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PREFACE

The methodology of variable structure with sliding mode is proven Lo be very successful in
controlling uncertain continuous-time dynamical systems. When the system is sampled or
purely discrete, the invariance property of sliding mode, which is originally a continuous-
time concept, no longer hold and the reaching condition has to be modified to allow a
pseudo-sliding mode. Moreover, the state dependency of parametric uncertainties makes
the satisfaction of reaching condition considerably more difficult especially in multivariable
systems. These difficulties have offered challenges that attracted a great deal of research
interests. This thesis presents theoretical results on the discrete variable structure control
ol uncertain linear multivariable systems using the concepts of sliding mode and switching
sector. Tt considers both the state and output feedback cases for systems with additive
uncertainties and the state feedback case for systems with parametric uncertainties. The
thesis also presents a sliding surface design procedure for single-input systems based on the
version ol discrete variable structure conlrol developed by Dr. Eduardo Misawa.
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Chapter 1

Introduction

1.1 Background and Motivations

The problem of controlling uncertain continuous-time dynamical systems has been the sub-
ject of research activity for many years (Gutman [19], Utkin [42], Corless and Leitmann
(8], Slotine [36]). By virtue of increasing availability of low cost digital computers, for the
past decade, a tremendous amount of work has been devoted to the problem of stabilizing
uncertain discrete-time systems with bounded uncertainties of deterministic nature. Deter-
ministic, state space approach based work can be roughly classified into three categories.
First, inspired by the success ol variable structure control with sliding mode lor uncertain
continuous-time systems (Utkin [43], DeCarlo et al. [11], Zinober [54]), many invesLigators
attempted to extend this nobion to sampled-data or discrete-time systems (Sira-Ramirez
[35], Su et al. [40], Koshkouei and Zinober [22], Misawa [27]). Second, a number of inves-
tigators retained Lhe idea of variable structure by introducing the use of swilching sector,
also called sliding sector or switching region, in place of sliding surface (Furuta [15], Yu
(51], Pan and Furuta [31], Wang el al. [48]). Third, a number of investigators employed the
direct method of Lyapunov in synthesizing stabilizing controllers (Corless and Manela (7],
Magaiia and Zak [24]).

In sampled-data systems, the control signal space shrinks from (£;[0, At])™ to R™,
where £y, Al, and m are the Lebesgue space, the sampling period, and the number of

control inputs respectively (Su el al. [38]). Thus, the controller is inherently less capable




than the continuous one and sliding mode is hardly achieved under nonideal conditions.
I Al is sufficiently small, the sampling effect is insignificant and the state can be kept
sufficiently close to the sliding surface with a continuous-time sliding mode control law.
Unfortunately, no general result is available to date on the upper bound of At so that the
sampling effect can be “safely” ignored. Although it is shown by Su et al. [38] that the
state can be maintained in the vicinity of the sliding surface up to at least O(At9) for
some positive g depending on the situations, this does not imply that the system is BIBO
stable because the state may still go unbounded along the vicinity of the sliding surface.
A study conducted by Yu [51] based on the Lyapunov exponents method (Grantham and
Athalye [18]) shows that a sufficiently small At may still cause chaotic behavior. Tt is
Lherefore necessary to analyze and design discrete variable structure systems in a complete
discrete-time framework.

As a result, several reaching conditions specifically tailored for the existence of pseudo-
sliding mode are proposed. From a geometric viewpoint, currently there are two kinds of
pseudo-sliding mode. TFor systems with additive uncertainties, i.e. uncertainties that can
be bounded by constants, pseudo-sliding mode usually refers to a subset in the stale space
with uniform thickness, possibly a boundary layer. Meanwhile, for systems with paramnetric
nncerlainties, i.e. uncertainties with state dependent bounds, pseudo-sliding mode refers Lo
a switching sector whose thickness grows with the magnitude of the states. Switching sector
is adopted mainly because the effect ol parametric uncertainties is more severe as the states
are located farther from the origin. This does not allow the use of boundary layer with
uniform thickness. The terminology of switching “sector” actually originates from second
order systems. Tn general, its shape depends on the particular control law and the number
of seetors may depend on the number of inputs as well.

Conventionally, sliding mode is defined as the intersection of m sliding hyperplanes
(Utkin and Young [45]), which results in perfect invariance to matched uncertainties for
continuons-time systems. When it comes to discrete-time, additive uncertainties can easily
destroy the discrete sliding mode and one has to seek help from other means, possibly
through linear control design strategies, to attenuate the effect of uncertainties. However,

ol the existing discrete variable structure control schemes for linear multivariable systems,




only . — m eigenvalues of the dynamics on the sliding surface can be freely assigned (Su et
al. [38], Chan [5], Koshkouei and Zinober [22]). This imposes a certain level of difficulties
in the design of sliding surface. Furthermore, most existing work considers the case where
(ull state feedback is available. To date, very few work exists for discrete variable structure

systems with observers.

1.2 Scope and Contributions

T'he scope of this research covers the discrete control of uncertain linear multivariable sys-
tems using the theory of variable structure with sliding mode and with switching sector.
[For systems with additive uncertainties, both the state and output feedback cases are stud-
icd, as oppused to systems with parametric uncertainties, where the state feedback case is
studied. Sliding surface design problem is also considered. Highlighted below are the major

contributions of this researcl.

e ‘The development of a state feedback diserete variable structure control technique
[or linear multivariable systemns with additive uncertainties. In contrast to exist-
ing schemes, it utilizes one sliding hyperplane regardless of the number of inputs.
This attribute enhances the design freedoms of tracking error dynamics inside the
bhoundary layer while preserving the same robustness properties. Tt allows the use of

well-established lincar control design strategies under a minor eigenvalue constraint,.

e T'he extension of the technique to incorporate a prediction observer with uncertainty
estimation to make the controller practically reliazable. The resulting observer-based
controller guarantees the attractiveness and invariance of the estimated houndary
layer, which is dynamic and parallel to the sliding hyperplane. Linear coutrol design

strategies can then be employed under the eigenvalue constraint.

e The development of a state feedback discrete variable structure control technigue for
linear multivariable systems with parametric uncertainties using the concept of switch-
ing sector. Potential stability problems with existing schemes are avoided. Global

uniform asymptotic stability may be achieved despite the noninvariance of swilching




sector.

e The development of an optimal sliding surface design procedure for single-input system
based on the LQR technique which allows the prespecification ol the desired real

eigenvalue.

1.3 Thesis Outline and Notations

This thesis is organized into eight chapters. Chapter 1 briefly overviews the problem of
discrete variable structure control of uncertain dynamical systems and summarizes the ac-
complishment of this research. Chapter 2 reviews the existing literature on discrete variable
structure control and on sliding surface design.

Tn Chapter 3, a state feedback discrete variable structure control law for linear mul-
tivariable systems with additive uncertiainties is derived. Tts convergence properties and
related design issues are discussed. Extensions of the results to the output feedback case
are given in Chapter 4, where the properties of the observer-based controller with the use
of prediction observer with uncertainty estimation are investigated.

Chapter 5 presents a state feedback discrete variable structure control law using switch-
ing sector for linear multivariable systeins with parametric uncertainties, Chapter 6 presents
an optimal sliding surface design procedure based on LQR technique for single-input sys-
Lems,

Examples used to illustrate the effectiveness of the proposed controllers and sliding
surface design procedure are given in Chapter 7. Finally, Chapter 8 lists the concluding
remarks of this work and suggestions for future research.

Throughout the thesis, the following conventions are adopted for the vector and matrix
norms unless otherwise specified: Let € R™ and A € R™*", Then the Euclidean 2-norm

of # is denoted by [|z|| and the induced 2-norm of A is denoted by ||A|[. In addition, [a;;]

denotes a matrix with a;; as its ith row and jth column element.




Chapter 2

Literature Review

2.1 Discrete Variable Structure Control with Sliding Mode

Early papers on discrete-time sliding mode control examined the reaching or hitling con-
ditions. Milosavljevic [25] has pointed out that the sampling process limits the existence
of ideal sliding mode in the digital impleinentation of sliding mode controllers. In light
ol this, definitions of quasi-sliding mode, pseudo-sliding mode, discrete sliding mode, and
convergent discrete sliding mode have been suggested and the conditions for the existence
of such modes have been investigated. In particular, Milosavljevic [25] proposed the idea of
quasi-sliding mode and presented a reaching condition modified from the continuous-time
reaching condition. However, it is shown in Sira-Ramirez [35] and Yu [51] [52] that this
condition guarantees only the states to approach and/or to cross the sliding surface, which
imay allow an unstable sliding mode. Sapturk et al [34] suggested a reaching condition
that is widely used in current DVSC research. Koshkouei and Zinober [22] clarified the
concept. of discrete-time sliding mode and presented several new sufficient conditions for
the existence of discrete-time sliding mode.

As a part of this research, versions of discrete-time sliding mode control (DSMC) or
discrete variable structure control (DVSC) schemes for linear systems based on the sliding
mode concept have been proposed. Most of these schemes considered single-input systems.
Chan [1] proposed a DSMC strategy that ensures sliding mode to be achieved exponentially

fast to keep the system robust. Sira-Ramirez [35] investigated the behavior of the nonlin-



ear DVSC in quasi-sliding mode. Paden and Tomizuka [30] proposed a DVSC technique
with parabolic sliding surface for position control of second order systems with parametric
uncertainties. Chan [5] proposed a linear feedback control law, developed using the delta
operator, to achieve discrete sliding mode or quasi-sliding mode for systems with no uncer-
tainties. Next, he developed an adaptive DSMC for linear systems in state-space form [6].
Gao et al. [16] developed a version of DVSC for system with no uncertainties. Koshkouei
and Zinober [21] proposed a DSMC for system with additive uncertainties. Fradkov and
Furuta [12] analyzed the behavior of a number of control schemes under both deterministic
and stochastic disturbances. Using the concept of time delay control, Corradini and Orlando
[9] developed a DVSC for systems with both matched parametric and additive uncertain-
ties. They assumed that the rate of change of the matched uncertainties is considerably
slower than the sampling rate. Misawa [27] proposed a DSMC for nonlinear systems with
uninatched uncertainties and uncertain control vector. The linear case of the above DSMC
is treated in Misawa [28], where tracking control under additive uncertainties is considered.
To explicitly account for computational delay inherent in any digital implementation, the
prediction observer-based DSMC is proposed by Misawa [26].

A number of DVSC schemes considered multzple-inputl systems. Kaynak and Denker
[20] developed a DVSC for a class of nonlinear systems. Su et al. [40] proposed a nonlinear
DSMC for matched uncertainties. The linear case was treated in Su et al. [38], where it
was shown that the states can be maintained in the vicinity of the sliding surface up to
at least O(At?). They later proposed the use of pre-filtering and post-filtering setlings Lo
climinate chattering while ensuring the robustness of DSMC [39]. Koshkouei and Zinober
[22] proposed a DVSC for systems with additive uncertainties. They showed that if sliding
imode can oceur, the systems behavior will be governed by 70 — m eigenvalues. Utkin [44]
presented several DSMC design for linear systems, infinite-dimensional systems, and systems
with delays. Chan [5] proposed DSMC which is robust against slowly varying perturbations
while Fujisaki el al. [14] proposed a DSMC for systems with no uncertainties. Yu et al [50]
proposed a DVSC with an adaptive discrete reaching law and a periodic convergence law
for systems with no uncertainties.

O the other hand, a number of investigators applied the discrete sliding mode concept




Lo systems represented by input-output models. Pieper and Goheen [32] developed a DSMC
for systems described by ARMA models while Suzuki and Furuta [41] studied the hyperplane

of the discrete variable structure systems by using only input and output signals.

2.2 Discrete Variable Structure Control with Switching Sec-

tor

DVSC using the concept of switching sector for system with parametric uncertainties has
been the subject of a number of investigators. ‘The earliest work is by Furuta [15]. He
designed a DSMC for single-input systems and provide a condition on the stability of the
equivalent dynamics on the hyperplane. Wang and Wu [47] considered the work of Furuta
and presented a simpler control law. They used the concept. of equilibriumn point of the
diagonalized system to determine the switching region which results in explicit reduction
of chattering. Yu [51] analyzed some of the inherent properties peculiar to DVSC and
developed a DVSC that enables the elimination of chattering as well as divergence from the
switching hyperplane. Pan and Furuta [31] presented a robust DVSC and presented a robust
stability criterion for system inside the switching sector. Wang et al. [48] proposed a DVSC
and introduced the concept of locating the equilibrium point of the nominal subsystem
on cach hyperplane parallel to the sliding hyperplane outside the switching sector. In a
later paper, they generalized the result to multiple-inpul systems [46]. Lee and Wang [23]

proposed a DVSC for mmodel-following systems with no uncertainties.

2.3 Sliding Surface Design

Several sliding surlace design techniques for DSMC or DVSC have been proposed. For
single-input systems, Richter el al. [33] solved the eigenvalue assignment problem for the
equivalent dynamics inside the boundary layer and proposed the use of LQ technique in the
design of sliding surface. Pan and Furuta [31] proposed the use of LQR technique in the
design of sliding sector. For multiple-inpul systems, Spurgeon [37] proposed an advanced

hyperplane design methodology based on the Lyapunov approach.




Chapter 3

Additive Uncertainties: The State
Feedback Case

In this chapter, a state feedback discrete variable structure control technique for linear mul-
Livariable systems with additive uncertainties, a generalization of the result for single-input
systems by Misawa (28], is presented. Tt is shown that the boundary layer under the control
law is attractive and invariant. Discussion on Lhe eigenvalue constraint in variable structure
systems, [ollowed by comparison on the use of one hyperplane and multiple hyperplanes are
then made. Tt is shown that the tracking error dynamics inside the linear region, namely
the boundary layer, can he matched with any dynamics having the state feedback form
under the eigenvalue constrainl. This chapler ends with discussion on design issues and
conclusion on stabilily.

