
A STUDY OF SYNCHRONIZATION MECHANISMS IN

UNIX, WINDOWS NT, AND MAC OS

By

RAMASAMY SATISHKUMAR

Bachelor of Engineering

University of Madras

Madras, India

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 1997

OKLAHOMA STATE UNIVERSITY

A STUDY OF SYNCHRONIZATION MECHANISMS IN

UNIX, WINDOWS NT, AND MAC OS

Thesis Approved:

' '1 /\,.." t.~"lo...-"~o"\, s ~·-- ~ Ovh'\ v~ ilf<:>' {-..;(L\
~besis Advi.sork

7
· _.• / 1 /~ /]?1 /, c~- /,!· .. /ib-J'cL "''···· · - ·

I /·!?·. ;/\ ' /' ,,, __ ,
I 'I ' ' "' ~.--,!} { f l tC t'--'C(~ ·~ (, /~ ;

I!

tJ~~r.~
an

II

~ . .-··-·"·-- .. "

l.

PREFACE

In the world of operating systems, the wheels of progress tum rather slowly.

Operating systems take years to develop. Communication between processes is an

important and difficult topic in operating systems. Studies of interactions and

communications among processes have resulted in new synchronization primitives.

Existing commercial and popular operating systems use different synchronization

mechanisms to achieve kernel based synchronization as well as to provide

synchronization facilities for applications. Each of these synchronization mechanisms has

its advantages and disadvantages. The objective of this thesis work was to conduct a

comparative study on how synchronization is achieved in UNIX, Windows NT, and

Apple Macintosh operating systems. A detailed study on how synchronization is achieved

in these operating systems was carried out. Based on this study the operating systems

were compared and the results were tabulated.

The comparative study indicates that among other things UNIX and Windows NT

are preemptive multitasking and symmetric multiprocessing operating systems; Apple

Macintosh is a cooperative multitasking and master-slave multiprocessing operating

system; Thread is the basic unit of scheduling in Windows NT and in recent versions of

UNIX such as Solaris 2.5; and in a multiprocessor environment, both UNIX and

Windows NT use Spin Locks for achieving synchronization.

iii

--1..

ACKNOWLEDGMENTS

I would like to express my appreciation to and thank my graduate advisor Dr.

Mansur H. Samadzadeh for his advice, guidance, dedication, encouragement, and

instruction throughout my thesis research work. I got inspiration and motivation due to

his constant guidance. Without his support and motivation it would not have been

possible to complete this work.

I offer my sincere thanks to Drs. B. E. Mayfield and J.P. Chandler for serving on

my graduate committee.

Finally, I wish to thank my parents. Without their support and encouragement, it

would not have been possible for me to complete my graduate studies.

l ~ - • iv . ~ - -~

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 1

II. LITERATURE REVIEW .. 4

2.1 Synchronization ... 4

2.2 Communication Between Processes .. 4

2.3 Synchronization Mechanisms .. 5
2.3.1 Software Support .. 5
2.3.2 Hardware Support .. 6
2.3.3 Operating System Support .. 7
2.3 .4 Language Support ... 8

m. UNIX ... 11

3.1 Basic Architecture ... 11

3.2 UNIX Processes .. 12

3.3 Kernel Level Synchronization ... 15
3.3.1 Blocking Operations ... 16
3.3.2 Interrupts .. 15

3.4 Multiprocessor Synchronization .. 18
3.4.1 Hardware Support .. 19
3.4.2 Software Support .. 19

3.4.2.1 Semaphores .. 20
3.4.2.2 Read-Write Locks ... 23
3.4.2.3 Condition Variables .. 26
3.4.2.4 Sleep Locks .. 29

IV. WINDOWS NT ... 31

4.1 Basic Architecture ... 31

v

l

Chapter Page

4.1.1 Protected Subsystem ... 32
4.1.2 NT Executive .. 34

4.2 Windows NT Processes and Threads .. 36

4.3 Windows NT Thread States .. 37

4.4 User Level Synchronization .. 39

4.5 Kernel Level Synchronization ... 42

4.6 Multiprocessor Synchronization .. 43

V. APPLEMACINTOSH .. 49

5.1 Basic Architecture ... 49

5.2 Cooperative Multitasking .. 53

5.3 Processes and Events ... 53

5.4 Thread Manager .. 55
5.4.1 Concurrency ... 55

5.6 Multiprocessing ... 58

VI. COMPARATIVE EVALUATION .. 61

6.1 Comparison ... 61

6.2 Observations .. 67

VII. SUMMARY AND FUTURE WORK ... 69

7.1 Summary ... 69

7.2 Future Work .. 70

vi

__l_
·.cc.=------ ___ _l

LL ... NOI.LVYrnOdNI)lm.'W3CIV11.1 :g XI<IN3ddV

s;L ·· J...~VSSO'lD :y XI<IN3ddV

vL ···sa::::>I<IN3ddV

IL ··sa:::>N~3d~

LIST OF FIGURES

Figure Page

1. Block Diagram of the UNIX System ... 12

2. Process States and State Transition ... 14

3. UNIX Locking Algorithm ... 17

4. Semaphore Convoy ... 22

5. Block Diagram of Windows NT Operating System .. 31

6. Windows NT Thread States .. 38

7. Two Processors Competing for Spin Lock .. 44

8. Dispatcher Object-State Changes .. 47

9. Apple Macintosh Operating System Layers .. 49

viii

----"""--- ---- ---="""-

LIST OFT ABLES

Table Page

I. Macros Used to Set the Interrupt Priority Level in SVR4 ... 17

II. Definitions of Signaled State for Synchronization Objects ... 40

ill. Comparison of UNIX, Windows NT, and Apple Macintosh Operating Systems
Based on Synchronization ... 62

ix

~~--~~~~~~~-=--=---============~

----"""'._

CHAPTER I

INTRODUCTION

An operating system is the set of programs that control a computer. Many books

on operating systems describe various operating system concepts [Deitel 92] [Krakowiak

90] [Stallings 95] [Tanenbaum 92] [Tanenbaum and Woodhull 97]. Operating system

software includes several levels: kernel-level services, library-level services, and

application-level services. Applications are user programs that are linked together with

libraries.

The details of what constitutes a process differ from one system to another. At the

highest level of abstraction, a process comprises the following [Dei tel 92]: a program

abstraction that defines the initial code and data, a private address space that is a set of

virtual memory addresses that the process can use, and system resources such as

semaphores, communication ports, and files, that the operating system allocates to the

process as the program executes.

An operating system consists of the following components [Tanenbaum 92]:

i. basic structure;

ii. synchronization and communication mechanisms;

iii. implementation of processes, process management, scheduling, and
protection;

1

--~

~

2

iv. memory organization and management, including virtual memory; and

v. input output device management, secondary storage management, and file
system management.

A multitasking operating system concurrently executes more than one task or

process. A multitasking operating system is basically a logical extension of a

multiprogrammed operating system. Multiple jobs are executed by the CPU switching

between them, but the switches occur so frequently that the users may interact with each

program while it is running. Time slicing, as used in operating systems, is when a process

is given a particular time period in which it can utilize the CPU and, when the time period

completes, the CPU is allocated to the next process and the current process is sent back to

the ready queue.

Synchronization among processes is an important issue in operating systems. One

of the primary problems confronting the designers of operating systems is to provide an

efficient synchronization mechanism. A considerable amount of research work has been

reported in open literature in this area. Many synchronization primitives have been

proposed, e.g., Events, Sequences, Queues, and Conditional Critical Regions. Dunstan

and Fris did a study on semaphores as implemented in UNIX System V [Dunstan and Fris

95]. Avutu did an extensive study on synchronization mechanisms, and came up with a

new synchronization primitive [Avutu 93]. This thesis work comprises of a detailed

comparative study on how synchronization is achieved in UNIX, Windows NT, and

Apple Macintosh ("Mac") operating systems.

The rest of this thesis report is organized as follows. Chapter II discusses

synchronization and different synchronization mechanisms. Chapter ill, N, and V deal

--~·-·----- --·---~

3

with UNIX, Windows NT, and Apple Macintosh operating systems, respectively. This

three chapters introduce the basic architecture of each operating system and then detail

how synchronization is achieved in them. Based on the information collected in this

study, Chapter VI compares how synchronization is achieved in the three operating

systems under consideration. Chapter Vll concludes, summarizes, and suggests future

work.

____....&._ ___..
~----·--

CHAPTER IT

LITERATURE REVIEW

2.1 Synchronization

Synchronization is the mechanism used to guarantee mutual exclusion among

processes when accessing a critical section and to achieve inter-process communication

[Wills 96]. A critical section is a sequence of instructions that may be executed by at

most one process at a time. Processes involved in synchronization become indirectly

aware of each other by waiting on a condition that is set by other processes [Deitel 93].

2.2 Communication Between Processes

Processes communicate with each other using inter-process communication (IPC)

mechanisms. Files, pipes, and shared memory are some of the methods used for IPC.

Files are the most obvious means of passing information between processes. One process

writes to a file and the other reads from that file. Even though files are not interactive,

they are often used for IPC.

Another method of connecting the output data stream of one process to the input

of another process is known as a pipe. A pipe can be of two types: unidirectional and bi-

directional. In unidirectional pipes, the second process cannot talk back to the first

process. In bi-directional pipes, actually two unidirectional pipes connect the two

processes, so that both of the processes can communicate with each other. Pipes

4

~ _.1..
'-·-··~------···

__..,l

5

can hold only a finite amount (10 blocks) of data [Vahalia 96]. Deadlock can occur when

using pipes for IPC. For example, while using a bi-directional pipe between two

processes, both unidirectional pipes get filled up, then if both processes are blocked

writing to their pipes, neither can read any information from their own unidirectional pipe

because they haven't finished writing into the other pipe.

