
UAMS, A STUDY IN SYSTEM ADMINISTRATION AUTOMATION ----

By

ROLAND JOSEPH STOLFA

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1986

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIE CE

May, 1997

UAMS, A STUDY IN SYSTEM ADMINISTRATION AUTOMATION

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I sincerely thank my graduate advisor Dr. George Hedrick for the kindness, guidance, help

and time he has given me during the years it has taken me to write this thesis. Without the

encouragement and help he has given me, the completion of this work would have been impossible.

I also sincerely thank Dr. Blayne Mayfield, Dr. Mitch Neilsen, and Dr. John Chandler for serving

on my committee.

My special thanks goes to Mr. Mark J. Vasoll for the encouragement and inspiration he has

shown me during the course of developing the code associated with this thesis. Special thanks also

go to Mr. Russ Smith (Mathematics Department), Mr. Rod McAbee and Mr. Clay Couger (College

of Engineering) Architecture and Technology) Mr. Brad Barnes (College of Veterinary Medicine),

and Mr. James Alexander (Computing and Information Services) for their support.

My respectful thanks goes to my wife Mrs. Dr. Lisa Y. Tresp, D.V.M and our daughter Ms.

Victoria F. Stolfa and our son Mr. Kevin M. Stolfa for all the love, encouragement and support they

have given me in writing this thesis.

iii

TABLE OF CONTENTS

Chapter

1. INTRODUCTIO /HISTORY

1.1 Background

1.2 Problem Statement .

1.3 Organization

2. LITERATURE REVIEW

2.1 Asmodius

2.2 ACMAINT

2.3 GAUD .

2.4 newu ..

2.5 Uniqname

2.6 SHARE II .

2.7 simon ...

2.8 GeNUAdmin

3. UAMS TODAY ...

3.1 The Database .

3.1.1

3.1.2

3.1.3

3.1.4

3.2 URJ's

3.2.1

The Database Descript ion .

Global Fields

Local Fields .

DB Views

Automatic Rights

l V

Pag

1

1

2

3

4

4

4

5

5

5

6

6

6

8

8

8

10

11

l.l

12

12

3.2.2 Granted Rights .

3.2.3 Expiring Rights .

3.2.4 Anti Rights

3.3 Rights Alias File

3.3.1 Slave side

3.3.2 Master side

3.4 Shell Strings. . . .

3.5 Universal Computing Identifiers.

3.5.1 Background

3.5.2 Creation Heuristics .

3.5.3 Special Case Users

3.6 Security Issues

3.6.1 URI's & Access Control

3.6.2 Configuration Spoofing

3.7 Initial Password Creation

3.7.1 Background

3.7.2 Creation Heuristics .

3.8 Runtime Configuration . . .

3.8.1 The UAMS Master/Slave Configuration File

3.9 Server/Client Model

3.10 Clients

3.10.1 U IX

3.10.2 POP .

3.10.3 Card Key Lock System

3.10.4 Novell

3.11 Master/Slave Server Model

3.12 Master to Slave Messages

v

12

13

13

14

14

15

15

15

15

16

17

17

18

18

19

19

19

20

20

21

21

21

23

23

23

24

25

3.12.1 Batch Load

3.13 Slave to Master Mes ages

3.13.1 User Query .

3.13.2 User Remove

3.13.3 Voting and Expiration of Records.

3.14 Summary

4. CENTRALIZED FLAT NAMESPACE SYSTEM

4.1 What is it?

4.2 Benefits ..

4.2.1 Provided to the Individual Users

4.2.2 Provided to the System Administrator

4.2.3 Provided to the University.

4.3 Costs

4.3.1 Preliminary Costs and Tasks

4.3.2 Continuing

4.4 Summary

5. BLACK BOX DESCRIPTION OF A CFNS

5.1 Minimal Data Structures Needed

5.1.1 People Database . . .

5.1.2 Association Database

5. 1.3 Cross Reference Database

5.2 Supported Client/Server Functions

5.2.1 Make Return Set

5.2.2 Query By .

5.2.3 Return Set

5.2.4 Vote For Set

vi

25

27

27

28

2

29

31

31

31

31

32

33

33

34

35

36

37

37

37

37

38

39

39

39

40

40

5.2.5 Merge Ids

5.2.6 Create A New User.

5.3 How it all Fits Together

5.4 Other Issues

5.4.1 Data Base Inconsistencies

5.4.2 Purging the Data Base of Old Records.

5.5 Summary

6. PROPOSED FUT URE WORK AND CONCLUSIONS

6.1 Future Work . ..

6.l.1 UAMS-lite

6.1.2 Real Time Access to t he Master UAMS Site.

6.2 Conclusions......

40

41

42

42

42

43

43

44

44

44

44

45

BIBLIOG RAPHY .. 46

APPENDIX A: GLOSSARY 48

VIl

LIST OF TABLES

Table

3.1 Logical Record .

3.2 Physical Records

3.3 Global Fields of the Database

3.4 Departmental Fields of the Database .

3.5 Example UCI Generations .

5.1 People Database ...

5.2 Association Database .

5.3 Association Database, Example 1

5.4 Association Database, Example 2 .

5.5 Cross Reference Databa..<;e

5.6 Return Data Set Fields

5.7 Merge RPe Parameters

viii

Pag

8

9

10

10

17

37

38

38

38

39

40

41

LIST OF FIGURES

Figure Page

3.1 Sample datafeed for UNIX client system 22

3.2 Master /Slave and Server/Client Relationships . 24

3.3 User Query Event Sketch ~ . 26

3.4 Master Side Processing of User Query 27

3.5 Sample Slave to Master VOTE Data Feed 28

IX

CHAPTER 1

INTRODUCTION/HISTORY

1.1 Background

Prior to the development of The User Data Base System, UDB, at Oklahoma State University

the two support staff members at Oklahoma State University Computer Science Department had

to maintain over 40 machines manually. This included all the normal system administration of

hardware, backups, mail, and news, as well as account creation. T hey often found t hemselves in

search of a machine on which a user wanted an account, logging-on, creating the account, then

finding the user and informing them of the initial password. In many instances, several days might

pass between the request and the creation of the account due, in part , to playing "telephone t ag."

Another scenario would involve the creation of enough accounts for an entire class . This typically

implied that there were no initial passwords for those students.

As time passed, access to the two terminal labs that the department runs for graduate students

also became a chore. This involved keeping track of many keys to t he labs in question. Monitoring

the labs, and the equipment contained therein, became enough of a worry that a set of magn t ic

st rip readers and a card key access system was installed on six doors in the department to monitor

the use of the rooms.

With the advent of etwork File System (NFS) hosts/ servers, fi le sharing amongst one user 's

account on several machines became a problem due to NFS needing the IIumeric user identifiers to

be the same on all systems. This involved merging many separate password files, sort ing out what

id's were in use on what, machine, and then changing the numeric user id 's on all machines across

the network.

In short, there was no real solution to the user account creation, deletion, and management

problems for a university. This situation lead to the original development of T he User Data Base

System, UDB, in 1987. Further refinements lead to the presentation on UDB at the Large Installation

Systems Administrat ion Conference in 1990 (available as OSU-CS-TR-90-04) (SV90bj.

1

2

After the first paper on UDB, several other coli ges and departmen ithin OSU decided to

participate in the types of services UDB was providing. How ver, to e."(tend UDB to that domain

would have required all departments that wanted to participate share one datab on one ho t. The

OSU Computer Science Department found itself in need of a system of providing datab ervic

to a majority of the campus. A system was needed that could maintain a campus wide flat name

space, for both logins, or Universal Computing Identifiers (UCI) as we call them, and numeric u r

id's (NUrD), allowing separate administrative entities a.ccess to only those pieces of information that

directly relate to their organization. The result of this was the User Account Management System

(UAMS) [Sto93].

As it stands today, UAMS (the term that describes the current merger of UDB and UAMS) is a

centralized database of user id's, supporting several departments and colleges within the university

in a distributed manner.

1.2 Problem Statement

HistoricaJIy, the Computing and Information Services group on campus had not issu d personalized

user id 's (or PUDs) to students . However, in 1992, CIS reversed th mselves on this topic. In the

ensuing three years, the number of PUDs handed out by CIS has exploded. In 1995, a new fe ,

the Student Technology Fee, was established as a tax on the students to supply services for the

students as directed by the students. One of the side effects of this is that the students wanted to

have email accounts for all students starting in the fall of 1995. The CIS department now provides

PUDs to all incoming freshmen, in part to meet their obligation to the Student Technology Fee

Committee. In order to do this, CIS intends to support a Centralized Flat Name Space (CFNS)

system for the entire campus. Using this system, all users would have exactly one user login name

across all platforms on campus.

However, UAMS has UCls for virtually all OSU users (approximately 15000 at this time) . In

addition, the UAMS system has many of the features that CIS finds desirable for their support of

computing on campus. As a result , CIS has offered to merge their PUD database with the UCI

3

database maintained by UAMS in the Computer Science (COMSC) department if COMSC d velops

the code to support this merger on the UAMS side and if COMSC will a.dvise CIS in the developm nt

of their part of the code to support t his merger. The resulting CFNS will be acces ible by all of

the current UAMS supported departments , and will allow CIS to expand the CFNS concept to the

ent ire university.

