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CHAPTER! 

INTRODUCTION 

Lakes and streams are vital sources of drinking water. The need to preserve these 

resources led to the Clean Water Act of 1972. One goal of this Act was to maintain the 

"physical, chemical, and biological integrity of the waters of the United States." As a 

result, the nation's water quality has improved (USEPA 1987). However, pollution still 

is occurring twenty years after this law was enacted. 

According to the United States Environmental Protection Agency's (EPA) ] 986 

National Water Quality Inventory Report to Congress, nonpoint source (NPS) pollution is 

the leading cause ofpollution of freshwater. Nonpoint sources, such as agricultural 

runoff, are responsible for 75% of polluted lakes and 65% of polluted streams in the 

United States (USEPA 1987). 

Nonpoint source loading of nitrogen and phosphorus in watersheds accelerates 

eutrophication oflakes, reservoirs, streams and rivers. Wetzel (1983) defines 

eutrophication as nutrient enrichment. Effects of this enrichment include increased 

primary productivity and hypolimnetic anoxia during summer stratification of lakes. 

Cultural eutrophication of streams has been linked to increased nutrients from NPS 

pollution originating in the watershed and can lead to excess algal growth and water 

1 
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quality degradation. 

Limnologists generally agree that the primary causal agents of eutrophication are 

increased loads of phosphorus and nitrogen (Vallentyne 1970~ Schindler 1974). 

Phosphorus has been shown to be the main agent of eutrophication; the greatest potential 

for increased biomass exists as a result of P loading (Vollenweider 1968; Vallentyne 

1970; Hutchinson 1973). Controlling concentrations of nitrogen or carbon in a lake or 

reselVoir are not feasible because of their atmospheric "sinks" (Schindler 1977). By 

controlling phosphorus loads that reach lakes, phytoplankton could be forced into 

phosphorus limitation and their productivity limited. 

Attenuation ofNPS pollution to lotic systems would provide managers with a 

method to control phosphorus loading of lentic ecosystems. Such attenuation requires 

knowledge of ephemeral and spatial attributes of NPS pollution and the effects on the 

biota. Knowledge of possible sources of the NPS pollution also is necessary in 

development of a pollution management plan. Development of a biomonitoring 

approach to assess the rate at which nutrients are being loaded into a particular water 

body is also necessary if effective management of such loadings is to be achieved. 

Biomonitoring of nutrient concentrations is the topic of this proposal. 

Problem Statement 

Nutrient loadings from NPS is a major contributor to pollution of lotic 
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ecosystems (USEPA 1987). Quantification of NPS nutrient loads has been difficult 

because NPS pollution usually occurs during runoff events (Omemick 1976). Problems 

arise in sampling procedures because grab samples fail to give true levels of nutrients 

unless taken in series after a major runoff event. Thus, traditional measurement of water 

quality alone often underestimates nutrient loads and thus underestimates potential 

cultural eutrophication of the receiving water. 

The water quality of a lotic ecosystem is manifested inherently within the 

structure and productivity of its biota (Hughes et al. 1990; Round 1991). Thus, 

measurement of the community of attached biota should provide infonnation about 

possible ecosystem stress when coupled with water quality data. Several technical 

problems arise in the implementation of these approaches. Measurement of biota in the 

stream requires collection of a mature, thick biofilm. Such integral data collection is 

hindered by heavy grazing and the unknown maximum age the biofilm reaches prior to 

sloughing. 

A holistic biomonitoring approach is needed to fully assess degradation or 

improvement of impacted watersheds. Monitoring efforts are being sought to detennine 

effectiveness of implemented best management practices (BMP) on Peacheater Creek in 

northeastern Oklahoma. Best management practices are in place along Peacheater Creek 

in an effort to reduce the amount of NPS phosphorus that probably result from intensive 

agricultural practices (primarily poultry rearing) in the drainage basin. The goal of the 

BMP is to control NPS phosphorus loading into the minois River and Tenki ller Ferry 

Reservoir. This river has been designated a wild and scenic river by the State of 
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Oklahoma (SCS 1992). In theory, best management practices will curtail the process of 

cultural eutrophication of both waters. This study was part of a paired watershed project 

whose goal was to determine if implemented BMP in Peacheater Creek watershed were 

effective in lowering nutrient loading as determined by monitoring biological and water 

chemistry parameters. No BMPs were implemented along Tyner Creek, located in close 

proximity to Peacheater Creek. Peacheater Creek is the manipulated watershed in the 

study and Tyner Creek is the reference watershed. 

Research Objectives 

The goals of this research were to use biomonitoring techniques to compare 

biofilm nutrient concentrations and to determine rates of biomass accrual in two 

impacted watersheds. Surplus P concentrations in the biofilm were correlated with 

nutrient concentrations in two watersheds to define biofilm stress. Specifically, my 

objectives were to: 

1. construct an apparatus to hinder non-swimming grazers from using artificial 
substrates, 

2. determine the optimal age of a mature, thick biofilm prior to sloughing for the 
purpose of monitoring, 

3. evaluate differences in nutrient concentrations in Tyner Creek and Peacheater 
Creek, 

4. determine biofilm phosphorus stress measured by surplus phosphorus in Tyner 
Creek and Peacheater Creek, 

5. determine seasonal difference in the optimal age of the biofilm and nutrient 
concentrations in Peacheater Creek and Tyner Creek, 



6. evaluate alkaline phosphatase activity in Tyner and Peacheater Creeks during 
the winter. 

The statistical null hypotheses are stated as follows: 
Ha: time for biofilm development is the same in Peacheater and Tyner Creeks, 

Do: concentrations of biofilm surplus phosphorus in Peacheater Creek do not 
deviate significantly from concentrations in Tyner Creek, 

Do: biofilm development time does not significantly deviate seasonally between 
Peacheater and Tyner Creeks, 

5 

Do: concentrations of biofilm surplus phosphorus are the same in the summer and 
winter in Peacheater and Tyner Creeks, 

Ho: alkaline phosphatase concentrations are the same in Peacheater and Tyner 
Creek during the winter, 

Ho: nutrient concentrations are the same in Peacheater and Tyner Creek. 



CHAPTER II 

STIJDY SITES 

The study sites were Peacheater Creek and Tyner Creek in the II1inois River 

watershed in northeastern Oklahoma (Figure 1). Both streams are tributaries to the 

Baron Fork River which is a tributary of the Illinois River. The Illinois River is 

'. !. 

N 

I 
L...J 

, km Baron Fork Ri'ter 

Figure 1. Map of Peacheater and Tyner Creek watersheds. The watershed boundaries 
are denoted by dotted lines. Solid lines denote waterways. State highway 62 is 
marked in bold. United States Geological Survey gauging station on Peacheater 
Creek is located at station 1. 
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Water quality in the Illinois River has experienced accelerated degradation for over 20 

years (Gakstatter and Katko 1986). Approximately 95% of nutrient loading in the fllinois 

River basin has been attributed to NPS nutrient enrichment (Gakstatter and Katko 1986). 

Increased nutrient loading has occurred concomitantly with increased agricultural 

activity in the watershed. Litter produced by more than 200 million chickens reared in 

the basin is used as fertilizer and often results in excess P concentrations in the soil and 

hence in water (SCS 1992). 

This study was done as part of a paired watershed project developed by the 

Oklahoma Conservation Commission. The focus of the study was two adjacent 

watersheds in Adair County, Oklahoma: Peacheater Creek and Tyner Creek. Peacheater 

Creek was the experimental watershed in this study and Tyner Creek served as the 

reference watershed. Best management practices (8MP) implemented in the Peacheater 

watershed include minimizing fertilizer application and proper disposal of dead 

chickens. The goal of BfvfP is to reduce NPS nutrient loading originating from 

agricultural activity into the streams. 

The Peacheater watershed is a second order stream located east of Tyner Creek 

and has an area of 6,560 ha (SCS 1992). The study site was located approximately 1.5 

km upstream from the Highway 62 bridge transversing Peacheater Creek. Peacheater 

Creek site in this study was located about 610 m upstream from site 2 (Figure 1). Tyner 

Creek is a third-order stream; its watershed area is 6,475 ha. This stream was sampled at 

site 2 in the upper Tyner Creek watershed approximately 50 m downstream from the 

confluence of Tyner Creek and MureH Hollow and Scott Hollow tributaries (Figure J). 
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Both watersheds are located in the Ozark Highlands. Topography is primarily 

rough, steep hills, thus a high potential for surface runoff exists in these watersheds 

(SCS 1992). The major land use in the both watersheds is improved pastureland, brush 

pastureland-rangeland, and oak-hickory forestland. 

8 

Large numbers of poultry and dairy farms occur in both watersheds. It has been 

estimated that 88,596 metric tons of poultry and dairy manure are produced in Peacheater 

watershed annually (SCS 1992). This waste contains approximately 748,437 kg ofN 

and 474,839 kg of P (SCS 1992); therefore, runoff events allow considerable NPS 

loading of these nutrients to the stream. 

The stream bottom of Tyner Creek and Peacheater Creek is composed of rocky 

substrata between 10 and 15 em in diameter. The submersed macrophyte, 

Ceratophyllum sp., waspresent in the summer of 1996 and winter of 1997 in both 

streams. 

Cattle had direct access to the site sampled at Peacheater Creek, but not to the 

Tyner Creek site. Periphyton mats were not observed growing on rocky substrata in 

either stream in summer months of 1996 despite probable nutrient loading. High grazer 

density, primarily snails (Elimnia sp.), was observed when periphyton growth was scarce 

on natural substrata. However, periphyton growth on the bottom of the streams was 

noticeable in winter months of 1997 when snail densities were low. Ephemeropteran 

grazers were found on artificial substrata in both streams in the winter of 1997. 

Abundance of Ephemeroptera ranged from 3 to 6 organisms on each respective 

substratum sampled during experiment 4. 



Chapter III 

MA TERIALS AND METHODS 

Introduction 

Four experiments were performed. Periphyton growth on suspended pine boards 

was monitored over time to assess growth of the biofilm prior to sloughing by using 

chlorophyll a (chi. a) and ash free dry weight (AFDW) as indicators of biomass, and 

surplus P and alkaline phosphatase activity (APA) as measures of nutrient limitation. 

Ambient nutrient concentrations were also determined. 

Floating boards containing artificial substrata were used to prevent grazer 

activity. The apparatus used consisted of untreated 0.61 x 1.22 m boards, attached by 

aerial steel cable to steet posts set in the stream bottom. Boards were placed in an 

upstream-downstream direction. An additional steel bar was attached underneath the 

board to ensure submersion of substrata during incubation. 

Initially, two different artificial substrata were used and biomass was determined 

by measuring chI. a content of ac.cumulated periphyton. Substrata on which periphyton 

accumulated were fixed to both sides of the boards. Styrofoam substrata, approximately 

S.D8-cm thick and 30.48-cm long, were bolted to the sides of the board and sampled Yt-'ith 

a 1. l-cm diameter cork borer. A grid was marked on the styrofoam and a number 

9 
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assigned to each. Sampling grids were chosen at random. Silicated disc substrata 

(5.067 cm2) were glued in recesses on the sides of boards such that their faces were flush 

with the side surface of the board. The discs were harvested randomly as single units. 

Experiments 

Periphyton growth on artificial substrata was sampled at one site in both 

Peacheater and Tyner Creeks, respectively (Table 1). One disc or one core from the 

styrofoam was considered a sample. In pilot experiments 1 and 2, one board for each one 

substratum type was deployed in each stream. The purpose of the pilot experiments was 

to detennine which type of substrata to use. 

Grazers were never observed on silicated disc substrata. Disc substrata diameter 

was larger and thus proved easier to handle in the field and to transport back to the 

laboratory. Silicated discs were also easier to attach to boards and samples were never 

lost. Portions of the styrofoam substratum attached to the sides of the boards dislodged 

and were lost in Tyner Creek during pilot experiment 1. Harvesting of substrata ceased 

after a colonization time of 42 to 56 days. 

The purposes of experiments 3 and 4 were to detennine colonization time 

necessary for a biofilm to reach peak biomass, and to determine colonization time 

necessary for no differences in surplus P and APA to exist. Three boards were deployed 

in each stream in experiment 3 and 4; one for each parameter measured, and substrata 

were silicated discs only. Three random samples were collected weekly from each 

board. Three samples taken from board 1 were used to analyze chI. a. Samples from 
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TABLE I 

EXPERIMENT AL DESIGN OF STUDIES CONDUCTED IN 
PEA CHEATER CREEK AND TYNER CREEK 

Experiment t Experiment 
Date 

N umber of SampLest 
Silicated Discs Styrofoam 

11 

ChI. a S Ius P AFDW APA Chl. as tus P AFDW ____ . ______________ ~==~~~~~~~c~~~ ___ ~~~~~~~~_ 
Pilot 1 13 May- 3 3 

24 Jun 1996 

Pilot 2 24 Jun- 3 3 
17 Aug 1996 

Experiment 3 5 Aug- 3 3 3 
27 Sep 1996 

Experiment 4 5 Jan- 3 3 3 3 
17 Feb 1997 

t All experiments conducted in the shade. 
t 1 board deployed per substratum in pilot experiments in each stream. 3 boards 
deployed in experiment 3 and 4 in each stream. Designated numbers indicate 
weekly sample number taken from each board. The same board was sampled every week 
for detennination of a set parameter. In experiment 4, chJ. a and AP A were analyzed 
from the same sample. 

board 2 were used in detennination of surplus P. Samples from board 3 were used in 

determination of AFDW (Table]). However, in experiment 4, APA and chJ . a 

measurements were made on the same sample, hence boards were not separate 

treatments. 

Colonization time necessary for development of biofi lm prior to sloughing and 

surplus P concentrations and APA were assessed in experiments 3 and 4. Three samples 

were taken from each respective board in experiment 3 to measure AFDW, surplus P, 

and chI. a (Table 1). In experiment 4, the boards in Peacheater Creek was moved 

upstream approximately 50 m from the site of previous experiments due to fencing which 

had been put in place across the stream. The boards in Tyner Creek were in the same 
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location in the stream as in previous experiments. In experiment 4, APA was measured 

in addition to parameters measured in experiment 3. AFDW was not measured in 

experiment 4. 

12 

In the field, silicated discs and styrofoam substrata sampled for chI. a and surplus 

P analyses were wrapped in alwninum foil and placed on ice for transport back to the 

laboratory. Samples used for determination of APA and chI. a in experiment 4 were 

placed in polyethylene bottles with 150 ml of stream water and transported on sohd CO2 

so as not to dilute AP A Transport time from the field to the laboratory was 

approximately 3 hours. 

Physical Parameters 

Physical parameters were detennined at both sites each time the streams were 

sampled. Water temperature was taken in situ using a hand-held thennometer. Water 

samples used in detennining physical parameters were collected in polyethylene bottles 

and transported on ice back to the laboratory. A laboratory Coming Model 7 pH meter 

was used to take pH readings. A YSI model 33 S-C-T conductivity meter and Hach 

turbidimeter were used to determine conductivity and turbidity of stream water. Rainfall 

data were obtained from the National Weather Service for Stilwell, Oklahoma. 

Discharge data were collected downstream from the sampling site on Peacheater Creek 

at United States Geological Survey (USGS) gauging station 07196973 which is located 

on Peacheater Creek at Highway 62 bridge (Figure 1). 
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Collection and Preservation of Water 

Six grab samples of water were collected at each site on all sampling dates. 

Water samples were taken in 250-ml acid-washed polyethylene bottles and transported 

on ice back to laboratOly. Aliquots to be tested for soluble reactive P (SRP) and nitrate 

(N03-N) were filtered with a prerinsed O. 8-Jlm AA Milhpore membrane filter upon 

returning to the laboratory. Samples were stored in the dark at DoC until analyses could 

be performed, usually within 7 days. 

Laboratory Analyses 

Water chemistry parameters analyzed included soluble reactive P (SRP), total P 

(TP), nitrate-N, chloride and sulfate-S. Standards were freshly prepared for each 

analysis. A spike, laboratory blank of deionized water, and a field blank were used to 

ensure accuracy and precision. Certified EPA samples also were analyzed 

simultaneously during selected analyses and the concentrations were compared to the 

true value. 

The ascorbic acid technique was used to measure SRP (Wetzel and Likens 1991). 

Absorbance was determined at 885 nm using deionized water as a blank standard. 

Optical density was measured using a Shimadzu UV 120-02 spectrophotometer. This 

method is applicable in a range of 1 to 500 J..I.g P04-P !L (Wetzel and Likens 1991). 

Concentrations ofTP in unfiltered stream water were measured using the potassium 

persulfate digestion technique (APItA 1980). Absorbance was detennined at 885 nm. A 
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Dionex DX-1 00 ion chromatograph was used to measure concentrations of chloride, 

nitrate-N, and sulfate-S (USEPA 1989). 
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ChI. a concentration was used to estimate periphyton biomass on artificial 

substrata. Discs were placed in 50-ml beakers and 10 ml of 90% alkaline acetone was 

added to each sample. Styrofoam plug substrata were placed in graduated centrifuge 

tubes and 10 ml of 90% alkaline acetone was added to each sample. Samples were then 

extracted in a refrigerator for 24 hours in the dark. 

The extract from both substrata was then sonicated with a Fisher model 300 Sonic 

Dismembranator for 90 s at SO% and 3S% power for the discs and plugs, respectively. 

Ultrasonication has been shown to effectively remove algal cells from artificial substrata 

(Gale 1975). The substrata appeared clean after sonication. The extract was then 

transferred to graduated centrifuge tube and centrifuged for 15 min. 

m experiment 4, substrata collected for chI. a and APA determination and river 

water used in transport were placed into a 2S0-ml beaker. The samples were sonicated at 

50% power for 90 s to dislodged algal ce]]s from the sihcated disc. Two 50-ml ahquots 

were taken from the slurry and filtered across Whatman 934AH glass fiber filters for chI. 

a analyses. Filters were folded in half, wrapped in aluminum foil, and frozen for no 

longer than 24 hr. The remaining slurry was placed in glass vials and frozen at -80°C 

until AP A analysis could be completed. Samples were not stored for more than 14 days. 

Filters to be used for chI. a determination in experiment 4 were thawed, then 

ground in 3 ml of 90% alkaline acetone with a hand held tissue grinder. Final extract 

volume was 10 ml in all experiments. Samples were extracted for 24 hr in a refrigerator. 
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Samples were then centrifuged for 15 min and read spectrophometrically with a 

Seacomam model S 1000 spectrophotometer using a l-cm path length (Wetzel and 

Likens 1991). Absorbance of the extract was measured at 665 and 750 nm before and 

after the addition of 0.3 ml of 1 N HCI to correct for phaeophytins. In each analysis, 2 

unexposed substrata were also processed and functioned as blanks. ChI. a measurements 

in weeks 1 and 2 were not corrected for phaeophytins due to analytical error. Therefore, 

in statistical tests, uncorrected cW. a data were used to ensure internal consistency of 

data. 

Surplus P was extracted by boiling periphyton samples in 50 m1 deionized water 

for 1 hr in a 100°C water bath (Wynne and Berman 1980). New standards were prepared 

for each analysis. Uncolonized substrata served as the blank. The extract was filtered 

through a prerinsed O.8-l1m AA M.illipore membrane filter and concentrations measured 

according to the ascorbic acid technique previously described. Surplus P measured in 

this manner yielded a measurement of available intracel1u1ar stored P extractable by hot 

water, hereafter called available stored P (surplus P;), as an indicator ofthe P status of 

algal cells (Fitzgerald and Nelson 1966). 

In experiment 4, the P content of the biofilm was detennined by measuring both 

the available stored P and the total cellular P component extractable by hot water, 

hereafter called total surplus P (surplus P J. The P t fraction has been shown to represent a 

potentially important P pool in algal cells (Wynne and Berman 1980). PI was determined 

by placing silicated discs in 100-ml beakers with 100 ml deionized, distilled water. The 

beakers were then placed in a hot water bath for 60 minutes as previously described. A 
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SO-ml aliquot was taken from each sample to measure the surplus PI fraction, using the 

potassium persulfate digestion technique for TP. To estimate surplus Pi> the remaining 

50 ml of extract was filtered and measured as previously described for SRP. Surplus P 

concentrations were normalized to biomass (chl. a and AFDW), respectively. 
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Determination of AFDW was done by placing silicated discs in preweighed 

crucibles with deionized water. The disc was then sonicated at 70% power for 2 minutes 

to dislodge algal cells. Silicated discs were then removed from the slurry. The slurry 

was then dried at lOS °C for 24 hrs, cooled in a desiccator, then reweighed Samples 

were ignited for 1 hat sooae. To correct for clay hydration, the samples were 

rehydrated with deionized water and dried at 105 °C. Ash-free dry weight was calculated 

according to APHA (1989). 

Alkaline phosphatase activity was measured by the hydrolysis of 3-0-

methylfluorescein phosphate (MFP) following Perry (1972) modified by Franco (1984). 

A stock solution of 20 J-Lg MFP/ml was prepared with Tris buffer and frozen at -80°C in 

small aliquots. Working substrate was diluted to 1 J-Lg MFP/ml with Tris buffer. A 5.0-

rol aliquot of periphyton sample was placed in a fluorometer tube. The addition of 0.6 

mt of 1 {.lg MFP/ml substrate in Tris buffer began the reaction. Fluorometer tubes were 

immediately sealed with parafilm and inverted once. Fluorometric measurements were 

taken immediately and after 1 hr. Fluorescence was detennined on a Turner model 111 

fluorometer against a distilled, deionized water blank:. 

AP A was measured as an increase in fluorescence as the substrate (MFP) was 

enzymatically hydrolyzed to 3-0-methylfluorocein which is fluorescent. A uorometric 
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readings were converted to absolute units via a standard curve of fluorescence versus MF 

concentration. APA was expressed as nM WPI unit of biomass per unit time. Activity 

was normalized to chI. a measured from subsamples taken from the same initial slurry as 

APA. 