The use of shared memory is one of the fastest IPC mechanisms known. Two or

more processes share part of the logical memory locations [Wills 96]. Shared memory

IPC mechanisms are easy to implement in operating systems with paged memory

architecture [Wills 96]. In the case of using shared memory for IPC, the operating system

has to keep a link count (similar to the case of using shared files) so that a page can be

freed when the link count becomes zero. Implementing shared memory IPC for operating

systems without paged architecture is considerably more difficult than for those with

paged architecture [Wills 96].

2.3 Synchronization Mechanisms

Synchronization mechanisms can be broadly classified into four basic types based

on their level and type of implementation and support: software support, hardware

support, operating system support, and language support. In addition, hybrid

synchronization solutions exist that combine more than one approach [Wills 96].

2.3.1 Software Support

A correct software based solution for mutual exclusion was first devised by

Dekker (as cited in [Dijkstra 68]). He used shared variables to control access to the

critical section. Subsequently, other solutions were also proposed. A relatively simpler

---~-b

6

solution to the two process mutual exclusion problem was presented by Peterson

[Peterson 81]. Dijkstra presented a solution for solving the critical section problem for n

processes called the Bakery algorithm [Silberschatz and Galvin 95].

2.3.2 Hardware Support

Hardware based solutions are typically the conceptually simplest solutions. They

can be achieved for instance by disabling hardware interrupts at the start of the critical

section and enabling them at the end. This will not work in the case of having more than

one processor, because even if interrupts are blocked in one processor, all other

processors are free to access the critical section, so a different technique has to be

followed. For hardware based solution many machines provide special hardware

instructions that can be used either to test and modify the contents of a word or to swap

the contents of two words atomically (i.e., indivisibly).

95].

The Test-and-Set instruction can be defined as follows [Silberschatz and Galvin

Function Test-and-Set (var target: boolean): boolean;

begin

end;

Test-and-Set:= target;
target := true;

The Swap instruction swaps the contents of two words atomically and is defined as

follows.

Procedure Swap (var a, b: boolean);

var temp: boolean;
begin

temp:= a;
a:=b;

---"""""-- =--- ------- ---~~

____....._

b :=temp;
end;

7

A context switch cannot occur in the middle of the critical section, as these hardware

instructions are carried out in an atomic manner, i.e., their execution from beginning to

end is indivisible.

2.3.3 Operating System Support

Operating system based solutions can be achieved by adding process-

synchronization support to an operating system [Silberschatz and Galvin 95]. The use of

semaphores is one example of this type of support. Semaphores can be used to solve most

of the synchronization problems. Dijkstra originally defined the semaphore concept

[Dijkstra 68]. A semaphores is a non-negative integer variable that has an implicit queue

associated with it. The value of the variable can be handled only by the following two

primitive operations.

P(s): ifs > 0 then s f- s- 1;
else wait on s;

V(s): s f- s + 1;

The mutual exclusion scheme can be coded using a mutual exclusion semaphore

called mutex (initialized to 1), as follows.

Wait: P(mutex);
<critical section>

Signal: V(mutex);

The Wait or P operation is used by a process wishing to enter a critical section. If

the value of the semaphore variable is greater than zero, it is decrement by one and the

process is executed. If the value is less than or equal to zero, then the process is added to

··-·--- --. --- ·-- --__ -I.

~

8

the queue associated with the semaphore. The Signal or V operation is used by a process

leaving a critical section. It checks the queue to see if there is a process waiting. The

processes in the queue are in a passive waiting state. If there is a process, it is activated. If

no process is waiting, the semaphore is incremented by one [Silberschatz and Galvin 95].

There are many extensions to the basic definition and implementation of the concept of a

semaphore, intended to suit various synchronization requirements, runtime environments,

and implementation platforms.

2.3.4 Language Support

Programming language based synchronization can be implemented, for example,

by using a construct named monitor or a construct called rendezvous. Implementations of

the monitor construct exist in Mesa and JAVA, programming languages from Xerox

P ARC and Sun Microsystems, respectively. A monitor is characterized by a set of

programmer-defined operators. The syntax of a monitor [Silberschatz and Galvin 95] is

as follows:

type monitor-name = monitor
variable declarations
procedure entry Pl (...);

begin ... end;
procedure entry P2(...);

begin ... end;

procedure entry Pn(...);
begin ... end;

begin
Initialization Code

end.

--------------- ---~-.........

~

9

Detailed information about monitors can be found in the original paper by Hoare [Hoare

74].

Synchronization (or rendezvous) is achieved in the Ada programming language by

using the accept statements and entries in a task [Wheeler 96]. A task is a unit of

parallelism in Ada. It consists of two parts: task specification and task body. Task

specification contains declarations and definitions provided by a task called entry. The

task body contains the implementations. The syntax of a task specification is as follows.

task [type] <name> is
entry specifications
end;

The syntax of a task body is given below.

task body <name> is
declarations of local variables
begin

end;

list of statements
exceptions
exception handlers

An accept statement is an entry into a task. It is similar to a procedure in conventional

languages. There is a one-to-one correspondence between the entry statements in a task

specification and the accept statements in a task body. The syntax of the accept statement

is given below.

accept <entry id> (<formal parameters>) do
body of the accept statement
end <entry id>;

Once an entry is called, the corresponding accept entry will not be executed until control

reaches the accept statement in the task. If the accept statement is reached first, the task is

blocked until some other task executes the corresponding entry. When an entry and the

___l_

10

accept connect, it is said that rendezvous occurs. The rendezvous mechanism is more

disciplined than a monitor, since the accept statements appear inside a context.

_____....__

CHAPTER ill

UNIX

3.1 Basic Architecture

The UNIX operating system can be divided into two major levels as shown in

Figure 1: user level and kernel level. The UNIX kernel can be divided into two major

entities: the file subsystem and the process subsystem [Bach 86]. The file subsystem and

the process subsystem are shown in the left and right sides of Figure 1 [Bach 86],

respectively.

The system call and the library interfaces lie between the user level and the kernel

level. The system calls can be further subdivided as those that interact with the file

subsystem and those that interact with the process control subsystem. The file subsystem

manages files, allocates file space, administers free space, controls access to files, and

retrieves data for users. The device drivers block that is shown between the file subsystem

and the hardware control are the kernel modules that control the peripheral devices.

The process control subsystem is responsible for process synchronization, inter­

process communication, memory management, and process scheduling. Finally, the

hardware control, shown above the hardware block in Figure 1, is responsible for

handling interrupts and for communicating with the machine.

11

_______ _J.

12

user progrmns

User Level I libraries I
Kernel Level

I ;. System call interfacp I
I

'4' ~
inter-process

file subsystem process cormnunication

'""'-~control

I smaiDJu I
~ buffer cache J subsystem

memory

character i 'block ~ management
I

device drivers

hardware control
------- --- -- ---

Kernel Level
Hardware Level

hardware

Figure 1. Block Diagram of the UNIX System [Bach 86]

I/0 devices and other peripherals may interrupt the operating system while a

process is being executed. In such cases the kernel may resume the execution of the

interrupted process after servicing the current interrupt. Interrupts are serviced by special

functions in the kernel.

3.2 UNIX Processes

A process from the UNIX point of view is an entity that runs a program and

provides an execution environment for it [Bach 86]. In other words, it is an instance of a

___......_ -~~~

........._

13

running program. It comprises of an address space and a control point. Basically, a

process is the fundamental scheduling entity, i.e., only one process runs on the CPU at a

time. Each process has a definite life time. Most of the UNIX processes are created by a

fork or vfork system call. A process invokes the exec system call to run a new program,

thus during the life time of a process it may run one or more programs at a time [Bach

86].

UNIX processes have a well-defined hierarchy. Each process has at most one

parent process and zero or more child processes. The process hierarchy looks like an

inverted tree with the init process at the top [Back 86]. The init process executes the

program located at /etc/init, and it is the first user process that gets created when the

system boots. UNIX processes are in well-defined states as shown in Figure 2 [V ahalia

96]. In UNIX , the fork system call is used to create a process, until a process is fully

created it is in the initial state and then it is moved to the ready-to-run state. The ready-to­

run state means that a process is ready to be scheduled by the kernel. When such a

process is scheduled, it executes in the kernel mode (kernel running state) still the context

switch gets completed. Mter this, if it was a user mode process, it shifts to the user

running state, whereas if it was blocked for a resource while executing a system call, it

resumes execution in the kernel mode. Processes switching can occur only in the kernel

by explicit calls to the event-wait mechanism [Leffler, et al. 89].

As a result of a system call or an interrupt, a process that is running in the user

mode enters the kernel mode, and returns to user mode when the system call/interrupt

completes. If a process has to wait for an event or resource that is not available, it calls

the sleep() function. This will put the process on a queue of sleeping processes (asleep

-----· ---~J.

14

wait

wakeup

Figure 2. Process States and State Transition [V ahalia 96]

state). When the resource becomes available or the event occurs, the kernel wakes up all

of the processes waiting for the same. When a process is stopped or suspended by a stop

signal, it moves from the ready-to-run state and asleep state to the stopped state and the

stopped-plus-asleep state, respectively. A continue signal helps this process to return to

its previous state. A process terminates by calling the exit system call. The kernel releases

all of the resources of the process, except the exit status and resource usage information,

and leaves the process in zombie state. A process remains in this state until its parent

generates a wait signal, which destroys the process and returns the exit status to the parent

[Vahalia 96].

