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CHAPTER I 

INTRODUCTION 

Much interest has been shown in recent years in the study of colloidal sys

tems. This is due in part to the fact that t he lattice spacing of these spontaneously 

crystalized systems of charged macromolecules is comparable to the wavelength of 

visible light. As a result of this, laser light can be used to collect data from these 

crystalline arrays of suspended parbcles, as opposed to the x-ray illuminat ion re

quired in probing atomic crystals. 

Several groups have devoted research to the measurement of the properties 

of colloidal dispersions, such as polystyrene, polymethyl methacrylate, and silica 

spheres , in a variety of solvents[1 - 7J. These properties include the shear modulus, 

as well as dynamic viscocity and sample structure and morphology. Methods of 

measurement have varied from rheologic measurements for highly concentrated 

samples , to light scattering rheological techniques for dilute samples. While it is 

impossible to detail within this paper all of the work done on this subject, it would 

perhaps be appropriate at this time to mention a few of the developements in the 

measurement of the elastic moduli of colloidal cryst.als. 

Theoretical and experimental studies have been done by R. Nossal and 

M. Jolly to determine the allowable frequencies of the mechanjcally excited shear 

waves of soft gels in cylindrical cuvettes[8J. By solving a set of modified elasticity 

equations, they were able to show how the measured frequencl es depended both 

on the material properties of a sample and on the dimensions of the sample's 

container. Using the observed resonances during ineleastic light scattering, they 

were able to calculate the transverse sound speed and from that, the shear modulus 

of a sample. 
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In another work, a simple model based on the pair potential for interact ing 

particles in a dilllte electrolyte solution is used by R. Buscall et al. , as the basis 

for a comparison with experimental shear modulus data[1]. Using a rheometric 

apparatus, measurements of shear modulus were taken for polystyrene samples 

(a=34.3 nm) over a volume fraction range of 0.146 < <jJ < 0.303. The shear 

modulus data was seen to have increased smoothly from 280 Nm- 2 at <jJ = 0.146 

to 3450 Nm- 2 at <jJ = 0.303. This shear modulus data was then fitted to the pair 

potential model to obtain an experimental value for a diffuse layer potential. 

W. B. Russel and D. W. Benzing have developed a self consistent field the

ory that can predict the equilibrium and transport properties of ordered monodis

perse latices[lO,llj. The multiparticle electrostatic interactions are used to calcu

late the osmotic pressure and the shear modulus. These depend on the volume 

fraction, the surface charge density, and the electrolyte concentration. The theory 

points out the role of the counterions in shielding the surface charge. 

Advanced preparation and deionization methods have been developed by 

T. Palberg et ai. in order to increase the accuracy and precision of shear modulus 

measurements[3]. The authors prepared BCC crystalline samples using polystyrene 

spheres of radius a = .51nm at low volume fractions ( <jJ = 0.01). Two different 

methods were used to deionize the sample. In the first method, known as standing 

preparation, a small amount of mixed bed ion exchange resin is introduced into the 

cell containing the crystalline sample. A fine mesh is used to cover the resin beads 

and insure the flat lower boundrlry needed for the experiment. When using this 

method of deionization, great care must be taken to prevent contaminat ion of th 

sample by airborne CO2 , In the second method, known as continuous deionization, 

the suspension flows through a teflon tube system connected to an ion exchanger 

cell. Using this method of preparation, uncertainties in volume fraction and salt 

concentration were reported to be below 1 %. 

A Bragg scattering experimental set-up was used by T. PaJberg et al. that 

involves a cylindrical cell mounted on a driven system consisting of an excentrically 

coupled loud speaker driven by a frequency generator [3]. A laser beam scatters off 
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a small crystallite in the center of the celi and is incident upon a posi tion sensit ive 

photodiode under an angle that satisfies t he Bragg condition. Additionally, some 

measurements were taken by the authors in which a mirror was centered on the 

suspension interface of a sample prepared wi th free upper inert gas boundary. 

In the following thesis, we begin by looking at the solu tion to the elas

ticity equations for an isotropic elastic medium as outlined by R. Nossal and M. 

Jolly[8]. From these equations , we can find the relationship between the resonance 

frequencies WI.n observed in a sample and the allowable normal modes k[,n fo r a 

cylindrical cell. From this relationship, the elastic modulus G can be calculated for 

any observed resonances. Next, the preparabon and deionization of several sam

ples using 0.107 micron diameter polystyrene and mixed bed ion-exchange resin 

is discussed. Construction and testing of the Bragg scattering experimental setup 

is reviewed. Data is taken and the experimental values for elast ic modulus are 

compared with a pair potentaii model to determine an experimental value for the 

number of screening ions per polystyrene sphere. Finally, the values of the data 

obtained in this experiment are compared with those of other works. 