Statistical Analysis 

Periphyton data were tested for normality using Kolmogorov-Smimov normality 

test (Sigma Stat, Jandel Scientific, San Rafael, CA 1992). Parameters which were not 

normal were rank transfonned before appropriate tests were perfonned (Table 2). 

Periphyton parameters (chI. a, surplus P, AFDW, and APA) were plotted as a 

function of time. Peak concentrations were detennined by statistical comparison of 

measurements sampling dates to identify the colonization time necessary to achieve 

maximum concentrations. Differences in weekly concentrations over time in each 

stream were determined by a one-way ANOVA test (Sigma Stat, Jandel Scientific, San 

Rafael, CA 1992). A Tukey's pairwise comparison test was then employed to discern 

differences between specific weeks (Systat, Evanston, IL 1992). Peak biomass was 

defined to occur the second week in which no statistical difference existed between 

subsequent biomass concentrations. This definition assured the estimate of peak biomass 

would be made in the upper asymptote of logarithmic growth. 

In pilot experiment 1 and 2, styrofoam and silicated disc substratum time courses 

were compared within each stream. This comparison was done using Kruskall-WaHace 

I-way ANOYA on ranks (Sigma Stat, Jandel Scientific, San Rafael , CA 1992). Pairwise 
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comparisons of chI. a time courses were done using Dunn's Method (Sigma Stat, Jande] 

Scientific, San Rafael, CA 1992). 

In all experiments, periphyton and water chemistry data were compared between 

streams. Data collected in experiments 3 and 4 were compared within each stream to 

detennine seasonaJ differences. In experiment 4, surplus P fractions were compared 

within each stream. All comparisons were performed by t-test or Mann-Whitney 

comparison test depending on normality (Sigma Stat, Jandel Scientific, San Rafael, CA 

1992). Weekly data were combined prior to analyses. 

Relationships between surplus P, APA, and SRP were determined using Pearson 

Product Moment correlation test (Sigma Stat, Jande} Scientific, San Rafael, CA ] 992). 

Significance was defined at p < 0.05 for all tests. 
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TABLE II 

STATISTICAL TRANSFORMA TrONS PERFORMED ON TIME COURSE DATA 

----- ------_. ---------
SITE EXPERIMENT PARAMETER NORMALITY TRANSFORMA TION 

TEST --------- -- - -.... __ . -- --- ,----.. - - - ---- --
Peacheater 2 CW. a Styrofoam Passed 

Tyner 2 ChI. a Styrofoam Failed Rank 

Peacheater 2 ChI. a Disc Passed 

Tyner 2 ChI. a Disc Passed 

Peacheater 3 CW. a Passed 

Tyner 3 ChI. a Passed 

Peacheater 4 ChI. a Passed 

Tyner 4 ChI. a Passed 

Peacheater 3 AFDW Passed 

Tyner 3 AFDW Passed 

Peacheater 3 Areal Surplus P Passed 

Tyner 3 Areal Surplus P Passed 

Peacheater 3 Surplus PichI. a Failed Rank 

Tyner 3 Surplus P/chl. a Failed Rank 

Peacheater 3 Surplus P/AFDW Failed Rank 

Tyner 3 Surplus PI AFDW Failed Rank 

Peacheater 4 Areal Surplus PI Passed 

Tyner 4 Areal Surplus PI Passed 

Peacheater 4 Surplus P Ichl. a Failed Rank 

Tyner 4 Surplus P Ich!. a Failed Rank 

Peacheater 4 Areal Surplus Pi Passed 

Tyner 4 Areal Surplus Pi Passed 

Peacheater 4 Surplus P/chl. a Failed Rank 

Tyner 4 Surplus P/chL a Failed Rank 

Peacheater 4 APA Passed 

T}:ner 4 APA Failed Rank 
If no transformation is indicated, raw data were used in statistical tests. If indicated, rank 
transformed data was used in statistical tests. 
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CHAPTER IV 

LITERATURE REVIEW 

The Periphytic Community 

Definition 

Periphyton is a complex, diverse community which occupies an important role in 

stream ecosystems (Odum 1983). Originally, the term periphyton was used to describe 

algal communities attached to artificially submerged objects (Cole 1988). This 

definition was expanded to mean a complex community, sometimes tenned aufwuchs, of 

microbiota (algae, bacteria, fungi, animals, inorganic and organic detritus) that is 

attached to and associated with substrata. However, this defmition has been largely 

abandoned due to its ambiguity (Wetzel 1983). 

Round (1981) categorized periphyton according to the growth form of the 

associated algal community. Algae growing on macrophytic surfaces are termed 

epiphytic. Algae growing on rock surfaces are epilithic. Epizoic algae grow on the 

surfaces of animals and epipelic algae grow on sediment (RoWld 1981). Periphyton is 

commonly used to describe the combined communities (Round 1981). In this study, the 

term periphyton will be defined as the microfloral commWlity living upon the surfaces of 

20 
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submersed objects in water (Wetzel 1983). 

AutQtrQPhy and the Peripbytic Community 

Lotic ecosystems can be described by the dominant trophic state (i.e., autotrophy 

or heterotrophy) (Cummins 1974). Autotrophy is the ability of an ecosystem to 

photosynthetically convert light energy from the sun to chemical energy which is 

required for growth and maintenance of organisms in that system (Wetzel 1983). The 

fraction of the periphytic community which is photosynthetic is responsible for the 

majority of autochthonous primary productivity in most lotic ecosystems (Hill et al. 

] 992). 

Early evaluations of the importance of primary productivity in lotic ecosystems 

focused on comparisons with allochthonous inputs of organic materia} (Cummins 1974). 

Fisher and Likens (1973) demonstrated that only 1 % of the energy input in a particular 

first-order stream originated from autochthonous sources, that is, from in-stream 

photosynthetic activity of the periphyton as well as other macrophytes. The remainder 

was derived from allochthonous inputs of organic material. This suggested that primary 

production was inconsequential in stream production. These and other studies (e.g., 

Hynes 1970) focused on small first-order streams which were heavily shaded by forest 

canopies, which reduced primary production of algae during much of the growing 

season. As a result, streams were referred to as heterotrophic because greater amounts of 

organic matter were decomposed than autochthonousiy produced within the stream 

(Wetzel and Ward 1992). 



22 

However, other studies (Odum 1957, Naiman 1976) showed autotrophs to be the 

primary contributor of organic matter to streams. Minshall (1978) compared known 

energy contributions from different streams having different sources (autochthonous and 

allochthonous) based on the geography of the watershed region and stream order. 

Patterns of increased autotrophy with increased stream order were found in similar 

comparison studies by Minshall et a1. (1983) and Naiman (1983). Streams tend toward 

autotrophy as the canopies open in rugher-order streams due to increased irradiance and 

photosynthetic activity (Wetzel 1983). 

One definitive type of autotrophic lotic ecosystem is characterized by a sma)] 

periphytic standing crop acting as the primary producers. Though not abundant, the 

periphyton may demonstrate high productivity (Minshall 1978). McIntire (1973) pointed 

out that periphyton is not as abundant as are allochthonous detrital inputs, a reason why 

the importance of autotrophic production to often overlooked (McIntire] 973). Using 

computer modeling ofperiphyton dynamics, McIntire (1973) demonstrated that an 

increased turnover rate of algae could enable a small periphyton community to maintain 

a large standing stock of consumers. Lamberti and Resh (1983) found similar results in a 

study involving grazing activity of the caddisfly, Helicop!>yche borealis, which resulted 

in a low standing crop of periphyton and a concomitant accelerated algal turnover rate 

(02 evolved per unit chI. a). 

Controls of Periphyton Growth 

Top Down Control of Periphyton 
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In lotic ecosystems, periphyton is consumed by a variety of herbivorous scrapers 

including macro invertebrates and fish (Cole 1988). Grazing activity, the conswnption of 

living plants by animals, is important in supporting trophic structure and food web 

dynamics (Lamberti and Resh 1983). Periphyton communities are susceptible to grazer 

consumption. This consumption represents an initial step in transfer of energy resources 

to higher trophic Levels. Most periphytic productivity has commonly been thought to be 

transferred to higher trophic levels (Wetzel and Ward 1992). However, periphyton 

production which directly enters detrital pathways has not been quantified directly under 

natural conditions (Wetzel and Ward 1992). 

Modeling studies predict that in an even-numbered trophic level system (e.g., 

periphyton herbivore interaction), the autotrophic fraction wi]] be controlled by herbivory 

I (Fretwell 1987). This control has been tenned "top down." Strong (I 992) also 

a stream to be equivalent to rates of net primary production and concluded that I 
concluded that where simple direct linkages of periphyton and grazers exist, autotrophs 

would be subject to top down control. ELwood and Nelson (1972) found grazing rates in 

herbivores control algal biomass. Rosemond et at. (1993) demonstrated that top down 

effects were more significant when simultaneously coupled with bottom up effects of 

growth-limiting resources. Interaction of both nutrients and herbivores were considered 

in determination of algal biomass and productivity (Rosemond et a1. 1993). 

Effects of Grazing on Periphyton 
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Reduction in Biomass. Grazers can have marked effects on the structure and 

function of the periphytic community (Hart 1985). Consumption by grazers, 

dislodgement and export of cells due to current velocity, and cell mortality resulting from 

senescence or pathogens all result in reduction ofperiphytic biomass (Hill et al. 1992). 

Reduction in periphyton biomass as a result of grazing activity and subsequent 

prevention of biomass accumulation has been demonstrated in numerous studies. These 

studies compared grazer- excluded periphytic communities and communities where 

grazing was not prevented (i.e., grazer-included communities) (Lamberti and Resh 1983; 

Stewart 1987; Lamberti et ai. 1987; Mulholland et ai. 1991). 

Grazer Influenced Succession. Grazers have been shown to simplify the 

taxonomic structure and physiognomy ofperiphyton (Steinman et al. 1987; Mulholland 

et at. 1991). Rosemond et al. (1993) found grazed communities were dominated by 

cyanobacteria and chlorophytes, which were overgrown by diatoms when grazing 

pressure was released. Power et a1. (1988) showed that grazers tended to support an 

increase in algae of particular growth forms (i.e., prostrate algae with tightly attached 

filaments having basal cell division). Mulholland et al. (1991) also found grazing 

activity resulted in periphyton composed of a thin mat of algae with a prostrate growth 

fonn. Ungrazed periphyton was characteristically a thick, complex mat representing 

algae with filamentous, gelatinous, and prostrate growth forms (Mulholland et al. 1991). 

Lamberti et al. (1989) found that grazing by snails delayed algal succession by increasing 

the abundance of adanate diatoms and reducing the abundance of erect and non-attached 

algae. 
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Morphological differences in algae lead to preferential grazing. Herbivores tend 

to remove algal taxa with upright, erect, or fllamentous structures relative to taxa with 

prostrate morphologies (Steinman et al. 1992). Rosemond et at. (1993) found that 

herbivores consumed faster growing species more readily than slower growing species, 

which suggested competitive ability was eventually replaced by mechanisms of 

resistance to herbivory. 

Areal Productivity. Areal productivity (the fixation of carbon per unit area) ofthe 

periphyton has been demonstrated to be limited by grazing because the reduction of 

biomass due to cropping and hindrance of chl. specific productivity (Lamberti et al. 

1987; Hill et al. 1992). Reduction in areal productivity of peripbyton has been found to 

occur even with additi.on of nutrients, suggesting that grazing can control periphyton 

growth (biomass accrual) (Stewart 1987). 

Beneficial Effects of Grazin~. Although grazers reduce biomass and areal 

productivity of periphyton, positive effects on grazer removal have been noted (Lamberti 

and Resh 1983; Stewart 1987; Power et aL 1988). Loss of biomass due to grazi.ng 

activity has been demonstrated to increase periphyton productivity per unit standing crop 

of chI. a (Lamberti and Resh 1983). Grazing by Campostoma sp. increased biomass­

specific primary production of periphyton, which was attributed to removal of the upper 

story of algae thus reducing self-shading to understory algae (Stewart 1987). In 

comparing ungrazed and grazed periphyton communities, Power et al. (1988) found that 

thin cyanobacteria mats were sustained when periphyton was subjected to grazing. The 

nitrogen-fixing capabilities ofthe cyanobacteria increased periphyton productivity by 
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maintenance ofhigb levels of nitrogen fixers in producer assembJages. Hill et aJ. (1992) 

attributed the increase in biomass specific productivity of periphyton to cropping of 

senescent cells, selection for the establishment of rapidly dividing algal taxa, and an 

increase in recycled limiting nutrients. 

Interaction With Nutrient Availability. Grazers also affect nutrient accruaJ of 

remaining periphyton. In nutrient-limited systems, regeneration of nutrients due to 

grazing releases nutrients back to the water to be taken up by periphyton (Mulholland et 

al. 1983). Grazers deter vertical biomass accrual. Because nutri.ents are not sequestered 

in a thick mat community, nutrient diffusion capabilities are increased (Hill et at 1992). 

However, with increased nutrient availability, increased rates of downstream transport of 

particles occur, thus available nutrients move farther downstream, increasing spiraling 

length and making the nutrients essentially unavailable to the remaining periphyton 

(Newbold et al. 1982). Removal of biomass by grazers also creates exposed abiotic 

surfaces which can act as phosphorus "sinks" rendering the nutrient unavailable 

(Mulholland et al. 1983). 

Bottom-Up Regulation ofPeriphyton 

Periphyton is not only controlled by herbivorous activity, but may also be affected 

from the "bottom up", that is by limited resources needed for sustained growth 

(Rosemond et at. 1995). Leibig (1849), in a terrestrial study, stated that the resource 

available in the smallest quantity relative to the requirements of the plant, would limit its 

growth, Leibig's law of minimum. But nutrient limitation in aquatic ecosystems is more 

• 
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complicated and often two nutrients are co-limiting. 

Nutrient Limitation. Wetzel (1983) stressed the importance of phosphorus and 

nitrogen as limiting resources in aquatic systems. This was illustrated by comparing the 

essential elements required for algal growth. Nitrogen and phosphorus have the highest 

ratios of plant nutrient content to nutrient supply available in freshwater (Vallentyne in 

Wetzel 1983). Phosphorus, nitrogen, or both have commonly been shown to limit 

primary productivity in lentic ecosystems (Vollenweider 1976). Bothwell (1989) has 

shown the same phenomenon in experimental streams. 

Phosphorus limitation of algal growth in streams has been reported in numerous 

studies (Bothwell 1988; Peterson et a1. 1985; Pringle 1987; Hart and Robinson 1990). In 

these studies, concentrations of available phosphorus as soluble reactive phosphorus 

(SRP) were less than or equal to 15 .ugll. Most authors reported values less than 5 ,ugfl as 

limiting. Nitrogen has been found to be limiting in streams with ambient inorganic 

nitrogen concentrations less than 60 ,ugfl (Grimm and Fisher 1986; Hill and Knight 

1988). Chessman et a1. (1992) found that nutrient limitation is widespread in streams 

whose watersheds vary in vegetation and land use. 

Detennination of Limitation 

Methods of analyzing the trophic status of streams, phosphorus limitation in 

particular, include biomass measurements, fertilization techniques, and alkaline 

phosphatase activity (APA) bioassays (Toetz 1995). Measurements of biomass include 

measurement ofluxury phosphorus (surplus P) and determination of cellular atomic N:P 
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ratios. A ratio below 17: 1 by atoms was reported by Rhee and Gotham (1980) as the 

critical point when phytoplankton are phosphorus limited. Fe.rtili.zation techniques 

involved nutrient additions by two different mechanisms: artificial substrates which 

diffuse nutrients (Fairchild et a1. 1985) and direct additions to artificial stream channels 

(Bothwell 1985). 

Internal Nutrient Dynamics of the Periphyton Mat. The periphyton mat is 

essentially a microcosm of tightly packed autotrophic and heterotrophic assemblages of 

algae, bacteria, etc. with a self-generated boundary layer (Sand-Jensen 1983). This mat 

community is efficient at recirculating and conselVing essential, limited inorganic 

nutrients such as phosphorus and nitrogen (Sand-Jensen 1983). Internal recycling of 

nutrients is an important survival mechanism for the mat community. Even under high 

nutrient conditions, nutrients can be limiting to the periphyton mat because diffusion 

restricts transport of ions into the mat (Bothwell 1989). Autogenic nutrient cycling has 

also been observed to increase as concentration gradients increased between the water 

and the periphyton mat, suggesting cycling may be controlled by diffusion (Riber and 

Wetzel 1987; Mulholland et a1. 1994). 

Peterson and Grimm (1992) noted temporal changes in biomass accrual in 

nutrient enriched treatments. This was attributed to increased recycling and nitrogen 

fixation within the mat suggesting that allochthonous nutrient sources are eventual1y 

replaced by autogenic recycling as the main supplier of nutrient to the mat community. 

Steinman et a1. (1995) demonstrated that increasing thickness of the periphytic matrix 

reduced P turnover rate and concluded that biomass accrual influenced autogenic cycling 
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because resistance to diffusional nutrient exchange is associated with increased biomass. 

Paul and Duthie (1988) found that the overstory layer of the periphyton mat was 

responsible for most of the uptake of nutrients because of its higher density of actively 

metabolizing cells. After sufficient thickness is obtained, nutrient cycling can increase 

in response to reductions in ambient nutrient concentrations. Nutrient demands of the 

periphyton may be met by nutrient cycling within the mat (Mulhollandet al. 1991). 

Concomitant Limitation of Periphyton Growth 

Periphyton biomass accrual is often limited by both nutrients and grazers, that is 

from the bottom up and the top down (Rosemond et a1. 1993). Rosemond et a1. (1993) 

concluded that when considered separately, effects of grazing and nutrient limitation on 

periphyton accrual were less significant than when their combined effects were 

considered. Similar studies also found periphyton to be limited by nutrients and grazing 

activity (Hart and Robinson 1990; Hill et a1. 1992). However, Stewart (1987) concluded 

that grazing primarily limited biomass-specific productivity of periphyton even wi th 

nutrient enrichment. Rosemond (1994) found that productivity and biomass remained 

constant, although seasonal variations in nutrient levels and irradiance occur which could 

potentially limit periphyton biomass and concluded that when heavy grazing pressure 

was reduced, multiple factors could have been significant in periphyton biomass growth 

and productivity. 

The number of trophic levels a system supports also is involved in the ability of 

periphyton to accumulate biomass. When exposed to nutrient additions, ecosystems 
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exhibiting even numbered trophic levels (i.e., periphyton, grazer system) showed an 

increase in herbivore biomass and a subsequent decrease in algal biomass (Power J 992). 

Rosemond et al. (1993) showed increased enrichment response in ungrazed substrata 

(odd number of trophic levels) but not in substrata which were grazed (even number of 

trophic levels). Increases in plant biomass in response to nutrient enrichment should be 

greater in systems with odd numbered trophic levels (Rosemond et al. 1993). 

Artificial Substrata 

Periphyton communities are diverse, hence they may colonize extreme habitats 

(Wetzel 1983). Artificial substrata provide a known colonizable area of homogeneous 

composition in which to study attached growth. Traditionally, glass slides were used as 

artificial substrates (Aloi 1990). This type of substrate has fallen out of favor due to the 

different periphyton assemblages colonizing glass slides compared to natural substrates 

(Loeb 1981), but not entirely abandoned (Pringle 1990). Tuchman and Stevenson (1980) 

popularized clay tiles, which are used commonly today in studies of periphyton biomass. 

Styrofoam also has been used as an artificial substrate for periphyton (Bothwell 1985). 

Bothwell (1985) used anchored styrofoam sheets as substrates for algal colonization. 

The sheets were sampled using a cork borer. Biomass was found to be lower on such 

substrata than on naturally occurring epilithon in the sublittoral zone of Lake Tahoe. 

This was attributed to either insufficient colonization time or differential herbivory 

between the two substrata (Aloi 1990). Gibeau and Miller (1989) developed a method 

which used porcelain or fused silica discs were attached to small, agar filled vials as 
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substrates in nutrient enrichment experiments. These substrata proved to be easy to 

harvest and were easily replicated (Gibeau and Miller 1989). 
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Mechanisms to hinder grazers from artificial substrates are necessary in field 

studies which compare productivity and biomass of grazed andungrazed periphyton and 

those which use the productivity of the biomass as stress indicators. Insecticides 

(Peterson and Grimm 1992) and exclusion pens (Stewart 1987) have been used to reduce 

grazer density. Suspension of substrates and petroleum jelly barriers also have been 

used to eliminate non-swimming grazer pressure (Lamberti and Resh 1983; Lamberti et 

al. 1987; Hill et at. 1992). 

Periphyton Growth Processes 

Extrinsic Influences on Growth 

Light Limitation. The rate of algal growth and photosynthesis are both affected 

by light intensity (Wetzel 1983). In clear headwater streams, turbidity does not cause 

modifications in intensity, spectral composition, or duration of light reaching the 

periphyton (Reynolds 1992). Turbidity in the form of fine, non-living suspended 

particles interferes with underwater light penetration, which can affect algal growth and 

distribution (Reynolds 1992). Steinman and McIntire (1987) found that irradiance can 

directly affect algal biomass, taxonomic structure, and physiognomy. In laboratory 

streams exposed to 150 and 400 ,LiE-m-2·s'], the relative abundance of chlorophytes was 

greater and substrata were covered with thick algal mats as compare to channels exposed 
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to 15 and 50 ,uE·m-2·s-1_ Succession was distinct on high and low irradiance substrata 

(Steinman and McIntire 1987). Losee and Wetzel (1992) described the periphyton 

matrix as a complex optical system whose heterogeneity of components results in an 

abtmdance of scattering and absorbing interactions. Peterson and Grimm (1992) 

suggested that seasonal changes in temperature may also affect the competitive abilities 

. of certain taxa. There exists a great diversity of preferred temperature ranges among 

algae (Wetzel 1983). 