The problem, and the focus of this thesis , is the result of the joint effort between the COMSC

Department and CIS here at Oklahoma State University to implement a centralized fi a t name space

system for the entire campus, based on UDB and UAMS, and further to deal with the merging of

the two elatabases of information (PUDs -vs- UCIs). One of this thesis' goals is to describe how

such a modified UAMS system would work, whom it would benefit, and how much work it would

require to achieve the goal of a centralized flat name space system.

1.3 Organization

The thesis is divided into the following chapters:

• Chapter 2: A discussion on previous work related to user account generation and maintenance

software.

• Chapter 3: Internals of U AMS today, given as an example of a working distributed flat name

space system.

• Chapter 4: Centralized Flat Name Space Systems Described.

• Chapter 5: Black box description of a CFNS.

• Chapter 6: Conclusions and Proposed Future Work.

• Appendix A: Glossary.

CHAPTER 2

LITERATURE REVIEW

National refereed publications in this area started in about 1988, as that is when the Large

Installation System Administration Conferences of the USENIX Association began. Several other

account maintenance systems have been reviewed. Some of their high points are summarized below.

2.1 Asmodius

In Asmodius [EVS88], a distributed database system and reliable datagram socket connection pro­

tocol is described to perform some of the same functions as UDB. Further, the implementors of

Asmodius chose to rewrite and replace several of the standard operating system utilities, such as

passwd. These modified utilities then communicate to a centralized daemon which would in t urn

modify the central database and communicate the changes to other daemons running on those sys­

tems under Asmodius' control. These daemons then modify their local copy of the database and

actually change associated operating system specific files, such a..'l /etc/passwd.

However, Asmodius utilizes daemon programs running on hoth the server and the clients that rely

on TCP lIP networking facilities. Although these faciliti s are gain ing popularity h r at Oklahoma

State University, not all hosts at OSU have T CP lIP, hence this approach was not usable.

2.2 ACMAINT

In ACMAI T [CKCS90], a celltral database was presented to allow a single system administrator

to manage computer account creation across a heterogeneous set of computers. ACMAINT, like

Asmodius, was designed around modifying several of the operating system utilities (passwd, chin,

and chsh to name a few) to communicate with a centralized database. This database then transmits

the "change" information to a daemon running on each network attached host under ACMAINTs

control to perform the change.

In ACMAINT, the "change" daemons do not keep track of the entire database, nor do they keep

a view of the database appropriate to their system. Instead, these daemons are strictly in charge of

4

5

processing change requests. This is the major difference between A modiu and ACMAINT.

However, ACMAINT utilizes daemon programs running on both th erv rand th client that

rely on TCP lIP networking facilit ies. Again, as t hese facilities are not univer ally pr ent in the

OSU environment, ACMAINT was inappropriate for use here at OSU.

2.3 GAUD

In GAUD [Urb90], a central database is accessed by many hosts over Remote Procedure Call (RP C)

protocol to allow access by the various offices t hat might allow or deny access to a particular user

to a particular machine. FUrthermore, GAUD has as design goal the maintenance of extra data to

assist in various financial accounting procedures. In addition, GAUD maintains a list of wh re a

users home directories reside on a distributed NFS file server farm.

However, GAUD suffers from the reliance on the availability of source code to the operating

system, an item not all universities have. Furthermore, at OSU, RPC is not available on all hosts,

hence its unsuitability.

2.4 newu

In newu [SV90a], describes a functionality t hat is already in UDB; ie. t h ability to cr ate and d) te

accounts on a foreign host. In addi tion, newu manages disk quota issues for the users it administers.

However, newu suffers from the same problem UDB had, in that it only worked within one

administrative entity. FUrther, newu was developed to deal with t he workload associated with

adding one user to many machines. It does not provide any mechanism for dealing with groups of

adds and deletes, such as seen in a university environment around the change of semester enrollment

flux.

2.5 Uniqname

In Uniqname [DLM90j, a system of merging existing accounts wi th a 'global view' is presented. T his

is the result of severa) different computer systems, and incumbent user populat ions, existing prior

to the development of Uniqname. Uniqname also attempts to address a few divergent issues, such

f

,

6

as X.500 email addresses, Kerberos authentication, and AFS ecurit ystems.

As UDB started with a unified 'global view', Uniqname offered a solution to something that was

not a problem in our case. In addition, it presents a solution to several problem that UDB did not

even attempt to address such as t hat of preferred mail box address .

2.6 SHARE II

In SHARE II [BGMR94]' an overall object oriented resource control system for areas such as CP

utilization, memory use limits, and disk quotas is presented. It controls many asp cts of system

administration that through source code modifications to both the kernel and several operating

system utilities. In addition to these areas, SHARE II also deals with user account management.

As not all sites here at OSU have the source to the operating system, this is not a viable

alternative.

2.7 simon

Simon [Fin92] presents a system similar to UDB that relies on a commercial database system . Simon

receives data from the registrar, from payroll processing, and has spe ial case "guests" m nually

entered. It then produces a resu lting view of who should be on a system. In addition , this system

manages some aspects of a charge back ystem.

As these t hings are undesirable here at OSU, this system was not a viable alternative to UDB.

2.8 GeNUAdmin

In GeNUAdmin [Har94]' Harlander describes an automatic system administration tool used to con­

trol various operating system parameters, tuning variables, user default variables, file system mount­

ing options, and user accounts across a network of heterogeneous computer platforms. One of the

design goals of GeN Admin is to allow ease of administration by performing various consistency

checks to both t he operating system configuration and the user population.

Since it involves many more aspects of system administration than UDB, much of GeNUAdmin

can be ignored. The user administration aspects of this paper describes replacement code for several

7

system utilit ies , such as 'passwd'. Since this is something t hat UDB was explicit ly designed to avoid ,

this system was not a viable alternative to UDB.

CHAPTER 3

UAMS TODAY

This chapter describes the internal organization and the operating principals behind UAMS as

it exists today. This chapter is included so the reader will have a better understa.nding of both the

history and the functionality that is being sought.

3.1 The Database

3.1.1 The Database Description

Conceptually, the database is a relational database with a single relation, consisting of the fi elds

shown in Table 3.1. These fields have evolved through the development of UAMS and the uses to

which it was put. Due to the operational use of these fields however, the logical record is divided

into six physical records (Table 3.2).

These six physical records are then stored in a hashed database. Originally this was done using

Ken Thompson's DBM (as supplied with UNIXl). However, as the size of the database grew, it

exceeded DBM' capabilities. At that time, the Gnu Project's GDBM was chosen to replace DBM.

For each of the physical records (shown in Table 3.2), a DBM key=value pair is generated. Typically

the first charact er of the physical record name is prep ended to the NUID to form the key. The value

I UNIX is a trade mark of X/Open.

osuid Student/Faculty identification number (unique)
issue Student/Faculty ID card issue number
fulIname Full name of the individual, as defined by the university
uci Universal Computing Identifier (unique)
nuid Preferred Numeric User ID for NFS (unique)
passwd Clear text password
epasswd DES encrypted password text
major Student department affiliation
auto Automatic enrollment rights
granted Manually granted rights
comment Comment field
lupdate Last update time of this record

Table 3.1: Logical Record

8

9

General Record
osu.id Student/Faculty identification number
issue Student/Faculty ID card issue number
fullname Full name of the individual , as defined by the university
llci Universal Computing Identifier
nuid Preferred Numeric User 10 for NFS (DBM key)
passwd Clear text password
epasswd DES encrypted password text
major Student department affiliation
lupdate Last update time of this record

Automatic Record
nuid l Preferred Numeric User 10 for NFS (DBM key)
auto I Automatic enrollment rights

Manual Record
nuid I Preferred Numeric User ID for NFS (DBM key)
granted I Manually granted rights

Comment Record
nuid I Preferred Numeric User ID for NFS (DBM key)
comment I Comment fi eld

OSU ld Map Record
osujd I Student/Faculty identification number (DBM key)
nuid I Preferred Numeric User ID for NFS

U CI Map Record
uci I Universal Computing Identifier (DBM key)
nuid I Preferred Numeric User ID for NFS

Table 3.2: Physical Records

10

osuJd Student/Faculty identification number (Unique)
issue Student/Faculty ID card issue number
fullname FUll name of the individual , as defined by the university
uci Universal Comput ing Ident ifier (Unique)
nuid Preferred Numeric User ID for NFS (Unique)
major Student department affiliation
auto A utomatic enrollment rights

Table 3.3: Global Fields of the Database

passwd Clear text password
epasswd DES encrypted password text
granted Manually granted rights
comment Comment fi eld
lupdate Last update time of this record

Table 3.4: Departmental Fields of the Database

is typically the plain text contents of the field; in the General record case, the valu.e points to a

structure that contains the listed fields.

In the operation of this relational database, an UCI to OSU_ID record exists for each user , as does

a General Record. Each user who has any enrollment data has a corresponding Automatic Recore!.

A Manual Record exists for each user who has sp cial rights on the server . The COMMENT record

exists for the system administrators to keep a textual tag to be associated with the llser .

3.1.2 Global Fields

The data analysis concluded that all slave UAMS sites across campus must share some part of

the the global database of logical records maintained on the master site. The slave UAMS sites

would treat this data as read-only, allowing the master UAMS site to overwrite these fields when

needed. The global fields are treated as read-only on the master UAMS site after the init ial creation

of he users record. This is because the entire list of ucrs and NUIDs are kept unique on the ma..'lter

DAMS site. Once generated uniquely on t he master site, these global data fields can be transmitted

to any of t he slave UAMS sites while still guaranteeing the data integrity; ie. no duplicate vcrs or

NUIDs (Table 3.3).

