Gi is greater than or 
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DTV 
A~-' -xlOO' GTV ' , 

if A ~ Amin then A.min ~ A ; 

c. Matrix inverse computation 

Input: Square matrix A of dimension n 

Output: Inverse of A if it exists 

Check the matrix's dimension; 

D = del (A) ; 

if (D == 0 ) return error; 

temp=A II I 

for (unsigned i=O; i<dimension; i++) 

find the partial pivot value; 

1/ equal to zero. 

II V the weight value. 

II A II B means the matrix [A B] 

1/ I is the identity matrix of dimension n. 

if ( pivot row != i ) then swap the rows; 

pivot = temp[i][i]; 

for (unsigned j=i; i<2*RowNum; j++) 

temp[ilU]=temp[ilUl/pivot; 

for (j=O; j<RowNum; j++) { 

if (j=i) continue; 

pivot = tempUHil*(-l); 
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for (unsigned k=O; k<2*RowNum; k++) 

tempu][k] +=temp[i][k]*pivot; 

II The right half of the matrix temp is the inverse of the original matrix. 
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CHAPTER IV 

Results and Discussion 

The data published by George [1996] were used as a sample to test the program. 

The first PC accounted for 3.54/5=70.8% of the variation in the standard variables. The 

weight values of the standard variables are 0.513, 0.484, 0.513, 0.482 and 0.084 for 

MAN_HRO, FAll..URESO, CaSTO, CANNO and MIC_HRSO respectively. In fact the 

first PC is the average of the first 4 standardized variables (the original value of the 

variable divided by their standard deviation). The importance, (i.e. the correlation 

between the variable and the first PC [Sarkar, handout in ST AT5063, 1997]), for each 

standard variables are 0.965, 0.911,0.965,0.907 and 0.158 respectively. Also for the 

sample data set when the weight varied within 0.4%, the final rank will not be changed. 

Figures 4 through 19 i1lustrate the interface provided by the software. They also 

show the results obtained using the test data. Figures 4 and 5 illustrate how to load the 

input data. Figure 6 shows the input data. Figures 7 through 11 show intennediate steps 

that can be viewed if the user prefers to view them (In the current implementation, the 

user is required to go through all steps.). Figure 12 shows the ranked data. Figure 13 

illustrates the pull down window interface for sensiti vity analysis. Figure 14 
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illustrates the window for specifying weight range for sensitivity analysis. Figure 15 

shows the minimum and maximum rank values for the change specified for weight values 

in Figure14. Figures 16 and 17 show the sorting facility. Figures 18 and 19 show for each 

item the percent of weight value for which the ranking will not change. 
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Figure 4. The window before loading data 
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--,...,- - C., - - I . 

Figure 5. The File open window 
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... 35311 .• 11 
936.011 

9581 . 11 
171.DII 

11.'11 
31161&.1111 
11318.1111 

26.1111 
1156.111 
15311.11 
3111'S. DII 

377.111 
II. DII 
11.111 

116511.111 
1116"3.1111 

333.11' 
61.1111 

2111.DD 
25.1111 

1'716.1111 
3119.811 
28911.1111 
2593.1111 

663.011 
55 ... 2.'. 

0.'11 
1.'11 
1.111 

123.1111 

Figure 6. Data loading window 
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COST CRItH HIC HRS 
2327611.811 68.111 7538.11 
111321111.1 • 117 •• 1 1'166.01 

•• DD 11.10 0.11 1.11 11353D.II 
21171 •• 11 1116.111 1111.511.2. 55. I. 936.01 
11151.111 196.10 3811110.211 11 ••• 9581.111 
3327.111 91.DO 12D33D.III 32.110 171.11 
1861.111 1111,1. DO 67323.21 "'9. DI '.111 
1119 •• 11 181.01 361195.51 6.DD 3116 .... 11 
2520.'1 118.111 91137.5. 9.11 "'318.111 
1957.011 110.10 71799.21 31.111 26.1111 
1511.011 1114.11 5 .. 6311. liD 3B.II 1156.DI 
1681.11 73.111 611765.611 21 ••• 15311.1D 

11".111 119. III 31520.20 27.11 31115.1. 
1,5611.011 79.01 56"07.10 21.11. 377.'. 
1561.01 79.111 56417.11 21.11 11.1' 
11211.01 '''.1111 3711118.91 211.11 11.0. 