CHAPTER II 

THEORETICA L 

Solving the elasticity equation 

Although a sample will contain many microcrystallites , macroscopically it 

behaves as an isot ropic elastic medium[4]. The elasticity equations for a crystalline 

sample can therefore be written as[9] 

(1) 

where p is the mass density of the sample, U is the diplacement vector of the 

sample, (J is a generalized stress tensor, and F is the vector of applied forces. 

For small torsional excitations of a sample in a cylindrical cell, the applied fi eld 

will have no angular dependence. Thus Eq. (1) reduces to the following set of 

equat ions[8] 

(2) 

(3) 

(4) 

4 
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where Ur , Uo, and Uz are the gel or suspension displacements along the radius , 

angular direction: and axis respectively. 0). and 01' are linear operators defined 

as[12] 

j t f:) 
O>.f(t) )..f(t) + -00 £(t - t') ot,!(t')dt', 

j t f:) 
0l'f(t) = f1.f(t) +-00 9(t - t') 8t,!(t')dt', (,1) 

where f(t) is an arbitrary function of time, ).. and f1. are the usual static Lame 

coefficients, and Let) and 9(t) are kernels which decay to zero at long times. 

Equations (2) and (3) show coupling between Ur and Uz. The applied 

forces and the boundary conditions will determine whether the resulting waves 

will be shear or compressional. Eq. (3) shows that Uo is decoupled from Ur and 

Uz and will be related only with shear waves. In order to solve Eq. (3), we must 

consider the appropriate boundary conditions. Since the cell is undergoing only 

small excitations, we can assume that the sample sticks to the cell walls. If this is 

the case, then the boundary conditions are[8] 

Uo(R, z; t) 

Uo(r, 0; t) 

a,r = R, 

Uo(r, h; t) = 0, z = 0, h. (6) 

vVhile these boundary conditions indicate that the top as well as the bottom of 

the sample is immobilized by the surface of the cell, in fact , the top of the sample 

is free to move . This discrepancy will be dealt with later. 

Derivation of an expression for resonance frequencies 

Assuming a cell excitation go(t) which is a periodic twist of small amplitude 

and is of low frequency, it is clear that the body force FO(T, z, t) depends only 

on the time derivatives of ge( t) . This must be since if the cell was turned very 

slowly, the entire sample would follow as well. In other words, for slow excitations 

U(r, t ) approaches zero. Since rotations at a steady velocity would not result in 

sample displacement , the lowest time derivative must be of first order and since 
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the displacements are small and of low frequency the lowest order term is most 

likely the only one of importance. The internal force can then be taken to be[8] 

-pr d9o(t) 
Fo(r, z; t) = (R--;jt ' (7) 

where "( is an unknown coefficient which likely varies with sample viscocity. If 

applied forces and internal dissipation are ignored (90 == 0, O}J. -+ p.), the solution 

to Eq. (3) is 

(8) 

where J1 (.) is a first order Bessel function of the first kind. VI are the zeros of 

J1 (.) and n is and interger. WI,n are frequencies given as WI,n = kl ,nC tr where C tr is 

the transverse sound velocity Ctr = (G I p )1/2. The wavenumbers kl,n for cylindrical 

cu vettes are 

kin = ([~]' + n~:2r (9) 

To solve Eq. (3) with the applied forces and internal dissipation, we antic-

ipate a solution of the form 

Uo(r, z;t) ( 10) 

Where a /,n is given by 

(11 ) 

where hn( t) is defined as 

4( ] ()-l[ ( )n]d9f) -TWI· 2 VI 1 - -1 - . 
~ dt 

( 12) 

Eq. (11) can be solved formally for any arbitrary kernal 9(t ) appearing in Eq. (5) . 