~ -~" ~------ --- -----.-----'"~-- ____ --L

15

3.3 Kernel Level Synchronization

UNIX kernel is re-entrant, meaning that several process may be involved in kernel

activity concurrently. In fact, processes may even be executing the same routine in

parallel. At any instant, several processes may be active but only one is actually running,

the others are inactive (blocked, suspended, or asleep). UNIX implements kernel level

synchronization to avoid race condition, as all processes share the same copy of the

kernel. Race condition is a situation in which several processes access and manipulate the

same data concurrently, and the outcome of the execution depends on the particular order

in which the access takes place. UNIX uses several synchronization techniques. The first

and foremost is that initially UNIX kernel was not preemptive [Vahalia 96]. Basically,

process synchronization is accomplished by having processes wait for events. We will

look at the synchronization issues involving the non-preemptive kernel in this section and

then we will investigate additional synchronization techniques that are used in the case of

the preemptive kernel.

The situations under which we need synchronization in a non-preemptive UNIX

kernel are [V ahalia 96]: when a blocking operation is being carried out, when an interrupt

occurs, and for systems with more than one processor. We will next discuss how

synchronization is achieved in the case of blocking operations and interrupts.

Synchronization issues in the case of multiple processors is discussed in Section 3.4

under the heading of Multiprocessor Synchronization.

~---- ------------------.···--·----.

------""-

16

3.3.1 Blocking Operations

The blocking operation places a process in the asleep state until the operation on

which it blocked completes. Even in the case of a non-preemptive UNIX kernel, most of

the objects (data structures and resources) need to be protected across a blocking

operation. Let us consider the following example [Vahalia 96]: a process has to read from

a file into a disk block buffer in kernel memory. As this is an 110 operation, the process

has to wait until it completes. Meanwhile the kernel may schedule another process. Since

the disk block buffer is in an inconsistent state, the kernel must ensure that other

processes do not access the buffer in any way.

UNIX kernel prevents such accesses by associating a lock with the various objects

involved. All processes that need to use an object must check the lock. If it is open, the

process can access the object, else the process must go to sleep until the object gets

unlocked. Normally, the UNIX kernel associates a wanted flag with an object. This flag is

set by a process that needs it while it was locked. When a process is ready to release a

lock, it wakes up all the processes that have set the wanted flag for that object. By

following this procedure, UNIX allows all other processes to execute safely even when a

process has blocked after locking a resource. Figure 3 shows this locking algorithm

[Leffler, et al. 89].

3.3.2 Interrupts

In a non-preemptive UNIX kernel, even though a process cannot be preempted by

another process, it still can be interrupted by devices. In order to provide proper

synchronization, the interrupt handler should not be allowed to access the data that is in

-----"""-

No lock resouce

Yes

use resource

wake up waiting ~Yes
processeS)

No

resume other
processing

Figure 3. UNIX Locking Algorithm [Leffler, et al. 89]

Table I. Macros used to set the Interrupt Priority Level in SVR4 [V ahalia 96]

Macros Purpose

sp 10 of splbase enable all interrupt

spltimeout block functions scheduled by timers

splstr block STREAMS interrupts

spltty block terminal interrupts

spldisk block disk interrupts

sp 17 or splhi disable all interrupts

splx restore ipl to previously saved value

--'--------

18

an inconsistent state. Synchronization in the case of interrupts is achieved by blocking

interrupts while accessing the data that is in an inconsistent state. The UNIX kernel use

macros similar to the ones in Table I [Vahalia 96]. These macros help to raise the ipl

(interrupt priority level) and thereby help to block the interrupts while accessing the

critical region. Using these macros, the current ipl value is recorded and it is raised to a

new value. After raising the ipl value, the process enters the critical region. When the

process leaves the critical region, the ipl value is restored with the recorded value.

3.4 Multiprocessor Synchronization

By increasing the number of processors, the system performance does not increase

linearly [Kelley 89]. The need for appropriate synchronization primitives that are needed

while accessing the shared data structures, and the extra functionality's like scheduling

policies etc., to support multiple processors adds CPU overhead and thus reduces the

overall performance gains. The operating system must try to minimize the overhead and

allow for optimal CPU utilization. The traditional UNIX kernel needs major

modifications to run on multiprocessor systems. One such major area of modification is

synchronization.

Synchronization primitives that we discussed earlier under uni-processor

environments (see Section 3.3) are inadequate for multiprocessors and must be replaced

with more powerful facilities. Synchronization in the case of more then one processor is

fundamentally dependent on hardware support provided by the processors. In the

subsections below, we will discuss hardware synchronization mechanisms and then

...J..

~

19

different software synchronization mechanisms for multiprocessor UNIX operating

system.

3.4.1 Hardware Support

Let us consider the basic operation of locking a resource, for exclusive use, by

setting a locked flag maintained in a shared memory location. This may be achieved by

performing the following three operations:

i) read the flag;

ii) if the flag is zero, lock the resource by setting the flag to one; and

iii) return TRUE if the lock was obtained, else return FALSE.

In the case of a multiprocessor systems, two processes on two different processors may

simultaneously attempt to carry out this sequence of operations. In order to avoid the race

condition (see Section 3.3) that may occur in such situations, the three operations above

will have to be performed as one single indivisible operation. Two such indivisible

operations that are available on most processors are the atomic Test-and-Set operation

and the Conditional-Store instruction. For example, SUN SP ARC machines, that run a

variant of UNIX, have LDSTUB (LoaD and STore Unsigned Byte) as an atomic Test­

and-Set instruction, similarly V AX-11 has BBSSI (Branch on Bit Set and Set Interlock)

[Digital 87].

3.4.2 Software Support

Software support for synchronization in an operating system is dependent on the

type of multiprocessing technique used in that operating system. There are three types of

multiprocessing systems [Vahalia 96]: master-slave, functionally asymmetric and

---------~

_ ___....

20

symmetric. The variants of UNIX such as SVR 4.2 and Solaris 2.5 are symmetric

multiprocessing systems [Tanenbaum and Woodhull 97]. In a symmetric multiprocessing

system, all CPU s are equal, they share a single copy of the kernel text and data, and

compete for system resources such as devices and memory. Each CPU may run the kernel

code, and any user process may be scheduled on any processor. It is no longer the case

that a thread (see Section 4.3) retains exclusive use of the kernel or block on a resource,

as several processors could be executing kernel code at the same time.

We need to protect all kinds of data structures that were not protected in the case

of a uni-processor system. The IPC resource table is one such data structure. This

structure is not accessed by interrupt handlers and does not support any operations that

might block the processes. The kernel manipulates the table without locking it. In the case

of multiprocessor environment two threads can access the table simultaneously [V ahalia

96], and hence the kernel must lock the table before using it. The locking primitives and

the way interrupts are handled has to be changed so that proper synchronization can be

achieved in a multiprocessor environment. In the following subsection let us discuss

some of the locking mechanisms.

3.4.2.1 Semaphores

Earlier implementations of UNIX on multiple processors was almost completely

dependent on semaphores for synchronization [Kelley 89]. UNIX kernel guarantees that

the semaphore operations will be atomic [Lee and Luppi 87], even on a multiprocessor

system. Thus, if two threads try to operate on the same semaphore, one operation will

complete or block before the other starts.

__...._

____...._

21

Semaphores can be used to provide mutual exclusion on a resource. A semaphore,

that is initialized to one, can be associated with a shared resource such as a linked list.

Each thread does a P operation to lock a resource and a V operation to release it. The first

P operation sets the value to zero, causing subsequent P operations to block. When a V is

done, the value is incremented and one of the blocked threads is awakened. The code that

represents the usage of semaphores in case of controlling the allocation of finite resources

[Bach 86], such as message block headers, is as follows.

semaphore counter; II initialization of semaphore followed by
II initsem initialization done at the boot
II time

initsern (&counter, resourceCount);

P (&counter);

V (&counter) ;

II thread calls P while acquiring an
II instance of the resource
II thread calls V while releasing an
II instance of the resource

The semaphore is initialized to the number of available instances of the resource

under consideration. Threads call P to acquire an instance of the resource, and then call V

to release it. Thus, at each point in time, the value of the semaphore indicates the number

of pending requests (blocked threads) for that resource.

Semaphores can also be used to cause threads to wait for an event by initializing

them to zero. This is shown in the following code.

semaphore event;
initsern (&event, 0);

P (&event);
V (&event);
V (&event);

II initialization
II initialized at boot time

II code section executed by the thread
II that may wait on an event
II blocks if event has not occurred
II called when an event occurs
II each thread call this V upon waking up

In this scenario threads doing a P operation will block. When the event occurs, a V

operation needs to be done for each blocked thread. This is achieved by calling a single V

L

22

operation when the event occurs and having each thread do another V operation upon

waking up.

In case of both uni-processor and multiprocessor UNIX systems the use of

semaphores has a disadvantage called semaphore convoy. A semaphore convoy is created

when there is frequent contention on a semaphore. Figure 4 [Lee and Luppi 87] depicts a

semaphore convoy situation. R is a critical region protected by a semaphore, Pl and P2

Pl and P2: Processors; R: Resource;
Tl. T2. TI. and T4: Threads; a, h. and c: Instances;

(a)

~
blocks

1

holds

~
~

sched
queue

sched
queue

Figure 4. Semaphore Convoy [V ahalia 96]

are two different processors, and Tl, T2, T3, and T4 are the threads. At instance 'a',

thread T2 holds the semaphore, while T3 is waiting to acquire it. Tl is running on

processor Pl, T2 is running on processor P2 and T4 is waiting to be scheduled. Now

suppose T2 exits the critical region and releases the semaphore. It wakes up T3 and puts it

on the scheduler queue. T3 now holds the semaphore, as shown in instance 'b' in Figure

4. Now Tl need to enter the critical region. Since the semaphore is held by T3, Tl will

-------""""' --··-- - --·- -~.- ·--~---~---------- ·---~~

23

block, freeing up processor Pl. The system schedules thread T4 to run on Pl. Hence, at

instance 'c' thread T3 holds the semaphore and Tl is blocked on it; neither thread can run

until T2 or T4 yields its processor. The problem lies in step 'c'. Although the semaphore

has been assigned to T3, T3 is not running and hence it is not in the critical region. As a

result, Tl must block on the semaphore even though no thread is in the critical region.

