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PREFACE 

The design of digital control systems for practical applications demands the designer to 

spend a great amount of time and effort in trial-and-error procedures and computer 

simulations. The reason for this is that only a few works exist in the literature that address 

all the issues relevant to practical situations, like the effects of computational time delays, 

presence of disturbances and parametric uncertainties, and the use of state estimators. 

This is especially true in the case of Sliding Mode Control. This paper presents a general 

method for the design of a key parameter in Observer-Based Discrete Sliding Mode 

Control: the sliding hyperplane. Two ways of selecting hyperplane coefficients are 

developed and tested by simulation. 
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Chapter 1 

Introduction 

Many powerful controller design methodologies that reduce design complexity are 

available for continuous time systems, but the same is not true for digital control of 

dynamic systems, especially when significant modeling errors and unknown distur

bances exist. They often involve a significant amount of guesswork and trial-and-error 

procedures. Shding Mode Control is a technique originally conceived for continuous 

systems that is remarkably good in rejecting certain disturbances and parameter vari

ations. Direct digital implementation of the technique suffers from severe limitations, 

so several design schemes have been developed that specifically address the issues rel

evant to digital control. Among those techniques, only a few have the characteristics 

that allow them to have practical importance, like the observer based discrete sliding 

mode control (OBDSMC). This technique also involves a great deal of trial-and-error 

procedures when modeling errors exist, due to the sensitivity to the selection of co

efficients in the definition of sliding surface. The only design guideline available for 

choosing the sliding coefficients is a stability criterion which has the twofold disad-
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vantage of being just a sufficient condition and involving a complex matrix structure 

when a boundary layer and observer are used. 

1.1 Objective of the Research 

The research effort started as an attempt to develop a general procedure for assign

ing arbitrary eigenvalues to the sliding equivalent matrix that appears in OBDSMC 

systems when motion occurs inside the boundary layer. Investigation shows that 

the equivalent matrix and system dynamics can be decomposed into two subsystems, 

having one of them the same structure as a continuous sliding system. The influence 

of the sliding gain and boundary layer thickness in the system's motion inside the 

boundary layer is linked to an eigenvalue of the equivalent matrix. The attempt is 

succesful in solving the eigenvalue assignment problem for arbitrary controllaLle sys

tems. Furthermore, the reduction of the problem to a continuous time case, for which 

several results already exist, allows to develop and test an LQ-optimal criterion for 

discrete sliding surface design. 

1.2 Major Contributions of the Research 

The eigenvalue assignment problem is solved for arbitrary controllable discrete sys

tems and a LQ-optimaJ design method is proposed and tested, giving superior per

formance when compared to manual selection of eigenvalues. The theoretical results 

also leave the doors open to further refinements of the technique, namely LQR de-
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sign (which is already available for the continuous-time case), and LQG-LTR design, 

which is at least conceptually feasible due to the linear nature of the system dynamics 

inside the boundary layer. 

1.3 Limitations 

The version of OBDSMC upon which this work is based relies on an assumption which 

may not be rigurously true in a mathematical sense, but has practical relevance. The 

present work relies on the same assumption just as the OBDSMC does. Specifically, 

the assumption states that, since observer dynamics are independent of tracking error 

dynamics, observer error must decay to zero after a "short" transient and therefore 

does not affect tracking error dynamics (further discussion about this assumption is 

available in Section 3.1). 

3 



Chapter 2 

Overview of Variable-Structure, 

and Sliding Mode Control 

2.1 Variable Structure Control Systems 

One of the main achievements in the research of uncertain systems has been the for

mal development of the Variable Structure Control (VSC) approach. As evidenced 

by their name, VSC systems constitute a class of nonlinear systems in which the 

control law, or control structure, is qualitatively changed during the control process 

to attain improved overall characteristics in the controlled system. As we shall see, in 

the Sliding Mode Control case the major improvement corresponds to insensitivity to 

parameter variat ions and external disturbances. Historically, VSC systems are char

acterized by a control structure which is switched as the system state crosses specified 

discontinuity surfaces in the state-space, and the sliding mode describes the particu

lar case when, following a preliminary motion onto the switching surfaces, the system 
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state is constrained to lie upon the surfaees [1 J. A familiar example that falls into the 

category of VSC is On-Off temperature control using relays. The discontinuity sur

face is defined by t he desired temperature, and different control actions are produced 

each time the controlled temperature crosses the discontinuity surface. Figure 2.1 

illustrates the concept. As pointed out in [1], the major practical disadvantage, and 

at the same time, the greatest limiting factor to the apphcability of this approach is 

the need for a discontinuous control structure. To attain the performance prescribed 

by theory, the existence of physical elements capable of realizing "continuuus switch

ing action", or instantaneous switching, is required. Since no such elements can be 

ever built, theory has been developed for VSC systems that either rely on continuolls 

approximations to discontinuous elements, for example in Burton and Zinober [2], or 

that specifically address the presence of boundary layers and dead zones (Slotine [3]). 

In the next section, we shall focus our attention into a class of VSC systems known 

as Sliding Mode Control. 