7511.' • 51..11 271109.61 13.11 1165D." 
•• 0D D.DI 11.110 0.11 1116113.00 

662.011 8".111 23962.6D 38.00 333.'11 
827.IID 511.11 29985 .". 12.10 60.'11 

1368.111 20.1. 1191173.311 ••• 11 2 .... 011 
875.11 51.ID 31634.311 11.'1 25.111 

II." 11.1111 0.11 •••• 11716.'. 
317 .0' 311.1111 111173.1. 21.111 3119.11 
266.01 31.111 9628 . 5. 18.D' 2891.01 
266.'0 33.oD 9639.3. 11 • •• 2593 •• ' 
6"'9.01 18.011 231181.61 11.111 663.111 

II. liD G.II 0.111 ••• 11 55112 •• 11 
11311. DO 18.10 15567.60 1 •• 10 11.11 
222 •• 11 35.11 81137.1111 II.'. .... 
669.'1 2 •• 1 21121S .1111 •• 11 '.011 
223. DO 33.'11 8162.311 1.'0 123 •• ' 

•. ~.~! 00.- t . . ~-~,..-'::--,- ........ ,,.., ..... '"";-" ~------ ------------------1---1--

Figure 7. The window before calculating correlation 
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:. Unlllled - ploleel1 Rr.J I'i:3 

his is the correlation .atrix for the data 

1. .... 
11.815 
1.11'0 
0.8D3 

-11.91111 

11.815 
1.01111 
11.815 
11.8113 

-11.1167 

1.110 
11.815 
1.1101 
9.803 

-0.099 

' •• 13 
1.803 
1.8113 
1.01111 

-0.165 

-1.199 
-1.1167 
-'.199 
-1.165 

1.11111 

.. ,~ . I I 

Figure 8. Correlation coefficient window 
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1 .... 1.803 -1.199 
8.815 1.803 -1.161 

1.DIIII I.B15 1 .... 1.8113 -'.199 
I.BDa 1.803 1.8113 1.IIU1) -1.165 

-11.1199 -1.167 -11.199 -11.165 1.'111 

Figure 9. The window before estimating eigenvalue and eigenvector 
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·'. Unhlled - p.olecl1 l~r.J IE3 

his is the eigenuector FDr the data 

'.513 -1.160 -11."81 ., .... 0 •• 717 ....... -1.115 1.1164 -1.737 -I •• ID 
11.513 -'.161 -1.1181 1.1111 - •• 717 
11."82 11.1111;1 1.565 1.668 ..... 

-1.01111 -11.992 '.1111 11.185 ••••• 
his is the eigenualue fDr the data 

3.5111 11.989 1.28' 0.1911 ••••• 

. ---------. '---1--1 -

Figure lO. Eigenvalue and eigenvector window 
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-1.1181 '.1111 '.7.7 
1.1164 -11.737 -0. DIIO 

1.513 -11.060 -0.1181 11.1111 -'.7'7 
..... 2 1.1110 1.565 1.668 •. 111 

-1.1811 -1.992 1 . "1 '.185 11.110' 

his is the eigenualu! for the data 

3.5111 1.989 '.281 '.191 •••• 1 

:' , ': ., -.. " , ., -. '--' -'. -, -- -----'-'--- , I 

Figure 11. The window before calculating rank value 

S6 



.+. Unhlled - prolectl 1M r.1 (3 

HAH HR FAILURE COST CAHH HIC HRS Rank 
61J35:11 317.111 23276_.81 68." 7538.111 1.119 
3961.111 174.01 11132 __ .11 117.00 1166.10 1.91 

11.110 11.10 '.'11 11.111 _35311." '.08 
2877 .111 186.111 l11t1l51.211 55.110 936.11 0.82 
11151.110 196.1111 31111111'.211 11 • • 11 9581.'1 './i2 
3327.011 91.00 120330._0 32.111 171.111 1.67 
1861.1111 11111.011 67323.20 119.111 11.11 1.62 
111119. OD 181.1111 36/i95.50 6.111 3116_.0. 1.36 
25211.111 48.011 91137.51 9.111 11318.111 1.112 
1957.1111 11111.011 7'799.211 31.111 26.11 1./i9 
1511.1111 1114.1111 511638.11' 38.10 1156.11 './i8 
16811.110 73_011 60765.60 21.'11 153D." '.39 