The semaphore semantics force allocation in a first-come, first-served order. This forces a

number of unnecessary context switches. In more recent variants of UNIX such as Solaris

2.5, semaphore has been replaced by an exclusive lock, or mutex [Vahalia 96].

3.4.2.2 Read-Write Locks

A read-write lock on multiprocessors may permit either a single writer or multiple

readers [Vahalia 96]. The basic operations are lockShared(), lockExclusive(),

unlockShared(), and unlockExclusive(). In addition, there might be tryLockShared() and

tryLockExclusive() (which return FALSE instead of blocking), and also upgrade() and

downgrade() (converts a shared lock to an exclusive lock and vice versa). A lockShared()

operation must block if there is an exclusive lock present, whereas a lockExclusive()

operation must block if there is either an exclusive or a shared lock on the resource. The

code that implements a read-write lock is as follows [V ahalia 96].

Struct rwlock {
int nActive;

} ;

int nPendingReads;
int nPendingWrites;
spinlock_t sl;
condition canRead;
condition canWrite;

void lockShared (struct rwlock *r)

II number of active
II readers, or -1 if a
II writer is active

II this operation blocks
II if there is an

~ -- ~--- --- ---~---- --- ____ l

-~

{

}

spin_lock (&r->sl);

r->nPendingReads ++;

if (r->nPendingWrites > 0)

wait (&r->canRead, &r->sl);

while (r->nActive < 0)

wait (&r->canRead, &r->sl);
r->nActive ++;

r->nPendingReads --;

spin_unlock (&r->sl);

void unlockShared (struct rwlock *r)
{

}

spin_lock (&r->sl);
r->nActive --;
if (r->nActive == 0) {

} else

spin_unlock (&r->sl);
do_signal (&r->canWrite);

spin_unlock (&r->sl);

void lockExclusive (struct rwlock *r)

{

}

spin_lock (&r->sl);
r->nPendingWrites ++;

while (r->nActive)

wait (&r->canWrite, &r->sl);
r->nPendingWrites --;
r->nActive = -1;

spin_unlock (&r->sl);

void unlockExclusive (struct rwlock *r)
{

boolean_t wakeReaders;
spin_lock (&r->sl);
r->nActive = 0;
wakeReaders = (r->nPendingReads !=
spin_unlock (&r->sl);
if (wakeReaders)

do_broadcast (&r->canRead);

II exclusive lock
II present

II acquire the mutex
II spin lock

24

II increment the count
II of waiting readers
II if there are writers
II waiting then block
II thereby don't starve
II writers
II someone has an
II exclusive lock
II hence block
II increment the number
II of readers associated
II with this shared
II lock
II decrement the count
II of waiting readers
II release mutex
II spin lock

II no other readers has
II the shared lock

II wake up a single
II writer

II this operation blocks
II if there is either an
II exclusive or shared
II lock on the resource

II increment the count
II of waiting writers
II some one has a shared
II lock associated with
II the resource
II hence block

II now a writer has an
II exclusive lock

0) i

II true if there are
II readers waiting
II wake up all readers

---~---~--------- - ---~--~

~

else
do_signal (&r->canWrite);

}

void downgrade (struct rwlock *r)

{
boolean_t wakeReaders;
spin_lock (&r->sl);
r->nActive = 1;

II wake up a single
II writer

II this operation

25

II converts a exclusive
II lock into a shared
II lock

wakeReaders = (r->nPendingReads != 0);

}

spin_unlock (&r->sl);
if (wakeReaders)

do_broadcast (&r->canRead);

void upgrade (struct rwlock *r)

{

}

spin_lock (&r->sl) ;
if (r->nActive == 1) {

r->nActive = -1;
} else {

}

r->nPendingWrites ++;
r->nActive --;
while (r->nActive)

wait (&r->canWrite, &r->sl);
r->nPendingWrites --;
r->nActive = -1;

spin_unlcok (&r->sl);

II true if there are
II readers waiting for
II the resource

II wake up all readers

II this operation
II converts a shared
II lock to an exclusive
II lock

II no other reader

II release shared lock
II some one has a shared
II lock associated with
II the resource
II hence block

The UNIX operating system's solution for the Readers/Writers problem is to wake

up all the threads waiting for the resource [V ahalia 96]. This is clearly inefficient

[Vahalia 96], if a writer acquires the lock next, all readers and other writers will have to

go to sleep; if a reader acquires the lock, other writers will have to go to sleep. It is

preferable to find a protocol that avoids needless wakeups [Vahalia 96]. If a reader

releases a resource, it takes no action if other readers are still active. When the last active

reader releases its shared lock, it must wake up a single waiting writer. When a writer

releases its lock, it must choose whether to wake up another writer or other readers. If

_____ J_

____....

26

writers are given preference, the readers could starve under heavy contention [V ahalia

96].

The preferred solution [V ahalia 96] is to wake up all waiting readers when

releasing an exclusive lock. If there are no waiting readers, we wake up a single waiting

writer. This scheme can lead to writer starvation [V ahalia 96]. If there is a constant

stream of readers, they will keep the resource read-locked, and the writer will never

acquire the lock. To avoid this situation, a lockShared() request must block if there is any

waiting writer, even though the resource is currently only read-locked. Such a solution,

under heavy contention, will alternate access between individual writers and batches of

readers [V ahalia 96].

The upgrade() function that converts a shared lock to an exclusive lock must be

used carefully in order to avoid deadlocks. A deadlock can occur unless the

implementation takes care to give preference to upgrade requests over waiting writers

[Vahalia 96]. If two threads try to convert a shared lock to an exclusive lock, each would

block since the other holds a shared lock. One way to avoid that is for the upgrade() to

release the shared lock before blocking, if it cannot get the exclusive lock immediately.

This results in additional problems for the user, since another thread could have modified

the resource before upgrade() returns. Another solution is for upgrade() to fail and release

the shared lock if there is another pending upgrade.

3.4.2.3 Condition Variables

A conditional variable is a complex synchronization mechanism that has a

predicate (a logical expression that evaluates to TRUE or FALSE) associated with it

------~

..........._

27

based on some shared data [Vahalia 96]. It basically allows threads to block on it and

provides facilities to wakeup one or all blocked threads when the result of the predicate

changes. This mechanism is more useful for waiting on events than for resource locking.

For example [Vahalia 96], let us assume that one or more server threads are waiting for

clients requests. Incoming requests from the clients are to be passed to waiting threads or

put on a queue. When a server thread is ready to process the next request, it first checks

the queue. If there is a pending message, the thread removes it from the queue and

services it. If the queue is empty, the thread blocks until a request arrives. This can be

implemented by associating a condition variable with this queue. The shared data is the

message queue itself, and the predicate is that the queue be nonempty.

On a multiprocessor, we need to guard against race conditions, such as the lost

wakeup problem [Vahalia 96]. Suppose a message arrives after a thread checks the queue

but before the thread blocks. The thread will block even though a message is available.

We therefore need an atomic operation to test the predicate and block the thread if

necessary. Condition variables provide this atomicity by using an additional mutex i.e., a

spin lock (see Section 4.6). The mutex protects the shared data and avoids the lost

wakeup problem. The server thread acquires the mutex on the message queue and then

checks if the queue is empty. If so, it calls the wait() function of the condition with the

spin lock held. The wait() function takes the mutex as an argument and atomically blocks

the thread and releases the mutex. When the message arrives on the queue and the thread

is woken up, the wait() call reacquires the spin lock before returning. The following is a

sample implementation of a condition variable [Vahalia 96] .

···-----=-'"'

28

struct condition {

} i

proc *next;
proc *prev;

spinlock_t listlock;

II doubly linked list of blocked
II threads

II spin lock protects the list of
II threads

void wait (condition *c, spinlock_t *s)
{ II acquire lock on the doubly linked

II list of blocked threads

}

spin_lock (&c->listLock);
II add to the linked list
II release the lock on the blocked
II threads

spin_unlock (&c->listLock);
spin_unlock (s); II release spin lock on the

swtch {);

spin_lock (s);
return;

II predicate before blocking
II perform context switch
II when we return from the swtch(),
II the event has occurred
II acquire the spin on the predicate

void do_signal (condition *c)

{

}

II wake up one thread waiting on
II this condition

spin_lock (&c->listLock);
II remove one thread from linked
II list, if it is nonempty

spin_unlock (&c->listLock);

return;

II if a thread was removed from the
II list, make it runnable

void do_broadcast (condition *c)

{

}

II wake up all threads waiting on
II this condition

spin_lock (&c->listLock);
while-(linked list is nonempty) {

}

II remove a thread from the linked
II list and make it runnable.

spin_unlock (&c->listlock);

In the above implementation, the predicate itself is not part of the condition

variable. It must be tested by the calling routine before calling wait(). The implementation

also uses two separate mutexes. One is listLock, which protects the doubly linked list of

threads blocked on the condition. The second mutex protects the tested data (predicate)

itself. The spin lock mutex is not a part of the condition variable, but is passed as an

··-·----·----::-'-

__.,j,_

29

argument to the wait() function. The swtch() function and the code to make blocked

threads runnable use a third mutex to protect the scheduler queues. We thus have a

situation where a thread tries to acquire one spin lock while holding another. This is not

disastrous since the restriction on spin locks is only that threads should not be allowed to

block while holding one. Deadlocks are avoided by maintaining a strict locking order, the

lock on the predicate must be acquired before listLock.

