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CHAPTER |
INTRODUCTION

Much interest has been shown in recent years in the study of colloidal sys-
tems. This is due in part to the fact that the lattice spacing of these spontaneously
crystalized systems of charged macromolecules is comparable to the wavelength of
visible light. As a result of this, laser light can be used to collect data from these
crystalline arrays of suspended particles, as opposed to the x-ray illumination re-
quired in probing atomic crystals.

Several groups have devoted research to the measurement of the properties
of colloidal dispersions, such as polystyrene, polymethyl methacrylate, and silica
spheres, in a variety of solvents[1-7]. These properties include the shear modulus,
as well as dynamic viscocity and sample structure and morphology. Methods of
measurement have varied from rheologic measurements for highly concentrated
samples, to light scattering rheological techniques for dilute samples. While it is
impossible to detail within this paper all of the work done on this subject, it would
perhaps be appropriate at this time to mention a few of the developements in the
measurement of the elastic moduli of colloidal crystals.

Theoretical and experimental studies have been done by R. Nossal and
M. Jolly to determine the allowable frequencies of the mechanically excited shear
waves of soft gels in cylindrical cuvettes(8]. By solving a set of modified elasticity
equations, they were able to show how the measured frequencies depended both
on the material properties of a sample and on the dimensions of the sample’s
container. Using the observed resonances during ineleastic light scattering, they
were able to calculate the transverse sound speed and from that, the shear modulus

of a sample.



In another work, a simple model based on the pair potential for interacting
particles in a dilute electrolyte solution is used by R. Buscall et al. , as the basis
for a comparison with experimental shear modulus data[l]. Using a rheometric
apparatus, measurements of shear modulus were taken for polystyrene samples
(a=34.3 nm) over a volume fraction range of 0.146 < ¢ < 0.303. The shear
modulus data was seen to have increased smoothly from 280 Nm~2 at ¢ = 0.146
to 3450 Nm~2 at ¢ = 0.303. This shear modulus data was then fitted to the pair
potential model to obtain an experimental value for a diffuse layer potential.

W. B. Russel and D. W. Benzing have developed a self consistent field the-
ory that can predict the equilibrium and transport properties of ordered monodis-
perse latices[10,11]. The multiparticle electrostatic interactions are used to calcu-
late the osmotic pressure and the shear modulus. These depend on the volume
fraction, the surface charge density, and the electrolyte concentration. The theory
points out the role of the counterions in shielding the surface charge.

Advanced preparation and deionization methods have been developed by
T. Palberg et al. in order to increase the accuracy and precision of shear modulus
measurements(3]. The authors prepared BCC crystalline samples using polystyrene
spheres of radius a = 5lnm at low volume fractions (¢ = 0.01). Two different
methods were used to deionize the sample. In the first method, known as standing
preparation, a small amount of mixed bed ion exchange resin is introduced into the
cell containing the crystalline sample. A fine mesh is used to cover the resin beads
and insure the flat lower boundary needed for the experiment. When using this
method of deionization, great care must be taken to prevent contamination of the
sample by airborne C'O;. In the second method, known as continuous deionization,
the suspension flows through a teflon tube system connected to an ion exchanger
cell. Using this method of preparation, uncertainties in volume fraction and salt
concentration were reported to be below 1%.

A Bragg scattering experimental set-up was used by T. Palberg et al. that
involves a cylindrical cell mounted on a driven system consisting of an excentrically

coupled loud speaker driven by a frequency generator[3]. A laser beam scatters off



a small crystallite in the center of the cell and is incident upon a position sensitive
photodiode under an angle that satisfies the Bragg condition. Additionally, some
measurements were taken by the authors in which a mirror was centered on the
suspension interface of a sample prepared with free upper inert gas boundary.