8_11.011 1 119 .011 31152'.2D 27.'11 31115.DII 1.36 
15611.110 79.10 56_'7.11 21.10 377. DII 1.31 
1560.110 79.111 561101.11 21.'11 '.111 '.38 
10211.011 84.011 37048.90 211.00 0.1111 1.33 

751.11D 51.1111 2111119 .611 13.110 116511.'11 1.22 
D.OII II.DD 0.0' 1.111 1116/i3.11 '.03 

662.110 84.1111 23962.61 38.11 333.IID '.35 
827.111 58.11 299115 .IID 12.11 6U.D' '.22 

1368.111 20.11' 1I91173.311 1.111 21111.111 1.21 
815.1111 51..11 3163/i.311 11.111 25.11 1.22 

11.1111 1.'11 ' .11 1.'11 11116.1. 1.12 
311.1111 38.0D 111173.11 21." 3119.00 1.18 
2M. 1111 31.111 9628.51 18.1' 2891.11 1.15 
266.DII 33.0D 9639.30 11." 2593.111 '.12 
6119.10 18.111 231181.61 11.10 663.111 '.15 

11.111 11.1111 '.11 0.11 55112.011 ' •• 1 
!tall. liD 18.111 15561.6' 111.111 II.DII ' ,.12 
222.110 35.1111 81137. II 1.11 0.1111 1.111 
669.1111 2.1111 2/i2115. II ' .• 11 •••• .. " 
223.111 33.11' 8162.3' 1.1' 123.111 11.07 
15_.111 6.00 5562.9' 11.11 168 ..... ' •• 1 .- , .. -------------.-- ----- I I 

Figure 12. The data and rank window 
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:. UnllUed • prolecll RrJ (J 

~ 5emlll""llv~naly'S,: 
Intelval lQr Rank : 

~~. ., ~. 

6435:00 317." 2321611.8' 68." 1538." 1.119 
3960.00 1111." 1.-32".11 111.'0 1166." 1.91 

D.OO •••• •••• 0." 11353 •••• ••• 2817.1111 186. DO 1011150.20 55.00 936.00 0.82 
1Q51.1I11 196." 38 •• 0.2. 11." 9581." '.42 
3321.110 91.DO 120330.110 32.00 111. O. '.61 
1861.IID 11111 ••• 61323.2' "'9." . ... '.62 
1009.10 181.'. 36495.5. 6.00 346 .... 0. '.36 
2521. III "8.111 91131.5' 9 ••• 11318.11 .... 2 
1951.110 1.11.0. 10199.2. 30.01 26.11 ..... 9 
1511.1111 114 ••• 5 .. 638 .... 38." 1156." '.118 
1680.00 13.'. 61165.6. 21.11 1531." '.39 

844.00 119 ••• 30520.2' 21.'. 31115.DO '.36 
15611.110 19.00 561101.1' 21.'. 311.DO '.38 
1560.00 19.01 564.7.1. 21.'. •••• '.38 
102 ...... 84.00 31 .... 8.90 211 ••• '.D' '.33 
158.80 51.11 27419.6' 13.'D 1165D.1I '.22 

0.80 '.0' 0.00 0.'0 146.-3.00 '.03 
662.80 84.01 23962.60 38." 333.'0 '.35 
821 •• 0 58.00 29905.4' 12.'0 60.0' '.22 

1368 •• 0 2 •••• 49473.30 0.'0 211 .... '.20 
815.11' 51.00 316311.3' 11..0 25.'0 '.22 

1.10 0.11 0.'0 •••• 1.116." '.02 
311.00 38.0' 111113.1' 21.11 3119.11 '.18 
2M.00 31.'0 9628.5' 18.'11 28911.11 '.15 
266.00 33.00 9639.30 11 •• 0 2593.11 '.12 
649.00 18." 23481.6' 1 •••• 663.11 '.15 

0.00 0.11 •••• '.00 55 .. 2 •• 11 '.11 
4311." 18.11 15561.6' 1'.'0 ' •• 11 '.12 
222.IUI 35.00 8031.'0 8.00 0.00 '.10 
669. aD 2.0' 24215.'0 •••• ' •• 0 .." 
223.00 33.'D 8162.3' 1.0' 123.'0 ' •• 7 
15 .... 0D 6 . " 5562.9' 1 .... 1684.'. , .. , 