I

f
11

3.1.3 Local Fields

The local data fields are unique to each administrative UAMS ite. They are not transmitt d either

from the slave to the master site or vice versa. This allows each UAMS site to have control over the

special case users without infringing on any other AMS site (Table 3.4).

3.1.4 DB Views

As of the development of UAMS, the database was further modified to be distributed between

a master and several slave UAMS servers. The mast er server maintains the uniqueness of UCI's

and NUID's, receives the data feed from the central university database, and handles request s for

new users from slave servers . Slave UAMS servers contain a view of the master UAMS database,

appropriate for the department that is running the slave server. Slave servers are also where a

departmental UAMS administrator configures the different clients.

This arrangement allows different UAMS administrators to configure their respective views of the

database to affect their department in a manor that is consistent with that department 's wishes. It

also allows for different, sometimes conflicting URIs, or niversal Rights Identifiers as we call them,

to be used within different slave UAMS servers without interfering with the other departments.

One consequence of this splitting of each logical record into a global and local part is that each

administration is able to set the default init ial password, while maintaining the same UCI. This

helps maintain some level of security among UAMS hosts. Using this arrangement disables one

user, knowing their UCI on one UAMS administ ered host, from logging in ad-hoc to other UAMS

administered hosts based purely on the knowledge of the original password. It also implies that

an individual user's account information on one system has minimal use on another, as the init ial

password is different between UAMS administrations.

Each administrative UAMS site also has a separate and unique GRANTED right field for each

user in their system. This allows each site to specify unique (and possibly conflicting) URIs to give

access to djfferent clients (hosts, etc.). On the master UAMS site, the GRANTED right field is also

12

used to select those special case users such as "root" 2, who need to visit a slave UAMS site in

addition to those users destined to go to t he slave site because of enrollment inform tion. However,

since the GRANTED right field on the master DAMS site does not go with the record to the slave

site, the slave UAMS site never sees that URI.

Another result of this data analysis is that each department is allowed their own comment field

(COMMENT) for each user. That way, any comments on a user are held in the confidence of the

commenting department.

3.2 URI's

3.2.1 Automatic Rights

The data held in the "auto" rights field contains information related to enrollment and employment.

Contained in a separate physical record, this field is a list of all relevant courses this user is enrolled

in this semester. In addition, all employees of the university that happen to be in the UAMS system

have are given a dummy enrollment record to indicate the department for which they work, and what

kind of an employee (student, faculty, etc.) this user is. All data in this field expires automatically

when UAMS receives new data from the central university database.

These rights take the form of a comma separated list of text strings. This fi ld of th logical

record was split into a separate physical record because the data contained in it must to be updated

each time a new university database data feed is received. Having this as a separate field simplifies

the update process by allowing the system to simply remove all automatic records in one pass.

The program that receives t he enrollment data can simply reload the course enrollment data by

regenerating all the automatic records.

3.2.2 Granted Rights

The data held in the GRANTED rights field are speCial case rights given on an as needed basis.

Such things allow users such as "root" to have an account on all machines without concern that

their accounts could be deleted automatically at some point in the fu ture . In addition, there are

2 On most NIX sys tems, there is a special account used for system administration tasks. It is

typically called "root" and is a privileged account.

13

always special case users who need an account (or access to a room via the card key ace s y t m)

for a specified period of time but they would not otherwise be granted that right. This field of the

logical record was split into a separate physical record becau e it was found that there were very

few of these compared to the number of total users in the database (10: 1 on average) .

3.2.3 Expiring Rights

Any GRANTED right may have an expiration date of the form "-YYYYMMDD" appended to it.

Upon a periodic 3 scan of the database, all GRANTED rights that have reached their expiration

date are removed from that user's record.

3.2.4 Anti Rights

As in a lmost any other university setting, students will be students. As UAMS was applied to an

ever larger body of students, it was inevitable that a student would need to be prohibited from

using a machine due to an infraction of the rules. Shortly before this became necessary the author

developed the anti-right. With this GRANTED right, a user could be excluded from a machine,

regardless of other rights.

For example, the user "foo" is to be prohibited from using machine "A" . However, "foo" is

granted access to t hat machine due either to a class enrollment right (in an Auto fi eld in this us r's

record), or to their Major (if they are a guest on that machine, indicated by a URI in this user's

GRA NTED field of, say, "A", t he GRA TED right "A" is simply removed) . If this was done, the

next t ime UAMS received this user's enrollment data from the central university database, the Auto

field enrollment right would return. At this t ime, the Major code would be restored also. As these

are not solutions, the anti-right was developed. In the case of "foo" , a GRANTED anti-right would

be given as "!A". In fact, in order to lock "foo" out for a specified period of time, an expiration date

could be added, giving an expiring anti-right of "!A-YYYYMMDD" .

These anti-rights do nothing abnormal to the record of the user. Instead, they alter the list of

users selected to go to a site, "A" in this case, to exclude this user. If this same user has other

3 This process is typically activated once a day, but may also be initiated on demand.

14

GRANTED rights, for in tance this user has an account on the same d partment's POP serv r,

their POP server rights are unaffected.

3.3 Rights A lias File

The Rights Alias File, or RAF, is t he central control mechanism within UAMS. The definitions

within it control which records are selected to go to which other clients. It also defines which URls

may be given to a user manually in the GRANTED right field of their record.

As may be guessed, looking at the manual page on RAF that comes with UAMS [St096], all

blank lines and lines that begin with "#" are comments . All other lines are broken into t hree colon

":" delineated fi elds. The first field is an alias for all lines referenced with t he same alias. The

second field is the list of explicit URIs are to be used as a selection criteria for this alias. The third

field is an optional command field associated wit h this alias.

In short, the rights for a particular alias indicate all records that are to be extracted and passed

thru the optional command to generate the information necessary for the client that the alias

represents .

It is possible to maintain a list of users with a particular URI without actually using the list

in any alias line. This is done by leaving the first and t hird field blank and listing all th URls of

interest in in the second field.

3.3.1 Slave side

On a Slave server, the RAF is typically concerned with mapping which URIs into which client side

programs. Each installed Slave server comes with several client side programs. Among the more

useful ones are "genJolls," [Sto96] a program that prints out a class roll sheet for an instructor

to use when determining the login name and password for each student in a class . Another useful

program is "gen_unix," [Sto96] which prepares a data feed to a (possibly remote) site for the creation

of user accounts on that site.

15

3.3.2 Master side

On a Master server, the RAF is generally a spartan affair t hat simply map which classes of users

go to which slave site. A program called "gen-'1Sd" [St096] does this job. When it is fin ished, a data

feed is shipped to a given slave site that contains the "global" part of the master site 's database for

most of the records that the given slave site has .

3.4 Shell Strings

The Bourne shell and awk playa big part in UAMS. However , taking advantage of the DBM

database requires a clean method of getting the data from the OBM to the shell and vice versa.

The Bourne shell has environment variables of the form "name=value". It also has a met hod of

evaluating a string of "name=value" pairs where each pair is separat ed by a semi-colon (i .e . "eval").

Hence, the UAMS program "udbget" [Sto96] extracts the data from the DBM into a string of

"name=value" pairs with each of the requested fields semi-colon separated. Further, the AMS

program "udbput" [St096J parses the same type of string and inserts the updated data back into

t he DBM.

3.5 Universal Computing Identifiers

3.5.1 Background

A major part of the emphasis of the original UAMS was devoted to the generation of "meaningful"

user id's. Previously, all user accounts were generat ed in the form of "prefix_count" where each user

shared a "prefix" wit h a ll classmates and had a unique "count". For example, a file st ructures class

with three st1ldents would have three user log on account names generated as "fs1," "fs2," and "fs3."

This complicates the administrative job by hiding the person behind a "f81" account (as the faculty

member assigned the accounts to the students) . In addition, some users had multiple accounts. This

was the result of one student enrolled in several different classes, each with a different computer

account for the programming assignments for that class on the same machine.

16

3.5.2 Creation Heuristics

More meaningful user names were desired . A few experiments with the enrollment data led to the

following extensible heuristic <1.

1. First , all illegal characters are removed from the full name. These include such things as

hyphenation and punctuation. Then the name is converted to lower case.

2. If a person 's last name is greater than seven (7) characters and their first name is greater than

three (3) characters and less than or equal to seven (7) characters, then their fi rst name is

designated as "word!" and their last name is designated as "word2" . Otherwise, their last

name is designated as "wordI" and t heir first name is designated as "word2."

3. Following is the list of checks for uniqueness. When one of these databa.~e probes determines

that the UCI is not found in the database, then that VCI is assigned to this user . The first

one to be chosen ends the algorithm.

(a) Up to the fi rst seven characters of "wordl."

(b) The fi rst character of "word!" followed by up to the first six characters of "word2."

(c) Up to the first six characters of "wordl," followed by the first character of "word2."

(d) The first five characters of "wordl," the first character of "word2" and the fi rst character

of t his user 's middle name.

(e) The first seven characters of "word2."

(f) The user 's initials; i.e. first character of fi rst , middle, and last names concatenated.

(g) The first initial, their middle initial, and up to the first 5 characters of their last name.

(h) Up to the first six characters of "word2" followed by the fi rst character of "word!."

