INVESTIGATIONS OF TOXIC PLANTS: <u>ALBIZIA</u> JULIBRISSIN AND <u>ASCLEPIAS</u> SUBVERTICILLATA

By

GREGG LEA HUMPERT ROBINSON

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1994

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May 1997 INVESTIGATIONS OF TOXIC PLANTS: ALBIZIA JULIBRISSIN AND ASCLEPIAS SUBVERTICILLATA

Thesis Approved:

se lins (° . CA romas

Dean of the Graduate College

PREFACE

This thesis comprises three parts each of which encompasses one component of the research conducted between 1995 and the present. Chapter I briefly defines secondary plant compounds and describes their possible roles and uses. I have included this chapter to show commonality in my investigations of Albizia julibrissin and Asclepias subverticillata, and how the study of secondary plant metabolites brings together the many disciplines of organic chemistry, biochemistry, pharmacology, toxicology, plant Chapter II describes the taxonomy, and ecology. investigation of a neurotoxic alkaloid found in Albizia julibrissin (mimosa). Chapter III describes the investigation of the neurotoxic compounds present in Asclepias subverticillata (western-whorled milkweed).

Chapters II and III will be submitted for publication in Poisonous Plants, Proceedings of the 5th International Symposium on Poisonous Plants and the format of each is that required for submission. The format of Chapter I follows that of Chapters II and III in order to have continuity within the thesis.

Sincere appreciation is expressed to Dr. Ronald J. Tyrl, my major advisor, for his loyal, patient dedication to the advancement of knowledge. His guidance, understanding, and

iii

friendship have greatly assisted me in achieving my academic goals. Special gratitude also is expressed to committee members Dr. George E. Burrows and Dr. Elizabeth M. Holt. Their assistance, patience, and forthrightness have been greatly appreciated. Sincere appreciation also is conveyed to Dr. A. Daniel Jones, Director of the Facility for Advanced Instrumentation at the University of California, Davis, for his time and spectrometric expertise on Asclepias subverticillata. Finally, an enormous thank you to my husband, Randy Robinson, for his advice, support, and patience during this exploratory period of my life.

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
	References	4
II.	EVALUATION OF THE TOXIC EFFECTS OF THE LEGUMES OF ALBIZIA JULIBRISSIN (MIMOSA) AND IDENTIFICATION OF THE TOXICANT	7
	Title Page. Abstract. Introduction. Materials and Methods. Results. Discussion. Acknowledgements. References. Table. Figures.	7 8 10 12 14 16 16 18 19
III.	INVESTIGATION OF THE NEUROTOXIC COMPOUNDS IN ASCLEPIAS SUBVERTICILLATA (WESTERN-WHORLED MILKWEED) Title Page Abstract Introduction Materials and Methods Discussion Acknowledgements. References. Tables Figures.	21 22 22 27 30 33 35 36 41 43

APPENDICES		45
APPENDIX	ALOW RES ESMS ON FRACTION 25A	46
APPENDIX	BRP-HPLC ON FRACTION 25A	48
APPENDIX	CRP-HPLC ON FRACTION 16A	51
APPENDIX	DLOW RES ESMS AND MS/MS	
	ON FRACTION 16A	53
APPENDIX	EGC/EIMS ON FRACTION 16A	57
APPENDIX	FPROTON NMR ON FRACTION 16A	81
APPENDIX	GPROTON COSY NMR ON FRACTION 16A	99
APPENDIX	HRP-HPLC ON FRACTIONS 25A AND 16A	104
APPENDIX	IRP-HPLC AND LOW RES ESMS ON FRACTION	
	16A AFTER MILD METHANOLYSIS	107
APPENDIX	JFLOW CHART OF BIOASSAY RESULTS	111

*

LIST OF TABLES

Table	Page
 Results of Administration of Various Dosages of Dried, Ground Legumes of Albizia julibrissin to Sheep 	18
 Silica Gel Chromatography Series of Petroleum Ether-Insoluble Portion Received from CH₂Cl₂ Extract 	41
 Silica Gel Chromatography Series of MeOH Layer Received from MeOH Extract 	42

LIST OF FIGURES

Figure	Page
 Chemical Structures of Neurotoxins in Albizia tanganyicensis and Pyridoxine (Vitamin B₆) 	19
 Mass Spectra of Compounds Extracted from Species of Albizia 	20
3. Basic Cardenolide Genin Characteristic of Members of the Asclepiadaceae and Basic Plant Pregnane Characteristic of Members of the Asclepiadaceae	43
4. Proposed Cardenolide in the Neurotoxic Extract of Asclepias subverticillata	44

CHAPTER I

INTRODUCTION

Plant metabolites are classified as either primary or secondary (1,2,3,4,5,6). Primary ones, such as common sugars, low-molecular weight carboxylic acids, and amino acids, are required for a plant's basic metabolism. They are universal in distribution and provide the starting material for syntheses of secondary compounds. Secondary compounds are diverse, complex structures which are more restricted in distribution and generally are not required for basic growth and development. Examples of commonly studied secondary alkaloids, terpenoids, flavonoids compounds are and (1, 4, 7, 8). Their chemical classification is usually based on the biosynthetic pathway from which they are derived (1, 6, 8). However, this is not always the case. For example, all alkaloids do not share a common biosynthesis, but do share other chemical characteristics (8,9).

Secondary compounds may represent metabolic by-products, storage products, competition inhibitors, pollinator attractants, or herbivore and microbial toxins (3,4,5,10). There is strong evidence to support the hypothesis that secondary compounds play a key role in insect-plant coevolution (4,7,9,10,11). Despite the voracious appetite of

herbivorous insects, a rich diversity of angiosperms dominates earth (4,7,11), and it is believed that the development of toxic secondary compounds was, and remains, a crucial defense mechanism of plants in this evolutionary struggle (11).

Toxic secondary compounds also can have an effect on large herbivores, typically domesticated animals such as cattle and sheep, and rarely large, wild herbivores (10). This is due to a wild animal's evolution in its natural environment in contrast to the domesticated animal's introduction into environments different from that in which it originated (4,12). For example, arid regions of the western U.S. include extensive rangelands, and the conditions which livestock must endure to survive can be quite harsh (12,14). Though typically unpalatable, toxic plants will be consumed when more desirable vegetation is scarce (12,13). As a result, the livestock industry has suffered sporadic, sometimes severe, losses (12,14,15,16).

Despite the ill-effects caused by plant toxins, many provide relief for human diseases. Classic examples include curare, a composite of alkaloids isolated from species of *Strychnos* of the Loganiaceae and *Chondrodendron*, *Cissampelos*, and other genera of the Menispermaceae and digitoxin, a cardenolide isolated from *Digitalis purpurea* of the Schrophulariaceae (9,17,18,19,20). The elucidation of the pharmacological actions of these toxins have provided relief for spastic disorders and congestive heart failure in humans

as well as providing invaluable tools for studies of cell membrane transport proteins (17,18).

Secondary compounds not only rouse scientific interest because of their physiological properties but also for their potential value in the discipline of plant taxonomy (1,21, 22,23,24,25). Many secondary compounds are characteristic of and restricted to specific genera or families (1,8), and when used in conjunction with other plant attributes may provide clues to phylogenetic relationships within the kingdom Plantae (21,23).

On a personal note, I find the study of secondary compounds to be a vast and greatly interesting subject. However, more research is needed to unlock the secrets of their importance and implications for society. I hope that the studies embodied in this thesis provide clues to assist scientists in understanding some of nature's mysteries about plant toxins.

REFERENCES

- Geissman TA and Crout DHG. In "Organic chemistry of Secondary Plant Metabolism," pp. 2372. Freeman, Cooper, & Co., San Francisco, Ca. 1969.
- Whittaker RH. In "Chemical Ecology" pp. 43. Academic Press, N.Y. 1970.
- Kingsbury JM. In "Toxic Plants-Proceedings of the 18th Annual Meeting of the Society for Economic Botany, Symposium on Toxic Plants," pp. 1. Columbia University Press, New York. 1979.
- Kingsbury JM. In "Effects of Poisonous Plants on Livestock," pp. 81. Academic Press, N.Y. 1978.
- 5. Bell EA. In "Plant Toxicology; Proceedings of the Australia - U.S.A. Poisonous Plants Symposium, Brisbane, Australia," pp. 50. The Queensland Poisonous Plants Committee, Queensland Department of Primary Industries, Animal Research Institute, Yeerongpilly, Queensland, Aust. 1985.
- Taiz L and Zeiger E. In "Plant Physiology," pp. 565.
 The Benjamin/Cummings Publishing Co., Inc. 1991.
- 7. Feeny P. In "Coevolution of Animals and Plants. Symposium V First Int'l Congress of Systematic and Evolutionary Biology, Boulder, Co.," pp. 3. University of Texas Press, Austin, Tx. 1975.
- Robinson T. In "The Organic Constituents of Higher Plants," pp. 346. Cordus Press, North Amherst, MA. 1991.

- 9. Saunders JA, O'Neill NR, and Romeo JT. In "Alkaloids: Chemical and Biological Perspectives, Vol. 8," pp. 151. Springer-Verlag, N.Y. 1992.
- 10. Kingsbury JM. In "Handbook of Natural Toxins, Vol. 1, Plant and Fungal Toxins," pp. 675. Marcel Dekker, Inc., N.Y. 1983
- 11. Enhlrich PR and Raven PH. Evolution 18:586 (1964).
- Dwyer DD. In "Effects of Poisonous Plants on Livestock," pp. 13. Academic Press, N.Y. 1978.
- 13. Burrows GE, Tyrl RJ, Thedford TR, and Edwards WC. In "Toxic Plants of Oklahoma and the Southern Plains, 2nd ed.," pp. 40. Oklahoma State University, Stillwater, OK. 1996.

TICHTINU STATE UNIVERSIT

- James LF. In "Effects of Poisonous Plants on Livestock," pp. 3. Academic Press, N.Y. 1978.
- 15. Nielsen DB and James LF. In "Poisonous Plants Proceedings of the 3rd Int'l Symposium," pp. 3. Iowa State University Press. 1992.
- 16. Nielsen DB and James LF. In "Plant Toxicology; Proceedings of the Australia - U.S.A. Poisonous Plants Symposium, Brisbane, Australia," pp. 24. The Queensland Poisonous Plants Committee, Queensland Department of Primary Industries, Animal Research Institute, Yeerongpilly, Queensland, Aust. 1985.
- 17. Taylor P. In "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 7th ed," pp 222. MacMillan Publishing Co., N.Y. 1985.

- 18. Hoffman BF and Bigger JT Jr. In "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 7th ed," pp 716. MacMillan Publishing Co., N.Y. 1985.
- 19. Zomlefer WB. In "Guide to Flowering Plant Families," pp. 430. The University of North Carolina Press, Chapel Hill, 1994.
- 20. Cronquist, A. In "An Integrated System of Classification of Flowering Plants," pp. 1262. Columbia University Press, N.Y. 1981.
- Dahlgren RMT. In "Phytochemistry and Angiosperm Phylogeny," pp. 149. Praeger Publishers, N.Y. 1981.