", I .. t-Ir.'''-':'~"''-:·''''''~ 1-, • ~ -. --.--.----,--, - ,- - --, .- ,,-.-. - , - , -----. - '. - ' -', - , ----- I I 

Figure 13. The window before calculating rank interval 
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-~ ..... : ... ,". ': ...... '.; .. 
I1AH HR F.ULURE COST CAHH HIC HRS Rank 

61J35: II 317 .11 23276".81 68." 7538." 1 .... 9 
3960.1111 1711.11 1 ... 32 ...... 111 "'7." 1166.1' '.91 

1.1111 11.111 1.'1 I.'. 1J353 .... ••• 2877.1111 186.1111 1111l1151.21 55.'1 936.11 1.82 
1151.110 196.111 381101.211 11.'11 9581.111 ..... 2 
3327.00 91.111 121330."1 32." 111.011 '.67 
1861.1111 11111.11 67323.21 "'9." 1.811 8.62 
11119 .l1li 181.011 361195.50 6.'. 3 ... 6 .... 1111 '.36 
2521.811 118.111 91131.51 9.8' 11318.81 .... 2 
1957.l1li 1011.1111 
1511.011 104.011 
16811.1111 73 .IIU 
8".11 109 .11 

1561.l1li 79.111 
1560.1111 19.11 
18211.11 811.011 
758.11 51.1111 

1.1111 11.111 
662.111 811.110 
827.111 58.1111 

1368.1111 211.111 "'91173.31 .... 21&11.811 1.20 
875.111 51.01 3163".311 11.ID 25.ID '.22 

D.II' 0.1111 8.'11 •••• 1.716 •• 0 1.112 
317." 38.011 111&73.11 21.'1 3119.811 1.18 
266.1' 31.11 9628.58 18.'" 289'.811 '.15 
266.11 33.1111 9639.31 11.11 2593." 1.12 
6119.01 1B.OD 231181.68 11.11 663." 8.15 

1.1111 1.1111 1.80 0.'1 551&2.11 1.11 
1J311.111 18.111 15567.68 18.1' 8.111 '.12 
222.111 3S.aa 81137.10 B.III 1.111 1.111 
669.1111 2.1111 211215.111 1.11 1.81 1.19 
223.11 33.1111 .162.31 1.111 123.111 '.17 
15".'1 6.1111 5562.91 11." 16 .... 1111 1.17 

"~~t • ". - ------------ - 1--1-

Figure 14. Weight choose window 
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-

••• Untilled· p.Dlecll 13(,) rt:3 

HAH HR FAILURE COST CAHH HIe HRS Rank H_Rank l_Rank 
61135:.11 317.1111 23276,..11 61.1111 1538.111 1.119 1.5' 1.22 
3960.'11 17~.1I' 1113211".1' 117..11 1166." '.91 '.92 '.7,. 

••• 11 •• 1111 1.'0 0.1111 11353,1.111 .... '.1' '.11 
2877 .• 1 186.111 111l15'.21 55.1111 936.111 ' •• 2 '.13 1.67 
1851.'11 196.111 3801111.21 11.1111 9581.11. ,.,.2 .... 5 1.38 
3327.'" 91.111 121331.U 32.011 111.111 1.67 1 . 68 1.56 
1861 •• 1 111 .... 11D 67323.21 _9.1111 •• 11. '.62 '.6_ '.55 
1.19." 181.11D 361195.5' 6.011 3 ... 6 .... 1111 '.36 '.39 1.33 
25211.'1 118. lID 91137 . 51 9.1111 11318.111 '.112 I." 1.36 
1957 •• 1 111D." 11799.2' 311.1111 26." .... , '.511 .... 11 
1511 •• 11 1 .... 111 51163B.1ID 38.1111 1156.111 '.111 '.119 1.113 
1681.'0 73.1111 611765.611 21.1111 153 ••• ' '.39 ' . 39 '.32 

