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Introduction

In [14] Jacobson classified the composition algebras (A4, Q) over any field F, charF #
2, and their automorphism groups G = aut(A, Q). In particular given z € A, he
describes the stabilizer G, of z in G. If F = R and A = O is the algebra of split
octonions, then G is the non-compact real connected Lie group of type Ga.

Rallis and Shiffmann in [18] used Jacobson’s work to show that the action of
G on O is doubly transitive, see Theorem 4.3 below. By definition G C SO(3,4).
The groups (Sp(1,R),0(3,4)) form a dual pair in the sense of Howe. This leads
to a correspondence of the irreducible unitary representations between the double
connected cover of Sp(1, R) and some of the irreducible unitary representations of
O(3,4). By using the property of double transitivity, Rallis and Schiffmann showed
that the restriction of the resulting representation to G, remains irreducible. How-
ever they didn’t compute the characters of these representations. Neither did they
compute the lowest term of the expansion of such a character, which should be the
Fourier transform of an orbital integral corresponding to a nilpotent orbit, see [3].
The goal of this work is to make some progress in this direction.

The theory of the Cauchy Harish-Chandra integral developed by Przebinda
in [17] is useful for attacking this type of questions in the case of dual pair of

classical groups. First we showed that this theory can be extended to include the



case of G5. Then we interpret the Jacobson-Rallis-Schiffmann double transitivity
theorem as a statement that there is an injection from the regular semisimple orbits
of sp(1,R) to those of gy, via the unnormalized maps used in Classical Invariant
Theory. See Corollary 4.2. We attempt to extend this statement to nilpotent
orbits and arrive at Conjecture 5.1, parts (b) and (c). Next, we compute the
Cauchy Harish-Chandra integral for any non-zero orbit in sp(1, R). See Theorem
5.1. The resulting distributions are in fact invariant real analytic functions which
look like the Fourier transforms of orbital integrals of go. We were unable to prove
that they coincide, however we formulated a precise conjecture, see Conjecture 5.1,
parts (a) and (d).

This work is organized as follows. In chapter 1 we review the general theory
of composition algebras and located the split octonions and our group G in it.
In chapter 2 we recall the Shale-Weil Oscillator representation, Howe’s correspon-
dence and the theory of Cauchy Harish-Chandra integrals. Chapter 3 deals with
the basic structure theory of g, classification of Cartan subalgebras and root sys-
tems. Moreover, section 3.5 contains the main technical lemma which implies the
existence of the Cauchy Harish-Chandra integral for go. In chapter 4 we described
the Fourier Transform of a non-zero nilpotent integral in sp(1, R). We do it via
the description of eigen-distributions of the indefinite Laplacian on R3 available

in [12]. Finally, Chapter 5 contains the conjecture and the main theorem sketched

above.



Chapter 1

Composition Algebras and Their

Automorphisms

1.1 Composition Algebras

In this section and the next section we recall from [14] some basic facts on com-
position algebras. Let F be a field (char(F) # 2) and A a F-algebra. An arrow
Q € map(A, F) is called a non-degenerate quadratic form if it is homogeneous

of degree 2, (i.e., if for @ € F, a € A, Q(aa) = &*Q(a)) and for a;,as € A,

(Q(a1 + az) — Q(a1) — Qaz)), (L.1)

<a1’ a'2> =

N

defines a non-degenerate bilinear form on A. Such a form is said to be multi-

plicative if Q € homg,ups(A*, F>).

Definition 1.1 e A composition algebra is a pair (A, Q) where A is an
F-algebra with unit 1, and Q € map(A4, F) is a multiplicative non-degenerate

quadratic form.



o (A,Q), (A,Q) are isomorphic if there is an algebra isomorphism that

preserves the quadratic forms.

If A is a composition algebra, it admits a decomposition of the form A = FQF*,
where F is the orthogonal complement of F with respect to (1.1). Relative to
this decomposition the involution @ = a — z ( for a = a + z € F ® F1) satisfies

a-a@= Q(a)l. We write Im(A4) = FL.

Definition 1.2 A composition algebra is called split if it has zero divisors. A

non-split composition algebra is called a normed division algebra.

From now on, unless stated otherwise, our composition algebras shall be over
R.

CAYLEY-DICKSON CONSTRUCTION
Example 1.1 Ay =R with Q(a) = a?, is a composition algebra.

Example 1.2 For k =1,2,3, let Ay be the vector space

Ap = Ap_1 @ A1
Given i, o, 43 € R*, we define inductively a multiplication and a quadratic
form in Ay by,
@1 - g2 = (@1az + piboby, baay + b183), ¢ = (ai, b;) € Ay,

and

Qi((a,0)) = Qp—1(a) — e Qe—1(0)  (a,b) € Ag.

Then (Ag, Qk) s a composition algebra denoted by Ax[(ta, -, tx)]-

4



CLASSIFICATION

Theorem 1.1 Up to an isomorphism, the only finite dimensional composition al-
gebras over R are: the real numbers R = Ay, the complex numbers C = A;[(—1)],
the split complex numbers Cgpie = Ai[(1)], the quaternions H = Aj[(—1,-1)],
the split quaternions (or co-quaternions) Hgpi = A2[(—1,1)], the octonions O =

As[(-1,-1,-1)] and O = As[(—1, —1,1)] the split octonions.

We shall be mostly interested in this last example and we shall freely use the

notation O = Oy = As[(—1,—1,1)].

1.2 Automorphisms and Derivations of Real Com-
position Algebras

Let aut(A, Q) be the group of composition algebra automorphisms of (4, Q). Also

let isom(A, Q) = autforms(Q) the group of linear isometries of the bilinear form
Q. Then aut(A4, Q) C isom(A4, Q).
Also, if ¢ € aut(A, Q), R-linearity implies that ¢ |g= idr and hence,

aut(4, Q) C isom(Im(A), Q).

Correspondingly, for derivations we have:

vet(A, Q) C Lie(isom(Im(A4), Q)).

Historically, the representation theory of all these automorphism groups, listed
in table 1.2, was fully understood at an early stage, except that of G := aut(Ospz, @3)-

In his massive work [20], D. Vogan described the unitary dual of Gj.

5



A aut(4, Q) ver(A4, Q)

R {1} {0}

C | Z/2Z = {1, complex conjugation } {0}
Copii 7/27 {0}

H SO(3) s0(3) ~ u(H)
| 5 SO(1,2) 50(1,2)

o (G2) compact ’ (92)compact
Ospiit G2 = (Ga2)eptit g2

Table 1.1: Automorphism Groups and Derivation Algebras of Composition Alge-
bras

Here we shall concentrate on some aspects of the theory of Gy important within

the framework of the work of Przebinda and Bernon-Przebinda on dual pairs, as

explained in the next chapter.

1.3 gy as an Algebra of Derivations

THE LIE ALGEBRA 50(3,4)
The matrix of the form 734 with respect to the standard basis of R is T =
diag(l3, —I4). Then the Lie algebra s0(3,4) is:
T X1 X
50(3,4) = {X €s(T,R): XT +TX" =0} = { |
XTI X3

X, = O(Xy) € Mys(R), X5 = O(Xs) € Mua(R), X € Msa(R) },



where O(X) = —X7T.
OCTONION MULTIPLICATION

From section 1, we have:

0= Osplit = A3[(_17 -1, 1)] =H®H,

where H = egR @ ;R & e2R & e3sR denotes the usual non-split quaternions:

2 )
e =1, e =-1, =123, e1ey = ez = —egey, O

where (O indicates that this identities remain valid under cyclic permutation of the
indices. Notice that, when endowed with the bracket [a,b] = ab — ba, the space
of imaginary quaternions becomes a Lie algebra, here denoted by u(H). We have

u(H) =e;R®esR @ e3R.

Remark 1.1 Since there is no extra effort involved in considering simultaneously
the compact and split cases, in this section we keep the factor p = £1 coming from

the Cayley-Dickson construction.

Put &; = (e;,0), and ;44 = (0,¢;) for j =0, 1,2,3. We have then

7 7 7 ,
Im(0)=ERE, QD _a&) =) (-mlila,
j=1 j=1 j=1
and the multiplication table is:
Equivalently:
! 4
&G =—p(&, )&+ D _(—mtlCug, (1.2)
I=1



Table 1.2: Multiplication Table of the Octonions

x| & | & &| & $ €6 &7
Gl =& | &|—&| &| —&| =& &6
S| =& | =S| & | & 7| —€a| —&5
§3] & | =& | =& | & | —E § | —&4
§a | =& | =86 | —Er | po | —1&1 | —uée | —ués
Es | &a| =& | &6 | p&r | wbo| w3 | —ube
§6 | &r| &a| =& | wb| —pls| pbo| &
Er | =86 | &5 | &a|p€s| w| —pbi| wo

with

Cros = uCi24a)3+4) = BCU+a203+0) = HCA+gergs =1 O
puCars = MC4(1+1)(5+1) = NC4(1+2)(5+2) =1, o

where (9 means that for every ¢ € Symm, that permutes the elements j, k, [, for

{5,k,1} € {{1,2,3},{1,6,7},{5,6,3},{5,7,2},{4,1,5},{4,2,6},{4,3,7}}, (L.3)

while leaving {1,2,...,7}\ {4, &, } fixed, we have Cr(j)ok)o) = 580(0)Cj.
Also Cj = 0, for any {4, k,1} not in (1.3).

Remark 1.2 There is a well known triple identification of Lie algebras

u(H) ~ s0(3) ~ su(2).



For v = vie; + vaeg + vses € u(H), these identifications are given by:

0 —vs v
Weouv=| oy 0 - | gT+ 0T (1.4)
—vy g 0
We may also think v = (v, vs,v3) € R,
AN EXPLICIT DESCRIPTION OF g,
Let v* € R3 k =1,2,3, and p € g{(3,R). Put
0 0 diag(1,1,u)p
V, = Valp) = 0 0 0 ,
p(diag(1,1, u)p)" 0 0
20! 0 0
Vo = Vi)=| 0o 0 o |,
0 —@HT v
0 0 0
Ve = BE):=0 0 - |,
0 )T o2
0 2diag(1,1, ) (v®)T —diag(l, 1, u)v?®
Vo = V3(0°):= | 2uidiag(l,1, ) 0 0
pvidiag(l, 1, p) 0 0

Proposition 1.1 In terms of the ordered basis {&1, ...,&7},

g2 = {V(p,v,2v%,0%) : ¥ € R}k =1,2,3, p=p" €5l(3,R)} C50(3,4),



where

V(p,v!,v%,v%) =V, + Vor + Vi + Vis.

Proof:
It is clear that this sum is direct. On the other hand, it is relatively easy to
compute dim G5. For example one could argue, mutatis mutandis, as Baez does in

[2] for the compact case with his basic triples, that:
dim G, = dim S® + dim S% + dim 8% = 14.

It is enough to exhibit independent relations satisfied by our matrices as elements

of ga.
Let V € 0er(O) = go, and write V(&) = 3 .51 Vemém- Then (§;, V(&) =

Vij(—p)Lal, while (1.2) implies: V(&5 - &) = 30, o1 (=) 41 VaClrs&i,

& V(&) = Vig(—p)la g + > (=) 4 Ve Cjmite,

I,m>1

and similarly for V(¢;) - &. Since V is a derivation, i.e., it satisfies the Leibniz

rule:

V(& &) =& V() + & V()

then

> () 4 (VemCimt + VimContt) = (=) 5 Vi Clim )&

m,i>1
= (Vig (=)'% + Vi =)o,
It follows from linear independence of the {; that both sides of the previous

10



equation vanish.

Since the right hand side is zero

Veso(3+ (1 —w)2,(1+p)2).

Since dimso(3 4+ (1 — w)2, (1 + u)2) = 21, and dimgy = 14, we only need to

find 7 more independent relations. The fact that the left hand side is equal to zero

means that for [ > 1:

> (VimCijm+ ©) =0.

m>1

where (O indicates cyclic permutation over the indices k,[,j in the expression

VkmCljm-

By an appropriate choice of indices, equation (1.5) gives the relations collected

in table 1.3. QED.

Table 1.3: Set of Independent Relations (u = 1)

L7k Relation Type
51117 —Vio+ Vo — Vs =0 compact
51116 Vis+ Vea + Vs =0 compact
3157 Vos — Vgr + Vs =0 compact
1124 uVig — V1 + Vos = 0 | non-compact
1125 uVss — Vs — Vo4 = 0 | non-compact
1126 uVes+ Vi — Vor =0 | non-compact
112(7| uVes+ Vs1 4+ Vog =0 | non-compact

11




Chapter 2

The Oscillator Representation

and the Cauchy Harish-Chandra

Integral

Harmonic analysis can be interpreted broadly as a gen-
eral principle that relates geometric objects and spectral
objects. The two kind of objects are sometimes related
by explicit formulas, and sometimes simply by parallel

theories. J. Arthur. [1]

2.1 Reductive Dual Pairs

DuAL paIRS OF TYPE I

Let (D,:) be a pair consisting of normed (real finite dimensional) division
algebra D and an involution ¢ € {id,-} . Also, let (V},7;) ( =0,1) be an ordered
pair consisting of a (finite dimensional) D-vector space and ¢-hermitian ( t-skew-

hermitian) non degenerate form on Vj. -

12



By applying the homg functor, we get real vector spaces W = W (V,, V1) =
homp (V, V1) and W* = W(V1,V;) = homp(Vy, Vo), together with a notion of

adjointness between these two spaces
* € homg (W, W), 71 (w(vg), v1) = To(vo, w*(v1)), (2.1)

for all v; € V},7 = 0, 1. At the same time, this defines a non-degenerate symplectic

form 7 on W, given by the formula:
7(w, w') = trp/r(wW™*w) w,w € W. (2.2)
We now take the point of view of groups. The classical real Lie groups:
G; = isom(V;, 1), Sp(W) = isom(W, 1),
arise naturally. Further, we have a maps G; < Sp(W) given by
go(w) = wgg" g1(w) = grw, g9; € Gj,weW.