ORLAHOMA STATE UNIVERSIT

- 22. Seigler DS. In "Phytochemistry and Angiosperm Phylogeny," pp. 117. Praeger Publishers, N.Y. 1981.
- Thorne RF. In "Phytochemistry and Angiosperm Phylogeny," pp. 233. Praeger Publishers, N.Y. 1981.
- 24. Gibbs RD. In "Chemotaxonomy of Flowering Plants, Vol. I, Constituents," pp. 680. McGill-Queen's University Press, Montreal. 1974.
- 25. Jones SB Jr and Luchsinger AE. In "Plant Systematics, 2nd ed.," pp. 512. McGraw-Hill, Inc., New York. 1986.

EVALUATION OF THE TOXIC EFFECTS OF THE LEGUMES OF ALBIZIA JULIBRISSIN (MIMOSA) AND IDENTIFICATION

OF THE TOXICANT

GREGG HUMPERT ROBINSON

ORLAHOMA STATE UNIVERSE

Herbarium, Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078

ABSTRACT

Albizia julibrissin, known as mimosa or silk-tree, is a common ornamental tree. In the United States, it is cultivated primarily in the southern states and has become widely naturalized. Preliminary studies by other researchers have indicated a potential for its legumes to cause neurotoxic effects. In addition, species of Albizia in South Africa are reported to cause neurotoxic effects via pyridoxine antagonists. Thus both the potential for and mechanism of intoxication were evaluated. Dried, ground legumes of A. julibrissin caused severe neurotoxic effects in sheep at a single intraruminal dosage of 1-1.5% of body weight and contained the same neurotoxic alkaloid as the South African species A. tanganyicensis. Pyridoxine HCl administered intramuscular and/or subcutaneously concurrently with the legumes prevented the occurrence of adverse effects, and also appeared to be an effective antidote when administered intravenously after the onset of signs of intoxication.

ORLAHOMA STATE UNIVERSITY

INTRODUCTION

For three decades, occurrences of Albizia poisoning in livestock have been reported in South Africa, Zambia, and Zimbabwe (1,2,3). Neurologic effects and death are caused by ingestion of legumes from A. tanganyicensis Baker f. and A. versicolor Welw. ex Oliver. Severe episodes of livestock intoxication, including mortalities, spurred South African researchers to pursue identification of Albizia's neurotoxins

in an effort to provide a remedy for its adverse effects. This culminated in a 1987 report by Steyn and coworkers (4) attributing the problems to two neurotoxic alkaloids (Figure 1A, 1B). Based on the similarity of 4-methoxypyridoxine to that of pyridoxine or vitamin B_6 (Figure 1C) and previous work on pyridoxine antagonists (5,6), they hypothesized (4) that the *Albizia* alkaloids acted as pyridoxine antagonists and that their effects could be counteracted by dosing with pyridoxine. It and pyridoxine HCl subsequently were shown to be effective therapeutic agents for guinea-pigs and sheep intoxicated by the legumes of *A.versicolor* (7,8).

ORLAHOMA STATE UNIVERSITY

Introduced into North America as an ornamental, A. julibrissin Durazz is a member of Mimosaceae and commonly known as mimosa or silk-tree. It is a small tree native to tropical Asia and is widely cultivated in the southeastern United States where it has escaped and naturalized (9,10,11). Trees are 3-6 m tall and have a light tan, smooth bark. The flowers bloom from May to August, are pink in color, and occur in globose clusters 2.5-5 cm in diameter in corymbose racemes. The mature legumes are oblong, flat, 12-20 cm long, and 1.5-2.5 cm wide (9,10).

Although there are few reports of intoxications in North America, experimental administration of the legumes of this common ornamental tree to sheep produced clinical signs of neurointoxication followed by death (12). Because of its toxic potential and increasing abundance in the southern portion of the United States, A. julibrissin warranted study.

The objectives of this investigation were to confirm its neurotoxic potential, to determine if its legumes have alkaloids identical or similar to those present in the South African species, and to evaluate the effects of pyridoxine HCl as a preventive and antagonist of intoxication.

MATERIALS AND METHODS

Well developed legumes, most green and 12-15 cm long, were collected in the vicinity of Stillwater, Oklahoma in August and September 1994 and frozen until used for either sheep toxicity studies or chemical extraction. In addition, green legumes stored at room temperature for approximately 1 year and more mature, brown legumes, also stored at room temperature for 1 year, were fed to 3 animals.

ORLAHOMA STATE UNIVERSITY

Physiologic Response

Six mature, cross-bred, white-faced, female sheep ranging in weight from 42-74 kg were used in the experiments. The sheep were prepared with a ruminal fistula and maintained on chopped corn, commercial pelleted feed, and alfalfa cubes (Stillwater Milling Co, Stillwater, Oklahoma). The sheep were housed indoors at a constant temperature and allowed free access to water.

The legumes were thawed, dried, ground, and stored thereafter either at room temperature or refrozen until administered to the sheep. The sheep were given varying dosages ranging from 5-25 g/kg of body weight (b.w.) (0.5-2.5% b.w.) of the ground legumes administered directly into the rumen and followed by 3 liters of tap water. Blood

samples for evaluation of serum chemistry were taken before, and 24 and 48 hr after the legumes were given. The sheep were monitored by visual observation. Because of the small number of experimental animals, some were used more than once, but at least 2 weeks elapsed between exposures.

Pyridoxine HCl was administered intramuscularly (i.m.) and/or subcutaneously (s.c.) simultaneously with the ground legumes at a dosage of 20 mg/kg b.w. or intravenously (i.v.) after the onset of seizures at a dosage of 10-15 mg/kg.

OKLAHOMA STATE UNIVERSITY

Chemistry

Extraction and isolation procedures were similar to those previously reported (4). The legumes (19 kg) were ground to a coarse pulp in a Waring blender with ethyl acetate and extracted at room temperature for approximately 20 hr. The extract was concentrated under reduced pressure to produce a thick, black syrup which was extracted with hot petroleum ether (40-50 $^{\circ}$ C). The insoluble residue was extracted with CHCl₃, and the CHCl₃ soluble portion subjected to silica gel chromatography (grade 12, 28-200 mesh 0.22; 35.5 cm x 8.9 cm). The column was eluted consecutively with CHCl₃, CHCl₃-MeOH (90:10, volume/volume, CHCl₃-MeOH (50:50), The eluates from CHCl₃-MeOH (90:10) MeOH. and were rechromatographed on silica gel (50.8 cm x 2.5 cm) using solvents of increasing polarity from CHCl₃ to MeOH. Eluates were collected in 356, 10 ml fractions and characterized using GC/EIMS. Samples of the pure alkaloids isolated from A. tanganyicensis (4) were obtained from South African

researcher Robert Vleggaar for comparative purposes, and were similarly characterized using GC/EIMS.

RESULTS

Physiologic Response

Results of administration of varying dosages of the legumes are shown in Table 1. The lethal dose was >15 g/kg b.w. and the toxic dose was in the range of 10-15 g/kg. Typically, signs of intoxication were apparent 12-14 hr after administration of a toxic dose. The first sign was hyperesthesia. There was an exaggerated response to tactile, auditory, and visual stimuli. Following this, there was muscular twitching, which lasted either briefly or for several minutes. Temperature increased slightly in some animals. More severe signs included convulsive seizures with deep, labored respiration, excessive salivation, tremors or shaking, backing-up or turning, torticollis, opisthotonus, collapse, outstretched forelimbs and paddling hindlimbs. Seizures lasted about 2 minutes, followed by quiescence in the lateral and then sternal positions. In mild cases, the seizures were infrequent, at intervals of an hour or more. In contrast, the seizures occurred every few minutes in severe cases. Two sheep given either 15 g/kg or 20 g/kg of the green legumes stored at room temperature for approximately 1 year exhibited similar signs and died, as did an animal given 25 g/kg of the brown legumes stored at room temperature for 1 year.

ORLAHOMA STATE UNIVERSITY

One sheep given 15 g/kg of legumes in combination with

20 mg/kg of pyridoxine HCl, divided half i.m. and half s.c., failed to develop any signs of intoxication. A second animal simultaneously given 20 g/kg of legumes and 20 mg/kg of pyridoxine HCl s.c. also failed to develop signs. Two weeks later, these sheep were given the identical dosage of legumes alone, with fatal results. Two other sheep developed severe seizures when given 15 g/kg of legumes but prompt relief was apparent following administration of 10-15 mg/kg of pyridoxine HCl i.v. However, the animals remained depressed for 1-2 days.

Serum chemistry evaluations performed in animals which did not die within the first 24 hr, showed no significant or consistent alterations from baseline values. The evaluated parameters included glucose, urea nitrogen, creatinine, total protein, albumin, sodium, potassium, chloride, calcium, phosphorus, cholesterol, total and direct bilirubin, alkaline phosphatase, lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transaminase (AST), and γ glutamyl transaminase (GGT). ORLAHOMA STATE UNIVERSITY

Chemistry

GC/MS revealed a compound in fraction 267 (CHCl₃-MeOH; 85:15) that possessed a fragmentation pattern and retention time which matched that of the alkaloid 5-acetoxymethyl-3-hydroxy-4-methoxymethyl-2-methylpyridine found in A. tanganyicensis (Figure 2).

DISCUSSION

The legumes of A. *julibrissin* are clearly toxic. Although in some instances a substantial amount of material must be ingested, the availability of large amounts of the legumes on the pendant branches of these small, low growing trees presents a significant risk. Abruptly appearing several hours after ingestion, the signs are clearly neurologic; tremors and seizures. The legumes are toxic whether fresh or dried, and their toxicity is not appreciably reduced when stored at room temperature instead of frozen.

A compound present in the legumes of A. julibrissin displays the same fragmentation pattern and retention time of an alkaloid present in A. tanganyicensis; therefore, is identified as the same alkaloid. It has a molecular weight of 225, a molecular formula of $C_{11}H_{15}NO_4$, and its toxicity has been confirmed in weaned guinea-pigs (4). ORLAHOMA STATE UNIVERSITY

It has been shown previously (7,8) that the toxins present in the legumes of A. versicolor act as pyridoxine antagonists and their neurotoxic effects are readily prevented or counteracted by administration of pyridoxine or pyridoxine HCl. Likewise, in this study when 10-15 mg/kg of pyridoxine HCl was given, there was prompt relief of seizure activity albeit the animals remained depressed for one to two days. When administration of legumes was accompanied by parenteral pyridoxine HCl, no signs of intoxication were observed. Thus, the protective effects of 10-15 mg/kg b.w. of pyridoxine HCl given either s.c., i.m., or i.v. were

confirmed, providing additional evidence of toxicant identity and its mechanism of action.

The toxicity of A. julibrissin seems to be less than the South African species (8), approximately 15 g/kg b.w. versus 5 g/kg respectively. However, the mode of action involving pyridoxine seems to be similar for both. The specific mechanism of the toxic effects is not fully understood, but pyridoxine antagonists such as 4-deoxypyridoxol and 4-methoxymethylpyridoxol are well-recognized causes of seizures in laboratory animals (13,14,15). Pyridoxine serves as a cofactor with glutamic acid decarboxylase in the formation of γ -aminobutyric acid (GABA) and with GABA transaminase in the breakdown of GABA to succinic acid (16). These roles suggest that the seizures may be due to impairment of synthesis of this inhibitory pathway neurotransmitter (17). In mice, administration of 4deoxypyridoxine resulted in a decrease in glutamic acid decarboxylase and GABA in the brain. There also was a decrease in L-DOPA decarboxylase associated with a decrease in DOPA formation. Furthermore, 4-deoxypyridoxine causes a decrease in GABA transport, an effect which is counteracted by pyridoxal phosphate (18). The antagonists also impaired activity of GABA transaminase and the degradation of GABA. However, it is of interest that while the effects of the toxicants in the South African species of Albizia are ameliorated by pyridoxine, they are not by pyridoxal (7).