2.2 Sliding Mode Control in Continuous Time 

A large amount of work related to Continuous-Time Sliding Mode Control (CTSMC) 

can be found in the literature. The essentials of the technique can be found in 810-

tine [4], ltkis [5J, Utkin [61 and many others. The origin of the theory is linked to 

Russian literature. The simplest way to introduce CTSMC is to view it as the joint 

action of two control inputs, one corresponding to the familiar concept of feedback 

linearization and the other corresponding to a switching action. The first control 

5 
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input replaces system dynamics by desired, easy-to-control dynamics, as in feedback 

linearization, and the switching a-ction guarantees robustness against unmodeled dy

namics, external disturbances and parametric uncertainties, in the same way as an 

On-Off temperature control is able to maintain the temperature within close lim

its, regardless of external thermal influences 1. As stated in the previous section, 

the major drawback that prevents CTSMC from being a universal solution to con

trol problems is the need for a true instantaneous switching device. The inability 

of real components to switch instantaneously causes a phenomenon known as chat

tering, which consists of high frequency, fin ite amplitude oscillations of the device 

between equilibrium positions. This phenomenon not only seriously limits expected 

performance but has a destructive physical effect on the switching component and 

other physical system elements. To introduce the idea of CTSMC let us consider the 

single-input, single-output second-order nonlinear dynamic system: 

fj + f(y, y) = u + d 

where u is the control input and d represents an input disturbance, while f(y, y) is 

an arbitary nonlinear function of the two states. Define the "sliding surface" s as a 

linear combination of the states such that .5 = a defines the desired system dynamic 

behaviour: 

.) = Y +)..y 

In this case it is clear that s = a yields an asymptotically stable solution for y as long 

as ).. is chosen to be positive. Moreover, the rate of decay can be freely chosen. If we 

1 As long as there is enough power to compensate for them 
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can guarantee that arbi trary initial conditions in the state space result in trajectories 

that approach the sliding surface, and that such attractiveness is maintained even 

when disturbances and modeling errors exist, the sliding surface becomes an invariant 

subspace of the phase plane, thus the system exhibits the desired behavior. Conditions 

for the existence of a sliding mode for a more general case can be found in the 

literature, (e.g. Itkis [5]). In our example, we can choose the control input u so that 

8 2 becomes a Lyapunov funct ion, which can be interpreted as a square measure of 

the distance of the state to the sliding surface. If 8 2 is a Lyapunov function, then its 

t ime derivative needs to be negative, yielding the condition2 : 

s.c, < 0 (2.1) 

A more explicit way to approach the design of the control u is to specify the dynamics 

of s when s 1= 0, for example, we can choose u such that: 

SS = -1] ls l 

or: 

.§ = -1]sgn(s) (2 .2) 

where 1] is an arbitrary positive number. In this case it can be easily shown [4] 

that arbitrary initial conditions will result in a trajectory that reaches s = 0 in 

finite time and that the sliding surface is indeed an invariant subspace, thUl:> the 

system motion approaches the origin according to prescribed dynamics. Note that 

the presence of the signum function in Eq. 2.2 indicates that the control u will contain 

2 Actually, condition 2. 1 is a general condition for linear sliding surfaces. 
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Figure 2.2: Sliding motion in the state space 

a discontinuous element. A formal description of the motion in sliding regime when 

such a discontinuous control law is used was developed by Filippov [7]. F ilippov 

obtains a general construction method for the so-called "equivalent control", that is, 

t he control input when in sliding mode, as a linear combination of the control inputs 

at both sides of the sliding surface, namely s > 0 and s < O. Continuing with our 

example, and assuming that the disturbance is bounded, that is, 

Idl < J 

fo r some positive number 6, and also assumming that there is perfect knowledge about 

the nonlinear function f(y, y), it is easy to verify that the control law 

U = -Ai; + f(y, iJ) -17 sgn (S) 
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Figure 2.3: Chattering as a result of imperfect switching 

where 77 2: 8 guarantees that sf; < 0, which is the sliding condition. It becomes ev-

idcnt now that there is a requirement for a switching element in th.e control signal, 

an element capable of physically realizing the signum function. When using a relay 

as an approximation to this, the problem of chattering becomes clear. During the 

time interval it takes for the relay to switch from one position to another, the distur-

bance will drive the state outside the sLiding surface, but since the surface is always 

attractive, the trajectory will return to it. This phenomenon is known as chattering 

and its ocurrence is not limited to physical realization with relays, but also in digital 

control systems, in which the computational delay is responsible for its ocurrcncc. 

Many approaches exist to overcome the chattering eHect. In one of these approaches, 
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the discontinuous signum function is replaced by the saturat ion function, which is 

continuous. The effect produced is to allow tlhe phase trajectory to oscillate within 

a neighborhood of the sliding surface known as "boundary layer" witho.ut switching 

action. This method assigns a Io.W pass filter structure to. the local dynamics of the 

variable s, thus eliminating chattering. Conditions for boundary layer attractiveness 

are given in [8]. In our example, replacing the control signal with 

{J, = -Ai; + f(y, y) -1"Jsat(~) 

where 4J. is the boundary layer thickness at each side of the sliding surface, and cho.os

ing T} 2 J as befo.re3 the boundary layer attractiveness is guarallteed and chattering is 

eliminated, under the assumption of perfect model knowledge. Among other formal 

developments and advances we can mention the works of Hashimoto and Konno [9], 

Zinober [10], who investigated methods for designing the sliding surf3ice; Slotine and 

Coetsee [1l] developed an a.daptive versio.n of CTSMC in which uncertain parameters 

are estimated on-line; Kachroo and Tomizuka [12] analyzed several continuous control 

approximations inside the boundary layer; Sira-Ramirez [13] investigated CTSMC in 

a rigorous differential algebra framework. Numerous applications exist for this tech

nique, including automobile fuel-injection control [14]; magnetic levitation [15]; torque 

control of DC electrical machinery [16], control of DC-to-DC power converters [17] 

and many others. 