(i) Up to the first five characters of their first name followed by their middle initial and t hen

their last initial.

17

Name 3A 3B 3C 3D
3E 3F 3G 3H 31

Bogus Jay Serendipity bogus bserend boguss bogus j
serindi bjs bjseren serendb bogusjs

Bogus Serendipity Jay jay jbogus jayb jaybs
bogus bsj bsjay bogusj bogussj

Table 3.5: Example UCI Generat ions

Table 3.5 shows sf'veral of the possibilities for a pair of fi ctitious users.

3.5.3 Special Case Users

To handle the special case users such as "root" required several special considerations. Fir t, these

users did not have OSU-.lDs, any enrollment data, and quite seldom a FULLNAME. To cover these

cases, as well as the case of the occasional guest account (or odd software package) that did not

have an OSU-.lD, a simple heuristic was formed: taking the proposed VCI (say "root") and using a

"+" prepended to the VCI as the OSU-.lD. Thus "root" would have the OSU.lD of "+root ".

This simplifies some areas of system administration. For instance, all of the users with a plus in

their OSV -.lD field have no OSU student or staff id . Therefore they need not be selected for loading

into the card key lock software5 .

Also, they a re typically what we call "mechanical accounts," ie. they come with an operating

system and do not have a physical person behind them. So when scanning the password fil e for

accounts to set no-login, the system administrators can llse UAMS as an aid in t his process 6 .

3.6 Security Issues

As in any large database project of this sort , security issues that are in direct contradiction to the

general purpose of the project arise; namely providing the user data. In U AMS, there a re several

types of security imposed on the access to the data to make the dat a fairly secure .

.tit is extensible, but has served our needs for the last two years.

·5 As described in [SV90b], the Computer Science Department runs a card key lock system on several

labs within the department .

6 This is not an enforced func tion of UAMS, merely an example of llsing the da.ta UAMS maintains.

18

UAMS assumes that each user on the system belongs to a group of their own. Each user id

number and their group id number are identical (for any user) , and t hese numbers are unique

amongst all others on the system. The following security discussion REQUIRES that this be o.

3.6.1 URI's & Access Control

When all of the programs, shell scripts, and configuration files of a new master, slave, or client

UAMS code set are installed, it is assumed that these fil es are "chown(l)"ed to a part icular u er.

In the case of the U ArvIS master and slave code, this user is assumed to be "udb." T he installatioll

script provides all t he "correct" file permissions for every file installed. Once all t he files are owned

by the assigned user, the programs and data are secure from tampering.

Access is granted to the data contained in the database via URI's given the user in question. If the

default UDBPRIVis selected (during configurat ion), a user must possess the "udb_priv" URI before

being given access to the data. This privilege is typically, and most securely, a GRANTED right ,

outside of the conventional name space of all other URIs on the system thus avoiding accidentally

giving a user a URI that will allow them access to the database.

Once a user has at tempted to run a C program component of UAMS, a library module written

in C, aUow.c [St096] to be precise, is used to determine if that user has been granted the correct.

URI. If the user is allowed, access is granted. If the user is not allowed, the attempt to gain access

is logged and the user is refused access to the database .

. one of the shell scripts within UAMS access the database directly. They all rely on C programs

to perform the access on their behalf. Thus, using "allow.e" in the C programs secures all the data

contained in the database.

3.6.2 Configuration Spoofing

As discussed in Section 3.8, the configuration can be changed by defining one simple environment

variable. This does not, however, change the URI needed to gain access to the database. This

mf'~hanism is configured into SRCROOT/h/udb.h during t he configure/ compilation stage in order

to prevent this kind of security attack.

19

3.7 Initial Password Creation

3.7.1 Background

In the past, accounts were typically generated without passwords or a single initial pas word for

the whole class. This posed several problems. Sometimes a malicious user wouLd log onto as many

of the accounts as possible and set a password on that account. This prevented the rightful user

from logging in. Another case that has occurred is where a new graduate student has been given an

account for the class he or she is teaching. These accounts were also generated without passwords.

However, some of these new students didn't know that a password should be set, thus allowing

anyone to log into their account where such things as grades , student id to student name mappings ,

etc. may be found.

3.7.2 Creation Heuristics

At account creation time, UAMS generates a random password and associates it to the new account.

The generat ion of the password proceeds as follows:

1. A random number is generated and divided modulo the number of words in the word list. This

word is retrieved and is called "wordl."

2. A random number is generated and divided modulo the numb r of separator characters. T his

character is retrieved and is called "word2"

3. Another word from the word list is chosen, as in "I" above, and is called "word3."

4. The password is generated by concatenating "wordl," "word2," and "word3."

Several examples of the result of this algorithm would be: suelcat bob$dog imp!yack

This word is then passed to the DES encryption algorithm that comes with UNIX to generate

the encrypted password, and this is also associated with the account. On export versions of Unix,

this will not work, due to the non-DES algorithm being installed in the system libraries.

20

Both the plain text version of the password and the encrypted ver ion are say d in t he database.

Only t he plain text version is t ruly needed; however, the regeneration of the encrypted version is a

very t ime consuming process (using the DES algorithm). It is for t his reason that we g nerate the

encrypted version only once and then save it for all fut ure uses.

Users are encouraged to change their password as soon as possible, so that it no longer matches

the UAMS database. Their current actual password is not ~tored , only an init ial value for the

creation of a new account is stored.

3.8 Runtime Configuration

This section covers the run-time configuration process once a production environment is set up.

3.8.1 The DAMS Master/Slave Configuration File

The file udb.cfg [Sto96] contains the central configuration file in either a master or slave UAMS site.

It is a plain text file and contains comments that outline what the variables contained in it are for ,

as well as configuration comments that allow the program "subst" 7 to provide reasonable defaults

for all variables.

In shell scripts

During the running of any of t.he shell scripts within the UAMS package, "udb.cfg" is read fi rst .

This is the whole purpose in editing in the path to UDBRO 0 Tjconfig/udb . fg during the con fig-

ure/compilation stage for all the shell scripts. This is also where the "PATH" environment variable

is set. As soon as any shell script is started, the assignment of "PATH" in t his file overrides any

previous value that eit her the user or any external wrapper script may have set .

In each script, there is a variable "UDB_N AME" that is set to the name of the shell script that

is running, BEFORE "udb.cfg" is included into the running shell script . This allows for user defined

triggers to be placed within "udb.cfg" to do special things. One such thing, of great use during

debugging phases of the system, is to "set -x" (based on the UDB_ AME of the module to debug) .

7 The shell script program "subst" is a part of the USENET news reading package "C-News" .

21

In C programs

Within the UAMS package, in cfgstr.c [Sto96], there is a library C function that parses most of the

data from UDBROOT/config/udb.cfg and makes it available for use within the C functions. Any

procedure may access the variables defined and set in "udb.cfg" in much the same way that shell

scripts do.

In each program, after the user has been validated as authorized to run the program in question ,
, I

-.
"udb.cfg" is read in and parsed to give the program the same definitions.

The UDBCFG environment variable.

In the previous two sections, UDBROOT/config/udb.cfg has been treated as a fixed path. In fact, it

is not. The environment variable UDBCFG may override the definition of UDBROOT/config/udb.cfg

at any time. UDBCFG must point to a file that contains all the same variables as the default one

(in UDBROOT/config/udb.cfg), with possibly different right hand sides, to make the system rUIl.

Both shell scripts and C programs used in UAMS obey this convention.

3.9 Server/Client Model

A server/client relationship exists between any UAMS site and a system that is administered by the

owner of the UAMS server . III this system, any server, either a master UAMS or a slave UAMS,

may provide a data feed to a client system. T he format of the data delivered to the client is client.

specific, and typically is lIsed to generate some end product specific to that client .

3.10 Clients

Since there are several UAMS clients, this section concentrates on the largest example, the UNIX

client. The other clients available as UAMS clients will also be hriefl y discussed.

3.10.1 UNIX

This collection of shell scripts reads a data feed from a UAMS master or slave site (Figure 3.1)

and generates the correct password file , group file, and login directories for each new user described

...

22

uci:epasswd:fullname:granted:major:auto:nuid

Figure 3.1: Sample datafeed for U IX client system

in the data feed. It also deletes from the password and group files all users no longer in the data

feed.

Furthermore, all URIs are propagated to all client UNIX systems from their administering UAMS

server to allow the generation of the URI database for each host . This allows each departmental

machine to make use of all of the enrollment data, the major code, and all of that departmental

UAMS server's unique URIs for its own purposes . One of the uses of the URIs that has been

implemented at OSU is the ability to run various programs (similar to access control lists). Another

is the automated maintenance of mailing lists.

In addition, the UNIX client can provide the following services:

• Validate that certain users remain in the data feed. Without these special users, the data feed

will not be installed.

• Validate that the data feed is for this site.

• Generate a URI database of which users have what rights on this system.

• Generate from the URI database, AT&T System V "cron.allow" - "eron.deny" type security

fil es, from any given URI on the system.

• Generate an additional/etc/group line based on any given URI.

• Generate mailing lists based on:

- Any right that any user on the system has, generates a mailing list.

- Any user that has a right outlined in a list , generates a mailing list.

23

Interface to the Multi-channel Memorandum Distribution Facility (MMDFII) [III84] mail

transport system mailing list configuration mechanism.