An easy calculation shows that (wgy')* = gow®, and (giw)* = w*g;* so that
these actions indeed preserve the symplectic form. Also, by taking the functor Lie

we get an infinitesimal version: g; — sp(W),
zo(w) = —wzy, z1(w) = 71w, z; € g, weW. (2.3)

Then (Gy,G1) form what is called a irreducible dual pair of type I. More

generally we have the following definition.

13



Definition 2.1 Let (W, T) be a real symplectic vector space. A pair of subgroups
(G,G") of Sp(W) are said to be a reductive dual pair if G and G' are mutual
centralizers and they act absolutely reductively on W. Such a pair is said to be
irreducible if W cannot be expressed as a direct sum of orthogonal subspaces

invariant under the combined action of G and G'.

Table 2.1: Irreducible Dual Pairs [11]

(D, 1) Pair Type

(R,id) | (O(p,q),Sp(m,R)) C Sp(m(p+4q),R) I

(C,id) (O(p, C), Sp(m, C)) C Sp(2mp,R) I

(C,-) | Ulp,9),U(r,s)) C Sp((p+q)(r+3s),R) | 1

(H,-) | (Sp(p,g),0*(2m)) C Sp(2m(p+q),R) | 1

(R, 0) (GL(m,R),GL(n,R)) C Sp(mn,R) 11

(C,0) | (GL(m,C),GL(n,C)) C Sp(2mn,R) 11

(H,0) | (GL(m,H),GL(n,H)) C Sp(4mn,R) I

AN UNNORMALIZED MOMENT MAP

Definition 2.2 We let Sp(W) act on sp(W) and sp(W)* by the adjoint and coad-
joint action, respectively. Let G C Sp(W) be a subgroup and let V C sp(W) be a
subspace, such that G acts by restriction on V. Then, the unnormalized mo-

ment map Ty, is given by:

v(w)(z) = 7(z(w),w), TE€V,weW.

14



This map is G-equivariant, i.e. 7v € mapg(W, V™).

2.2 Homogeneity, the Canonical Commutation
Relations and the Heisenberg Group

We briefly sketch some of the ideas behind Mackey’s beautiful perspective of quan-
tum mechanics since they provide an ontologically simple motivation for the meta-
plectic representation which, in turn, is at the heart of all what follows. For details
we refer to [15].

In classical mechanics the ability to express the localization of an elementary
particle in R is achieved through the proposition system given by the boolean
algebra of Borel sets Borel (R), seen as a complete ortho-complemented lattice.
In turn, in quantum mechanics, the same purpose is served by means of an adequate

complete ortho-complemented lattice representation
A € homg ¢ jattice(Borel (R), end(H))

of this algebra in some Hilbert space H. Adequate here means that A defines a

spectral measure.
The framework for the prototypical example is as follows. Let H = L%(R), and

1s the characteristic function of S C R. Then we have:
A : Borel (R) — Pr(H) S — A(S),

15



where Pr(H) denotes the set of self adjoint projections in H.

The proposition
"The particle is in the (Borel) set S"

is then represented by A(S).
The proposition stating that the system is located in the intersection of two

sets S1 N Sy is represented by A(S1 N S2) but also by A(S])A(S2), so that:

A(S1NSy) = A(S1)A(S2) and similarly:
A(U S;) = Z A(S;) for {S;}n pairwise disjoint.
N N

A(S%) = 1gr — A(9).
The self adjoint operator defined by the spectral measure

Q= /R gdA(q),

is the position operator of the physical system. For ¢4 € R, we associate to it,
via spectral calculus, the operator:

V(9) := exp(i9Q) = / exp(1¥q)dA(q).

R

Space homogeneity means that translations induce a symmetry of the proposi-
tion system. Namely, for S € Borel (R), £ € R, let S — £ denote the translate of

S by —¢&, then
AS =€) =UASUE),

16



where {U(€) }eer is a family of unitary operators. It may be chosen so that
U:R—=UH), £—~U(¢)

is a representation (i.e. A forms a transitive system of imprimitivities for U).
According Stone’s theorem there is an infinitesimal generator P, the momen-
tum operator U(¢) = exp(i€P).

Furthermore,

UEVOUE)T = /R exp(i9)d((U(€)AQU(E)™)
- /R exp(ida)dA(q — €)

- /R exp(i9(g + €)dA(g) = exp(EOEOV (D). (24)

This is known as the Weyl canonical commutation relation.

These operators act by

Vo) e)(z) = exp(idz)p(z),  U(§)(p)(z) = p(z - &), for p € L*(R),

QP)e) = z(a), P)@) =i, forpeSR),

Consider the space (W, 7), where W = R?, and 7((%,¢), (¢, ¢')) = &9 — ¥¢.

Define a group law on W x S by:
/ 7 1 7
(w, ) - (W', @) = (w+w', o expzy-(w,w ),

and denote this group by Heis(W).
The relation (2.4) shows that p € map(Heis(W),U(L*(R))), defined by

17



p((9,0),1) = V('ﬁ),
p((0,€),1) = U(£),
p((0,0),¢) = ¢ id,

is in fact a unitary representation. This is the Shale-Weil (or oscillator) represen-
tation of the Heisenberg group. In the next section we shall recall an extension of
this representation to the metaplectic group Sm) (the connected double cover
of the symplectic group Sp(1, R) preserving the form 7).
In fact, given a symplectic space (W, 7) we define the Heisenberg group Heis(W) =

W x 8! with the same multiplication law as above. For a maximal isotropic sub-
space X C W, we obtain a unitary representation p : Heis(W) — U(L*(X))
defined by the formulas analogous to the ones above. Furthermore, given that

Sp(W) preserves the relation 2.4, Schur’s Lemma implies the existence of a pro-

jective unitary representation w : Sp(W) — U(L*(X)), so that
w(g)p(R)w(g)™ = plg h g7"),

and the Shale-Weil theorem says that this representation lifts to a genuine repre-

sentation of Sp(W).

2.3 The Oscillator Representation in a Nutshell

This short section follows closely [12, Chapter III].

18



Consider the following basis of sp(1, R):

Define w € hom(sp(1,R),end(S(R))) by:

w(H) = J{PQY,
w(Et) = %Qz, w€) = —%Pz.

Theorem 2.1 (Shale-Weil) The representation w exponentiates to a unitary

e

w: Sp(1,R) - U(L*(R)),

e

called the oscillator or metaplectic representation of Sp(1,R).

Remark 2.1 Consider —J = £~ —E™, the infinitesimal generator of the mazimal

—_— N

compact subgroup K' of Sp(1,R). Let K = —iJ, then

e the operator

w(K) = 5(@ + P?)

is the Hamiltonian of the quantum harmonic oscillator.

M2 (exp —%IC) = 7, (2.5)

is o Fourier transform in S(R), given by

Fi(p)(§) = \/—12—7; /Rexp(—z'f z)p(z)dz.

19



The representation w is not irreducible. It is the sum of two irreducible repre-

sentations consisting of even and odd functions:

L*(R) = L*(R)even & L*(R)oda.

Next, we consider the tensor of the p-fold tensor product of w with the g-fold
tensor product of its dual representation. Abusing notation, we shall also denote
it by w. Explicitly, as a representation of sp(1,R), it acts on the space S(RP*?)

by

7
w(H) = §{Ap,qv7}2;,q

7 _ )
§T12”q’ w(€) = =0,

w(&r) = 5

—

This representation exponentiates to a representation of Sp(1,R).

The group O(p,q) = isom(R?*9,7,,) acts on S(RP™9) via the permutation
representation. A direct computation shows that the S;;(TTR) and O(p, q) actions
S(RP*9) on commute with each other. In fact, the groups (O(p, ¢), Sp(1,R)) form
a dual pair in Sp(p+ ¢, RP*?). Moreover the restriction of oscillator representation

of Sp(p + ¢, RP*+9) to Sp(1,R) and O(p,q) coincide with the representation just

described.

2.4 Geometric Objects, Spectral Objects and CHC

Arthur [1], referring to the fundamental work of Harish-Chandra, singles out two

central objects in the representation theory of real reductive groups. Given a Lie
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group G, its geometric objects are the orbital integrals of G, while its spectral
objects are the characters of elements in G.

HowEg’s CORRESPONDENCE FOR REPRESENTATIONS

Let (G,G") C Sp(n,R) be a dual pair, and H the preimage of H C Sp(n,R)

—

in Sp(n, R).

Theorem 2.2 [13] As a group homomorphism, w is "almost a morphism of dual
pairs”, in the sense that the von Neumann algebra generated by w(é) is the commu-
tant of the von Neumann algebra generated by w(G'), and viceversa. The following

decomposition holds

D
Wz g /57 6(r") @ 7'dQ(n'),

where 0 : G' ~ G is a partial function, that is injective a.e. (with respect to

dQ(n")). Furthermore, the function 6 is injective in the stable range (see below).

This representation has characters which can be expressed in terms of orbital
integrals as shown by Harish-Chandra. We shall look at these notions in more
detail below.

THE ORBITAL INTEGRAL

Given G reductive, let H be a Cartan subgroup. We say that an element z € g
is regular, and write x € g", if dim g* is maximal.

For z € h™ and ¢ € S(g), define the orbital integral on the orbit O,

501(90)=/Isodﬂ=/s0(y)5oz(y)dy :=/ ¢(g- z)dg,

g G/H

where 1 = dg is a G-invariant measure on the quotient. (Note that G, H are

unimodular and hence the quotient carries a unique such measure, up to scalar
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multiple.) The two expressions in the middle are formal and are intended for the
physicists. These orbital integrals patch together to yield a G-invariant function
pg(p) on g™ (the subset of regular semisimple elements in g). The value of this

function on the orbit passing through z € " is given by:

pg(0)(z) = do, ()

THE HARISH-CHANDRA - WEYL INTEGRATION FORMULA FOR THE LIE AL-

GEBRA

Let C = {Hy,..., H} be a complete set of representatives of mutually non-

conjugate Cartan subgroups of G. Also, for x € §j put
D(z) = | det(ad z)g5|"%

Define the following Harish-Chandra - Weyl pairing for g:

1 PRy 2
Wy(r,9) = ;“m /h 7(z)D(z)*0(z)dz,

where 7, ¥, are conjugation invariant functions on g such that this is integral

is absolutely convergent. The Harish-Chandra - Weyl integration formula

states that for ¢ € S(g):

e =2 gy [, D@ ot = Billomle). @9

In [17] Przebinda proposed what may be called an analytic version of Howe’s
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correspondence, dealing with the geometric and spectral objects for a dual pair
(G,G") with rank G’ < rank G. Now we proceed to sketch his idea.

CHC FOR THE LIE ALGEBRA

Let x(z) = exp(2miz) € R, and let (W, ) be a real finite dimensional symplec-

tic space. The moment map 74w induces an injection

1

x- : sp(W) — { Gaussians on W} : Xz(w) = x (ZTsp(W) (w)(m)) :

Let (G,G") € Sp(W) be an irreducible dual pair. For a Cartan subgroup
H' C G, let Kg be the compact part (consisting of elements with eigenvalues in
S1) and Vg be the vector part (consisting of elements with eigenvalues in Rt),
so that H' = Kg/Vg. Let V = Sp(W)¥#" and V' = Sp(W)¥ C G'. There is a
V'-invariant open dense set Wy C W such that M =V’ \ Wy is a manifold with

invariant measure dw such that for ¢ € C,(Wy») we have

/WV, p(w)dw = /M /, o(vw)dvd.

As shown in [17], there is a temperered distribution chce S *(Lie(V)) given by

Ge(p) = /M / o PO

where every consecutive integral is absolutely convergent. Its wavefront set [13,

Def 8.1.2] is given by:

WF(che) C {(v, 7v(w)) : v(w) = 0,v € V,w € W}. (2.7)
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Furthermore, any z’ € h’" , defines an embedding:
Ly 2 g — Lie(V) z—z+2z.
The containment (2.7) and [13, 8.2.4] implies that
cheg () = &3 (che) ()

is well defined.

Formally, given ¢ € S(g), we have:
(;E/Cz/((p) .—_/ /go(a:)xzﬂ/(w)d:cdw = /go(z)chc(:v + z')dz,
Mg g

where:

ez +2) = / Ny (W),
M

Also,
W F(chey) C {(z, 7(w)) : (z + 2")(w) = 0,z € g,w € W}.

Finally, define the Cauchy Harish-Chandra integral CHCy(y), as a function
on " for every b € C, by:

CHCy(p)(z") = chey (). (2.8)

Later will introduce a normalized version of this distribution denoted by the same

symbol.
FOURIER TRANSFORM

Define a Fourier transform on a finite dimensional vector space V' with Lebesgue
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measure dz, as follows. For ¢ € S(V), £ € V*, put:

while for a distribution u € S*(V) let:

F(u)(p) = ulp) = w(). (2.10)

THE CORRESPONDENCE FOR ORBITAL INTEGRALS

If (G,G) is a dual pair of type I in stable range (so that defining module for G
contains an isotropic subspace of dimension grater than or equal to the dimension
of the defining module for G') then for each nilpotent coadjoint orbit O’ C g™,
there exists a unique nilpotent coadjoint orbit O dense in 7507, 1(O') c g*. Then,

according to [17, (1.19)] , there is a constant C such that:

Flo)(p) = CWy(F(bor),CHCy ().