One of the major advantages of a condition variable is that it provides two ways to

handle event completion [Vahalia 96]. When an event occurs, there is the option of

waking up just one thread with do_signal() or all threads with do_broadcast(). Each may

be appropriate in different circumstances. In case of a multithreaded server application,

waking one thread is sufficient as each request will be handled by a single thread.

However, consider several threads running the same program, thus sharing a single copy

of the program text. More than one of these threads may try to access the same

nonresident page of the text, resulting in page faults in each of them. The first thread to

fault initiates a disk access for that page. The other threads notices that the read has

already been issued and blocks waiting for the 110 to complete. When the page is read

into memory, it is desirable to call do_broadcast() and wake up all the blocked threads,

since at that point they can all access the page without conflict.

3.4.2.4 Sleep Locks

A sleep lock is a nonrecursive mutex lock that permits long-term locking of

resources [UNIX 92]. One such example is, the resources that are utilized by a process

30

can be locked when the process blocks in a blocking operation. It is implemented as a

variable of type sleep_t, and provides the following operations:

void SLEEP _LOCK (sleep_t *lockp, int pri); II the processes acquires the
II lock over the resources by
II calling this function and
II this call cannot be
II interrupted

bool_t SLEEP _LOCK_SIG (sleep_t *lockp, int pri); II same as the above function
II but can be interrupted

void SLEEP _UNLOCK (sleep_t *lockp); II to unlock the resources

The pri parameter specifies the scheduling priority to assign to the process after it

awakens. If a process blocks on a call to SLEEP _LOCK, it will not be interrupted by a

signal. If it blocks on a call to SLEEP _LOCK_SIG, a signal will interrupt the process; the

call returns TRUE if the lock is acquired and FALSE if the sleep was interrupted. The

lock also provides other operations such as SLEEP _LOCK_AV AIL (checks if the lock is

available), SLEEP _LOCKOWNED (checks if the caller owns the lock), and

SLEEP _TRYLOCK (returns failure instead of blocking if the lock cannot be acquired).

______......l_ =•"'" ·-~"' -- ·-... ~····- • g, ·- .• L __ • ;=g= _ ____:.... ___ ., -----· - ------~~

~

CHAPTER IV

WINDOWS NT

4.1 Basic Architecture

The structure of Windows NT can be divided into two parts [Custer 93]: the user

mode portion of the system and the kernel mode portion of the system. The Windows NT

protected subsystems are collectively termed as the user mode portion, and the NT

executive is termed as the kernel mode portion as shown in Figure 5.

Applications

Protected
Subsystems
(Servers)

Kernel Mod w w

System Services
Process Local Vutual

NT
Executive

Object Secwity
Manager Reference Manager !Procedure Memory

Call Manager
Facility

Kernel

I Hardware Abstraction Layer (HAL)
I

I i
Hardware

I
I

:user Mode

y

JIOManager
File Systems

Cache Manager
Device Drivers

!Network Drivers

I
Li

Figure 5. Block Diagram of Windows NT Operating System [Custer 93]

31

- ~- -- ------ -- - ----------·

32

The protected subsystems are also called as the Windows NT servers, as each one of them

resides in a separate process whose memory is protected from other processes by

the NT executive's virtual memory manager. In Windows NT, the subsystems do not

automatically share memory, rather they communicate by passing messages. The NT

executive is the operating system engine. The following subsections discuss the protected

subsystem and the NT executive.

4.1.1 Protected Subsystem

Windows NT protected subsystems provide API's (e.g., Win32's, OS/2, etc.,) that

programs can call [Richter 93a]. When an application calls an API routine, a message is

sent to the server that implements the API routine via the NT executive's local procedure

call (LPC) facility. LPC is a locally optimized message-passing mechanism in which an

application calls an API routine in a DLL (Dynamic Link Library) to which it is linked,

and the DLL does the work necessary to send the message to the Windows NT protected

subsystem (servers). The server replies by sending a message. The API routine in the

DLL receives the message and hands it over to the application. The LPC facility is

specific to Windows NT. The protected subsystem can further be divided into the

environment subsystems and the integral subsystems, as defined below.

An environment subsystem is a user mode server that provides an API specific to

an operating system. When an application calls an API routine, the call is delivered

through the LPC facility to an environment subsystem. The chosen environment

subsystem executes the API routine and returns the result to the application process by

sending another LPC. The Win32 subsystem is the most important environment

-~ _1
----·- -------

_____.~._

33

subsystem, because it is the one that provides the Microsoft's 32-bit Windows API to the

application programs. It also provides the NT' s graphical user interface and controls all

user input and application output.

Windows NT also provides several other environment subsystems to support each

one of the following applications: POSIX, OS/2, 16-bit windows subsystem, and MS­

DOS subsystem. All these subsystems still use the Win32 subsystem to receive user input

and to display output.

The integral subsystems are the servers that perform major operating system

functions. The security subsystem and the components of the networking software are

some of the integral subsystems. The security subsystem runs in the user mode and

records the security policies in effect on the local computer [Custer 93]. It keeps track of

which user accounts have special privileges, it maintains a database of information about

user accounts, and it also accepts user logon information and initiates logon

authentication.

The NT networking component implements the following two services:

Workstation services and the Server services [Custer 93]. Both of these are user mode

processes that implements an API to access and manage the LAN Manager network re­

director and server, respectively. The re-director is the network component responsible

for sending I/0 requests across a network when the file or device to be accessed is not

local.

____ _L

34

4.1.2 NT Executive

The NT executive is the kernel mode portion of Windows NT and, except for the

user interface, is a complete operating system unto itself [Richter 93a]. Windows NT

kernel is a part of the NT executive. The NT executive consists of a number of

components, each of which implements two sets of functions: the system services which

the environment subsystems and other executive components can call, and the internal

routines which are available only to components within the executive.

NT executive also provides API-like system services, but it does not run

continually in a process of its own. Rather, it runs in the context of an existing process by

taking over an executing thread when important system events occur. When a thread calls

a system service and is trapped by the processor, or when an external device interrupts the

processor, the NT kernel gains control of the thread that was running. The kernel calls the

appropriate system code to handle the event, executes it, and then returns control to the

code that was executing before the interruption.

The Windows NT executive components maintain independence from one

another, each creating and manipulating the system data structures it requires. The

following are the executive components and their responsibilities. The Object manager

creates, manages, and deletes NT executive objects, which are the abstract data types that

are used to represent operating system resources. NT executive objects are objects (a

single, runtime instance of a statically defined object type) implemented by various

components of the NT executive. The security reference monitor enforces security

policies on the local computer. The security reference monitor guards operating system

resources, and performs run-time object protection and auditing. The process manager

j_

35

creates and terminates processes and threads. It also suspends and resumes the execution

of threads and stores and retrieves information about NT processes and threads. The local

procedure call facility passes messages between a client process and a server process on

the same computer. It is an optimized version of the remote procedure call i.e., all

communications takes place in the local machine. The virtual memory manager

implements virtual memory, which is a memory management scheme that provides a

large, private address space for each process and protects each processes address space

from other processes.

The NT kernel responds to interrupts (asynchronous events, that can occur at any

time unrelated to what the processor is executing) and exceptions (a synchronous

condition, resulting from the execution of a particular instruction), schedules threads for

execution, synchronizes the activities of multiple processors, and supplies a set of objects

and interfaces that the rest of the NT executive uses to implement higher-level objects

[Custer 93]. The 110 system comprises a group of components responsible for processing

input from and delivering output to a variety of devices. The following are the

components of the 110 system [Richter 93a]: 110 manager, File systems, Network re-

director and Network server, NT executive device drivers, and Cache manager.

The hardware abstraction layer (HAL) places a layer of code between the NT

executive and the hardware platform on which Windows NT is running [Custer 93]. The

hardware abstraction layer hides hardware-dependent details such as 110 interfaces,

interrupt controllers, and multiprocessor communication mechanisms. Rather than access

hardware directly, the NT executive components maintain maximum portability by

calling the HAL routines when they need platform-dependent information.

_ __..c _l _" __ _

36

Windows NT provides synchronization by means of wait and signal capabilities as

part of the executive object architecture. In Windows NT, threads can synchronize by

using the synchronization objects. In order to understand the synchronization objects it is

necessary to know about the NT' s process structure. The fundamental goal of the NT' s

process manager is to provide a set of native process services that environment

subsystems can use to emulate their unique process structures [Custer 93]. This is how

NT provides multiple operating system environments that can run in user mode.

4.2 Windows NT Processes and Threads

Windows NT processes have the following characteristics that are different from

other operating systems [Custer 93]:

i) NT processes are implemented as objects and are accessed using object
services (means for manipulating objects, usually read or change object
attributes).

ii) An NT process can have multiple threads executing within its address space.

iii) Both process objects and thread objects have built-in synchronization
capabilities (see Section 4.4).

iv) The NT process manager maintains no parent/child or other relationships
among the processes it creates.

v) An NT process has to have at least one thread of execution.