3.10.2 POP

The Post Office Protocol (POP) client came about because there was an interest within several

departments to provide mail to personal computers. The POP system, as distributed with the

RAND Corp. :vIH mailer , was chosen by some of them to fill this need. This system had to be

configured for users , just as the UNIX hosts did. As POP uses a password file that is ill many ways

similar to the UNIX password file, this client required several minor changes to one of the existing

'lients, allowing it to run with minimal system administration.

3.10.3 Card Key Lock System

Although not a system that anyone can log into, the Computer Science Department uses an Iden-

taCard brand card key access system to log access to the department's various labs and facilities.

It is included here to show that seriously non-standard systems can be supported in a clean and

efficient manner.

3.10.4 Novell

The Novells version 3.11 client came about because of one of the other department al UA MS admin-

istrators . Within the other department, a Novell network was used to link together several personal

computers within a student lab. However, all of these computers had to be configured for users,

with much the same information, just as the UNIX hosts that UAMS already served. As t.his is

just another type of host , using unique login names and passwords. Consequently, a new cl ient was

written to provide the information.

After researching the Novell manuals and considering the options, the Novell client was written

to generate a data file for the Novell user administration program "MAKEUSER." The UNIX shell

script "gen .. novell" [St096] would keep a list of the users currently authorized for a , ovell site,

compare that with what UAMS was giving it , and generate add and delete commands as necessary.

8 Novell is a registered trademark of Novell Inc.

Dotting implies
separate

adm inistration

r------

Master Server

- - 1 r - - - - - - - -

I

I
____ ____ J

Figure 3.2: Master/Slave and Server/Client Relationships

24

This preserved the feel of the UNIX client , without having to write a program for a personal

computer.

3.11 Master/Slave Server Model

In order to facilitate the sharing of data, a simple master/slave model was chosen (Figure 3.2).

This represents the administrative association of the "global fi elds" of the UAMS databases among

one another. Hence there must be a mast er UAMS site. This is the site that receives the enrollment

data from the registrar. It is also the only UAMS site that can definitively assign UCls and UIDs.

Whenever any slave UAMS site needs a ucr and NUrD for a user new to it, then it must defer to

the master UAMS site for t.he definitive information. The master UAMS site also maintains the

master copy of the enrollment data for all users of all slave UAMS sites. This data is given to the

mast er site after the participating UAMS departments authorize the master UAMS site to have this

data.

The master/slave model allows the master UAMS site to selec t a ll of the records for a slave

UAMS easily. This typically is based on enrollment data held in the Auto and Major records (for

students). Additionally, to select all non-standard records (for such things as "root" , "uucp" , faculty,

etc.), a specialized GRANTED right , unique to that slave UAMS departmental administration, is

used.

- --
25

To provide each participating department autonomy over their users , only the "global fields" are

shared among the different UAMS sites. This implies that any URI given to a user on th master

system as a GRANTED right is not propagated to any other UAMS slave site. This includes the

specialized GRANTED right , as the GRA TED field is not in the "global fields" list of data being

shared. This also allows each departmental UAMS to have overlapping (and possibly duplicated)

GRANTED right URIs. Further, it allows each departmental UAMS to use the COMMENT field

as they determine, without having to conform to some standardization scheme.

3.12 Master to Slave Messages

3.12.1 Batch Load

Once per day, the master site checks its database to determine whether it has been modified. If it

has been modified, then the master site prepares a data feed for all of its slave sites. This is on the

design assumption that a ll slave sites would be interested in any changes to the databas . The data

feed to the slave sites is timed to trigger a cascade of the data to t.he clients of that part.icular slave

server site. The processing of "new" data feed is performed before the slave sites processing for dat.a

feeds from that slave site for its client sites (Figure 3.3).

The actual data feed is composed of the "global fields" of the database (Section 3.1.2). These

are encapsulated with data to aid in tb validation of the data in the data feed and elec tronically

mailed from the master to each slave server site. Which records are sent is based on the selection

criteria set out for the slave in the mas ter site's RAF (Section 3.3),

This data feed is augmented by a password and an encrypted password at the slave site . In

addition, the last updated time is set for this record. Through the record's history on this slave site,

the last update field is updated every time the record is modified by either a "batch load" data feed

or by the slave site administration modifying the data.

uCI=Joe
osu_id= 111223333
nuid=-l
fullname="Joey

Smith"

I granted=OFF _CEAT

o

~ udbjoe

- mc -E-------~

Master=A

ST ART:CEA T _ASD:udbqry
CEAT_ASD:l 1 1223333:

Joey Smith:joey,js
END:

Time uci=joeys

uci=joeys
osu_id=111223333
nuid=1234
fullname="Joe Y Smith"

I granted=OFF _ CEA T

cronjob

udbput

gen_unix OFF _CEAT

o

START:OFF_CEAT:mkaccts

joeys: ... :Joe Y Smith: 1234:0FF _CEAT

END:

~ osu_id= 111223333
fullname="Joe Y Smith"
nuid=1234

I granted=CEAT _ASD

cronjob

gen_asd CEAT_ASD

~
START:CEAT_ASD:maiijob

111223333:Joe Y Smith: 1 234:joeys ...

END

o DBM record vi w

.6. Email message between
hosts

Figure 3.3: User Query Event Sketch

--
26

o

-

3.13.1 User Query

if (osujd is 'OT in the master ite' DBM)
if (some requestedjd field is non-blank)

fi

if (reque tedjd_l is NOT inuse)
assign requestedjd_l to osujd;

else if (requestedjd_2 is OT inuse)
assign requestedjd_2 to osujd;

else if (requestedjd_3 is OT inuse)
assign requestedjd_3 to osuJd;

fi

if (uei field is still blank)
create uci for osujd using fullname;

fi
create nuid for OSlLid from unused list;

fi
tag record for return to client for three weeks
update lupdate to today's date

Figure 3.4: Master Side Processing of User Query

3.13 Slave to Master Messages

27

The user query mes age is generated on a slave site when the administration of the slave site attempts

to create a user 's recoro for which there is no pre-existing data on that particlliar slave site. As

shown in Figure 3.3, this message is generated, transmi tted, and processed in real time when the

slave site's administrator first reques ts the creation of new user da ta.

The record contains the OSU.lD, F ULL. A ME, and (optionally) the requested U crs for this

user. On the master site, the process outlined in Figure 3.4 is triggered by the receipt of the record

and is used to fulfill the request.

At the end of this procedure, the (possibly) new record is given expiring GRA TED right on

the master site that will select this record to go back to the requesting slave site via the rules in the

master site's RAF file. This GRANTED right is typically set to expire in t hree weeks. This allows

the slave site up to three weeks to receive notification of the creation of this new record. At the

end of this period, the GRA TED right that forcibly shipped this record to the slave site is expired

from the GRANTED field of the master site's record (see Section 3.2.3).

28

llci:osujd:nuid

Figure 3.5: Sample Slave to Master VOTE Data Feed

The mechanism whereby the slav · site keeps this record active on the master site is covered in

Section 3.13.3.

3.13.2 User Remove

When a slave site finally needs to remove a user record from its site, it generates a "user remove"

record. This typically is due to the slave site running a program that determines that t he record in

question does not have any propagation to any of tha t slave's clients, and further, has not had any

activity for a period of one year (see the manual page for "udbpurge(l)" [St096]).

On the mas ter site, this record triggers a check of this user's record to make sure no GRANTED

right record on the master site continues to propagate this record to the slave site.

As in the case of the "user query" record, this record is generated, t ransmitted, and processed

in real time. This record's usefulness has been great ly augmented by the "vote" record, descr ihed

in Section 3.13.3.

3.13.3 Voting and Expiration of Records

Once a month, all slave sites "vote" for those VCI, OSU...ID, UID tuples that they have in

use. On the master site, each "vote" is checked to determine whether the VCI, OS ...ID, NUID

tuple is correct. If there is any problem, the record and its source are noted in a log fil e for hum an

intervention. Otherwise, the LUPDATE field for the user record associated wi th the tuple is updated

to the current date. On the master site , a record continues to exist until the following conditions

are met:

1. There are neither any AUTO nor GRA TED rights associated with the user. This is typically

associated with the person no longer being enrolled at the university.

- -
29

2. The record has not been touched in a period of one year. This is indicated b a on y ar old

LUPDATE field.

Special case users, like "root" and "uucp" are voted for by all slave sites every month , their

records never expire at the master site. However, if a user 's record meets the criteria above after

dropping out of school, the record on the master is eliminated. This a llows the user's UCI and

NUlD to be reused for the first new person who enters the university and who has a fullname that

matches the generation criteria outlined in Section 3.5.

Each slave follows the same process. Each record is scanned to determine whether it meets the

criteria outlined above. If it does, that record is removed from this slave site. As soon as the record

is removed, this slave site no longer votes for that user . When all slave sites do not vote for this

user, the one year clock starts. At the end of the year, the user's record is removed from the master

site (as outlined above).

The listed procedure implies that. once a person leaves the university, their record actually sits

on the master site for a period of two years. The first year is spent awaiting the slav sites to expire

the record on their local da tabase, the second from t he master site. This gives a user a period of

two years in which to reenter the university and still have the same UCI and NUlD.

3.14 Summary

The merger of UDB and UAMS provides to the asu environment most of the features necessary

for a CFNS. Among the most important is t he concept of one user id (UCI) and one numeric user

iel (UID) per user (a.<; ba.<;ed on the aSUjD number).