This is analogous to the Formula (2.6) and suggests that CHCy behaves like an
orbital integral (see [3]). In fact (see [5]) under adequate hypothesis CHCy €
hom(D(g),Z(g’)), where Z(g') is the space of orbital integrals, as defined in [5].

Using the language of pairings, the correspondence reads,

mg(]:((so)aﬂg(W)) = C mg’(F(‘SO’)aCHCg’(@),
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which can be cast in a more abstract form as,
Ty(1g)|0] = Ty (CHC)[O'] € S(g)7,

where the notation is self explanatory.
THE CORRESPONDENCE FOR CHARACTERS
There is an analogous theory at the group level. In [17, (2.18)], under adequate

hypothesis, Przebinda conjectures a correspondence of the form:

Og(r) () = Xw’((_l))Gw((_l))Zm/ﬁ, Ow (1) Dg()CHC e () (W)dH,

c

where CHCg is an analogue at the group level of CHCg, © is the character of
7, 6(x') is the representation associated to 7’ via Howe correspondence, as in
Theorem 2.2, while y((—1)) is the number by which the central element (=1)
acts on representation space of 7’

Using the Harish-Chandra - Weyl pairing introduced implicitly above, we can

write this correspondence as:
W (Op(r), tg()) = W (A(n") O, CHC i (10)),

or

To(u(@))[0(0(r")] = Te (CHCe)[O(r)] € S(g)".
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Chapter 3

Structure of the Lie Algebras

3.1 Roots, Cartan Subalgebras, Weyl Groups

GENERAL DEFINITIONS

Let G be a semisimple Lie group with Lie(G) = g and let © be a Cartan

involution on g. The spectral decomposition of ©,
g=top,

where ¢ is the +1-eigenspace of © and p is the —1-eigenspace of O, is called the
Cartan decomposition associated to ©. Assume there is a compact Cartan
subgroup H C G and that § C €. The joint spectral decomposition for the adjoint

action of h¢ on g¢ is

gc=hc® > (gc)»,
A

where A = A(h, g) C h§ is the set of roots of h in go. Given that h is O-stable,

so is each (gc)a.
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Definition 3.1 e Since dim (gc)n = 1, we have that either (gc)r C ¥c or
(gc)r C pe. If the former condition holds we say that A is compact and

write X € AC, if the latter we say that X is non-compact, and write A € A™.

e For x € gg, let T denote the conjugate of x with respect to the real form
g C gc. Asin [19], for each root A € A we fix elements Hy € ih, X, €

(gc)x, X_» € (gc)-a such that:
[X/\aX-—,\] = H/\> [H)\, X)\] = 2X)‘, [H}\, X_)\] = —2X_/\’

ﬁ)\ = —H, = H_), A € A; 7)‘ = —X_), A€ AS and —)—(_)\ =
X_», A€A™ Wecall (Xy, X_», Hy), an sl(2)-triple associated to \ and

H), the co-root corresponding to A.

o We define the Weyl Groups:
W(Hc) = Ngc(he)/He, W(H) = Ng(h)/H.

Clearly, W(H¢) acts on b, and on the dual h.

PARAMETRIZATION BY STRONGLY ORTHOGONAL SETS

Definition 3.2 T@o roots are called strongly orthogonal if they are not pro-
portional and neither their sum nor their difference is a root. A set of roots is
called strongly orthogonal if its members are pairwise strongly orthogonal.

For A € A we denote by s, the reflection that maps A to —\ and that leaves

the orthogonal complement of \ with respect to the killing form fized.
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Fix a positive root system

Let U™ = ¥ N A"™ The group W(H) acts on A™ and therefore also on the
subsets of A™. Let W%, denote the family of strongly orthogonal subsets of ¥™.For

S e let

[§]=W(H)(SU(=5)NT. (3.1)

Clearly, [S] C U7 and U7 is a disjoint union of the sets of the form (3.1). This
defines an equivalence relation on W%, where [S] is the equivalence class of S. Put

(V5 = {[5]: § € U5}

Definition 3.3 We define the following Cayley transforms:

c: ¥ — aut(ge) : c(A) = exp(—zzl—i ad(Xx + X_»)),
c: V7% — aut(ge) : e(S) = Hc(/\).
S

Note that this last product does not depend on the order of the factors because,

for a, 3 strongly orthogonal, we have [c(a), ¢(F)] = 0. Also, let

h(S) = 8N¢(S)(he)-

This is a Cartan subalgebra of g. Put H(S) = G%).
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Proposition 3.1 [19] Every Cartan subalgebra of g is conjugate to one of the form
h(S). Two Cartan subalgebras h(S), H(S') are conjugate if and only if [S] = [S'].

Thus the conjugacy classes of the Cartan subalgebras in g are parametrized by [¥™].

By deﬁnition, given a root A € hg, we have:
he = ker(\) & CH,. (3.2)
Dualizing, any co-root H) can be seen as an element of (h§&)* and hence:
he = ker(H,) @ CA.

Let

and Lie(Hs) = bs.

Proposition 3.2 The following decomposition holds:

bs =hNVs+ > RH,, (3.3)
S

where Vs stands for the variety of all the common zeros of the elements of S.

Let

Asr = {M€A; Abs) SR},
As;r = {X€A; Mbs) CiR},

Asc = A\ (AsrUAgsr),
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and let the corresponding symbols with ¥ be the intersections with ¥, for example:
Usr =¥ NAsr.
Also, put
W(H(S)) = No(b(S))/H(S).

This is the Weyl group corresponding to the Cartan subalgebra §(S). Let
W(Hs) = o(S)"'W (H(S))c(S)- (3.4)
This is a subgroup of W(Hc), isomorphic to W(H(S)). Let
W(Asr) = ({sasx}) € W(Hc).
According to [19] we have
W(Hs) = W(H)gy—sy W(Asr), (3.5)

where W (H) ¢ o denotes the stabilizer of S U (—8) in W (H).
SU(=5)

3.2 Harish-Chandra Orbital Integral

For A C A, let

A(A):Hﬁ D) =[[» ad D=D().
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For ¢ € S(g) and for z € b5, define

o(S)z) = Diz) /G e P8 EN s

= D(z)00,s).(9),

where g - ¢(S)(z) = g ¢(S)(z) g7 .

Definition 3.4 Let
Hsp = A(¥sr)o(S).

This is the pull-back of the Harish-Chandra orbital integral of ¢, from §(S)
to hs via ¢(S).

We now rewrite the Harish-Chandra - Weyl integration formula in the language
of Cayley transforms and Harish-Chandra orbital integrals.

The formula becomes,
dr = L D(z)A(¥ H d 3.6
/g @) = Y o | DoAWsm@Hsple)de, (39

where in the summation, for [S] € [¥%], we chose exactly one representative S €

[S].

3.3 Structure of the Lie Algebra sp(1,R)

Let 7/ be a non-degenerate skew-symmetric bilinear form on R2 Let Sp(1,R) =
isom(R?,7'). There is a basis {e;,es} of V' & R? such that 7/(e;,e5) = 1. We

identify sp(1, R) with the Lie algebra of trace zero matrices with respect to this
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basis. Hence, the formula ©(X) = —X* defines a Cartan involution. Let

sp(L,R) =¥ @y,

be the corresponding Cartan decomposition. Then ¥ = RJ and p’ = RZ @ RH.
The fundamental Cartan subalgebra §’ = ¥ has only one positive root in sp(1, R)c¢,

namely X, given by

XN(mJ) = 2im.
Then |,
11 2 —— .
X)\/ = —2— X_)\/ = X/\/ H)\/ = —'Zj, (37)
i —1
form an sl(2)-triple, and A’ € A",
Also, by direct computation,
a b a b
C(/\I) = 3
c —a —ic —a
so that
B (N) = Re(N)(Hy) = RZ and f)'{,\,} =RHy C b¢. (3.8)

Up to a conjugation by an element of Sp(1,R), §’ and h(\') are the only
Cartan subalgebras of sp(1,R). Furthermore, their Weyl groups are W(H') =1
and W(H)\/) = {1,8)‘/}.
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3.4 A Cartan Decomposition of g,

In the case of g = g3, the map ©(X) = — X7 is also a Cartan involution, so that:
g2 = &2 D po, (3.9)

where:

by = {Via + V2 1 0" € R3},

0 —2v! 2] 0 0 0 0
203 0 —2u 0 0 0 0
“20l 2w 0 0 0 0 0
E2={ 0 0 0 0 vi—v?  vl—w? vl -2 },
0 0 0 —vl+4? 0 —vl— v )+ v
0 0 0 —vj+v: wvi+0us 0 —v] —v?
0 0 0 —vj+v: —vl—-v: ol4? 0
and
po={V,+ Ve :v® € R3 pesl(3,R)},
for
a b c
v® = (v3,v305) and p=1| b d e
c e a—d
Put
= 0 4,
AT 0
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then:

208 a  b+vd c—u}

pp={T(4) : A=| 28 b—o} d e+ed |}

2v3 c+vd e—vdP —a—-d

MAXIMAL COMPACT SUBGROUP OF Gy
Let U(H) be the group of quaternions of norm 1. Recall that this group is
isomorphic to SU(2). The group K = U(H) x U(H) acts faithfully on Im(O) =

u(H) @ H by
(uy, up)-(a, b) = (urau; ™, ugbuy ), (3.10)

preserving the multiplicative structure, as can be easily seen. That is

KHGQ.

We compute the derivative:

(= =) w(H) @ u(H) — ga,

(=, =) (0}, vH)(a,0) = (v}, a],v®-b—b-v')). (3.11)

The matrix the map 3.11 (with respect to the basis &; = (e;,0), &4 = (0,¢;)),

can be read from the following equations:

([(viey + vies +vies), e1],0) = (2(—v3es + vies),0) = —2vp&s + 2u3&s,
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(0, —eg - (vie] + vyes + vies)) = (0, —viey — vaea — viez) = —vi€s — vals — VaEr,

(0, —e; - (viey + viey + vie3)) = —vi&y — valy + v3ike,

Thus, in fact:
(= =) u(l ) @uH) -t  (v1,0%) = Vi + V. (3.12)

The map (3.12) is a Lie algebra isomorphism and K is a maximal compact

subgroup Ky C Go, as follows from the fact that they both K and K are connected.

3.5 Description of gy C s0(3,4)

Here L denotes orthogonality w.r.t. the Killing form (X,Y) = ktr(XY'), where k

is a suitable constant. We consider the space

gy = {X €50(3,4) : (X, g2) = 0}.

Since each of the relations in table 1.3 involves only either elements of € or
elements of ps, and when restricted to one of these subspaces the Killing form is a

multiple of the Euclidean inner product, we have the following:

S I o+ al;
GQL = S1 0 —G ) (3.13)
—a+aly § -

where ¢; € R3 acR.
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Lemma 3.1 In terms of Proposition 1.1, the projection

7 :50(3,4) — go

relative to 50(3,4) = go @ gy is given by :

1 tr{X. 1 1 1
X — V(§(X3+X§)——%i)lg, 6(2X1+X5+X4)’ §(X5—X4), —6(X3—Xg—2X2)),
where
X, X5 Xs
X = X, 0 X4
X5 -Xi{ Xs
Proof:

This follows by direct computation using that s0(3,4) = g, ® g5. QED.

Here is our main technical lemma:

Lemma 3.2

(50(3,4))rk<2 N g5 = 0.

Proof:

We shall prove that if the the matrix (3.13) in g5 has rank < 2, all 3 by 3 minors
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vanish and hence it must be zero. Any N € gy has the form

>
3
£
i)
3
o
S R ™

Let N % € Msy«3(R) be the matrix consisting of intersection of the rows

Jj, k,l and the columns j', k', ', as a function of a4, .., a, € R, (m = 3,4). Consider

v =0 « 0 v «
(o, B,7) (o, 8,7)
N ML A — N = _
[4,6,7;5,6,7] 0 a B | V56457 v 0B
—a 0 v B —a v
0 -8 « —y 0 =6
(o, 8,7) (6,¢€,7)
_ _ N &1 _
Nt 5.6,4.6,7 v B YE1s50 3.4 ¢ =0 0
g 0 v -0 —& —v
r —§ —¢ vy € -0
(T‘, 5, n, E) (7’ 67 6)
N7 s _ N — . _
5,6,7:1,2,3] A R PN 0 -0 —& |,
e n T — —y O
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-n 0 €
(6’ 87 n) Ir‘)

[1,2,3;4,6,7] £

-5 —n r

Then the condition det(N 222 ) = 0 implies a(a® + F? + 7?) = 0 and hence

[4,6,7:5,6,7]
a = 0. Now, det(NME,)Offgﬂ) = 0, only if v = 0. Also, det(N[4(50éﬁog 7]) =0
means 8 = 0. In a similar fashion, det(N g ia;,zog 4]) = 0 shows that § = 0, while
det(N [5(2(7”1’;)—3—]) = 0 implies r = 0. Additionally, det(/N [2_,:(4%) = 0 if and only

if € = 0. Finally, det(N %) = 0 expresses the fact that n = 0. QED.