811_." 1119.1' 31521.21 27.111 31115.11' '.36 '.37 11.31 
1560.'0 79.1111 561117.111 21..11 377." '.31 '.38 1.31 
1561.'. 79. lID 56,.117.111 21.111 II.ID '.38 '.38 1.31 
10211 •• 0 111.1111 37 .... 8.9. 211 . 111 '.11 '.33 '.311 '.31 

758.'11 51. lID 2111119.61 13 . 1111 1165 •••• '.22 '.22 '.211 
11.'0 II." .... 1.011 1116113 . " '.113 '.13 '.02 

662.111 8011. lID 23962.60 38.111 333 . '11 •• 35 '.31 '.3' 
827.111 58." 299115 .U 12 . 111 61." '.22 '.23 '.11 

1361.11. 211." 1191113.31 11.811 21111.11 '.21 '.21 1 . 16 
875.'0 51.11' 316311.3' 11.11' 25.11 1.22 '.22 '.11 

11 . 110 0.11 11.111 11.11' 1.716." ' .12 '.12 1.'2 
317.'0 38.11' 11_13.111 21.111 3119." '.18 1.19 1.16 
266." 31.'. 9628.511 18.11 2891.'11 '.15 '.16 '.111 
266.110 33.1111 9639.311 11.'1 2593.111 1.12 1.13 '.11 
6119.1' 18." 23_81.61 11.111 663.1D '.15 '.15 1.13 

1 . '11 11.1111 1.111 ' •• 11 55112.111 '.11 •• 11 ••• 1 
113' . 1D 18.111 15561.611 111.1111 '.111 11.12 1.12 '.1' 
222.'11 35.1111 8131.1' 8.111 .... ' .11 '.11 1.19 
669." 2.11' 211215.111 .... 1.11 1.19 1.11 '.111 
223.111 33.111 8162.31 1.1. 123.11 '.17 1.11 1.16 
1511.'11 6.111 5562.9. 18 •• 11 16811.1' '.11 .... '.11 

Figure 15. Data and rank interval window 
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@ 

HAH ItR FAILURE COST CAHH HIC HRS Rank H_Rank L_Rank 
61135-:-111 317 .111 232761t.811 68.'11 7538.1' 1 .... 9 1.511 1.22 
3961.111 171t.OIl 1432".10 1t7.011 1166.IID '.91 11.92 11.7'" 

1.011 1.111 •••• 11.'11 1135311.111 1.18 11.111 ' •• 7 
2877 .• 11 186.011 1 11411!tD .211 55.'11 936.IID D.82 11.83 1.67 
1151.1111 196.111 38 •••• 2. 11..1 9581." ..... 2 '.1t5 '.3' 
3327.1111 91.011 120330. It. 32.01 171.1111 •• 67 1.68 '.56 
1861 •• 11 111_. III .2. 1t9. •••• '.55 
1'19.1111 181.111 '.33 
252' •• 11 ItS. I. '.36 
1957 •• 1 1111.111 '.1tD 
1511 ••• 11J11 • •• • .... 3 
1681.'1 73.11 '.32 
8".'. 119 ••• '.31 

156 •• ID 79 ••• '.31 
1561.1. 79.'. '.31 
1121t •• D 8 ..... 1 '.31 

158 ••• 51 ••• 22 '.2' 
•. 11 I •• D .3 ' •• 2 

662.'. 8 ..... 1 37 1.3. 
827.10 58.'0 23 1.18 

1368." 21 ••• 21 1.16 
875.'1 51 •• 1 22 1.18 I'.'. 1 •• 11 •••• 11.111 111116. D. 1.12 1.'2 1 •• 2 
317 ••• 38.'11 111t73.11 21.'11 31'19." 0.18 1.19 1.16 
266.111 31.1111 9628.5. 18.111 2891.1' '.15 '.16 '.1_ 
266.00 33.1111 9639.31 11.01 2593." 1.12 '.13 '.11 
6 ... 9." 18.111 23"81.60 111.'11 663." '.15 '.15 '.13 .... ..111 D.'II 11.11 55"2.11 ' •• 1 D.'1 '.11 
"311.111 18.111 15567.6' 1'.'11 •••• 1.12 1.12 '.11 
222." 35.DII 8137.11 8.'11 D.IID 11.111 11.11 I." 
669." 2." 21t215. III .... •••• '.19 '.1' ' •• 7 
223.11' 33.DII 8162.311 1..11 123.11 ' •• 7 1.'7 '.16 
15 ..... 6.11 5562.911 111.'11 168 ...... '.17 1.18 ' .• 7 