3This condition holds for a constant boundary layer thickness; an appropriate condition can be 

stated for time-varying c/>. 
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2.3 Overview of Discrete-Time Sliding Mode Con

trol 

Control systems that were conceptually developed for the continuous time may not 

perform wen - or may even become unstable - when direct digital implementation 

is attempted. This widely accepted fact is particularly true for sliding systems. 

Thus, many researchers have either addressed the limitations when direct imple

mentation is done or have proposed designs which take the sampling process into 

account. Milosavljevic [18] was among the first researchers to formally state that 

the sampling process limits the existence of a true sliding mode; Drakunov and 

Utkin [19], Furuta [20], and others investigated the effects of sampling in stiding 

systems; Sarpturk [21], Spurgeon [22] and Kotta [23] specifically addressed the sta

bility issue. Several designs have heen proposed (for example, Misawa [24]) for non

linear plants when unmatched uncertainties are allowed; Su and co-workers [25] de

veloped a similar design where uncertainties have to be matched, Pieper and Go

heen [26J attempted to obtain a controller based on input-output models; Paden and 

Tomizuka [27] designed a discrete time sliding mode controller for position control; 

Misawa [28] proposed an observer-based discrete sliding controller for linear plants 

which uses a Luenberger observer and that takes into account the computational time 

delay, paper upon which this thesis is based; and Sira-Ramirez and co-workers [30] 

obtained a design for linear systems t hat uses a sliding structure in the observer. 

A typical characteristic of discrete sliding mode control systems is that the system 

trajectories are no longer constrained to lie upon the sliding surface, but are al-
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Figure 2.5: Quasi-sliding motion in the state-space 

lowed to remain in a well defined neighborhood of the surface, called the boundary 

layer. Research efforts were aimed at obtaining a condition for the existence of a 

quasi sliding mode, in which the boundary layer is made attractive. A discrete-time 

counterpart [21] of the continuous sliding condition 2.1 was proposed as: 

(2.3) 

Spurgeon [22] later proved that condition 2.3 was sufficient but not necessary. A large 

amount of applications of VSC have been reported in the literature for the control 

of robots. Also, developments exist for electrohydraulic and pneumatic actuators, 

( [31], [32], [33], [271). Some applications to electromechanical positioning devices 

have been reported, being a representative work the application of VSC to head 
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positioning in disk drives. [37]. Besides the difficulties associated with the sampling 

process, practical implementations of sliding mode control systems involves the use of 

state estimators and the issue of disturbances and parameter uncertainties becomes 

exremely important. Only a few works exist in the literature that address all of the 

issues mentioned above, so the designer must expect a large amount of trial-and-error 

and simulation procedures. It is the purpose of this work to provide a technique 

to design discrete sliding mode control systems so that the amount of guesswork is 

reduced, while attainable performance is increased. 
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Chapter 3 

Discrete Sliding Surface Design 

3.1 A version of Observer-Based Discrete Sliding 

Mode Control 

In Chapter 2, an overview of the research work in discrete sliding mode systems was 

given. Practical control engineering applications generally demand the use of a state 

estimator when the control strategy involves state measurements. Sliding Mode Con-

trol, continuous or discrete, is not input-output based, but relies on the availability 

of state measurements. Research activ ity on the combination of sliding systems and 

observers is not easily found in the Literature, especially in the discrete case. Work on 

observer-based controllers for the continuous case was reported in [30] and, although 

not the paper's main topic, some discussion can he found in [35]. Misawa proposed a 

version of observer-based discrete sliding mode control (OBDSMC) reported in [29], 

upon which this work is mostly based. Following is a brief overview of the results re-

16 
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ported in the mentioned article. Let a discrete-time, linear S1S0 system of dimension 

n be described by the state equations: 

x(k + 1) Ax(k) + Bu(k) 

y(k) Cx(k) (3. 1) 

Matrices A, Band C are constant and assumed to be perfectly known, and such 

that (A, B) is controllable and (A., C) observable. A Luenberger observer is used to 

estimate the states, and is given as: 

x(k) = (A - HC)i(k - 1) + Bu(k - 1) + Hy(k - 1) (3.2) 

where i(k) is the state estimate and H is the observer gain. Define the tracking error 

x(k) and the sliding surface s(k) as: 

i:(k) xd(k) - i(k) 

s(k) Gi:(k) 

where xdk) is the desired state trajectory and G is a row vector that defines the 

sliding hyperplane. The control law is given by: 

u(k) 

K 

¢ > 

6..xd(k) = 

sat -( S(k)) 
¢ 

(GB) - l[G((J - A)i(k) + 6Xd) + K sat C'i'~)) 1 

"I + 26.t€ 

"I + 6.tE 

xd(k + 1) - xd(k) 