Consider the following discrete-time linear multivariable system which may be obtained

by discretizing its continuous-time equivalent with sampling period Al:
w(k+1) = Ax(k) + Bu(k) + Dyw,(k) (3.1)

where z € R™ is the state vector, u € R™ is the input vector, and w, € R% is the
additive uncertainty vector. A, B, and D, are perlcctly known constant matrices with
appropriate dimensions with B = [B | Ba| -+ | By,], B; € R", and the matching condition
rank([B D,]) = rank(B) not necessarily satisfied, i.e. the additive uncertainties may occur

not only on the control channels. The objective is to find a suitable control input u(k) so




that x(k) will track a known desired trajectory z4(k).

Assumption 3.1. The system (3.1) satisfies the following conditions: rank(B) = m, the

pair (A, B) is controllable, and w, (k) is bounded.

Assumption 3.2. The desired trajectory z4(k+ 1) is “consistently generated” by a model-

based xg-generator (Misawa [28]) using the nominal system
zq(k + 1) = Azq(k) + Bugy(k)

where 1y(k) is the hypothetical input.

3.1 Attractiveness and Invariance of Boundary Layer

Definition 3.1. Let the tracking error & € R™, the sliding function s € R, Lhe sliding
sirface § € R™, the boundary layer B € R"™, the saturation function, and the signum

[inction be respectively defined as

z(k) = zq(k) — z(k)
s(k) = Gzk)
S = {F:9=GF=l}
B = {&:ls]=|G%|<¢, $>0}
(s) sgn(s) . s[> ¢
sab | — =
‘ 1 slg sl < ¢

+1 ., s5=>0

sgn(s) = ¢ 0 , s=0

“

where ¢ is the boundary layer thickness.

Assumption 3.3. The row vector G is determined such that GB; # 0, 1 < 7 < m and

G| = 1.




Theorem 3.1 (Attractiveness and Invariance of B with State Feedback). Consider

the system (3.1) and let Assumptions 3.1, 3.2, and 3.3 hold. If the control law is chosen as

u(k) = (B"B)"'BT(zq(k + 1) — Azq(k))

+T0 "M (xq(k) — z(k)) + T~ K sat (f%—’) (3.2)

I = diag(GB),GBy,... ,GBy), I eR™™ (3.3)

M = [ulps| - |pm]" ., MeR™™, ueR" (3.4)

fju;" = G(A-T) (3.5)
i=1

K = [KiKy - Kn)', KeR™, K;eR (3.6)

i Ki = Ke=9+2Ate, €¢>0 (3.7)

- ¢ = g+ Ate (3.8)

v 2 |GDowo(k)] (3.9)

where K;'s are the sliding qains and <y is the bound on uncerlainties, then B is altraclive
and invariant, i.e. there exists a kg such thalt Z(k) € B for all k > ky. In particular, s(k)

asymplotically approaches S if w,(k) = 0.

Proof. Consider a Lyapunov [unction candidate V (k) = s%(k). |s(k)| decreases monotoni-

cally il the following inequality holds:
V(k+1) < V(K) = [As(k) + 2s(k)]As(k) <0, Vs(k) #0 (3.10)
where As(R) = s(h + 1) — s(k). Using Eqgs. (3.2), (3.5), aud (3.7), As(k) is obtained as

As(F)

Gk + 1) = GAxz(k) — GB(BYB) "' BT (zq(k + 1) — Azq(k))

T m

- Z;Lg‘(i‘,;(k) —x(k)) - Z Kisat(s(k)/d) — GDywy(k) — G(zq(k) — =(k))
i=1 i=1

G[I - B(B"B)~'B! '](.f:,g{ﬂ:_+ 1) — Azg(k)) — Ky sat(s(k)/¢) — GD,w,(k)
It follows [rom Assumption 3.2 that the first term in the above expression vanishes, i.c.

(7 — B(B"B)"'BT)(aq(k + 1) — Azq(k)) = [T — B(B" B)™' B"|Bugy(k) = 0 (3.11)
Therefore,

As(k) = — Ky sat(s(k)/¢) — GDyw, (k) (3.12)

10




and the left-hand side of inequality (3.10) can be written as
(= Ky sat(s(k)/¢) — GD,w,(k) + 2s(k)][- Ky sat(s(k)/¢) — GDyw,(k)) (3.13)

For s(k) > ¢, let s(k) = ¢+ & (k) where & (k) > 0. Also, in view of Eqs. (3.8) and (3.9), let
¢ =5+ Al + & and €(k) = v — GD,w,(k) where & > 0 and 0 < &(k) < 2. Expression

(3.13) then becomes

[=7 = 2ALe — GDywo(k) + 2y + 2A1e + 2& + 261 (k)][—y — 2Ate — GDyw,(k))

= [\E:;(F&t) + 28, + 26, (kl][g:;(k) — 2y - 2&!,(’]

positive negative

which unplies that inequality (3.10) is satisfied. Similarly, for s(k) < —¢, let s(k) =
—¢ — & (k) where & (k) > 0. Along with the definitions of & and &3(k), expression (3.13)

becomes

[y + 2ALe = GDyw (k) — 2y — 201t — 2&y — 26, (K)][y + 2Ate — GD,w, (k)]

= [\é'i“ﬂ ~ 2y =2~ 251(;")1][\{3(;5) ge 2Atfj

negative posttive

which implies that inequality (3.10) is again satisfied. This concludes that B is attractive,
ie. for all #(k) € B, there exists a ky > k such that z(k,) € B. Next, for |s(k)| < ¢, lel
s(h) = (k) where =1 < & (k) < 1. Then, from Eq. (3.12) and definition of £, one has
s(h+1) = (1 - Kg/¢)s(k) — GDyw,(k)
—Ale + &
= | —— k JAV 2) — GDyw,(k
(7+Atc +£2)54( (v + Ate + &2) w, (k)

= |s(k+1)] < | — Aleda(k)| + |€284(K)| + |GDowo(R)] < Ale + &+ = ¢

Hence, B is invariant, i.e. il #(k¢) € B, then #(k) € B lor all k > k. Finally, it is obvious
from Bgs. (3.7) and (3.8) that —1 < (1 - Ky /¢) < 1 which implies that s(k) is a stable first

order filter that asymptotically approaches S if w, (k) = 0. O

Corollary 3.1. With the conlrol law stated in Theorem 3.1, the closed-loop tracking error

dynamics can be classified as follows: for s(k) oulside B,

F(k+1) = Agi(k) — BT 'K sgn(Gi(k)) — Dowol(k) ; (3.14)

11




for s(k) tnside B.
F(k+1) = AyZ(K) — Dow, (k) : (3.15)

and for s(k) on § with w,(k) = 0,

F(k+ 1) = A,E(k) : (3.16)

where
A, = A—Br'M (3.17)
A = A—BI''Y(M+¢"'KG) (3.18)

Thus, A, represents the linear portion of the dynamics for s(k) outside B as well as the

dynamics in sliding mode while A,, represents the dynamics for s(k) inside B.
Proof. By straightforward verification:
ik+1) = [I=BB'B)'BT)(zq(k+1) — Azq(k)) + [A — BT~ M] (k)
—BT ™' K sat(G#(k)/$) — Dyw,(k)
The first term in the above expression vanishes in view of Eq. (3.11) and the resulls follow

imunediately from the definition of sat(-) function. O

Remark 3.1. Tn the single-input case, m = 1, 4y = G(A—- 1), K| = Ky, and B, = B.
Also, B” in the first term of the control law (3.2) can be replaced by G, since
(BYB) ™' BT (xq(k + 1) — Azq(k))
= (B'B)"'B"(Bua(k)) = wa(k) = (GB) ' G(xq(k + 1) — Aza(k))  (3.19)

Thus, the control law (3.2) reduces to

'u(k) = [GB)_I [G([I —A)x(f) +zy(k+ 1) — .‘J’.‘d(k)) + Ky; sal (SE:))] (3.2")

which is the same as thal of Misawa [28]. Moreover, the tracking error dynamics stated in

Corollary 3.1 for s(k) on § with w,(k) = 0 and for s(k) inside B reduce to

#k+1) = [4-?2 (A—I)];F:(k) (3.21)
o B BG(, , Kz SrE T ,
Fk+1) = [‘4— — (A (1 5 )r)].r(m Dyw,(k) (3.22)

respectively which are the same as that of Furuta [15] and Richter et al. [33].

12




Remark 3.2. Tt can be seen from Eq. (3.19) that the first term in the control law (3.2) is
actually the hypothetical input u4(k). This term is used instead because it is usually more

convenient 1o work with signals 24 rather than ug.

3.2 The Eigenvalue Constraint

The attractiveness and invariance of B is not suflicient for the stability of the variable
striucture systems. In addition, the equivalent matrix 4., should be determined so that the
tracking error dynamics inside B is asymptotically stable in the absence of uncertainties.
Since A,, defined in Eq. (3.18) has the form of A — BF, well-established linear control
design strategies such as pole placement, LQR, Hy etc. can be applied to determine the

[eedback gain matrix F. As shown below, this is possible under the eigenvalue constraint.

Definition 3.2. Tn variable structure systems, the eigenvalue constraint is the restriction
thal the matrix representing the linear dynamics on the sliding surface S or inside the

boundary layer B cannot have all eigenvalues being complex.

This fact is best illustrated by considering a continuous-time second-order system de-

seribed by

0 1 0
T.(t) = Acw (t) + B (L) = () + n.(1)
-1 =2 ]

Suppose the sliding surface, boundary layer thickness, and the variable structure control

law are respectively designed as

se(t) = Geze(t) =[11]z(t) =0
¢. = 0.1
(t) = _{G,;Bc)_IG::A(:J:f:{f') . Sgn(st‘(t)) ) 13"("'” > ¢e

—[1 0] z.(t) s 1sc(t)] < ¢

so that the linear dynamics inside the boundary layer is governed by a pair of complex poles
at —14 7. The phase plane plot for different initial conditions is shown in Figure 3.1. Tt can

be seen that the attractiveness ol the boundary layer and the nature of a stable focus cause
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Figure 3.1: Phase plane plot of a continuous-time second-order variable structure system

with a pair of complex poles inside the boundary layer

the trajectories to “slide™ along the edges ol the boundary layer and then approach Lhe origin
spirally. ‘This undesirable effect indicates that making the sliding function decay and placing
a pair of complex poles for the dynamics inside the boundary layer are conflicting objectives.
This notion can be simply extended to higher, even order systems with all eigenvalues being
complex. Also, this eigenvalue constraint arises despite the thickness ol the boundary layer
since spiral behavior in linear systeins is global. Moreover, it is independent of how the
control is derived, but an intrinsic nature of variable structure control with linear dynamics

on the sliding surface § or inside the boundary layer B.

3.3 One Hyperplane versus Multiple Hyperplanes

The sliding regime in multivariable systems is Lraditionally defined as the intersection of mn

hyperplanes and depending ou the approaches, either each of the hyperplanes or just the
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intersection is made attractive. This convention is also followed in existing discrete variable
structure control schemes (Su et al [38], Chan [5], Koshkouei and Zinober [22]), which
allows only n — m eigenvalues to be freely assigned, with the remaining m eigenvalues al
zero. This eigenvalue assignment constraint is usually tolerable for continuous-time systems
because perfect invariance to matched uncertainties is obtained as a trade-off. Since perfect
invariance no longer holds for discrete-time systems, unless if 7n = n where the sliding regime
is trivially defined as the state space origin then achieving a “degraded” sliding mode means
Lhat the tracking error is small. Otherwise, there is no significant advantage in confining the
error within the neighborhood of an n — m dimensional sliding regime as opposed to that of
an 1. — 1 dimensional one using one hyperplane. Besides, for approach that makes each of
Lhe hyperplanes attractive, the system usually sullers (rom “jagged”™ motion in the reaching
phase because Lhe trajectory must reach the first hyperplane and then slide along thal
hyperplane until it reaches the second hyperplane and so on. Furthermore, with only 10 — m
cigenvalues [reely assignable, many of the linear control design strategies are applicable
under severe restrictions.

In view of these, the proposed technique attempts to drive the error trajectory and
restrict it to stay within the neighborhood of an n — 1 dimensional subspace, the high-
est. dimension possible for variable structure systems with sliding mode. Since only one
hyperplane is attractive, “jagged” motion in the reaching phase is reduced. As is shown
next. all the eigenvalues of A,, can be [reely assigned with at least one being real so that
the eigenvalue conslraiml is satisficd. Hence, the design constraint is kept at a minimum
and major elements in linear multivariable feedback systems design such as quadratic opti-
inization, disturbance rejection, controller bandwidth, etc. can be easily captured using the

well-developed time and frequency domain Lools.

3.4 Model Matching in the Linear Region

Lemma 3.1. If (A, B) is conlrollable, then for almost any F € R™ ", all the eigenvalues

of A — BF are distinct.
Proof. See Zhou et al. [53] pg. 62 for a list of sources of proof. O
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Theorem 3.2 (Model Matching via A.;). Consider the matrices A and B of the sys-
tem (3.1). Let Assumptions 3.1, 3.2, and 3.3 hold. Let F € R™ " be chosen such that
A — BF has all ils eigenvalues distinct and inside the unit circle and has at least one real

etgenvalue at X. Then, A, = A — BF if and only if G, K, ¢, and M satisfy

M+¢'KG = TF (3.23)
Ky -

1-=F = A (3.24)

G = ker((A-BF - AnT)" (3.25)

Proof. Let F = [F|Fy| -+ | ]T, I; € R". Tt follows from Eq. (3.18) that A,, = A— BF

if and only if Eq. (3.23) or its equivalent, given by
T K, T . —
i + ?G =GB;F! , 1<i<m (3.20)

is satisfied. Taking the sum of both sides of Eq. (3.26) from ¢ = 1 to mn gives

T m

Youl +Y (Ki/$)G =) GBiF]
=1 =1 i=1

Since Egs. (3.5) and (3.7) must hold, the above expression becomes

G(A-1T)+ (Ks/¢)G = GBF

4

[A—=BF —(1-Ks/$)I]TGT =0

which implies that a nontrivial solution G exists if and only if Eq. (3.24) if satisfied. Tt is

obvious that the solution is given by Eq. (3.25). O

To illustrate the use of Theorem 3.2, one may proceed as follows. First, select I7 using
any linear control design strategy witli the restriction that I7 yields at least a real eigenvalue
al. A. Next, determine G [rom Eq. (3.25) and make sure Assumption 3.3 is satisfied. Then,
obtain v from Eq. (3.9) using the knowledge of the bounds on uncertainties w,(k). Since
K., ¢, and ¢ depend on Eqs. (3.7), (3.8). and (3.24), fixing either parameter fixes the others.
Some guidelines on how ¢ and v affect the convergence rate and steady state value of s(k)
are given in Misawa [28]. Finally, M can be computed using Eq. (3.23).