3.6 Root Decomposition of (g2)c

Note that the vectors
Ay = V(1,0,0)1, Ay = V(l,(),0)27
correspond to the images of (e1,0) and (0, e;) under the map
(= =) u(H) @ u(H) — &,
and thus they span an elliptic Cartan subalgebra of ga:
b = {tAi+sAy: s, t€R} CHy. (3.14)

This is the fundamental Cartan subalgebra.

Now we proceed to describe a root decomposition of (g2)c w.r.t. its fundamen-
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tal Cartan subalgebra:

80 =bc® Y ((80)r @ (3c)-») - (3.15)

where g = g2 and U is as in table 3.1. Let H = diag(0, D1, D2, D3) = tA1+sAs €
and D; = z;J, so that x; = —2t,22 = —s +t,23 = —(s +¢). Then the equation

adg(A) = AM(H)A can be written in terms of (1,2,2,2) x (1,2,2,2) block matrices

as:
0 —A12D1 —A13D2 _A14D3
x [D1,Ags] DyAgz — AgsDy DyAgs — AggDs = AH)A, (3.16)
* * [Ds, Ass] DaAzy — A3sDs
* * * [D3, A44]

where

0 A Az A
_A%; A22 A23 A24
Afy Al As As
A{4 A%—'4 —Ag4 A44

and each A;; is antisymmetric.
2 X 2 NON-DIAGONAL BLOCKS:

Any equation of 2 x 2 non diagonal blocks induced from (3.16) looks as follows:

b
z;J - T = A : (3.17)
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This implies that A = +i(z; &+ zi) are all the possible eigenvalues. Explicitly:
A = £24t, £2is, +i(s + t), £i(3t — ), (3t + ), Zi(s — ©).

Indeed, for A € M = My,3(C) put A7 = —{A,J}/2, and 7A = [T, A]/2.
Thus [J, A7] = 0, while {7,7 A} = 0. This gives rise to a decomposition:

M= (M) &7 (M). (3.18)
Equation (3.17) above, can be rewritten as:
(z; — zp) TAT + (zj + 2) T7 A = XN A7 +7 A).

If A = +i(z; + z4), thus A7 =0 and J7A = +i7 A.
If A = +i(z; — 23), thus YA =0 and JAT = +447.

1 x 2 BLOCKS:

~(, B)exT = (Bzx, —awx) = (A, AB),

which gives A = +izg, 8 = +ia. The relation x3 = x2 + z; gives their interaction
with the square blocks which ensures existence of eigenvectors.

DIAGONAL BLOCKS:

Since for all a € R we have 2, JaJ — aJzxJ = 0, indeed (gc)o = be.

THE PoOSITIVE ROOTS

Let Xl, )2 be the basis of h* dual to A;, Ay viewed as a basis of hi. Put
Aj = —Zin, for j = 1,2. As we just showed, the elements in the second column of

table 3.1 are the roots of gs.
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It can be easily checked that

Qo = O{3+)\1, a1:a3+2)\1,

oy = az3+3h;, Ay =203+ 3]

Hence ¥ forms a positive system, with {A;, a3} as basis of simple roots.

Table 3.1: Set of Positive Roots ¥

Eigenvalue root
—2it = 2(273 - 272) = iIl )\1
—2is = ’l:(ﬂ’}3 + $2) /\2

—i(t + 8) = i(z1 + x2) = iz3 a1 = z(M + Ao)
—’i(—t + 5) = ’1,(1133 - CIIl) = ’Z:LL’Q Qg = %(-—/\1 + /\2)
—’l:(—3t + 8) = —’2:(371 — xz) Qg = %('—3)\1 + )\2)
—2(315 + 8) = Z(LE3 + 1171) Qg = %(3)\1 + )\2)

Lemma 3.3 The sl(2)-triples (Xo, X_o, Ha) associated to these positive roots in

(g2)c are given in table 3.2 (in column 3 only non-zero parameters are listed).

Proof:

e By extending to the complexification, (3.12) gives rise to the isomorphism

(wWH)©C)e uH)®C) - bhc @) ((82)0)
Ac

e In each summand u(H) ® C, the vectors Hy = ie;, X) = 3(ex+1ie3), X_) =
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— X, form an s[(2)-triple, as can be easily verified:

1 . 1 ) _
{5(62 + ie3), ~§(€2 —ies)| = e,
1, ] 1
ier, = (e2 +te3)| = 2-(ez +1e3),
2 ] 2
: 1 N 1 ,
{161, ——2“(62 - 263)_ = 25(62 — ie3).

By the isomorphism (3.12), we have:
§k = ‘/(ek)l €k+4 - ‘/(ek)za

and hence the the first two lines in the table follow.
AISO> if P1, P2 are symmetric, then [‘/;717 ‘/,02] = dla’g([pla ,02]) O: [p17 :02]) By look-
ing at equations (3.7) we get the s[(2)-triple for ay. We compute the rest using

Mathematica(©) and the remarks above. QED.

3.7 Structure of the Root System of G,

For Y7, Y3 € b, the Killing form is:

(Y1, Ya) = tr(ad(Y1)ad(Y2)) = 2 _ a(V1)o(Ya). (3.19)
We have:
_ 2(H,, Hy;)
)= TmE

where |H,|? = (H,, H,). Hence we get the identification he =~ hg that takes the
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following form for elements in ¥ given by:

2

Put

4

(o, B) = W<Ha,ffﬁ>-

RooTs SYSTEM G,

Ao
Q3 Qo 651 167

N

A1

TN

In our context strong orthogonality is equivalent to orthogonality with respect

to (, ).
The Weyl group W(H) = (sya)ge C W(Hc) has order four. The W(H)-

equivalence classes of strongly orthogonal sets of non-compact roots are:

Sy = @

St = [{ea} = {{on}, {02}}

S = [{os}] = {{as},{as}}

Ss = [{ar, 08} ] = {{on, a3}, {az, u}}.

The complex Weyl group W (Hc), generated by the reflections with respect to
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all the roots A € U, contains a subgroup

W(He)t = (8a8p)aper C W(Hg).

This is the subgroup of rotations of W(H¢). It acts on orthogonal pair of roots as

follows:
/\1 (03] (0] —/\1
— — —
A2 a3 —Qy —Ag
—o - A
> el T | e ' (3.21)
—Q3 871 Ao
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Table 3.2: sl(2)-triples in (g2)c

o= 2(aA1 +bXg) | Hy = 2(al; + bAg) X, =V (@v% 8 p) X 4
! 1
ila(Mr), a(fz) | (M(Ha), Ao(Ha))
A= (2,0) (2,0) v =2(0,1,17) —Xo
As = (0,2) (0,2) v? = 1(0,1,7) ~Xo
0 1 —i o
o = (1,1) (1,3) v =1(0,4,1),p=3( 1 0 0 X,
- 0 0
Qz = (_11 1) (_173) v = %(1)070)ap = %dl&g(?&, —1, _Z) X_a
0 i 1 o
as = (—3,1) (-1,1) v¥=31(0,1,—-i),p=3[ ¢ 0 0 Xa
100
00 0 .
as = (3,1) (1,1) p=3101 4 X,
0 1 -1
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Table 3.3: (Hp)
a

H,,

H,,

H,,

H,,

H,,

Hy,

A1

A2

aq

Qg

a3

Qg

8
Hy )/
Table 3.4: { H,,

H,,

H,,

H,,

H,,

Hy,

(,)/8 | Hx

H),

H,,

H,,

H,,

H,,

H,,

Table 3.5: (a, 5)

b=l —
mlla fan! _
41_21_2
: X
ey —
%1..21_20 —
X
*
|63~ o
21__61
- x| X
X
w..l_61_21_3
X
X
— | X | X
ol P :
: X
*
< Hled X | X
\A
5188 8
=1
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Table 3.6: Objects Attached to Strongly Orthogonal Sets 1

S bs W (Hs) Usr
%) b ({8x1,80}) =Z/2Z X Z/2Z | @
{1} | RHa, + RiHa, | ({SaysSas}) = Z/2Z x Z/2Z | {as}
{3} | RHay +RiHg, | ({SasSan}) = Z/2Z x Z/27 | {01}
{a1, 03} | RH,, +RH,, (sg) = Dihg 7

Table 3.7: Objects Attached to Strongly Orthogonal Sets 2

S Vs bs Usr | Usir Usc
g ) h @ 1 %
{an} | CH,, | R(—A1 + Ag) + Ri(A1 4+ 3A2) | {au} | {as} | {1, Ao, 00,04}
{as} | CH,, | R(A; +3A2) + Ri(—A1 + Ag) | {as} | {on} | {2, a4, A1, Ao}
{a1, 03} 0 (RiA1 + RiAy) U %) %]
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Chapte'r 4

The Orbits

4.1 Tempered Eigen-distributions of Ay

The group SO(2, 1); is the identity component of isom(R3, 751 ). We identify [0, 27]

with S by 6 — exp(if). For « € R, put
B(a) = {zeR®: m(z,2) = a}.
Let € = 1 (or sometimes just %, according to the context). For S C R, put

B(S) = |JBla),
S

B(S)* = B(S)N{z € R3:ex3 >0}.

Then B(S) = B(S)* UB(S)~. Also R® = B(R) and, by restriction, we obtain a
foliation of R? \ {0} into SO(2, 1);-orbits: B(a), B(—a)*, B(—a)™ a > 0.
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The following maps:

Yo : RTxRxS'— BRY)

(p,a,0) +— p(coshacosh,coshasing,sinha),

T : R"xR*xS'— BR)*

(p,a,0) +— p(sinhacosh,sinhasing,ecosha),

define diffeomorphisms onto open dense subsets with Jacobian equal to p? cosha
( p* sinha resp.). Moreover Yo({p} x R x §') = B(p?) and T.({p} x RT x §') =
B(—p?)¢. Hence, for a test function ¢ € S(R?),

[ pdo= [ vieltan (4.1)
B(R+) R+

/ pdr = / v2(p)p” dp,
B(R-)e R+

where,

V(@) = /S ©(To(p,a,8)) coshadfda,

1><R

vi(p) = / «(p,a,0)) sinhadfda.
><R+
(4.2)

Since,

/ (1+ (p cosha cosf)?+ (p cosha sin#)? + (p sinha)?)~?
SIxR

coshadfda = 27r/ (1+ p?(1 + 2sinh®a)) P(cosh a) da < oo,
R
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for 2p > 1, 1/; is a tempered distribution and analogously for v_,(¢). Furthermore,

given that
1d 1 d
Vi) = S— r2ul(p)dr = —— o(z)dz, and
AETY = 500 Joo O
1d 1d
V62 ((P) = 95 T2 I/ezr (P) dr = —— (p(f) dl‘, (43)
’ 2o Joy" P2 dp Jp(- 2,0y

and since the Lebesgue measure dz is SL(3, R)-invariant, we conclude that

V;, pr € S*(R3)SO(2’1)1.

Changing variables we get,

pr2,(p) = /Sl ( )gp(\/TZ — p?cosf,\/r% — p?sin B, er) dd dr,
x (p,00

and hence 4.3 implies that the following limit exists in S*(R3)

i) = mprt (o) = [ plr(costsing,e) ddar (4.4
1x

50(2,1)1

so it defines an element in S*(R3) supported on the cone B(0)¢.

If 1) € L, (R?)*O®11, then

/ b(@) ple)dz = / (W(@re) 22), () das, (45)
B(R*) R+

| T)p(z)dr = T3€3)T3 a:31/§3 dxs.
Lo p@e@a = [ Gaem)zie)

We shall use the formulas (4.5) in order to compute Fourier transforms of the

measures (4.2).
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Let us define the following Fourier transforms, p,q € N:

1 p+q ) ( )
_ —impa(z:) g
fp,qﬁ@(y) (m) /Rp+q QO(CE)G Zz,
Fi = Fuo, F_1=Foa,

for ¢ € S(RP*?), while for u € $*(X) we define by (2.10).

It is elementary that, for u € S*(R?),
A2’1f2’1u = .72,1(—7'3,111,).
Hence:

A2,1-7'—2,17/; = *102-7:2,1(1/;),

2 2 2
Agr1Fonv, = pr,l(Vep)'

Thus the Fourier transforms .7-'2,11/; and Fz,v,, are the S0O(2,1); - invariant

eigen-distributions for the indefinite Laplacian A,; with eigenvalue & = —p? and

a = p? respectively.

As explained in [12, (VI 5.1.22)] any such eigen-distribution, when restricted

to the open sets B(R™) and B(R ™) is of a very concrete type of smooth function.

however, in order to extend them to the whole of R3 one has to impose a few more

conditions, see [12, Theorem VI 5.1.23].

Theorem 4.1 [12, Corollary VI 5.2.1] The space of tempered SO(2,1); - invari-
ant eigen-distributions for the indefinite Laplacian Ag; is a finite dimensional
subspace of L} (R3)SOGV1 More precisely, the subspace corresponding to the

eigenvalue o > 0 (resp. a < 0) is the 2 (resp 1) dimensional subspace with
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basis:

a>0
cos(pzs)
ul(xlel) = 0, ’11,1(1‘363) = T, (46)
e~ Flal sin(pz
a<0
cos(pz1)
ug(z1€1) = PR uz(zses) = 0. (4.8)
1

(The minus sign in (4.7) is missing in the original statement [12, Corollary VI
5.2.1], but it is not difficult to check that [12, Theorem VI 5.1.23] implies that the
minus is necessary.)