Phosphorus_ As discussed previously, nutrient availability, primarily phosphorus 

and nitrogen, directly affects periphyton growth. Phosphorus is an essential nutrient 

involved in energy transformations (Newbold 1992). Although only needed in small 

amounts, it is the element which most frequently limits algal growth (Wetzel 1983) and 

is associated with the greatest potential increases in biomass when in excess 

(Vollenweider 1968 and Hutchinson 1973). Nitrogen is readily available in the 

atmosphere, but atmospheric sources of phosphorus do not exist. Phosphorus is thus only 

available from dissolved and particulate forms of weathered rock or anthropocentric 

origins. It is cycled or transported from this terrestrial source to the aquatic environment. 

Organic phosphorus is tightly bound either to sediments or sorbed to particles (Wetzel 

1983). 

Phosphorus is categorized in aquatic systems as either dissolved or particulate on 

the basis of whether it passes through a 0.45-llrn filter. As a result, the dissolved 

constituent may include a component which is colloidal. Inorganic dissolved phosphorus 

occurs as orthophosphate (P04-2) which is biologically available for growth of 
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periphyton. This fraction is less than 5% oftotal phosphorus in most natural waters. 

More than 90% of the P in fresh water occurs as organic phosphates and cellular 

components in the biota adsorbed to inorganic and dead particulate organic substances 

(Wetzel 1983). Soluble reactive phosphorus (SRP) is the amount ofpbosphorus which is 

hydrolyzed by the molybdate blue method (orthophosphate, organic and colloidal bound 

fonus) (Strickland and Parsons 1972). 

Phosphorus is regenerated in aquatic ecosystems from the biota. This process 

occurs by excretion of dissolved inorganic P (DIP) or dissolved organic P (DOP) from 

living algae and bacteria, the release of P upon death and lysis of cells, and ingestion 

followed by egestion, excretion, and death of animal consumers (Newbold 1992). 

Production of alkaline phosphatase and storage of lUXUry consumption ofP (surplus P) 

are mechanisms algae use to compensate for depleted levels ofbiological1y available P. 

Nitrogen. Nitrogen, a primary constituent of protein, can also be found at levels 

which limit algal growth in lotic systems (Grimm and Fisher 1986). Unlike P, cycling of 

N between the terrestrial and aquatic environments involves exchanges with the 

atmosphere and dissolved inorganic N is available in two fonns: NH4 f and NO)" rather 

than one, PO/ . Nitrogen does not bind to sediments as tightly as does P, therefore N 

remains dissolved in water as it percolates in ground water. Precipitation as a source of 

N is variable depending on local weather conditions, watershed usage, and wind patterns 

(Wetzel 1983). Many blue-green algae have the ability to fix nitrogen, that is to reduce 

atmospheric nitrogen (N2) to fonn ammonium nitrogen (NH4 +-N) in the process ofN­

fixation thus making N available to the biota (Wetzel 1983). This phenomena has been 
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studied in N-limited streams as a mechanism blue-green algae use to compensate for low 

N levels (Grimm and Fisher 1984; Peterson and Grimm 1992). 

Both N and P have been found to limit algal growth in stream ecosystems (Grimm 

and Fisher 1986; Elwood et al. 1981). Streams can also exhibit simultaneous limitation 

of algal growth by Nand P. Tate (1990) reported enhanced algal growth on clay saucers 

enriched with both Nand P over controls and individual nutrient enrichments in Konza 

Prairie streams in Kansas. Neither P nor N limited algal growth individually, thus the 

algae were Nand P limited (Tate 1990). 

Nonpoint Sources of Nutrients. Allochthonous inputs of phosphorus and nitrogen 

in lotic ecosystems have been shown to contribute to eutrophication in downstream 

impoundments. Because P is often limiting, it has been described as the primary causal 

agent of eutrophication in lentic systems because of the direct influence it has on algal 

standing crop (Vollenweider 1968; Hutchinson 1973). Novotny and Chesters (1981 ) 

state that 50% ofP and a greater amount ofN originate from nonpoint sources (NPS), 

that is, the source of input cannot be traced to a single source. Data conected from the 

National Eutrophication Survey suggest correlations between land use in the watershed 

and NPS contributions of nutrients (Omernick ] 976; Omernick 1977). Streams flowing 

through agricultural land demonstrated higher P and N levels than those draining forested 

watersheds (Omernick 1976). Novotny and Chesters (1981) attributed this to fertilizer 

application on agricultural land followed by runoff events which allow P and N (usually 

inorganic) to reach the stream. Watersheds with agricultural usage exported 3.7 times 

more P and 2.2 times more N than non-agricultural watersheds (Omemick 1977). Thi.s 
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NPS pollutant loading has a significant impact on the rate of eutrophication in 

downstream reservoirs. 
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Succession. Changes in algal biomass are often difficult to quantify due to 

stream heterogeneity (Pringle 1988) and limiting factors previously described. 

Succession is the process of colonization and subsequent change following a disturbance 

. (Fisher 1983). Algal biomass during low winter growth follows characteristic successive 

phases (Sand-Jensen 1983). This is one type of succession in which colonizers are never 

completely eliminated. Succession has also been demonstrated on artificial substrates 

(Lamberti et a1. 1989; Pringle 1990; Peterson and Grimm 1992; Rosemond 1994) and 

after disturbances such as floods (Fisher et a1. 1982). 

The primary successional phase is characteristic of a thin, relatively simple 

biologjcal mat community dominated by fast growing sessile algal species and bacteria 

(Sand-Jensen 1983). Losses due to sloughing and grazing are presumably small. 

Changes in the overlying water chemistry are tightly coupled with changes in periphyton 

biomass in early successional stages (Sand-Jensen 1983). Bothwell (1993), found that 

reduction of photosyntheti.cally active radiation (PAR) and ultraviolet hght (UV) to 90% 

initially inhibited algal accumulation, but eventually the effect was reversed allowing a 

succession to stalked diatom genera. Peterson and Grimm (1992) showed initial diatom 

dominance on artificial substrates eventually changed to a dominance by cyanobacteria. 

Fisher et a1. (1982) found post-flood colonizers to be diatoms, which were subsequently 

replaced by blue-green or Cladophora-dominated assemblages. Reynolds (1992) also 

reported pioneering communities dominated by diatoms, particularly Ceraloneis sp., 
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following a spate in which stones were turned over exposing new surfaces. This 

community gave way to larger diatom species of Synedra sp. and Aulacoseira sp. or to 

blue-green algae in other streams (Reynolds 1992). 
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As succession continues, other factors influence biomass accrual (e.g., grazing) 

and internal processes within the mat assume a greater role in periphyton growth (Sand­

oJ ensen 1983). The relationship of these factors can be quantified as the change in algal 

biomass (.1B) over a particular time interval equal to growth of the algae (G) plus 

colonization (C) minus grazing losses (Gr) and mechanical detachment or sloughing (M) 

(Sand-Jensen 1983): 

llB=(G+C)-(Gr+M) (1) 

In the present experiment, the pressure of grazing on the mat community was released by 

suspending the artificial substrates from the surface (i .e., floating substrata). Hence, 

mechanical detachment or sloughing is the variable which negatively affected biomass 

accrual of the periphyton community. 

Mechanical Detachment 

Velocity of the surrounding water functions in controlling periphyton growth. A 

direct result of high stream velocity is scouring of the periphyton or reduction of 

colonizer deposition. Horner and Welsh (1981) showed that algal growth on glass slides, 

as measured by chI. a, was inversely proportional to velocity at low orthophosphate 

conditions in artificial channels. Similarly, Ghosh and Gaur (1994) demonstrated that 
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stimulatory effects of P enrichment on algal growth was particularly enhanced at low 

flow. Periphyton is thought to achieve an optimum age prior to detachment or sloughing. 

Biomass accrual is positive when no factors are limiting that is: 

M<O 
III 

where B represents biomass and t represents time. As the cel1s comprising the 

periphyton mat mature, sloughing occurs or: 

(2) 

(3) 

Rosemond et al. (1993) observed periods of algal increase followed by sloughing in 

treatments excluded from grazing activity with high nutrients. Grazed treatments were 

more stable, changing little over time regardless of nutrient level.. This suggests that 

physical and chemical factors affect rates of sloughing. Rates of sloughing have been 

shown to be variable from stream to stream (Mulholland et al. 1991 ). 

Senescence of the periphyton mat prior to sloughing is a function of biomass 

accrual and optimal allowable colonization and succession time. This stage represents 

the period when change in biomass over change in time approaches zero. Exposure 

periods of artificial substrates vary but are commonly 2 weeks to 1 month depending on 

water quality, water temperature (seasonality), and purpose of the study (Aloi 1990). In 

this study, periphyton is being used to determine nutrient status of a lottc system. Hence, 
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knowledge of maximum maturi ty of the periphyton mat, as detennined by thickness and 

chI. a content, was essential. 

Biomarkers for Biofilm Assessment 

Alkaline Phosphatase Activity 

Phosphatases are enzymes which promote the degradation of complex P 

compounds into orthophosphate (PO/) and an organic moeity (Jansson et a1. 1988). 

They are classified as acid or alkaline by the pH which hydrolyzing potential is optim urn 

(Jansson et a1. 1988). Most natural waters have a pH above 7~ thus alkaline phosphatase 

(AP) is important in many aquatic envirorunents. 

Alkaline phosphatases are found intracellularly in mammalian and bacterial cells 

(Francko 1984) and extracellularly in phytoplankton (Heath and Cook 1975). Alkaline 

phosphatase activity (APA) has been used as an enzymatic test of nutrient limitation in 

lentic ecosystems. Increases in extracellular APA are indicative of1ow orthophosphate 

(Pi) levels (P limitation) (Perry 1972; Petterson 1980; Wetzel 1981; Wynn 1981). 

Phosphatase also has been demonstrated to be a sensitive indicator ofP limitation 

in lotic periphyton communities (Bothwell 1985, 1989). Mulhol1and and Rosemond 

(1992) used inverse trends in AP A and ambient SRP concentrations to detennine 

periphyton responses to nutrient gradients. Mulholland et al . (1995) used chI. specific 

APA and C:nutrient ratios in periphyton to determine nutrient deficiency along a 

continuum of SRP in a stream. 
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Heath and Cook (1975) demonstrated that AP may hydrolyze organic phosphate 

resources. The most substantial pool of organic dissolved phosphate in lakes is 

polyphosphate phosphomonoesters (PME), a low molecular weight substrate of AP 

(Heath and Cook 1979). When inorganic P (Pi) is low in ambient water, AP is produced 

which allows the algae to use organic phosphate compounds, such as PME, as sources of 

~iologicany available P (Francko and Heath 1979; Stewart and Wetzel 1983). Hydrolysis 

ofP serves to mitigate the effects ofP limitation by releasing P j to algae and bacteria 

(Jansson et a1. 1988). 

Phosphomonoesters are the organic phosphorus compounds hydrolyzed by 

extracellular AP A. Heath and Cook (1975) suggested that the significance of AP A is 

dependent on the concomitant occurrence of PME substrates. An inverse relationship 

between AP A and P"ME concentration was detected in their study (Heath and Cook 

1975). This supports the concept of the ability of AP to provide alternative sources of P j 

to the biota. However, in Lough Neagh this inverse relationship did not exist (Stevens 

and Parr 1977). Increases in AP A did not result in decreased soluble organic phosphate 

concentrations suggesting that PME did not comprise a significant part of the organic 

phosphate pool (Steven and Parr 1977). Alkaline phosphatase activity could be 

suppressed if ample PME concentrations are not available to convert to Pi 

Berman (1970) estimated that only 30-6M1J of total P was hydrolyzed by APA in 

epilimnetic waters. Petterson (1980) showed that the composition ofthe P pool is 

needed to predict the extent P recycling and Pi demand. How much AP hydrolysis 

contributes to the soluble P pool in an aquatic system is not fully understood. Heath and 
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Cook (1975) calculated maximum potential hydrolysis rates ofPME by APA (V m.J to be 

10.4 /lmoles phosphate released per hour per liter oflakewater. Berman (1970) found 

V max to range from 0.2 - l.26 ~M-h-I in Lake Kinneret, Israel. Pick (1987) calculated a 

V max value of 0.26 t-tM-h- 1 in Lake Ontario. Differences in hydrolysis rates demonstrate 

the diversity in the soluble P pool. 

The increased activity of AP has been attributed to increased rates of production 

of the enzyme or derepression of the enzyme at the surface of the cell (Stewart and 

Wetzel 1982). Orthophosphate acts as a repressor of AP (Jansson et al. 1988)_ When 

ambient Pi concentrations are lowered, the enzyme is potentiaJJy derepressed. Fitzgerald 

and Nelson (1966) demonstrated APA increased 25 times its nonnal activity in P-limited 

algae. Stevens and Parr (1977) reported an increase in AP A in response to spring al gal 

blooms which had reduced the ambient P levels to below 10 I1gP-I-t. Petterson (1980) 

showed AP A of phytoplankton to increase to 10 times the nonnal activity under P 

limiting conditions. Wetzel (1981) found a decrease in APA under P enrichment 

conditions. 

Although studies have implicated phytoplankton as the primary source of APA in 

lentic ecosystems (Petterson 1980; Heath and Cook 1975), other potential sources exist. 

Total APA in an aquatic environment encompasses all the enzyme production by 

bacteria, zooplankton, and phytoplankton within that body of water (Jansson et al. 1988). 

Stevens and Parr (1977) found additional APA contributions to Lough Neagh from 

sewage outfalls and the watershed_ 

Dissolved APA is defined as "free" enzymes which will pass through a 0.4511m 
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membrane filter (Jansson et al. 1988). This fraction of total APA, though short-lived 

(Petterson 1980), has been found to be significant, contributing as much as 70% of the 

total activity (Stewart and Wetzel 1982; Suida and Chrost 1987). Stewart and Wetzel 

(1982) found that dissolved AP A val ues often were overestimated due to the small size 

of many free-living aquatic bacteria wltich could pass through the filter separating the 

fract ions. Particulate AP A is that which is associated with organic matter, algae, 

bacteria, and detrital particles (Francko 1984). Stewart and Wetzel (1982) found the 

maximum algal contribution to the total activity was less than 34% suggesting that non­

algal particulate APA can be a significant component of the particulate fraction of AP A. 

Total APA also has been shown to increase with the subsequent decreases in Pi 

concentrations in eutrophic lakes (Suida and Chrost 1986). 

As previously described, the thickness of the mat community can affect nutrient 

uptake. Cells at the surface of the mat may not become devoid of nutrients as quickly as 

cells within the mat community (Paul and Duthie 1988). This could result in differing 

activity rates associated with the algal particulate fraction depending on where the 

particular cell is located within the periphyton mat. 

Surplus Phosphorus 

Algae have mechanisms which allow assimilation of excess levels of phosphorus 

when ambient inorganic P levels are at growth-limiting levels (Wetzel 1983). Thjs 

storage of surplus or luxury P is essentially as polyphosphates. Storage of surplus P 

occurs when ambient inorganic P concentrations are available at higher levels than 
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required for basic cell maintenance and used when inorganic P concentration are 

depleted. Gage and Gorham (1984) demonstrated that algae store P in excess of need at 

or above] 0 ~g P mg-dry weight-I. Surplus P is used by algae when ambient Pi 

concentrations are growth limiting. Petterson (1980) demonstrated that during P­

limiting conditions in Lake Erken, surplus P levels decreased 4 to 5 times. 

Ambient Pi levels may not be an accurate indicator of the nutrient status of the 

algae because of the ability to store surplus P (Petterson 1980). Wynne (1981) showed 

that Peridinium blooms persisted although ambient concentrations of inorganic P in Lake 

Kinneret were consistently below levels thought to be indicative ofP limitation. 

Wynne and Berman (1980) used surplus P as an indicator of the status of nutrient 

limitation ofthe algae in Lake Kinneret. Concentrations of < 0.08 /lg p. 100 /lg C- I have 

been found to be indicative of P limitation (Fitzgerald and Nelson] 966). Petterson 

(1980) drew similar conclusions demonstrating production of AP would be triggered at 

surplus P concentrations of 0.1 Ilg p. 100 /-lg C- I. Therefore, concentrations below 0.1 ~g 

p. 1 00 ~g C- l are indicative of P limitation. 

Surplus P is the amount of total cellular P that can be extracted using hot water 

(i.e., hot water extractable P or surplus PJ Surplus Pi is composed of long and short 

chain polyphosphates with phosphate ester bonds (Wynn and Berman 1980). Most short 

chain polyphosphates are hydrolyzable by APA and comprised the bulk of the non­

molybdate-reactive P (non-MRP) pool (i.e. phosphorus not reactive with an ascorbic acid 

mixed reagent). These short chains also appeared to be a precursor for a more permanent 

P storage (Wynn and Berman 1980). Long chain polyphosphates are typically the more 
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abundant fraction of surplus P. When algal cells are grown in low inorganic P 

conditions, SRP becomes depleted (Wynn and Berman 1980). 
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The interactions of these fractions in relation to P status have demonstrated a 

preference ofMRP by algal cells (Wynn 1981). Hot water extractable P from lake 

Peridinium and from cel1s grovm in culture at high ambient Pi contained equal amounts 

of non-MRP and MRP suggesting that both fractions served as P reserves. At low 

inorganic P concentrations, MRP was first depleted by Peridinium. From this result it 

was suggested that non-MRP remains available to the cell at low ambient inorganic P 

concentrations and may function as an intermediary P-storage compound (Wynn 1981). 

Relationship of APA and Surplus P 

Surplus P concentrations and APA have been used concomitantly to predict P 

limitation of algal growth. An increase in APA correlated with a decrease in surplus P 

(as MRP) indicates possible P limitation (Fitzgerald and Nelson 1966). Petterson (1980) 

demonstrated this inverse relationship between APA and surplus P as MRP in lake and 

culture studies. This relationship implies that when inorganic P is limiting, APA is 

increased to hydrolyze unusable forms of organic P to inorganic P and surplus P levels 

are concomitantly depleted as the algal cell responds to limitation by utilizing stored 

inorganic P. 

Longitudinal Gradients in Lotic Systems 

River Continuum Concept 
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The river continuum concept (Vannote et al. 1980) associates changes in lotic 

communities to the downstream gradient of abiotic factors from the headwaters to the 

mouth of the river. Successive, interrelating geomorphical, chemical, and physical 

factors in lotic ecosystems are accompanied by communities evolving to each state of 

morphological and hydraulic conditions. The river continuum concept CRCC) states that 

consideration of the gradient of physical factors fonned by the watershed which the lotic 

system drain, is vital in understanding biological processes and stream dynamics 

(Vannote et al. 1980). 

According to the RCC, streams in undisturbed deciduous forest streams 

demonstrate a longitudinal resource gradient in which commuruties are predictably 

structured. Headwater streams are primarily heterotrophic, relying heavily on 

allochthonous detritus in the form of course particulate organic matter (CPOM) as the 

primary eneq,'Y source. Gross primary productivity to community respiration ratios (P/R) 

are generally less than 1 in lower order streams. Algal growth is often limited by light in 

the headwaters of a stream dominated by groundwater inputs. As the canopy opens in the 

middle reaches, autochthonous primary productivity and autotrophy dominates (PIR> 1 ). 

The lower reach river is again heterotrophic (P/R<l), being light-limited once again due 

to turbidity and water depth. Large rivers receive significant amounts of fine particulate 

organic matter (FPOM) from upstream. This FPOM is processed CPOM which 

originated in the headwaters. This demonstrates the interdependence of organic 

resources and invertebrate functional feeding groups which process the resources and 
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how they change along the continuum (Vannote et al. 1980). 

Nutrient Spiraling 

Nutrient spiraling initially described the joint processes of nutrient cycling and 

downstream transport in lotic systems (Webster 1975; Webster and Patten 1979). This 

was then expanded to an ecological framework. This concept holds that upstream 

nutrient cycling will affect downstream communities and processes because forms and 

concentrations of nutrients and organic matter in transport will be changed (Newbold et 

al. 1982, 1983; Elwood et aL 1983). 

Spiraling explains downstream progress of the aqueous, particulate, and 

consumer fractions of a nutrient cycle. The cycle of a nutrient includes biological 

assimilation (uptake) and subsequent biological processing and movement through the 

food web resulting in eventual regeneration into the inorganic fonn. Spiraling length 

consists of the average downstream distance traveled by a dissolved nutrient atom until 

uptake (uptake length) plus the downstream distance traveled within the biota until 

regeneration (turnover length) is attained (Newbold et al. 1981). 

Newbold et al. (1983) released 32P04 into the stream to measure spiraling in 

Walker Branch, a small stream in Tennessee. Downstream transport ofP occurred at a 

velocity of 10.4 moh- j completing one cycle every 18.4 days. The average downstream 

distance of one spiral (transport of one P atom from the water compartment and back 

again) was 190 m. Transport within the water column contributed the most to the 

spiraling length (165 m) and consumer turnover length contributed the least with 0.05 m 
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(Newbold et a1. 1983). Phosphorus remained in FPOM for the greatest amount of time 

(99 days). OnLy 2.8% ofP uptake from particulate matter was transferred to consumers 

suggesting most of the P was released from this fraction to the water (Newbold et al. 

1983). 

Mulholland et al. (1985) noted seasonal variations in spiraling. The uptake of 

32p04 from the water by CPOM was greatest in the fall after leaf fall and lowest in 

August prior to leaf fall. During fall and early winter periods when CPOM is abundant 

due to leaf fall and uptake length is short, P spiraling exerts strong controls over biotic 

processes downstream (Mulholland et al. 1985). Guasch et al. (1995) found despite high 

algal biomass, summer photosynthetic capacity decreased following enrichment. This 

was attributed to mat thickness and subsequent self-shading which couLd have prevented 

an increase in photosynthetic activity via enrichment (Guasch et al. 1995). Grazing has 

been demonstrated to increase spiraling length of P by reducing periphyton biomass and 

subsequently reducing uptake of P from the water (Mulholland et al. ] 983). Steinman et 

al. (1995) concluded that P turnover in the periphyton mat was highest under grazed 

conditions with low biomass. This study also detennined that irradiance had no 

significant effect on P turnover. 