It can be seen from Eq. (3.7) that lor a given Ky, the choice of sliding gains K;, 1 <@ <

m is not unique. This suggests that after the matching of A, with A — BF is completed,
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these design freedoms can be further utilized, e.g. in avoiding controller saturation and
in the design of nonlinear dynamics outside B given in Eq. (3.14). Unlike linear control
laws. this technique allows the use of lower gain outside B through the sat(:) function which
signifies a smaller chance of saturation and hence a larger operating region. However, formal
treatment of this issue is beyond the scope of current research and is not pursued here.
The following corollary reveals the relation between A,, and A, which may be viewed
as a generalization of the relation between the results by Furuta [15] and Richter et al. [33]

1o multivariable systems.

Corollary 3.2. Lel {M\,Ay.... Ay} be the distinct eigenvalues of Ayy and let A, = | —
(Ky/¢). Then, the eigenvalues of A are {A, sy, Ap=1,1}.

Proof. Let x; and y; be respectively the right and left eigenvector of A, associated with

cigenvalue A,. Premultiply 4., by G gives

m m

GAyy=GA-Y ul -G (Ki/¢) = G(1 - Kz/¢)

i=1 1=l
which implies that G is the left eigenvector associated with the eigenvalue (1 — Ky /¢), i.e.

vy = G. Similarly, premultiply A; by G gives

GA,=GA-)Y ul =G

=1
which implies that Ag has an eigenvalue at 1 and G is the corresponding left eigenvector.

Since A,y and A are related by
A=Ay +¢7! BI'KG,
using the spectral decomposition of A, leads to

i
Ay = Y Nz +¢7'BITKG

i=1
n—1

- Z Niryr + (1 = Kx /¢)z,.G + ¢~ 'BTT'KG
=l
n—1

= Z Niziy + [(1 = Kg/¢)zn + ¢~ BT K]y,

=1

Thus, both A,, and A, have (1 — 1) eigenvalues in common, namely {A1, Aoy... A1} O




Corollary 3.3. Consider the system (3.1) and let Assumptions 3.1, 3.2, and 3.3 hold.
Suppose the control law given in Theorem 3.1 1s used and suppose F and the corresponding
G, K, ¢, and M are chosen to meel the conditions stated in Theorem 5.2. Then, the

tracking error dynamiecs is asymptotically stable if w,(k) = 0 and BIBO stable otherwise.

Proof. 'This is obvious in view of Theorems 3.1 and 3.2. O
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Chapter 4

Additive Uncertainties: The

Output Feedback Case

The controller proposed in Chapter 3 cannol be implemented in situations when full state
feedback is not available, which is usually the case in practice. This chapter considers the
output feedback case where a prediction observer along with uncertainty estimation is first
presented. Then, the discussions will be centered arocund the convergence properties and
design issues related to the resulting observer-hased controller,

Consider the following discrete-time linear multivariable system which miay be obtained

by discretizing its conbinuous-Lime equivalent with sampling period At:

o(k+1) = Ax(k) + Bu(k) + D,yw, (k)
(1.1)
y(k) = Ca(k) + v(k)
where 2 € R" is the state vector, = € R"™ is the input vector, 3 € R” is the output veetor,

w, € R% is the additive uncertainty vector, and » € R? is the measurement noise vector,

Let w, be decomposed into the matched and unmatched portion as follows:
D,w,(k) = BDw(k)+ B, D, ,w, (k) (4.2)

where w € R7 is the matched uncertainty vector, w; € R is the unmatched uncertainty

vector, ¢, = ¢ + ¢y, and the dynamics ol the matched portion be described by

w(k + 1) = w(k) +r(k) (4.3)
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where r € RY is the vector indicating its variation. A, B, B, C, D,, D, and D are per-
fectly known constant matrices with appropriate dimensions with B = [By | Ba| --+ | By |,
B, € R", and the column space of B; € R"*"=™) being the orthogonal complement, of
that of B. The objective is to find a suitable control input u(k) so that xz(k) will track a

known desired trajectory xq(k).

Assumption 4.1. The system (1.1) satisfies the following: rank(B) = m, rank(C') = p, the

pair (A, B) is controllable, the pair (A, C') is observable, and w, (k) and »(k) are bounded.

To facilitate the presentation that follows, introduce the augmented state vector 7 =
[T w?)" € R Along with Egs. (4.1), (4.2), and (4.3), the augmented system can be

written as

z(k+1) A BD| | xz(k) B B,D w, (k)
= + u(k) +
w(k + 1) 0 7 w(k) 0 r(k)
—_—— — S =
Au Ba Clk)
[ (k)
y(k) = |[C 0 +v(k)
< |w(k)

or compactly as

n(k +1) = Aan(k) + Bou(k) + (k) (1.4)
y(k) = Can(k) + v(Fk)

where ¢ € R" is the vector of uncertainties to this angmented system.

4.1 Prediction Observer with Uncertainty Estimation

Definition 4.1. Let w ;. r;. and »; be the sth entry of wy, v, and v respectively. Let
(k) = [#7 (k) @' (k)]" be the estimate of 5(k) and f(k) = [T (k) 7 (k)]" be the estimation

crror, i.e. 7j(k) = n(k) —7(k).

Since parametric uncertainties are assumed absent, state observers that provide more
fexibility over static output feedback can be easily constructed. Estimation of the matched

uncertainty vector w(k) can also be performed as long as the augmented system (4.4)
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remains at least detectable. A simple lemma on the necessary and sufficient conditions for

the observability of the pair (A,, C,) is given as follows.
Lemma 4.1. Let Assumption 4.1 holds. The pair (Aq, Cq) is observable if and only if

W - gd S e R(m+p)x(n+q)

c 0

has full column rank. Moreover, it is observable only if p > g and rank(D) = q.
Proof. Tt is well known (Zhou et al. [53]) that (A,,C,) is observable il and ouly il

A=AT BD
Ag — AT

Hfu(,\] — - 0 (1 . A)f € R(n+q+p]><(n+q)
Ca
C 0

has full column rank YA € C. The hypothesis on the observability of (A, C') implies thal
W,(A) has full column rank YA € C excepl possibly for A = 1 where rank(W,(1)) =
rank(W). Since W € R+ *(+a) the condition p > ¢ is necessary for full column rank.
Finally, it can be shown that rank(D) = ¢ is also a necessary condition using Sylvester’s

inequality. O

Assumption 4.2. The pair (A, () is observable and the observer gain matrix H, :=

(H HIT' with Hy € R™YP and H, € R77 is chosen such that A, — H,C, is Schur stable.

Lemma 4.2. Consider the augmented system (4.4) and let Assumplions 4.1 and 4.2 hold.

If the Luenberger prediction observer with uncertainty estimalion
ik + 1) = Aaii(k) + Bau(k) + Ha(y(k) — Cai(k)) (4.5)
15 used, then the observer error dynumics
0k +1) = (A, — H,Co)n(k) — Hev(k) + C(K) (4.6)
is asymptotically stable if w (k) =0, r(k) = 0, and v(k) = 0 and BIBO stable otherwise.

Proof. This is a standard result. See, e.g., Franklin et al. [13] pg. 250. O
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It is known that observers with uncertainty estimation often yield better observation
when the sampling rate is considerably faster than the dynamics of the w(k), i.e. when
7(k) is small. Tt also gives other advantages in spite of heavier computation burden, e.g.
the bounds on w(k) need not be known and the estimate (k) can be fedforward to the
coutroller to reduce the effect of w(k).

Unlike current observer which estimates the state at the kth instant based on measure-
ments up to and including the At instant, the prediction observer estimates the stale al
the Ath instanl based on measurements up to and including the (kK — 1)th instant. As a
result of this computational delay, it might not be as accurate as the current observer but
as a trade-off, it allows the entire sampling period {or computations.

The estimation of the unmatched uncertainties w (k) as well as the use of current or
reduced order observer are not pursued liere although possible as long as the resulting

systenm remains observable,

Assumption 4.3. The unknown signals w,(k), r:(k), and »;(k) are bounded by known
scalars 8., 0y, and d,, in magnitude and can be expressed as sums of sinusoidal signals
with frequencies belong Lo the known sets Q(w;), (r;), and Q(v;) respectively. The sets
O() € (—a /At w/AL] may be discontinuons and may take into account the phenomenon
ol aliasing when components with frequencies exceeding the Nyquist frequency w = /Al

exist.

Lemma 4.3. Let Assumptions 4.1, 4.2, and 4.3 hold and let # € RV be an arbitrary
row veclor. Let @y, (2.03), ®p (z,74), and O, (2,3) represent the transfer functions from

Wy, 1y, and vy lo O7 respectively, where they are oblained from the stable iransfer malriz

ii(z) = [z = Aq + HaCa] ' [((2) — Haw(2)] (1.7)
Then in sleady-state,
-2 A 1 jwit
|An(k)| < sup P, (™2, B)|0uy, + sup | P, (777, B)|6y,
}( | ;u}!{fl(u'hj I 1 gweil{ri) : :
1
+3° sup @, (M0 B)[6, (4.8)

i—1 wesl(v)

Proof. This is a standard result. See, e.g., Franklin el al. [13] pg. 77. O
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Remark 4.1. For white noise, e.g. if v;(k) is white, then Q(v) = (—w/At,7/Al] and

sup | @y, (€728, B)] = ||®y, (2, 8)[loc = Hoo norm of &, (2, )
J.'(EQ{I'HI

4.2 Attractiveness and Invariance of Estimated Boundary

Layer

The following is introduced in addition to Definition 3.1.

Definition 4.2. Let the estimated sliding function § € R, the estimated sliding surface
S € R", and the estimated boundary layer B € R" be respectively defined as
s(k) = G(za(k) — z(K))
§ = {£:5=0}
B = {&:]5|<¢,¢>0}
Theorem 4.1 (Attractiveness and Invariance of B with Prediction Observer).

Consider the system (4.1) and let Assumptions 3.2, 3.8, 4.1, 4.2, and 4.3 hold. If the

prediction observer stated in Lemma 4.2 1s used and if the control law is chosen as

wlk) = (BT"B) "B (za(k + 1) — Awg(k)) + T "M (zq(k) — &(k))

+T 'K sat (Lf')) — Dw(k) (1.9)
‘rﬂ
with U, M, n;, K, K;, Ks, ¢, and ¢ defined similarly as in Eqs. (3.3) through (3.8), and
11 ) 1 :
7oz Y sup (B, (P GHIC) Bu,, + Y, sup [Py (4%, GH\CL)|6,,
=1 WEw ;) i=q we(r;)
P
+ Z sup l‘T),,‘.(rfJ'*"\"',G'H| Cu)léy, + |GHu(k)| (4.10)
= we(v)

then B is attractive and invariand, i.c. theve exists a ky such that #(k) € B for all k > k.

In particular, $(k) asymptotically approaches S if w (k) = 0, r(k) = 0, and v(k) = 0.

Proof. Consider a Lyapunov function candidate V (k) = §%(k). |3(k)| decreases monotoni-

cally il the following inequality holds:

V(k +1) < V(k) = [As(k) + 25(k)]AS(k) < 0, V5(k) #0 (4.11)
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where As(k) = s(k + 1) — §(k). Using Egs. (4.9), (3.5), and (3.7), A§(k) is obtained as

As(k) = Gzg(k+1) — GAi, (k) — GAz(k) — GB(BTB) 'BT (z4(k + 1) — Azq(k))
=Y ul(za(k) = #(k) = Y Kisat(s(k)/¢) — GB D wy (k)
=1 =1

~GBD(w(k) — w(k)) + GEo(k + 1) — G(xq(k) — £(k))
= G[I - B(B"B)"'BY)(z4(k + 1) — Az4(k)) — Ky, sat((k)/¢)
+G[7.(k+ 1) — Az (k) — BDw(k) — By D w, (k)]

Tt follows from Eq. (3.11) that the first term in the above expression vanishes. Also, it can

be seen by inspecting Eq. (4.6) that the last term may be expressed as
Glze(k + 1) — Az, (k) — BDw(k) — B, D w (k)] = —=GH Cani(k) — GHyw (k)
which simplifies AS(k) o
As(k) = —Kysat(s(k)/¢) — GH\Can(k) — GHyv(k) (4.12)

For §(k) outside B, Eq. (4.12) represents a marginally stable first-order system which implies
that s(k) is bounded. The observer error dynamics (4.6) must finally corne to a steady-
state since it is independent of §(k). Tn steady-state, the bound on GH,C,7(k) is given by

inequality (4.8) with 4 replaced by GH C,. I 7 is chosen to satisly inequality (4.10), then
v > |GH Cyii(B)] + [GH (k)| > |GH\Cai(k) + GHyu(k) (1.13)

Since As(k) in Eq. (4.12) and 7 in Eq. (4.13) are analogous to As(k) in Eq. (3.12) and «
in Eq. (3.9) for the state feedback case, the remaining proof follows along the same lines of

Theorem 3.1, ]

Corollary 4.1. With the control law stated in Theorem 4.1, the value of s(k) as k — oo s

bounded by

[ 9
SR < B+ sup [Bu, (B4A4 (G O)ldwy, + D sup [Br, (5%, (G O],
i=1 we Ll wy,) i=1 u—'EQ(f.‘}
P
+ sup |®,, (e/“24 (G 0])]6y, (4.14)

i=1 we ()

In particular, s(k) = 0 as k = oc if w (k) =0, r(k) =0, and v(k) = 0.
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region of qverlap

Figure 4.1: Phase plane plot showing the dynamic region of attraction B and Lhe region of

overlap between B and B at kth instant
Proof. Observe that
s(k) = (k) — Gx (k) = s(k) — [G 0] 7(k) (4.15)

It follows from Theorem 4.1 and Lemma 4.3 that as k — oo, |8(k)] < ¢ and |[G 0]5(k)]|
satisfies inequality (4.8) with A = [G 0], which leads immediately to inequality (4.14). Tl
w (k) =0, r(k) =0, and v(k) = 0, then 5(k) — 0 from Theorem 4.1 and 7(k) — 0 from

Lemma 4.2 unply that s(k) — 0 as & — oc. a

The region of attraction B under this observer-based controller is dynamic in the direc-
tion of G. This is in contrast Lo Lhe state feedback case where the region of attraction B is
static. Whether B overlaps B depends statically on ¢ and dynamically on the term Gz, (k)

as evident from Eq. (4.15). Graphical interpretation of the dynamic region of attraction



and the region ofl overlap for the case n = 2 is given in Figure 4.1. As can be expected, if

w (k) =0, r(k) =0, and v(k) = 0, B asymptotically approaches and overlaps B as k — oc.