1 ) if s > c/J 

s , if I s I ::; c/J ¢ 

-1 , if s < -¢ 
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where K is the sliding gain, ¢ is the boundary layer thickness, 'Y is a positive number 

that bounds disturbances, b.t is the sampling period, and E is an arbitrary positive 

number. Although a rigorous proof of convergence (when an observer is used) is 

not available, the following arguments and practical experience with the controller 

support its validity. From the above equations, it is straightforward to deduce the 

following identities: 

z(k + 1) 

x(k + I) 

s(k + 1) 

(A - HC)z(k) 

[A - BG(GB)-l(A - I)]i:(k) 

-B(GB)-l[K sat (s~)) + G(I - A)z(k) ] 

s(k) - Ksat (s~)) 

(3.7) 

(3.8) 

(3.9) 

Eq.( 3.7) shows that estimation error dynamics, Z = x-x, decay as in a linear system, 

that is, independently of the choice of cont roL This is obtained, however, assuming 

a perfect model and no disturbances. A key argument in t he article is that z(k) is 

almost Z€l"O after a "short" transient. vVith that assumption, it follows from equations 

( 3.9) and ( 3.8) that s goes to zero asymptotically and that so does i(k), provided 

the following condition due to Furuta i20] is met : 

Condition 1. The sliding surface G should be deter-mined such that the eigenvalues 

of 

BO( ) A - -A-J 
GB 

lie inside the unit circle. 

It is evident that the above condition is just a stability requirement, and no 

18 



guidelines are given as to how to choose vector G. The main objective of the work 

presented in the following sections is to solve the eigenvalue assignment problem and 

address performance issues. 

3.2 A Note on Model Following Control 

The following arguments are valid for both continuous-time and discrete-time systems; 

we choose to adopt the discrete notation. Let a linear time-invariant,. SISO discrete 

plant model be given by: 

x(k + 1) = Ax(k) + Bu(k) 

and consider the model following problem that consists of finding the control u such 

that the plant state x tracks the desired state given by: 

where Ud is a convenient cont rol input. In the OBDSMC framework, the second 

equation represents the xd-generator [24). Subtracting the first equation from the 

second one gives the tracking error dynamics: 

xd(k + 1) - x(k + 1) = x(k + 1) = Ax(k) + B(Ud(k) - 1l(k)) = Ax(k) + Bfl(k) 

It is clear that the tracking error dynamics are caracterized by matrices A and B, so 

certain tracking control problems can be approached as regulation problems in error 

state space with the same matrices. While this observation is widely known, it is not 

obvious that the same situation is found when a linear observer is present and the 
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tI' ., 
objective is to have the state estimate track the desired state. As will be seen in the 

following section, OBDSMC generates linear tracking error dynamics that stiH verify 

this property. 

3.3 Another Stability Condition 

In this section, a slightly different condition for stability will be presented , that will 

be shown to include Condition 1. For this purpose, from Eq.( 3.8), we obtain tracking 

error dynamics inside the boundary layer by taking 

( S(k)) .s(k) 1 
sat T I = ~ = JyGi; 

Rearranging, and noting that G B is a scalar , we can write : 

_ BG K BG 
x(k + 1) = [A - GE[A - (1- "¢)IJ]x(k) + (I - GB)(xd(k + 1) - AXd(k)) - HCz(k) 

(3 .1 0) 

From the previous section, we assume that the desired state trajectory is generated 

so that: 

From the above equation, it is easy to check that the second summand in the right-

hand side of Eq.( 3,.10) is zero. Also, continuing with the assumption that the esti-

mation error z(k) has vanished, we can write: 

i(k + 1) = (A - ~~ (A - (1 - ~ )I]]x(k) 

T his equation represents linear tracking error dynamics, and it is evident that it has 

the genera] form of state feedback, closed-loop error dynamics A - BF. Therefore, 
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strategies for selecting F such as LQ methods will be based on matrices A and B. 

Condition 2. The sliding surface G should be determined such that the eigenvalues 

of 

BG K 
A - - [A - (1 - -) J) 

GB 1> 

lie inside the unit circle. 

This statement is equivalent to Condition 1, as wiH be shown in the fonowing 

section. 

3.4 Theoretical Results and Proofs 

Theorem 1. Let A be an n-by-n matrix and B an n-dimensional column vector such 

that the pair (A, B) is controllable. Let G be an n-dimensional row vector and 'Y a 

scalar. Define: 

(I - BG)A 
GB 
BG BG 

A - GB (A - ,I) = As + 'Y GB 

(3.11) 

(3.12) 

Assume that Aeq is nonsingular and has at least n - 1 distinct eigenvalues. Then: 

1. As has at least one zero eigenvalue 

2. The eigenvalues of Aeq are 'Y and the eigenvalues of A.~ ,. excluding the zem 

eigenvalue mentioned in 1. 

The usefulness of the result lies in the fact that the As matrix is the equivalent 

matrix during actual sliding for continuous-time systems, for which the placement 
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problem has already been solved. Also, formulations for robust pole placement exist 

when this structure is present, so techniques such as LQ optimal placement can be 

readily implemented in the discrete time case. 

Theorem 2. Condition 1 implies Condition 2. 