Unfor tunately, one fact that prevents UAMS from filling the role of CFNS totally is that not

everybody in the institution has a record in UAMS. This is because UAMS only receives records

for those users whose clepartments have requested to be part of the UAMS project. Furthermore,

as only those departments t hat have asked to join in the services that UAMS provides participate

in the system, not all departments are served.

With the creation of CF S services at the institution level, the central goal of one UCI and one

- -
30

NUID per OSU..lD can be achieved. The central administration of the in t itution can imply assign

one CI and one UID per OSU..lD for all members of the instit ut ion. In addition , a centrally

maintained CFNS can provide CFNS services to a wide variety of platforms given a tandardiz d

protocol to many departments. This then is the goal of UAMS and this thesis .

-

CHAPTER 4

CENTRALIZED FLAT NAMESPACE SYSTEM

4.1 What is it?

A Centralized Flat amespace System is a mechani m whereby al l users of an enterprise's computer

systems has exactly one unique login name. In the case of most computer operating systems, thi

is extended to include one unique numeric id also. These two pieces of data are linked to some part

of the user 's university data, such as employment records or enrollment data.

Over the life time of the user's association with t he university, the unique login name and Ilumeric

user id are stable, that is they do not change without good cause 1.

In all database views of the university database that include t he unique login name and numeric

user id, the same data is shown, to all users. Further, there exists at most one view of t he data

where either of these fields will be changeable associat ed with either becoming enrolled for the first

time or upon employment by the university.

As has been covered in the previolls chapter, UAMS was designed to solve many of these problems

for the cooperating departments. However, viewed in the larger sense of a CFNS for the entire

university, many of the problems that UAMS solves are duplicated with good reason.

4.2 Benefit s

The benefits of having a CFNS installed and operational within the university varies depending

upon the point of view. The following sections describe the benefits to t he individual users, the

system administrators, and the university 3.'3 a whole.

4.2.1 Provided to the Individual Users

Listed below are some of the benefits users may see as a result of a CF S.

1 Some of the "good causes" include marriage, divorce, and legally having a name change.

31

32

Uniqueness

When a user first enters t he CF S system, they are given a unique login. In theory, they will have

this account name for their entire as ociation with the enterpri e. This allows such things as backups

and mail to be uniquely identified with a user across t he enterprise. Since this information is keyed

to user 's association with the university, even years hence, each user can be identified uniquely and

the user 's files retrieved with a good level of certainty that they are being retrieved for the correct
''"<j

person.
.... I

'~I
~'I

'~I
'" Adultness

Closely related to uniqueness (covered above), there is the benefit of adultness that is imposed Oil

users. \Vhen a user is given only one user id and is told that that id will be theirs for their ent ire

university st ay, any and all acts perpetrated by this user will be attached to t his id also. Hence,

doing malicious acts from the given id might be viewed by the more thoughtful user as "poor."

Interdepartmental data sharing

In the past if a user wanted to have t he same data in two accounts, their only real opt ions were

along t he lines of mailing the data between the two accounts. With a CF S in place on all of

the hosts involved, it is possible to automount t he data across depar tmental boundaries wit.hin the

enterprise. This is a direct result of having the UCI and NUID tJw same for each user on any CFNS

administered host .

In fact, an enterprise wide file server might be employed to provide a centralized repository for

all user data. Individual depart ments can then concentrate their computing facilities on providing

computing platforms that are appropriate to t hat department's needs and leave the file backup and

maintenance functions to a centralized service organization .

4.2.2 Provided to the System Administrator

In addition to the benefits that the user sees, a system administrator at a university also sees the

benefit s listed below as a result of using CFNS.

po

33

Start of semester crush

At the beginning of each semest er, there is a large enrollment influx of new user, mo tly students.

To create all of these accounts by hand would be impossible. With a CF S in talled campus wide,

adding an entire class of students to any machine across campus is as simple as adding a few lin s

to a configuration file , running a new enrollment database through the system, and installing the

resulting password file . This entire process can take as little as 30 minut es .

Mail lists

In t he past, different instructors have tried to keep track of which students are in their class for

purposes of a class mail list. CFNS automates this procedure and makes sure that the list is correct,

up to the last enrollment data feed .

4.2.3 Provided to the University

In tll(' larger pict ure, a CFNS provides the following for all UNIX clients administered from one site :

• One login name and nl1meric user id for a user for their entire association with the enterprise.

• One account per user per machine, even if more thaI! one class is taught on that machine.

Therefore, there is no ambiguity in which class account maps to which user (t here is only one

account).

• Ability to authenticate backups for many years to come. Ie. ownership of the backups for the

user "bob" can be identified as belonging to the person with OSU id number "111223333".

• No ' inactive users' on mailing lists as these are updated each t ime the password fil e is modified.

4.3 Costs

The development of UAMS, both on a site basis and later on the wider university basis , addressed

many of the problems outlined in this thesis satisfactorily. However, these solutions did come at a

cost , and as with any CFNS implementa tion "after the fact," some of these costs a re quite large.

34

4.3.1 Preliminary Costs and Tasks

The establishment of a campus wide centralized flat name space system implie an incredible amount

of work to arrange at this late date in the development of OSU's campus computing environment.

One major tasks is the associating of an OSU id number with each and every user 's account. Special

numbers must be assigned to the mechanical accounts, such as "root" and "uucp," so that they can

participate in much the same way as normal users.

Once all of the UCI 's on all systems have an OSU id number associated with them, each user 's

account must be compared against all others across campus. This determines whether u er has any
·'11
."

ot.her accounts across campus (as determined by the uniqueness of the OSU id number), as well

as whether there is anyone else with the same UCI across campus (as determined by the required

uniqueness of the UCI's). Those users who have the same UCI all across campus i>hould have

no change. Those users who have multiple login names that are not unique must be dealt with

individually.

Since some users must have their login names changed to meet the new criteria, there can be

some negative emotional response. Some users may even t ake offense at th is entire process . A few

speculative situations may arise as a result.

1. The user "bob" on one system whose name is changed to sometbing ete, say "bsmith ," must

unsubscribe to all mailing lists before the switch, then resubscrilw wit.h t.he new login name

to avoid loosing his mail. Analogously, if someone else bas a login changed to "hob," the mail

may get misdirected.

2. Professor "smith" comes back from vacation and is now "j srnith" . After several failed at-

tempts to login, the professor comes to the system administrator to ask what happened. After

hearing the explanation, the professor is displeased with the change. In fact, professor smith

has been putting email address on the net , in research papers, etc., as a source for some

data/program/etc. that [sJhe is providing to the net community. Now the linkage between

35

"smith" and professor smith (as jsmith") must be reestablished. Also, the person who receiv s

"smith" as a user id is inundated with requests for which there is no reasonable r span e.

3. Some user, "tom," knows the change is about to happen. Wanting to be offensive to th person

who will be inheriting the "tom" account , this user posts something extremely offensive/stupid

to USENET. After the change, the new person, possibly an upper level administrator , receive '

"tom" as a user id. Due to the propagation delays thru USENET. the new owner of "tom"

now receives the replies to the postings made by the original "tom," for which there is no

reasonable response.
.t.

It must be stressed that the better informed the user population is about both why these changes

are happening and how t hey can benefit , the less reluctant it will be. Hence, the defusing action to

be taken well before events get out of hand is to inform the user population of the benefi ts of t.his

change.

4.3.2 Continuing

One of the continuing problems that UAMS must deal wi th on the OSU campus is that of OS JD

changing. A bit of background is in order:

In t he early 1980's , OSU started giving it's students photo iel 's with a printed OSUJD number.

These numbers typically looked like 000123456, and were created with the idea t ha t one day they

would be replaced by Social Security numbers. In fact , in 1986 or so, OSU made that switch and

all students had to pay the bill of approximately $10 for a new OSU photo id.

Unfortunatel),', this was mandated by t he financial aid department , which said, in so many

words, "to get financial aid on this campus, you must have your OSU.lD match your Social Securi ty

Number." For most of the natively born Americans, this was not a problem. However , for the

international student body, this was a bit more involved.

The solut ion for OS U is to give an international student a photo id wit h one of the old style

000123456 OSUJD numbers, since the administration had to be able to track the student, when

they first arri ved on campus. Then later , after the student had applied for a Social Security number,

36

change the student 's OS .JD number to the Social Security number. Fr.·om that time forward, all

enrollment data contains the new number.

The affect this had on UAMS was suddenly, the user wit h OSUJD number 000123456 was no

longer enrolled in anything. Hence that user 's account , say "bob" , was closed. At the same time

a new user with OS U JD number 111223333 was enrolled in some new classes. As the user name

"bob" was already in use, a new one "bsmith" was created, along with a new UID, password. etc.

The user would then come in and ask, "why doesn't my account work anymore?" . After a bit

of investigation, the two records for this person would have to be tracked down and merged, along

with the data in their, now , two separate directories. The user would be reinformed as to what the ..
~l

"bob" account's password was, then the merge would be fin alized. Typically the next day, the user

"bsmith" would be removed from the system and the user "bob" would be reattached to the fil es

that used to belong to that user, completing the process.

Upon the installation of a CFNS, this "problem" should go away. With a centralized authority

in charge of keeping track of the UCI and NUID when a user's OSUJD changes, no UCI and 110

NUID change should occur since no "new" record is being created.

However, until the legacy accounts are merged into the CFNS, t his merger process takes on a

larger scope. ow, instead of one user 's account on one system in one department, the capabili ty

exists for one user 's account merger to affect literally dozens of individual accounts spanning the

entire university.