Corollary 4.2. With the control law stated in Theorem 4.1, the closed-loop tracking error

dynamics can be classified as follows: for 5(k) outside B,

G(k+1) = Agi(k)— BT 'K sgn(G3 + Gi,)

—BI'"'Mz,.(k) — BDw(k) — B D w, (k) ; (4.16)
and for 5(k) inside B,
Ek+1) = Agi(k)— Br Y(M + ¢~ ' KG)z.(k)
—BDw(k) — B D jw, (k) (4.17)

where Ay and A,, are defined similurly as in the state feedback case under Egs. (5.17)

and (3.18) respectively.
Proof. Noticing that z(k) = z.(k)+z(k) = zq(k)—z(k) and by straightforward verification:

ik+1) = [I-B(B"B)'BT)(za(k + 1) — Azq(k)) + [A - BT~ 'M] z(k)

~ BT 'K sat(3(k)/$) — BT M, (k) — BDw(k) — By D w, (k)

The first term in the above expression vanishes in view of Eq. (3.11) and the results follow

immediately from the delinition of sat(-) function. |

4.3 Model Matching in the Linear Region

Lemma 4.4. For §(k) inside B, the separation principle (Franklin et al. [13]) holds for the

overall error dynamics governed by Eqs. (4.0) and (4.17).
Proof. Since the overall error dynamics inside B has the form

Z(k+1) Acq . z(k) N *
n(k+1) 0 A,- H,C.| |9(k) -
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The above lemma is a natural result since parametric uncertainties are assumed absent
in the system (4.1). Hence, for §(k) inside B, Theorem 3.2 is applicable to match Ag,
with any A — BF obtained using linear control design strategies as long as the eigenvalue
constraint discussed in Section 3.2 is satisfied.

Similar to the state feedback case, the choice of sliding gains K;, 1 < 7 < m is not
unique. Several suggestions on how to utilize these freedoms for the state feedback case are
given in Section 3.4. Formal treatment of this issue for the output feedback case is beyond

the scope of current research and is not pursued here.

Corollary 4.3. Consider the system (4.1} and let Assumptions 3.2, 5.5, 4.1, 4.2, and 4.5
hold. Suppose the prediction observer with uncertainty estimation and the control law given
i Lemma 4.2 and Theorem 4.1 are used and suppose ' and the corresponding G, K, ¢,
and M are chosen lo meet the condilions stated in Theorem 3.2. Then, the overall error
dynamics is asymptotically stable if w (k) = 0, (k) = 0, and v(k) = 0 and BIBO stable

olherwise.

Proof. This is obvious in view of Leminas 4.2, 4.4 and Theorem 4.1. O
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Chapter 5

Parametric Uncertainties: The

State Feedback Case

This chapter studies the problem of state feedback stabilization of a class of discrete linear
multivariable systems with parametric uncertainties using the theory of variable structure
with switching sector. First, dilliculties in ensuring stability of discrete variable structure
systems with switching sector and potential stability problems with existing schemes are
discussed. Then, a discrete variable structure control law with switching sector is designed
as an attempt to overcome these difliculties. Tt is shown that global uniform asymptotic
stability can be guaranteed despite the noninvariance of switching sector. Finally, properties
ol the resulting systems and adinissible bounds on the unecertainties are compared Lo linear

controllers.

5.1 On Stability of Discrete Variable Structure Systems with

Switching Sector

The underlying stability problem in existing schemes with switching sector is that the
switching sector is attractive but not an invariant set in general. This is in contrast with
the results in Chapter 3 for the case of additive uncertainties; where the boundary layer is

an invariant set and to conclude stability, it is sufficient, to show that the boundary layer is




I3

Y

Figure 5.1: The switching sector (region B) and its surroundings (region A) of a second-

order system

attractive and the dynamics inside the boundary layer is stable. Due to this reason, there
are at least two potential stability problems with the use of switching sector. ‘To illustrate
Lhis, let (k) denotes Lhe state and consider the second-order case shown in Figure 5.1.

First. limit cycles may exist il these controllers are used. To show Lhis, suppose x(k) is
initially in A. Since the switching sector is altractive, z(k) then moves into B. However,
the dynamics inside B is stable but B is not invariant, so z(k) might go back into A. As
r(k) switches back 1o A, if it coincides with any point on its previous path in A, then it
might repeat its history and Limit cycles are encountered.

Second, the phenomenon of “unstable switchback” pointed out later by Wang et al. [410]
nmiay ocenr. Similar to the case of limit cycles, (k) will move from A into B. Since there is no

additional condition imposed on how z(k) should move from A into B, ||z(k)

| might increase
as it inoves in. Next, consider a Lyapunoy function candidate V (k) = z7(k)Pz(k). An

asymptotically stable linear dynamics inside B means that the difference V(E + 1) — V(k)
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is negative definite, which is equivalent to saying that if z(k) is on the ellipsoid defined
by =7 (k)Pz(k), then z(k + 1) is on a smaller ellipsoid defined by =(k + 1)Px(k + 1).
However. this does not imply that the |z(k)|| is decreasing. Since B is not invariant,
a(k) might go back into A with increasing ||z(k)||. Therefore, it is possible that ||z(k)||
increase continually as x(k) switches back and forth between A into B. This phenomenon
is illustrated in Example 5.1, which is also a counter example to Theorem 2 of an earlier

paper by Wang ef al. [48]. The notations and equations referred to are based on that paper.

Example 5.1. Consider a sccond order system described by X (k+1) = (A + AA) X (k) +
BUK). Let A =[%298], B=][% and D = [0.5 0.2] where AA = BD. Since B has
Lhe form of H;L]T a change of coordinates is not necessary and therefore, X = X, A = A,
B=DB.U=U,Bs=1,and D = D. Sclect the vector that defines the sliding hyperplane
to be C' = [=0.7071 —0.7071] where C'y = Cy = —0.7071 so that the nominal system on the
hyperplane, namely X (k +1) = (A+ B(C' — CA)/(CB))X (k) = [3 0] has eigenvalues at

0
(0.3 and 1. Next. Ly, Lo, and ‘ are computed to be —1,2122, —0.2020,

2
ff-zf:f-;{f':“_:|IL||+“J-3D
and 2 respectively. Also, select § = 1.2 and d = 0.6 so that inequality (4), (12) are satisfied.
Finally, select kg = —0.72. 0, or 0.72 depending on Egs. (1la), (11b), and (11c¢). The

sinlation result for initial condition X (0) = [}] is shown in Figure 5.2. T, can be scen

[rom Figure 5.2 thal the “unstable switchback” phenomenon takes place.

The two potential stability problems discussed above are not considered in the papers
proposed by Furuta [15] and Pan and Furata [31]. Tn a later paper by Wang et al. [16],
they tried to avoid the *unstable switchback™ phenomenon. However, the critical state-

ment | X(h+ 1)]l2 <

| X (h)||2 in the proof of Theorem 1 in that paper is incorrect. In
the following claim, the notations and equations referred to are based on that paper. The
nominal system on Lhe hyperplane Siu‘ represented by equation A8, is stable in which the

M at each time k. However,

nominal state moves towards the nominal equilibrium point X5

the 2-norm of the unperturbed components of X, i.e. ||X (k)| may nol be decreasing be-
cause [[Ay — A12Cy ' ||2 may be larger than 1 although A,y — AmC’ZTlCﬁ is asymptotically
stable. Thus, there is no guarantee that | X (h + 1)|l2 < || X (R)]l2.

Based on the above discussions. one can see that the stability proof for systems with
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Figure 5.2: Phenomenon of “unstable switchback™ in Example 5.1

switching sector is considerably more involved when the state switches between two regions.
If the system has multiple-inputs, the problem might become more complicated. Tn the
next section, a discrete variable structure control law with switching sector is designed as

an attempt to solve the problems mentioned above.

5.2 Robust Stabilization with Switching Sector

Consider the following discrete-time linear multivariable systemn which may be oblained by

discretizing its continuous-time equivalent with sampling period Al:
a#(k+1) = (A+ AA(K))z(k) + Bu(k) (5.1)

where o = [z @y -+~ ;r:ﬂ]T € R™ is the state vector, u = [y uy --- ?lm]T e R™ is the input
vector, A and B are perfectly known constant matrices with appropriate dimensions, and
AA(k) is the time-varying parametric uncertainty matrix satisfying the matching condition
ravk([B AA(k)]) = rank(B). The objective is to find a suitable control input u(k) so that

£(k) will go asymptotically to zero in the presence ol unknown AA(k).
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Assumption 5.1. The system (5.1) satisfies the following: rank(B) = m, the pair (4, B)

is controllable, and AA(k)

Lemma 5.1. Let Assumption 5.1 holds. Lel ny, 1o, ..

the system (5.1) in which 371" n; = n and define hy, ho,

is bounded.

.y Ny be the Kronecker invariant of

covy hm as hj = 37 n;. Then

lthere exists a nonsingular malriz T € R™™ such that with a change in coordinates x = T'F,

the system (5.1) can be transformed into the controllable canonical form

F(k+1) = (A + AA(k))Z(k) + Bu(k)

where
E 11 Z 12 '3‘ lin
- Ay Ay Ay
A=T'4T = "
_/iml fim'z ‘ermn_
0 &j 0
0 0 8y
)i{f = :
0 0 0
Qi(hy,—n,+1) ”Nhj—u,+2i

i 1s the Kronecker delta function, and

0 - 0 ... 0
6 BTSN § . 0
o - 0 | J')i{,-__|. 1)

(i=1) zeros

, AA(K) =T 'AAK)T, B=T"'B =

0
0
c Rﬂ.l X,
(5;‘_3'
Uiy,
0
c Rixm
0
b”ﬂ_

Movreover, there exists a nonsingular matriz R € R™*™ given by

1 b big

J] 1 bog
R=1o 0 1

0 0 0
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sich that

P o -« 0 ... 0 -+ 0
_ P
BR = ;. = e R
o - 0 ... 0 -+ 0
B o -~ 0 1 0 - 0
L4 L e’ S——e
(1=1) zeros (m—1) zeros
Proof. 'This is a standard result. See, e.g., Ogata [29] pg. 704. O

Definition 5.1. Let A := [ai;] € R™*™, AA(k) := [Aaij(k)] € R™*"%, F := [f;;] € R™*",
K := [K;;] € R™*™, and AA(k) be related to AA(k) by

AA(k) = BRAA(k) (5.3)

Definition 5.2. Let the switching sector corresponding to the sth input, W, ¢ R", be

defined as
Wi = {3+ 2] < Sje Kl
and the overall switching sector W € R™ be defined as W = (2, W;.

Theorem 5.1. Consider the system deseribed by (5.1) and lel Assumplion 5.1 holds. If

the control law is chosen s

w(k) = —RF&(k)+ Rug(k), g = [ug, g, - ug,]’ € R™ (5.4)
Iy, U‘} = 5!%'“(57.':.(-"7)) E?:l h’f_j["‘."':_f[k)l ) |5-_’:'h.-(k)[ > Z?:l K:jljj(k)l -
e (k) = (5.5)
0 s ()] < 325, Kol (R)]

and if AA(K), F, and K salisfy
lai; + Dayi(k) — fijl < Kij, 1<i<m, 1<j<n (5.0)
K|l <1 (5.7)
then the following hold:
1. FPor 1 <i<an, for all (k) € W; there ezists a k; > k such that Z(k;) € W;.
2. For 1 <i<m, for all #(k) € Wi, |zp,(k+1)| < ||2(K)| 00
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3. |2k + 1)|loo < [|Z(K)|loc-
4. The system (5.2) is globally uniformly asymptotically stable, i.e. (k) — 0 as k — oo.
Proof. (1.) Substituting Egs. (5.3) and (5.4) into Eq. (5.2) gives
#(k+1) = (A+ BRAA(k) — BRF)#(k) + BRug(k) (5.8)
It follows from Lemma 5.1 that the system (5.8) can be expressed as

j"h,-—n.+1(k+]) = jh,—u.-+2(k)

jh,--—n.;-l-‘.!(k + 1) jh;—n,+.’5(k)

T

En(k+1) = ug (k) +)_(ai + Day(k) — fi;)35(k) (5.9)
j=1

for 1 < 4 < m. Consider the Lyapunov function candidates Vj(k) = I‘fh(ﬂ) for

1 <1 <m. |z, (k)| decreases monotonically if the following inequality holds:
Vilk +1) < Vi(k) = [Azy, (k) + 2z, (K))Azy, (k) <0, Vg, (k) #0 (5.10)

where Az, (k) = Zp,(k+ 1) — 2, (k). Tor &, (k) > 0, using Eqs. (5.5) and (5.9),

Azy, (k) can be written as

e

Az (k) = - Zm: (B) + > (@i + Dagi(k) — fi5);(k)

y=l =1

It can be seen from inequality (5.6) that Ay, (k) is bounded by

_QZ Kij|Zj(k)| < Az, (k) <0

1=1
This implies that inequality (5.10) is satisfied [or

2Zy, (k) > —Azy, (k) = Zp,(K) > Z Kijlz;(k

Similarly, for &, (k) < 0, it can be shown that inequality (5.10) is satisfied for

T
27, (k) < —AZy, (k) = Z, (k) < = > Kij|Z;(K)|
i=1
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(2.)