3.4.1 Proof of Theorem 1 

Definition. A polynomial m().) is caned the minimal polynomial of the square ma-

trix A if it is the polynomial of lea.'st degree such that m(A) = 0 

Lemma 1. Let A be an n-by-n matrix with at least n - 1 distinct eigenvalue,'; and let 

h()') be the characteristic polynomial of A. If g().) is a polynomial of degree less than 

n such that g(A) = 0, then g().) is a factor of h()"). 

Lemma 2. If a squar'e matrix X has rank one, then 

dct(I - X) = 1 - tTacc(X) 

This is a standard result. See, for instance, Kailath, Linear' Systems, p. 658 

Lemma 3. If A is invertible and AB = a then B = 0,. 

Proof of 1. Since G and B are row and column vectors respectively, it is clear that 

~~ has both rank and trace one. Then, by Lemma 2 det(I - g~) = 1 - 1 = O. Then 

det(As} = det(I - g~) det(A) = O. It follows that As is singular and has at least one 

zero eigenvalue. (The determinant is the product of eigenvalues) o 
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Proo! of 2. First, let us show that i is an eigenvalue of Aeq: 

BG BG BG 
det(Aeq -iI) = det((I - GB)A + 'Y GB -iI) = det(I - GB) det(A -iI) = 0 

because t he fist factor in the last expression is zel"O, as seen in the proof of 1. 

Now let g(A) and h(A) be the characteristic polynomials of As and A eq ) respectively. 

By part 1, g(A) = '\9('\), where g('\) has degree n - 1. By substitution it is easy to 

check that g(Aeq) = o. In fact, 

g('\) = det(As - AI) 

is a polynomial in ,\. Now substitute Aeq and use definitions 3.11 and 3.12 : 

so we have 

that is, Aeq satisfies the characteristic polynomial of As and, by Lemma 3, .li(AeQ ) = 0, 

since Aeq is a-''lsumed to be nonsingular. Now, using Lemma 1, we have a polynomial 

9 of degree less than n such that 9(Aeq) = 0, with Aeq having at least n - 1 distinct 

eigenvalues, by assumption. It follows that 9('\) = ±g(,\) is a factor of h('\). This 

proves that the n -1 possibly nonzero roots of g(A) (the characteristic polynomial of 

As) are also eigenvalues of Aeq. o 

Proof of Lemma 1. It is well known from Linear Algebra that if an n-by-n matrix 

has at least n - 1 distinct eigenvalues then the degree of the minimal polynomial is 

at least n - 1, i.e, deg(m(A)) ;:::: n - 1. Now use the division algorithm: 

h(A) = 9(A)q(A) + r(A) 
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with either r = 0 or deg(r) < deg(g) ,where q is the quotient and r the remainder of 

the division. In our case, deg(g) S n - 1 by hypothesis, so the remainder satisfies 

T = 0 or deg (r) < n - 1. 

By the Cayley-Hamilton theorem h(A.) = 0, so 

h(A) = 0 = g(A)q(A) + r(.A) 

this means r(A) = 0, since g(A) = 0 by hypoth esis. We would have 7·(A) = 0 

with deg(r) < n - I, which is less than the degree of the minimal polynomial, i.p, 

deg(m) 2 n - 1, so the only possibility is that r = 0, giving an exact division. It 

follows that 9 is a factor of h. o 

Proof of Theorem 2. It is enough to show that the eigenvalues of the matrix defined 

in Condition 1 are 1 and the n - 1 eigenvalues of As which are not always zero. For 

this, just apply Theorem 1 using I = 1. o 

Justification of Assumptions 

Matrix Aeq has the form A - BF, and being (A ,B) a controllable pair , F can be al-

ways selected to give a nonsingular A eq , which is desirable for control purposes. The 

assumption that Aeq has at least n - 1 distinct eigenvalues is explained as follows: 

As a consequence of the theorem, placing the eigenvalues of Aeq is done by directly 

specifying I (which equals 1 - ~) and by placing the n - 1 assignable eigenvalues of 

As by standard methods. As it is well known, eigenvalues cannot be placed with mul-
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tiplicity greater than one. 1 In the worst-case scenario, the independent I eigenvalue 

could be selected to be equal to one of the n - 1 eigenvalues of As, which would leave 

Aeq with n - 1 distinct eigenvalues. Otherwise, it would have n distinct eigenvalues. 

This assumption is crucial because it allows to conclude that an annihilating polyno-

mial of degree less than n is a factor of the characteristic polynomial. Consider the 

foHowing counter-example: 

I 2 1 

2 1 
A= 

2 

1 

Here h(A) = (A-2)3(A-l ) is the characteristic polynomial of degree 4 and g(A) = (A-

2) (A -l)(A -123456789) has degree 3<4 and verifies g(A) = 0 (because (A - 2)(A - 1) 

is the minimal polynomial), but we see that 9 is not a factor of h(A). The missing 

condition is that A should have at least 3 distinct eigenvalues. 

3.5 Applications of Theorem 1 

An inmediate consequence of Theorem 1 is that the eigenvalue assignment problem 

should be done on the simpler As matrix, which is the one that characterizes tracking 

error dynamics when 8 = 0, both for continuous and discrete time systems. This will 

place n - 1 eigenvalues, and the remaining pole is selected using sliding gain J{ and 

1 In the general MIMO case, eigenvalues cannot be placed with multiplicity greater than the 

number of inputs 
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boundary layer thickness ¢ as (1 - ~). For the sake of completeness, we verify that 

As is the equivalent mat rix during sliding, following a development analogous to the 

one found in [10] . In fact, adopting the discrete notation, consider the system ( 3.1). 