Hence, up to scalars, we can identify }"2,11/; and .7-"2,11/;, with the distributions
uy, Uz, usg above.

FOURIER TRANSFORM OF v,

Given the commutativity of the O(2, 1) and S;(ﬁ) in the metaplectic group,

the space S*(R3)%(1 carries also a metaplectic representation.

Let ®; € hom(S(R)eyen, S*(R3)°?Y) be given by:

© o(r)rvt dr.
Rt

As explained in [12, Theorem VI 5.2.5 (a)],

®; € hom e (S(R)even, S*(R3)OFD),

93



Since the different Fourier transforms live in the same metaplectic group (see [12,

(VI 1.1.5)]), we have F21(®1(p)) = ®1(F1(yp)), i.e.,

Fou </R+ o(r)rvt dr) = /R+ (Frp)(r)rvt dr. (4.9)

By a standard approximation argument we may use the formula (4.9) with

¢ = 6, + d_,, where §, is the Dirac delta at a. This leads to

1 . )
Farlpv,) = v (e + e ™) ru, dr. (4.10)

By combining (4.5) with (4.10) we see that
1 eip:rl + e—ip:cl

Vo pT1 ’

F2’1V;($3€3) = 0.

f2711/; (1‘161) =

FOURIER TRANSFORM OF /2,

Let S*(R3)f_o(2’1) ' C §*(R3)O@1 be the subspace of distributions supported
in B({0}UR™). This space is invariant under the sp(1, R) action. Hence S*(R?)¢ =

é’*(R3)SO(2’1)1/6’*(].:{3)i0(2’1)1 is a sp(1,R) module. Furthermore the map

@, € hom(S(R), S*(R®)?),
defined by
o / o(r)ro2,
R
is intertwining

@, € hom o+ (S(R), 5" (R)°),
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as explained in [12, Theorem VI 5.2.5 (b)]. As before, one gets

CF R ([ eondar)] = [ dEapmmia]
R B(R™) R+ B(R™)

where |-y denotes the restriction of the distribution to the open set B(R™).

Now, put f = d,, to get

7 :
Fo1(epv? } = / ——e“r? dr. 4.11
2»1( P p) BR-) R \/% ( )
By combining (4.5) with (4.11) we see that
7 eiepz;,v
Favl,(zses) = T (4.12)

Theorem 4.1 and (4.12) imply the value of F;2, on the other axis:

9 ( ) 1 e plaal ( 13)
Forv: (x161) = —— . 4,

Also, by taking limits with p — 0 (see 4.4) we are able to compute Fy1v5. We

summarize the part of discussion that we shall use later in the following theorem.

Theorem 4.2 The Fourier transforms Fa1v,, Faivi,, Faiv belong to L} (R3)S0&11,

Ezplicitly
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1 eipzl _|_e-ip:1:1

-7:2,17/;(37161) =

Vor  plz

.7:2,11/:; (£E363) = O,

) 1 ePlal
Farelne) = o el
7 eieng
Fanve(zaces) = V27 eps !
1 1
-7:2,1V5($161) = ?rz—',
1
;1
f2’1V8($3€3) = \/—2771.2;3‘

4.2 Co-Adjoint Orbits for sp(1,R)

There is an intertwining isomorphism

(SO(2,1)1, R % (Sp(1,R)/+I,RH ® RT @ RJ)

between the standard and the adjoint representations. Explicitly

7[)(1;17 I, 563) =ao\H + 2L — 237 .

’

(4.14)
(4.15)
(4.16)

(4.17)

(4.18)
(4.19)

(4.20)

(4.21)

Using this identification, the co-adjoint orbits in sp(1, R) are listed in table 4.1.
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Table 4.1: Co-adjoint Orbits in sp(1,R)

(p>0)

O | Type Name Description

{0} | nilp | TRIVIAL

O | nilp | UPPER LIGHT-CONE S0(2,1):(1,0,1) = B(0)*

Oy | nilp | LOWER LIGHT-CONE S0(2,1);(1,0,-1) = B(0)~
O, | ss | 1-SHEETED HYPERBOLOID S0(2,1)1(g,0,0) = B(¢?)
O3, | ss | 2-SHEETED HYPERBOLOID (UPPER s) |S0O(2,1):(0,0,p) = B(—p*)*
O? | ss | 2-SHEETED HYPERBOLOID (LOWER §) | SO(2,1),(0,0,—p) = B(—p®)~

4.3 Nilpotent Orbits in go

Let O C g, be a non-zero nilpotent orbit. Then, as explained in [7, 9.4], there are

elements,

such that, if we denote by €’ the element —©(e), then

le,e'] = h, [h,e] =2e, [h,e]=—2¢"

e€ O, h € p,,

Then (e, €/, h) is a Cayley triple corresponding to the orbit O. Let

Ce = exp(—z%ad(e +¢€'))

57




Table 4.2: Nilpotent Orbits in gs [7, 9.6]

@ dim O Extended Weighted Dynkin diagram for Ogr
Alg\blro) —_—— Az()\f;o)
Oy 0 trivial Se=—=o0—>]
Os 6 minimal de==o—>]
Os 8 lee=—o—>3
O3, | 10 sub-regular le=—o 2
0?, | 10 sub-regular Se=—=o0—>¢
Q012 | 12 principal de=o0—> g

be the corresponding Cayley transform, and define the following elements in (g2)c:

Then, as it is well known, [8, Prop. 6.1],
1 —
X:§(e+e’—ih), X' =X, H=—i(e—¢). (4.22)
In particular,

(X, X'|=H, [H X]=2X, [HX]|=-2X H=—H.
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The equation

e = Re(X) + %H,

which follows from (4.22) is used to calculate the last column of table 4.3.

Since H € (83)c, X, X' € (p2)c, the elements (X, X', H) form what is called
a normal triple associated to the orbit 0. Conjugating the above elements by
the same element of the maximal compact subgroup Ks C G, if necessary, we may
assume that H € ho and that A (H) > 0 and M\(H) > 0.

Then the pair of numbers (A;(H), Ao(H)) determines the orbit O completely.

In these terms, the Kostant-Sekiguchi correspondence
nilpotent G orbits in go < nilpotent (K3)c orbits in (p2)c,

is given by

Oe:Gz'eHKc-X. (423)

Also
dimR(Oe) = dimc (GcX)

DIMENSION OF ORBITS

The dimension of the G¢ adjoint orbit through X is

dimg(g¥)c = dimg g — dime(g%)c

dim(Ox) = dimc ge — #{a € A : [X, X,] = 0} — dim(p*).

Hence the dimensions appearing in table 4.3 can computed as follows:
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Notice that a4 + 7 is not a root for v = A1, Ag, a1, ag, —ai3, — .
dim(OX%) =14-7-1=6.
Since oy + 7y is not a root for v = Ag, oy, a3, —ax3, then

dim(Ox,,)=14—5-1=8.

4.4 An Explicit Correspondence

ExprLicIT FORMULAS FOR THE MOMENT MAPS We make the identification W ~

w
Moy (R) ={ ' }, w; € R, Define adjunction in W (see (2.1)) by:

Wa

w* =Tw' J, (4.24)

where J is as before, while 7 = diag(l3, —I4).
Hence, if we identify sp(1, R) with its dual sp(1, R)* using the trace form, then,

for w € W, we have

. —T34(W1,wa) T3a(wr,wr)
Tep(L,R) (W) = wWw"* = : (4.25)

—73,4(?1)2, ’w2) T3,4(w2, w1)

If we identify s0(3,4) = 50(3,4)* in the same way, then

Tga = T O Tg0(3,4)
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where 7 : 50(3,4) — g2 is as in an in Lemma 3.1.

Explicitly, if we split w € W into 3 blocks of sizes 2 x 3, 2 x 1, 2 X 3, namely

w= (w11w27w3)7 then

ng (w) = V(pa Ula Uz) U3)7

where
2 1, 1, 1, o 1.4 t
v o= ——wiJw + cwsJws + wiJws, v = —(wiJws — wsJws),
3 6 6—— 2 -
1
3 _ ¢ ¢ ¢ ¢
v = 6(w3jw1 — (W3 Jw1)" + 2ws T wn),
1y ¢ ¢ 1 ¢ I
po= WsJw + (waTwi)) + gtrlwiJws)I.
In order to see this, note that:
0 War1 W31 W4 Ws1 W1 Wr
—wy1 0wz wg  wsr  we wr
—w31 —w3p 0  ws3 ws3  Wez wr3
w1
Ts0(3,4) = W41 Wag W43 0 Was  Wae Wiy
Wa
Ws1 Wiy Wiz —W4s 0 Wse  Ws7
We1  Wez Wwez —was —wse 0 wer
Wy Wry  Wrz —way —wsy —wer 0
where w; = (21,...,27), w2 = (Y1,-.,Y7), Wi = T;Y; — Z;¥;, and apply the

formula in Lemma 3.1 to this element.

DoUBLE TRANSITIVITY Let G, act on R7, by matrix multiplication.

For o € R*, let

O(a) = {z € R": 134(z,7) = a}.
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Theorem 4.3 [18, Thm 1, pg. 807] The set O(a) is a Go-orbit. Also, ifx € O(a),
for any B € R*, (Gy). acts transitively on the intersection of O(B) with zt, the

hyperplane T3 4-orthogonal to x.

Corollary 4.1 Let & € sp(1,R)™. Then
Ts_;;:(ll,R) (é-) (—: Wa

15 a single Gq-orbit.

Proof:

Each conjugacy class in sp(1, R)" intersects R*J URTZ at a unique point. If

0 «o
€€ , then

- 0

75;313)(5) ={w eW; wi € O(a), wz € O(—0a), T3a(wi,we) =01},

0 «
while if £ € , then
0

Ts;zl’R)(é) ={w e W; w € O(a), w2 € O(a), T34(wr,wa) =0}

Let w,w' € TE;%LR) (€). Theorem 4.3 implies the existence of g € G5 such that
g-wp = w.
Thus
73,4(9 - wo, w)) = T34(g - w2, 9 - w1) = T34(w2, w1) = 0.

Hence, again by Theorem 4.3, there is h € (G2). such that h - (g - ws) = wj.
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Clearly hg maps w to w'. QED.

Corollary 4.2 Let O C sp(1,R) be a reqular semisimple orbit. Then

T;D%I,R)(Ol) cw

is a single Go - Sp(1, R)-orbit. Moreover,
O = T (Tonr) (0) € 82

15 a single G orbit.

Furthermore, under our identifications, for p > 0,
0' =2 ifand only if O =Gs- (%Al),

O =0, if and onlyif O =G, g(A1 +3A,),

and

O = C’)Zl, if and only if O =Gy —c(Hy,),
where ¢ = c(ay), as in Definition 3.3.

Proof:

The first two statements are clear from 4.1. If

0100000
001000O0°0¢O0
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then, by (4.27),

Similarly, if
000O0O0T1OQ0

0000O0O©O01

then, by (4.27),

0 -1 11
Tep(1,R) (W) = . and 74, (w) = 6/\1 + §A2'

We see from Lemma 3.15 that, in terms of Proposition 3.3, ¢(Hy,) = #(Xq, —

0 0 -3
X _q,) corresponds to v' = 0, v* = 0, v® = (0,1,0) and p = 0 0 0
-0 0

Therefore, if
1000000

w = )
0 00 0O0O0OT1
then, by (4.27),
01 -1
Tsp(1,R) (’LU) = and Tga (w) = ?C(Hal)'
1 0

Hence, the other statements follow. QED.
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4.5 Normalization of Measures

Define, for § € end(W),
(w) = =JwT. (4.27)

(]

Then

Fw),w) = tr(w*(=JwT)) = tr(w'w),

32 = —id and Je Sp(W).

Thus J is a compatible positive definite complex structure on W and therefore
conjugation by J defines a Cartan involution © on sp(7,R). It is easy to check that
© preserves the subspaces 50(3,4), sp(1,R) and that it restricts to the previously

defined Cartan involutions on these Lie subalgebras. The formula

k(z,y) = —trenaw)(©(2)y), (4.28)

for z,y € sp(7,R) defines an inner product on sp(7,R) which determines a nor-

malization du of the Lebesgue measure dz on each subspace of sp(7,R), so that

the volume of the unit cube is 1, namely du = /| det(x(e;, e;))|dz.
For any unimodular closed Lie subgroups FF C E C Sp(7,R), the measure p
induces Haar measures on F and E/F. We shall denote these induced measures

also by u. Specifically if ¢ € C.(E) support near the identity, then

/E o(g)dug) = / o (exp(X)| Jac(X)|du(X)

[4

and
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/F /E /Fw(gh)d#(gF)dp(h): /E e(g)dulg)-

In particular, if we view the matrix J as an element of sp(1, R), then

(T, T) = —trenaw)(OT)T) = —tTenaw)(T?) = —trenaw)(—1) (4.29)

= trend(w)(.[) =dim W = 14, (430)

and therefore,

u(H" = /S du(rg) = /S 1 VE(T, T)dr = V1427 (4.31)

4.6 The Fourier Transform of an Adjoint Orbit
in sp(1,R)

We can see from (4.22) and (3.7) that:

01
C(/\l)H,\/ = i(X)‘/ - X_)‘/) = — ,
10
{ 1{ 1 -1
C()\/)X/\/ZRQ(X)\/)——HA,:—- y
2 2
1 -1
Cot 1 I 1
C()\I)‘X_)J = RG(X)‘II + —-Hy ==
' a 2| .,

Moreover, (c(A) Xy, c¢(N)X_x, ¢(N)Hy) form a standard Cayley triple.
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In particular, the Kostant-Sekiguchi correspondence of nilpotent orbits associ-

ated to our Cayley transform looks as follows
0% = Sp(1,R) - c(X) Xox Ky Xow

where K - Xov = Hg - Xev = C* X, (Here, g-z = gzg™'.)