Thus, for all Z(k) ¢ Wi, the inequality

|Zh; (b + 1)| < |Zn, (K)| (5.11)
is satisfied until Z(k;) € W, lor some k; > k.
Observe that for all Z(k) € W, one has ug, (k) = 0 from Eq. (5.5). Thus, Eq. (5.9)

reduces 10

Fn.(k+ 1) Z((;,J+Aa,3 k) — fi)Ej

It then follows [rom inequalities (5.6) and (5.7) that Zx,(k + 1) is bounded by
n

[Zn, (b +1)] < Z (aij + Aaij(k) — fi;)Z;(k)| < Z laij + Aaij (k) — fi;||7; (k)]

Ji"‘ i=1

< Z Kij|z;(R)] < 1Kl [|12(k) ]l < [|Z2(F)lloo (5.12)
j=I

(3.) Without loss ol generality, suppose Z(k) ¢ W; for 1 < i < m/; and (k) € W; flor

m' +1 <4 < m where 0 < m' < m. Since

Zp,(k+ 1) < |Zp,(F)| for 1 <4 <1’ and
\Zp,(k+1)] < [|Z(k)|l for m"+1 <1 <min view of (5.11) and (5.12), it is apparent

that the nonstrict inequality ||Z(k 4+ 1)||w < ||F(k)||o holds.

(4.) Let 1y, = max(ng,n, ... 7). TL follows from (3.) that

W@y (k + 1) Zn (e + 1) -+ G (k+ D oo < 120Kl
This relation also holds for
||[-"_f'h1 U" + l“"!) :F"J'u["!"' -+ ;""r) e -'Ehm (k + }",)]1”00 < |15(’~J1|m

where &' > 1. Tn addition, it can be seen from Eq. (5.9) that #;(k + 1) = &;4( (k) for
i ¢ {hi,ho,... by} Thus, after at most ny,.« sampling periods, the element of (k)
which contributes to the value of ||Z(k)]|. must have left the stack. This implies that

the strict inequality
j|'?l(‘r\: + 7"”1&[)()”3@ < ||'?(k)]|':k

holds whenever Z(k) # 0 which in turn inplies that (k) — 0 as k — oc.

This completes the proof. O




Corollary 5.1. Suppose Z(k) € Wi. Then il is possible that Z(k + 1) ¢ W,.

Proof. Tt is sufficient to consider the case of n =2and m = 1. Let A = [, ;1. B = [?],
and AA = [0 0. Thus, n; = hy =n = 2and R = [}?9]. Choose F = [0 0] and
K = [0.2 0.2] so that inequalities (5.6) and (5.7) in Theorem 5.1 are satisfied. Suppose
(k) = [P]. One has &(k) € W, since |y, (k)] = 1 < Z_?:]Kljlf:j(kﬂ = %2 Thus,
uq, (k) = 0 and E(k+1) = [\ ] Since [Z, (k+ 1)| = 1.1 > 2, Ky;|%;(k +1)| = 0.42, one
has Z(k + 1) ¢ Wi 0

It is shown in the above corollary that W; is not an invariant set. Nevertheless, it is
proven in Theorem 5.1 that the phenomenons of limit cycles and “unstable switchback”
cannol oceur—the resulting system is globally uniformly asymptotically stable. The impli-
cation of this result is that the switching sector W; should be attractive but does not have
Lo be invariant as long as additional stability requirements can be imposed. The stability
requirement used here when deriving the control law is to make ||Z||» decrease, although
this may not be necessary.

Since the control law (5.4) has a linear state feedback termm —RFZ(k), it is of interest
to compare the admissible bounds on the uncertainties with linear control. Tn fact, il
Fk) € W = L, Wi, the system is essentially linear with closed-loop system matrix
A — BRF because all the 1y, (k)'s are identically zero. The following lemma is useful for

upcoming discussion.

Lemma 5.2. Lel X be a block partilioned malvic wilh

Xli XI‘..’. e le
e X X -+ Xom
_-'le Xm'.! e -ern_

and let each Xi; be an appropriately dimensioned mairiz. Then for any induced matriz
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p-norm

”‘YII H;l ||Xi2||p ”th“p
Xollp || X2 |1 X
1X1, < l :n lp -’2”;! I 2.m”p
_”‘Yrul “p ”sz”p i ”Xm.m“p_‘
Proof. This is a standard result. See, e.g., Zhou et al. [53] pg. 30. O

It can be seen from Eq. (5.9) that if F = A, then the nominal system undergoes a

deadbeat response for (k) € W and inequalities (5.6) and (5.7) reduce Lo
|AA] < 1 (5.13)

which is the maximum robustness this control law can achieve based on inequalities (5.6)
and (5.7). Since system (5.2) is in controllable canonical form, the row sums of the closed-
loop system maltrix is always one except possibly lor rows hy, ho, ..., hy. I then follows
lrom Lemma 5.2 that inequality (5.13) is also the maximum tolerable perturbations il a
linear control with all poles assigned at the origin were used, i.e. let F = A and remove the
discontinuous ug(k) from the control law (5.4).

Furthermore, it is known that the condition (5.13) is sufficient but not necessary because
the spectral radius of any matrix is less than or equal to any of its induced-norm (Zhou et al.
53] pg. 30). This suggests that the admmissible bounds on uncertainties is quite conservative,

Hence, one might wonder whal is the need of having a variable structure control law
with switching sector as opposed to a linear one.  As is discussed earlier in Section 5.1,
Lhie basic motivation of the this work is Lo show that stability of discrete variable structure
systems with switchiug sector that is not an invariant set can be achieved but requires more
careful analysis. Additionally, it lays foundation for future research because from a variable
structure point of view, switching region can take on other shapes and not necessarily having

the shape of a sector.




Chapter 6

Optimal Sliding Surface Design for

Single-Input Systems

Section 2.3 has reviewed several methodologies available in the design of sliding surface.
To create more sophisticated tools, this chapter investigates the use of the LQR technique
in sliding surface design for the version of discrete variable structure control proposed by
Misawa [28]. Use of the LQR. technique in sliding sector design has been proposed by Pan
and Furuta [31] along with their version of discrete variable structure control. Tt is remarked
in the paper thal if the optimal closed-loop cigenvalues are strictly complex, solution for
the optimal sliding sector cannol be obtained and it is necessary Lo reselect the weighting
matrix —a consequence of the cigenvalue constraint discussed in Section 3.2. However, the
existence of weighting matrix under a prespecilied real eigenvalue, which is called the inverse
opliral problem in this chapter, is not addressed in the paper. This chapter first solves the
mwverse oplimal problem constructively by shiowing that a feasible weighting matrix always
exists for almost any prespecified real eigenvalue. Tt is then shown {hat finding a feasible
weighting matrix closest to the desired one is a constrained optimization problem that can
be solved using the least squares-convex programming approach. This chapter ends by

civing an automalted design procedure.
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6.1 LQR Technique

It is shown in Misawa [28], Richter et al. [33], and Remark 3.1 that for single-input systems,
the tracking error dynamics inside the boundary layer is governed by the equivalent matrix

BG

where a = 1= (Ky;/¢) is one of the real, stable eigenvalues of A., according to Theorem 3.2.
Tt follows from Eq. (6.1) that the tracking error dynamics can be represented as

z(k+ 1) = Azr(k) + Bu(k) (6.2)
where (k) = _(,(_B (A — «f) z(k). The LQR performance index for the system (6.2) is given

by
J =Y " (k)Qi(k) + Ru’(k)
k=k,

where kg is the instant al which the error trajectory enters the boundary layer and @@ =
Q" > 0, R > 0 are the weighting terms. Tt is known that the static state feedback control

law (k) = —F#(k) minimizes J il the feedback gain matrix is chosen as
F=[R+B"PB)” BTPA
where P = P > () is the stabilizing solution to the discrete-time algebraic Ricatti equation
ATPA-P-A"PB[R+B"PB]” B"PA+Q =0
The symmetric root locus can also be plotted with respect Lo varying scalar B using the
LQR characteristic equation
1 T —1 " .
14+ =G (z27")G(z) =0 (G.3)
R
where G(z) = C(zT — A)~' B and C is the fictitious output depending on Q, i.e. Q@ = C'C.

There are two possible alternatives in satislying the eigenvalue constraint and making

system (6.2) behave like an LQR regulator:

1. Specify a desired @ and plot the symmetric root locus using Eq. (6.3). The set of

possible ais given by the segiments of root loci that lie on the real axis inside the unit
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circle. Difficulty arises since the existence of such segments is not known beforehand.
If they exist (always the case if the system is of odd order), & may be selected in
accordance with R. Otherwise the process is repeated. Since o depends on factors
such as Kx, ¢, and 7, it is usually fixed a prior: and has less degree of freedom than
(0. The desired @ should not only give such segments, but should include that « as
well. Thus, a substantial amount of guess work is generally needed which make this

approach infavorable.

2. Specify a desired a depending on Ky, ¢, and v and then constrain the weighting terns
() and R. Even though this approach does not have the disadvantages associated willy
Alternative 1, its feasibility should be further explored. The theoretical aspects of this

approach—the treatment of the so-called inverse optimal problem—is presented nexl.

6.2 The Inverse Optimal Problem

Alternative 2 allows « to be arbitrarily specified regardless of the system (6.2). As far as
optimality is concerned, the following question should be answered: Given the system (6.2),
is a parlicular choice of v optimal with respect to the LQR technique; that s, can a (Q >
and a ) < R < o< be found such lhal they give real closed-loop eigenvalue(s) at o This is
relerred to as the inverse optimal problem. Two issues molivate the seek for a solution Lo

this problem:
e Some classes of systemns may not possess any real, optimal closed-loop pole.

e Optinal closed-loop poles may not be placed on some real segments inside the unit

circle for a particular systen.

Thus, an insightful solution is required so that a reliable design procedure capable of avoiding

these pitfalls can be developed. To begin with, consider the following definition.

Definition 6.1. Given the system (6.2), « € (=1,1) is optimal with respect to the LQR

technigue if there exist Q = CTC' > 0 and 0 < R < oo such that the LQR characteristic
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equation

1+ %BT [z - .4'f‘]"‘Q[z1~ A™'B=0 (6.4)
gives root(s) at z = . Otherwise, « is not optimal with respect to the LQR technique.
Assumption 6.1. The pair (A, B) is controllable.
For convenience, let ¢(«) € R" be defined as
¢(a) = [al - A" B

The LQR characteristic equation (6.4) can then be written as

el (™ M)Qp(a) = —R (6.5)
where « replaces z in the argument.
Lemma 6.1. Suppose n > 2, a ¢ {\i}, ™' ¢ {\;}, and @ # 0 where {N\,i = 1,... ,n})

denotes the eigenvalues of A. Then, ¢(a) and @(a™") are nonzero column vectors and can

never be collinear.

Proof. Since both [af — A]™! and [@~ T - A]_l are nonsingular and a necessary condition
lor controllability is that B is nonzero, it is obvious that both ¢(«) and ¢(a™ ') are nonzero.
Next, let X (o) = [of — A [n-" I - .4} be the malrix representing the linear transformation
T :R" = R™ The image vectors X («)p(e) and X (a)g(a™") are found to he
X(a)p(a) = [af — A] [a“' [af — A" — Ao — A]™!
tafal — A7 —afal - .4]—]} B
= [al - A] [[u_' — a)[af — A7 + f] B

= o 'B- AB (6.6)

I

X(o)p(a™") aB - AB (6.7)

Since 1 > 2 and a necessary condition for controllability is that B and AB are linearly
independent vectors, it is abvious from Eqgs. (6.6) and (6.7) that X (a)p(e) and X (e)p(a ")
are collinear it and only if @« = £1. This cannot be achieved because a € (—1.1) by
Definition 6.1. Since the mapping T is one-to-one and onto, this in turn implies that ¢ (o)

and p(a~!) can never be collinear. O




Lemma 6.2. Suppose n > 2 and lel « or a™ ' be an eigenvalue of A. Then « is not optimal

with respect to the LQR technique.

Proof. The LQR characteristic equation (6.5) can be expressed as
| p

, BT adj (e 'T — A7) Qadj (o — A) B
Ty =1 N o e,
Qe = T - Aagal =8,

I A does not have any real eigenvalue, there is nothing to prove. So, let A € R be
the eigenvalue of A that « or «~ ' is approaching. Since either one of the two deter-
minants above must vanish as & — A or ™! = A, ie. limgoy ¢? (@ )Qe(a) = oo or
lim -1 9! (@ )Qp(a) = oo, it is immediate that R — +oc violates the condition in

Definition G.1. This concludes the proof. O

Lemma 6.3. Suppose n > 2 and let @« = 0. Then « is not optimal with respect to the LOR

technigue.