If proper control is used, s(k) = s(k + 1) = 0 for some instant. That means 

0= Gx(k + 1) = GAx(k) + GBu(k) , or: 

GBu(k) = -GAx(k) 

which can be rearranged to define the equivalent contml 

Substituting this expression into the system equations produces A.~: 

BG 
x(k + 1) = (I - CB)Ax(k) , if s(k) = s(k + 1) = 0 

3.5.1 Eigenvalue Assignment 

The reduction of the assignment problem to the continuous case allows us to follow 

existing procedures developed by Zinober, [10). Given the discrete system matrices 

A and B with (A , B ) controllable, let T be an invertible matrix sllch that 

o 

o 

1 
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In the reference (10] an orthogonal matrix T is used, but further developments with 

this choice make it necessary to perform a QR decomposition, which is numerically 

inconvenient. In the multi-input case, the matrix T used is related to the Kalman 

canonical form. In our case, it is sufficient to use the controller canonical form, which 

is a particular case of the Kalman form . Apply the state transformation x = Tw so 

t.hat the similar system becomes: 

w(k + 1) = T- 1 ATw(k) + y-lBu(k) 

Now partition the new state w(k) and the matrices as: 

; wI(k + 1) 1 = [_A_ll --+--AI_2 

w2(k + 1) A21 A22 
[

WI (k) 1 [. 0 1 + - u(k) 

w2(k) 1 

The sliding surface in the new coordinates become s (k) GTw(k) which we also 

partition as: 

[ I 1 [ WI (k) 1 
s(k) = CIT G2,T' 

W2(k) 

If actual sliding happens, the dynamics of the (n - 1) dimensional subsystem associ-

ated with state WI become: 

{ 
wl(k + 1) = ~IIWl(k) + A12'W,(k) 

w2(k) = -G2T G1TWI(k) 

We see that state WI is unaffected by the control u and that the subsystem is indeed 

a constant state feedback system in which W2 plays the role of controL We have the 

form w2(k) = -FWl(k), where F = G:;,fG1T. In our single input case Gn , is just a 

scalar, and we can assume, wit hout loss of generality, that Gn , = I , so that 

GT = [ F 11 1 ' so: 

27 



and F is selected so that All - A12F has desired eigenvalues. This is accomplished by 

any standard method such as Ackermann's formula .. The Matlab function "place-g.m" 

performs all the necessary operations and is included at the appendix. 

Example on eigenvalue assignment 

Let: 

123 

A 456 

9 8 7 

1 

B 2 

3 

DP [ 0 . .1 0.8] (desired poles) 

K 0.25 

cp 1 

The following Matlab commands illustrate the usage: 

» G=place_g(A,B,DP) 

G = 
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3.4200 0.9950 -1. 4700 

ans = 

0.1000 

0.8000 

0.7500 

The last pole is the one assigned by selection of ]( and ¢, while the fi.rst two are 

assigned by G. 

3.5.2 LQ-Optimal Sliding Surface 

The problem can be stated as: 

Find the sliding coefficients G that minimize the performance index 

00 

J = Lx'Qi 
ks 

where Q is positive-definite and symmetric and ks is the sample index at which sliding 

begins. As justified before, the problem can be treated as the regulation case, with 

matrices A and B. The solution of the problem is analogous to [10], pag. 10-11 up 

to the formulation of the equivalent cost function. In fact, using the same partition 
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as in the placement case in the previous section, and partittoning T'QT accordingly, 

define: 

where w is the tracking error T- 1 (Xci - i). Note that being Q symmetric implies 

Q~2 = Q22 and Q~l = Q12· Also, since we deal with the 8180 case, Q22 is a scalar. 

Using this definit ions it is easy to check that the problem can be restated as: 

Minimize 
00 

J = L W~QW1 + V'Q22 V 

ks 

subject to: 

This corresponds to a standard LQR problem formulation in discrete time. The 

solution is given by the control law: 

v(k) = -Kw.(k), where: 

and P is the unique positive definite solution to the algebraic discrete Riccati equation: 

CAD packages such as Matlab's Control Toolbox are ahle to compute K. Using the 

definition of v(k) we find: 
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Here we meet the second-to-last step in the ordinary placement problem, i.e, we have 

determined F. Now we need to t ranslate back to G: 

The Matlab function "lqsmc.m" performs all necessary operations and is included at 

the appendix. 

Example on LQ-Optimal Design 

Keeping the same parameters as in the previous example, and choosing Q as: 

1 a o 

Q = 0 10 a 

a 0 100 

gives the following: 

» G=lqsmc(A,B,Q) 

G = 

2.3035 0.6859 -0.8917 

ans 
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-0.3846 

0.2081 

0.7500 

In the following chapter, a numerical example relevant to controller design is offered. 