Lemma 4.1 Let p € R*, € = £ and let N/ be the centralizer of c(N)Xex in

Sp(1,R). Then, using the normalization and identification (4.21), for any ¢ €

S(sp(1,R)),

/ 0(g pe(N)Hy) du(gH(N)) = Sox(¢) = 1),
Sp(1,R)/H'(N)

/ 0(g - (—eipHy)) dp(gH') = b0z, () = Tv2,(),
Sp(1,R)/H'

! 7 7 €
/ (g o(N)Xox) du(gN?) = bog(9) = —=15(p).
Sp(LR)/N V2

Proof:

In order to shorten the notation let

Then, in particular, for 1 < j,k <3

—7'2,1 (68.7',8-]9) = 5j,k~
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Thus, for z,y € sp(1,R),
Rz, y) = —tr(0(2)Y)enaw) = —Ttr(0(z)y) = —147,1(0(x), ). (4.36)
A straightforward computation shows that for 8,a € R,
(exp(ﬁ%&}) exp(—a%ﬁg)) - pa1 = Yo(p,a,b).
Hence, by (4.2),

1 1
V;(‘P) = / ¢((exp(0=03) exp(—a=02)) - po1) coshadf da.
R+xS! 2 2

det | K(—302,503) R(—302,—302) A(—302,01)
(01, 503) &(01, —502) k(01,01)
k(01,01
7
70 0
det | 0 % 0
0 0

14 7\ 2
- 14 B (5) '

Since the group H()') has two connected components, equation (4.32) follows.
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Similarly,
. 1. 1o . A
(exp(9§a3) eXp(CL—Q—Ug)) - (071 + €03) = e*(cos 00, +sinf 7, + €03).
Also, ¢(X)Xex = 3(01 + 73). Hence, by (4.2),

v5(p) = /R+ P o(r(cosf0y + sinf o, + € 73)) dd dr (4.37)

0 =(cos0a; + sinfd, + €03) df dr

X
U
2
DN 3

a

% (%(cosﬁ&l + sinf oy + €03)) e* df da.

T

N —= N~ N

1
/ o((exp(8=53) exp(a=53)) - ()Xo ) e* df da.
RxS! 2 2
Furthermore, by (4.35) and (4.36),

#(303, 303) #(303, €502) R (503, c(X) Xexr)
det FL(G%&Q, %/0'\3) R(G%&Q,E%a\g) /%(6%82,0()\’)X€A/)

/ZJ(C(/\’)XE)\/, %83) I%(C(/\I)XE,\/, 6%32) I%(C()\’)Xe,\/, C()\,)Xe,\/)
|R(c(N) Xexr, (V) Xex)|

P o
det 0%0
B 7 T 28

Thus dspa,R)-c(V)X., = 1/;—§ -2 -5, and (4.34) follows.

In order to verify (4.33) we shall rewrite the formula (4.2) defining the measure
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vZ, in a different way. Since (71 + 72)* = 0,
exp(t(El + 82)) =1+ t(31 + 82)
Thus, for z € sp(1,R),

exp(t(01 +02)) - @

= (I +t(G,+09))x(I —t(01 +02)) =z + t[o + T2, 2] — t2(Gy + 02)z(T1 + o).
Explicitly,

exp(t(31 + 8’2)) . (1171 81 + x9 32 + 3 83)
= (iCl — 2t$2 — 2t2(CL‘1 — mg))31 + (-’EQ + 2t(x1 — CE3))6’2

+ (23 — 2tz — 2t (71 — 73))T3.
Furthermore, for b € R,
exp(bos) - €p T3 = €p sinh b0y + €p coshbTs.
Therefore,

(exp(t(d;, + 72)) exp(bds)) - €pT3 (4.38)

—~

= (ep sinh b+ €2t2pe™%)G; — e2tpePGy + (ep cosh b + ep2t?e™P)7;.
P
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A straightforward computation shows that the equality

sinha cos@ 7, + sinha sinf oy + € cosha oz

= (esinhb+ €2t’pe )51 — €2te™ G, + (€ cosh b + €2t%e )5

holds if and only if

1
t = —e= sinh a sin §(cosh a — € sinha cosf) ™7,

b= —e In(cosha — € sinha cosd).

(4.39)

(4.40)

(4.41)

(4.42)

Furthermore,
t 1 :
gE =—€5 sinf(cosha — € sinha cos §) 2
ot 1
2% = % sinh a(cosh a cos@ — € sinh a)(cosh(a) — € sinha cos )2
b
e —¢(sinha — € cosh a cosf)(cosha — € sinha cos§)™*
ob
0= sinh a sin §(cosh a — € sinha cosf) ™7,
so that
ot ot
det | % % | =esinha.
o b 2
Oa 00

By combining (4.38), (4.39), and (4.42) we deduce

~ o~ ~ ~ 1
/ o((exp(t(a1 + 73) exp(bdy)) - €pas) dbdt = §u€2p(go).
RxR
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Moreover,

k(01 + 05,01 +03) R(01+03,02) K(01+ 03,03)

det | (53,5, +53) % (G2, 5a). %(G2,53)
%(53,51 + 0s) 7 (53, 52) %(5s,03)
|7 (33, 55)|
28 0 14

det| 0 14 0

14 0 14
14

Hence,

1 2
Osp(R)-(—eipty) = 14+ S Vg,

which verifies (4.33).
QED.

Define a Fourier transform on sp(1, R) as follows,
Fo) = [ pla)e 5 dua), (4.44)
sp(1,R)
We will make use of the identifications,

05 = Sp(L,R) - ¢(N)Xex,
O} = Sp(1,R) - pc(N)Hy,

02 = Sp(l,R) : (—GipHA/).
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Theorem 4.4 Let p € R and let ¢ = &. The Fourier transforms of the orbital
integrals in sp(1,R) coincide with L (sp(1,R))POR) functions determined by

their restrictions to ' and b'(X'). Ezplicitly

ei7rpl + e—i7rpl

doi(le(N)Hy) = —_— 4.4
F @p(c()\) ,\) s me y ( 5)
Fboy(rilHy) = 0;
Foéoe (le(N)H i 4.46
oz, (lc(\)Hy) = Pl (4.46)
eie7rp'r‘
Féoz (riHy) = Tmi ;
e ETPT
o1
c(lc(NYHy) = —— .
Féo1eN) H) = 2 (4.47)
w1

féoé(riH,\:) = ——-—

Proof:
We shall verify (4.46). The proof of the remaining identities is very similar.

Since
R(6h,51) R(6h,6) R(61,53) 14 0 0
det | #(63,61) R(63,6) R(6y63) | =det| 0 14 0 | =14
(63, 61) R(Gs,G2) R(G3,03) 0 0 14
we have

Fp(y) = 1432 (=) e ) dp = 1432 . 17 (2m)P 2 Fy 1 (4 0 i ) (y),
R

1
- wherey) o m1 (z) = ¢(—z). Therefore,
™ m
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Fsp(1,R)-(—eipHy) (¥) = O5p(1,R)-(=eipt, ) (FP)
= 1432 . 173 (21?61 Ry (—eiptty ) (Fap (¥ © m1))
= 14%2. 772 (20)*2 . 7. 2 (Foa(yp oma))
= 1432 778 (27)%%. 7. (fz’lyfp)(zp o mi)
o 1432 58 (2P / (Far2) (@)l =) de

R3 ™

= 14%2. (2m)3?. 7. (/ yTl(((f2’1z/62p) o my)tp) ridr
R+

T Z//R+ Vo (Fo1v,) o ma)) 2 d?")

= 14%2.(2m)3% . 7. (/ (fg,lufp)(wreg)yrl(w) r?dr
R+

+ Z: /R+ (.7:2,1V€2p)(6'7r7"e3)1/€_,r(¢) r? dr)

= 1432 (2m)2. ( / (Fat2) (17e2)Bsp(a myes () 72 dr
R_+

+ Z/ (fQ,lyzp)(617TT63)dS'p(l,R)-(—e’ires)(¢) Ir2 d’f‘)
¢ R+

- ; - (2m)?/? (/R+ (-7:2,1V52p)(777‘62)55‘;;(1,}{).7@2 (W) [N (c(N) " treg) |? du(res)

+ Z/+(.7:2,1V3p)(6'7”’63)5Sp(1,R).(—e/ire3)(¢) f>\l(€/7"€3)|2dl$(€'7‘€3)> .
¢ R

Hence,
F8sp(1,R)-(—eipHy) (T€2) = g - (2m)¥ 2 (Foa ) (nreg) = Tm iy
pTT
and
gimepe'r

. (2#)3/2(.7:2,1V3p)(e'7r7'e3) = Tmi

[NCREN

/ —
FOsp(1,R)-(~eioH,) (€ TE3) = Tepe'T
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QED.
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Table 4.3: Parameters of Non-trivial Non-maximal G5 Nilpotent Orbits

e=al; + A+ Vs +V,

!
H X (AL(H), Ae(H)) | O, (a,b,v3)
0
Ha4 Xa4 (171) Os (_i’ _i’ 0)
0 0 O
{010
0 0 -1
Hal Xal (1’3) Os (_%v _—%) %(0?1’0))
0 01
31000
100
Ha1+H—a3 Xa1 +X—a3 (2’2) O%O (_%7 _%v i(oal’l))
0 31
11300
100
Ha1+F—a3 Xal +7—a3 (0’4) O%O (0’ -1, (0’%70))’
0 0 —
o= 0 0 O
-1 0 0
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Chapter 5

CHC and Orbit Correspondence

5.1 Cauchy Harish-Chandra Integral for the Pair

<g275p<1a R))

By [17, Lemma 1.10] and the identification s0(3,4) = s0(3,4)* via the trace form,

we have

WPF(chey) € {(z,—w*w); (' +z)(w) =0, z € 50(3,4), we W}

C 50(3, 4) X 50(3;4)rk§2- (51)

The co-normal bundle to the embedding
g2 — 50(3,4) (5.2)

coincides with go x g3. Since g3 N 50(3,4),1<2 = 0, by Lemma 3.2, we see that

the intersection of the wave front set of c,}\l/cz/ with the co-normal bundle to the
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embedding (5.2) is empty. Therefore we may define

(;l’\l/Cm/ € S*(gg) (53)

as the pull-back of chcy € S*(s0(3,4)) to go via (5.2), see [13, 8.2.4]. The
resulting distribution (Efcz/ is Go-invariant. Since for any Cartan subalgebra f; C
g2, the Gy-orbits through a regular element of h; are transversal to h, we may
further restrict the distribution cﬁ:z/ to 7.

By Harish-Chandra - Weyl integration formula for ¢ € C°(g}°),

Fiew (i) = / (e’ + 2)p() du(z) (5.4)

82

_ Zm h che(z’ + ¢(S8)z) D(T)(z) A(Vs ) (z) Hsp(x) du(z).
'] s

The defining module for the algebra s0(3,4) is the space V = R'. Let us

decompose it into h-irreducible subspaces, namely,

Voo Vi Vad Vs, (5.5)
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where

* O\ (0 (0

0 * 0 0

0 * 0 0
Vo={ 0 }31/1:{ 0 },V2={ * },V3={ 0 }

0 0 * 0

0 0 0 *

0 0 0 *

The defining module for sp(1,R), V' = R?, is f’-irreducible. The corresponding

space W = May«7(R) has symplectic form

(w',w) = —tr(w'Tw? J) where w',w € W. (5.6)

Also, define a complex structure on W by J'(w) = Jw. We view W as a

complex vector space by iw := J'(w). Let
det : Weg — C

denote the corresponding determinant.

Note that

(T, Yhomeovivry < 0 and (T, homvaeva,vry > 0. (5.7)

Let 2p, be the maximal dimension of a subspace of W such that the restriction

of the symmetric form (7’ , ) to that subspace is positive definite. By (5.7),
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P+ =4
Let 2’ € §'", and put

SP(W)é - {11? +7’y € EP(W)C : <y > )’ker(:z:) > O}

Then Proposition 5.1 in [4] states that, as a distribution on so0(3,4), the un-

normalized Cauchy Harish-Chandra integral is given by

dimg (W)
— —1)P++/2
che(z’ + z) = lim (=1 v2

y—0 det(x’ + x + iy) (5:8)

’

where z,y € 50(3,4), z+ 2’ + iy € sp(W)E, and by the double restriction

process explained and justified earlier, we have

(5.9)

o 1
he(z' + ¢(S)z) = lim —27 ,
che(@’ + ¢(S)e) st det(z’' + z +1y)’

where z,€ h¥, y € hNbhs, =+ ' + iy € sp(W)E.
Let ' = 17 and let £ = tA; + sAs. Then (2’ +z)(w) = 2'w —wz. Hence z+ 2’

preserves the following induced decomposition of W':
W=W oeW,e W;e W,

where

W; = hom(V;, V'),

where V' is as in Section 3.3 and V; is as in decomposition (5.5).