NT processes can be in either one of the following two modes: kernel mode or

user mode [Richter 93b]. In the kernel mode, processes can execute operating system

code or can access operating system memory. The kernel mode processes run in the

unrestricted processor mode. The processes that run under restricted processor mode are

called user mode processes .

..........._ ·~•<·•··-- • -- -- - -- -~ _......J...

.. ---1...

37

A thread, sometimes called as lightweight process, is the basic unit of scheduling

in Windows NT. A thread shares with peer threads its code section, data section, and

operating system resources such as open files and signals [Custer 93]. A thread's life

cycle start when a program creates a new thread by calling the process manager. The

process manager in tum, calls the object manager to create a thread. Similar to NT

processes, threads can also be in either one of the following two modes [Richter 93b]:

kernel mode or user mode.

A user mode thread gains access to the operating system by calling a system

service (services provided by the components of NT executive for the environmental

subsystem servers). When the thread calls the service, the processor traps it and switches

its execution from user mode to kernel mode. The operating system takes control of the

thread, validates the arguments the thread passed to the system service, and then executes

the service. The operating system switches the thread back to user mode before returning

control to the user's program. By following this procedure, the operating system protects

itself and its data from modification by user mode threads. The following section

discusses the Windows NT thread states.

4.3 Windows NT Thread States

A thread can be in any of six states at any given time, only one of which makes

the thread eligible for execution [Custer 93]. The dispatcher states of a thread are

illustrated in Figure 6 [Richter 93b]. Once initialized, the thread progresses through the

following states:

____..~._

38

i) Ready: When looking for a thread to execute, the dispatcher considers only the
pool of threads that are in the ready state. These threads are simply waiting to
execute.

ii) Standby: A thread in the standby state has been selected to run next on a
particular processor. When the correct conditions exists, the dispatcher
performs a context switch to this thread. Only one thread can be in the standby
state for each processor in the system.

iii) Running: Once the dispatcher performs a context switch to a thread, the thread
enters the running state and executes. The thread's execution continues until
either the kernel preempts it to run a higher priority thread, its quantum ends,
it terminates, or it voluntarily enters the waiting state.

reinitialize

execution
completes

thread
waits on

an object
handle

create and initialize
thread object

place in
ready queue

set object to
signaled state

preempt
(or time quantum ends)

context-switch to it
and start its execution

(dispatching)

Figure 6. Windows NT Thread States [Richter 93b]

select for

____ J_

39

iv) Waiting: A thread can enter the waiting state in several ways: a thread can
voluntarily wait on an object to synchronize its execution; the operating
system (the 110 system, for example) can wait on the thread's behalf; or an
environment subsystem can direct the thread to suspend itself. When the
thread's wait ends, the thread moves back to the ready state to be rescheduled.

v) Transition: A thread enters the transition state if it is ready for execution but
the resources it needs are not available. For example, the thread's kernel stack
might have been paged out of memory. Once its resources are available, the
thread enters the ready state.

vi) Terminated: When a thread finishes executing, it enters the terminated state.
Once terminated, a thread object might or might not be deleted. If the
executive has a pointer to the thread object, it can reinitialize the thread object
and use it again.

We will first discuss the objects that provide synchronization for user mode

threads, and then the objects that provide synchronization for kernel mode threads in case

of having more than one processor.

4.4 User Level Synchronization

The following are the synchronization objects that are used by the user mode

threads for synchronization in Windows NT [Custer 93]:

i) Process objects
ii) Thread objects
iii) File objects
iv) Event objects
v) Event pair objects
vi) Semaphore objects
vii) Timer objects
viii) Mutant objects

The first three objects listed serve other purposes in addition to synchronization, but the

last five objects are just for synchronization purposes. At any given moment, a

synchronization object is in one of two states, either signaled or the non-signaled state.

--~-J,

40

The signaled state is defined differently for different objects. A thread object is . in the

non-signaled state during its lifetime, and is set to the signaled state by the NT kernel

when the thread terminates. Similarly, the kernel sets a process object to the signaled state

when the process last thread terminates. In contrast, the timer object, like a stopwatch, is

set to go off at a certain time. When its time comes up, the kernel sets the timer object to

the signaled state. The following are the Windows NT objects that does not support

synchronization [Custer 93]: section, port, access token, object directory, symbolic-link,

profile, and key objects.

To synchronize with an object, a thread calls one of the wait system services

supplied by the object manager, passing a handle to the object it wants to synchronize

with. The thread can wait on one or several objects and can also specify to the kernel that

its wait should be canceled if it is not ended within a certain amount of time. Whenever

Table II. Definitions of Signaled State for Synchronization Objects [Custer 93]

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File 110 operation completes All released

Event Thread sets the event All released

Event pair Dedicated client or server thread sets Other dedicated thread
the event released

Semaphore Semaphore count drops to zero All released

Timer Set time arrives or time interval expires All released

Mutant Thread releases the mutant One thread released

-----""'- ~----~~"----· ---~

41

the kernel sets an object to the signaled state, it checks to see whether there are any

threads waiting on the object. If so, the kernel releases one or more of the threads from

their waiting state so that they can continue executing. Table ll [Davis 94] shows the

effects on the waiting threads when a user mode object is set to the signaled state.

When an object is set to the signaled state, the waiting threads are generally

released from their wait states immediately. For example, an event object is used to

announce the occurrence of some event. When the event object is set to the signaled state,

all threads waiting on the event are released. The exception is any thread that is waiting

on more than one object at a time; such a thread might be required to continue waiting

until additional objects reach the signaled state. From Table ll it is clear that except event

pair object and mutant object, all other objects release all the threads while shifting to the

signaled state.

Windows NT' s executive synchronization semantics are visible to Win32

programmers through the WaitForSingleObject() and WaitForMultipleObjects() API

routines [Davis 94], which the Win32 subsystem implements by calling analogous system

services supplied by the NT object manager. A thread in a Win32 application can

synchronize with a Win32 process, thread, event, semaphore, mutex, or file object.

As an example, let us assume that a user is running a spreadsheet application

program under the Windows NT operating system. The application has a main thread that

performs ordinary spreadsheet functions and a secondary thread that spools spreadsheet

files to the printer. Now suppose the user prints a spreadsheet and, before spooling is

completed, enters a command to exit the program. The main thread, which accepts the

exit request, doesn't terminate the process immediately. Instead, it calls the

.... . ..I..

__..

42

W aitForSingleObject() routine to wait for the spooler thread to finish spooling and

terminate. After the spooler thread terminates, the main thread is released from its wait

operation and terminates itself, which ends the spreadsheet program and terminates the

spreadsheet process.

4.5 Kernel Level Synchronization

Following the foot steps of the recently developed operating systems such as

Mach, OS/2 etc., Windows NT also separates the operating system's mechanisms from its

policies. The principle of separating policies from mechanisms exists at several levels in

Windows NT [Davis 94]. At the highest level, each environment subsystem establishes a

layer of operating system policies that differs from that of other subsystems. At the kernel

level it avoids policy-making altogether. The kernel performs four main tasks [Custer 93]:

i) Schedules threads for execution.

ii) Performs low-level multiprocessor synchronization.

iii) Transfers control to handler routines when interrupts and exceptions occur.

iv) Implements system recovery procedures after a power failure occurs.

Windows NT is a preemptive multitasking system, thus the operating system does

not wait for a thread to voluntarily yield the processor to other threads. Instead, the

operating system interrupts a thread after the thread has run for a preset amount of time,

called the time quantum, or when a higher priority thread is ready to run.

Windows NT processes are multithreaded. The kernel uses a priority-based

scheme to select the order in which threads are executed. The kernel also changes a

thread's priority periodically to ensure that all threads will execute. Outside the kernel,

-----'c--- ---~

43

the executive presents threads and other shareable resources as objects. These objects

require some policy overhead, such as object handles (an index into the process-specific

table that contains pointers to all the objects that the process has opened a handle to) to

manipulate them [Custer 93], security checks to protect them, resource quotas to be

deducted when they are created, etc. This overhead is eliminated in the kernel, which

implements a set of simpler objects, called kernel objects, that help the kernel control

central processing and support the creation of executive objects. Kernel objects are a

more primitive set of objects implemented by the NT kernel. These objects are not visible

to user mode code but are created and used only within the NT executive.

Kernel objects provide fundamental capabilities, such as the ability to alter system

scheduling, that can be accomplished only by the kernel. One set of kernel objects, called

the dispatcher objects, incorporates synchronization capabilities and alters or affects

thread scheduling. The dispatcher objects include kernel thread, kernel mutex, kernel

mutant, kernel event, kernel event pair, kernel semaphore, and kernel timer. The

Windows NT dispatcher also takes care of context switching, which is the procedure of

saving the volatile machine state associated with a running thread, loading another

thread's volatile state, and starting the new thread's execution. In the following section

we will discuss multiprocessor synchronization and kernel dispatcher objects in detail.

4.6 Multiprocessor Synchronization

Synchronization is a major issue for symmetric multiprocessing operating

systems. Analogous to Solaris 2.5 a variant of UNIX, Windows NT is a symmetric

multiprocessing operating system. The Windows NT kernel guarantees mutual exclusion

~ J.
--·--~

44

in the case of having multiple processors by utilizing a mechanism called spin lock. The

kernel's critical sections are the code segments that modify a global data structure such as

the kernel's dispatcher database or its DPC (Deferred Procedure Call) queue.

Before entering the critical section shown in the Figure 7 [Custer 93], the kernel

must acquire the spin lock associated with the protected DPC queue. If the spin lock is

not free, the kernel keeps trying to acquire the lock until it succeeds. The spin lock is

called so because the kernel is held in limbo "spinning" until it gets the lock [Richter 93a].