Shorter spiraling lengths (tight spirals) are indicative of more efficient utilization 

of nutrients relative to nutrient supply. This increased efficiency is intuitive in that a 

nutrient atom cycles through the biota a greater number of times as it travels the length of 

the stream in a tight spiral (Newbold et al. 1983). 
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Patch Dynamics 

The concept of patch dynamics can be used to consider effects of biological 

communities in one patch on communities in patches directly downstream (Pringle et a1. 

1988). A patch is defined as a distinctive spatial unit that is detennined by processes 

which are attributed to its uniqueness. In lotic systems, patches may be determined by 

interactions of topography, substrata conditions, current patterns, organisms, and 

disturbance (Pringle et a1. 1988). 

Patch dynamics are more pronounced in streams with low ambient nutrient levels 

where periphyton would be located in adjacent patches in response to localized nutrient 

sources (Pringle et a1. 1988). Periphyton is more evenly distributed in nutrient rich 

environments negating the effects of patch dynamics (Pringle et al. 1988). A stream can 

thus be defined as a mosaic of nutrient micro-patches which differ in chemical nature. 

These micro-patches may reveal variable but conceivably predictable biotic responses 

among patches (pringle et aL 1988; Pringle 1990). 

Patch characteristics determine how nutrients are transported along the stream 

continuum. This temporal and spatial heterogeneity of nutrient supply allows algae to 

maintain diversity in nutrient-poor systems (Pringle et a1. 1990). Thus, nutrient spiraling 

must be evaluated in the context of patch dynamics. Processes of nutrient spiraling are 

affected by substrata patch arrangements (rime-pool) and larger stream-order variability. 

Substrata types are variable and often influenced by stream order (Vannote et aJ. 1980). 

Abiotic and biotic retention of nutrients is detennined by patch characteristics such as 
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this. Hart (1985) showed that grazing caddisflies can create spatial variability of 

periphyton (patches) which influence nutrient cycling. Surplus P and APA can be 

thought of as mechanisms periphyton possess which allow maximization ofthe ability to 

capitalize on nutrient variations attributed to patch dynamics. This increases overall 

ability of the system to retain nutrients (i.e., shorter spiraling lengths) (Pringle et al. 

1988). 

Upstream Downstream Linkage in Periphyton 

Streams are longitudinally connected ecosystems which demonstrate upstream 

downstream linkages (Mulholland et aL 1995). Fisher et al. (1982) showed linkages in N 

uptake in Sycamore Creek, Arizona. Uptake of N upstream resulted in reduced nitrate 

concentrations downstream and subsequent dominance by blue-green algae. This 

demonstrates longitudinal linkages in community structure and stream metabolism which 

are a direct result of nutrient transport in the overlying water (Fisher et al. 1982). 

Mulholland and Rosemond (1992) demonstrated upstream-dov.rnstream biotic 

linkages in Walker Branch, Tennessee. This study demonstrated that nutrient uptake can 

reduce nutrient concentrations in the overlying water and influence the structure and 

function ofperiphyton communities downstream. Responses to longitudinal depletion of 

nutrients by the periphyton community were found to be limited to P-cycling indices of 

AP A and P content of the periphyton. Concentration of SRP dec lined along a 

downstream gradient (Mulholland and Rosemond 1992). Periphyton assemblages 

continued to respond at SRP concentrations of 1-5~g·I · 1 suggesting algal APA 
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compensated for low SRP levels. Increased AP A levels were reported as SRP decreased 

longitudinally_ The P levels of the periphyton remained low under P-limiting conditions. 

Mulholland and Rosemond (1992) suggested that this may indicate reduced surplus P 

when supplies ofP are limiting or may indicate a more rapid rate of nutrient recycling 

within the mat. 

Upstream-downstream longitudinal patterns also have been reported in laboratory 

stream studies (Mulholland et al. 1995). Significant declines in SRP, N02-N03, and N:P 

ratios were reported with distance downstream. The composition of the periphyton 

community also was reported to change with distance downstream. Alkaline 

phosphatase activity increased significantly with distance. Decline of the ratio of 

nettotal P uptake rate with distance suggested downstream communities recycled P more 

efficiently. The ratio of total P uptake rate: GPP also declined longitudinally indicating 

greater P cycling withing the periphyton downstream. Mulholland et al. (1995) 

concluded that longitudinal depletion of nutrient concentrations can be mitigated by 

increased nutrient cycling which would prevent large longitudinal changes in algal 

biomass and productivity. 
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CHAPTER V 

RESULTS 

ChI. a Time Courses 

Time necessary for peak biomass was determined as occurring when further 

significant accumulation of biomass stopped. Specifically, peak biomass was defined as 

the second week in which no statistical difference existed between subsequent biomass 

parameters (chi. a and AFDW), and assured that logarithmic growth phase had ceased. 

Results of ANOV A tests and Tukey's pairwise comparisons are reported in Appendix D. 

Pilot Experiment 1 

Due to analytical problems regarding spectrophotometry, data on biological 

parameters measured during the experiment were not valid. Water chemistry data are 

described below. 

Pilot Experiment 2 

Styrofoam Substrata. There was a significant effect of time on chI. a 

concentrations in Peacheater Creek (I-way ANOVA, F=5.039, p=0.004) and Tyner Creek 

(F=5.894, p=O.002) (Table 3) (Figure 2). In Peacheater Creek, accumulation measured 
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after 2 weeks colonization time was not significantly different from measurement in all 

following weeks (p<O.05). Week 3 chI. a accumulation was also not significantly 

different from all following weeks(p<O.05). Based on the criterion that peak biomass 

occurs after the second week when no statistical difference between subsequent weeks 

was detected, peak biomass occurred after 3 weeks colonization time (Table 3, Figure 2). 

In Tyner Creek, time necessary for peak biomass occurred at 4 weeks, using the same 

criterion, i.e. it was the second week after which no statistical difference in chJ . a 

concentrations existed between weeks (p<0.05) (Table 3, Figure 2). 

Fused Silicated Disc Substrata. There was a significant effect of time on chI. a 

concentrations measured on silicated discs in Peacheater Creek (I-way ANOVA, 

F=57.639, p<O.OOl) and Tyner Creek (F=3.605, p=O.025). In Peacheater Creek, there 

were many significant differences in biomass between weeks in pairwise comparisons 

(p<O.05) and it was not possible to define the time of peak biomass. However, it was 

estimated that peak biomass was reached after 7 weeks col.onization time because by 8 

weeks biomass had declined statistically (p<0.05) (Table 3, Figure 3). Peak 

biomassoccurred after 3 weeks colonization in Tyner Creek (Table 3, Fi&rure 3). 

Styrofoam Versus Silicated Disc Substrata. Mean or median values are given in 

parentheses. Units have been given previously. In Peacheater Creek, mean chi. a 

concentrations on styrofoam substrata (9.90) were not sign.ificantly different than for 

those on silicated discs (10.26) in a paired t-test (t=-0.191, df=42, p={).850). In Tyner 

Creek, median chI . a concentrations on styrofoam substrata (8.94) were significantly 

different than on silicated discs (11 .38) (Mann-Whitney rank sum test, T=549.0, 

« 
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TABLE 111 

SIGNfFICANT DIFFERENCES IN CHL. a CONCENTRATIONS 
BETWEEN WEEKS OF COLONIZATION TIME 

Colonization Peacheater Creek T er Creek 

Pilot 2-Styro 
Week 1 2 3 4 5 6 7 ~ 2 J 4 5 6 7 .8 
Week 2 3 4 5 6 7 8 3 4 5 6 7 8 

Week 3 t 4 5 6 7 8 4 5 6 7 8 
Week 4 § 5 6 7 8 5 6 7 8 
Week 5 6 7 8 6 7 8 

Week 6 7 8 7 8 

Week 7 .8. .8. 
Pilot 2-Disc 

... 
," .. -, 

Week 1 2 3 4 5 6 7 8 2 3 4 ~ 6 7 8 "I. ' 
:~ ! 

Week 2 3 4 5 6 7 8 3 4 5 6 7 8 ! i 
Week 3 § ~ 5 6 7 .8. 4 5 6 7 8 Jt .. 
Week 4 5 6 7 .8. 5 6 7 8 

~ .. .... 
Week 5 6 1 8 6 7 8 I~~ 
Week 6 7 .8. 7 8 

,"a 
:~~ .. 

Week 7 8 .8 
,.) 

i l~ , Experiment 3 
Week 1 L.3 4 5 6 7 I 3 4 5 6 7 t! .. "" 
Week 2 :i 4 5 6 7 3 4 5 6 7 .-,-
Week3 4 5 6 7 4 5 6 7 IB 

loi 

Week 4 5 6 7 ~ 6 7 
I Week 5 t§ ~ 6 7 

Week 6 2. 2. 
Experiment 4 

Week 1 2 3 4 5 6 2 1. 4 5 6 

Week 2 3 4 5 6 3 4 5 6 

Week 3 t§ 4 ~ 6 1 5 6 

Week 4 5 6 2 6 

Week 5 ~ ~ 
The level of significance is 0.05. Weeks which share a common underline are not 
significantly different in chi. a concentration from the week in the corresponding column 
at the left. tlndicates peak biomass occurred in Peacheater and § in Tyner Creek. 
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Figure 2. Biomass accumulation as measured by mean chI. a concentration on styrofoam 
substrata summer 1996 in pilot experiment 2. Error bars are standard deviation of 
mean (n=3). Peak biomass occurred during week 3 in Peacheater Creek and 
week 4 in Tyner Creek. 
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Figure 3. Biomass accumulation as measured by mean chI. a concentration on fused 
silicated disc substrata summer 1996 in pilot experiment 2. Error bars are 
standard deviation of mean (n=3). Peak biomass occurred during week 7 in 
Peacheater Creek and week 3 in Tyner Creek. 
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p=D.020). Two grazing snails were noticed on styrofoam substrata in Peacheater Creek 

during sampling in weeks 5 and 6. No grazers were present on the silicated discs during 

the sampling period. Sihcated discs were used in remaining experiments as described in 

materials and methods. 

Experiment 3 

No data were collected after 8 weeks of colonization due to a flood that washed 

boards downstream. There was a significant effect of time on chI. a concentrations in 

PeacheaterCreek (I-way ANOVA, F=l 1.455, p<O.OOl) and Tyner Creek (F= 19.408, 

p<O.OO 1). Peak biomass was measured after 5 weeks in both Peacheater Creek and 

Tyner Creek (Table 3, Figure 4). 

Experiment 4 

Weekly chI. a concentrations in experiment 4 showed a significant effect oftime 

in Peacheater Creek and Tyner Creek (I-way ANOYA, F=8.814, p=O.OOO; F= 18.347, 

p=O.OOO). In Peacheater Creek, peak biomass was reached after 3 weeks colonization 

(Table 3, Figure 5). Data coHected in Tyner Creek did not meet the criterion used to 

detect time necessary for peak biomass accrual (Table 3, Figure 5). Biomass 

accumulation in weeks 3 through 5 was not significantly different from week 2. 

However, accumulations in weeks 3 through 5 were different from week 6 accumulation 

(Table 3). For this reason, peak biomass was determined to have occurred after 3 weeks 

colonization time. 
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Peacheater Creek 
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Colonization (Weeks) 
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Figure 4, Biomass accumulation as measured by chI. a concentration in late 
summer 1996 in experiment 3, Error bars are standard deviation of mean 
(n=3) ,Peak biomass occurred during week 5 in both Peacheater Creek 
and Tyner Creek. 
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Peacheater Creek 

1 2 3 4 5 6 
Colonization (Weeks) 

Tyner Creek 
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Figure 5. ChI. a concentrations in Peacheater Creek and Tyner Creek during experiment 
4. Error bars are standard deviations of mean (n=3). Peak biomass occurred 
during week 3 in both Peacheater and Tyner Creek. 
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Time Course Comparison 

Differences existed in weekly cW. a concentrations between time courses 

(Kruskill-Wallace I-way ANOVA on ranks, H=28.8, df=3, p<O.OOl). Pairwise 

comparisons were made using Dunn's test. Differences in ranks are given in 

parentheses. 

In Tyner Creek, chl. a concentrations during the last time course (experiment 4) 

were significantly different than the first time courses (pilot experiment 2) on styrofoam 

(33.4) and sihcated disc (28.0) in early summer and in experiment 3 (31.5) in late 

summer in Peacheater Creek (p<0.05). In Peacheater Creek, chl. a concentrations 

during experiment 4 were significantly different than in experiment 2 on styrofoam 

substrata (26.23) and sihcated discs (23.7]) (p<O.05). Chl. a concentrations during 

experiment 4 were also significantly different than during experiment 3 (25.54) (p<0.05). 

Statistical tables are presented in Appendix D. 

AFDW Time Courses 

Experiment 3 

In experiment 3, AFDW was analyzed as another measure of biomass. Data were 

not collected for week I due to analytical error. Statistical tables and AFDW means are 

presented in Appendix D. F-ratios were significant in Peacheater Creek suggesting 

significance of time (I-way ANOVA, F=11.069, p=O.OOl ). In Peacheater Creek, no 

significant difference existed between AFDW accumulated after 2 weeks and fol1owing 
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Figure 6. Biomass accumulation as measured by AFDW in late swnrner 1996 in 
experiment 3. Error bars are standard deviations of mean (n = 3). Peak biomass 
occurred during week 4 in Peacheater Creek and week 3 in Tyner Creek 
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TABLE IV 

SIGNIFICANT DIFFERENCES IN AFDW BETWEEN WEEKS OF 
COLONIZATION TIME DURING EXPERIMENT 3 

Colonization Peacheater Creek Tyner Creek 
Time 

Week 2 3 4 5 6 7 3 4 5 6 

Week 3§ 1 5 6 1 4 5 6 

Week4t 5 6 7 5 6 

Week 5 6 1 (2 

Week 6 7 

Week 7 

60 

7 

7 

7 
7 

1 

The level of significance is 0.05. Weeks that share a common underline are not 
significantly different in AFDW concentrations from the week in the corresponding 
column at the left. t Indicates peak AFDW occurred in Peacheater Creek and § in Tyner 
Creek 

weeks (p<0.05) (Table 4). Differences did exist between week 3 accumulation and 

weeks 5 through 7 (p<0 ,05). The second week in which all subsequent measurements 

were statistically the same was week 4. Thus, peak AFDW was reached after 4 weeks 

colonizati,on time in Peach eater Creek (Table 4, Figure 6). 

A similar trend in AFDW was followed in Tyner Creek (Figure 6). However, F-

ratios were not significant (1-way ANOVA, F=3.290, p=O,046). This suggests no 

difference existed between weekly AFDW measurements in Tyner Creek after 3 weeks. 

Therefore, peak biomass occurred after 3 weeks colonization time using the criterion 

above (Table 4, Figure 6). Tyner Creek developed a mature periphytic mat slightly 

sooner than Peacheater Creek as measured by AFDW. 

Chlrorophyll a Versus AFDW Time Courses 
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Both biomass parameters were measured in experiment 3. No significant 

correlation was detected in either stream (p>O.I). Correlation coefficients were r = 0.296 

and r = 0.300 in Peach eater and Tyner Creeks, respectively. 

Time necessary for peak biomass to occur in all time courses is summarized in 

Table 5. In Peacheater Creek, peak biomass occurred after similar colonization periods 

in all time courses ( 3 to 5 weeks). The exception was the first time course which 

occurred 24 June through 28 August 1996 on silicated discs. Peak biomass occurred in 

this experiment after 7 weeks colonization; the latest of all time courses. Peak biomass 

occurred later in experiment 3 (5 weeks) than in experiment 2 on styrofoam substrata (3 

weeks) and experiment 4 (3 weeks). 

Time necessary for peak biomass accumulation, as measured by chI. a, also 

varied in Tyner Creek (Table 5). Peak biomass on silicated disc substrata occurred 

sooner during experiments 2 and 4 (3 weeks) than during experiment 3 (5 weeks). 

Longer colonization time was necessary for styrofoam substrata. Unlike Peacheater 

Creek, the longest time period needed for periphyton to achieve maximum biomass in 

Tyner Creek was 5 weeks during experiment 3. The greatest discrepancy between the 

two streams occurred during the second pilot experiment. Peak concentrations of chI . a 

occurred sooner on silicated discs in Tyner Creek (2 weeks) as compared to Peacheater 

Creek (7 weeks). 

(n Peacheater Creek peak AFDW occurred one week later (week 4) than peak chI. 

a (Table 5). Peak biomass occurred after the same colonization period for both chI. a 

and AFDW in Tyner Creek (Table 5). 
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TABLE V 

COMPARISON OF TIME NECESSARY FOR PEAK 
BIOMASS ACCUMULATION IN PEA CHEATER CREEK AND TYNER CREEK 

--- - --- -------

EXPERIMENT PARAMETER 

Pilot 2 - Styrofoam ChI. a 

Pilot 2 - Silicated Disc 

Experiment 3 
Experiment 3 

Experiment 4 

ChI. a 

ChI. a 
AFDW 
ChI. a 

PEACHEATER 
CREEK -- ----
3 weeks 

7 weeks 

5 weeks 
4 weeks 

3 weeks 

TYNER CREEK 

- --- -
4 weeks 

3 weeks 

5 weeks 
3 weeks 

3 weeks 

62 

Necessary colonization time for peak biomass accumulation, as measured by chI . 

a, occurred sooner in the winter than the summer in most time courses in both streams 

(Table 5). 

Surplus P Time Courses 

Signjficance in weekly concentrations was detennined with a l-way ANOV A 

test. Differences between weekly measurements were detennined by Tukey's pairwise 

comparisons test. Statistical tables are reported in Appendix D. 

Experiment 3 

Areal Surplus Phosphorus. Surplus P not nonnalized to a biomass parameter is 

referred to as areal (tJ.g surplus P . disc-I). Surplus P of periphyton accumulation was 

measured beginning at 2 weeks colonization time. There was a significant effect of time 

in concentrations in Peacheater Creek (F=8. 8 14, p<0. 001) and Tyner Creek (F=5. 691, 
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p=O.008). 

In Peacheater Creek, areal surplus P increased with increasing colonization time 

(Figure 7). In pairwise comparisons, week 7 areal surplus P was statistically greater than 

concentrations in weeks 2 through 4 (p<O.05) (Table 6). No statistical differences 

existed in areal surplus P concentrations after 5 weeks colonization time (p>O.05). 

In Tyner Creek, concentrations of areal surplus P also increased with colonization 

time (Figure 7). Pairwise comparisons of week 2 surplus P with all other weeks revealed 

concentrations measured during week 2 were significantly less than weeks 5 through 7 

(p<O.05) (Table 6). No significant differences between areal surplus P were detected 

after 3 weeks colonization time (p>O.05) (Table 6). 

Surplus P Normalized to CW o a. Weekly concentrations of surplus P nonnahzed 

to chI. a were significantly different in PeacheaterCreek (F=10.919, p=().OOl) and Tyner 

Creek (F= l 1.638, p<O.OOOl). When normalized to chl. a, surplus P did not increase with 

increasing colonization time as when expressed on an areal basis (Figure 8). 

In Peacheater Creek, pairwise comparisons of week 2 surplus P concentrations 

with all other weeks revealed significant differences with between week 2 and weeks 4, 

6, and 7 surplus P (p<O.05) (Table 6). Pairwise comparisons with week 3 and fonowing 

weeks also revealed week 4 surplus P was significantly less than week 3 (p<O.05) (Table 

6). No significant differences existed between surplus P concentrations after week 4 

(p>O.05) (Table 6, Figure 8). 

In Tyner Creek, pairwise comparisons of week 2 surplus P revealed statistical 

differences with all other weeks (p<O.05) except week 6 (p>O.05) (Table 6), No 
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Figure 7. Areal surplus P content of periphyton accumulated on siLicated disc substrata 
over time during experiment 3. Error bars are standard deviation of mean 
(n=3). 
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TABLE VI 

SIGNIFICANT DIFFERENCES IN SURPLUS P CONCENTRATIONS 
BETWEEN WEEKS OF COLONIZATION Tllv1E 

-------- -. - - -,-------- --- -- ------ ------ -- -.--- f 
~~ Colonization Time Peach eater Creek Tyner Creek .. 

. ----~ ----------- -------- --- -----
Areal 
Experiment 3 .. 
Week 2 3 4 5 6 7 L-4 5 6 7 .. 
Week 3 4 ~ 6 7 4 5 6 7 

~ I; 

Week 4 L-.Q 7 5 6 7 

WeekS 6 7 6 7 

Week 6 Z Z 
Week 7 

Normalized to ChI. a 
Experiment 3 

, .. .... 
. : ;) 

Week 2 2- 4 2- 6 7 3 4 5 ..Q... 7 Iq .. ; 
Week 3 4 5 6 7 4 5 6 7 :1 

Week 4 5 6 7 2- 6 .2 
... 
I' ~ 

Week 5 6 7 6 7 
!~ 

:f 
Week 6 Z 7 

"i 
Week 7 Ie .. 

' ~ 

Normalized to AFDW :: ~ 
Experiment 3 

Week 2 3 4 5 6 7 3 -L 5 ~ 7 

Week 3 4 5 6 .1. 4 5 6 .2 
Week 4 5 6 7 5 6 7 

·1 WeekS 6 7 ~ 7 

Week 6 7 7 

Week 7 
The level of significance is 0.05. Weeks which share a common underline are not 
significantly different in surplus P concentration from the week in the corresponding 
column at the left. 
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Figure 8. Surplus P content ofperiphyton nonnalized to chi. a accumulated on silicated 
disc substrata over time during experiment 3. Error bars are standard deviation of 
mean (n=3). 
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Figure 9. Surplus P content of periphyton nonnalized to AFDW accumulated on silicated 
disc substrata over time during watershed comparison experiment 3. 
Error bars are standard deviation of mean (n=3). 
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significant difference existed between week 3 through 7 in pairwise comparisons of week 

3 surplus P with following weeks (p>0,05) (Table 6). However, other pairwise 

comparisons revealed week 6 surplus P was significantly greater than for week 4 and 7 

(p<O,05) (Table 6), Other than week 6 surplus P, no significant differences existed in 

surplus P normalized to chi. a in Tyner Creek after 3 weeks colonization time, 

Su.rplus P Nonnahzed to AFDW. Surplus P concentration in periphyton 

nonnalized to AFDW (/.1g surplus P . (mg AFDWJl ) also showed a sibrnificant effect of 

time in Peacheater Creek and Tyner Creek, respectively (I-way ANOVA, F=13.144, 

p<O.OOl; F=5.249, p=0.0] 0). In both streams, surplus P concentrations normalized to 

AFDW increased initially, then declined and increased again (Figure 9). In Peacheater 

Creek and Tyner Creek, week 6 surplus P was significantly less than weeks 3 through 5 

and week 7 concentrations (p<0.05) (Table 6). This made it difficult to use these data to 

predict an accurate time to sample surplus P normalized to AFDW. 