3.6 Remarks 

It is interesting to note that the form adopted by matrix As is totally independent from 

the choice of control. This fact follows from the derivations in Sec. 3.5. Therefore, it 

is possible to design the sliding surface even before a control law has been found that 

guarantees convergence into the boundary layer, and this makes the findings in this 

work to be valid for any control strategy that guarantees the convergence of s(k) and 

z(k). The Luenberger observer is a choice that ensures the decay of z(k) regardless 

of the choice of control if no disturbances are present, but other controller! observer 

combinations might work as well. OBDSMC as presented in this paper, creates a 

boundary layer, i.e, a region in tracking error space where the system behaves linearly. 

Other control strategies may eliminate this Enearity region, thus limiting the design 

to the assignment of the n - 1 eigenvalues that arise when s = 0 and the selection of 

appropriate parameters for the particular control being used. 
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Chapter 4 

Application Example: Control of a 

Flexible Beam 

4.1 Mathematical Model of "True" Plant 

The subject of this example is taken from [34], pag. 597. A continuous state-space 

model for a slender beam with a poorly damped vibrational mode at 6 Hz is given 

as: 

x = Atru.ex + B true U 
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with 

0 1 0 0 

0 0 1 _ (~)2 2(1'(~ - (~)2) 
A true = 

Wl"': Wrz W'rz 

0 0 0 wrp 

0 0 -wrp 2(rw rp 

0 

B true = a(~)2 
Wrz 

awrp 

Ctrue = [ 1 0 0 0' 1 
Wrp = 21f frp and Wrz = 27f frz are the pole and zero resonant frequencies expressed in 

rad/sec, and (r is the damping ratio, assumed to be equal for both resonance poles 

and zeros. Values for these parameters are taken as: 

frp 5.8 Hr,. 

frz 6.0 Hz. 

(r 0.002 

a 1.2 

The discrete-time, zero-order hold equivalent model with a sampling period of Ts = 

0.02 sec. is obtained as: 

x(k + 1) <Px(k) + ru(k) 

y(k) Cx(k) 
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with 

1.0 0.02 0.0 0.0 

0 1.0 0.0012 0.00005 
1>= 

0 0 0.7457 0.6669 

0 0 -0.667 0.7484 

0.0002 

0.0225 
f= 

0.3052 

0.8003 

C = [ 1 0 0 o 1 

Fig. ( 4.1) shows the continuous-time magnitude plot of the true plant. In the ref-

erence, a nonlinear technique called "extended proximate time-optimal servomecha-

nism" (XPTOS) is used. The purpose of the following sections is to show how can 

OBDSMC be designed to match the performance obtained using XPTOS. 

4,.2 OBDSMC design using full plant model 

As in the reference, the resonance characteristics of t he plant are included in the 

design model, both for the observer and the sliding mode controller itself. 

4.2.1 Observer design 

The observer gain, H, was taken as the Kalman filter gain, yielding eigenvalues of 

<P - He at 0.744 ± 0.667i and 0.985 ± O.015i 
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Figure 4.1: Frequency response of slender beam with flexible mode at 6 Hz. 
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4.2.2 Desired state trajectories (Xd-generator) 

As discussed in previous sect ions, t racking design is viewed as a model following 

problem. In this case the desired state trajectories are obtained by ~imulating the 

fourth order discrete plant under LQR control, so that the settling time corresponding 

to the desired states is about 1 sec. A unit step input is applied to the Xd-generator. 

4.2.3 Sliding surface design using desired eigenvalues 

Three eigenvalues for ~eq are arbitrarily chosen from inside the unit circle as 0.5,0.6 

and 0.7. Also, K = 0.3, 1; = 1, placing the remaining <Peq eigenvalue at 0.7. The 

lqsmc routine was used to calculate the corresponding sliding coefficients G. 

4.2.4 Sliding surface design using LQ approach 

One simulation is done using Q = 14x4 , yielding ~eq eigenvalues at 0.448,0.983 ± 

0.0098, and 0.75 (K and ¢ are 0.25 and 1). Another simulation is done using Q = 

diag(7000 , 250,1,1). (See results below for details) 

4.2.5 Results 

Two sets of simulations are performed: an "exact" implementation where compu-

tational time delay is not included, and another in which delays are included that 

represent a more realistic situation. Fig. ( 4.2) schematizes the implementation in 

block form. 
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a. No computational time delay 

Figure 4.3 shows the results when desired eigenvalues are specified. As seen, response 

time matches the XPT OS, and design is somewhat simpler, because no numerical 

optimization procedure is used and no trial-and-error was used in obtaining control 

parameters. Also shown in the figure are the 4 desired state trajectories plotted 

along with the actual states, the control input, and the output estimate. If the LQ 

approach ]s used using Q = 14x4 , results are almost identical. This will not be true 

when modeling errors -such as delays- are present . 

b. Including delays of one sample period 

Figure 4.4 shows the results when desired eigenvalues are specified. Even when ob-

server poles and <Peq are inside the unit circle, the system becomes unstable. The 

observer, however, is correctly estimating the plant states. The LQ approach pro-

duces a better selection of eigenvalues. Using Q = 14x4 stabilizes the plant, and 

Fig.( 4.5) shows the results when Q = diag(7000, 250, 1, 1), maintaining K and cjJ as 

before. This choice not only stabili~es the plant, but significantly improves tracking 

characteristics. 
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Figure 4.2: Simulink simulation diagram including delays 
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Figure 4.3: OBDSMC response with no delays, manual eigenvalue selection. 
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Figure 4.4: OBDSMC response with delays, manual eigenvalue selection. 
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Figure 4.5: OBDSMC response with delays, LQ approach. 