OKLAHOMA STATE UNIVERSITY

ACKNOWLEDGEMENTS

Appreciation is expressed to Paul Durand, Randy Robinson, Kristin Rowan, Kim Shannon, and Lewis Staggs for chemical techniques and laboratory assistance; to Tim Whitely for assistance in surveying mass spectra; and the J.K. McPherson Fund of the Department of Botany and the Department of Chemistry both of the College of Arts and Sciences, and the College of Veterinary Medicine for research funding.

REFERENCES

- Needham AJE and Lawrence JA. Rhod Agric J 63:137 (1966).
- Basson PA, Adelaar TF, Naude TW, and Minne JA. Jl S Afr Vet Med Ass 41(2):117 (1970).

OKLAHOMA STATE UNIVERSITY

- Kellerman TS, Coetzer JAW, and Naude TW. In "Plant Poisonings and Mycotoxicoses of Livestock in Southern Africa," pp. 49-51. Oxford University Press, Cape Town, Republic of South Africa, 1988.
- Steyn PS, Vleggaar R, and Anderson LAP. S Afr J Chem 40(3):191 (1987).
- 5. Kamrin RP and Kamrin AA. J Neurochem 6:219 (1961).
- Mizuno N, Kawakami K, and Morita E. J Nutri Sci Vitaminol 26:535 (1980).
- Gummon B and Erasmus GL. Onderstepoort J Vet Res 57:109 (1990).
- Gummon B, Bastianello SS, Labuschagne L, and Erasmus GL. Onderstepoort J Vet Res 59:111 (1992).

- Fernald ML. In "Gray's Manual of Botany, 8th ed.,"
 pp. 884. American Book Co, New York, NY, 1950.
- 10. Isely D. In "Leguminosae of the United States: I. Subfamily Mimosoideae. Memoirs of the New York Botanical Garden Volume 25, #1," pp. 1-152. The New York Botanical Garden, Bronx, NY, 1973.
- 11. Correll DS and Johnston MC. In "Manual of the Vascular Plants of Texas," pp. 769. The University of Texas at Dallas, Richardson, TX, 1979.
- Dollahite JW. Tx. Agric. Exp. Sta. Tech. Report 78-1 (1978).

ORLAHOMA STATE UNIVERSITY

- 13. Dakshinamurti K. Adv. Nutr. Res. 4:143 (1977).
- 14. Holtz P and Palm D. Pharmacol. Rev. 16:113 (1964).
- Horton RW and Meldrum BS. Brit. J. Pharmacol. 49:52 (1973).
- 16. Kosower NS and Rock RA. Nature 217:565 (1968)
- Sawaya C, Horton R, and Medlrum B. Biochem. Pharmacol.
 27:475 (1978)
- 18. Snodgrass SR and Iversen LL. J. Neurochem. 20:431 (1973)

TABLE 1

ground legumes of Albizia julibrissin to sheep.				
Dosage g/kg	Number of Animals	Results Observed		
5	2	no signs of intoxication		
10	1	no signs of intoxication		
10	1	mild seizures		
15	2	death		
15	2	seizures, but recovery when given pyridoxine HCl i.v.		
15	1	no signs when given pyridoxine HCl i.m. and s.c. simultaneously		
20	2	death		
20	1	no signs when given pyridoxine HCl s.c. simultaneously		
25	2	death		

Results of administration of various dosages of dried.

(A)

(B)

(C)

FIGURE 1 Chemical structures of neurotoxins in Albizia tanganyicensis and pyridoxine (Vitamin B₆). (A) 5-acetoxymethyl-3-hydroxy-4-methoxymethyl-2methylpyridine; (B) 3-hydroxy-5-hydroxymethyl-4methoxymethyl-2-methylpyridine (= 4-methoxypyridoxine); (C) 5-hydroxy-6-methyl-3,4-pyridinedimethanol (= pyridoxine).

ORLAHOMA STATE UNIVERSITY

(8)

FIGURE 2

Mass spectra of compounds extracted from species of Albizia. (A) Mass spectrum of compound at retention time 15.338 minutes in fraction 267 from North American A. *julibrissin.* (B) Mass spectrum of compound at retention time 15.410 minutes from South African A. *tanganyicensis.*

INVESTIGATION OF THE NEUROTOXIC COMPOUNDS IN ASCLEPIAS SUBVERTICILLATA (WESTERN-WHORLED MILKWEED)

GREGG HUMPERT ROBINSON

Herbarium, Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078

ABSTRACT

Species of Asclepias, commonly known as milkweeds or silkweeds, are toxic plants with many cases of livestock poisoning reported. Previous investigations indicated the presence of multiple secondary metabolites that produce cardiotoxic-gastrointestinal and/or neurotoxic syndromes. Toxicants producing the former are cardenolides or cardiac glycosides. Those producing the neurotoxic effects were recognized to occur unknown, but only in the verticillate-leaved species of the genus. It is hypothesized that these verticillate-leaved species are neurotoxic due to the presence of a toxicant(s) unique to the group. The neurotoxic extract obtained from the dried, aerial portions of Asclepias subverticillata (western-whorled milkweed) appeared to contain a cinnamate-containing cardenolide. Toxicity was tested using chickens and structural studies were made via UV spectroscopy, low resolution ESMS, MS/MS, GC/EIMS and NMR.

OKLAHOMA STATE UNIVERSITY

INTRODUCTION

Since the early 1900's, species of Asclepias, members of the Asclepiadaceae or milkweed family and commonly known as milkweeds or silkweeds, have caused devastating losses to livestock in the western portions of the United States. Sheep, cattle, goats, horses, turkeys, and chickens have been affected by their toxic constituents (1,2,3,4,5,6,7,8,9). These highly toxic plants are not normally eaten, but may be consumed by very hungry animals (2,8). Drying seems to

increase palatability and does not diminish their toxicity. All plant parts are considered toxic (10,11).

Initial toxicity studies led toxicologists to divide the species of Asclepias into a narrow-leaved group and a broad-leaved group with blades greater than 3.5 cm wide (8,11,12). Based on clinical observations, it was believed that the broad-leaved group was cardiotoxic and the narrow-leaved group neurotoxic and more deadly (8,10,11). However, Ogden and coworkers (13,14,15) discovered that several narrow-leaved species produced cardiotoxic effects and that only verticillate-leaved species produced neurotoxic effects. These verticillate-leaved species were classified by Woodson (16) in his monograph of the genus, in the subgenus Asclepias and series Incarnatae. This series comprises 16 species, five of which are distinctly verticillate-leaved: A. subverticillata (western-whorled milkweed), A. fascicularis (narrow-leaved milkweed), A. verticillata (eastern-whorled milkweed), A. pumila (plains-whorled milkweed), and A. mexicana (mexican-whorled milkweed); and one which appears nearly so, A. incarnata (swamp milkweed). These six taxa form a complex of intergrading species across the western half of the United States and Mexico, and are hypothesized by Woodson (16) to be derived from the eastern-most A. incarnata.

OKLAHOMA STATE UNIVERSITY

Asclepias toxicants producing the cardiotoxic effects are cardenolides or cardiac glycosides and have been extensively studied (17,18,19,20,21,22). The basic

cardenolide aglycone is a C₂₃ steroidal genin with a five-membered, singly unsaturated lactone ring at C-17, a hydroxyl group at C-14, and methyl groups at C-10 and C-13 (Figure 1A). Glycosidic linkage usually occurs at C-3 to one or more sugar moieties, but can also involve C-2, creating a cyclic bridge to a single sugar. Additional methyl, hydroxyl, and carbonyl groups can be attached at other carbons of the genin, their presence further influencing lipid solubility as well as protein binding. Other cardenolide containing genera of the Asclepiadaceae include *Calotropis, Cryptostegia, Gomphocarpus,* and *Pergularia* (19,21,23).

OKLAHOMA STATE UNIVERSITY

Cardenolides inhibit Na*, K*-ATPase by binding to the extracellular side of the a subunit. The resulting increase intracellular Na* diminishes the exchange between in extracellular Na⁺ and intracellular Ca²⁺, creating increased intracellular Ca²⁺ concentrations. It has been suggested (24) that the amino acid composition of transmembrane and extracellular domains, as well as an extracellular loop, determines affinity of the α subunit which varies interspecifically and intraspecifically. The structurefunction relationship is believed to reside in the unsaturated lactone ring at C-17 and a hydroxyl group at C-14 (21, 24).

Although the toxicants producing the neurotoxic effects of Asclepias had not been identified, a few investigations had provided insight as to their character. In 1920, Marsh

and coworkers (3) conducted a partial chemical analysis of A. subverticillata. They extracted alkaloids, glycosides, and a benzol-soluble resin. In guinea pigs, the alkaloids were nontoxic, the glycosides produced narcosis, and the resin produced neurotoxic symptoms. Additional work by Ogden and coworkers (13,14,15), using sheep and chickens, suggested several toxins or neurotoxic cardenolides may be responsible for the neurologic effects. Interestingly, these same studies described symptoms similar to those produced by Cynanchum africanum R.Br., a South African species of the family (25,26). This plant synthesizes neurotoxic pregnane glycosides which are responsible for a disorder called cynanchosis in domestic ruminants (25,27). Further studies (28,29,30,31,32,33,34,35,36) in South Africa, China, India, and Japan on species of Cynanchum (sandvine), as well as those of Sarcostemma (waxy twinevine), Dregea (dregea), Marsdenia (marsdenia), and Periploca (silkvine), other genera of the Asclepiadaceae, likewise identified pregnane glycosides.

ORLAHOMA STATE UNIVERSITY

Pregnanes, the putative biological precursors to cardenolide genins, are believed to be derived from splitting of the cholesterol side chain to pregnenolone (37, 38). Their basic structure is a C₂₁ steroid with methyl groups at C-10 and C-13, and a 2 carbon side-chain at C-17 (37, 39) (Figure 1B). Commonly, pregnane glycosides, as well as cardenolides, of the Asclepiadaceae have rare 2,6-dideoxysugars such as, but not limited to, cymarose, oleandrose, and diginose

attached directly to the genin at C-3, followed by more 2,6-dideoxysugars or 6-deoxysugars, and then terminated by glucose (19,20,30,36,40). However, 6-deoxysugars also have been found to be attached directly to the genin at C-3, and glucose not always be the terminal may sugar (19,20,22,27,28,30,34). More intriguing is the discovery of a pregnane glycoside in Periploca sepium where two separate sugar moieties are attached to the genin at C-3 and C-20 (36).

ORLAHOMA STATE UNIVERSITY

The study reported here was designed as one step in the series to test the hypothesis that a unique neurotoxicant(s) occurs in Asclepias and is restricted in distribution to the verticillate-leaved species. We limited our investigation to A. subverticillata, commonly known as western-whorled or horsetail milkweed, for our initial studies. It has caused heavy livestock losses and has been recognized as one of the most poisonous plants in the United States (1,2,3,6,41). Early publications refer to it as A. galioides (16). It is an erect, herbaceous perennial 15-120 cm tall. Its stems may bear small, sterile branches. The leaves are petiolate, 1-4 mm wide, and whorled with 3-5 at each node. Usually solitary at the upper nodes, the umbellate inflorescenses are several to many flowered. The flowers are small with a white or sometimes lightly tinged greenish purple corolla. Horns arch over the anther heads and are longer than the corona. The fruit is a follicle, borne on a short, erect pedicel (16). Flowering is from June to August, and it is found in Arizona,

Colorado, Mexico, New Mexico, Oklahoma, Texas, and Utah (10,16). Plants of A. subverticillata occur on sandy, rocky plains and flats, and its stout, woody rootstalk allows it to spread rapidly in waterways, irrigation ditches, and damp pastures, where it often forms dense stands (11,12,16). This growth form readily lends itself to invasive growth in hay fields, especially alfalfa. The objectives of this investigation were to extract and identify its toxic fractions determine and to the structure of the neurotoxicant(s).