Therefore

4
det(z' + z) = H det(z’ + z)w,.
=1
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Furthermore, if w € Wi then (z'+2)(w) = 2'w = |[Jw = ilw. Thus det(z'+z)w, =
il. For j = 2,3, 4,
W, =Wy & 7w;,

analogous to (3.18), i.e [WJJ ,J| = {/W;,J} = 0. This decomposition is preserved
by the action of 2’ + z so that det(z' + z)w; = det(z’ + z)yy det(z’ +z)sy,. Thus

altogether,

det(z' +z)= l(l—-20)(1+2)(—t+s)(l+t—3)

(I—t—8)(l+t+s). (5.10)
Moreover, N'(2') = 2il and by (3.2),

[T A=) = #(2t) (25) (t + ) (¢ — 5) (3¢ — 5) (3t + 5). (5.11)
L\

Therefore, for any polynomial P(l), of degree less or equal 5,

s ta) 612
2t2s(t+s)(t—s) (3t —s) (3t +s)
(-2l +2)(I—t+s)(l+t—9)(l—t—s)(I+t+s)

P(l)

—  2P(l)

is a rational function of [ with the degree of the nominator less than the degree of

the denominator. Hence, we may decompose it into partial fractions. The result
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is

N(z) TTg M=) 2s P(2t) 2sP(—2t)
P det(z' + 1) -2t  1+2t (5.13)
(Bt+s)P(t—s) (3t+s)P(—t+s)
I—t+s  l+t—s
(Bt—s)P(—t—s) (3t—s)P(t+s)
I+t+s  l—-t—s

Notice that, in terms of the group W(Hcg)™ (3.7), (5.13) may be rewritten as

pX LA s HE) i) (54

det(z’ + ) eVl [ —i(nA1)(x)

Let W} = WY and let W' =7W;, j = 2,3,4. Set
G2 = —iA1, (3= —iag, (4 =10.

Then
y(w) = —e(y)Jw  we W), e==£l, (5.15)

so that
(y, )ws > 0 if and only if (—ei(y) Jw,w) > 0 for w € W5\ 0).
Also, for z € b,

det(z’ + z + iy)we = (1 — e(;(z) — ie(;(y))- (5.16)
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Moreover, by (5.7),

(j’LU,’LU)er <Oifw€W2€\O,

(Tw,whws > 0if we W\, j=3,4

Therefore, for x € §7,

lim P(l)/\’(w') [Ty Az + )
y—0 det(z’ + z +iy)
25 P(2t) 25 P(—2t)
[—2t+10 1+2t+10
(Bt+s)P(t—s) (3t+s)P(—t+s)

I—t+s—10 I+t—s—10 )
(Bt—s)P(-t—s) (3t—s)Pt+s)
l+t+s—10 l—t—s—10

where, as in (5.9), the limit is taken over y € b, with (y , )|ker(z'+2) > 0.
Suppose x € bral}. The only root which has imaginary values on z is as.

Therefore, 5.15 and 5.16 implies ker(z’ + z) = 0, so that

N (&) Ty Mz + iy)

e PO jet (@ + 2 + i)
_ 2sP(2t) 2sP(-2t)
T l-2t I+2t
(Bt+s)P(t—s) (3t+s)P(—t+s)
l—t+s B [+t—s
(3t —s)P(—t—s) (3t—s)P(t+s)
I+t+s l—t—-s '
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T
a2

Similarly, for z € b

N(z') [Ty Az +19)

lim P(1)

y—0 det(a’ + z + 1y)
_ 2sP(2t) 2sP(-2t)
T I-2t I+2t
Bt+s)P(t—s) (Bt+s)P(—t+s)
I—t+s  l+t—s
(Bt—s)P(—t—s) (Bt—s)P(t+s)
I+t+s l—t—-s '

For z € b7, ,,) each root takes real values, so that ker(z’ + z) = 0. Hence,

N(@') Ig Mz + 1)

zlzl—r»r(l) P) det(z’ + z + 1y)
_ 2sP(2t) 2sP(-2t)
T l-2t l+2t
(Bt+s)P(t—s) (3t+s)P(—t+s)
I—t+s  l+t—s
(Bt—s)P(—t—s) (Bt—s)P(t+s)
I+t+s I—t—-s '

Since the normalized Cauchy Harish-Chandra integral (see [4]) is given by
1 —
cheyr = ———= chey, (5.17)

p(H')

we deduce the following lemma.
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Lemma 5.1 Let ' =ilJ € §'". If x € i then

PN (z') che(z’ + ) [[ M)

27 ( 25 P(2t)  2s P(—2t)

V14 2% [—2t+i0 {+2t+10
(Bt+s)P(t—s) (3t+s)P(-t+s)
I—t+s—i0  l+t—s—10
(3t—s)P(—t—s) (3t—s)P(t+s)).
l+t+s—i0  l—t—s—1i0 >

Ifz € b’{'al} then

PN (z') che(z' + z) [[ M=)

v
7 2s P(2t) 2sP(—2t)
~ Jidorn ( -2t  l+2t
(Bt+s)P(t—s) (3t+s)P(-t+s)
l—t+s I+t—s
(3t—s)P(-t—s) (Bt—s)P(t+s)\
I+t+s  l—t—s— >’

Ifz € P)Taz} then

P()N(z) che(z’ + z) [ [ M=)

v
2 2s P(2t) 2sP(-2t)
- V1dor ( I—2t  1+2t
(Bt+s)P{t—s) (3t+s)P(—-t+s)
l—t+s a l+t—s
(Bt—s)P(—t—s) (Bt—s)P(t+s)\ .
I+t+s  l—t-s )’
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Ifx € b’{'al,az} then

P()X(z') che(z' + ) [ [ M=)

1\
A <23P(2t) 25 P(—2t)
Vidon 1 — 2t I+ 2t
(3t +s)P(t—s) (3t+s)P(—t+s)
[—t+s B [+t—s
(Bt —s)P(-t—3s) (3t—3) P(t+s)>
I+t+s l—t—s '

In terms of the Weyl group W(Hg)*, Lemma 5.1 may be rewritten as

Lemma 5.2 Let 2’ =ilJ € §'" and let

1 Zf 77)\1 = :*:>\1, S = 0,

6(7]78) = -1 Zf 77/\1 ?é :t)\l, S = 0’
0 S5 #0.
Then for x € bk,
PN (z") che(z' + ¢(S H)\
- 2 i)(z) |
Vi WZH e L inA)(@) + e(n,snof’@(w(w)).

Let X C W be the subspace consisting of matrices

w11 Wiz Wiz Wig Wis Wi Wiy

W11 W2 Wiz W4 Wiz Wig Wit
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and let Y C W be the the subspace consisting of matrices

W11 W12 w13 W14 Wis Wie Wi7

—Wy1 —Wp —W13 —Wig —W5 —Wie —Wiy

Then
W=XoY (5.18)

is a complete polarization. Let ' = imJ € b),. Then,

01
c(N)z' =m
10

Hence, ¢(\)x’ preserves X and Y and acts in X as mlI, where I is the identity.
The elements of g, also preserve X and Y. Furthermore, if S € U7, and z € bs,

then

det(c(N)z’ + ¢(8)z) = det(mI — ¢(S)x)ena(vy = det(mI — c(S)T)end(ve)
= det(m] — )enaqvg) = m(m? + 4£2)(m? + (¢t — 5)*)(m® + (¢t + s)?)

= m(m?— M\ (2)})(m? — ax(z)?)(m? — ay(z)?). (5.19)

In particular we see that (5.19) is non-zero unless A;, a1, oy take real values on

hs. Hence

det(c(N)z’' +z) #0 if zeb".
Moreover, if z € b?al}, then

det(c(N)z' + c(oy)z) = 0 if and only if m? = a;(z)?,

87



if z € 7, , then

[s DR
det(c(N)z' + c(ag)z) = 0 if and only if m? = ay(z)?,
and for z € Dlaran)

det(c(N)z' + c(az, a2)z) = 0 if and only if

2 2

m? = a1 (x)? or m? = ay(z)? or m? = A (z)?.

Let § = dyp € S*(R) denote the Dirac delta at the origin. We conclude that for
zel,

5(det(c(N)z' + z)) = 0,

for z € h?al},

§(det(c(N)z' + c(aq)z))
= |m(aa(2)’ = M(2)*) (e (@)’ = az(2)*)20a ()|

(6(m — en(2)) + 6(m + 0 (2))),

for x € h?az},

d(det(c(N)z' + c(az)x))
= |m(az(2)? = Mi(2)*)202(z)(02(z)* — au(2)*)| ™

(6(m — az(z)) + 6(m + az(7))),
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and for z € bla,00)

5(det(c(N)z' + clay, ag)z))

= [m2\(2)((2)? - aa(2)?) (2)* — 0a(z)*)
(6(m — Ai(2)) + 6(m + M(2)))

+ [m(aa(2)? = Mi(2)*)202(2) (02(2)” — aa(2))
(6(m — as(z)) + 6(m + as(2)))

+ Im(as()’ = M(2)*)(ea(2)* — aa(2)*)20a ()7

(6(m — ar(z)) + d(m + ar(2))).

Notice that, by (5.11),

-1

MM = ag)(A] — o) = | Aal,

IR

v

-1
(03 — M)an(ag ~ o) = ][N el
R
-1
(03 = A)(af — a)an| ™ = [[] A lesl.
0

Thus, for z € b7,

I\ (2)|6(det(c(N)z' + z))

for z € f)?al}.,

[N (z')]8(det(c(N )z’ + c(az)z))

[T =

= las(@)|(6(m — en(2)) + 6(m + en(2))),
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for x € b?o&},

|N(z')]|6(det(c(N )z’ + c(az)z))

[ =

= lay(@)|(8(m — az(z)) + 6(m + as(2))),

and for x € b?alm},

IN (z')|6(det(c(N)z" + c({a1, az})z

= I/\2($)|(5(m—/\1($))+5(m+/\(fv)))
+  laa(@)[(6(m — aa(z)) + 6(m + az(z)))

+  as(@)[(6(m — ai(2)) + 6(m + i (2))).

Recall that, for 2’ € §,", = € b%, by [5, (1.1)],

che(e(N)z' + ¢(S)z) = \?ﬁ d(det(c(N)z' + ¢(S)z)).

Thus we have verified the following lemma.

Lemma 5.3 Let 2’ =imJ € bh,". Forz € ",

|N(z")|che(e(N)z' + z)

Forzx € b?al}:
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| X (z')|che(c(N)z' + c(ay)z)

H Az)

3

27
= lee@I(E(m = 0a()) + 8(m + 02(a))).

For z € b7,

| A (z")|che(e(N)z' + c(a2)z)

[[X )

U

27
Tzl @I(3(m — aa(z)) + 8(m + au(a)))

{

Forz e f)?alm},

|X'(z')|che(e(N)z" + ¢(an, ag)x)

JJRE)

v

(Pa(2)I(8(m = M (2)) + 6(m + A (2)))

| ()| (6(m — 0a()) + 6(m + 02()))

[\)
+ +§‘*

|as(2)|(6(m — () + 6(m + eu(2)))) -

In terms of the group (3.7), we may rewrite Lemma 5.3 as follows.

Lemma 5.4 Set

0 otherwise.

§s(/\)={ lifxeSn(-8)
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Let ' =imJ € b),". Then for z € b,

v

IN(2)|che(c(X)z' +¢(S)z) (]| /\(a:)]|

27 |
T Vi newz(f;rc)+ ss(nA1)[(nA2)(2)|8(m + (A1) (2))-

Proposition 5.1 Let ¢ € C(g"). Then forz' =17 € 4",

/ PON(&) che(e’ + 7) o(x) du(z)

82

_ ) i) ()
- Z!Wstlf%/ 2 z-¢(nA1)()+€(n,5)0A(‘I’SR)()

bs neEW(Hg)+

P(i(nh)(2)) Hsp(z) du(z).

Proof:

We see from the Harish-Chandra - Weyl integration formula (2.6), that

/ PN (z') che(z’ + 2) (%) du(z)
— Z |W

(8] s) Jvs
Hsp(z) du(z).

PN (z") che(z' + ¢(S)z) H Mz)A(Tsgr)(z)

However, it is very easy to see that, for = € bg,

[[Mz) = (1% [] =)

LG

Hence Lemma 5.1 follows from Lemma 5.2. QED.

92



Proposition 5.2 Set

- _§$(77)‘1) ZfS = {052},
§$(77)\1) =
ss(nhy) if S # {aa}.

Let ¢ € C°(g™). Then for ' =i mJ € b).",

| W@ eheleN)s' + 2) pls) dute)
1 27 ~
= %Wﬁ g ,,ew;c)fsmm |(A2) ()] 6(m + (nA1)(x))
A(¥sr)(z) Hso(z) du(z).

Proof:

We see from the Harish-Chandra - Weyl integration formula (2.6) and Lemma 5.4,

that

/ N (&) che(e(N)2 + ) o) du(z)

= Z |W |X (2")| che(e(N)z' + (S H A(Usr)(z) Hsp(z) dp(z)

(5] s v

27
= %Iw ] wﬁew% st o))+ 1))

0

It remains to compute the term in the parenthesis.

-1

W

II /\(w)A(‘I’s,R)(w)) Hsp(z) du(z).
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Notice that for S = {a1, as},

A(Tsg)(z) = 1.