In the following thesis, we begin by looking at the solution to the elas-
ticity equations for an isotropic elastic medium as outlined by R. Nossal and M.
Jolly[8]. From these equations, we can find the relationship between the resonance
frequencies wi, observed in a sample and the allowable normal modes k;, for a
cylindrical cell. From this relationship, the elastic modulus G can be calculated for
any observed resonances. Next, the preparation and deionization of several sam-
ples using 0.107 micron diameter polystyrene and mixed bed ion-exchange resin
is discussed. Construction and testing of the Bragg scattering experimental setup
is reviewed. Data is taken and the experimental values for elastic modulus are
compared with a pair potentail model to determine an experimental value for the
number of screening ions per polystyrene sphere. Finally, the values of the data

obtained in this experiment are compared with those of other works.



CHAPTER II
THEORETICAL
Solving the elasticity equation

Although a sample will contain many microcrystallites, macroscopically it
behaves as an isotropic elastic medium[4]. The elasticity equations for a crystalline
sample can therefore be written as[9]

82U
P o

= Dive + F, (1)

where p is the mass density of the sample, U is the diplacement vector of the
sample, o is a generalized stress tensor, and F is the vector of applied forces.
For small torsional excitations of a sample in a cylindrical cell, the applied field

will have no angular dependence. Thus Eq. (1) reduces to the following set of
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where U, Us, and U, are the gel or suspension displacements along the radius,
angular direction, and axis respectively. O, and O, are linear operators defined

as[12]

0u() = MW+ [ Le-t)p e,

0, f(t) pf(t) + /_ g(t—t’)%f(t')dt’, (5)

where f(t) is an arbitrary function of time, A and p are the usual static Lamé
coefficients, and L£(¢) and G(t) are kernels which decay to zero at long times.
Equations (2) and (3) show coupling between U, and U,. The applied
forces and the boundary conditions will determine whether the resulting waves
will be shear or compressional. Eq. (3) shows that Uy is decoupled from U, and
U, and will be related only with shear waves. In order to solve Eq. (3), we must
consider the appropriate boundary conditions. Since the cell is undergoing only
small excitations, we can assume that the sample sticks to the cell walls. If this is

the case, then the boundary conditions are[8]

Ue(R,2;t) = 0,r = R,
Ha(r,0:t) = U(r,h;t) = 0,z = 0,A. (6)

While these boundary conditions indicate that the top as well as the bottom of
the sample is immobilized by the surface of the cell, in fact, the top of the sample

is free to move. This discrepancy will be dealt with later.
Derivation of an expression for resonance frequencies

Assuming a cell excitation gg(t) which is a periodic twist of small amplitude
and is of low frequency, it is clear that the body force Fy(r,z,t) depends only
on the time derivatives of gg(t). This must be since if the cell was turned very
slowly, the entire sample would follow as well. In other words, for slow excitations
U(r,t) approaches zero. Since rotations at a steady velocity would not result in

sample displacement, the lowest time derivative must be of first order and since



the displacements are small and of low frequency the lowest order term is most

likely the only one of importance. The internal force can then be taken to be[8]

—pr dgs(t
Fa(r =) = (il @

where ( is an unknown coefficient which likely varies with sample viscocity. If
applied forces and internal dissipation are ignored (gs = 0,0, — p), the solution
to Eq. (3) is

Uin(r,z;t) = Jl(p;)sini;z—e‘{})w'": @)

where Jj(e) is a first order Bessel function of the first kind. v, are the zeros of
Ji(e) and n is and interger. w;, are frequencies given as wy, = k;»C} where C,, is
the transverse sound velocity C, = (G/p)*/2. The wavenumbers k; , for cylindrical

cuvettes are

v1?2 n*r? /2
kin = UE] i h2) : (9)

To solve Eq. (3) with the applied forces and internal dissipation, we antic-

ipate a solution of the form

Us(r,z;t) = Zm: ia;n (t)Jy (wr) sin n;:z. (10}

=1 n=l

Where a;, 1s given by

d2 A{n

dt?