OKLAHOMA STATE UNIVERSITY

MATERIALS AND METHODS

Plant Collection

Fresh, whole plants including stems, leaves, flowers, and fruits were collected in the summer from the vicinities of Rocky Ford, CO (1995), Tucumcari, NM (1995), New Harmony, UT (1989,1995) and Kingman, AZ (1988). The plants were airdried, ground in a Wiley mill, and refrigerated until used for either toxicity studies or chemical extractions. One specimen from each site was preserved and deposited in the Oklahoma State University Herbarium (OKLA) as a voucher.

Bioassay

Dried, ground plant material, crude extracts, and their fractions were placed into individual No.00 gel capsules and fed to chickens, a bioassay model previously developed by Ogden and coworkers (13,15). Male and female white leghorn chickens, weighing 0.4-2.6 kg, were housed indoors, individually or in pairs, in wire cages at a constant

temperature, and allowed free access to commercial pelleted feed and water. The chickens were observed at periodic intervals during the tests. When signs of intoxication appeared and became severe, birds were euthanized by cervical dislocation.

Dried, ground plant material, crude extracts, and the petroleum ether layer of the MeOH extract were administered at an approximate dosage of 10 mg/g body weight (b.w.) (1.0% b.w.). After the initial test, the dried, ground plant material was administered at approximately 7.5 mg/g b.w. (0.75% b.w.). The fractions derived from silica gel chromatography which did not produce neurotoxic symptoms within 24 hr were considered non-toxic at the following approximate dosages; 0.0725 mg petroleum ether-insoluble portion of CH₂Cl₂ extract/g b.w. (0.0073% b.w.), 0.2257 mg petroleum ether-soluble portion of CH_Cl_ extract/g b.w. (0.0226% b.w.), and 0.2400 mg MeOH layer of MeOH extract/g b.w. (0.0240% b.w.) for fractions obtained from the first two columns or 0.1584 mg/g b.w. (0.0158% b.w.) for fractions obtained from the third and fourth columns. These dosages were determined by multiplying the amount of initial crude extract received from 1 g of dried plant material by the dried plant material dosage of 0.75% b.w.

ORLAHOMA STATE UNIVERSITY

Extraction, Isolation, and Structural Determination

Extraction procedures were similar to those previously performed during preliminary studies at Oklahoma State University on Asclepias subverticillata (M. Khan, personal
communication) and on species of Cynanchum and Sarcostemma at the Veterinary Research Institute, Onderstepoort, South Africa (G.L. Erasmus, personal communication). The dried plant material was first extracted with distilled CH_2Cl_2 , then air-dried and re-extracted with MeOH. Crude extracts and their fractions were kept under $N_2(g)$ at room temperature and in darkness until used for toxicity studies or further chemical analyses.

<u>Methylene Chloride</u>. Dried plant material (3 kg in 500 g increments = approximately 17 kg fresh material) was extracted with distilled CH_2Cl_2 (2.5 L x 6) at room temperature for 30 minutes and again (1.25 L x 6) at room temperature for 1 hr. A dark blackish green tar, obtained from the filtrates by concentration under reduced pressure, was extracted with hot petroleum ether (33-40 °C) (7.30 L). The insoluble residue was subjected to a series of silica gel chromatography (28-200 mesh 22 Å), always proceeding in the series with the most toxic fraction (Table 1). ORLAHOMA STATE UNIVERSITY

Prior to loading fraction 25A onto the sixth silica gel column (Table 1), approximately 20 mg was removed for characterization using low res ESMS, and purified further separate silica gel column (30 g/g extract) on а using step-wise elution with cyclohexane-CH₂Cl₂ а (40:60/30:70/20:80/15:85/10:90), CH₂Cl₂, CH₂Cl₂-MeOH (50:50), and MeOH. The CH2Cl2-MeOH and MeOH eluates were combined and analyzed using ¹H, ¹H COSY, and ¹³C NMR and RP-HPLC coupled with UV diode array detector.

A small portion of fraction 16A (Table 1) was used for structural studies using RP-HPLC coupled with diode array UV detector, low res ESMS, MS/MS, GC/EIMS, ¹H NMR, and ¹H COSY NMR. GC/EIMS was made possible by derivatizing with BSTFA/TMCS following strong methanolysis. Methanolysis was performed using 0.2N H_2SO_4 with MeOH and heating to 60 °C. Barium hydroxide was then added along with CH_2Cl_2 and H_2O . The mixture was centrifuged and the supernatant contained the aglycone moieties.

<u>Methanol</u>. Plant material was air-dried after extraction with CH_2Cl_2 then re-extracted with MeOH (6.00 L x 3) at room temperature for 12 hr. A dark, green tar, obtained from the filtrates by concentration, was dissolved in MeOH (1.70 L) and partitioned with petroleum ether (13.95 L). The MeOH layer was concentrated to produce a brownish green tar which was subjected to a series of silica gel chromatography, always proceeding in the series with the most toxic fraction (Table 2). ORTANOMA STATE UNIVERSITY

RESULTS

Bioassay

The symptoms of intoxication in chickens fed the dried plant material resembled those in chickens fed the plant extracts. Typically, intoxication was apparent 6-12 hr after administration of the plant material or crude extracts. Later fractions produced intoxication within 2-4 hr. Neurotoxic signs included ataxia, excitement, head tremors, intermittent seizures, torticollis, depression, and sometimes

death. These signs were consistent with those previously described by Ogden and coworkers (13,15). Extraction, Isolation, and Structural Determination

Methylene Chloride. Petroleum ether-soluble (90 g) and insoluble (29 g) portions were toxic. From the insoluble portion (Table 1), fractions 11A (100% petroleum ether to 80:20 petroleum ether-chloroform), 21A, 31A (100% chloroform), 22A, 23A, 24A, 25A, and 16A (100% toluene) were toxic. Fraction 16A appeared to exhibit reduced toxicity compared to fraction 25A.

OWLANDORS STATE UNIVERSITY

As noted in the materials and methods, the 20 mg of fraction 25A retained for characterization and subjected to further purification by silica gel chromatography, most eluted in the more polar fractions. The positive ion spectrum of these eluates revealed a major component with a molecular weight of 1067. The ¹H NMR spectrum at 500 MHz in CDCl₃ showed a pair of doublets in the olefinic region suggesting two different cinnamoyl olefinic hydrogen atoms. Other signals originating from the genin moiety appeared at δ 1.15 (C-19 Me), 1.53 (C-18 Me), and 5.35 (C-6 olefinic proton). UV was consistent with a cinnamoyl group ($\hbar_{max, CH3CN}=277$ nm) and lactone ring ($\hbar_{max, CH3CN}=220$ nm) (42).

For the small portion of fraction 16A taken for structural studies, UV indicated the presence of a cinnamoyl group ($\hbar_{max,CH3CN}$ =277 nm) and lactone ring ($\hbar_{max,CH3CN}$ =220 nm). The low resolution ESMS positive ion spectrum of analytes with the greatest UV absorbance intensity at 277 nm

and 220 nm, showed a dominant peak at 1067. Daughters of 1067 closely corresponded to the loss of rhamnose (m/z 921), thevetose (m/z 761), cymarose (m/z 617), and cinnamoyl group (m/z 471). GC/EIMS spectra agreed with the presence of a cinnamoyl group and genin moiety. The ¹H NMR spectrum at 500 MHz in CDCl₃ confirmed the cinnamoyl group at δ 6.08 (d, *J*=15.8 Hz) and 7.39 (d, *J*=15.8). Other signals originating from the genin moiety appeared at δ 1.14 (C-19 Me), 1.52 (C-18 Me), and 5.38 (C-6 olefinic proton) (42).

The chemical data obtained on fractions 25A and 16A were consistent with the presence of genin glycosides; genin and carbohydrate moieties of approximately the same molecular weight. Complexity of the various spectra indicated the analytes were still a mixture of several compounds, some which were probably similar glycosides. Composition of the 2 fractions was similar, however, fraction 16A appeared to contain fewer polar compounds. OKLAHOMA STATE UNIVERSITY

<u>Methanol</u>. The petroleum ether layer (46 g) was non-toxic and the MeOH layer (96 g) was toxic. From the MeOH layer (Table 2), fractions 2 and 3 of the first and second columns, respectively, were toxic. From the 6 fractions obtained from the third column, fractions 2 (55:45 petroleum ether-ethyl acetate to 80:20 ethyl acetate-petroleum ether), 3 (80:20 ethyl acetate-petroleum ether to 100% ethyl acetate), and 5 were toxic. Fractions 2 and 3 were combined and retained for future studies. Fraction 5 lost toxicity after further fractionation by silica gel chromatography.

DISCUSSION

Our study suggests the presence of a cinnamate-containing cardenolide in the neurotoxic CH2Cl2 extract of A. subverticillata. The proposed structure (Figure 2) has a molecular weight of 1066 and a molecular formula of $C_{57}H_{78}O_{19}$. The position of the tigloyl group at C-8 was determined by difference in molecular weight and labile character in acid. Tigloyl groups have been found in pregnane glycosides isolated from other genera of the Asclepiadaceae (28,39). Although cinnamoyl groups occur in pregnane glycosides isolated from species of Cynanchum, Dregea, and Marsdenia (28,43,44) and in a cardenolide isolated from Asclepias asperula (45), this is the first report of a cinnamate-containing cardenolide with the cinnamoyl group attached directly to the genin moiety.

OKI AHOMA STATE UNIVERSITY

The toxic fractions obtained from the MeOH extract may contain similar glycosides as those extracted via CH₂Cl₂. Future investigators should consider extracting the plant material in smaller increments or with a greater quantity of CH₂Cl₂ and extracting the MeOH extract with CH₂Cl₂.

In addition to a cinnamate-containing cardenolide, the toxic, petroleum ether-soluble portion of the CH₂Cl₂ extract contains a compound(s) that may play a role in the neurotoxicity of *Asclepias subverticillata*. It could be a cyclic triterpene similar to those isolated from *Cynanchum hancokianum* (Maxim.) Al. Iljinski, a Mongolian plant believed to possess antitumor activity (46). Petroleum ether-soluble

and insoluble portions derived from the EtOH extract of this plant have produced cyclic triterpenes and pregnane glycosides, respectively (29,46). It is hoped that future studies will provide insight into the character of the petroleum ether-soluble compounds of Asclepias subverticillata.