Suppose S = {a;}. Then any element z € hs may be written as
T =1i2aHy, — 2bH,, = (a + ib)A1 + (—a +13b) Az,
where a and b are some real numbers. Hence,

H Mz) = —dts(t+ s)(t —s)(3t —s)(3t+ )
= —4-2-(a®+b%)2(a® + 9b%)(—4b)(4ia)
= — (:L‘) a3(:1:) 4.2. (a2 + 62)2(CI,2 + 9b2)

= a@a@ [ Pl

)\E\I/\{al,aa}

Therefore,

Suppose S = {as}. Then any element z € hs may be written as

z = —i2aH,, + 2bHy, = (a+ ib)A; + (a — i3b)As,
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where a and b are some real numbers. Hence,

[[Mz) = —dts(t+s)(t —5)(3t — 5)(3t + 9)
= 4-2.(a®+b%)2(a® + 9b?)(—4b)(4ia)
= ~Q2(x) ay(z)4- 2+ (a® + b%)2(a® + 9b°)

=  —on(r)au(z) - H |A(z)].

)\E\Il\{ag,a4}

Therefore,

QED.

Proposition 5.3 Let ¢ € C>(g5®). Then there is a continuous seminorm q on

C>(gs®) such that, for ' =1J € §'",

[ N@)ehela’ + ) plo) du@)| < ale) (14 2) (5.20)
892
Moreover, as a function of ' € b},,",
/ che(z' + z) p(z) du(x) (5.21)
8

s smooth and compactly supported.

Proof:
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Let P(l) = [* and consider one term in the double sum of Proposition 5.1,

i(nA2)(z)
/bs I —i(nA)(z) + €(n,S)i0 A(¥s,r)(2) (5.22)

P(i(n\1)(z)) Hse(z) du(z).
The function
f(z) =1i(nAa)(z) A(Vs,r)(z) P(i(nA)(z)) Hsp(z)

is smooth and compactly supported in h5. Let 8 = —nA; and let Hg € ih be the
corresponding element such that G(Hg) = 2, as in Lemma 3.15. Set € = €(n,S).

Then (5.22) may be rewritten as

1
/hs I +if(z) + €0 f(@) dp(z). (5.23)

Suppose F is an imaginary root for hs. Then
bg = RZHg D ker(ﬁ)

For t € R, let

fﬁ(tzﬂﬁ):/ f(t%Hﬂer) du(y)-

ker ()

Since, B(t£Hpg) = —t, (5.23) is equal to
1 : i

| g fottiH) dut ). (5.24)

zHﬂl—t‘i‘GZO

Set ¢(t) = —fa(—tiHg). Then, up to a constant multiple coming from the nor-
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malization of the measure y, see 4.5, (5.24) coincides with

/ ! qS(t)dt:/ 1,0¢(t+z)dt, (5.25)

t—1— €0 t— ez

where ¢ € C(R).
Fix a function £ € C°(R) such that 0 < ¢ < 1, supp(€) C [—2,2] and &(z) =1

for z € [~1,1]. Then (5.25) is equal to

1
| ja-e@naa+ [ —sema
where ¢;(t) = ¢(t +1). Notice that

[1a-canawal < [ la@ia-tol.

t

Furthermore,

t — el

[ sewnwa

/R In(t — €i0) B,(E6) (1) dt‘
< /l 1= @0)E (o] + @) a

< ( /l i ez'o>|dt) € ool @ lloo = 1| & o).

Hence, (5.25) may be dominated by

(/,l [In(t - i0)| dt) (1€ looll @ lloo + 11 &' oo+ 11 & [1): (5.26)
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Suppose S is a real root for hs. Then ¢ = 0 and, for z € b,
|l +1iB(z)| > |6(z)|

has a strictly positive minimum on the support of ¢, because 3 is non-zero there.

Hence, (5.23), and therefore also (5.22) is dominated by
|f(z)| dp(=). (5.27)
hs
Suppose F is a complex root for hs. Then ¢ = 0 and
B:hs —C

is a bijective linear isomorphism over the reals. Let 37! : C — bhs denote the

inverse. The (5.23) may be rewritten as a constant multiple of

1 -1
Liza ), (5:29)

where z = z + iy as usual. Notice that the function i is locally integrable. There-

fore, (5.28) may be dominated by

<maxD / idwdy) 17 llo (5.29)

D |2
where the maximum is taken over all the discs of radius one in the complex
plane. By combining (5.26), (5.27), (5.29) with Proposition 5.1, we see that there

is a continuous seminorm ¢ on C2°(g%®) such that
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/ P()N(a") che(a’ + 2) () du(z)| < g(p).

Hence, (5.20) follows.
The statement (5.21) is an easy consequence of Proposition 5.2.

QED.

5.2 A Conjecture and the Main Theorem

For ¢ € C(gh°), ' € h" U B (N)", define

CHC(p)(z') = / che(a + 2) o(2) du(z),

82

and note that this is the restriction to gz of the of the normalized version of the

distribution (2.8). We know from Proposition 5.3 that

Az") CHC () ()

is a smooth function of ' € §'”, which decays at infinity at least as fast as |\ (z')| 2.

Also, as a function of z' € §'(\)7,
Me(N)™'2") CHC(¢) (2)
is smooth and compactly supported.

Let O C sp(1,R) be a Sp(1,R)-orbit, and let Fdo: be the Fourier transform
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of the invariant measure d¢r, as in Theorem 4.4. Then the functions

AMz") Foor (') for 2’ € §",

Mc(N) ') Foéor(2) for 2’ € H'(N')",
are bounded. Hence,

| 1Fio @A) FICHE () @) dute’) < oo, (5.30)

/b o |Fdor (z)[|Mc(N)'a") PICHC () (") du(z’) < 0. (5.31)

Therefore, following the Harish-Chandra Weyl integration formula for sp(1, R), we

may define

CHC(Féor)(p) = " Foor (2)|Ma")PCHC (p)(") du(z’) (5.32)
1

T2 /m Féor () Me(N) ) ’CHC(p) (&) dps(a).

Then CHC(Fde) is a Go-invariant distribution on gh®.
For an orbit O C g, let up be the positive Go-invariant measure, normalized
as in section 4.5. Define the Fourier transform Fpue as in (4.44) with the sp(1, R)

replaced by gs.

Conjecture 5.1 (a) Let O' C sp(1,R) be a non-zero semisimple orbit and let
O C go be the corresponding semisimple orbit as in Corollary 4.2. Then there is a

constant C' independent of O' such that
CHC(Féor) = C Foo.
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(b) Let O' C sp(1,R) be a non-zero nilpotent orbit. Then there is a unique nilpotent

orbit O C g, such that
oo (Tep(1,R) " (closure(O'))) = closure(O).

(c) For the two different non-zero nilpotent orbits O}, Oy C sp(1,R), the corre-
sponding orbits 01,0y C go are different. In terms of table 4.3, one of them
corresponds to the parameter (2,2) and the other one to (0,4).

(d) The formula of part (a) holds for a non-zero nilpotent orbit O C sp(1,R),

with the O C go corresponding to O as in (b).

We don’t have any complete proof of this conjecture yet, but the result below
provides some evidence for its validity. In particular, the distribution in question
is a function on the subset of the regular semisimple elements, as is the Fourier
transform of the invariant measure on the corresponding orbit (a result of Harish-

Chandra).

Theorem 5.1 Let O’ C sp(1,R) be a non-zero orbit. Then the restriction of
CHC(Fder) to the dense open set gi° C gq is a smooth locally integrable function.

Ezplicitly, for p € C(gy?), if O' = O} with p € RY, then

f— 1 277 5
CHC(Fbo) = ZIWWW — Z Ss(n)l(nA2)(z)|A(Ps iR ) (2)
5] SNIbs P pew(mo)y+

(exp(—imp(ni1)(z)) + exp(imp(nA1)(z))) Hsp(z) du(z); (5.33)
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if O = O with p > 0 and € = %1, then

7
Z 27 ((=D)F12(=nA2)(z) (5.34)
IW(HS)I eV o)+

A(‘IJS,R)( )eXP(?TP(n/\1)($))1R+(EP(RG(—U/\O(HJ) +¢€(n,5)))

+  Ss(nA)|(nAe)(z)|A(Ys,ir)(z) exp(—mp|(nA1) (z)])) Hsp(z) du(z);

CHC(Fbor)

if O' = Ofwith e = £1, then

277
Foor) Z W ( Hs | S \/ineW(Zch (=1)P12(=nXs)(2) A(¥sr)

(1R+( (—Re(nA)(z) + €(n, S))) — 1r+(—€(Re(nr1)(z) + (7, 5))))

+ Ss(An)l(nA2) (@) A(Ys ) Hse(z) du(z). (5.35)

Proof:
Suppose v € R and € € {—1,0,1} are such that v = 0 if and only if € # 0. Let

uw € R and let w =u+iv € C. Then

e—iEz '
- — _2 y ZE’I.U 1 \' )
/R Tt w o @ = Tmsen(vt ) e Ine (S + ) (5.36)

This is to be understood as an equation of tempered distributions. By the definition

(5.32), Propositions 5.1 and 5.2,

27 —1)l!
CHC(TBo) (@) = 3 e Hc)lf ) ((_% /h (5.37)

(5] neW(He)t

7/(7])\2)($) ! / / !/
i) @) 1 e Sy 0o @ @) du) A(Tsr)

4 ) | 1) @15+ (30) () FRo(e(0IN ) du()

A(Usr)) Hso(z) du(z),
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where for z’ € bYy, 2’ = miJ, i.e. m = —1X(z'). Also, by (4.29),

/, S(m + (nA1) (@) Foor (c(N)z )N (z) dp(z") (5.38)

= 2V14Fo((nh1)(z)c(N) Hx)l(nA1) (2)]-

Suppose @' is as in (5.33). Then Féo(z') = 0 for 2’ € §’. Hence, by (5.37), (5.38)

and (4.45),
27 Ss(nAq)
CHC(Fdo)(p) = / o= (5.39)
(8] W (Ho)l HC V14 Wy
eitp(nh)(@)  g—imp(nAi)(z)
|(nA2) (2)| A(¥s ir) 2V14 770 Hso(z) dp(z).

P

This verifies (5.33).
Suppose ' is as in (5.34). Then, by (4.46),

ei'/repl

f(é@/)(l’iHA/) = Tmi

Tep
Therefore, by (5.36),

1
y | —i(nA)(z) + €(n, §)i0

1
- Vil /l—z(nh)( ) + €(n, 8)i0

= —V14 146;(—27Ti) sgn(Im(—i(n1)(z)) + €(n, S))eimeriA@)
Lr+ (ep(Im(=i(n1)(z)) + €(n, 5))

1 o
= V14 146; ot € eTPHME@) 1 L (—ep(Im(i(nh)(z) + €(n, S))).

Foor(x)N(z') du(z') (5.40)

e—zrrepl dl
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Also, by by (4.45),
7
Fbo ((nAi)(@)e(N)Hy) [(nAi) ()| = ;6_”” U@,

Thus,

CHC(Fbor)( Z/ W Hc I\/_ > (5.41)

neW (Hg)+

(=e 1 o : :
(T(z)(nAg)(x)\/ﬁ 14 2m;e’rp(” D@1+ (ep(Im(—i(nh1)(z)) + €(n, S)))

(a4

A(Tsg) + fs(g“ |(17)(z)| 2 V14 %e—“'<w<w>b4<w5,m>) Hso(z) du(z).

This verifies (5.34). Part (5.35) follows from (5.34) and (4.13) by taking the limit
if p — 0 and dividing by v/2, because of our normalization (see (4.47)). Also, one

has to keep in mind that

lim 1g+(pt) = lr+(t) — 1r+(—1).

p—0%

QED.
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Appendix A

Notation

g = Lie(G)

isom(V, Q) = aut forms(Q)
maﬁ = homye;

mapg = homg_ e

hom = homy;,

Sp(n, R) = isom(R*", St)

connected double cover of G.

identity component of G.

unitary dual of G.

centralizer of H in G.

normalizer of H in G.

stabilizer of the elements of A in G.
subgroup generated by the elements of A.
Lie algebra of G.

linear isometries of the bilinear form Q.
maps.

(GG-equivariant maps.

linear maps.

real standard symplectic group.
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e

{a,b} = ab+ ba
[a,b] = ab — ba
VG

Ve

the anticommutator of a and b.

the commutator of a and b.

G-invariant vectors on the G-vector space V.
complexification of the vector space V.
matrices with k£ rows and [ columns.

identity matrix in My, x,.

space of Schwartz functions on X.

space of tempered distributions on X.
smooth compactly supported functions on X.
locally integrable functions on X.

product over the elements s of the set .

summation over the elements s of the set S.

o1=1, 09 =—1J, 03 ="H Pauli matrices.

identification of the Lie algebras so(2) and R®.

wave front set of the distribution u € D'(X).
a Fourier transform of ¢.
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D(z1, %9, 23) shorthand for diag(0, 2,7, z2J, 237 ).

I pullback by f.
x” adjoint w.r.t. the form 7.

XT transpose of the matrix X.

idx identity map on X.

1x characteristic function of X.
S the Cartan involution ©(X) = —X7.

(W, (,)) a symplectic space over the reals.
sp(W)§& {z+iyesp(W)c: (U, )lier(z) > 0}
(8)rk<i elements of g of rank at most j.
g set of regular elements of g.
14 set of positive roots.
A A =T
A
D DA) =[]
Dih,, dihedral ;oup of order 2n.
Symm,, symmetric group on n letters.

S" n dimensional real sphere.

la] greatest integer < a.

#S cardinality of the set S.

Tpg the bilinear form 7, ,(z,y) = Zf_;z;y; — S, ziy1-

Tp.aq short hand for 7, 4(z, x).

Dpg the Laplacian operator E?zlaij Y A
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