Proof. The LQR characteristic equation (6.5) can be expressed as

byt + bp1aP !+ bp_oaP™% 4 - 4 bp—oa P2 4 by PH 4 b P

. - P =)
o+ Ay 10"+ ap_0a™ 2 - Fap_pa " 4 gy L 4 o

where . > p since G(z2) defined in Eq. (6.3) is strictly proper. Multiply both numerator

and denominator by @™ and take the limit as o« — 0 gives

I b.,,rz'!ﬂ» - h,,_”ru-}—h-—l S bp_]{tl'l—p-l-] + bI,rv“_f’ ;
nn - _ N
ey @ + dp 10?1 g+ 1

T1 is inmediate that i — 0 as e — () violates the condition in Definition 6.1. This concludes

the proof. O

Theorem 6.1. For n > 2. « 1s optimal wilh respect lo the LQR technique if and only if

a g {NY, a7t @ {N}, and « # 0 where { A0 = 1,... ,n} denotes the eigenvalues of A.

Proof. Tt is known (Curtis [10] pg. 274) that there exists an orthogonal matrix V =

[0 [0 ] -+ - [ v,] which orthogonally diagonalizes Q, i.e.

VIQV = diag (q1,q2,- - ,qn)
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where {g;,2 = 1,... .n}and {v;,7 = 1,... .n} are the sets of real nonnegative (with at least
one positive) eigenvalues and corresponding eigenvectors of @ respectively. Thus, the LQR

characteristic equation (6.5) inay be written as

q1 0 fnrf" )
;v"'(rx—')[m ] | el@) =D ai” (@ vl (@) = —R (6.8)

0 n vl

I
Moreover, since () and p(a™ ") are nonzero and noncollinear vectors in view of Lemma 6.1,
it is known that there exists a hyperplane {z : y'z = 0, z,y € R",y # 0} separating them,
i.e. the inner products y () and y"¢(a~') will have opposite sign. So, by choosing

g > 0.¢; =0 1Tor 2 <2 <mn, and v, =y, the left-hand side of Eq. (G.8) reduces to
g’ (™ Huyle(e) <0

which corresponds to some R > 0 and sufficiency is verified. The necessity then follows

directly from Lemmas 6.2 and 6.3. O

Corollary 6.1. For n > 2, almost any « € (—1,1) is optimal with respect to the LQR

technique.

Proof. Since the system (6.2) is finite-dimensional, Theorem 6.1 implies that « cannot be
equal to n+ 1 isolated points, i.e. the origin and the n closed-loop eigenvalues or their

reciprocals inside the unit circle. O
Theorem 6.2. For n =1, o is optimal with respect to the LQR technique if and only if

0<ow<mnA=',A), VA>0
( ) (6.9)
max(A~" A) <a<, YA<O

If A =0, any a is not optimal.

Proof. For n = 1, A, B, Q, and R are scalars. The LQR characteristic equation (6.4)

becomnes

2
l+ A2 — (e '+ o)A = —% (6.10)
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Since @ and R are positive and finite, the right-hand side of Eq. (6.10) is bounded, i.e.

B?Q
R

—00 < — <0

Clearly this inequality is satisfied if and only if

x>al4+a>A"'+A, YA>0

—o<a +ac< ‘.’1_14—,‘1, VA<

which leads to inequality (6.9). Finally, it can be seen from (6.9) that as A tends to zero

the region of allowable o vanishes. O

In the case of n = 1, there may exist segments and even the whole real axis inside the
unit. circle for which e is not optimal. However, it is unnecessary to proceed any further
because sliding surface for [irst order system is trivially the origin of the error state space.
Hence, all discussions that follow will exclude this case.

Tn the case of n > 2, Corollary 6.1 says that the available freedom for « is promising in
which only a small finite number of isolaled points are not allowed. Thus, the two issues
brought np carlier in this section are proved to be false. Tt can therefore be concluded that

Alternative 2 is conceivable—one can always specify the more important « since il aflects

both the sliding gain and boundary layer thickness and then constrain @ and I?.

6.3 Least Squares-Convex Programming Approach

Unlike the approach taken by Pan and Furuta [31], which is quite similar to Alternative 1
where the existence of real eigenvalue is not guaranteed, the present approach allows holh
the desired a and desired weighting matrix (4 to be specified simullaneously while letting
R = 1. However, in most cases this combination of e, @4, and R do not satisfy the LQR
characteristic equation (6.4). Since « is usually fixed a priorz, one way to satisly Eq. (6.4)
is by replacing Qg with a feasible Q that is “closest” to Qq, satisly Eq. (6.4), and is positive
semi-definite. This section is intended to solve this constrained optimization problem by
the least-squares approach il possible; or otherwise formulate it as a convex optimization

problemn that is amenable Lo computer solution.
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Without loss of generality, let R be normalized to unity and rewrite Eq. (6.5) as

E:Zh% D ()Qi; = —1 (6.11)

=1 j=l1

where p(a™!) = [pi(a™!)], p(a) = [¢:(@)], and Q = [Qy;].

Definition 6.2. Given a symmetric matrix X = [X;;] € R™" let V : R™" - Rl be a

linear transformation defined as
Y) = [Xli 2l -Tnl | X'z! el ‘Xn'.! [ XI{R e XnR | ey IXIIm]T

where =Y i, That is, V(X) is a column vector formed by stacking up the columus of
the lower triangular part of X. Also, let the inverse transformation V=' : RF — R™" he

defined as
VLX) = X

Definition 6.3. Given that the kth entry of V(Q) contains Qi let g = [3] € R" be

delined as

8, = pila™ i) , =] lek<h

pila)pjla) + @jla)pila) , #]
By Definitions 6.2 and 6.3, the LQR characteristic equation (6.11) can be written as

BYV(Q) = —1 (6.12)

‘"he solution to this underdetermined equaltion is given by the sum of the nonhomogeneous

(ininimum norm) awd homogeneous solutions, namely
V(@) =-AB"B)" + N¢ (6.13)

where N € R (=1) i an orthonormal basis for the h — 1 dimensional null space of 7

denoted as N (7)), and € € R*! is arbitrary.
Definition 6.4. Let P, Q € R" be defined as

P = {n:xe€ R}’.,V_l(:r:] >0}

0 {(r:zeRMe=-B(BTH)" + NE, V€ € R}




It is clear that a @ is feasible if and only if V(Q) € PN Q, i.e. it is positive semi-
definite and satisfies the LQR characteristic equation. Furthermore, to maximally recover
the desired weighting, the feasible (Q should stay as “close” to Qg as possible. A judicious

choice will be to minimize the |

V(Qq — @Q)||, which is actually the sum of squares of the h
lower triangular entries in matrix Qg — @. Along with these definitions and motivations,

the constrained optimization problem can be formally stated as follows.

Problem 6.1. Given o and Qy where « is optimal with respect to the LQR technique and
V(Qq) € P, Jind o Q that menamazes ||V(Qq — Q)|| subject to V(Q) € PN Q.

It has been shown in Theorem 6.1 there exists a feasible solution to Problem 6.1, i.c.
PN Q# 0. Tn fact, the feasible solution can be constructed through the following proposi-

tion. Before this is presented, a lemmmna is introduced which is necessary for the proof.

Lemma 6.4. Suppose n > 2 and « is oplimal with respect to the LQR technique. Lel

M = pla~)o" (@) +el@e’ (@), A = ¢F(@e@) —lig(@)lllipla=)l, and vy =
lo(a)||e(a™t) = le(a )|l @(). Then, Ay and vpy are the negative eigenvalue and corre-

sponding eigenvector of M respectively.
Proof. Tt sulfices to verify that Moy = Ay holds:
Moy = pla)o" (@) lo(@ll pla) — pla~")e7 (o) lo(e™")l p(a)

+o(@e! (™) le(@)] pla™) = pla)e’ (a") [le(a™")]| ¢(a)

= o ()l o)l ela™) = [le(@)]? lela ")l wla™")

+ Il ) e ()|l ele) — @' (a)ela™) lp(a™)|| ¢la)

= [p"(@e(a™") = o)l e )] [llel)llele™) = llpla™)l ¢(a)]

= Amom
Moreaver, il is easy to see from Canchy-Schwarz inequality and Lemma 6.1 that Ay, < 0. O

Proposition 6.1. Let {¢;,» = 1,....n} and {v;,1 = 1,... ,n} be the sels of eigenvalues
and corresponding orthonormal ergenvectors of Qq, respectively. If gy = —2/Ap, qo = ... =

g =0, vy = vy /llval, then V(Qo) € PN Q, d.e. Qp is a feasible solution lo Problem 6.1.
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Proof. Since g; > 0, it is obvious that V(Qg) € P. Furthermore, with R = 1, the LQR

characteristic equation (6.8) can be rewritten as

T

Yo an! [pla )" (@) + ple)e” ()] v = Y govf Mu; = -2
=1

t=1
Mg ==2/Am, g2 = ... = g = 0, vy = var/|lomll, it follows from Lemma 6.4 that the
above equation is satisfied. Thus, V(Qp) € P N Q and this completes the proof. O

The following theorem characterizes the result from the least-squares approach.
Theorem 6.3. The unique leas(-squares solution,
¢=[NTN]"'NT (V(Qa) + BBTA)Y) = & (6.14)
whach leads Lo
V(Q) = —AB" A + N [N'N]TNT (V(Q0) + BETA)) = V(@) (6.15)

minimizes |[V(Qq — Q). The resulling Qp is o solution to Problem 6.1 if and only if

V(Qy) € P. Moreover,
V(Qa— Q¢) L N(BT)

Proof. Using Eq. (6.13), the least-squares problem can be cast into the standard form:
V(Qu- Q) = (V(Qu) +B(F"8)™") — N¢

Tt is well known (Brogan [2]) that ||[V(Qq — Q) is uniquely minimized by choosing £ as in
Eq. (6.14), which by substitution into Eq. (6.13) leads to Eq. (6.15). Since the least-squares
solution guarantees that V(Q¢) € @ but not V(Qy) € P, Q¢ is a solution to Problem G.1 il
and only if V(Qy) happens to be an element in P as well. Finally, to show that V(Qu — Q¢)

is orthogonal to the subspace N (4T). consider the decomposition
R' =N aNE")!

where MN(AT)Y denotes the orthogonal complement of A(A7). Suppose V(Qu — Q¢) is

decomposed as

VIQu— Qi) =e1+e3. e eN@BT), exeN@BT)




Since N& € N("), the choice of £ cannot affect es. The least-squares solution is the one for

which ¢; = 0 which implies that V(Qu — Qy) = e3 € N (A1) . This completes the proof. [

In the case where the least-squares approach fails, i.e. V(Q,) ¢ P, Problem 6.1 can still
be solved via convex programming. In what follows, V(Q¢) ¢ P can be assumed so that the
formulatlion ol a convex optimization problem is necessary. To set up the problem, consider

the following lemma and propositions.

Lemma 6.5. Let {z;.i =1,... ;n}, {yi,t=1,... ,n}, and {z;,i = 1,... ,n} be the eigen-
values of symunelric matrices X, Y, and Z, respectively, where all three sets are arranged

in. non-increasing ovder. I Z = X +Y, then

max(r; + Yn, Tn +4i) < 2z <min(z; +y1, 5 +¥i), 1<i<n
Proof. This is a standard result. See, e.g., Wilkinson [19] pg. 101. O
Proposition 6.2. PN Q is a conver sel.

Proof. Tt follows from Definition 6.4 and Lemma 6.5 that P is a convex set since for all X,

Y e R"™ with X, Y > 0, one has V(X) € P, V(Y) € P, and
VX +(1 = A)Y) = AVX)+(1 = AP(Y)eP,0< A< |

Furthermore, it is obvious from Definition 6.4 that @ forms a hyperplane parallel to (A7),
The facl that every hyperplane in R? is a convex set and the intersection of two convex

sets is also convex concludes the prool (Cameron [3] pg. 4). O

The drawback associated with solving Problem 6.1 directly via convex programming is that
the numerical searcli is carried out in a o dimensional space with constrainl V(Q) € P Q.
Tt is possible, however, to confine the search in a i — 1 dimensional space with constraint,
V(Q) € P. This is accomplished by reconsidering the result from least-squares approach

and the following proposition.

Proposition 6.3. Let QQ, be oblaned from Eq. (6.13) with £ = &, and V(Q,) € PN Q.
Suppose that N 1s an orthonormal basis for the subspace N'(37). The following are equiva-

lend :
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1. ||& — &, is a minimum.

2. |V(Qe — Q.)|| is @ minimum.
3. |V(Qq— Q.)|| is a minimum.
4. Q. s a solution to Problem 6.1.

Proof. (1.<:2.) Using Eq. (6.13), it is straightforward to verify that ||[V(Q;— Q.)|| = ||& —

&l

(2.=3.) Since Q forms a hyperplane parallel 1o M (A7), it is obvious that for all Q with
V(Q) € Q, V(Q¢ — Q) € N(BY). Tn addition, it follows from Theorem 6.3 that
V(Qa — Q) L N(,l’i""). Using the above Lwo facts and the Pythagorean theorem, one
has

IV(Qe — QI = IV(Qa — QOII* + IIV(Qe — Q)II? (6.16)
I [V (Qr — @Q.)]| is @ miniimum not necessarily unique, i.e.
V(Qe — QI < IV(Qe — Q)

lor all Q@ with V(Q) € PN Q, then the following inequality can be obtained from

Eq. (6.16):

IV(Qq — Q)lI*

IV(Qa — Qo)I” + [IV(Qe — Q)|
IV(Qa— Q)I* + IV(Qe — QII* = |V(Qe — Q)

\V

12

Thus, [V(Qu — Q.)
minimum, i.e. Lhere exists Q.. with V(Q..) € P N Q such that

| is a minimum as well. Conversely, il |[V(Qs — Q.)]| is a nol a

IV(Q¢ — Qu)ll < [V(Qe — QI
then the following inequality can be obtained from Eq. (6.16):
V(Qa— QI = [WV(Qu— QeI + V(Qe — Qui)lI?
< V(Qu = QalI* + IV(Qe — QI < IV(Qu — Qu)II?