However, for this experiment we can assume that the relaxation of the sample oc

curs much faster t han the frequency of oscillation of Uo. We can thus approximate 

9(t ) as 

9(t) ~ TJ8(t) , (13 ) 
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where 1] is a viscosity coefficient , 8( t) is a Dirac delta function , andthe operator 

0/1. becomes 

(14) 

If 9o(t) is a periodic function given by 9o(t) = 90 sinwt, then ignoring initial value 

terms which decay to zero, the solution of Eq. (11) is [8] 

4w90[1 - (_I)nj( x [( 2 _ k2 C2)2 + k4 2 2/ 2]-1/2 
J ( ) W I,n tr I,n 1] W P 

n7rVI 2 VI 

x sin (wt + <P - 7r) , 

where 1] is a viscocity parameter and <P is the phase shift as given by 

p( kfn Crr - w2 ) 

tan <P = p . 
W l,n1] 

The maxima of the amplitudes in Eq. (15) occur at values of w given by 

P 1]2 
C2 I,n 

'tT - --2- ' 
P 

(15) 

(16) 

(17 ) 

Since kl,n 1]2 / p2 is expected to be (and will later be shown to be) much smaller than 

Ct~ 1 Wm can be approximated as 

( 18) 

The result of the top of the sample not being restrained as suggested in the bound

ary conditions is that Eq. (9) must be modified so that the values of n are no longer 

integers but half integers . Eq. (9) then becomes 

(19) 

Since the wavelengths of the allowable normal modes are dependent on the size of 

the sample cell, any changes in the sample cell dimensions Rand h will result in 

a change in the observed resonance frequencies. 



CHAPTER III 

EXPERIMENTAL PROCEDURES 

Sample preparation 

Several samples were prepared using commercially available (Lot #16203 

Duke Scientific) 0.107 micron diameter polystyrene spheres. In order to prevent 

aggregation due to van der Waals attraction, the particles are synthesized with 

a net charge to provide a stabilizing coulomb repulsion [6]. The polystyrene was 

mixed with purified, deionized (18MD) water in concent rations ranging from 1.45 x 

10-3 to 4.44 X 10-3 volume fractions and placed in cylindrical cells . Since highly 

ionic solutions will disrupt the charge on the spheres, mixed bed ion-exchange resin 

(analytical grade 20-50 mesh fully regenerated #27180 from Bio-Rad) is placed in 

the cuvet te. This is done to minim:ize the ionic strength of the sample and maximize 

the interparticle repulsion. 

Experimental Set up 

A. polystyrene sample in a cylindri cal cuvet te is centered on a turntab le 

driven by an excent rically coupled loudspeaker (Figure 1). A helium-neon laser 

illuminating the crystalline sample results in Bragg scattering. As the speaker is 

driven with a sinusoidal signal from a frequency generator, the turntable and hence 

the crystalline sample experience a periodic torsional displacement. Shear waves 

are induced in t he sample, and within the limit of small oscillations, the resul t ing 

sinusoidal shearing of the crystal corresponds to an equally sinusoidal variat ion in 

the Bragg angle. A position sensitive photodiode then detects the mot ion of one 

of t hese Bragg spots . 

8 
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Speaker 

Figure 1. Experimental Setup: A speaker and turntable are used to excite torsional 
waves within a sample. A laser illuminates the sample and a detector 
measures the movement of a crystal which is oriented under Bragg 
conditions. The detectors signal is amplified and recorded on the 
analyser. 

Position Sensitive Detector and amplification circuit 

The movement of the Bragg spots was followed using an analog super 

linear posit ion sensing detector (DL20 from UDT Sensors, Inc.) . With a 4 square 

cen timeter sensing area, the resolut ion of t he detector is limi ted only by the signal 

amplificati on circuitry and t he light source. According to the manufacturer, the 

position detection error over most of the sensing area is typi caUy 20 microns wit h a 

maximum of 100 mi crons. The amplification circuitry (see Appendix A) translates 

and amplifies the raw signal from the sensor in to an absolu te position wi th respect 

to the center of the detecting surface. 

HP Analyzer and output data format 

The function generator on an HP Dynamic Signal Analyzer 35665A is used 

to produce the swept sine measurements across a range of frequen cies, typ ically 
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from 0.1 Hz to 10.1 Hz. The range of frequencies , step size, and resolution are ad

j ustable. Settling time as well as integration t ime can be regulated to average data 

over several periods at each individual frequency step. The HP Dynamic Signal 

Analyzer then compares the sine wave input into the speaker with t he sinusoidally 

varying signal coming from the posit ion of the Bragg spot. T he analyzer generates 

a Bode diagram, which shows gain and phase versus swept frequencies. 

Testing the setup 

Using a mirror in place of the cuvette and adding weight to the turntable 

to keep the moment of inertia consist ant with that of a cuvette, data was taken 

to test the mechanical resonance of the experimental setup as well as t he coupling 

between the speaker and the turntable. As shown by the data (Figure 2), the 

mechanical resonance of the system was found to be at a frequency of 30.1 Hz. 