—j—)k;“anu(a:‘n) + finlt), (11)

where f;,(t) is defined as

dga

R (12)

finlt) = muda(w) ™1~ (~1)71 %

Eq. (11) can be solved formally for any arbitrary kernal G(t) appearing in Eq. (5).
However, for this experiment we can assume that the relaxation of the sample oc-
curs much faster than the frequency of oscillation of U/;. We can thus approximate

G(t) as

Gg(t) = né(t), (13)



=1

where 7 is a viscosity coefficient, §(¢) is a Dirac delta function, andthe operator

O, becomes

0
If g¢() is a periodic function given by gs(t) = gosinwt, then ignoring initial value
terms which decay to zero, the solution of Eq. (11) is[8]
swgell = (<1 _
nwJy(vr)
x sin(wt + ¢ — ), (15)

ain(t) (w* = k[CP)? + kilan?w? /o) 71/

where 7 is a viscocity parameter and ¢ is the phase shift as given by

p(kl?,n C?r - {""’2)
tan¢g = Hy (16)

The maxima of the amplitudes in Eq. (15) occur at values of w given by

ki an?
wa = kiat/CR —‘-p—z. (17)
Since kf,n?/p* is expected to be (and will later be shown to be) much smaller than

Cfr, wm can be approximated as
W, = kl‘nctr- (18)

The result of the top of the sample not being restrained as suggested in the bound-
ary conditions is that Eq. (9) must be modified so that the values of n are no longer
integers but half integers. Eq. (9) then becomes

Since the wavelengths of the allowable normal modes are dependent on the size of
the sample cell, any changes in the sample cell dimensions R and h will result in

a change in the observed resonance frequencies.



CHAPTER III
EXPERIMENTAL PROCEDURES
Sample preparation

Several samples were prepared using commercially available (Lot #16203
Duke Scientific) 0.107 micron diameter polystyrene spheres. In order to prevent
aggregation due to van der Waals attraction, the particles are synthesized with
a net charge to provide a stabilizing coulomb repulsion [6]. The polystyrene was
mixed with purified, deionized (18 M2) water in concentrations ranging from 1.45 x
1072 to 4.44 x 10~ volume fractions and placed in cylindrical cells. Since highly
ionic solutions will disrupt the charge on the spheres, mixed bed ion-exchange resin
(analytical grade 20-50 mesh fully regenerated #27180 from Bio-Rad) is placed in
the cuvette. This is done to minimize the ionic strength of the sample and maximize

the interparticle repulsion.
Experimental Setup

A polystyrene sample in a cylindrical cuvette is centered on a turntable
driven by an excentrically coupled loudspeaker (Figure 1). A helium-neon laser
illuminating the crystalline sample results in Bragg scattering. As the speaker is
driven with a sinusoidal signal from a frequency generator, the turntable and hence
the crystalline sample experience a periodic torsional displacement. Shear waves
are induced in the sample, and within the limit of small oscillations, the resulting
sinusoidal shearing of the crystal corresponds to an equally sinusoidal variation in
the Bragg angle. A position sensitive photodiode then detects the motion of one

of these Bragg spots.



HP Analyser

Sample

—t

Laser

Detector
Tumtable-
- || > Amplifier
| Q y.
Speaker

Figure 1. Experimental Setup: A speaker and turntable are used to excite torsional
waves within a sample. A laser illuminates the sample and a detector
measures the movement of a crystal which is oriented under Bragg
conditions. The detectors signal is amplified and recorded on the
analyser.

Position Sensitive Detector and amplification circuit

The movement of the Bragg spots was followed using an analog super
linear position sensing detector (DL20 from UDT Sensors, Inc.). With a 4 square
centimeter sensing area, the resolution of the detector is limited only by the signal
amplification circuitry and the light source. According to the manufacturer, the
position detection error over most of the sensing area is typically 20 microns with a
maximum of 100 microns. The amplification circuitry (see Appendix A) translates
and amplifies the raw signal from the sensor into an absolute position with respect

to the center of the detecting surface.
HP Analyzer and output data format

The function generator on an HP Dynamic Signal Analyzer 35665A is used

to produce the swept sine measurements across a range of frequencies, typically
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from 0.1 Hz to 10.1 Hz. The range of frequencies, step size, and resolution are ad-
justable. Settling time as well as integration time can be regulated to average data
over several periods at each individual frequency step. The HP Dynamic Signal
Analyzer then compares the sine wave input into the speaker with the sinusoidally
varying signal coming from the position of the Bragg spot. The analyzer generates

a Bode diagram, which shows gain and phase versus swept frequencies.
Testing the setup