4.4 Summary

This chapter has covered some of the costs and benefits associated with the change in paradigm to

a Centralized Flat Namespace System.

Although most of the costs can have wide ranging consequences , they are for the most part one

time costs. This fact makes these costs more bearable.

CHAPTER 5

BLACK BOX DESCRIPTION OF A CFNS

This chapter defines what a Centralized Flat Name Space system that would interface with

UAMS would look like. Many of the terms used in this chapter have the same meaning as in the

previously sections about U AMS.

5.1 Minimal Data Structures Needed

The CFNS needs a subset of the database fields that UAMS uses. Due to the operat ional usage of

the CFNS (as outlined below) , these structures are best split among several constituent databases .

These databases would be joined (on t he OSU J:D field) to form the appropriate fields for the given

request. These databases are described below.

5.1.1 People Database

This database would be comprised of fields, each operationally described in Table 3.3, and

presented in Table 5.1. The People Database would be joined to the others descried in this section

to form the overall view of t he da tabase. It would be maintained by that part of t.he registra.rs

system that deals with name changes among students . These tend to occur as a result of marriages

and divorces , but other causes do arise. This relation could also he used to maintain other data,

such as preferred email addresses .

5.1.2 Association Database

The layout of this database is presented in Table 5.2. The Association Database would be the

primary location for selection criteria in the creation of views of the CFNS database. The main

mechanism for this is the use of the subf ield code would indicate what kind of data subf i e ld

osujd Student /Faculty identification number (KEY)
issue Student/Faculty ID card issue number
fullname Full name of the individual, as defined by the university

Table 5.1: People Database

37

-
38

osujd St udent/Facul ty identification number (KEY)
subfield code A type for the data field below
subfield data The content of type listed in the subfield code above

Table 5.2: Association Database

osujd Student/Faculty identification number (KEY)
subfield code MAJOR
sub field data A numeric major code

Table 5.3: Association Database, Example 1

data would contain. This allows a simple selection criteria to elimin ate larg numbers of the records

cont ained in this database.

In Tables 5.3, 5.4 show two examples of how records in t his database could look. In the fi rst

case, the record is identified as a major code record where the actual major code is contained ill

the subfield data would be, in this case , a four digit number. In the second case, the record is

identified as an enrollment. record where the actual class number (depar tment prefix, course number,

section, and type) would be contained in the subfield data.

This relat ion would be joined to the ot hers to form t.lte overall view of the database. Th is

database would be linked into that pa rt of the registrars system that deals with enrollment and

college affiliation, among others.

5.1.3 Cross Reference Database

The final CFNS database would be the cross reference database. T his would be used t o form j oins

across the databases of the CFNS. It would be described as stated below , each fi eld as described ill

Table 3.3.

This relation would be joined to the others to form the overa ll view of the database. This

osujd St udent/Faculty identificat ion number (KEY)
subfield code ENROLLMENT , Spring of 1996
sub field data A class t hat the given user is enroJled in

Table 5.4: Association Dat abase, Example 2

" 1

"1 "
~ =
::>
" 4
"l
1;1 ..
" "

39

osujd Student/Facul ty identification number (KEY)
uci Universal Computing Identifier (KEY)
nuid Preferred Numeric User ID for NFS (KEY)

Table 5.5: Cross Reference Database

database would be linked into that part of the registrars system that deals with the instances of a

student changing an OSU student/staff id number.

This relation is the key to the CFNS. It contains the crux of what the CFNS is designed to

maintain. The contents of each of the individual fi elds within it is unique. That is for anyone
4:

user recorded in this data field, their OS UJ:D, their UCI and their NUID would be unique among

all other entries in this database. This relation, along with the others previously mentioned in thi

section, duplicates the data content of the global record out of UAMS.

5.2 Supported Client/Server Functions

For the following discussion, a database remote procedure caUs (RPC) wiII be the model for the

interaction between the server and the clients in the CFNS system. This is in part driven by the

need to secure the data t.hat exists on the server from those who would be accessing the da t.a. The

RP C procedures would have access to the data. The RPC user would have access to the RP C, bllt

not to the data. Hence the RPC user is insulated from the data by the view of the data the following

RPC functions provide.

5.2.1 Make Return Set

This RrC will create an empty data set that will contain t he keys into the CFNS that are selected

by the Query By functions . This RPC has one argument, the Site Name that may be used by the

Vote For Set command and the Return Set cornrnallcL

5.2.2 Query By

This RPC will add CFNS keys to the return index data set created by Make Return Set. There

are five different instances of this RPC , each having as an argument the search key as given by the

40

osujd Student/Faculty identification number
issue Student/Faculty ID card issue number
fullname Full name of the individual, as defined by the university
major Student department affiliation
uci Universal Computing Identifier
nuid Preferred Numeric User ID for NFS
auto Automatic enrollment rights

Table 5.6: Return Data Set Fields

instance. Namely, these five return types would be OSUJD, NUID, UCI, class prefix, and MAJOR

code.

5.2.3 Return Set

This RPC returns one record for each user who has a key specified in the return index data set ,

created by the Make Return Set RPC call and populated by the Query By RPC caU(s) . These

records will contain the data outlined in Table 5.6.

5.2.4 Vote For Set

This RPC will add a vote record for t he Site Name (that was specified in the Make Return Se t

RPC call) for each CFNS record that has a key specified in the return index data set created by the

Make Return Set call.

5.2.5 Merge Ids

This RPC is used to handle the cases where a user is entered into the CF S database wi t.h two

different OSU id numbers. This RPC will have four arguments as show in Figure G.7.

The first argument would be referred to as the "old" OSU id number. This is typically the

original OSU id number that was assigned to the student prior to that student 's acquiring a Social

Security number.

The second argument would be referred to as the "new" OSU id number. This is typically the

Social Security number sty le OSU id number. For the purposes of the merger, this will be the

resulting OS U id number for this user after the merger.

.,
"
"
.1
"
~ I

41

old_osujd Indicate the OSU student/staff id number of the record
that is to be considered the older of the two to merge

new_osujd Indicates the OSU student / staff id number of the record
that is to be considered the newer of the two to merge

ucUoJ<eep This parameter indicates whether the uci in the record
indicated by old_osu...id or the uci in the record
indicated by new _osu jd should be kept in the new record

nuid_toJ<:eep This parameter indicates whether the nuid in the record
indicated by old_osujd or the nuid in the record
indicated by new_osu...id should be kept in the new record

Table 5.7: Merge RPC Parameters

The third argument would say that in t he resulting merger of the "old" and the "new" OSU iel

number records, either tIl(> "old" record '8 UCI or the "new" record 's UCI would be retained.

The fourth argument would say that in the resulting merger of the "old" and the "new" OSU id

number records, either the "old" record's NUID or the "new" record 's NUID would be reta ined.

Experience with UAMS has shown that one of the most troubling aspects of keeping t he database

sYllchronized with the real world is maintaining the veracity of the OSUJD numbers. This is in

part due to the fact that due to certain restrictions placed upon the keeping of student records for

financial records, their OSUJD !l1Jmbers are preferred to be their Social Securi ty Numbers . However,

due to the way the enrollment system works, when a user changes their OSUJD number, the only

indicat ion is t hat one user, with an old style id number, drops all enrollment and another with a

similar (but not necessarily the same) name enrolls in some (but not necessarily all) of the same

classes.

This RPe is a concession to the reality that t he CFNS database will most likely never be ill

complete synchronization. This RPC will allow the various site administrators to do some database

auditing.

5.2.6 Create A New User

This RP C allows sites other than the central enterprise administration to create new users, previously

unknown to the system. It takes as arguments an arbitrary OSU JD number l , a text string that will

1 Typically these users will have a "+" record as described in Section 3.5.3.

I I

" 'I

"
'I

~ I
.:

42

be considered the FULLNAME field, a Suggested UCI, and a Suggested NUID. It then would follow

the general UCI creat ion heuristic as outlined in Figure 3.4. Lastly, it would return the generated

data as outlined in Table 5.6.

5.3 How it aU Fits Together

The key concepts presented in Figure 3.3 and Section 3.13 are what the previously out lined RPCs

would replace. These messages, passed between the CF S database server and the departmental

"slave" UAMS servers, would provide the individual departments t hat currently part icipate in the

UAMS system the same basic services. The only real change to Figurereffig:udbqry would be to

eliminate the time delays between events. This would allow faster transaction processing time2 .

Once the CFNS database and server were in place and operational, the slav U AMS database

servers could be migrated away from the current master UAMS server onto the CFNS database

server. Further, as the individual departments would still have the functionality of their slave

UAMS servers, their day to day operations should not be impacted . Hence all of the services that

these slave UAMS servers supply to their departments should not change.

In addit ion, as the constituent databases out lined in Sect ion 5.1 , once joined by the various RPCs

outlined in Section 5.2 , would eliminate the need for t he master UAMS server 's database. In fact,

t he ent ire reason for the master UAMS server would be eliminated with the creation of a CFNS.

Thus the master UAMS server could be halted.

5.4 Other Issues

There are several other issues tha t will no douht come to light in the process of t rying to implement

a CF S. Some of those foreseen are covered in the t he following sections.