Experiment 4 

Total SUWlus P. There was a significant effect of time on areal surplus p\ 

concentrations in Peacheater Creek (F=8.66], p=0.001) and Tyner Creek (F=1 0.336, 

p=O.OOl). In Peacheater Creek, the same trend of increasing surplus PI concentrations 

with increasing colonization time was apparent (Figure 10). No significant difference 

existed in areal surplus PI after 2 weeks colonization time (p<O.05) (Table 7). Tyner 

Creek data indicated some deviation from this trend (Figure] 0). In pairwise 

comparisons of weeks 1,2, and 3 with following weeks, areal surplus PI after 4 weeks 
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colonization was significantly greater than all other weeks (p<O.05) (Table 7, Figure 10). 

No significant differences between areal surplus P t concentrations occurred after 4 weeks 

colonization time in Tyner Creek (p>O.05) (Table 7). 

A significant effect of time also existed among concentrations of weekly surplus 

Pt normalized to chI. Gin Peacheater Creek (F=6.300, p=O.004) and Tyner Creek 

(F=15.380, p=O.OOO). In Peacheater Creek, the same inverse curvilinear relationship 

between surplus Pt concentrations, norma)]zed to chI. G, and time was observed as in 

experiment 3 (Figure 11). Pairwise comparisons of weeks 1 concentrations with 

following weeks revealed week 1 surplus p. was significantly greater that weeks 3 

through 6 (Table 7). Further, week 5 surplus Pt was significantly less than week 2 

surplus Pt (p<O.05) (Table 7). No statistical differences existed in surplus p. 

concentrations after 3 weeks colonization (p>O.05) (Table 7). 

Temporal trends in Tyner Creek were distinct from those in Peacheater Creek 

(Figure 11). Pairwise comparisons of week 1 with following weeks indicated weeks 3, 5, 

and 6 were significantly less than concentrations during week 1 (p<O.05) (Table 7). 

Week 2 surplus PI was also significantly greater than weeks 3, 5, and 6 (p<O.05) (Table 

7). Further, week 4 was significantly greater that week 6 (p<O.05) (Table 7). No 

difference existed in surplus PI concentrations after 3 weeks colonization time (p>O.05) 

except week 6 was significantly less than week 4 surplus PI (p<O.05) (Table 7). 

Available Surplus P. There was a significant effect of time on estimates of areal 

surplus Pi in Peacheater Creek (F=6.008, p=D.003) and Tyner Creek (F=8.499, p=O.OOI). 

In Peacheater Creek, compared to week 1, concentrations of surplus Pi increased to 3 
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TABLE VII :1 
I~ 

SIGNIFICANT DIFFERENCES IN SURPLUS P CONCENTRATIONS / .... , 
BETWEEN WEEKS OF COLONIZA nON TIME DURlNG EXPERIMENT 4 c~! . :::, 

------.----- - ---- ---- ; ~I 
:~ 

Colonization Time Peacheater Creek TY!1er Creek ! ~ 
; ~ 

Areal Surplus P t .Q 
• Week 1 2 3 4 5 6 2 3 4 5 6 

Week 2 3 4 5 6 J. 4 5 6 :::; 
Week 3 4 5 6 4 L-.§ II Week 4 5 6 L-.§ 

Week 5 § .Q 
Week 6 

Surplus PI 
Normalized to ChI. a 
Week 1 .l. 3 4 5 6 .2 3 -..A. 5 6 

Week 2 3 4 5 ~ 3 A.. 5 6 

Week 3 4 5 6 4 5 6 .~ 

." -4 

Week 4 5 6 i 6 ;) 

Week 5 Q ~ 
. ~ 
.~ 

Week 6 I ... ... 
Areal Surplus Pi 

' ) 

~ ~ Week 1 .l. 3 4 5 6 .l. 3 4 5 6 
Week 2 3 4 5 6 l 4 2-Q 

: ~ 

:~ Week 3 4 5 6 4 5 6 

Week 4 5 6 5 6 

Week 5 Q Q 

Week 6 

Surplus Pi 
Normalized to ChI. a 
Week 1 2... 3 4 5 6 .2.. 3 4 5 6 

Week 2 J... 4 5 6 3 4 5 6 

Week 3 A.. 5 6 A.. 5 6 

Week 4 5 .Q. 5 6 

Week 5 ~ .Q.. 

Week 6 
The level of significance is 0.05. Weeks sharing common underlines are not 
significantly different from the week in the corresponding column at the left. 
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Figure to. Total and available areal surplus P concentrations measured from 13 January 
through 17 February 1997 during experiment 4 in Peacheater Creek and Tyner 
Creek. Circles denote total surplus P and squares denote available surplus P. 
Error bars are standard deviation of mean (n=3). 
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Figure 11. Total. and available surplus P concentrations normalized to cW, a measured 
from 13 January through 17 February 1997 during experiment 4 in Peach eater 
Creek and Tyner Creek. CiTcles denote total surplus P and squares denote 
available surplus p, Error bars are standard deviation of mean (n=3). 
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weeks colonization time, decreased, and increased again at 6 weeks colonization (Figure 

10). Weeks 3 and 6 were significantly greater than week 1 surplus Pi (p<0.05) (Table 7). 

No significant differences existed after 2 weeks coloruzation (p>0.05) (Table 7). 

In Tyner Creek, concentrations of areal surplus Pj increased up to 3 weeks 

colonization time and then level off (Figure 10). Week 1 surplus Pi was significantly less 

than weeks 3 through 6 (p<0.05) (Table 7). Further, week 2 was significantly less than 

week 4 (p<0.05) (Table 7). No statistical differences existed in painvise comparisons of 

surplus Pi after 3 weeks colonization time (p>0.05) (Table 7). 

Significant differences in time also existed in concentrations of P j when 

nonnalized to chI. a in Peacheater Creek (F=41.438, p=O.OOO) and Tyner Creek 

(F=35 .642, p=O.OOO). In Peacheater Creek, surplus Pj demonstrated an inverse 

curvilinear relationship over time (Figure 11). Considerable differences were evident in 

pairwise comparisons of surplus P j concentrations (Table 7). Surplus P j in weeks 1 and 2 

were significantly greater than all other measurements (p<O.05). The trend for surplus P 

in one week to be significantly greater than in following weeks held true throughout the 

time course with the exception of week 5 (Table 7). Week 5 surplus Pi was consistently 

less than other weeks in all pairwise comparisons (p<O.05) (Table 7). No pai:rwise 

comparisons revealed a point where statistical differences ceased to exist (Table 7). 

In Tyner Creek, surplus Pj concentrations decreased from week 1 to week 6 

(Figure 11). Considerable differences also existed in pairwise comparisons of surplus Pi 

concentrations in Tyner Creek (Table 7). Pairwise comparisons of surplus Pi measured in 

weeks 1 and 2 showed these weeks to be significantly greater than all other weeks 
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(p<0.05) (Table 7). Pairwise comparison of weeks 3 and 4 with following weeks showed 

these weeks were significantly greater than weeks 5 and 6 (p<0.05) (Table 7). As in 

Peach eater Creek, no pairwise comparisons revealed a point where statistical differences 

ceased to exist (Table 7). 

Time Course Comparisons 

Comparisons of summer surplus P data collected during experiment 3 and winter 

surplus P data collected during experiment 4 were made for available surplus P only. In 

reporting the results below, the mean or median is given in parentheses. Units are 

omitted, but have been given previously. 

Median concentrations of areal surplus Pi in Peacheater Creek during experiment 

3 (364.5) were significantly different than during experiment 4 (158.2) in a Mann-

Whitney rank sum test (T=439.0, p<0.001, n= 18). [n Tyner Creek, areal surplus Pi 

concentrations during experiment 3 (405.4) were significantly different than during 

experiment 4 (100.2) in a Mann-Whitney rank sum test (T=459.0, p<0.001, n= 18). 

Normalized to chI. a, median concentrations of surplus Pi in Peach eater Creek during 

experiment 3 (0.280) were also significantly different than during experiment 4 (0.160) 

in a Ma.nn-Whitney rank sum test (T=376.0, p=0 .022, n= 1 8). In Tyner Creek, surplus Pi 

concentrations normalized to chI. a during experiment 3 (0.380) were significantly 

different than experiment 4 (0.195) in a Mann-Whitney rank sum test (T=381.0, p=O.014, 

n= 18). 

Colonization times necessary for no statistical differences between subsequent 
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surplus Pi concentrations were different between experiments in Peacheater Creek. Areal 

surplus Pi demonstrated no significant differences after 5 weeks of colonization in 

experiment 3. This plateau was reached considerably sooner in experiment 4 (2 weeks). 

The point where statistical differences ceased to exist were consistent across experiments 

in Tyner Creek (3 weeks). 

Comparisons of surplus Pi nonnalized to chI. a between experiments were not 

possible since statistical differences always existed in experiment 4 in either stream. 

Table 8 summarizes colonization times in which statistical differences between surplus Pi 

concentrations ceased to exist. 

TABLE VITI 

COMPARISON OF COLONIZATION TIME 
NECESSAR Y FOR NO STATISTICAL DIFFERENCES IN 

SURPLUS P CONCENTRA nONS TO EXIST BETWEEN EXPERIMENTS 

EXPERIMENT SURPLUSP j 

Experiment 3 Areal 

Experiment 3 Nonnalized to ChI. a 
Experiment 4 Areal 

Experiment 4 Nonnalized to ChI. a 

PEACHEATER TYNER 
CREEK CREEK 

5 Weekst 3 Weekst 

4 Weekst 3 Weeks t 

2 Weeks 3 Weeks 

t t 

t Surplus P was not measured in periphyton colonized 1 week 
t There did not exist a time when no statistical di fferences occurred 

Winter Total Swplus P versus Avail.abl.e Surplus P. In Peacheater Creek, mean 

concentration of areal surplus P t (355.7) was significantly different than that of P j 

(160.3) in a paired t-test (t=-5.43, p<O.OOOI, df=34). Available and total areal surplus P 

increased together during weeks 1 through 4 (Figure 10). Total P stored increased in 
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unison with avaiJable P in week 5. With increasing colonization time, periphyton tended 

to store more PI in Peacheater Creek. 

In Tyner Creek, mean concentration of areal surplus PI (201.1) was significantly 

different than that of P j (97.3) in a paired t-test (t=-4.27, p=0.0002, df=34). Total and 

available surplus P tended to follow the same trend during weeks 1 through 4. The 

exception was week 3, when mean concentration of total (100.8) and available (146.8) 

surplus P concentrations were not significantly different in a paired t-test (t=-1.21, df=4, 

p=O.291) (Figure 10). Periphyton allowed to colonize for longer periods stored less total 

P in Tyner Creek. 

When nonnalized to chI. a, median concentration of surplus Pt(0.335) in 

Peacheater Creek was significantly different than that of Pi (0.160) (Mann-Whitney rank 

sum test: T=234.5, p=O.019, n=18). In Tyner Creek, median concentration of surplus PI 

(0.335) was also significantly different than that of Pi (0.195) (Mann-Whitney rank sum 

test: T=265.0, p=O.033, n= 18). In both streams, the relative difference between total 

surplus P and available surplus P tended to decline with increasing periphyton maturity 

(Figure 11). 

APA Time Course 

A significant effect of time was detected in weekly measurements of APA in 

Peacheater Creek (F=4.543, p=0.005) and Tyner Creek (F=6.605, p=O.OOl). In 

Peacheater Creek AP A decreased from week 1 to 2 colonization then increased to 4 , 

weeks colonization (Figure 12). APA was consistently below 1.01 nM MF-p:g chI. a-
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TABLE IX 

SIGNrFICANf DIFFERENCES IN APA CONCENTRATIONS 
BETWEEN WEEKS OF COLONIZATION TIME DURING EXPERIMENT 4 

-------------------------------------
Colonization Time Peacheater Creek T er Creek 

Week 1 2 3 4 5 6 -1 3 4 5 6 

Week 2 .l 4 5 6 3 4 L-Q 
Week 3 4 5 6 1. 5 6 

Week 4 5 6 5 6 

Week 5 § § 

Week 6 

The level of significance is 0.05. Weeks which share a common underline are not 
significantly different in APA from the week in the corresponding column at the left. 
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J·hr-1. Pairwise comparisons of week 1 APA with all other weeks revealed week 1 APA 

was significantly greater than week 2 (p<0.05) (Table 9). Further, week 4 APA was 

significantly greater than week 2 APA (p<O.05) (Table 9). No statistical differences 

existed in AP A after 3 weeks colonization time (Table 9). 

APA in Tyner Creek increased from week 2 to 3 then decreased through week 6 

(Figure 12). Week 1 APA was significantly less than week 3 APA (p<O.05) (Table 9). 

Week 2 was significantly less than weeks 3 and 4 APA (p<O.05). Week 3 and 4 APA 

were statistically similar (p>O.05) and significantly greater than weeks 5 and 6 (p<O.05) 

(Table 9). No differences existed in APA in Tyner Creek after 4 weeks colonization time 

(p>O.05) (Table 9). 

Watershed Comparisons 

Biological Parameters 
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In experiment 2, mean concentration of chI. a on styrofoam substrata in 

Peacheater Creek (9.90) was not significantly different than Tyner Creek (8.83) in a 

paired t-test (t=O. 724, p=OA73, df=46). Mean concentration of ch1. a on silicated discs 

during experiment 2 in Peacheater Creek (10.3) was not significantly different than 

Tyner Creek (11.8) (paired t-test, t=-0.842, p=OA05, df=38). In experiment 3, mean chl . 

a in Peacheater Creek (10.6) was not significantly different than Tyner Creek (9.50) 

(paired t-test, t=0.506, p=0.616, df=38). In experiment 4, mean chI. a in Peacheater 

Creek (12.77) was significantly different than Tyner Creek (9.12) (paired t-test, t=2.75, 

p=O.008, df=66). In experiment 3, mean AFDW in Peacheater Creek (4.26) was not 

significantly different than Tyner Creek (5.70) (paired t-test, t=-1.68, p=0.102, df=32). 

In experiment 3, mean areal surplus Pi in Peacheater Creek (359.9) was not 

significantly different than Tyner Creek (403.2) in a paired t-test (t=-1.05, p=O.304, 

df=32). When normalized to chl. a, median surplus Pi in Peacheater Creek (0.280) was 

not significantly different than Tyner Creek (0.380) (Mann-Whitney rank. sum test, 

T=245.5, p=0.076, n=17). When normalized to AFDW, median surplus Pi in Peacheater 

Creek (0.787) also was not significantly different than Tyner Creek (0.693) (Mann-

Whitney rank sum test, T=314.0, p=O.582, n= 17). 

In experiment 4, mean areal surplus Pi in Peacheater Creek (160.3) was 

significantly different than Tyner Creek (97.3) in a paired t-test (t=4.14, p=O.002, df=34). 

When normalized to chI. a, median surplus Pi in Peacheater Creek (0.160) was not 

significantly different than Tyner Creek (0. 1 95)(Mann-Whitney rank sum test, T=345.5, 

p=0.704, n=18). Mean areal surplus PI in Peacheater Creek (355.7) was significantly 
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different than Tyner Creek (201.1) (paired t-test, t=3. 80, p=O.0006, df=34). When 

nonnalized to chI. a, median surplus P! in Peacheater Creek (0.335) was not significantly 

different than Tyner Creek (0.335) (Mann-Whitney rank sum test, T=360.5, p=O.393, 

n=18). Median APA in Peacheater Creek (0.670) was significantly lower than median 

APA in Tyner Creek (2 .840) (Mann-Whitney rank sum test, T=1088.5, p<0.0001 , n=28). 

Water ChemistIy Parameters 

SRP and TP During Experiments 1 - 3. Mean SRP in Peacheater Creek (41.3) 

was significantly different than Tyner Creek (19.8) in a paired t-test (t=7.55, p<O. 0001, 

df=129). Mean TP in Peacheater Creek (50.8) was also significantly different than Tyner 

Creek (30.7) in a paired t-test (t=4.63, p<O.OOOI, df=84). Peacheater Creek SRP and 

Tyner Creek SRP were significantly correlated (p<O.Ol, r = 0.96) (Figure 13). Both TP 

and SRP increased in concentration in response to a flood which occurred 26, 27 

September 1996 (Figure 13). Mean TP, SRP, nitrate-N, chloride, and sulfate-S 

concentrations and sampling data are reported in Appendi x A 

At the beginning of the study in May, 1996, SRP concentrations in Peacheater 

Creek exceeded 40 J,lglL, then declined in early June 1996 to below 30 J,lglL (Figure 13). 

Concentrations exceeded 30 j..tglL from early June to late August 1996. The lowest mean 

concentration occurred in early September 1996 (21 j..tgIL). Following a major flood, 

mean SRP concentration in Peacheater Creek was four times higher than the previous 

week (109 j..tglL). SRP concentration after the flood (] 09) was significantly different 

than the previous week (27) (paired t-test, t=45.3, p<O.OOO l, df=4). Mean SRP 
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concentration was 41 .3 f,lgIL during 20 May through 3 October 1996. 

Concentrations of SRP in Tyner Creek were less than 20 .ugIL in May, 1996, then 

rose to above 30 .ugIL in early June and mid July (Figure 13). These were the highest 

concentrations reported and were not in response to a flood_ Mean concentrations of 

SRP remained near 20 f,lgIL throughout the summer. In late August, SRP concentrations 

declined to below 14 .ug/L. The minimum mean SRP concentration was 1 f,lg/L on 24 

August 1996. In response to the flood event in late September, SRP concentrations rose 

8 times to 78 f,lglL. Mean SRP concentration measured after the flood event (78) was 

significantly different than the previous week (10) (paired t-test, t=-34.5, p<O.OOOl , 

df=4). Mean SRP concentration during the sampling period was 20 f,lglL. 

Total P also foHowed similar patterns in both streams (Figure 13). There was a 

significant correlation of TP concentrations between Peacheater Creek and Tyner Creek 

from May to October 1996 (p<0.05, r = 0.81). Maximum concentrations of TP occurred 

on 10 June 1996 in both streams. On this date, concentrations of TP in Peacheater Creek 

and Tyner Creek were] 11 .ugIL and 71 f,lgIL, respectively. Concentrations ofSRP were 

relatively low on this date. Mean TP concentration in Peacheater Creek during 20 May 

through 3 October 1996 was 51 f,lg/L. In Tyner Creek, mean concentration of TP during 

this period was 31 f,lglL. Concentrations ofTP did rise in response to the flood event in 

late September, 1996, however, these concentrations were lower than those reported in 

June, 1996 (Figure 13). 

SRP and TP Experiment 4. During 13 January to 17 February 1997, mean SRP 

concentration in Peacheater Creek (21 .8) was signi fi cantly higher than in Tyner Creek 
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(12.3) (paired t-test, t=8.48, p<O.OOOI, df=34). Mean TP concentration in Peacheater 

Creek (23.6) was also significantly higher than TP in Tyner Creek (18.1) (paired t-test, 

t=2.40, p=0.255, df=22) (Figure 14). Water chemistry data are reported in Appendix A. 

SRP concentrations in Peacheater Creek and Tyner Creek were significantly 

correlated (p<0.05, r=0.50). At the beginning of this experiment in January, ] 997, SRP 

concentrations in Peacheater Creek were 26 ,uglL (Figure 14). Concentrations ofSRP 

declined in late January 1997 to below 20 ,uglL, and then increased to 21 ,ugIL by mid 

February, 1997. In Tyner Creek~ SRP concentrations never exceeded 20 ,ugIL. 

Maximum SRP occurred on 20 January 1997 (18 J..lgIL). SRP concentrations declined to 

5 J..lglL in early February 1997. Other measurements ranged from 11 J..lglL to 13 J..lg/L in 

Tyner Creek. 

Total P concentrations followed similar trends in both streams (Figure 14). TP 

concentrations in Peacheater Creek and Tyner Creek were significantly correlated 

(p<O.OI, r = 0.72). Mean concentrations were the same (21J..lglL) in both streams on 20 

January 1997. In Peacheater Creek, TP concentrations at the beginning of experiment 

exceeded 30 J..lgIL. By the end of January ]997, TP concentrations had declined to 15.1 

f..lg/L. Total P then increased in February 1997 to more than 26 f..lg/L. The same decline 

in TP concentrations was also seen in Tyner Creek. On ] 3 January 1997, TP 

concentration in Tyner Creek was 26.5 )i.gIL. The minimum TP concentration was 

recorded in late January (11.9 ,ugIL). Total P concentration then increased to above 20 

f..lglL in mid February. 

Summer Versus Winter P Data. Mean SRP concentration measured in Peacheater 
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Creek during the summer (20 May to 3 October 1996) (41.3) was significantly higher 

than during the winter (13 January to 17 February 1997) (21.8) (paired t-test, t=-4.65, 

p<O.OOOl, df=85). In Tyner Creek, mean SRP concentration in the summer (19.8) was 

also significantly higher than during the winter (12.3) in a paired t-test (t=-2.09, p=O.040, 

df=81). 