Figure 16. Data sort dialog and window 
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-

.. +. Unhlled . prolectl ~IQ E3 

~g~ - . -' .. ' "'~.' ~-.-, - , -, :-, - .- , ----,--
HAH HR FAILURE COST CAHH MIC HRS hnk H_Rank l_Rank 

61135: •• 311.'1 2327611.8' 68." 7538." 1.119 1.5' 1.22 
3961.11 174.'1 111321111.11 117.DD 1166.'1 '.91 '.92 '.711 
2877 .•• 186." 1 ..... 5 •• 211 55.U 936." '.82 ' •• 3 '.67 
3327.10 91." 12033'.41 32.11 171.'1 '.67 '.68 '.56 
1861.10 11111.'1 67323.211 119 •• ' .... '.62 '.6" '.55 
1511.11 11111.'U 511638.4' 38." 1156." '.118 '.119 ..... 3 
1957." 1 UU •• I 711799.21 3'.'1 2,6.11 '.49 '.5' '.111 
252 •. " 48.DO 91137.5' 9 •• ' "311.11 '.112 '.11" '.36 
1051 ••• 196.U 381".211 11 ••• 9581." 1.112 ..... 5 '.38 
1681 .• 1 73.10 611765.61 21. •• 153 .... '.39 '.39 '.32 
156U." 79." 561t17.1D 21." 377 ••• •• 38 '.38 '.31 
1561.11 79 .• 1 561117.1' 21 •• ' •••• '.38 '.38 '.31 
1.119 ••• 181 ••• 361195.511 6." 3116 ..... •• 36 '.39 '.33 
8"." 1119 .11 3052 • • 211 27.1' 31115." '.36 '.37 '.31 
662." 8_.111 23962.611 38." 333.'. • • 35 •. 37 '.31 

11211 .• ' 811.11 37.118.91 211.'. •••• ' . 33 '.311 '.3D 
827." 58.'U 29915.11' 12.11 6 •••• ' . 22 '.23 '.1:8 
758.11 51' .11 271119.61 13 ••• 1165 •••• '.22 '.22 '.21 
875.'. 51. 'U 316311.311 11.'. 25." '.22 '.22 '.1' 

1368." 2 •••• 1191173.31 •••• 211 •••• '.2. '.21 '.16 
317." 38." 11.1!73.1' 21.'. 3119." '.1' '.19 '.16 
266." 31 •• ' 9628.5' 18.'. 289 .... '.15 '.16 '.111 
6119. III 18 •• ' 231181.6' n ." 663.111 '.15 '.15 '.13 
266 •• ' 33.'1 9639.311 11.'. 2593.'1 '.12 '.13 '.11 
113 •••• 18.10 15567.611 1 •••• •••• '.12 '.12 '.11 
222.1' 35.11 8137.'0 8.0' ' •• 0 '.1' '.11 '.19 
669.'0 2 •• 11 211215 .1111 •••• •••• '.19 '.11 ' •• 7 

I.'U •.• D ••• D .... 4353 .... '.tI '.1. ' .• 7 
1511.'. 6 .• 11 5562.91 1 •••• 168 ..... ' •• 7 ••• ' •• 7 
1511.'U 6." 5562.91 111.'. 23.'. ' •• 7 .... ' •• 6 
223.111 33.10 '162.31 1." 123.11 ' •• 7 ••• 7 '.16 
165 •• 11 28.10 5978.91 •••• 72." 11.15 '.16 I.IS 
126.'11 17 ••• 115611.7' .... 17 .... 1.111 ..... '.13 