Using a mirror in place of the cuvette and adding weight to the turntable
to keep the moment of inertia consistant with that of a cuvette, data was taken
to test the mechanical resonance of the experimental setup as well as the coupling
between the speaker and the turntable. As shown by the data (Figure 2), the
mechanical resonance of the system was found to be at a frequency of 30.1 Hz.
This is well above the frequencies that we will be looking at in this experiment.

The sensing error of the system was calculated to be 20 micron. This value
for the error was arrived at by dividing the amplitude of the noise coming from
the sensor by the amplitude of the signal coming from the sensor (Figure 3), and
multiplying this by the amplitude of the laser beam sweeping across the sensor as
it reflects off the mirror. This data was taken while the system was driving the

turntable sinusoidally at a frequency of 1 Hz.
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well below the mechanical resonance of the system.
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being driven at 1Hz.



CHAPTER 1V
RESULTS
Discussion of accuracy and reliability of resonance detection methods

Use of the position sensing detector had both good and bad points. The
low sensing error provided excellent results during testing with a mirror. However,
the detector was found to be sensitive to the size and shape of the incident Bragg
spots. The signal from the detector is derived from the centroid of any light incident
on its surface, so only one Bragg spot may be measured at a time. Multiple Bragg
spots incident upon the sensor send a somewhat confused signal. As the sensor is
moved farther from the sample, the amplitude of a spots movement increases but
the size of the spot also increases. Therefore, before each swept sine measurement,
the sample was driven at 1 Hz and the signal coming from the sensor was examined
to ensure that it was sinusoidal and well defined. The location of the sensor could
then be adjusted to maximize the clarity of the output signal.

As a measurement proceeded, a Bragg spot would often move off the po-
sition sensing surface, or disappear entirely. It is possible this movement could be
caused by shearing within the sample destroying a crystal (shear melting), parking,
or a crystal could be settling in the cuvette. While over the short term these ef-
fects are not noticeable, as typical measurement might take two hours to complete,

almost half the measurements were incomplete and had to be redone.
Discussion of data fitting and results

Since there is a 1/n dependence in the amplitude (see Eq. 15), the ko
gain peaks are the most readily seen. For each sample, the first prominent gain

peak that corresponds to a phase shift of around 90 degrees on the Bode diagram

12
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is taken to be the first resonance peak kjo. All other observed peaks are used
as a measurement of accuracy (Figure 4). The error between the higher modes
calculated from the position of the first resonance peak and the actual observed

position was an average of 7.5%.
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Figure 4. Typical Resonance Spectrum

By fitting the first observed amplitude peak to Equation 15 as in (Figure 5),
we find that k7 n?/p* is two orders of magnitude smaller than C2. Therefore, the
elastic modulus. (7. is calculated from the first resonance peak using Eq. (18) and
the definition of (';,. Repeated measurements on a single sample taken several
weeks apart, resulted in a difference in measurement of around 15%. One reason
for this may be uncertainties in the ionic strength of the samples.

A plot of the elastic modulus for a range of volume fractions (Figure 6)
shows the expected increase in elastic modulus as the volume fraction of particles
increases. The data may deviate at smaller particle concentration due to the
proximity of the liquid-crvstal phase transition. At smaller concentrations than
shown in the graph. the samples did not crystallize. These values for the elastic

modulus are on the same order of magnitude as those measured by Palberg and

Streicher(2].
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Figure 5. The amplitude of a typical resonance spectrum is fit to Eq. 13. k2, n?/p?
is found to be two orders of magnitude smaller than C2.