This is well above the frequencies that we will be looking at in this experiment. 

The sensing error of the system was calculated to be 20 micron. This value 

for the error was arrived at by dividing the amplitude of the noise coming from 

the sensor by t he amplitude of the signal coming from the sensor (F igure 3), and 

multiplying this by the amplitude of the laser beam sweeping across the sensor as 

it reflects off the mirror. This data was taken while t he system was driving the 

turntable sinusoidally at a frequency of 1 Hz. 
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Figure 2. yIechanical resonance occurs at the gain peak (top) and correspondingly 
at phase shift of 90 degrees (bottom) . Experime ntal data on the 
crystaline samples were taken in the frequ ency range of OHz to 5Hz, 
well below the mechanical resonance of the syste m. 
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8 

F igure :3 . Sensi ng error is calculated by di viding t.he ampli tude of noi se ( to p) by 
t he amplitude of s ignal (bottom ) and multiply ing by the amp litude 
of m ovemen t across t he sensor The abo ve data is for t he system 

being driven at 1 Hz . 



CHAPTER IV 

RES ULTS 

Discussion of accuracy and reliability of resonance detection met hods 

Use of the position sensing detector had both good and bad points. The 

low sensing error provided excellent results during testing with a mirror. However, 

the detector was found to be sensitive to the size and shape of the incident Bragg 

spots. The signal from the detector is derived from the centroid of any light incident 

on its surface, so only one Bragg spot may be measured at a time. Mult iple Bragg 

spots incident upon the sensor send a somewhat confused signal. As the sensor is 

moved farther from the sample, the amplitude of a spots movement increases but 

the size of the spot also increases. Therefore, before each swept sine measurement, 

the sample was driven at 1 Hz and the signal coming from the sensor was examined 

to ensure that it was sinusoidal and well defined . The location of the sensor could 

t hen be adjusted to maximize the clarity of the output signal. 

As a measurement proceeded, a Bragg spot would often move off the po

sition sensing surface, or disappear entirely. It is possible this movement could be 

caused by shearing within the sample destroying a crystal (shear melting), parki ng, 

or a crystal could be settling in the cuvette. While over the short term t hese ef

fec ts are not noticeable , as typi cal measurement might take two hours to com plete, 

almost half the measurements were incomplete and had to be redone. 

Discussion of data fitting and results 

Since t here is a lin dependence in t he ampli tude (see Eq. 15), the k',Q 

gam peaks are t he most. readily seen. For each sample, the first prominent gain 

peak that corresponds to a phase shift of around 90 degrees on the Bode diagram 

12 



IS taken to be the fir st resonance peak kl.o, All o the r ob e rved peaks a re used 

as a measu rement of accuracy (Figure 4). The error between the higher modes 

calcu lated from the posi tion of the first resonance peak and the act ual observed 

position was an average of 7.5%. 

A l( a.s 
B .81&1865 r~----"-''-'-=~c..;..;;.;;~...----....;;..o~=-,--___ -, 

M4enltuda 
(Linear) 

B.888~15 ~.--..L...---'-----'----'--.L..---'----'-_--' __ .&....,-."..,.,..J 
B. 

B rX~8~.S~ __ ~Yrl~~~-~58~2~~ ____ ~'~r~·~~R"~' ____ ~ 
188 
d"e 

Ph4s" 

Figure 4. Typical Resonance Spectrum 

By fi tt ing the first observed amplitude peak to Equation 15 as in (Figure .5), 

we fin d that. kf.nT/ 2j p2 is t.wo orders of magnitude smaller than C/r. Therefore, the 

elastic modulus. G. is calculated from t he first resonance peak us ing Eq . (1 ) and 

the defin ition of CIT' Repeated measurements on a sino- Ie sample taken severa l 

weeks apart, resulted in a difference in measuremen t of around 15%. One reason 

for this may be uncer t ainties in the ionic strength of the samples. 