Anion Concentrations During Experiment 1-3 

Units for means or medians given in parentheses for nitrate-N, chloride, and 

sulfate are mWJ-,. From 20 May to 3 October 1996, the mean nitrate-N concentration in 

Peacheater Creek (4.70) was not significantly different than Tyner Creek (3.92) (paired t-

test, t=O.995, p=O,321, df=142). Early in the study, nitrate-N concentrations were above 

3 mg N03-NIL in both streams. Nitrate concentrations steadily declined as the summer 

progressed (Figure 15). Minimum values occurred on 24 August 1996 in both streams. 

Minimum concentration in Peacheater Creek was 0.90 mg NO.1-NIL and 0.92 mg N03-

NIL in Tyner Creek. Nitrate concentrations then rose to concentrations similar to those 

recorded in early summer (Figure 15). 

Mean chloride concentration in Peacheater Creek (12.81) was also not 

sigrrificantly different than Tyner Creek (1] .82) in a paired t-test (t=0.625, p=O,533, 

df=142). Chloride concentrations were consistently below 10 mgIL in May through 

August 1996 in both streams (Figure 15). Concentrations in Tyner Creek were somewhat 

more variable. Chloride concentrations increased six fold in Tyner Creek and eight fold 

in Peacheater Creek from 24 August to 3 September 1996. Maximum chloride 

~I .. ... '. • l 
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concentration in Peacheater Creek was 31.5 mgIL and 36.1 mgIL in Tyner Creek 

measured 20 September 1996. Concentrations of chloride remained at this elevated level 

for the remainder of the sampling period in both streams. 

Mean sulfate concentration in Peacheater Creek (7.01) was not significantly 

different than Tyner Creek (6.47) in a paired t-test (t=0.419, p=O.676, df= 130). Sulfate 

concentrations were variable for both streams during the sampling period (Figure 15). 

No data were available for 17 - 24 August 1996. In Peacheater Creek, concentrations 

ranged from 2.4 mgIL to 11 .5 mgIL prior to a flood event in late September. Sulfate 

concentrations ranged from 1.9 mgIL to 7.7 mgIL in Tyner Creek during the same period. 

Proceeding the flood, sulfate concentrations rose to 27.7 mgIL and 30.3 mgIL i.n 

Peacheater Creek and Tyner Creek. 

Anion Data During Experiment 4 

From 13 January to 17 February 1997, the mean nitrate-N concentration in 

Peacheater Creek (3.32) was significantly different than Tyner Creek (2.57) (paired t-test, 

t=5.57, p<O.OOOI, df=34). Nitrate-N concentrations in Peacheater Creek ranged from 

3.6 mg N03-N/L in early January to 2.9 mg NO.1-NIL in mid February. In Tyner Creek, 

concentrations ranging from 3.2 mg N03-NIL to 1.8 mg N03-N/L were observed. In both 

streams, maximum concentration of N03-N occurred on 13 January and minimum 

concentration occurred on 17 February 1997 (Figure 16). 

Mean chloride concentration in Peacheater Creek (7.53) was signifi.cantly 

different than Tyner Creek (5.97) (paired t-test, t= 1 1.3, p<O.OOOl , df=34). 
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Concentrations of ch10ride in Peacheater Creek ranged from 7.2 mgIL to 7.6 mgIL. In 

Tyner Creek, chloride concentrations ranged from 5.2 mgIL to 6.6 mgIL. Minimum 

89 

mean chloride concentrations were recorded on 17 February 1997 in both streams (Figure 

16). 

Sulfate concentrations followed a different trend (Figure 16). Mean sulfate 

concentration in Peacheater Creek (9.43) was not significantly different than Tyner 

Creek (8.55) (paired t-test, t=O.297, p=O.768, df=34). In Peacheater Creek, mean sulfate 

concentration increased through January 1997 from 4.7 mgIL to 6.6 mgIL. A similar 

increase was documented in Tyner Creek~ however, the increase continued through 

February. Maximum mean sulfate in Peacheater Creek and Tyner Creek was 23.75 mgIL 

and 24.14 mgIL, respectively reported on 10 February 1997. This represented a 5 fold 

and 3 fold increase in Peacheater Creek and Tyner Creek, respectively. Sulfate 

concentration declined in both streams the foUowing week. 

Winter Versus Summer Anion Data 

Mean nitrate-N concentration measured in Peacheater Creek during the summer 

(4.70) was not significantly different than in the winter (3.32) (paired t-test, t=-1.13, 

p=O.263, df=88). In Tyner Creek, mean nitrate-N concentration in the summer (3.92) 

was also not significantly different than in the winter (2.57) (paired t-test, t=-2.49, 

p=O.178, df=88). 

Differences between seasons were established with the chloride data. Mean 

chloride concentration measured in Peacheater Creek during the summer (12.84) was 
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significantly different than in the winter (7.53) (paired t-test, t=-2.09, p=0.039, df=88). 

In Tyner Creek, mean chloride concentration in the summer ( 11.77) was also 

significantly different than in the winter (5 .97) (paired t-test, t=-2.49, p=O.015, df=88). 

Mean sulfate-S concentration measured in Peacheater Creek during the summer 

(7.01) was not significantly different than in the winter (9.43) (paired t-test, t= 1.38, 

p=0.170, df=82). In Tyner Creek, mean sulfate-S concentration in the summer (6.47) 

was also not significantly different than in the winter (8.55) (paired t-test, t=0.900, 

p=O.371, df=82) . 

Ecological Relationships 

SRP Versus Surplus P 

Experiment 3. On an areal basis, there was no detectable relationship between 

SRP and surplus P in Peacheater Creek or Tyner Creek during experiment 3 (p>O.05) 

90 

(Table 10). SRP was the dependent variable in all correlations. Respectively, surplus P 

, nonnalized to chI. a, and SRP were positively correlated in Peach eater Creek (p<0.05, r 

= 0.51) (Table 10). No significant correlation was detected in Tyner Creek (p>O.05) 

(Table 10). In both streams, the highest mean SRP concentration was associated with the 

highest mean surplus P concentration normalized to chi. a (Figure 17). A significant 

relationship of surplus P and SRP only existed when surplus P concentrations were 

normalized to chi. Q. Concentrations of surplus P normalized to AFDW showed no 

relationship to SRP in Peacheater Creek or Tyner Creek (p>O. I) (Table 10). 
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TABLE X 

ST A TlSTICAL CORRELA TlONS OF ECOLOGICAL PARAMETERS 

Experiment 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

4 

SP = Surplus P 

Relati onshi p 

Areal SP j -

SRP 
SP/chl. a­

SRP 

SP/AFDW -
SRP 

Areal SPi -

SRP 

SPi/chl. a­
SRP 

Areal SPt -

SRP 
SPJchl. a­

SRP 
APA - SRP 

Areal SPi -

APA 

SPi/chi. a­
APA 

Areal SPt -

APA 

SPt/chi. a­
APA 

Peacheater Creek 
.J __ .. __ y-V~!~~ 
-0.277 0.286 

0.507 0.037 

-0.121 0.645 

-0.000 0.999 

0.515 0.156 

-0.566 0.112 

0.513 0.158 

-0.055 0.829 

-0.568 0.087 

0.53 ] 0.115 

-0.587 0.074 

0.473 0.167 

SP/chI. a = Surplus P nonnalized to chI. a 
SP/ AFDW = Surplus P nonnalized to AFDW 
r is the correlation coefficient. 

Tyner Creek 

_.! _ .. ----.P:"_y al ue. 
-0.280 0.277 

0.441 0.076 

-0.360 0.1 56 

0.345 0.363 

-0.293 0.444 

-0.049 0.901 

-0.353 0.351 

-0.165 0,526 

0,317 0.373 

-0.587 0.075 

0.567 0.087 

-0.554 0.097 

Bold p-value indicates significant relationship. The level of significance is 0.05. 
The first parameter given is the independent variable and the second is the dependent 
variable in all correlations. 
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Figure ] 7. Relationshjp between surplus P nonnalized to chI. a and SRP in Peacheater 
Creek and Tyner Creek measured during experiment 3 8 Aug through 27 Sep 
]996. 
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Experiment 4. Surplus PI and SRP and surplus Pi and SRP were not significantJy 

correlated in either stream (p>O.05) (Table 10). No relationship between these 

parameters existed in any expression of surplus P (Tables 10). Plots of this relationship 

are in Appendix C. 

AP A versus SRP 

No relationship existed between AP A and SRP in either stream (p>O.l) (Table 

10). Correlation coefficients were r = 0.83 and r = 0.53 in Peacheater Creek and Tyner 

Creek, respectively. 

AP A Versus Surplus P 

AP A of periphyton was plotted against surplus Pi and surplus PI concentrations 

(areal and normalized to chI. a) (Appendix C). No significant correlation existed 

between APA and surplus Pi (areal and normalized) in either stream (P>0.05) (Table 10). 

There was also no statistical relationship between APA and surplus PI (areal and 

normalized) in Peacheater Creek or Tyner Creek (p>0.05) (Table 10). 

Physical Parameters 

Temperature of stream water in Peacheater Creek ranged from 11 °C to 24 °C 

during the summer (20 May to 3 October). In Tyner Creek, temperatures ranged from 

12°C to 22°C during the same period. Maximum temperatures occurred 9 September 

1996 in both streams. Minimum temperatures occurred 3 October 1996 in both streams. 

II 

--------------............. .. 
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Mean temperatures in the summer were 21.2 °C and 19.4°C in Peacheater Creek and 

Tyner Creek, respectively. Water temperature was consistently higher in Peacheater 

Creek. ChI. a concentrations were not statistically different in this period. This suggests 

that temperature did not limit periphyton biomass accrual between streams for 

experiments 1 through 3. 

During experiment 4 (winter), water temperature ranged from 7°C to 13 °C in 

Peacheater Creek. In Tyner Creek, water temperature ranged from 6°C to l2 °C during 

the same period. Minimum temperature in Peacheater Creek was measured 20 January 

1997. In Tyner Creek, minimum temperature was measured 27 January 1997. 

Maximum temperature was measured 17 February 1997 in both streams. Tyner Creek 

had higher water temperatures in the first two weeks measured (13 January and 20 

January). Peacheater Creek had warmer water temperatures in all other weeks. ChI. a 

concentrations were significantly less during the winter. This suggests that temperature 

could have potentially limited biomass accrual during experiment 4. Water temperatures 

are reported in Appendix B. 

The pH of both streams ranged from slightly acidic to neutral; Tyner Creek from 

pH 6.7 to 7.8 and Peacheater Creek from 6.6 to 7.7. Limestone dominated bedrock in 

both watersheds undoubtedly caused buffering potential of streams, thus pH values were 

often greater than 7.0. Thus, alkaline phosphatases were functional and could be 

monitored. Slightly acidic values may have been a result of the pH being taken in the 

laboratory after samples had been transported rather than in the field. Values for each 

experiment are recorded in Appendix B. 



Turbidity of Tyner and Peacheater Creek was measured as Nephelometric 

Turbidity Units (NTU). The turbidity of Tyner Creek ranged from 0.21 to 15.0 NTU. 

During May through early August, 1996, turbidity values did not exceed 1.0 NTU. 

Turbidity was highest in late August through October, ] 996 and January, 1997 when 

values consistently exceeded 1.5 NTU. The turbidity of Peach eater Creek ranged from 
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0.11 to 11.5 NTU throughout the duration ofthe study. Turbidity was highest in January 

1997 as NTU averaged 4.38. The overall mean for Peacheater Creek was 1.79 NTU. 

Rocky substrata on the stream bottom were visible at both sites. Relatively low turbidity 

values in both streams suggests that light was able to penetrate to stream bottom in both 

Peacheater Creek and Tyner Creek. Turbidity measured during the study are reported in 

Appendix B. 

Conductivity in Tyner Creek ranged from 143 to 196 .umhos. The mean value 

was] 67.5 .umhos. Highest values occurred in August, 1996. Conductivity in Peach eater 

Creek was consistently lower; values ranged from 103 to 174 .umhos. The mean value 

was 150.03 .umhos and was rarely lower than ]40 .umbos. These data are recorded in 

Appendix B. 

Total monthly rainfall was highest in September 1996 (25.8 cm)(Table 11). A 10 

year flood occurred in late September (USGS 1996). On September 27 and 28, 1996, 

total daily precipitation was 16.4 cm and 4.8 em, respectively. This resulted in the 

tennination of pilot experiment 2 before data for week 8 were collected as all boards 

were washed away. No rainfall data were available for October 1996. 

Discharge data were obtained from USGS gauging station on Peacheater Creek. 

.. .. 
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located where the stream is transversed by the Highway 62 bridge near station ] (Figure 

1). There is no gauging station located on Tyner Creek. It is assumed that due to the 

close proximity of the two watersheds, trends in discharge recorded for Peacheater Creek 

TABLE Xl 

MONTHL Y DISCHARGES FROM PEACHEATER CREEK AND 
PRECIPIT A nON RECORDED FROM STILWELL, OK DURING t 996 

.- . _. - -

MEAN MAXIMUM TOTAL TOTAL 
DATE DISCHARGE DISCHARGE DISCHARGE PRECIPITATION 

m3 . S-I m3 . S-I m3 . S-I em 

MAY 0.590 1.730 18.450 11.201 
JUNE 0.180 0.420 5.280 ] 1.354 
JULY 0.040 0.070 1.160 16.383 
AUGUST 0.009 0.050 0.280 11.481 
SEPTEMBER 1.280 20.970 66.610 25 .756 
OCTOBER 0.490 l.950 15.170 N/A 

could be applied to Tyner Creek. Most discharge observations were made at base flow 

(Table J 1). Discharges recorded in July, AUb'1lst, and October are indicative of base flow 

conditions. Maximum mean monthly discharge is most often reached in May (USGS 

1996). However, as previously mentioned, an unusually high amount of precipitation fe ll 

during late September and caused a rapid increase in discharge. Total daily di scharge 

for 27 September 1996 was 20.998 m3·s-1. Total daily discharge remained above 2.35 

m3.s-1 through 30 September 1997. These values were the highest total daily discharge 

values measured during the USGS sampling year from October, 1995 to October, 1996 

(USGS J 996). 



CHAPTER VI 

DISCUSSION 

Biofilm Time Courses 

The time necessary for peak biomass development varied both between 

watersheds and experiments. In Peacheater Creek, a period ranging from 3 to 7 weeks 

was necessary for peak biomass development. Colonization time ranging from 3 to 5 

weeks was required in Tyner Creek to achieve peak biomass. Peak biomass occurred 

sooner in Peacheater Creek in experiment 2 on styrofoam substrata. Colonization periods 

were shorter in Peacheater Creek during experiment 2 on silicated disc substrata and 

during experiment 3 for AFDW. Other time courses, biomass measured as chI. a, yielded 

the same colonization time periods in both streams. 

Various artificial substrata exposure periods have been used or suggested to 

achieve a community of a known age which resembles that on natural substrata. 

Exposure periods of 4 weeks were used in rivers with high nutrient concentrations by 

Gale et al. (1979). However, the investigators reported that the data did not resemble 

growth fluctuations on natural substrata. Experiments on upstream-donwstream linkages 

of surplus P and APA used 8 week colonization periods (Mulholland et al. 1995). 

Phosphorus limitation of periphyton growth rate was evaluated on periphyton allowed to 
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colonize 17 to 24 days in continuous-flow troughs in the Thompson River (Bothwell 

1985). Neilson et al. (1984) used colonization times of 12 weeks in the winter and only 6 

weeks in the summer. Biomass on artificial substrata during these colonization periods 

were still found to be less than that measured on natural substrata. In a recent study, 

glass slides were allowed to colonize 8 weeks to develop a periphytic community whose 

taxonomic abundance could be compared along a nutrient gradient in the Everglades 

(McCormick and Odell 1996). 

Comparison of biomass accrual periods necessary for the periphytic community 

to resemble natural substrata were made in New Zealand rivers of differing nutrient 

regimes (Biggs 1988). Periphytic growth on etched glass slides in moderately enriched 

rivers (SRP=3 - 4 ,ugIL) required 8 weeks exposure period to resemble growth on natural 

substrata (i .e. potentially peak biomass). In enriched rivers (SRP=20-72 ,uglL), time for 

biomass to approximate natural concentrations was 4 weeks (Biggs 1988). Peacheater 

Creek mean SRP concentration for the summer and autumn was 41.3 j.J.gIL, making it 

comparable to results in the enriched river in Biggs (1988) study. Peak biomass was 

reached after 4 weeks only as measured by AFDW. Chl. a accrual periods were shorter 

(3 weeks) and longer (7 weeks) in other experiments. 

Tyner Creek mean SRP concentration during the same period was] 9.7 ,ugIL. 

This concentration, though significantly less than Peacheater Creek, was also indicative 

of enriched streams in the New Zealand study. Peak biomass was reached after 4 weeks 

colonization period in experiment 2 in Tyner Creek. Peak biomass occurred after 3 to 5 

weeks colonization period in all other experiments in Tyner Creek. 



Biomass accumulated in any of the accrual periods was not the same given the 

same station, water quality, and velocity similarities. These discrepancies could be a 

function of propagule availability and the ability of planktonic organisms to attach and 

colonize artificial substrata (Biggs 1988; Jones 1978). 
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Experiment 4 data suggested peak biomass was reached after 3 weeks in both 

streams. These results were not expected. Irradiance is usually lower in the winter and 

water temperature was markedly lower (Appendix A). The winter time course was not 

perfonned at the same site, but rather upstream from the summer time course site in 

Peacheater Creek. Recent studies have shown that SRP concentrations vary upstream to 

downstream (Mulholland et al. 1995). The taxonomic composition of the periphytic 

community also has been shown to vary with along a nutrient gradient in the Everglades 

(McCormick and Odell 1996). Accrual time necessary to achieve a community on 

artificial substrata which resembles that on natural substrata, but of a known age, also 

could vary along a longitudinal gradient in response to nutrient availability and canopy 

cover. Substrata in Tyner Creek were placed at the identical site as previous experiments 

therefore may give a more true picture of seasonal variation in biomass accrual time. 

The increase in biomass over time did not always adhere to the expected 

sigmoidal accrual curve in each time course (see Figures 3, 4, 5 and 12). Logarithmic 

growth could have occurred more rapidly than samphng every 7 days could have 

detected. If logarithmic growth did occur more rapidly than detected by the sampling 

regime, rapid sloughing and recolonization could have occurred and not been detected. 

The absence of sigmoidal curve in biomass time courses was also noted by Biggs (1988). 
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This study warned against expectations of comparable results from sampling one site at 

different times based on fixed colonization times due to the dynamic nature of 

periphyton colonization and rapid community turnover time (Biggs 1988). Therefore, it 

may be more advantageous to define a window of time in which to sample a biofilm 

grown on an artificial substrata in which one could conc1ude with reasonable accuracy 

that a mature community had developed. 

This study suggests that a time of 3 to 5 weeks would be an appropriate 

incubation period in both streams for peak biomass to be attained on artificial substrata. 

This window of accumulation time is suggested to be the most accurate time to monitor 

ecosystem stress as defined by periphytic nutrient dynamics. However, not all time 

courses measured fell within this suggested time. In experiment 2, peak biomass on 

silicated discs occurred later in Peacheater Creek than the suggested time to incubate 

artificial substrata. 

Grazing could have affected both absence of the expected sigmoidal curve of 

biomass accrual and the time necessary for periphyton to reach peak biomass. Grazing 

pressure by nonswimming invertebrates appeared not to be a factor in experiments 2 or 3. 

However, algal grazing by Campostoma sp. has been noted as being heavy in other 

studies on Baron Fork River, the receiving river of Peacheater Creek and Tyner Creek 

(Power et a1. 1988). Campostoma sp. was not observed in Tyner Creek on any visit to the 

sampling site. This grazer was observed in Peacheater Creek, however, no observations 

of grazing artificial substrata were made on any vi.sit to the stream. This does not 

discount the possibility that grazing did occur in Peacheater Creek. Comparisons of 
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periphyton communities exposed to grazing by Campostoma sp. to communities where 

grazers were excluded demonstrated algal species domination was controlled by grazing 

(Power et aJ. 1988). However, Campostoma sp. in Baron Fork River typically graze at 

depths greater than 15-20 cm (Matthews et a1. 1986). In the Baron Fork of the lllinois 

River, grazing activity in channel margins and shallower areas has been shown to be 

dominated by snails rather than by Campostoma sp. (Matthews et a1. 1986; Power et a1. 

1988). These spatial characteristics matched the stream conditions in which the boards 

were placed in this study. 

During experiment 4, Ephemeroptera were abundant at every sampling date in 

both streams. In this experiment, invertebrate grazing by insect larvae could have caused 

algal declines. Grazing losses could occur fast enough in periods of high productivity, so 

that the turnover time ofthe periphytic community was less than the colonization time 

necessary for peak biomass accrual (Biggs] 988). Lamberti and Resh (1983) showed 

patterns ofperiphyton accrual to fol low a pattern of biomass increase and decrease 

related to competitive spacing of grazers. Therefore, grazing could result in fluctuating 

biomass measurements over time as found in experiment 4 in both streams (Figure 12). 

Surplus P 

A concentration of 0.8 j,lg surplus Pl mg dry weight has been suggested as a 

threshold below which P is limiting (i.e. warning level for P accumulation) (Fitzgerald 

and Nelson 1966). Recalculated, based on chI. a equaling 0.5 - 2% dry weight (Reynolds 

1984), this threshold is 0.04 - 0.16 j,lg surplus P/J.1g chI. a. In experiment 3 
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concentrations of surplus P were consistently above this threshold in both streams. This 

suggests that P was potentially not limiting to algal growth during experiment 3. 

However, in experiment 4 surplus P concentrations were below the maximum value of 

the threshold (0.16 f-tg surplus P1f-tgchl. a) in three of the six weeks measured in both 

streams. Accumulation of Pin periphyton allowed to colonize 4, 5, and 6 weeks in 

Peacheater Creek and 3,5, and 6 weeks in Tyner Creek was below the threshold. 

Periphyton could potentially have been P-limited in the latter porti.on of experiment 4. 

This would suggest that more mature periphyton communities demonstrated possible p_ 

limitation as defined by surplus P better during experiment 4 than during experiment 3. 