5.4.1 Data Base Inconsistencies

As has been ment ioned, synchronization of the CFNS that UAMS has maint ained with the data

from the regist rar has been difficult. Wit h the advent of a CFNS supported and maintained as part

2 Al though it would allow it , the CF S would not necessarily force it.

'I

"
II .,
a
I;

43

of the central campus computer enrollment system, notification of changes in data can be provided

to the CF S automatically. Hence, the entire scenario given in S ction 4.3.2 can be avoided.

5.4.2 Purging the Data Base of Old Records

The database that U AMS currently maintains contains many cases of "duplicate ids" . This is a

result of the OSU id changing problem outlined above. In the final version of the CFNS database,

these users would have their records merged under their current OSU_ID number to consolidate the

logins and to assure the "one user , one login" premise of the CFNS. This will be simplified once

the CFNS is in place as the central university administrative da.tabase has the mapping of which

old style OSUJD maps to which user as part of their historical database. This mapping, here to

unavailable to U AMS, will make the merger of these two records technically a fairly easy procedure.

In the practical implementation of this purging, some of the same problems addressed in Sec-

tion 4.3.1 may occur. In addition, the merging of files from t hese t.wo distinct user accounts may

prove quite difficult.

5.5 Summary

In talking about a CFNS, this chapter has shown how a CFNS will face many or t.he same problems

currently faced by U AMS. Further, a CFNS properly interfaced to t he central campus administrative

databases would be able to c1eal with some of these problems in a far more automated way than

currently available to UAMS . These concepts suggest that a CF S would allow a performance

beyond what is currently available from U AMS while not sacrificing those services current.ly available

to the individual participating department.s.

CHAPTER 6

PROPOSED FUTURE WORK AND CONCLUSIONS

6.1 Future Work

The ultimate form this code may take is hard to gauge at this point. This section presents a few of

the directions the UAMS project could take. This is of course, not a complete list.

6.1.1 UAMS-lite

Given that empirical tests of speed prove sat isfactory, one thing that conld be done with UAMS

would be to move the entire database onto a central host and use a commercial databa and

a commercial access system to grant access to the data remotely. Then the only blocks of code

existing in the UAMS-lite would be those involved with processing these data streams into the

correct format for a given client.

This approach would allow all of the current "manual" maintenance of t.he relational database

that is UAMS to be offioaded onto the commercial database engine. Further, as the da tabase would

then truly be a relational database, the time currently spent maintaining the inverted indices into

the DBM based database would be eliminated.

This approach would violate several of t.he original design goals of the original UDI3. It would

involve the use of a commercial database engine and <1, presumably, commercial access method , both

of which would be purchased. Further, the use of these commercial products might limit which kinds

of platforms could then be UAMS-lite servers.

6.1.2 Real Time Access to the Master UAMS Site

One of the original design goals of the original UDB was to avoid using such things as TGP lIP

networking. At the time, there were several systems within the Computer Science Department that

simply did not have TCP lIP networking interfaces. This caused UDB , and later UA MS, servers to

rely on electronic mail interfaces as the da.ta transport method between servers.

Currently- however. all of the U AMS server sites have TCP lIP. Hence, server to server commu-

41

~ I

45

nications could be moved from the currently slow email batch processing system to a mor direct

group of peers topography_

6.2 Conclusions

The current state of this project affords the system administrator an extremely useful set of tools

for managing the user accounts across a heterogeneous computer network. These tools will continue

to be used here at OS U for many years to come and should be easily modified to support any new

operating system that the Computer Science Department might choose to run.

I
i
)

I

II

1/
~ I

BIBLIOGRAPHY

[BGMR94] Andrew Bettison, Andrew Gollan, Chris Maltby, and eil Russell. Share ii - a user

administration and resource control system for unix. In Usenix Conference Proceedings,

Large Installation Systems Administration V [USE94], pages 51- 60 .

[CKCS90] David A. Curry, Samuel D. Kimery, Kent C. De La Croix, and J effrey R. Schwab.

Acmaint: An account creation and maintenance system for distributed unix systems. In

Usenix Conference Proceedings, Large Installation Systems Administmtion IV [USE90j,

pages 1- 9.

[DLM90] William A. Doster, Yew-Hong Leong, and Stephen J. Mat tson. Uniqname overview. In

Usenix Confe1'ence Proceedings, Large Installation Systems Admini,~tmtion IV [USE90],

pages 27- 35.

[EVS88] Mark E. Epstein, Curt Vandetta, and John Sechrest .. Asrnodeus - a daemon servant for

the system administrator. In USBNIX Conferene Proceedings, S7J.mmer USENIX '88,

pages 377- 391. USENIX Organization, .June 20-24, 1988,

[Fin92] Jon Finke. Automated userid management - simon management system. III Community

Workshop , pages Subjec t Area 3, Paper 5. Rensselaer Polytechnic Institute, 1992 .

[Har94] M. Harlander. Central system administration in a heterogeneou, unix environment:

Genuadmin. In Usenix Conference Proceedings, La1'ge Installation Sy.9tem8 Admini.s tra-

tzon V [liSE94], pages }- 8.

[III84] Douglas P. Kingston III. 'lrndfii: A t echnical review. In Usenix Conference Proceedings,

Summer Conference, Salt Lake City, pages 32- 41. USENIX Organization, 1984 .

46

I
I

II
I' t!
II

[Inf91]

[Sto93]

[Sto96]

[SV90a]

[SV90b]

[Urb9U]

[USE90]

[SE94]

47

Information Builders, Inc. EDA API/SQL and EDA/Structured Query Language Ref­

erence Manual, 1991.

Roland J. Stolfa . Simplifying system administration t ask : The uams approach. In

Use nix Conference Proceedi.ngs, Large Installation Systems Administration VII, page

203- 208, Monterey, California, USA , November 1-5 1993. USENIX Organization.

Roland J. Stolfa. Uams: The man pages. Technical Report OSU-CS-TR-96-2, Oklahoma

State University, Computer Science Department , 219 Math Sciences Building, Stillwater

OK 74078, May 1996.

Stephen P. Schaefer and Satyanarayana R. Vernulakonda. newu: Multi-host user

setup. In Usenix Conference Proceedings, Large Installation Systems Administration

IV [USE90j, pages 23- 26.

Roland J. Stolfa and Mark J. Vasoll. Udb - user data base system. In Us enix Conference

Pr·oceedings, Large Installation Sys tems AdministratIon IV [USE90J, pages 11 15 .

Michael rban. Gaud: Rand's gronp and user database. In Usenix Confer·ence Proceed­

mgs, Large Installation Systems Administration IV [USE90], pages 17- 22.

USENIX Organization. Usenix Conference Pmceedings, Large In.~ t(lllation Systems A tl­

rninistmtion IV, Colorado Springs, Colorado, USA, October 17-19 1990.

USENIX Organization. Usenix Conf erence Pr·oceedings, Large Installation Systems Ad­

mimstmtion V, San Diego, California, USA, 1994.

APPENDIX A

GLOSSARY

48

49

CFNS Centralized Flat Namespace System. Account management paradime where each phy ical

user is granted one and only one login name and one and only one numeric user id number.

Login Name A text string that is used as a nmemonic for the computer to distinguish one user from

another. Login Names are typically converted to a UID by the operat ing system improve

performance. See also P UD and UCI.

NFS The Network File System. Used to allow heterogenious computer systems to share fil es across

a computer network.

NUID Numeric User IDentification. Used by operating systems to internally differentiate users.

Password An access control mechanism common among commercial operating syst ems to secure

the data belonging to any user.

POP Post Office Protocol. A method of storing and retrieving electronic mail from a centralized

spooling/ storage site.

PUD Personalized User iDentifier. A t erm used by the Computing and Information Services group

on campus to describe personally chosen login names. Synonomous to UCI.

RAF Rights Alias File. Central configuration mechanism on a server site that defines which URI's

affect the transfer of a user's data from the server to a given client. See Sectioll 3.3,

RPC Remote Proceedure Call. A set of rout ines the a llow application programs to execute pro­

ceedure calls across the network. Destination machines may be heterogeneous[Inf91].

VAMS The User Account Management System. Was t he successor to UDI3.

VCI Universal Computing Identifier. Synonomous to login name for most purposes. See Section 3.5.

50

UDB The User Data Base system. Existed as a distinct software package from 1987 through 1990.

Predecessor to U AMS.

URI Universal Right Identifier is a text string given to an UDB jUAMS record that associated that

record with some group of other records . Examples include class enrollment right, major

codes, etc.

VITA

Roland Joseph Stolfa

Candidate for the Degree of

Master of Science

Thesis: UAMS, A STUDY IN SYSTEM ADMI ISTRATION AUTOMATIO

Major Field: Computer Science

Biographical Data

Personal Data: Born in Ardmore Oklahoma, on December 20, 1963, the son of
of James and Pauline Stolfa.

Education: Graduated from Ardmore High School in 1982;
attended St. Gregory 's College 1982-1984; graduated from Oklahoma Stat.e
University, Stillwater Oklahoma in 1986 with a Bachelors of Science in Computer
Science., Completed the requirements for the Master of Science degree wit. II
a major in Computer Science at Oklahoma State University, May 1997.

Experience: System Administrator , Department of Electrical and Computer Engineering,
Oklahoma State University, August , 1985 to May 1987. Data Communication
Specialist , University Computer Center, Oklahoma State University, January 1988
to July 1988. System Administrator, Computer Science Depa.rtment , Oklahoma
State University, July 1988 to present .