A plot of the elastic modulus for a range of volume fractions (Figure 6) 

shows the expected increase in elasti c modulus as the volume fraction of pa rticles 

mcreases. The da ta may de viate at smaller par t icle concentrat ion d ue to the 

proximit.y of the li qui d -crys tal phase transi tio n. At smaller concentrations t han 

shown in the graph. t he ::iamples di d not crystallize . These values for the elas tic 

modulus are on the same order of magni tude as t hose measured by Palberg and 

C . h ->] .)tre lC er l:" . 
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Figure 5. The amplitude of a typical resonance spectrum is fit to Eg, 1.5. klnry2 / p2 
is found to be two orders of magnitude smaller than C?r ' 

Wit h a com panson of the experimental data wi t h a theoret ical model 

developed by Buscall et at, [1], and based on the pair potential for interacting 

particles (see Appendix B) , an experimental value for the number of screening ions 

in the sample can be determined, As shown by F igu re 7 and Figu re 8 a value o f 

12,5 ions or 150 ions can be measured depending on t he whet he r the polystyrene 

forms a face- centered cu bic (FCC) or body-centered cub ic (B CC ) array. From this 

an est.imate of th e par ticle's effect ive charge can be foun d to be arolmd 2 x 1O - l7 

coulombs. 
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CHAPTER V 

CONCLUSIO S 

It was demonstrated that the elastic modulus of a polystyrene lattice can 

be readily measured using the noninvasive Bragg scattering procedure detailed 

in this paper. The experimental data obtained using this measuring technique 

currently displays a relatively high error (15%). This is high when compared to 1 % 

error obtained by Palberg et al. [3] or an estimated 5% error obtained by Dubois

Violette et al. [4], but indicates that with sample improvements, this system has 

the potential to be fine-tuned into a dependable method of measuring the elastic 

modulus of colloidal systems. 

When everything in the system was working correctly, use of the position 

sensor resulted in an excellently resolved and sensitive data signal. A trade off 

existed, however , bet ween averaging over several consecutive sets of data to ob

tain better results , and having the Bragg spot move off the sensor during longer 

measurement times . So, much still depends on the manual selection of a sui tably 

stable and measurable Bragg spot. 
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APPE r ·DIX A 

Amplification Circuitry 

An amplification circuit diagram (Figure 9) was provided by UOT Sensors , 

Inc., however it was left to the author to determine the correct values of the 

components needed for the specific bandwidths involved in the experiment. In the 

first stage of the circuit, the raw signals from the anode and cathode connections 

on the sensor are amplified and compared to a reference circuit. The reference 

circuit has a bias adjustment to allow the positioning of a reference point on the 

sensor. Capacitors are present in the reference circuit to reduce AC noise and in 

the operational amplifier feedback loops to control bandwidth. At the second stage 

of the circuit, the anode and cathode signals are put through difference amplifiers 

as well as a sum amplifier. Finally, the differentiated signals are divided by the 

summed signals, giving output data for both the x and y axis. 

Fiaure 9. Circlit Diagram o ~ 
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APPENDIX B 

Theoretical Shear Modulus 

At the low electrolyte concentrations and volume fractions used in this 

experiment, the pair potential for interacting particles will be dominated by the 

electrostatic repulsion, VR, due to overlapping of electrical double layers. For a 

sample made of spherical particles of radius a , with a seperation distance R and a 

diffuse layer potential 'l/Jd, then t he electrostatic repulsion can be wri t ten as [11 

47rccoa 21j;J 
VR = R exp[-K:(R-2a)] (20) 

where c is the permittivity of the medium, C:o is the permittivity of free space, and 

1j;d is given by [13] 

ze [ 2 ]-1 1j;d = -- a + a K: 
47rC:C:o 

(21) 

where z is the number of screening ions per polystyrene sphere. The Debye- Huckel 

reciprocal double-layer thickness parameter, /{', is defined as[ l4] 

(22) 

where Z is the valence of the electrolye, k is Boltzmann's constant, T is the tem-

perature, and nb is 

zcP 
nb =-

i7ra 
3 

Eq.(20) is applicable only under the condition that the particles interact at a 

const ant diffuse double-layer potential and K:a < 3[1]. 

The particle seperation in an ordered array can be related to the volume 

fraction by[l ] 

(24 ) 
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where 1; is the volume fraction and ¢m is the packing fr action. ¢m is 0. 74 fo r 

face-centered cubic (fcc) arrays and 0.68 for body-centered cubic (bee) arrays[15]. 

The shear modulus can be expressed in terms of the total energy of inter

action by[ l ] 

(25) 

where VT is the total energy of interaction and a = (3/ 32)¢mn. n is the number 

of nearest neighbors. The subscript zero indicates that this is the high-frequency 

limit as relaxation was not considered. Since electrostatic repulsion dominates the 

particle interactions, VT in Eq.(25) can be replaced by YR. 

Differentiating Eq.(15) twice and putting the result in Eq.(25) yields a 

theoretical shear modulus of [1 ] 

(26) 

for IW < 3. 
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