Processor A

Do
Try to acquire
DPC queue
spin lock

Until SUCCESS
DPCQueue

Release DPC queue spin lock

-__.Critical section

ProcessorB

Do
T1y to acquire
DPC queue
spin lock

Until SUCCESS

Release DPC queue spin lock

Figure 7. Two Processors Competing for Spin Lock [Custer 93]

Spin locks, like the data structures they protect, reside in global memory. The code to

acquire and release a spin lock is written in the host assembly language for speed and to

exploit whatever locking mechanism the underlying processor architecture provides.

~ = ~m - ~ -- -------- ---- ___l

___._

45

On many architectures, spin locks are implemented with a hardware-supported

test-and-set operation, which tests the value of a lock variable and acquires the lock in

one atomic instruction. Testing and acquiring the lock in one instruction prevents a

second thread from grabbing the lock between the time the first thread tests the variable

and the time it acquires the lock.

When a thread is trying to acquire a spin lock, all other activity ceases on that

processor. Therefore, a thread that holds a spin lock is never preempted and is allowed to

continue executing so that it will release the lock quickly. The kernel executes minimum

number of instructions while it holds a spin lock [Custer 93].

The Windows NT kernel makes spin locks available to other parts of the

executive through a set of kernel functions. Device drivers, for example, utilizes spin

locks in order to guarantee that the global data structure is accessed by only one part of a

device driver at a time.

The executive software outside the kernel also needs to synchronize access to

global data structures in a multiprocessor environment. Spin locks only partially fill the

executive's needs for synchronization mechanisms. Waiting on a spin lock literally stalls

a processor, spin locks can be used only under the following strictly limited

circumstances [Custer 93]:

i) The protected resource must be accessed quickly and without complicated
interactions with other code.

ii) The critical section code cannot be paged out of memory, cannot make
references to pageable data, cannot call external procedures, and cannot
generate interrupts or exceptions.

----ooL

46

These restrictions cannot be met under all circumstances. The executive needs to perform

other types of synchronization in addition to mutual exclusion and it must also provide

synchronization mechanisms to the user mode processes.

The Windows NT kernel provides additional synchronization mechanisms to the

executive in the form of kernel objects, known collectively as dispatcher objects. A thread

can synchronize with a dispatcher object by waiting on the object's handle. Doing so

causes the kernel to suspend the thread and change its dispatcher state from running to

waiting as shown in Figure 6. The kernel removes the thread from the dispatcher ready

queue and no longer considers it for execution. A thread cannot resume its execution until

the kernel changes its dispatcher state from waiting to ready. This change occurs when the

dispatcher object, whose handle the thread is waiting on, also undergoes a state change,

from the non-signaled state to the signaled state. The kernel is responsible for both types

of transitions. The kernel dispatcher objects and the system events that induce their state

changes are shown in Figure 8 [Custer 93].

Each type of dispatcher object provides a specialized type of synchronization capability.

For example, mutex objects provide mutual exclusion, whereas semaphores act as a gate

through which a variable number of threads can pass useful information when a number

of identical resources are available. Events can be used either to announce that some

action has occurred or to implement mutual exclusion. A thread can wait on another

thread to terminate, which is useful for synchronizing the activities of two cooperating

threads. Together, the kernel dispatcher objects provide synchronization facility for the

Windows NT executive.

[
Disp~tcher J [State Change J Effect o~ ~ignaled State

. ObJect . . . on Wmting Threads

Mutcx:
(kernel­
mode
use only)

Mutant
(cx:ported
to user
mode)

Owning thread
releases the rrwtcx:

r-- ~ Kernel resumes
!Non Signaled I_____ __-I Signaled I one waiting

Resumed thread thread
acquires the llD.ltcx:

Owning thread or
other thread releases

the rrwtant Kernel resumes
!Non Signaled C ~ Signaled I one waiting

Resumed thread thread
acquires the mutant

One thread releases
the semaphore,

freeing a resource Kernel resumes
Semaphore Non Signaled one or more

waiting threads
A thread acquires the

semaphore. More resources
are not available

A thread sets the event Kernel resumes
Event .-IN_o_n_S-ignal--ed-~ :0 Signaled I one or more

~ _____.! waitin threads
Kernel resumes one g

or more threads

Dedicated thread sets one
event in the event pair Kernel resumes

Event pair 1.---N-o-n-Si_gnal_ed__,~ ~ Signaled I wai~
~ __-I dedicated thread

Kernel resumes the
other dedicated thread

Timer cx:pires K 1 erne resumes
Timer !Non Signaled C ~ Signaled I all waiting

A thread (re)initializes threads
the timer

Thread terminates Kernel resumes

Thread I Non Signaled C ~ Signaled I all waiting

Athr d . ·ti·al· threads ea relill J.Zes
the thread object

Figure 8. Dispatcher Object-State Changes

47

____..._ ~ = 5"5'&==· =---- ••<•---- """~··· '""'-·------ ------------------

.......

48

The user-visible synchronization objects acquire their synchronization capabilities

from kernel dispatcher objects. Each user-visible object that supports synchronization

encapsulates at least one kernel dispatcher object. The following example of setting an

event illustrates how synchronization interacts with thread dispatching [Custer 93]:

i) A user mode thread waits on an event object's handle.

ii) The kernel changes the thread's scheduling state from ready to waiting and
then adds the thread to a list of threads waiting for the event.

iii) Another thread sets the event.

iv) The kernel marches down the list of threads waiting on the event. If a thread's
conditions for waiting are satisfied, the kernel changes the thread's state from
waiting to ready. If it is a variable priority thread, the kernel might also boost
its execution priority.

v) Because a new thread has become ready to execute, . the dispatcher
reschedules. If it finds a running thread with a lower priority than that of the
newly ready thread, it preempts the lower priority thread, issuing a software
interrupt to initiate a context switch to the higher priority thread.

vi) If no processor can be preempted, the dispatcher places the ready thread in the
dispatcher ready queue to be scheduled later .

.~

CHAPTERV

APPLE MACINTOSH

5.1 Basic Architecture

The Apple Macintosh operating system provides routines that allow a

user/programmer to perform basic low-level tasks such as file input and output, memory

management, and process and device control [Apple 96g]. The block diagram shown in

Figure 9 shows the basic architecture of the Apple Macintosh operating system [Apple

96h].

File Management

Process Management

Memory Management

Device Management

68k or Power PC architecture

Figure 9. Apple Macintosh Operating System Layers

The 68K and the Power PC are the two different hardware architectures supported

by the Apple Macintosh operating system [Apple 96e]. The 68K microprocessors are

49

.,._ > "''-·A ----------------

50

manufactured by Motorola. The Power PC microprocessors are manufactured by a

collaboration of Apple Computers, Motorola, and IBM. Power PC architecture also

supports other major PC operating systems such as Windows NT and Windows 95.

The Device management block shown in Figure 9 constitutes the Device manager,

Slot manager, Small Computer System Interface (SCSI) manager, Apple Desktop Bus

(ADB) manager, Power manager, and the Serial driver manager [Apple 96a]. The Device

manager acts as an interface for all other blocks to interact with the hardware, thus it

provides input from and output to the hardware. On system startup the Slot manager

examines each slot and initializes any expansion cards it finds. The Slot manager

maintains data structures that contain information about each slot and every available

system resource, and it provides functions that allow an application developer to get

information about expansion cards and their system resources. The Small Computer

System Interface (SCSI) manager is a software layer that mediates between device drivers

or applications and the SCSI controller hardware in the Apple Macintosh computer.

The Apple Desktop Bus (ADB) manager allows the application developer to get

information about and communicate with hardware devices attached to the Apple

Desktop Bus. The Apple Desktop Bus is a low speed bus that connects input devices,

such as keyboards, mouse devices, and graphic devices, to an Apple Macintosh computer

or to other hardware equipment. The Power manager software controls power to the

internal devices of portable Apple Macintosh computers. The Serial driver in the Device

management block provides low level support for asynchronous, interrupt driven serial

data transfers through the modem and printer ports.

liiii_,j,.__;:, ______ Oiiiii""'~'""'~""""""'"""~~~~aa ""'~~ ~ ioiiii iiiii~~~"""""'=c"""""'""'========="""""""""""" ___ __ =~~~---~~c-~-"~-,~--~~~

-----"-

51

The Process management block constitutes the Process manager, Time manager,

Vertical retrace manager, Notification manager, Deferred task manager, Segment

manager, and Shutdown manager [Apple 96i]. The Process manager handles the

launching, scheduling, and termination of applications. It also provides information about

open processes (process that are initialized and have not terminated). The Time manager

allows a developer to execute a routine periodically or after a specified time delay. The

Vertical retrace manager allows a developer to synchronize the execution of an

application with the redrawing of the screen. The Notification manager provides

notification service. The Notification manager allows applications running in the

background to communicate information to the user. The Deferred task manager

maintains a deferred task queue of records where each record is a deferred task. A

deferred task is an interrupt that will take a long time to process and hence will block all

other interrupts of the same or lower priority when it is executed. The Deferred task

manager executes interrupts (deferred tasks) whenever there is no other interrupt to

process i.e., the interrupt priority level is zero.

The Process Manager loads code segments into memory when an application is

launched. The Segment Manager loads code segments whenever any externally

referenced routine containing those code segments are called for. Both of these operations

occur completely automatically and rely on information stored in the application and in

the individual code segments themselves. A segment is locked when it is first read into

memory and at any time thereafter when routines in the segment are being executed. This

locking prevents the block from being moved during compaction and purging of the

applications memory. The Segment manager also has an unload utility to unload the

52

loaded segments. The Shutdown manager allows a programmer to execute a routine while

the computer is shutting down or restarting.