Thus, [|[V(Qq— Q.)|| is not & minimum as well.
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(3.=2.) The proof follows the same lines as the one above.

(3.<4.) This follows easily from the problem statement.

O

Aun iminediate consequence of Proposition 6.3 is that ||€,—£|| can be used as the objective
function instead of |[V(Qq—Q)||, which yields the advantage of confining the search ina h — 1
dimensional hyperplane formed by the elements of Q. This also implies that the constraint

V(Q) € Q is satisfied naturally. The modified problem can be restated as follows.

Problem 6.2. Given « and Qg where « is optimal with respect to the LQR lechnique and

V(Qu) € P, find a & that minimazes ||E¢ — &|| subject Lo V(Q) € P.

The objective function and the constraint in Problem 6.2 are convex in view of triangular
inequality and Proposition 6.2. Tt is well known that this convex programming problem has
a global solution point. A rich collection of algorithms are available for this problem, e.g.
the ellipsoid algorithm (Boyd el al. [1]), the interior-point methods (Boyd et al. [1]), and
the sequential quadratic programming methods [17]. The initial guess for these algorithins

imay be obtained from Proposition G.1.

Remark 6.1. ‘The constraint in Problem 6.2 can be cast into the form of linear matrix
inequality (LMT). To show this, let £ = [§;] and N = [y |2 -+ | ga—1] where the 7;7s form
an orthonormal basis set in N (47). Then, applying V= to Eq. (6.13) and writing Q@ = Q(€)
yields

h—1

QE)=—(B"B)"V B + )&V ()

with constraint Q(£) > 0, which is exactly a nonstrict LMT.
6.4 Design Procedure

The proposed LQR design procedure consists of the following steps:

|. Compute a. a is computed [rom prespecified Ky, ¢, and v using Egs. (3.7), (3.8),

and (3.9). The value ol « should not violate Theorem 6.1.
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SV

Specify Q; and set R = 1. The desired weighting matrix Qg should be symmetric

and positive semi-definite.

3. Run MATLAB file dvsclgrli.m with input data A, B, Qg4 and a. The

following tasks are performed:

(a) Compute a symmetric positive semi-definite matrix @@ that will give root at «
and is “closest™ to Qg in the least-squares sense using the least squares-convex
programming approach.

(b) Run dlgr.m to solve for the optimal feedback gain matrix F.

(¢) Compute G using Eq. (3.25).

(d) Make sure GB # () and all of the n entries of G are nonzero. A warning message
will be printed if any of which is not satisfied.

(¢) Return @, F, and G as oulput dala.

4. (Optional) Fine-Tune @Q and/or a. The following routes on fine-tuning are sug-
gnsl,u(l:

(a) Manually adjust @ and/or « using Eq. (6.12). Whether the modified ¢ and/or

modilied ev is positive semi-deflinite and for satisfy Theorem 6.1 should be checked,

respectively.
() Change @ and/or e accordingly via the symmetric root locus using dsrlocus.m.
Remark 6.2. Tn addition to fine-tuning purposes, the manual adjustment approach is suil-

able when the system order is low and when (Q is to be diagonal, in which case the positive

stini-definiteness of (@ can be easily observed.

Remark 6.3. The MATLAB files used to carry out the above operations, i.e. dvsclgrl.m,

dvsclqr2.m, dsrlocus.m, and vecsym.m can be found in Appendix 8.




Chapter 7

Application Examples

7.1 Control of a Mechanical System

7.1.1 Additive Uncertainties: The State Feedback Case

Example 7.1. Consider the mechanical system shown in Figure 7.1, Let m =1, ¢ = 2, b =
3, state vector = = (g1 ¢1 g2 G2 g3 ¢3]7, input vector u = [uy up]”, and additive uncertainty
or disturbance vector [ = [f; f2 fs]". The continuous-lime state space representation is

given by

£(t) = Acz(t) + Bou(t) + DS (L) (7.1)
—= ——— = 3
b
f1(t) (1) Ja(1)
e .8 = '8
1y (L) T m m 1y (1)
C ¢

jonoliioncliionc il

Figure 7.1: The mechanical system



where

o1 0 0 0 0 0 0 0 0 0

-2 0 2 0 0 0 I 0 1 00

0 0 o | 0 0 0 0 0 0 0
‘1{ = 13'. = DC ——

2 0 -4 -3 2 3 0 0 01 0

60 0 0 0 0 1 0 0 0 0 0

0 0 2 J -2 =3 0 1 0 0 1

The discrete-time equivalent of the system (7.1), obtained by applying u through a zero-

order hold with Al = 0.2, is given by Eq. (3.1) where A = ¢3! B = .{;Mf“'l"'\d/\Br_,

D, = [ eA2dAD,, i.e.

0.9605 0.1974  0.0393  0.0023 0.0002 0.0003
—0.3901 0.9605 0.3861 0.0333 0.0040 0.0062
0.0333  0.0023  0.9394 0.1547  0.0273  0.0430
A= ; (7.2)
0.3048  0.0333 —0.5282 0.6042 0.2234  0.3625

0.0062 0.0003 0.0213 0.0430 0.9725 0.1567

0.0853 0.0062 0.1421  0.3626 —-0.2274 0.6313

0.0199  0.0000 (1.0199  0.0001  0.0000

0.1974  0.0003 0.1974  0.0023  0.0003

0.0001  0.0031 0.0001 0.0168 0.0031
B = , Dy=

0.0023  0.0430 0.0023  0.1547 0.0430

0.0000 0.0169 0.0000 0.0031 0.0169

0.0003  0.1567 0.0003 0.0430 0.1567

and w, = [w,, w,, w,,]" is assumed to satisly D,w,(k) = j;u eAAD [ ((k + 1)AL — A)dA
for all k. Suppose w,(k) = [0 sin(3.57kAL) 0]7, i.e. the disturbance is a scalar and is
uminatched.

The control objective is to make the tracking error small with gy being emphasized the

most. Consider using the LQR. Lechnique to design the equivalent matrix A.,, where the

weighting matrices are chosen as @ = diag(10,0,1000,0,10,0) and R = diag(1,1). The
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[eedback gain matrix F' is obtained as

1.7992 2.0044 0.6058 0.4914 —0.4175 0.3546
3.8262  0.6742 12.2644 5.9504  2.5449  4.0341

The optimal closed-loop eigenvalues are found to be 0.3145, 0.8427, 0.4955 + 0.379934, and
0.7591 £ 0.277Gy. which satisfy the eigenvalue constraint. Tt follows [rom Theorem 3.2 that
A,y can be matched with A — BF by first letting 1 —(Ky;/¢) = 0.3145. Then, G is computed

using Eq. (3.25) to be

G =[-0.1394 —0.0055 —0.9432 —0.1389 —0.1600 —0.2146

Next, the bound on uncertainties is selected as v = |G Dyw, (k)] = 0.0471, which satisfies
inequality (3.9) because |w,, (k)] < 1. Since fixing either Ky, ¢, or ¢ fixes the others;
i K = [0.001 0.1)7, then it follows from Egs. (3.7), (3.8), and (3.24) that Ky = 0.101,
¢ = 0.1348, and ¢ = 0.1473. TFinally, M is obtained using Eq. (3.23). Since w,, has a
frequency at 3.57 = 1] rad/sec, good disturbance attenuation can be expected in view of the
discrete singular value plot of the transfer function from w,, to g in Figure 7.2. A simulation
with initial state 2(0) = [1 2 34 5 6]” and desired trajectory z4(k) = [1 04 0 7 0] is carried
out and the result is shown in Figure 7.3, Tt is seen that the B is attractive and invariant,

and good disturbance rejection is attained.

Example 7.2. Reconsider Example 7.1 but now with initial state 2(0) = [304 0 5 0]”,
desired trajectory zg(k) =[1 0203 0", and w,(k) = [0 0 0]”, i.e. no uncertainties. T1. is
seen from Figure 7.4 that under this ideal condition discrete sliding mode is achieved and

the tracking error dynamics is asymptotically stable.

Example 7.3. Reconsider Example 7.2 but now the saturation term in the control law
(3.2) is replaced by a linear term, Le. sat (L{qf—i) is replaced by f—%l 50 that (3.2) becomes
tinear. With all parameters remain the same as those in Example 7.2, the simulation result
for this linear controller is shown in Figure 7.5. 1t is seen that the linear controller provides

a mucl faster response in the expense of more control effort than the variable structure

controller. However, the result is unrealistic because the masses ran into each other. These
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Figure 7.3: Time respouse of the mechanical system in Example 7.1
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Figure 7.4: Time response of the mechanical system in Example 7.2

collisions are avoided by the variable structure controller in Example 7.2 due to the use of

lower gain outside B.

7.1.2 Additive Uncertainties: The Output Feedback Case

Example 7.4. Reconsider Example 7.1 but now use the prediction observer with uncer-

lainty estimation. Suppose the output equation is given by

0o 0 000
y(k) = Cxz(k) + »(k) = x(k) +v(k)
o0 0010

Let w, be decomposed into matched and uninatched portion as in Eq. (4.2) where D,, is given
in Eq. (7.2), D is a 2x 2 identity matrix. B D is the second colurmn of Dy, w = [w,, Wa, |7,
and w | = [w 1] = w,,. Let the dynamics of the matched portion be described by Eq. (4.3)
with 7 = [ry 7o]". Suppose w (k) = sin(3.57kAL), r(k) = [sin(2rkAL) cos(2akAL)]T, and

s(k) = [00]7, i.c. no measurement voise is present. Consider Assumption 4.3 and suppose
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Figure 7.5: Time response of the mechanical system in Example 7.3
the lollowing are known:

rf,,.l = r)',,l = ¢

5y =1, Quwyy) =Q(r) =Qry) = {w: 7 <w< w/Al} (7.3)

The control objective is to make the tracking error small with g being emphasized the
most. Consider using the LQR techuique again to design the equivalent matrix A.,, where
the weighting matrices Q and R are the same as those in Example 7.1, Consequently,
the feedback gain matrix F and the optimal closed-loop eigenvalues are the same as those
in Example 7.1. Next, let 1 — (Ky/¢) = 0.3145 so that G is also the same as that in
Example 7.1.

The augmented system with state vector 7 = [#7 w’]" is described by Eq. (4.4). Lel
tle observer gain matrix H, = [H'f' Hz'r]’( with H, € R%*2 and H, € R%**? be chosen as

I
1.3387 2.3847 0.1261 —0.3368 —0.1880 —0.6985 1.9958 —1.6711

Il

0.2138 1.1364 0.8448 1.0869 1.0297 1.2479  1.0352  0.6550

so thal it yields observer poles at 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, and 0.8. To find a v
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Figure 7.6: Discrete singular value plot of the transfer functions from ry, rs, and w; to

GH,C\y7n in Example 7.4

that satisfy inequality (4.10), first notice that the transfer functions from wy i, 7y, and ry

to GH C,1 are respectively given by

B\.D,
Dy, (2, GH Co) = GH\Culz] — Ap + HaCy) ™!
0]
D, (2, GH\C,) = GH](-',,_[ZI — Aa+ H,,Cﬂ]_l(f?
®,,(2,GH\C,) = GH\Cylz] — Ag + HaCy] e

where ¢, is a column vector with 1 in its sth entry and 0 elsewhere. Next, it is seen from
Eq. (7.3) and from the discrete singular value plots of these transfer functions in Figure 7.6

Lhat

sup | By, (@3 GHC,)| = —24dB = 0.063
weEN(w )

sup |®,, (/¥ GH\C,)| = -—22dB =0.079

wl—:ﬂfl"lj

sup |‘I>,_2(r<j'“’m,GH1Ca)[ = —16dB = 0.158

u_'Ef.Ef_rg )

Iiequality (4.10) then becomes

v > (0.063)(1) + (0.079)(1) + (0.158)(1) = 0.3
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which unplies that it is suflicient to let v = 0.3. Since fixing either Ky, ¢, or ¢ fixes
the others; if K = [0.001 0.3]?" then it lollows from Egs. (3.7), (3.8), and (3.24) that
Ko = 0301, ¢ = 2.5 x 1072, and ¢ = 0.4391. Finally, M is obtained using Eq. (3.23). A
simulation with initial state 2(0) =[12345 b']"". desired trajectory zq(k) =[1 0407 [1]7',
initial disturbance w(0) = [=2 4]", and observer initial state 7(0) = 0 is carried out and
the result is shown in Figure 7.7. Tt is seen that the B is attractive and invariant alter
the observer error dynamics has reached the steady-state, at approximately 3 seconds.
Meanwhile, its performance is not as superior as in Example 7.1 where full state feedback is
available. Furthermore, it is seen that the uncertainty estimation is effective and the system

is kept BIBO stable.