4.3 OBDSMC Design Using a Double Integrator 

Model 

In the reference, the full 4th order model is used in the observer for control purposes. 

In this section, design is attempted using a simple double integrator plant model. 

The discrete-time plant model is red Heed to : 

~2 = lO:2 :] 

l 0.02 ] r 2 = 

0.0002 

C2 = [0 1.12133] 
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4.3.1 Observer Design 

The observer gain, H, was taken as the Kalman filter gain, yielding eigenvalues of 

A - He at 0.506 ± O.739i 

4.3.2 Desired State Trajectories (Xd-generator) 

In this case the desired state trajectories are obtained by simulating the second order 

discrete plant under LQR control, so that the settling time corresponding to the 

desired states is about 1 sec. A unit step input is applied to the Xd-generator. 

4.3.3 Sliding Surface Design 

The LQ-optimal approach is used, with matrix Q selected as Q = diag(5, 100). This 

produces an eigenvalue of Aeq at 0.9144. Also K = 0.25 and ¢J = 1, placing the 

remaining Aeq eigenvalue at 0.75. 

The same set of parameters was used for both exact and delayed simulations,. Fig-

ure 4.6 shows the results when no delays are present. Tracking is accurate, and resid-

ual vibrations due to resonance are effectively attenuated, though not completely, 

making the approach useful in not very demanding applications, where controller size 

is critica1. Figure 4.7 shows the results when delays of one sample period are included 

at observer input. Tracking accuracy is maintained only at low frequencies, but the 

level of vibration supression is not altered. 
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Figure 4.6: Double integrator-based OBDSMC response with no delays. 
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Figure 4.7: Double integrator-based OBDSMC response with delays. 
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'Chapter 5 

Conclusions and Future Research 

The technique for assigning eigenvalues of the equivalent matrix in OBDSMC systems 

presented in this work can be applied to any controllable system, given its state space 

description. Furthermore, the technique is applied in the development of two methods 
I 

for designing the sliding surface. The LQ-optimal design offers improved stability [0- I ' 
bustness against neglected dynamics such as computational time delays, as verified by 

simulation. The technique also considerably reduces the amount of trial-and-error ill 

the design process. When modeling errors exist , the stability conditions for OBDSMC 

systems are not limited to the location of observer and equivalent matrix eigenvalues 

inside the unit circle, as seen in a simulation. Future research effort in the design of 

OBDSMC systems should be directed towards finding more stringent conditions for 

stability when certain classes of modeling error exist. It is also known from experience, 

that observer design considerably affects the performance of the controlled system. 

Research on the subject could include extending the LQ optimal design into an LQR 

approach, and then into LQG-LTR. This is at least conceptually feasible, because 
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system dynamics inside the boundary layer are analogous to simple linear feedback. 

Results for LQR sliding surface design in continuous time are available in [36], where 

the R matrix is used to penalize equivalent control, which is what keeps the system 

sliding and behaving as a linear state feedback. The tractability of such LQR ap

proach is limited, because the cost function incl udes the G matrix, which precisely is 

what is being sought. Another approach for which continuous-time results exist is the 

frequency-shaped LQ method, which has the drawback of requiring extended states 

both for design and actual implementation,. but is effective in enhancing frequencies 

of interest. 
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Appendix Matlab Routines 

function [G] = place_g(A,B,DP) %DP: vector of desired pole locations of Aeq 

Cx=ctrb(A,B); %The first 7 steps compute the controllable form 

%and the transformation matrix T 

n=rank(Cx); %Get system size (controllabi l ity assumed) 

pol=real(pol y(eig(A»); 

Aw= [zeros(n-l,1),eye(n-l);fliplr(-pol(2:n+l»] ; 

Bw=[zeros(n-l,l);l]; 

Cw=ctrb(Aw,Bw); 

T=Cx*inv(Cw); 

All=Aw(l:n- l ,l:n-l); %Obtain partitioned matrices 

A12=Aw(1:n-l,n) ; 

F=acker(Al1,A12,DP) ; 

G= [F 1] *inv (T) ; %Map back to G 

%U~SMC.M 

function [G] = lqsmc(A,B,q); 

n=rank(ctrb(A,B»; %Get system size (controllability assumed) 

Cx=ctrb(A,B); 

pol=real(poly(eig(A»); 

Aw=[zeros(n-l,l) eye(n-l);fliplr(-pol(2:n+l»]; 
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Bw=[zeros(n-1,1) ;1]; 

Cw=ctrb(Aw,Bw); 

T=Cx*inv(Cw) ; 

Al1=Aw(1:n-l,l:n-1) ; 

A12=Aw(1:n-1,n); 

%Obtain partitioned matrices 

Qw=T'*Q*T; 

Ql1=Qw(1:n-1,1:n-1)~ 

Q12=Qw(i:n-1,n) ; 

Q21=Q12'; 

Q22=Qw(n,n) ; 

Qhat=Q11-Q12*inv(Q22)*Q21; 

Ahat=All-A12*inv(Q22)*Q21; 

gain=dlqr(Ahat,A12,Qhat,Q22); 

F=gain+inv(Q22)*Q21; 

G= [F 1] *inv (T) ; %Map back to G 
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