Our evidence of a cinnamate-containing cardenolide in the aerial portions of A. subverticillata supports the hypothesis that a unique neurotoxicant(s) occurs in a verticillate-leaved species. This finding is consistent with Ogden and coworkers' studies (13,14,15) describing myocardial infiltrates in sheep and chickens fed A. subverticillata and A. verticillata. Our work provides a basis for future studies to determine the nature and mode of action of the neurotoxins present in the other verticillate-leaved species. Identification of the neurotoxic constituents in the six verticillate-leaved species will provide additional evidence for Woodson's (16) interpretation that these taxa form a complex of intergrading species which probably originated from A. incarnata. UNITAHONA STRATH UNIVERSITY

Elucidating the mode of action of intoxication may permit the development of an antidote. It also may enhance our pharmacopoeia against human diseases. For example, differentiation-inducing activity towards mouse myeloid leukemia (M1) cells using acyl-containing pregnane glycosides from *Marsdenia cundurango* Reich. showed cinnamoyl groups were the most potent inducers (47). In addition, folk remedies in

South America and parts of Asia have used plants of the Asclepiadaceae as treatments for syphilis and cancer, and as emetics, antifebriles, tonics, diuretics, antitussives, and expectorants (28,29,30,31,35,43,48). In order to fully understand the neurotoxins of the verticillate-leaved species of Asclepias, continued research is required.

ACKNOWLEDGEMENTS

Appreciation is expressed to the staff of the Facility for Advanced Instrumentation and the staff of the NMR Center, both at the University of California at Davis for providing access to chemical instrumentation and assistance with analyses.

At Oklahoma State University, appreciation is extended to the personnel of Lab Animal Resources in the College of Veterinary Medicine for coordinating animal delivery, care, and removal; to Andrew Mort, Sharbil Firsan, and Randy Robinson for suggestions of appropriate chemical techniques; and to Kim Shannon in the Department of Botany for assisting in animal delivery and reviewing needed literature at Missouri Botanical Garden.

Research funding was provided by the J.K. McPherson Fund of the Department of Botany of the College of Arts and Sciences, the College of Veterinary Medicine, and the Oklahoma Agricultural Experiment Station at Oklahoma State University. UNLIANUMA SUATH UNIVERSITY

REFERENCES

- Glover GH, Newsom IE, and Robbins WW. Agric. Exp. Sta. Bull. 246 (1918).
- 2. May WL. USDA Bull. 255 (1920).
- Marsh CD, Clawson AB, Couch JF, and Eggleston WW. USDA Bull. 800 (1920).
- Campbell HW. Journal of the American Veterinary Medical Association 79:102 (1931).
- 5. Clark JG. Vet Hum Toxicol 21:431 (1979).
- 6. Couch JF. J Chem Educ 14:16 (1937).
- 7. Sprowls RW. Southwest Vet 35:15 (1982).
- Radeleff RD. In "Veterinary Toxicology, 2nd ed.,"
 pp. 352. Lea & Febiger, Philadelphia, PA, 1970.
- 9. Stiles GW. Poultry Sci 21:263 (1942).
- Edwards WC, Burrows GE, and Tyrl RJ. Journal of Oklahoma Veterinary Medical Association 36:74 (1984).
- 11. Fleming CE, Peterson NF, Miller MR, Vawter LR, and Wright LH. Univ. of Nevada Agric. Expt. Sta. Bull. 99 (1920).
- 12. Kingsbury JM. In "Poisonous Plants of the United States and Canada," pp. 626. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.
- 13. Ogden L, Burrows GE, Tyrl RJ, and Gorham SL. In "Poisonous Plants Proceedings of the Third International Symposium," pp. 661. Iowa State University Press, Ames, Iowa, 1992.

- 14. Ogden L, Burrows GE, Tyrl RJ, and Ely RW. In "Poisonous Plants Proceedings of the Third International Symposium," pp. 661. Iowa State University Press, Ames, Iowa, 1992.
- 15. Ogden, L. In "Toxic Effects of Milkweeds (Asclepias) in Sheep and Chickens," pp. 50. Master's Thesis, Oklahoma State University, Stillwater, OK., 1989.
- 16. Woodson RE. Annals Missouri Bot Gard 41:1 (1954).
- Benson JM, Seiber JN, Keeler RF, and Johnson AE.
 In "Effects of Poisonous Plants on Livestock," pp.
 660. Academic Press, NY, 1978.
- 18. Seiber JN, Lee SM, McChesney MM, Watson TR, Nelson CJ, and Brower LP. In "Plant Toxicology: Proceedings of the Australia - U.S.A. Poisonous Plants Symposium, Brisbane, Australia, May 14-18, 1984" pp. 625. The Queensland Poisonous Plants Committee, Queensland Department of Primary Industries, Animal Research Institute, Yeerongpilly, Queensland, Aust., 1985.
- Seiber JN, Lee SM, and Benson JM. In "Handbook of Natural Toxins, Vol. I, Plant & Fungal Toxins", pp. 934. Marcel Dekker, Inc., N.Y., 1983.
- 20. Roeske CN, Seiber JN, Brower LP, and Moffitt CM. In "Biochemical Interaction Between Plants and Insects," pp. 425. Plenum Press, N.Y., 1976.
- 21. Joubert, JPJ. In "Toxicants of Plant Origin, Vol. II," pp. 61-96. CRC Press, Inc., Boca Raton, Fl, 1989.

ALINARY INTERNATION OF STREET CONTACTION

- 22. Shoppee, CW. In "Chemistry of the Steroids, 2nd ed.," pp. 483. Butterworth & Co. Ltd., London, 1964.
- Abdel-Azim NS, Hammouda FM, Hunkler D, and Rimpler H. Phytochemistry 42(2):528 (1996).
- 24. Kelly RA and Smith TW. In "Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th ed.," pp. 809. McGraw-Hill, N.Y., 1996.
- 25. Kellerman TS, Coetzer JAW, and Naude TW. In "Plant Poisonings and Mycotoxicoses of Livestock in Southern Africa," pp. 51-53. Oxford University Press, Cape Town, Republic of South Africa, 1988.
- 26. Watt JM, Breyer-Brandwijk M.G. In "The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd. ed," pp. 1457. E&S Livingstone Ltd., London, 1962. Republic of South Africa, 1988.
- 27. Steyn PS, van Heerden FR, and Vleggaar R. S. Afr. J. Chem. 42(1):29 (1989).
- 28. Tsukamoto S, Hayashi K, and Mitsuhashi H. Chem. Pharm. Bull. 33(6):2294 (1985).
- 29. Konda Y, Toda Y, and Harigaya Y. Journal of Natural Products 55(10):1447 (1992).
- 30. Nakagawa T, Hayashi K, Wada K, and Mitsuhashi, H. Tetrahedron 39(4):607 (1983).
- 31. Zhang Z, Zhou J, Hayashi K, and Mitsuhashi H. Chem. Pharm. Bull. 33(10):4188 (1985).
- 32. Yoshimura S, Narita H, Hayashi K, and Mitsuhashi H. Chem. Pharm. Bull. 33(6):2287 (1985).

T TOWNED I FARM INTERPORT STUDIES OF A CONTRACTOR

- 33. Khare NK, Kumar R, Khare MP, and Khare A. Phytochemistry 25(2):491 (1986).
- 34. Tsukamoto S, Hayashi K, Mitsuhashi H, Snyckers FO, and Fourie TG. Chem. Pharm. Bull. 33(11):4807 (1985).
- 35. Hayashi K, Wada K, Mitsuhashi H, Bando H, Takase M, Terada S, Koide Y, Aiba T, Narita T, and Mizuno D. Chem. Pharm. Bull 28(6):1954 (1980).
- 36. Kawanishi S, Sakuma S, and Shoji J. Chem. Pharm. Bull. 20(3):469 (1972).
- 37. Robinson T. In "The Organic Constituents of Higher Plants, 6th ed," pp. 346. Cordus Press, North Amherst, MA, 1991.
- 38. Groeneveld HW, Binnekamp A, and Seykens, D. Phytochemistry 30(8):2577 (1991).
- 39. Deepak D, Khare A, and Khare MP. Phytochemistry 28(12):3255 (1989).
- 40. Kawanishi S, Sakuma S, Okino H, and Shoji J. Chem. Pharm. Bull. 20(1):93 (1972).
- 41. Marsh CD and Clawson AB. USDA Bull. 969 (1921)
- 42. Robinson, GLH. In "Investigations of Toxic Plants: Albizia julibrissin and Asclepias subverticillata," pp. 112. Master's Thesis, Oklahoma State University, Stillwater, OK., 1997.
- 43. Yoshimura S, Narita H, Hayashi K, and Mitsuhashi H. Chem. Pharm. Bull. 31(11):3971 (1983).

- 44. Hayashi K, Wada K, Mitsuhashi H, Bando H, Takase M, Terada S, Koide Y, Aiba T, Narita T, and Mizuno D. Chem. Pharm. Bull 29(9):2725 (1981).
- 45. Martin RA, Lynck SP, Schmitz FJ, Pordesimo EO, Toth S, and Horton RY. Phytochemistry 30(12):3935 (1991).
- 46. Lou H, Li X, Onda M, Konda Y, Urano M, Harigaya Y, Takayanagi H, and Ogura H. Chem. Pharm. Bull. 39(9): 2271 (1991).
- 47. Umehara K, Endoh M, Miyase T, Kuroyanagi M, and UenoA. Chem. Pharm. Bull. 42(3):611 (1994).
- 48. Tsukamoto S, Hayashi K, and Mitsuhashi, H. Tetrahedron 41(5):927 (1985).

TABLE 1

Silica gel chromatography series of petroleum ether-insoluble portion received from $\rm CH_2Cl_2$ extract.

Column Number	Solvent System (Total Liters)	Total Number of Fractions	Fraction Rechrom.*	Solvent System**	g silica gel/ g extract*
1	pet. ether to $CHCl_3$ to MeOH (25.40 L)	5	21A	50:50 pet. ether-CHO	33 Cl ₃
2	CHCl ₃ to MeOH (1.75 L)	7	22A	100% CHCl ₃	54
3	$CH_2Cl_2-CHCl_3$ 50:50 to MeOH (0.98 L)	6	23A	50:50 CH ₂ Cl ₂ -CHCl ₃	41
4	CH ₂ Cl ₂ to CHCl ₃ to MeOH (1.00 L)	5	24A	100% CH ₂ Cl ₂	41.5
5	benzene to CHCl ₃ to MeOH (1.00 L)	4	25A	100% benzene	45
6	toluene to CHCl ₃ to MeOH (1.40 L)	5	NA	NA	121
• F b A	raction rechromatogr ioassay; first digit =CH ₂ Cl ₂	aphed based o =fraction num	n neurotox ber, secon	ic symptoms ob d digit=column	served in chicken number,

* g silica gel used per g of extract for the column

N.

TABLE 2

Silica gel chromatography series of MeOH layer received from MeOH extract.

Column Number▲	Solvent System (Total Liters)	Total Number of Fractions	Fraction Rechrom.*	Solvent System**	g silica gel/ g extract*
1	pet. ether to ethyl acetate to acetone to MeOH (16.35 L)	3	2	70:30 pet. ether-ethyl acetate to 50:50 ethyl acetate-acetone	++
2	as above (5.34 L)	10	3	100% ethyl acetate	10
3▲	as above (7.30 L)	6	5	90:10 ethyl acetate-acetone to 100% acetone	41.5
4▲	as above (3.35 L)	7	NA	NA	180

Pressure used

 Fraction rechromatographed based on neurotoxic symptoms observed in chicken bioassay

****** Solvent system in which fraction to be rechromatographed eluted

* g silica gel used per g of extract for the column

++ g silica gel per g extract not available; silica gel layer was 20.3 cm x 8.3 cm

(B)

FIGURE 1

(A) Basic cardenolide genin characteristic of members of the Asclepiadaceae. (B) Basic plant pregnane characteristic of members of the Asclepiadaceae.