Surplus P concentrations, both Pi and P l, were measured in Lake Kinneret, israel 

during a bloom of Peridinium both in the lake and in batch cultures (Wynne 198]). The 

study suggested that Peridinium growth was not P-limited based on high surplus P 

concentrations and low APA associated with the bloom. Therefore, comparisons of the 

ratio of surplus Pi from Lake Kinneret, expressed as ng-cell· l , and chI. a, also expressed 

as ng·cell- I , and surplus Pi concentrations nonnalized to chI. a from experiments 3 and 4 

could be another indicator of possible P-limitation in Peacheater Creek and Tyner Creek. 

The surplus P accumulated in both streams were within the range of surplus P 

accumulated in the Peridinium bloom, both in Lake Kjnneret and in batch culture. Peak 

surplus P in both streams was much as 3 times greater compared to ratios of surplus P in 

Lake Kinneret. This was true for experiment 3 and experiment 4. However, surplus Pin 

weeks 5 and 6 in Tyner Creek during experiment 4 were close to the minimum ratio 

detected in Lake Kinneret. Because surplus P concentrations measured in Lake Kinneret 
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were indicative of true surplus P accumulation, this would suggest that Peacheater Creek 

was never P-limited during experiment 3 or 4. This comparison also suggests Tyner 

Creek might tend toward P-hmitation as measured in mature biofilms in experiment 3, 

but not in experiment 4. 

Surplus P accumulation in periphyton has not been studied extensively. 

Concentrations of surplus P detected on P diffusing substrata in the Glover River, 

Oklahoma were considerably less «30 J-lg P-mg chI. a-I) than accumulations measured 

in Peacheater Creek and Tyner Creek (Nord 1991). It was suggested that the Glover 

River periphyton was under such P stress that periphyton did not accumulate surplus Pin 

spite of the P released by substrata (Nord 1991). Because periphyton growth in 

Peacheater Creek and Tyner Creek accumulated considerably more P than .in the Glover 

River, it is possible that P was not limited in this study. 

The validity ofthese comparisons is unknown.. The surplus P accumulations 

measured in this study were measured in periphyton of varying maturity. Few studies of 

surplus Pin periphyton exist, especially periphyton of a known age. Surplus P measured 

early in biofilm development would lead to a different conc1us.ion regarding nutrient 

limitation than would surplus P measured later in biofilm development During 

experiment 3, surplus P concentrations were constant after 4 weeks colonization time in 

Peacheater Creek. No differences were detected after 3 weeks colonization time in 

Tyner Creek, with the exception that week 6 was significantly lower than other weeks. 

In experiment 4 no similarities between weeks were consistently detected. However, an 

inverse curvilinear relationship was again established, suggesting sampling later in 
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biofilm development would be better. 

These results suggest that surplus P is best sampled in the suggested time of 3 to 5 

weeks. Surplus P monitored in periphyton in early logarithmic stage may be artificially 

elevated due to normalization by low levels of chI. a. Sampling later in biofiLm 

development may provide a more accurate indicator of ecosystem stress as defined by 

periphytic surplus P concentrations. 

APA 

APA in Tyner Creek was significantly higher than AP A in Peacheater Creek. No 

statistical differences were detected in APA after 3 weeks colonization time in 

Peacheater Creek and after 4 week in Tyner Creek. As noted in surplus P discussion, few 

studies exist regarding AP A levels in periphyton, especially AP A of periphyton of a 

known age. 

Periphytic APA measured in the summer on styrofoam substrata in the Thompson 

River system, British Columbia was 100 times greater than APA measured in Peacheater 

Creek and more than 10 times the levels measured in Tyner Creek (70 - 145 nM MFP-I-ig 

chI. a·1 hr.-I) (Bothwell 1988). In Koegh .River, British Columbia, APA ranged from 70-

106 nM MU-I-ig chI. a-I hr.-I measured in January, February, and March (Perrin et aL 

1987). The maximum APA measured in Peacheater Creek during these months was 

1.103 oM MFP-,ug chI. a-I hr.-I and 13.875 nM MFP-I-ig chl a-I hr.-1 in Tyner Creek; 

considerably less than that measured in Koegh River. Periphyton in Thompson River 

and Koegh River was under severe P limitation. This suggests that periphyton in 
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Peacheater Creek and Tyner Creek were not under severe P limitation. 

In extensive planktonic studies, Healey and Hendzel (1979) suggested that APA 

less than 3.0 nM MF-Jig chI. a-I hr.-I was indicative of no P deficiency and activity 

exceeding 5.0 nM MF-Jig chi. a-I hr.-I was indicative of severe P deficiency of the algal 

community. Measurements falling between these two threshold values were suggested to 

be indicative of slight P deficiency (Healey and Hendzel 1979)_ Peacheater Creek 

activity did not exceed 1.013 nM MF-Jig chI. a-I hr.- I. According to Healey and 

Hendzel's (1979) threshold forP deficiency, Peacheater Creek was not P-Iimited. 

However, in Tyner Creek, activity measured in 3 weeks accumulation of periphyton 

exceeded the threshold for severe P deficiency and week 4 AP A suggested slight P 

deficiency according to Healey and Hendzel ( 1979). 

In phytoplankton studies, APA values of 12 to 42 nM MF-Jig chi. a-I hr.-I have 

been reported in various P-limited lakes (Petterson J 980). In Tyner Creek, APA 

exceeded 12 nM MF-Jig chI. a-I hr.- I after 3 weeks colonization suggested that jf 

periphytic AP A is similar to phytoplanktonic APA, Tyner Creek demonstrated P­

limitation briefly in experiment 4. 

In Tyner Creek, APA after 3 to 5 weeks colonization was 4 times greater than 

activity in other weeks. This supports the hypothesis that biofilms sampled during a 

window of 3 to 5 weeks of accumulation time are representative. fn Peacheater Creek, 

mean AP A measured in weeks 3 through 5 was 1.3 times greater than measured in other 

weeks. These data also support the conclusion that knowledge of the age of the biofilm 

is imperative when using periphytic parameters to assess stream ecosystem stress. 
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Ecological Relationships 

Surplus P and SRP have been shown to have a direct proportional relationship as 

algal cells harbor P when available in excess of need. In Lake Erken, surplus P 

concentrations in phytoplankton decreased 4 to 5 times during P-limitation (Petterson 

1980). Phosphorus content of periphytic communities has been shown to decrease along 

a longitudinal gradient of decreasing SRP concentrations in Walker Branch, Tennessee 

(Mulholland and Rosemond 1992). A weak positive relationship between surplus P 

normalized to chl. a and SRP was detected in Peacheater Creek during experiment 3. 

The weak or absence nature of a relationship between surplus P and SRP in these 

streams could be the result of nutrient loading via NPS pollution. Pulses of P enter 

Peacheater Creek and Tyner Creek after rainfall events in the form of runoff (see Figure 

13 and Appendix B). Depending when on the hydrograph the particular stream was 

sampled, SRP concentrations could increase and this not immediately be reflected by 

surplus P concentrations of periphyton. Biological uptake of P might not be reflected 

until after the initial pulse of P as measured by SRP has ceased. The analysis of SRP has 

also been shown to overestimate true orthophosphate in natural waters (Bothwell 1985). 

Observed grazing by Ephemeroptera in experiment 4 and the possibility of 

grazing by Campostoma sp. in experiment 3 could also have influenced P dynamics of 

the periphyton community. When algal cells are grazed, stored P is released and, if 

limiting conditions exist, it is recycled back to the algal cells in the periphytic 

community (Mulhol1and et a1. 1983). However, ifP is not limited, as in most of this 
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study, nutrient spiraling length increases thus causing nutrients to be unavailable for 

uptake by remaining periphyton (Newbold et al. 1982). Therefore, grazing could deter 

the observation of a relationship between ambient P concentrations and stored P by 

releasing P sequestered in the periphyton thus mak.ing it available for downstream 

transport. 

The relationships between AP A and SRP, and AP A and surplus P have been 

shown to be inversely proportional in phytoplankton (Perry 1972; Petterson 1980) and 

periphyton ( Bothwell 1985, 1988). The hydrolysis of P from an organic compound by 

AP allows algae to mitigate the detrimental effects of P limitation by cleaving P from the 

organic moeity rendering the P available to the algal cell (Jansson et al. 1988). Algae 

only store P in times when P is available in abundance. Therefore it would follow that 

high APA and low surplus P concentrations of periphyton would be indicative of P­

limitation. No detectable relationship existed between APA and SRP or APA and 

surplus P (available or total) in either stream during experiment 4. 

In Lake Kinneret, APA of Peridinium was measured both in batch culture and in 

natural conditions (Wynne 1981). In batch culture, Peridinium exposed to decreasing 

ambient orthophosphate concentrations (6600 ,ug/L - 20 f,igfL ) demonstrated 

corresponding increased AP A levels (Wynne 1981). However, no such relationship was 

found in Peridinium bloom of the lake. APA measured at the end of the bloom was 10 

times greater than previously measured activity. Corresponding orthophosphate 

concentrations were 2 IA.gIL; among the lowest recorded in Lake Kinneret during the 

experiment. The substantial increase in APA at the end of the bloom was not related to 



orthophosphate concentrations or surplus P concentrations, both of which remained 

constant over the bloom period (Wynne 1981). Wynne (1981) suggested that AP A in 

Peridinium probably reflected the state of various P storage pools other than that 

extractable by hot water (i.e. surplus P). Periphyton from both Peacheater Creek and 

Tyner Creek stored surplus P and produced AP. This also suggests that there could be 

other internal P pools reacting with AP other than that extractable by hot water. 
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A model based on a study done in Peacheater Creek by Toetz (1995) suggested 

that SRP concentrations in February must be reduced from 23 J-lgiL to concentrations 

indicative of pristine conditions (i.e. 3 J-lg/L) for a substantial increase in APA to occur. 

A basin wide study of the same area documented a SRP threshold of 5 ,ug/L beyond 

which AP A demonstrated an inverse curvilinear relationship with SRP (Tang, 

unpublished data). McConnick and Odell (1996) also found that the inverse relationshi p 

of oligotrophic indicator diatom species and total P was detectable after a threshold of 5 -

10 ,ug TPfL was exceeded. Data from the studies cited suggest that no inverse 

relationship was detected between APA and SRP in the present study because SRP 

concentrations did not decrease to a threshold concentration where APA would 

dramatically increase, thus demonstrating an inverse curvilinear relationship, 

The bacterial component of the periphyton community could also have skewed 

interpretations of data. Perrin et al. ( 1987) discovered an increase in periphytic APA in 

response to organic matter additions in the Koegh River, British Columbia, This was 

attributed to a possible increase in heterotrophic bacteria which out competed algae for P 

resources. Increased bacterial biomass on the substrata was also suggested to have 



109 

resulted in higher AP A levels when normalized to chI. a as a biomass estimation (Perrin 

et al. 1987). The periphytic community is a diverse community of micro biota including 

not only algae, but bacteria, fungi, animals, and inorganic and organic detritus. Stewart 

and Wetzel (1982) suggested that non-algal sestonic phosphatases could be a major 

component of the particulate associated (periphytic) phosphatase pool. Therefore, 

bacterial associated activity could cause misinterpretations of APA thought to be 

associated only with the autotrophic portion ofperiphyton and surplus P. 



CHAPTER VII 

CONCLUSIONS 

The floating board apparatus appeared to relieve grazing pressure by non­

swimming grazers. This apparatus was a useful tool in studying periphyton of known age 

on artificial substratum in streams heavily impacted by non-swimming grazers. 

However, in Peacheater Creek and Tyner Creek, grazer dominance seemed to shift to 

insect larvae in the winter. Observations were consistently made of grazing 

Ephemeroptera on the apparatus and thus the substrata in both streams. This suggests 

that the board apparatus is only useful in streams dominated by non-swimming grazers 

during summer months when insect larvae densities were seemingly low. 

Peak biomass did not occur after the same incubation time in either stream 

regardless of season. However, a consistent window of peak. biomass development was 

established. Peak biomass tended to occur after 3 to 5 weeks colonization time in both 

streams. Possible grazing activity and rapid sloughing with subsequent slow community 

overturn could have affected biomass accrual. This period of colonization time is 

suggested for incubating artificial substratum prior to sampling in order to accurately 

monitor ecosystem stress. 

Indicators of ecosystems stress in this study were defined by periphytic surplus P 
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and AP A. After 3 to 4 weeks colonization time, surplus P showed little variation in 

either stream during experiment 3. Considerable differences in surplus P concentrations 

between weeks were detected in experiment 4. Observed grazing in experiment 4 could 

have affected surplus P concentrations by increasing spiraling length of P released by 

algal cells via grazing. These data suggest that surplus P is best sampled after 3 weeks. 

No statistical differences existed in APA after 3 to 4 weeks coLonization time in 

either stream. More APA occurred in both streams' periphyton during 3 to 5 weeks 

colonization time. A representative sample of APA would be available in th.is suggested 

colonization period. 

Surplus P data indicate that Peacheater Creek was never P-limited in experiments 

3 or 4. Evldence of slight P-limitation existed in Tyner Creek as defined by mature 

periphytic surplus P concentrations in experiments 3 and 4. APA data indicate that 

Peacheater Creek periphyton was never P-limited. In Tyner Creek, P-deficiency was 

indicated during the suggested sampling period of 3 to 5 weeks. 
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WATER CHEMISTR Y DATA FOR PEACHEATER CREEK FOR 1996 AND 1997 

DATE NITRATE CHLORIDE SULFATE 

5-20-96 30.9 43.4 10.590 9.718 

5-27-96 81.7 40.0 3.103 5.665 5.212 

6-3-96 81.7 52.4 5.756 11.049 7.826 

6-10-96 111.6 27.6 3.228 6.564 4.867 

6-17-96 41.9 40.7 3.014 6.782 2.552 

6-24-96 45.2 40.1 2.968 7.114 5.611 

7-1-96 55.7 44.6 2.747 7.073 4.591 

7-8-96 45.5 41.4 2.556 7.136 9.644 

7-15-96 59.7 46.5 2.427 7.452 5.930 

7-22-96 47.5 36.6 2.025 6.705 4.570 

7-29-96 44.7 30.3 1.476 5.938 2.643 

8-5-96 52.4 43.5 1.299 5.306 2.416 

8-12-96 55 .7 43.3 1.205 5.272 2.745 

8-17-96 48.6 35.9 1.096 4.412 ND 
8-24-96 29.6 23.5 0.903 4.646 ND 

9-2-96 39.4 35.7 6.295 31.099 8.9f 1 

9-9-96 30.4 20.5 5.73 29,952 11.525 

9-13-96 23.0 31.3 5.929 31,83 9.145 

9-20-96 32.6 27.1 6.483 36,047 6.124 

9-28-96 91. ] 109,2 22.041 27.85 8.02 

10-3-96 69.1 59.0 19.412 31.838 27.708 

1.-13-97 32.2 25.4 7.64 3,56 4.70 

1-20-97 21.2 25 7.56 3.49 5.8] 

1-27-97 15.1 18.8 7.52 3.42 6.60 

2-3-97 25.6 19.6 7.41 3.33 4.61 

2-10-97 21.0 20,5 7.82 3.20 23.75 

2-17-97 26.6 21.3 7.22 2.91 1l. 11 
ND=NODATA 
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WATER CHEMISTR Y DATA FOR TYNER CREEK FOR 1996 AND 1997 

DATE NITRATE CHLORIDE SULFATE 

5-20-96 26.3 15.1 9.013 7.320 
5-27-96 31.8 18.4 3.564 7.453 6.243 
6-3-96 31.8 31.3 4.443 9.789 6.86 1 
6~ 10-96 71.3 12.5 2.120 5.675 4.027 
6-17-96 13 .7 15 .8 2.629 6.576 2.165 
6-24-96 17.5 16.6 2.198 6.263 2.221 
7-1-96 30.5 20.4 1.918 6.001 3.710 
7-8-96 21.8 14.3 2.706 2.694 4.621 
7-15-96 39.8 32.0 1.638 63228 3.939 
7-22-96 24.9 14.9 1.460 6.061 4.993 

7-29-96 35.4 16.9 0.986 5.430 2.253 

8-5-96 35.4 23.0 0.991 1.912 1.912 

8-12-96 42.6 25.3 0.905 4.474 2.308 

8-17-96 38.2 14.8 1.068 5.266 ND 

8-24-96 13.1 1.0 0.923 4.7] 8 ND 

9-2-96 21.4 14.0 5.18 26.142 6.713 

9-9-96 10.3 5.6 4.88 26.539 7.803 

9-13-96 18.9 13.1 5.339 27.93 1 7.629 

9-20-96 21.0 9.7 5.297 31.459 4.290 

9-28-96 72.7 77.6 17.703 27.399 7.693 

10-3-96 24.6 26.2 15.415 28.496 30.262 

1-13-97 13. 1 26.5 3.15 6.32 4.44 

1-20-97 17.6 21.2 3.03 6.58 4.08 

1-27-97 12.8 11.9 2.89 6.32 5.00 

2-3-97 5.4 14.6 2.52 5.94 8.49 

2-10-97 13.4 14.1 2.06 5.47 24.14 

2-17-97 11.8 20.5 1.79 5.22 5.17 

ND=NODATA 



APPENDIXB 

PHYSICAL PARAMETERS 

125 



DATE 

5-20-96 

5-27-96 

6-3-96 

6-10-96 

6-17-96 

6-24-96 

7-1-96 

7-8-96 

7-15-96 

7-22-96 

7-29-96 

8-5-96 

8-12-96 
8-] 7-96 

8-24-96 

9-2-96 

9-9-96 

9-13-96 

9-20-96 

9-28-96 

10-3-96 

1-13-97 

1-20-97 

1-27-97 

2-3-97 

2-10-97 

2-17-97 

PEACHEATER CREEK AND TYNER CREEK 
pH VALUES FROM 1996 AND 1997 

PEACHEA TER CREEK TYNER CREEK 
• --___ 40 

7.1 7.2 
7.1 7.1 
7.4 7.2 
7.0 6 . .8 
7.3 7.1 
7.4 7.5 
7.3 7.1 
7.3 7.3 
7.2 6.7 
7.5 7.3 
7.2 6.9 
6.9 7.5 
7.1 7.2 
7.3 7.2 
7.0 7.4 
7.5 7.3 
7.6 7.5 
6.6 6.9 

6.8 6.9 
7.7 7.8 

7.3 7.6 

7.4 7.2 

7.3 7.1 

7.3 7.3 

7.3 7.1 

7.3 7.1 

7.3 7.1 
Mean pH values (n=3) 
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TURBIDlTY OF PEACHEATER CREEK AND TYNER CREEK 
AS MEASURED IN NTIJ FROM 1996 AND 1997 

DATE PEACHEATER CREEK TYNER CREEK 

---------
5-20-96 0.8 0.9 

5-27-96 1.4 1.5 

6-3-96 0.9 0.7 

6-10-96 0.9 1.0 

6-17-96 0.9 0 .9 

6-24-96 3.4 3.2 
7-1-96 0.5 0.8 

7-8-96 0 .3 0.3 

7-15-96 0.7 0.8 

7-22-96 0.4 0.4 

7-29-96 0.3 0.2 

8-5-96 0.7 0.5 

8-12-96 0.5 0.5 

8-17-96 1.3 to.3 

8-24-96 1.5 1.8 

9-2-96 1.2 1.3 
9-9-96 0.7 3.0 

9-13-96 0.1 4.2 

9-20-96 1.2 1.1 
9-28-96 5.6 3.8 

10-3-96 1.5 1.5 

1-13-97 11 .5 15.0 

1-20-97 ND ND 
1-27-97 1.2 1.1 

2-3-97 2.2 4.7 

2-10-97 3.5 3.0 

2-17-97 3.5 3.0 
ND =No Data 
Turbidity values are mean (n=3) 
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CONDUCTIVITY OF PEACHEATER CREEK AND TYNER CREEK 
AS MEASURED IN I-imhos FROM 1996 AND 1997 

-- --- -----
DATE PEACHEA TER CREEK TYNER CREEK 

5-20-96 155 165 

5-27-96 103 146 

6-3-96 162 165 

6-10-96 161 173 

6-17-96 141 149 

6-24-96 140 143 

7-1-96 151 ]80 

7-8-96 174 162 

7-15-96 160 169 

7-22-96 169 179 

7-29-96 161 ] 81 

8-5-96 159 170 

8-12-96 167 196 

8-17-96 125 ]43 

8-24-96 113 168 

9-2-96 160 19) 

9-9-96 ND ND 
9-13-96 ND ND 
9-20-96 ND ND 
9-28-96 ND NO 
10-3-96 NO NO 

1-13-97 NO ND 
1-20-97 NO NO 
1-27-97 ND ND 
2-3-97 NO ND 

2-10-97 ND ND 
2-17-97 NO ND 

ND=NoData 
Conductivity values are means (n=3) 
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DATE 

SURF ACE WATER TEMPERATURES IN °C FOR PEACHEA TER 
CREEK AND TYNER CREEK FROM 1996 AND 1997 

PEACHEA TER CREEK TYNER CREEK 
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--" ---- -- --- - --- ~ ----- ------------- --- -- ----

5-20-96 19 17 

5-27-96 ND ND 

6-3-96 21 20 

6-10-96 20 19 

6-17-96 21 20 

6-24-96 21 20 

7-1-96 23 20 

7-8-96 23 20 

7-1 5-96 23 20 

7-22-96 23 21 

7-29-96 23 22 

8-5-96 23 20 

8- 12-96 23 20 

8-17-96 23 20 

8-24-96 23 20 

9-2-96 22 20 

9-9-96 24 22 

9-13-96 20 20 

9-20-96 18 16 

9-28-96 18 19 

10-3-96 II 12 

1-13-97 8 10 

1-20-97 7 9 

1-27-97 8 6 

2-3-97 11 9 

2-10-97 11 9 

2-17-97 13 12 

ND=NODATA 

----------------............ 
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Relatirnship &rneen APA arrl 
Surplus P in Peaclrater Creek 

3 .----------,- ----1 
~ 2.5 I ···· .j 
-- I ': 2, I 

i~.5 J-
1 I 

s... u 
~ 1 I 
~ 0.5 1 _ 

o I 1 - I- - I - I 

0.15 0.35 0.55 0.75 0.95 1. 15 

APA(nMlv1F/chl. a * hr -1) 

133 



RelatimIDip &rueen APAarrl 
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RelatiOCLShip l3et\\een AP A ani Areal 
Surplu; Pin Peadrater Qeek 
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Relationship ~ APA and Areal 
Smplus P in Tyner Creek 
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Relationship Between Areal Surplus P and SRP in 
Peacheater Creek During Experiment 3 
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Relationship Between Areal Surplus P and SRP in 
Peacheater Creek During Experiment 4 

285 -,--------------------, 

u 235 
CI) 

..... . .. .. • .. ... .. .. . .. . . . . . . . .......... .. ........... . ................... .. 