With a comparison of the experimental data with a theoretical model
developed by Buscall et al. [1], and based on the pair potential for interacting
particles (see Appendix B), an experimental value for the number of screening ions
in the sample can be determined. As shown by Figure 7 and Figure 8 a value of
125 ions or 150 ions can be measured depending on the whether the polystyrene
forms a face-centered cubic (FCC) or body-centered cubic (BCC) array. From this

an estimate of the particle’s effective charge can be found to be around 2 x 107

conulombs.
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CHAPTER V
CONCLUSIONS

[t was demonstrated that the elastic modulus of a polystyrene lattice can
be readily measured using the noninvasive Bragg scattering procedure detailed
in this paper. The experimental data obtained using this measuring technique
currently displays a relatively high error (15%). This is high when compared to 1%
error obtained by Palberg et al. [3] or an estimated 5% error obtained by Dubois-
Violette et al. [4], but indicates that with sample improvements, this system has
the potential to be fine-tuned into a dependable method of measuring the elastic
modulus of colloidal systems.

When everything in the system was working correctly, use of the position
sensor resulted in an excellently resolved and sensitive data signal. A trade off
existed, however, between averaging over several consecutive sets of data to ob-
tain better results, and having the Bragg spot move off the sensor during longer
measurement times. So, much still depends on the manual selection of a suitably

stable and measurable Bragg spot.
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APPENDIX A

Amplification Circuitry

An amplification circuit diagram (Figure 9) was provided by UDT Sensors,
[nc., however it was left to the author to determine the correct values of the
components needed for the specific bandwidths involved in the experiment. In the
first stage of the circuit, the raw signals from the anode and cathode connections
on the sensor are amplified and compared to a reference circuit. The reference
circuit has a bias adjustment to allow the positioning of a reference point on the
sensor. Capacitors are present in the reference circuit to reduce AC noise and in
the operational amplifier feedback loops to control bandwidth. At the second stage
of the circuit, the anode and cathode signals are put through difference amplifiers
as well as a sum amplifier. Finally, the differentiated signals are divided by the

summed signals, giving output data for both the x and vy axis.

NUMERATOR

CIVIDER —

. Ok NOMINATOA

Figure 9. Circuit Diagram
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APPENDIX B

Theoretical Shear Modulus

At the low electrolyte concentrations and volume fractions used in this
experiment, the pair potential for interacting particles will be dominated by the
electrostatic repulsion, Vg, due to overlapping of electrical double layers. For a
sample made of spherical particles of radius a, with a seperation distance R and a
diffuse layer potential 14, then the electrostatic repulsion can be written as[1]

2,02
Vi = i‘ﬁ—;‘ﬂ exp [—x (R — 2a)] (20)

where ¢ is the permittivity of the medium, &¢ is the permittivity of free space, and

hq is given by[13]

[a+ %] (21)

where 2 is the number of screening ions per polystyrene sphere. The Debye-Hiickel

reciprocal double-layer thickness parameter, x, is defined as[14]

B e*Z%n, : 99
"= eeokT (22)

where Z is the valence of the electrolye, k is Boltzmann’s constant, 7" is the tem-

perature, and ny is

np = % (23)
Eq.(20) is applicable only under the condition that the particles interact at a
constant diffuse double-layer potential and xa < 3[1].

The particle seperation in an ordered array can be related to the volume

fraction by[l]

R = 2a (Q—m)i (24)



S
(3%

where ¢ is the volume fraction and ¢,, is the packing fraction. ¢,, is 0.74 for
face-centered cubic (fcc) arrays and 0.68 for body-centered cubic (bec) arrays[135].
The shear modulus can be expressed in terms of the total energy of inter-

action by[1]

a [(0*Vr
o' =R (am ) (25)

where V7 is the total energy of interaction and a = (3/32)¢,n. n is the number
of nearest neighbors. The subscript zero indicates that this is the high-frequency
limit as relaxation was not considered. Since electrostatic repulsion dominates the
particle interactions, V7 in Eq.(25) can be replaced by V.

Differentiating Eq.(15) twice and putting the result in Eq.(25) yields a

theoretical shear modulus of[1]

2R? 4 xR + 2
Géh = 47TCEEEDC12¢'§ (K' qu ) exp [_"'t (R - 20')] (26)

for ka < 3.
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