1.40

FIGURE 2 Proposed cardenolide in the neurotoxic extract of Asclepias subverticillata.

-

APPENDICES

APPENDIX A

MASS SPECTRUM FROM LOW RESOLUTION ELECTROSPRAY IONIZATION MASS SPECTROMETRY ON FRACTION 25A

L

LICHEVILLE SALLA SAVE AND MADDLE L

47

١

.

-

APPENDIX B

CHROMATOGRAM AND SPECTRUM FROM REVERSE PHASE HPLC COUPLED WITH DIODE ARRAY DETECTOR ON FRACTION 25A

11111201111 - Later - Later 1 1111112 2

Diode Array 1/25/97 10:29:54 PM A. D. Jones

APPENDIX C

SPECTRUM FROM REVERSE PHASE HPLC COUPLED WITH DIODE ARRAY DETECTOR ON FRACTION 16A

Diode Array 2/21/97 4:30:43 PM gregg

APPENDIX D

CHROMATOGRAM FROM REVERSE PHASE HPLC, SPECTRUM FROM LOW RESOLUTION ELECTROSPRAY IONIZATION MASS SPECTROMETRY, AND SPECTRUM FROM TANDEM MASS SPECTROMETRY ON FRACTION 16A

Diode Array 2/21/97 3:56:22 PM gregg

The second s

to a particular to end to a literative of the second second second second second second second second second se

-

APPENDIX E

CHROMATOGRAMS AND SPECTRA FROM GAS CHROMATOGRAPHY COUPLED WITH ELECTRON IMPACT MASS SPECTROMETRY ON FRACTION 16A

48 68 88 188 128 148 168 188 288 228 248 268 288 388 328 348 368 388 488

- -

-

.

.

Searc}	Results	Datafile:0	2239761	Spec	strum:1	1381 Li	br:NIS	192 Range Acq
(1) 1	7.alpha	Methyl-17.b	etahy	droxy	-1,4,6-	androsta	trien-	3-one, mono-TMS
	# 55429	Purity:	126	Fit:	897	Rf it:	130	CAS# 0-00-0
	Formula:	C23.H34.02	.Si					Mol Wt: 378
(2) F	henanthre	ne, 9-ethyl	-3,6-di	methox	cy-18-	ethyl-		
	# 46088	Purity:	83	Fit:	891	Rf it:	91	CAS# 5025-37-6
	Formula:	C19.H28.02						Mol Wt: 280
(3) S	ilane, tr	imethyl[[5-	methyl-	2-(1-	ethyle	thenyl)c	yclohe	xylloxyl-, [1R-(1
	# 29142	Purity:	71	Fit:	876	Rfit:	79	CAS# 57396-86-8
	Formula:	C13.H26.0.	SI					Mol Wt: 226
(4) 3	H-Pyrazol	-3-one, 4-c	hloro-1	,2-d1)	ydro-5	-methyl-	2-phon	yl-1-(trimothylai
	# 46807	Purity:	123	Fit:	823	Rf it:	135	CAS# 57396-96-8
	Formula:	C13.H17.CI	.N2.0.S	i				Mol Wt: 280
(5) A	cetic acid	d, [[[(17.b	eta.)-1	7-met}	w1-17-	[(trimet	hylsil	yl)oxy]androsta-1
	# 60863	Purity:	138	Fit:	888	Rf it:	159	CAS# 74299-10-8
	Formula:	C26.H41.N.	04.SI					Mol Wt: 459
(6) 9	H-Purine,	9-(trimeth	ylsilyl)-6-[(trimet	hylsilyl)oxy]-	
	# 45993	Purity:	108	Fit:	782	Rf it:	115	CAS# 17962-89-9
	Formula:	C11.H20.N4	.0.512					Mol Wt: 288
(7) 5	.alpha.And	drost-16-ol	, 17-et	hylide	ne-3,5	-ded i hyd	ro-6-m	ethoxy-,
	# 58544	Purity:	122	Fit:	782	Rfit:	143	CAS# 8-88-8
	Formula:	C27.H42.03						Mol Wt: 414
(8) P	yridoxine	THS						
	# 56483	Purity:	89	Fit:	765	Rfit:	94	CAS# 0-00-0
	Formula:	C17.H35.N.	612.E0					Mol Wt: 385
(9) P	regnan-28-	-one, 3,21-	bis[(tr	imethy	Isilyl)oxy]-,	0-(phe	nylmethyl)oxime,
	# 63789	Purity:	163	Fit:	743	Rfit:	205	CAS# 57325-89-8
	Formula:	C34.H57.N.	03.Si2					Mol Wt: 583
(10) 2	-Isopropy	1-3-keto-tr	imethyl	silylb	utyrat			
	# 26658	Purity:	58	Fit:	709	Rf it:	75	CAS# 0-00-0
	Formula:	C10.H20.03	.Si					Mol Wt: 216

Searc	h Results	Datafile:02	22397G1	Spec	trum:14	115 Li	br:NIS	T92 Range Acq
(1)	.alphaD-	Glucopyranos	ide, m	ethyl	4,6-di-	0-methy	1-2,3-	bis-0-(trimethyls
	# 38931	Purity:	284	Fit:	872	Rf it:	368	CAS# 52438-38-3
	Formula:	C15.H34.06	Siz					Mol Wt: 366
(2)	.alphaD-	Galactoside.	methy	1 tetr	akis-0-	(trimet	hylsil	y1)-
	# 39730	Purity:	271	Fit:	872	Rfit:	285	CAS# 74725-78-3
	Formula:	C19.H46.06	Si4					Mol Wt: 482
(3)	.alphal-	annopyranos	ide, m	ethyl	6-deoxy	-2,3,4-	tris-0	-(trimethylsilyl)
	# 39273	Purity:	271	Fit:	868	Rfit:	296	CAS# 56271-68-4
	Formula:	C16.H38.05	SIB					Mol Wt: 394
(4)	.alphaD-0	Glucopyranos	ide, m	ethyl	2,3,4,6	-tetrak	is-0-(trimethylsilyl)-
	# 72263	Purity:	251	Fit:	846	Rfit:	272	CAS# 2641-79-4
	Formula:	C19.H46.06.	SI4					Mol Wt: 482
(5)	.alphaD-0	Galactopyram	noside,	methy	1 2,3,4	,6-tetr	akis-0-	-(trimethylsilyl)
	# 39725	Purity:	263	Fit:	834	Rfit:	281	CAS# 4133-45-3
	Formula:	C19.H46.06.	Si4					Mol Wt: 482
(6)	.betaD-Ga	alactopyrand	side,	methyl	2,3,6-	tris-0-	(trime	thylsilyl)-, acet
	# 60513	Purity:	280	Fit:	833	Rfit:	318	CAS# 52419-51-9
	Formula:	C18.H40.07.	Si3					Mol Wt: 452
(7)	1-Cyclohexe	ene-1-carbox	ylic a	cid, 3	,4,5-tr	is[(tri	methyl:	silyl)oxy]-, trim
	# 68948	Purity:	278	Fit:	833	Rfit:	323	CAS# 55520-78-0
	Formula:	C19.H42.05.	SI4					Mol Wt: 462
(8)	.alphaD-0	Glucopyranos	ide, m	ethyl	2,3-bis	-0-(tri	methyls	silyl)-, cyclic b
	# 39360	Purity:	319	Fit:	829	Rfit:	361	CAS# 56211-14-4
	Formula:	C17.H37.B.C	6.512					Nol Wt: 484
(9)	.alphaL-C	Galactopyrar	oside,	methy	I 6-deo	xy-2,3,	4-tris-	-0-(trimethylsily
	# 57151	Purity:	269	Fit:	828	Rfit:	294	CAS# 56271-58-0
	Formula:	C16.H38.05.	Si3					No1 Wt: 394
(10)	.beta1-Ga	lactopyrand	side, u	methyl	6-deox	y-2,3,4	-tris-(0-(trimethylsilyl
	# 39272	Purity:	279	Fit:	822	Rfit:	303	CAS# 56271-59-1
	Formula:	C16.H38.05.	Si3					Hol Wt: 394

-

Searc	ch Results	Datafile:8	22397G1	Spec	trum	1495 Li	br :NIS	ST92 Range:Acq
(1)	1.1'-Bibic	uclo[2 2 2]	loctane					
	# 27279	Purity:	117	Fit:	968	Rfit:	117	CAS# 69576-82-5
	Formula:	C16.H26	0000					Mol Wt: 218
(2)	Silane, (9	, 19-cyclo-9	.beta	lanost	-24-en	-3.beta	-yloxy)trimethyl-
	# 62172	Purity:	242	Fit:	956	Rfit:	242	CAS# 17688-55-8
	Formula:	C33.H58.0.	SI					Mol Wt: 498
(3)	Pregnane							
	# 47153	Purity:	162	Fit:	921	Rfit:	165	CAS# 481-26-5
	Formula:	C21.H36						Mol Wt: 288
(4)	D-Norandros	stane-16-me	thanol,	(5.a)	pha.,	(6.beta.)	-	
	# 45675	Purity:	221	Fit:	915	Rfit:	227	CAS# 54411-60-8
	Formula	C19.H32.0						Mol Wt: 276
(5)	Tricyclo[4	.3.0.07,91	onane,	2,2,5,	5,8,8-	hexameth	yl-, (1.alpha.,6.beta.,
	# 24458	Purity:	178	Fit:	986	Rfit:	180	CAS# 54832-82-5
	Formula:	C15.H26						Mol Wt: 206
(6)	Silane, [[(3.beta.)-1	anosta-	9(11),	24-die	m-3-y110	xyltri	methyl-
	# 62179	Purity:	258	Fit:	905	Rfit:	262	CAS# 55538-95-9
	Formula	C33.H58.0.	Si					Mol Wt: 498
(7)	.betaAmy	rin trimeth	ylsilyl	ether	en e			
	# 39765	Purity:	256	Fit:	887	Rfit:	256	CAS# 1721-67-1
	Formula:	C33.H58.0.	Si					Mol Wt: 498
(8)	1H-Indene-2	2-ethanol,	octahyd	ro-2-(hydrox	(ymethyl)	-3a,4-	dimethyl-
	# 29188	Purity:	252	Fit:	875	Rfit:	259	CAS# 54833-42-0
27.45C X	Formula:	C14.H26.02		53	221723	31 1021 2023	2 2399	Mol Wt: 226
(9)	5H-3,5a-Epo	oxynaphth[2	,1-clox	epin,	dodeca	hydro-3,	8,8,11	a-tetramethyl-, [3
	# 36338	Purity	262	Fit:	874	Rfit:	287	CAS# 1153-35-1
199225	Formula:	C18.H38.02	20022 222	26	SIGRE	8 193 6		Mol Wt: 278
(10)	3,4-Heptad	ien-2-one,	3,5-dic	yclope	intyl-6	-methyl-	1212225	2012/07/02/02/02/02/02/02
	# 43741	Purity:	196	Fit:	862	Rfit:	213	CAS# 63922-51-0
	Formula:	C18.H28.0						Mol Wt: 260