Example 7.5. Reconsider Example 7.4 but now with w (k) = 0, r(k) = [0 “1'1" and
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Figure 7.8: Timme response of the mechanical system in Example 7.5

n(k) = [0 li]'r. i.c. no ummatched disturbance, constant matched disturbanees, and no mea-
surenient noise. Also, let the observer initial state 7(0) = [z(0)" 0 0]7, i.e. no mismatched
initial condition in the system state. With all parameters remain the same as those in Exam-
ple 7.1, the simulation result is shown in Figure 7.8, Tt is seen that under this ideal condition
discrete sliding mode is achieved and both the tracking and observer error dynamics are

asymptotically stable.
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7.2 Control of a Pressurized Flow Box

7.2.1 Parametric Uncertainties: The State Feedback Case

Example 7.6. Consider the pressurized flow box system (Franklin et al. [13], p.g. 788)

described by

H(l) -0.2 0.1 1 H(t) 0 1

. uc(1)

h(t) | =|-005 0 0| [h)]|+ [0 07 (7.4)
) us(t)

1, (1) 0 0 =1 |ual(?) 1 0

The discrete-time equivalent ol the system (7.4). obtained by applying u.(t) and wug(t)

through a zero-order hold with At = (.2, is given by Eq. (5.1) where

0.9607  0.0196  0.17706 0.0185 0.1474
A= 1-0.0098 09999 —0.0009| , B= |-0.0001 0.1390] .
0 0 0.8187 0.1813 0

and AA(K) is the parametric uncertainty matrix satisfying rank([B AA(k)]) = rank(B).
It can be shown that the Kronecker invariant for this system is ny = 2, np = 1. Using
Lemmna 3.1, the system (5.1) is transformed into the controllable canonical form (5.2) via a

change i coordinates = = 17 where

0.0168  0.0185  0.19806 0 ] 0
T=|-0.0003 —0.0001 0.1390| , A= [-0.7979 1.7935 -0.0107]| .
—0.1767  0.1813  0.0116 —0.0025 1] 0.9858

0 0 3 =1
_ I —0.0642
B= |1 —006492| . R=
0 1
0 ] -

By Definition 5.1, one has

" -0.7979 1.7935 -0.0107
A = [“’_fl =
—0.0025 [ 0.9858
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Let the desired eigenvalues be 0.2 and 0.1 + 0.35. The corresponding feedback gain matrix

F'is found to be

—0.6978 1.5937 0.0066
F= [fu'] =
—0.0052 0.0085 0.7856

Suppose the time-varying parametric uncertainty matrix is given by

~ - gn(cos(2kA
AA(K) = [Aaii(k)] = 0.2 x ! sgn(cos(2kAt)) 1
sgn(sin(3kAL)) -1 — sgn(sin(4kAt))

where max(Aay;(k)) = 0.2. To satisly inequality (5.6), it suffices to choose
Kij = |aij — [i;| + max(Aa;j(k)) +001, 1<i<m, 1<j<mn

It then follows that

0.3101 0.1098 0.2273
K =[Ky]=
0.2127 0.2185 0.4102

and ||K||~ = 0.9473 < 1, which implies that inequality (5.7) is satisfied. A simulation
with initial state x(0) = [1 2 3]" is carried out and the resull is shown in Figure 7.9. Tt
is seen Lthat the system is globally uniformly asymptotically stable in the presence of the
perturbation AAU;). Also, the control effort is quite high because the poles are placed near

Lo the origin.

7.3 Sliding Surface Design for a Double Integrator Plant

Example 7.7. Consider a double integrator plant described by

1 0
io(t) = Agre(l) + Beue(l) = ze(t) + (1)
0 0 1

The corresponding discrete-time system obtained using a zero-order hold with At = 0.1 is

given by

. 1 0.1 0.005 _
x(k+ 1) = Az(k) + Bu(k) = z(k) + u(k)
0 1 0.1
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Figure 7.9: Time response of the pressurized How box in Example 7.6

Let v = 0.05 and ¢« = 0.1. Tt lollows [rom Eqs. (3.7) and (3.8) that Ky, = v+ 2Ate = 0.07,
¢ = v+ 200 = 0.06, and @ = 1 — (Ky;/¢) = —0.1667. Theoremn 6.1 is satisfied since « is
nonzero and not equal to any eigenvalue of A, Suppose the desired weighting matrices are
chosen as Qg = diag(1 x 10°,0) and R = 1. The subsequent step is performed in MATLAB
using dvsclqri.m:

>> Qd=[1e6 0;0 0];

>> [Q,F,G]l=dvsclqri(A,B,Qd,alpha)

Least-squares approach is used

Q =
1.0e+005 =
10.0000 0
0 0.0046
F =
128.1651 16.2440
G =

-0.9992 -0.0410
>> heq=A-Bx*G/(G#B)#*(A-alphaxeye(2));
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>> eig(Aeq)
ans =
-0.0986
-0.1667 % this is alpha
>> eig(A-B#dlqr(A,B,Qd,1))
ans =
-0.0557
-0.3820 % if use Qd, both eigenvalues are not equal to alpha

Notice that in this example the least-squares approach is used to find the closest feasible

Q. If Qg is to be used, then v must be chosen as either —0.0557 or —0.3820.

Example 7.8. Reconsider the double integrator plant in Example 7.7. Suppose all the
controller parameters remain unchanged except for Q4 where now Qg = diag(l x 10°,0).
Again, the subsequent step is performed in MATLAB using dvsclqrl.m:

>> Qd=[1e5 0;0 0};
>> [Q,F,Gl=dvsclqri(A,B,Qd,alpha)

Convex programming approach is used

Q=
1.0e+005 *
6.4027 0.0000
0.0000 0.0000
F =
137.2667 16.5690
G =

-0.99%4 -0.0350
>> feq=A-BxG/(G*B)*(A-alpha*eye(2));
>> eig(heq)
ans =
-0.1667 % this is alpha
-0.1766
>> eig(A-B*dlqr(4,B,Qd, 1))
ans =
0.0639 + 0.29856i
0.0639 - 0.29851i % if use Qd, both eigenvalues are strictly complex

Notice that in this example the convex programming approach is used to find the closest
feasible Q. The desired Q4 can never be used because the closed-loop eigenvalues are strictly

complex, which is not. possible since c must be one of the real eigenvalues.
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Chapter 8

Conclusions

A state feedback discrete variable structure control technique for linear multivariable sys-
tems with additive uncertaintics is developed. Tt is shown that the boundary layer under
the control law is attractive and invariant. Also, model matching in the linear region is pos-
sible as long as the eigenvalue constraint is satisfied. Furthermore, the benefits of using one
hyperplane over multiple hyperplanes in discrete variable structure systems are discussed.
The resulting system is found to be asymptotically stable if no uncertainties are present
and BTBO stable otherwise,

For practical reasons, the use of a prediction observer with uncertainty estimation is
proposed. Tt is shown that the estimated boundary layer is attractive and invariant after
the observer has come to a steady-state and model matching in the linear region is possible
as in the state feedback case. The resulting system is found to be asymptotically stable if
there 1s no unmatched uncertaimtios, no noise, and the matched uneertainties are constant,
bias. Otherwise, the resulting systemn is BIBO stable.

For linear multivariable systems with parametric uncertainties, the concept of switching
sector is used and a control law capable of avoiding the potential pitfalls associated with
existing schemes is developed. Tt is shown that the switching sector should be attractive but
does not have to be invariant as long as additional stability requirements can be imposed on
the system. The resulting system is found to be globally uniformly asymptotically stable

under certain conditions. However, the admissible bounds of uncertainties obtained are



found to be conservative.

The use of LQR technique in slidiug surface design for single-input systems is examined
in details. Tt is shown that one can always specily the real eigenvalue related to the sliding
gain and boundary layer thickness and then constrain the weighting matrix. The least
squares-convex programining approach is then used to solve this constrained optimization
problem. This leads to the development of an automated optimal sliding surface design
procedure.

To illustrate the effectiveness ol the proposed control technigues and sliding surface
procedure, three examples are presented, namely the control of a mechanical system and a
pressurized flow box as well as Lthe sliding surface design for a double integrator plant.

Suggestions for luture research include:

e Tnvestigation of the possibility of extending the results on systems with additive un-
certaintics to Lhe nonlinear case, perhaps with a nonlinear sliding surface § = {x :

s(x) =0,s € R}.

e Investigation on the use of available (reedoms among the sliding gains K;'s to avoid
controller saturation and to huprove the nonlinear behavior of the dynamics outside

the boundary layer.

e Tuvestigalion of the possibility of extending the results on switching sector to the
output feedback case, as well as the use of switching region not necessarily having the

shape of a sector to improve the adinissible bounds on uncertainties.
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Appendix: MATLAB Files

dvsclgrl.m

% LQR Technique in Sliding Surface Design using Least Squares-

% Convex Programming Approach

% by Choon Yik Tang 8/97

h

% [Q,F,G]l=dvsclqri(A,B,Qd,alp)

h

%  A,B=Single input plant in state space form

y/ (d=Symmetric positive semi-definite desired weighting matrix
% alp=1-K/phi, valid range is -1<alp<1l, alp~=0, alp~=eig(A),

% and 1/alp~=eig(A)

% Q=Symmetric positive semi-definite weighting matrix that gives
% root at alp and is closest to Qd in the least-squares sense
%  F=0Optimal feedback gain matrix corresponds to Q and R=1

% G=Row vector defining the sliding surface

% Note: Which approach is used will be displayed
% Note: Warning message will be displayed if the dimension of G is

% greater than 1 or G*B=0 or some entries in G is zero
function [Q,F,G]=dvsclqri(A,B,Qd,alp)

global bet xil N

error (abcdchk (A,B));

if size(B,2)"=1
error (’Must be single input’);

elseif any(eig(Qd)<-eps*norm(Qd,1))|(norm(Qd’-Qd,1)/norm(Qd,1)>eps)
error (’Qd must be symmetric and positive semi-definite’)

elseif abs(alp)>=1 | alp==0 | any(alp==eig(A)) | any(1/alp==eig(A))
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error(’Valid range is -1<alp<i,alp™=0,alp~=eig(A),1/alp~=eig(A)’);
end
n=size(A,1);
phia=inv(alp*eye(n)-A) *B;
phiai=inv(1l/alp*eye(n)-A)*B;
k=1;
for j=1:n
for i=j:n
if i==j
bet(k,1)=phia(i)#*phiai(i);
else
bet (k,1)=phia(i)*phiai(j)+phia(j)*phiai(i);
end
k=k+1;
end
end
N=null(bet’);
x11=inv(N’*N) *N’* (vecsym(Qd, 1) +bet*inv(bet ’*bet) ) ;
Ql=vecsym(-bet*inv(bet’*bet)+N*xil,-1);
if “any(eig(Ql)<-eps*norm(Q1l,1))
G=Q1;
disp(’Least-squares approach is used’)
else
M=phiai*phia’+phia*phiai’;
[wM,mM] =eig (M) ;
[mn,k]=min(diag(mM)) ;
V=[wM(:,k),null(wM(:,k)?)];
QO=V*diag([-2/mn,zeros(1l,n-1)])*V’;
x10=inv (N’ *N) *N’*(vecsym(QO, 1)+bet*inv(bet’*bet));
xi=constr(’dvsclqr2’,xi0);
Q=vecsym(-bet*inv(bet’*bet)+N*xi, ~-1);
disp(’Convex programming approach is used’)
end
F=dlqr(4,B,Q,1);
E=eig(ﬁ—B*F,’nobalance’); % avoid numerical error
[e,il=min(abs(E-alp));
G=null ((A-B*F-E(i)*eye(n})’)’;
if size(G,1)>1
disp(’Warning: The dimension of G is greater than 1’)
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elseif G*B==0 | any(abs(G)<eps)
disp(’Warning: G*B=0 or some entries in G is zero’)
end

clear global

dvsclqr2.m

==

» LQR Technique in Sliding Surface Design using Least Squares-

=2

» Convex Programming Approach
% by Choon Yik Tang 8/97

%

% dvsclqr?

4 Note: To be called by internally dvsclqril

function [f,gl=dvsclqr2(xi)
global bet xil N
f=(xil-xi) ?*(xil-xi);

g=-eig(vecsym(-bet*inv(bet’*bet)+N*xi,-1));

dsrlocus.m

% Discrete-time LQR symmetric root locus

% by Choon Yik Tang 7/97

% dsrlocus(A,B,Q)

% dsrlocus (Gnum,Gden)

% A,B=Single input plant in state space form
% Q=C’*C=DLQR weighting matrix

% C=plant/fictitious output matrix

%  Gnum/Gden=Single input plant/fictitious

% transfer function=C*inv(zI-A)=*B

% Gnum,Gden=polynomial coefficients in descending powers of =z

function dsrlocus(A,B,Q)
error (nargchk(2,3,nargin)) ;
if nargin==3

if size(B,2)>1

error (’Must be single input’)



end

if any(eig(Q)<-eps*norm(Q,1)) | (norm(Q’-Q,1) /norm(Q,1)>eps)
error (’Q must be symmetric and positive semi-definite’)
end

error(abcdchk(A,B,Q));
[Gnuml,Gdenl]}=ss2tf(A,B,Q,zeros{size(q,1),1));
[Gnum2i,Gden2i]=ss2tf(A,B,eye(size(A)) ,zeros(size(},1),1));
Gnum2=£fliplr (Gnum?2i) ;
Gden2=f1liplr(Gden2i) ;

else
[Gnuml,Gdenl]=tfchk(A,B);
Gnuml=[zeros(size(Gnuml,1),length(Gdenl)-size(Gnumi,2)),Gnuml];
Gnum2=£f1liplr (Gnuml) ;
Gden2=fliplr(Gdenl);

end

Num=zeros(1,2*size(Gnuml,2)-1);

for i=1:size(Gnuml,1)
Num=Num+conv (Gnuml (i, :),Gnum2(i,:));

end

rlocus(Num, conv(Gdenl,Gden2))

vecsym.m

% Vectorize a symmetric matrix and the reverse
% by Choon Yik Tang 8/97

A

% y=vecsym(x,ver)

h

% ver=1:

% x=symmetric matrix

WA y=column vector stacking columnwise the lower triangular
A elements of x

VA ver=-1:

y x=column vector stacking columnwise the lower triangular
% elements of y
% y=symmetric matrix

function y=vecsym(x,ver)

error (nargchk(2,2,nargin));
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if ver==
if size(x,1) =size(x,2)
error(’x must be square’)
elseif (norm(x’-x,1)/norm(x,1)>eps)
error (’x must be symmetric’)
end
n=size(x,1);
k=1;
for i=1:n
y(k:k+n-i,1)=x(i:n,i);
k=k+n-i+1;
end
else
n=find(size(x,1)==cumsum(linspace(1,32,32)));
if size(x,2)7=1 | n==[]
error (’x must be column vector and vectorizable’)
end
k=1;
for i=1:n
y(i:n,i)=x(k:k+n-1i);
y(i,i+1:n)=x(k+1:k+n-1i)7;
k=k+n-i+1;
end

end
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