:.a 
-........ 
0... 185 

CI) 

;::::l ........ • • ~ 135 .•.. 
1/l 
b.O 
:::1.. 85 • 

35 ---~----+-----+-I .. --+! ---

18 20 22 24 26 

SRP (llgP/L) 

139 



285 

C) 235 rn 
'-' 
"'0 

---0.. 185 rn 

= -e 135 = C/J 
CD 
:::l 85 

35 

Relationship Between Areal Surplus P and SRP in 
Tyner Creek During Experiment 4 

~ 

+-----~---+----_r----~----I~ 1 -

5 7 9 11 13 15 17 

SRP (llgP/L) 

\40 



3 

1;:$ 2.5 -...c:: 
u 
OJ) 2 
::i. 

---~ 1.5 en 
;::3 -e- 1 ;:s 

C/) 

OJ) 0.5 ::i. 

0 

Relationship Between Surplus P and SRP in 
Peacheater Creek During Experiment 4 

• 
._- .... -.................... 

,- ........ .. . . 

• • • I • -t------+--=-----+-I -----t-------+--
• 

18 20 22 24 26 
SRP (f.lgP/L) 

141 



Relationship Between Surplus P and SRP in 
Tyner Creek During Experiment 4 
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TABLES 1-25: One-way ANOV A of time courses in Tyner and Peacheater Creeks. 
Tukeys mUltiple range test shows significant differences between weeks (p<0.05). 

TABLE 1: Styrofoam substrata in Peacheater Creek for Experiment 2 
ONE-WA Y ANAL YSIS OF VARIANCE-DEPENDENT V ARlABLE: ChI. a 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
1109.798 7 
270.001 16 

ANOVAMS 
85.032 
16.875 

F-RATIO P 
5.039 0.004 
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TUKEYS TEST FOR V ARlABLE: Chi. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE fJ-glcm2 . 

1.331 4.893 

WEEK 
n=3 

10.323 12.780 13.569 16.345 14.252 5.716 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

TABLE 2: Styrofoam substrata in Tyner Creek for Experiment 2 
ONE-WAY ANALYSIS OF VARIANCE-DEPENDENT V ARIABLE:Chl. a 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
828.667 7 
321.333 16 

ANOVAMS 
118.381 
20.083 

F-RATIO P 
5.894 0.002 

TUKEYS TEST FOR VARIABLE: Chi. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE fJ-g1c~. 

1.037 8.050 9. 16 

WEEK 
n=3 

9.598 14.43 10.949 9.934 8.332 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 



--

TABLE 3: Silicated Disc Substrata in Peacheater Creek for Experiment 2 
ONE-WAY ANALYSIS OF VARIANCE-DEPENDENT V ARlABLE:ChL a 

SOURCE 
WEEK 
ERROR 

ANOVASS 
758.150 

22.549 

OF ANOVAMS 
7 108.307 
12 1.879 

F-RATIO 
57.639 

p 
0.000 
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TUKEYS TEST FOR V ARlABLE: ChI. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE J.igjcm2. 

0.822 5.144 

WEEK 
n=3 

9.890 9.765 14.627 14.835 27.123 12.878 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

TABLE 4: Silicated Disc Substrata in Tyner Creek for Experiment 2 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARIABLE:Chl. a 

SOURCE 
WEEK 
ERROR 

ANOVASS 
828.667 
176.785 

OF ANOVAMS 
7 53.114 
12 14.732 

F-RATIO 
3.605 

P 
0.025 

TUKEYS TEST FOR VARIABLE: ChI. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE f-lgjcm2 . 

WEEK 
n=3 

2.848 12.045 12.056 15.295 11.356 15.670 9.934 8.332 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 



TABLE 5: Silicated Disc Substrata in Peacheater Creek for Experiment 3 
ONE-WAY ANAL YSIS OF VARIANCE-DEPENDENT V ARlABLE:Chl. a 

SOURCE 
WEEK 
ERROR 

ANOVASS 
1075.424 
203.421 

DF ANOVAMS 
6 179.237 
13 15.648 

F-RATIO P 
11.455 0.000 
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TUKEYS TEST FOR V ARlABLE: ChI. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE j..lglcn:t. 

0.397 
Week 1 

1.801 
Week 2 

8.262 
Week 3 

WEEK 
n=3 

15.261 14.469 
Week 4 Week 5 

14.514 
Week 6 

23.986 
Week 7 

TABLE 6: Silicated Disc Substrata in Tyner Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARlABLE:Chl. a 

SOURCE 
WEEK 
ERROR 

ANOVA SS 
471.437 

52.094 

DF ANOVAMS 
6 78.573 
13 4.007 

F-RATIO 
19.408 

p 
0.000 

TUKEYS TEST FOR V ARlABLE: ChI. a. MEANS WITH IDENTICAL UNDERLfNE 
ARE NOT SIGNIFICANTL Y DIFFERENT. UN1TS ARE j..lglcrri. 

2.327 
Week 1 

3.342 
Week 2 

10.58 
Week 3 

WEEK 
n=3 

12.428 13.945 
Week 4 Week 5 

9.345 
Week 6 

17.076 
Week 7 



TABLE 6: Silicated Disc Substrata in Peacheater Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: AFDW 

SOURCE 
WEEK 
ERROR 

ANOVASS 
66.894 
13.295 

DF ANOVAMS 
5 13.379 
11 1.209 

F-RATIO P 
11.069 0.001 
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TUKEYS TEST FOR VARIABLE: AFDW. MEANS WlTH IDENTICAL UNDERLINE 
ARE NOT SIGNlFICANTL Y DIFFERENT. UNITS ARE mg 

3.79 
Week 2 

2.08 
Week 3 

4.21 
Week 4 

WEEK 
0=3 

6.40 6.84 
Week 5 Week 6 

1.41 
Week 7 

TABLE 7: Silicated Disc Substrata in Tyner Creek for Experiment 3 
ONE-WAY ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: AFDW 

SOURCE 
WEEK 
ERROR 

ANOVASS 
71.333 
47.695 

DF ANOVA MS 
5 14.267 
11 4.336 

F-RATIO 
3.290 

P 
0.046 

TUKEYS TEST FOR V ARJABLE: AFDW. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE mg 

7.43 
Week 2 

3.32 
Week 3 

4.81 
Week 4 

WEEK 
0=3 

7.56 7.58 
Week 5 Week 6 

2.39 
Week 7 



TABLE 8: Silicated Disc Substrata in Peacheater Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARlABLE:ChJ. a 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
734.899 5 
466.894 28 

ANOVAMS 
146.980 
16.675 

F-RATIO 
8.814 

p 
0.000 
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TUKEYS TEST FOR VARIABLE: Chl. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE j.4.g/cm2. 

0.923 
Week 1 

14.375 
Week 2 

12.608 
Week 3 

WEEK 
n=3 

11.964 
Week 4 

17.013 
Week 5 

14.686 
Week 6 

TABLE 9: Silicated Disc Substrata in Tyner Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE:Chl. a 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
585.429 5 
178.688 28 

ANOVAMS 
] 17.086 

6.382 

F-RATIO 
18.347 

p 

0.000 

TUKEYS TEST FOR VARIABLE: ChI. a. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE /-igJcm2 . 

lA5 1 
Week 1 

9.759 
Week 2 

5.882 
Week 3 

WEEK 
n=3 

7.834 
Week 4 

] 2.186 
Week 5 

15.096 
Week 6 



TABLE 10: Silicated Disc Substrata in Peacheater Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARlABLE: AREAL 
SURPLUSP 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
734.899 5 
466.894 28 

ANOVAMS 
146.980 
16.675 

F-RATIO P 
8.814 0.000 
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TUKEYS TEST FOR V ARlABLE: AREAL SURPLUS P . .MEANS WITH 
IDENTICAL UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE 
J.lg Surplus P/disc 

333.547 
Week 2 

281.644 
Week 3 

298.557 
Week 4 

WEEK 
n=3 
440.284 
Week 5 

389.528 
Week 6 

548.397 
Week 7 

TABLE 11: Silicated Disc Substrata in Tyner Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARlABLE: AREAL 
SURPLUSP 

SOURCE 
WEEK 
ERROR 

ANOVASS 
179554.05 
69410.55 

DF ANOVAMS 
5 35910.81 
11 6310.05 

F-RATIO P 
5.691 0.008 

TUKEYS TEST FOR VARIABLE: AREAL SURPLUS P. MEANS WITH 
IDENTICAL UNDERLINE ARE NOT SIGNIFICANTL Y DIFFERENT. UNITS ARE 
J.lg Surplus P/disc 

252.668 
Week 2 

360.897 
Week 3 

314.292 
Week 4 

WEEK 
n=3 
515.247 
Week 5 

483.953 
Week 6 

527.207 
Week 7 



TABLE 12: Silicated Disc Substrata in Peach eater Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: SURPLUS P 

SOURCE 
WEEK 
ERROR 

ANOVASS 
338.333 

68.167 

DF ANOVAMS 
5 67.667 
11 6.197 

F-RATIO P 
10.919 0.001 

TUKEYS TEST FOR VARIABLE: SURPLUS P. MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNlTS ARE j..l.g Surp1us 
Plj..l.g chi. a 

1.828 
Week 2 

0.322 
Week 3 

0.193 
Week 4 

WEEK 
n=3 

0.300 
WeekS 

0.265 
Week 6 

0.226 
Week 7 

TABLE 13: Silicated Disc Substrata in Tyner Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: SURPLUS P 

SOURCE 
WEEK 
ERROR 

ANOVA SS 
341.875 

64.625 

DF ANOVAMS 
5 68.375 
11 5.875 

F-RATIO P 
11 .638 0.000 

TUKEYS TEST FOR VARIABLE: SURPLUS P. MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNJFICANTL Y DIFFERENT UNITS ARE j..l.g Surplus 
Plj..l.g chI. a 

WEEK 
n=3 

0.746 0.337 0.250 0.365 0.511 0.305 
Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 
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TABLE 14: Silicated Disc Substrata in Tyner Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: SURPLUS P 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
349.500 5 

58.500 11 

ANOVAMS 
69.900 

5.318 

F-RATIO 
13.144 

p 
0.000 

TUKEYS TEST FOR V ARlABLE: SURPLUS P. MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNIFICANTI.. Y DIFFERENT. UNITS ARE j..l.g Surplus 
P/mgAFDW 

0.3438 
Week 2 

1.0727 
Week 3 

0.6448 
Week 4 

WEEK 
n=3 
0.6725 
Week 5 

0.6300 
Week 6 

2.1767 
Week 7 

TABLE 15: Silicated Disc Substrata in Peacheater Creek for Experiment 3 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARlABLE: SURPLUS P 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
287.500 5 
120.500 1 I 

ANOVAMS 
57.500 
10.955 

F-RATIO 
5.249 

P 
0.010 

TUKEYS TEST FOR VARIABLE: SURPLUS P . MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE j..l.g Surplus 
P/mgAFDW 

0.6880 
Week 2 

1.3362 
Week 3 

0.6998 
Week 4 

WEEK 
n=3 
0.6788 
Week 5 

0.5620 
Week 6 

3.8379 
Week 7 
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TABLE 16: Silicated Disc Substrata in Peacheater Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT V ARJABLE: AREAL 
SURPLUS Ps 

SOURCE 
WEEK 
ERROR 

ANOVA SS OF 
272545.16 5 
75523.03 12 

ANOVAMS 
54509.031 

3293.586 

F-RATIO 
8.661 

P 
0.001 
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TUKEYS TEST FOR V ARlABLE: AREAL SURPLUS Pt. MEANS WITH 
IDENTICAL UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE 
fl.g Surplus P/disc 

138.025 
Week] 

343.296 
Week 2 

395.097 
Vreek 3 

WEEK 
n=3 

377.454 
Week 4 

473.184 
Week 5 

449.526 
Week 6 

TABLE 17: Silicated Disc Substrata in Tyner Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: AREAL 
SURPLUS PI 

SOURCE 
WEEK 
ERROR 

ANOVASS OF 
128825.612 5 
29912.300 12 

ANOVAMS 
25765.122 
2492.692 

F-RATIO 
10.336 

P 
0.001 

TUKEYS TEST FOR VARIABLE: AREAL SURPLUS Pt. MEANS WITH 
IDENTICAL UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE 
f.1.g Surplus P/disc 

62.585 
Week 1 

191.557 
Week 2 

146.830 
Week 3 

WEEK 
n==3 
336.826 
Week 4 

228.676 
Week 5 

240.310 
Week 6 



TABLE 18: Silicated Disc Substrata in Peacheater Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: SURPLUS PI 

SOURCE 
WEEK 
ERROR 

ANOVASS 
348.667 
132.833 

DF ANOVAMS 
5 69.733 
12 1] .069 

F-RATIO 
6.300 

P 
0.004 

TUKEYS TEST FOR VARIABLE: SURPLUS Pt. MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNlTS ARE ,ug Surplus 
PI,ug cWo a 

4.935 
Week 1 

0.655 
Week 2 

0.309 
Week 3 

WEEK 
n=3 
0.311 
Week 4 

0.274 
Week 5 

0.302 
Week 6 

TABLE 19: Silicated Disc Substrata in Tyner Creek for Experiment 4 
ONE-WA Y ANAL YSIS OF V ARlANCE-DEPENDENT VARIABLE: SURPLUS Pt 

SOURCE 
WEEK 
ERROR 

ANOVASS 
418.667 

35.333 

OF ANOVAMS 
5 83.733 
12 5.444 

F-RATIO P 
15.380 0.000 

TUKEYS TEST FOR VARIABLE: SURPLUS Pt. MEANS WITH [DENTICAL 
UNDERLINE ARE NOT SIGNfFICANTL Y DIFFERENT. UNITS ARE ,ug Surplus 
PI,ug chI. a 

WEEK 
0=3 

1.004 0.995 0.246 0.424 O. t 85 0.157 
Week t Week 2 Week 3 Week 4 Week 5 Week 6 
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TABLE 20: Silicated Disc Substrata in Peacheater Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: AREAL 
SURPLUSPj 

SOURCE 
WEEK 
ERROR 

ANOVASS 
35918.970 
12661.546 

DF ANOVAMS 
5 7183.794 
12 1055.129 

F-RATIO 
6.008 

P 
0.003 
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TUKEYS TEST FOR VARIABLE: AREAL SURPLUS Pi' MEANS WITH 
IDENTICAL UNDERLINE ARE NOT SIGNIFICANTLY DIFFERENT. UNITS ARE 
f.1.g Surplus P/disc 

80.850 
Week 1 

158.360 
Week 2 

229.633 
V/eek 3 

WEEK 
n=3 
169.175 
Week 4 

142.444 
Week 5 

181.575 
Week 6 

TABLE 21: Silicated Disc Substrata in Tyner Creek for Experiment 4 
ONE·WAY ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: AREAL 
SURPLUS Pj 

SOURCE 
WEEK 
ERROR 

ANOVASS 
17445.480 
4926.203 

DF ANOVAMS 
5 3489.096 
12 410.517 

F-RATIO 
8.499 

P 
0.001 

TUKEYS TEST FOR VARIABLE: AREAL SURPLUS Pi' MEANS WITH 
IDENTICAL UNDERLINE ARE NOT SIGNIFlCANTL Y DIFFERENT. UNITS ARE 
f.1.g Surplus P/disc 

41.915 
Week 1 

81.436 
Week 2 

100.810 
Week 3 

WEEK 
n=3 
144.747 
Week 4 

104.319 
Week 5 

110.835 
Week 6 



TABLE 2.2: Silicated Disc Substrata in Peach eater Creek for Experiment 4 
ONE-WA Y ANAL YSIS OF VARIANCE-DEPENDENT V ARlABLE: SURPLUS PI 

SOURCE 
WEEK 
ERROR 

ANOVA SS DF 
454.667 5 

26.333 12 

ANOVAMS 
90.933 

2.194 

F-RATIO 
41.438 

p 
0.000 

TUKEYS TEST FOR VARIABLE: SURPLUS Pi' MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNlFICANTL Y DIFFERENT. UNITS ARE ,ug Surplus 
PI,ug chI. a 

2.891 
Week 1 

0.302 
Week 2 

0.180 
Week 3 

WEEK 
n=3 
0.140 
Week 4 

0.083 
Week S 

TABLE 23: Silicated Disc Substrata in Tyner Creek for Experiment 4 

0.122 
Week 6 

ONE-WAY ANAL YSIS OF VARIANCE-DEPENDENT VARIABLE: SURPLUS PI 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
556.405 5 
46.833 15 

ANOVAMS 
111.281 

3.122 

F-RATIO 
35 .642 

p 

0.000 

TUKEYS TEST FOR VARIABLE: SURPLUS Pi' MEANS WITH IDENTICAL 
UNDERLINE ARE NOT SIGNlFICANTL Y DIFFERENT. UNITS ARE f.,lg Surplus 
PI,ug chI. a 

WEEK 
n=3 

0.673 0.423 0.169 0.182 0.084 0.072 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 
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TABLE 24: Sihcated Disc Substrata in Peacheater Creek for Experiment 4 
ONE-WA Y ANALYSIS OF VARIANCE-DEPENDENT VARIABLE: APA 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
2.177 5 
2.108 22 

ANOVAMS 
0.435 
0.096 

F-RATIO 
4.543 

P 
0.005 
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TUKEYS TEST FOR V ARlABLE: APA. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNlFICANTL Y DlFFERENT. UNITS ARE nM MF\ug chI. a-I_hr-l 

0.792 
Week 1 

0.227 
Week 2 

0.581 
Week 3 

WEEK 
n=3 

1.013 
Week 4 

0.528 
Week 5 

0.724 
Week 6 

TABLE 25: Silicated Disc Substrata in Tyner Creek for Experiment 4 
ONE-WA Y ANALYSIS OF V ARIANCE-DEPENDENT VARIABLE: APA 

SOURCE 
WEEK 
ERROR 

ANOVASS DF 
1001.008 5 
636.492 21 

ANOVAMS 
200.202 

30.309 

F-RATIO 
6.605 

P 
0.001 

TUKEYS TEST FOR VARIABLE: APA. MEANS WITH IDENTICAL UNDERLINE 
ARE NOT SIGNIFICANTLY DlFFERENT. UNlTS ARE nM MF-,ug chI. d l-hr-I 

1.530 
Week 1 

1.323 
Week 2 

13.875 
Week 3 

WEEK 
n=3 

4.141 
Week 4 

2.296 
Week 5 

1.99 J 

Week 6 

-



TABLES ]-2: One-way ANOVA of time course comparisons in Peacheater Creek. 
Significance level is p<O.OS. 

TABLE 1: ChI. a time courses in Peacheater Creek for Experiments 2-4. 
KRUSKAL-W ALLIS ONE-WA Y ANALYSIS OF VARIANCE ON RANKS 
DEPENDENT VARIABLE: Cbl. a TIME COURSE 

SOURCE MEDIAN 25% 75% H DF 
STYROFOAM 22.3 14.59 32.2 16.7 3 
SILICATE DISC 22.7 13.19 28.9 
EXP. 3 27.5 S.58 42 .0 
EXP. 4 12.6 9.97 16.9 

P 
0.0008 

ALL PAIRWISE MULTIPLE COMP ARlSON PROCEDURE USING DUNN'S 
METHOD FOR VARIABLE: Cbl. a TIME COURSE. 
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COMPARISON DIFF. OF RANKS P Q p<O.05 
Styrofoam vs. Exp. 4 26.23 4 3.36 Yes 
Styrofoam vs. Disc 2.52 3 0.29 No 
Styrofoam vs. Exp. 3 0.69 2 0.08 No 
Exp.3 vs. Exp. 4 25.54 3 3.09 Yes 
Exp.3 vs. Disc 1.83 2 0.20 No 
Disc vs. Exp. 4 23 .71 2 3.00 Yes 

... 



TABLE 2: ChI. a time courses in Tyner Creek for Experiments 2-4. 
KRUSKAL-W ALLIS ONE-WA Y ANALYSIS OF V ARlANCE ON RANKS 
DEPENDENT VARIABLE: ChI. a TIME COURSE 

SOURCE MEDIAN 25% 75% H DF 
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P 
STYROFOAM 21.1 16.1 26.9 28.8 3 <0.0001 
SILICATE DISC 23.1 15.5 30.7 
EXP.3 25.4 8.9 32.1 
EXP.4 8.8 5.9 11.7 

ALL PAIRWISE MULTIPLE COMPARISON PROCEDURE USING DUNN'S 
:METHOD FOR VARIABLE: ChI. a TIME COURSE. 

COMPARISON DIFF. OF RANKS p Q 
Styrofoam vs. Exp. 4 33.4 4 4.4 
Styrofoam vs. Disc 5.4 3 0.6 
Styrofoam vs. Exp. 3 1.9 2 0.2 
Exp.3 vs. Exp. 4 31.5 3 4.1 
Exp.3 vs. Disc 3.5 2 0.4 
Disc vs. Exp. 4 28.0 2 3.6 

p<O.05 
Yes 
No 
No 
Yes 
No 

Yes 
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