Figure 17. Sorted data and rank window 
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61135-:-.11 2327611.811 7531." -317.111 68.111 1."9 1.511 1.22 
39611. '111 17 .... 0 111321t1l .1' IIl.DO 1166.111 11.91 0.92 '.711 
2877. III 186.'11 114051.2D 55.1111 936.'11 11.82 0.83 0.67 
3327.111 91.011 121330."1 32.'11 171 •• 11 1.67 1.68 '.56 
1861.1' 111 .... 1 67323.2' "9.111 '.ID 11.62 '.6" '.55 
1511.'. 1 .... 11 511638 .... 38.DO 1156 .• 11 11.118 .... 9 '.113 
1957." 111.111 711799.2' 311 •• 11 26.'0 0."9 0.5D '.111 
25211.011 IIS.OII 91137.5' 9 •• ' 11311.DII 0."2 .. " 0.36 
11151.1111 196.111 381111.21 11.'11 9581.11 11."2 .... 5 •• 38 
168Q.00 73.00 611765.61 21." 15311." 11.39 '.39 '.32 
15611.110 79.110 5611117.1' 21 •• 11 377 ••• 11.38 •• 38 '.31 
156D.III 79.01 56 ... 7.1. 21.DII I.'. 0.38 D.38 '.31 
11119.10 181.110 36 .. 95.5. 6.'0 3 .. 6 .... 0 1.36 D.39 0.33 

84".1111 109.111 31520.2' 27.DO 3 .. 15." 11.36 '.37 '.31 
662.111 a ... III 23962.60 38.'1 333.'11 11.35 1.37 '.3' 

1112".118 8".00 37D118.9' 211.'0 D." 11.33 '.3" D.3' 
827. au 58.11 29915 .11' 12.'1 6D." 11.22 1.23 '.18 
758.111 51.IID 27 .. 19.6. 13.11 1165 •• II 11.22 '.22 '.2' 
875.111 51.11 316311.3' 11." 25.'. '.22 '.22 '.18 

1368.D' 20.10 1191173.31 •• 10 211 •••• 1.21 1.21 0.16 
317.01 38.10 111173.11 21.11 3119.'11 D.18 D.19 '.16 
266.110 31.IID 9621.51 11." 289 •• '" D.15 1.16 D.111 
6119.011 18.0' 23"81.61 1 •••• 663 •• 11 '.15 '.15 '.13 
266.DD 33.111 9639.30 11." 2593.'" '.12 '.13 '.11 
11311." 18.au 15567.60 11.11 •••• 11.12 '.12 •• 1' 
222.1111 35.110 II37.DO 8." .D •• D 11.10 '.11 '.19 
669.1111 2.111 211205." .... '.110 0.119 '.10 II •• 7 

'.IUI '.IUI .... •••• 11353'.111 '.08 '.10 ' •• 7 
1511.111 6.'. 5562.911 11.111 16811.11 1.17 I .• ' •• 7 
1511.1111 6.10 5'.062.91 11.'11 23.DO 1.117 1.08 '.16 
223.'" 33.'11 8162.31 1.111 123.11 '.117 1.17 1.16 
165.10 21.'D 5978.91 .... 72 •• D •• D5 '.16 0.15 
126.111 17 ••• 11'.0611.7' .... 178.'1 I. III I. III '.13 

.... :. r .... 'i -;---1'~": ~ r " .... 1"' ,,:, •. I •• ~., , • ,~ ':, If'·'· • I I 

Figure 18. The window before calculating weight interval 
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.;.~- Untilled - prolecl1 IS Q rw 
_o:~~ 

[!j!aE:l If];l~ITi I< ralU ' .- -. " .. ' < " ,,-> .. '.,~~ _t~ . ;.:J .... " .. : , 
~_~ .l_'" ', __ , _ .... I:.·::...-·i .. ':.:~.:'··! ... ,', 

his is thl! .a~i.un weight ualup: ....... that thl! final rank will nDt changed. 

HAH HR FAILURE COST CAHH HIC HRS Rank H_Rank L_Rank liT \ 
6435:U 317.10 23216 .... 81 68.'. 153i.DD 1.49 1.50 1.22 100.n 
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Figure 19. Data, rank interval and weight interval window 
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CHAPTER V 

Conclusion and Future Work 

In this thesis, a decision support system based on PCA is developed. The system 

provides a GUI to view results. The software is implemented using MS Visual c++. The 

software loads data from a file and ranks them. It also provides methods for performing 

sensitivity analysis on the ranking. 

From the sample data we can find this method is a good way to objectively 

evaluate and interpret the data to generate accurate and correct information for a manager 

to make effective decisions . Due to the limitations on accessing actual data sets, the 

author could not perform extensive tests of the model. Further tests and enhancements 

are suggested as future work. 
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