-

APPENDIX F

-

CHROMATOGRAM FROM REVERSE PHASE HPLC AND SPECTRUM FROM ¹H NMR SPECTROSCOPY ON FRACTION 16A

Diode Array 2/23/97 6:47:42 PM Gregg

Threshold: 5.80 Scale: 100.00 Scale fit for largest peak: none Scope: global Mode: positive peaks only Search region: 884.32 Hz to 352.27 Hz 1.768 ppm to 0.704 ppm

	height	freq	freq
	(uncorr)	(Hz)	(ppm)
1	17.95	861.71	1.723
2	18.15	858.69	1.717
3	18.07	856.43	1.712
4	25.08	836.84	1.673
5	33.32	821.77	1.643
6	52.61	809.71	1.619
7	100.00	783.33	1.566
8	23.65	761.48	1.523
9	14.02	743.39	1.486
10	28.03	735.10	1.470
11	11.85	724.55	1.449
12	12.74	715.51	1.431
13	12.50	713.25	1.426
14	25.91	689.13	1.378
15	28.95	683.10	1.366
16	28.89	679.33	1.358
17	28.15	674.81	1.349
18	51.85	661.25	1.322
19	50.83	655.22	1.310
20	44.49	640.90	1.281
21	46.14	634.87	1.269
22	33.21	626.58	1.253
23	44.98	613.02	1.226
24	12.20	592.67	1.185
25	12.97	585.89	1.171
26	12.43	578.35	1.156
27	29.21	567.80	1.135
28	21.35	562.52	1.125
29	26.95	555.74	1.111
30	11.46	546.70	1.093
31	8.25	539.16	1.078
32	7.83	536.15	1.072
33	7.92	531.63	1.063
34	6.63	525.60	1.051
35	6.83	484.90	0.970
36	6.48	472.09	0.944
37	6.97	465.31	0.930

L8

Threshold: 9.4C Scale: 100.00 Scale fit for largest peak: none Scope: local Mode: positive peaks only Search region: 1511.32 Hz to 887.33 Hz 3.022 ppm to 1.774 ppm

+	height	freq (Hz)	freq (ppm)
1	9.84	1461.58	2.922
2	9.85	1459.32	2.918
з	12.08	1450.28	2.900
4	12.99	1445.00	2.889
5	12.90	1439.73	2.879
6	13.38	1435.21	2.870
7	12.77	1429.18	2.858
8	9.81	1420.13	2.840
9	9.90	1299.56	2.598
10	10.17	1296.54	2.592
11	10.22	1294.28	2.588
12	10.27	1292.77	2.585
13	10.87	1289.01	2.577
14	13.90	1281.47	2.562
15	13.65	1277.70	2.555
16	11.96	1271.67	2.543
17	12.10	1269.41	2.538
18	13.67	1264.14	2.528
19	13.18	1258.86	2.517
20	13.76	1254.34	2.508
21	17.86	1239.27	2.478
22	16.76	1233.24	2.466
23	32.53	1206.11	2.412
24	43.16	1194.05	2.387
25	39.32	1189.53	2.378
26	51.89	1177.47	2.354
27	57.60	1162.40	2.324
28	38.42	1144.31	2.288
29	48.73	1129.99	2.259
30	59.72	1107.39	2.214
31	100.00	1101.36	2.202
32	93.42	1090.05	2.180
33	56.91	1076.49	2.152
34	58.87	1074.23	2.148
35	35.02	1062.17	2.124
36	42.00	1055.39	2.110
37	43.30	1050.86	2.101
38	43.13	1041.82	2.083
39	30.72	1030.52	2.060
40	28.46	1025.24	2.050
41	34.43	1013.94	2.027
42	53.46	998.87	1.997
43	46.06	991.33	1.982
44	47.72	977.01	1.954
45	58.61	964.20	1.928
46	63.22	957.42	1.914
47	60.59	950.63	1.901
48	61.36	947.62	1.035
49	55.51	937.07	1.074
50	45.71	918.90	1.031
21	46.82	312.31	1.031
52	44.19	912.20	1.824
53	41.31	906.17	1.812
54	42.24	899.39	1.798
55	42.26	897.88	1.795
56	39.69	892.61	1.785
57	39.34	888.84	1.777

Threshold: 9.30 Scale: 100.00 Scale fit for largest peak: none Scope: local Mode: positive peaks only Search region: 2055.43 Hz to 1493.24 Hz 4.110 ppm to 2.986 ppm

	height	freq	freq
	(uncorr)	(Hz)	(ppm)
1	12.14	1981.58	3.962
2	11.08	1973.29	3.946
3	11.94	1963.49	3.926
4	13.96	1956.71	3.912
5	13.08	1949.92	3.899
6	11.70	1939.37	3.878
7	14 14	1933 34	3.866
9	16 34	1929 58	3 858
0	10.34	1923 55	3 846
10	17 63	1920 53	3 840
11	16 45	1913 75	3 826
12	25.16	1005 46	3 910
12	25.10	1003.30	3.010
13	25.33	1905.20	3.805
14	24.82	1053.00	3.790
15	9.57	1862.51	3.724
16	10.54	1857.98	3.715
17	53.51	1833.11	3.665
18	100.00	1827.84	3.655
19	13.05	1812.01	3.623
20	13.03	1800.71	3.600
21	16.24	1789.40	3.578
22	18.73	1784.88	3.569
23	20.74	1778.85	3.557
24	20.11	1774.33	3.548
25	22.80	1766.80	3.533
26	25.22	1758.51	3.516
27	23.14	1749.46	3.498
28	94.77	1723.84	3.447
29	92.69	1715.55	3.430
30	19.93	1706.51	3.412
31	19.96	1705.00	3.409
32	25.86	1700.48	3.400
33	47.20	1693.70	3.386
34	22.23	1686.16	3.371
35	19.21	1679.38	3.358
36	17.02	1673.35	3.346
37	14.22	1667.32	3.334
38	10.46	1652.25	3.304
39	17.44	1638.68	3.276
40	16 92	1630 39	3 260
41	20 37	1614 57	3 228
42	19 45	1610.80	3,221
43	23 27	1605 52	3.210
44	20.08	1597 23	3,194
45	14 32	1587 44	3.174
46	14 64	1562 57	3 124
47	18 10	1553 52	3 106
40	10.69	1544 49	3 088
40	10.00	1344.40	5.000

τ6

Threshold: 15.60 Scale: 100.00 Scale fit for largest peak: none Scope: local Mode: positive peaks only Search region: 2741.22 Hz to 2041.86 Hz 5.481 ppm to 4.083 ppm

ŧ	height	freq	freq	
	(uncorr)	(Hz)	(ppm)	
		2601 40	6 202	
1	54.57	2691.48	5.382	
2	17.18	2479.71	4.958	
3	19.54	2475.19	4.949	
4	22.41	2464.64	4.928	
5	28.84	2457.11	4.913	
6	43.30	2451.08	4.901	
7	46.05	2445.05	4.889	
8	39.75	2438.27	4.875	
9	69.60	2428.47	4.856	
10	70.27	2425.45	4.850	
11	75.08	2420.93	4.841	
12	40.55	2409.63	4.818	
13	36.45	2405.11	4.809	
14	36.00	2394.56	4.788	
15	70.88	2385.51	4.770	
16	67.17	2375.72	4.750	
17	19.50	2365.16	4.729	
18	20.65	2362.15	4.723	
19	29.83	2357.63	4.714	
20	29.67	2350.85	4.700	
21	30.63	2345.57	4.690	
22	29.03	2341.80	4.682	
23	27.08	2328.99	4.657	
24	16.59	2322.21	4.643	
25	21.88	2315.43	4.630	
26	19.25	2297.34	4.593	
27	24.51	2292.06	4.583	
28	20.19	2287.54	4.574	
29	18,18	2280.76	4.560	
30	17.10	2275.48	4.550	
31	16.86	2271.72	4.542	
32	16.72	2265.69	4.530	
73	15 78	2260.41	4.520	
34	15.99	2258.91	4.517	
35	18 43	2253.63	4.506	
36	43 19	2245 34	4 489	
37	37 70	2237.05	4.473	
39	15 78	2214 44	4 42B	
30	15 92	2212 18	4 423	
10	56 00	2197 11	4 393	
40	20.35	2197.11	4 379	
41	57 05	2193.54	4.366	
42	19 00	2174 50	4 348	
43	20.30	2161 60	4 322	
44	03 51	2157 17	4 313	
45	100.00	2107.17	4.313	
40	17 00	2140.00	4.257	
47	17.89	2099.14	4.157	
48	48.16	2084.82	4.109	
49	15.68	2044.13	4.08/	

Threshold: 14.30 Scale: 100.00 Scale fit for largest peak: none Scope: local Mode: positive peaks only Search region: 3514.42 Hz to 2789.45 Hz 7.027 ppm to 5.577 ppm

	height	freq	freq
	(uncorr)	(Hz)	(ppm)
		3507 64	7 012
-	48.94	3507.84	7.013
2	34.82	3302.37	6.000
3	48.59	3494.83	6.988
4	33.9/	3490.31	6.9/9
5	16.82	34/4.48	6.947
6	24.58	3403.64	6.805
1	23.33	3391.58	6.781
8	28.20	3235.59	6.469
9	29.93	3224.28	6.44/
10	30.40	3219.76	6.438
11	24.3	3207.70	6.414
12	14.88	3179.82	6.358
13	14.69	3176.81	6.352
14	17.14	3173.04	6.344
15	17.76	3170.78	6.340
16	100.00	3163.24	6.325
17	44.79	3159.47	6.317
18	20.22	3155.70	6.310
19	25.75	3152.69	6.304
20	90.85	3147.41	6.293
21	38.99	3143.65	6.286
22	15.69	3136.86	6.272
23	14.96	3061.50	6.121
24	15.31	3059.24	6.117
25	14.40	3056.98	6.112
26	16.35	3054.72	6.108
27	96.31	3046.43	6.091
28	92.66	3030.60	6.060
29	18.82	3001.97	6.002
30	21.55	2989.91	5.978
31	14.46	2924.35	5.847
32	45.91	2917.56	5.834
33	31.81	2911.53	5.822
34	47.19	2905.50	5.809
35	28.19	2898.72	5.796
36	16.69	2895.71	5.790
37	28.41	2830.14	5.659
38	25.10	2818.09	5.635

774 - 7,776 - 7,750 - 7,750 - 7,720 - 7,720 - 7,720 - 7,720 - 7,708 - 7,705 - 7,698 - 7,598 - 7,598 - 7,559 - - 7,559 -7 65 7.56 5 7.526 7.518 7.512 7.496 7.479 7.468 7.453 7.440 7.47 7.38 - 7.404 - 7.398 - 7.392 - 7.386 - 7.372 - 7.358 - 7.346 - 7.331 - 7.321 ppm 7.29 7.283 7.236 - 7.211 - 7.202 - 7.196 - 7.185 72 - 7.158 - 7.148 - 7.134 - 7.125 - 7.111 7.11 . - 7.050 7 02 - 7.013 - 7.003 - 6.988 - 6.979 _

Threshold: 6.30 Scale: 100.00 Scale fit for largest peak: none Scope: local Mode: positive peaks only Search region: 3924.39 Hz to 3467.70 Hz 7.847 ppm to 6.934 ppm

۲	height (uncorr)	freq (Hz)	freg (ppm)
1	7.08	3888.97	7.776
2	7.98	3876.16	7.750
3	8.71	3873.14	7.744
4	6.46	3865.61	7.729
5	10.50	3861.09	7.720
6	8.01	3857.32	7.713
7	7.72	3855.06	7.708
8	7.72	3853.55	7.705
9	7.66	3849.78	7.698
10	7.54	3846.77	7.691
11	8.07	3843.00	7.684
12	8.06	3841.49	7.681
13	8.61	3837.72	7.673
14	10.10	3831.69	7.661
15	14.06	3824.91	7.648
16	28.02	3820.39	7.639
17	20.77	3809.09	7.616
18	33.72	3804.56	7.607
19	28.56	3800.80	7.600
20	35.55	3793.26	7.585
21	25.53	3787.99	7.574
22	26.71	3780.45	7.559
23	49.23	3763.87	7.526
24	50.60	3760.10	7.518
25	49.19	3737.09	7.512
20	27.50	3740.00	7.490
21	29.83	3740.51	7 469
28	30.37	3733.23	7 453
29	37 03	3720 91	7 440
30	84 34	3702 83	7 404
32	100.00	3699 81	7.398
33	96.75	3696.80	7.392
34	93.20	3693.78	7.386
35	90.57	3687.00	7.372
36	74.35	3680.22	7.358
37	85.61	3674.19	7.346
38	85.16	3666.65	7.331
39	75.30	3661.38	7.321
40	96.82	3642.54	7.283
41	57.53	3619.18	7.236
42	26.14	3606.36	7.211
43	24.15	3601.84	7.202
44	23.05	3598.83	7.196
45	19.49	3593.55	7.185
46	8.75	3579.99	7.158
47	14.48	3574.71	7.148
48	12.20	3567.93	7.134
49	9.29	3563.41	7.125
50	6.31	3556.63	7.111
51	14.59	3525.73	7.050
52	11.51	3507.64	7.013
53	8.19	3502.37	7.003
54	11.43	3494.83	6.988
55	1.99	3490.31	0.9/9

£

Threshold: 7.90 Scale: 100.00 Scale fit for largest peak: none Scope: local Mode: positive peaks only Search region: 4666.70 Hz to 3970.36 Hz 9.331 ppm to 7.939 ppm

•	height (uncorr)	freq (Hz)	freq (ppm)	
1	19.74	4616.21	9.230	
2	19.70	4613.94	9.225	
3	10.83	4596.61	9.191	
4	100.00	4588.32	9.174	
5	13.46	4425.54	8.849	
6	13.70	4421.02	8.840	
7	68.82	4367.51	8.733	
8	65.64	4363.75	8.725	
9	8.42	4150.47	8.299	
10	9.07	4148.97	8.296	
11	8.77	4147.46	8.293	
12	8.70	4143.69	8.285	,
13	11.60	4140.68	8.279	
14	10.49	4069.84	8.138	
15	65.20	4059.29	8.116	
16	80.58	4051.75	8.101	
17	22.21	4043.46	8.085	

APPENDIX G

SPECTRUM FROM ¹H COSY NMR SPECTROSCOPY ON FRACTION 16A

...nda/data/dj3116A_cosy_pro

Date: Feb 24 12:29:42.6 1997 OPERATOR: *******

ACQ TIME = 0.17 sec DATA SIZE = 1024 * 1024 NUM OF BLKS = 128 NUM OF SCANS = 64

PULSE SEQUENCE: SEQUENCE NAME - floory_ntype60 a

OBSERVE: OBSERVE: 11 FREQ = 500 1351150 MHz SPEC OFFSET = 2325 60 Hz V FREQ = 500 1327804 MHz V FREQ = 500 1327804 MHz V SPEC VD = 617244 Hz V SPEC OF = 212560 Hz GAIN = 160.0 POWER LEVEL = 60 LOW POWER = ON

DECOUPLER: D FREQUENCY = 500.1352900 MHz D FOWER = 0 db D MODULATION = CW O FREQUENCY = 123 7713594 MHz D MODULATION = CW

PROCESSING: PHASE A PHASE B - 0.00

PLOT RANGE: X From 5 54 TO 0.75 ppm Y From 5 58 TO 0.78 ppm

CONTOURING: LEVELS = 13 SPACING = LOG POLARITY = + SCALING = GLOBAL FLOOR = 0.2020 & CEILING = 17.2600 &

GE NMR OMEGA

...nda/data/dj3116A_cosy_pro

Date: Feb 24 12:29:42.6 1997 OPERATOR: *******

ACQ TIME = 0.17 kc DATA SIZE = 1024 * 1024 NUM OF BLKS = 128 NUM OF SCANS = 64

PULSE SEQUENCE: SEQUENCE NAME = floaty_ntype60 +

 OBSERVE:
 • 500.1351150 MHz

 n FREQ
 • 6172.84 Hz

 SPEC WDTH
 • 6172.84 Hz

 SPEC CPFSET
 = 2325.60 Hz

 V. FREQ
 • 500.137894 MHz

 V. SPEC WD
 • 6172.14 Hz

 V. SPEC WD
 = 6172.50 Hz

 OAN
 = 160 0

 POWER LEVEL
 • 60

 LOW POWER
 = ON

DECOUPLER: D FREQUENCY = 500.1352900 MHz D FOWER = 0 db D MODULATION = CW D FREQUENCY = 125.7713594 MHz D POWER = 0 db D MODULATION = CW

PROCESSING: PHASE A = 0 00 PHASE B = 0 00

PLOT RANGE: X From 7.89 TO 0.66 ppm Y From 7.91 TO 0.69 ppm

CONTOURING: LEVELS = 13 SPACING = LOG POLARITY = + SCALING = GLOBAL FLOOR = 0 2970 % CEILING = 17 7600 %

102

GE NMR OMEGA

...nda/data/dj3116A_cosy_pro

Date: Feb 24 12:29:42.6 1997 OPERATOR: ******

ACQ TIME = 0.17 MC DATA SIZE = 1024 - 1024 NUM OF BLKS = 128 NUM OF SCANS = 64

PULSE SEQUENCE: SEQUENCE NAME = floosy_ntype60.s

 OBSERVE:
 500.1351150 MHz

 f1 FREQ
 500.1351150 MHz

 SPEC OFFSET
 213360 Hz

 V. FREQ
 500.1327894 MHz

 V. SPEC WD
 6172.84 Hz

 V. SPEC OF
 2135.60 Hz

 GAIN
 160.0

 POWER LEVEL
 60

 LOW POWER
 ON

DECOUPLER: 7 FREQUENCY = 500.1352900 MHz 17 POWER = 0.46 17 MODULATION = CW 17 FREQUENCY = 125.7713594 MHz 18 POWER = 0.46 19 MODULATION = CW

PROCESSING: PHASE A = 0 00 PHASE B = 0 00

PLOT RANGE: X From 195 TO 464 ppm Y From 196 TO 467 ppm

CONTOURING: LEVELS - 13 SPACING = LOG POLARITY - + SCALING - GLOBAL FLOOR - 02120 5 CEILING - 17 7600 5

103

APPENDIX H

CHROMATOGRAM FROM REVERSE PHASE HPLC ON FRACTIONS 25A AND 16A

Column: Vydac 3 micron 4.6 x 100 mm 90 Angstrom C18 Conditions: Solvent A = H_2O Solvent B = Acetonitrile 0-5 minutes 60% A to 25% A at 25 minutes to 0% A at 40 minutes hold 0% A until 45 minutes Flow rate: 1 ml per minute Fraction Collection: 30 seconds Print of window 38: Current Chromatogram(s)

Diode Array 2/22/97 5:32:47 PM gregg

-106

Page 1 of 1

APPENDIX I

REVERSE PHASE HPLC AND LOW RESOLUTION ELECTROSPRAY MASS SPECTROMETRY ON FRACTION 16A

AFTER MILD METHANOLYSIS (AGLYCONES ONLY)

Diode Array 2/22/97 9:10:32 PM gregg

Print of window 39: DAD1, 3.225 (178 mAU, -) of 97022202.D

Diode Array 2/22/97 9:09:05 PM gregg

APPENDIX J

and the lot of the lot of the

FLOW CHART ON BIOASSAY RESULTS

Dried, ground plant material Methylene Chloride Filtrates → Re-dried same plant material Petroleum Ether Methanol Insoluble Filtrates Soluble Toxic Toxic Silica gel Partitioned chromatography with Methanol and Petroleum ether V Pet. ether layer Methanol layer Toxic Non-toxic Silica gel chromatography Column 1 Fractions Column 1 Fractions 1 2 3 4 5 1 2 3 + + 2 . Column 2 Fractions Column 2 Fractions 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 . . Column 3 Fractions Column 3 Fractions 1 2 3 4 5 6 NT + - NT - NT 1 2 3 4 5 6 NT + + - + -Column 4 Fractions Column 4 Fractions 1 2 3 4 5 NT + - - NT 1 2 3 4 5 6 7 Column 5 Fractions 1 2 3 4 NT + - -Column 6 Fractions 1 2 3 4 5 + - - - NT + Structural Determination

+ = Toxic - = Non-toxic 4 = Slightly toxic NT = Not tested due to insufficient amount for bioassay

ì

VITA

Gregg Lea Humpert Robinson

Candidate for the Degree of

Master of Science

- Thesis: INVESTIGATIONS OF TOXIC PLANTS: ALBIZIA JULIBRISSIN AND ASCLEPIAS SUBVERTICILLATA
- Major Field: Botany

Biographical:

- Education: Graduated from Broken Arrow High School, Broken Arrow, Oklahoma in May 1979; Tulsa Community College, Tulsa, Oklahoma; Oklahoma City Community College, Oklahoma City, Oklahoma; Oklahoma State University-Oklahoma City, Oklahoma City, Oklahoma; Northern Oklahoma College, Tonkawa, Oklahoma; University of Oklahoma Biological Station, Kingston, Oklahoma; received Bachelor of Science degree in Botany from Oklahoma State University, Stillwater, Oklahoma in December 1994. Completed the requirements for the Master of Science degree with a major in Botany at Oklahoma State University in May 1997.
- Experience: Employed by Employer's Insurance of Wausau as a Commercial Service Office Correspondent in Oklahoma City, Oklahoma, 1980 to 1983; Ben Kennedy & Associates as a Commercial Property and Casualty Underwriting in Oklahoma City, Oklahoma, 1983 to 1985; Meyers-Reynolds & Associates as an Account Executive in Oklahoma City, Oklahoma, 1985 to 1991; Oklahoma State University, Department of Botany, as an Undergraduate Teaching Assistant, 1994 and as a Graduate Teaching Assistant, 1995 to present.
- Professional Memberships: Phi Kappa Phi, Golden Key National Honor Society, and Oklahoma Native Plant Society.

- Grants: James K. McPherson Memorial Fund, \$225 for research in 1995, \$210 for research in 1996, and \$200 for out-of-state symposium registration fee in 1997; Oklahoma Agricultural Experiment Station, \$4,000 for research in 1996/1997 with G.E. Burrows and R.J. Tyrl.
- Papers Presented: Vitamin B₆ antagonist in Albizia julibrissin (mimosa) legumes. 85th annual meeting of the Oklahoma Academy of Science, November 1996.

Investigation of the neurotoxic compounds in Asclepias subverticillata (western-whorled milkweed). Facility for Advanced Instrumentation, University of California at Davis, February 1997.

Papers to be Presented: Investigation of the neurotoxic compounds in Asclepias subverticillata (western-whorled milkweed). 5th International Symposium on Poisonous Plants, May 1997.

Evaluation of the toxic effects of the legumes of *Albizia julibrissin* (mimosa) and identification of the toxicant. 5th International Symposium on Poisonous Plants, May 1997.