The Memory management block constitutes the Memory manager, Virtual

memory manager, and Memory management utility [Apple 96f]. The Memory manager

manages the dynamic allocation and release of memory in the application's memory

partition. The Virtual memory manager provides virtual memory services, i.e., it provides

the ability to have a logical address space that is larger than the total amount of available

RAM. The Memory management utility is used to ensure the following [Apple 96f]:

i) the applications call back routines, interrupt tasks, and stand alone codes can
access the applications global variables.

ii) the application or driver functions properly in both 24 and 32 bit modes.

iii) the data and instructions in the microprocessor's internal cache remain
consistent with data and instructions in the RAM.

The File management block constitutes the File manager, Standard file package

manager, Alias manager, and Disk initialization manager [Apple 96b]. The File manager

provides access to the file system and allows applications to create, open, read, write, and

close files. The Standard file package provides routines that handle the interface between

the user and the application when the user saves or opens a document. The Alias manager

helps to locate specified files, directories, or volumes. The Disk initialization manager

manages the process of initializing disks.

The Apple Macintosh operating system doesn't have a kernel like the ones

available in UNIX and Windows NT [Apple 96h]. So there is no such thing as kernel

synchronization, but the Apple Macintosh operating system supports multitasking by

using the cooperative multitasking mechanism as explained in the next section.

___..._ -- ----=,----==-~--~~---- ~-J

.I.

53

5.2 Cooperative Multitasking

The process manager in the Apple Macintosh operating system resolves the time

sharing problem that arises while supporting the multitasking feature [Apple 96i]. This is

achieved by cooperative multitasking between applications. In cooperative multitasking

systems, each application has to surrender its CPU time to the system at regular intervals,

the system then mediates the distribution of processor time to various other applications

[May and Whittle 95]. Preemptive multitasking is also made possible in the Apple

Macintosh operating system by the Thread manager API [Apple 96j]. Preemptive

multitasking is made possible only in the case of the 68k architecture.

Cooperative multitasking doesn't have much in the way of synchronization. It is

the programmer's responsibility to make sure that their program is in a suitable state

before the program surrenders its CPU time to the system. Basically, the event manager

and process manager maintain the cooperative multitasking environment in an Apple

Macintosh operating system.

5.3 Processes and Events

In the Apple Macintosh operating system, a process is an open application or, an

open desk accessory (small applications that can be opened from the Apple menu in an

Apple Macintosh system). The number of processes that can be executed by the operating

system is limited only by the available memory [Apple 96i]. The process manager

maintains information about each process. It maintains the current state of each process,

the address and size of its partition, its type, its creator, a copy of all process specific

information such as global system variables, information about its resources, and a

_____.._

54

process serial number (similar to process id in UNIX). The process manager assigns a

process serial number to identify each process. This number is unique during a single

boot of the local machine [Apple 96i]. The process specific information is referred to as

the context of each process.

When an application is first launched, it starts executing as a foreground process

[Apple 96i]. In the Apple Macintosh operating system, a foreground process has control

of the CPU and other system resources, but it can relinquish control of the CPU if there

are no events pending for it to process. A process that is open but is not currently a

foreground process is said to be a background process.

A context switch can be of two types [Apple 96i]: major switch and minor switch.

A major context switch is a complete switch, the application's windows are moved from

the back to the front, or vice versa. In a major switch, two applications are involved; the

one being switched to the foreground and the one being switched to the background. A

minor switch occurs when the process manager gives time to a background process

without bringing the background process to the front. The two processes involved in a

minor switch can be two background processes or a foreground process and a background

process.

Events are usually divided into three categories [Apple 96d]: low-level events,

operating-system events, and high-level events. The event manager returns low-level

events to applications for occurrences such as the user pressing the mouse button,

releasing the mouse button, pressing a key on the keyboard, or inserting a disk [Apple

96d]. The event manager also returns low-level events to the applications if the

applications needs to activate a window or update a window. When an application

__......_

55

requests an event and there are no other events to report, the event manager returns a null

event.

The event manager returns the operating-system events to the application when

the processing status of the application is about to change or has changed. For example

[Apple 96d], if a user brings an application to the foreground, the process manager sends

an event through the event manager to the application. Some of the work of reactivating

the application is done automatically, both by the process manager and by the window

manager. The application must take care of any further processing needed as a result of

the application being reactivated. The event manager returns high-level events to the

application as a result of communication directed to the application from another

application or process.

5.4 Thread Manager

In the Apple Macintosh operating system, a thread is defined as a separate process

running inside the application space i.e., the memory space occupied by the application

[Apple 96j]. This is directly analogous to an application running as a process inside the

computer space. It is possible to have several applications sharing memory. With a thread

manager, multiple threads can work simultaneously inside an application [Apple 96j].

The thread manager is a simple implementation of concurrent processing within a single

application.

5 .4.1 Concurrency

Concurrency is a series of processes running simultaneously in a single memory

space [Apple 96j]. MultiFinder, introduced in the Apple Macintosh operating system

56

Version 6.0, brought higher level of concurrency to the Macintosh. Starting from Version

6, the process manager implements cooperative multitasking [Apple 96j]. The Process

manager basically depends upon each application to cooperatively surrender time to the

system, it then mediates the distribution of processor time to other applications.

At the thread manager level, concurrency means that an application process is

divided into simpler sub-processes that run concurrently inside the same application.

Each of these sub-processes in the application follows the cooperative multitasking as

followed by the application itself. Threads are of two types [Apple 96j]: cooperative and

preemptive. The cooperative and preemptive threads exists inside the application.

A multithreaded process is associated with one or more threads. Codes that

operate only within an application can use the thread manager. Cooperative threads allow

cooperative multitasking. Operationally, cooperative threads yield to other cooperative

threads only when the application explicitly makes one of the thread manager yield calls

or changes the state of the current cooperative thread. A thread can be in one of the

following three states [Apple 96j]: running, ready, or stopped.

Preemptive threads allow true multitasking at the application level. When an

application gets control from the process manager, preemptive threads for that application

are allowed to run. Preemptive threads differ from cooperative threads because they can

interrupt the currently executing thread at any time to resume execution. If the interrupted

cooperative thread is in the stopped state when the preemptive thread yields to the system,

the next available preemptive thread is scheduled to run [Apple 96j]. Preemptive threads

then preempt each other in a round-robin fashion until the interrupted cooperative thread

is made ready.

-----"c ..J...

57

Thread implementation is different for the 68k architecture and the Power

Macintosh computers [Apple 96j]. Each thread has an associated data storage that

includes the program counter, the registers, and the function stack. The stored stack is not

swapped in and out with the main application stack. The stored stack is an independent

stack, particular to the thread [Apple 96j]. The thread manager treats the main application

as a separate thread.

Although the thread manager preserves each thread's context, threads can work on

shared data within the application but outside the threads context. If two or more threads

operate on the same data, then the data is at risk. Suppose we have a thread in an

application filtering part of an image, at this time a user erases that part of the image. We

don't want this to happen. In such cases, the application developer has to provide enough

protection using a semaphore or some other locking mechanism. So, it is the developer's

responsibility to make sure that his/her data will always be in a consistent state. So all

synchronization issues are handled by the developer and not by the operating system. The

developer has full control over his/her application as the Apple Macintosh operating

system follows the cooperative multitasking mechanism.

In the Apple Macintosh operating system, threads or processes do not have a

priority associated with them [Apple 96j]. Basic scheduling unit is the application. Inside

the application, the developer can share the processor's time among different threads or

yield the processor time to the system voluntarily. The scheduling of the processes and

threads inside the application space is done based on the round robin mechanism [Apple

96j]. If an event is waiting, the main application thread receives control. The developer

can create threads when needed, or can create a pool of threads and withdraw a thread

_... ~- '"' . ,-~~- .. ·' ·~ .. _l

58

from the pool when it is necessary. This mechanism allows the developer to pre-allocate

threads at a time when memory is not fragmented.

5.6 Multiprocessing

DayStar Digital developed the Apple Multiprocessing API under a contract signed

with Apple Computers, Inc. [Cooksey 96]. Mac OS compatible computers that are

compliant with the Apple multiprocessing specifications, have one main processor and

one or more attached PowerPC processors. The main processor runs all applications and

the Mac OS. The Apple Multiprocessing API provides a set of calls that allow an

application to create separate threads of execution called tasks. Tasks are preemptively

scheduled on the available processors in the system, even if there is only one.

The command MPProcessors is used to count the number of processors in the

system [Cooksey 96]. If there is only one processor, the application may proceed as

though the multiprocessing service is not available. However, the developer can still

create preemptive tasks in a single processor environment. The count returned by the

MPProcessors is usually used as an indication of how many tasks to create. While

designing an application for a multiprocessing Mac OS, it is the developer's

responsibility to make sure that the application will strive to keep all the processors busy.

The simplest way to do this is to create at least as many tasks as there are processors

[Cooksey 96]. The application then splits the work to be done into that many pieces and

asks each task to work on a piece. An alternative and frequently-adopted technique is to

create one less task than there are processors.

59

Communication among the application and the tasks occurs in two basic ways

[Cooksey 96]: shared memory and synchronization methods. Since all memory is shared,

anything the application writes into memory is available to the tasks and vice versa.

However, before a task tries to access the memory space occupied by the application, the

task must synchronize with the application using one of the three methods available in the

Multiprocessing API Library [Cooksey 96]: queues, semaphores, and critical regions.

Queues are first-in-first-out queues of 96-bit messages, inserting and extracting elements

is an atomic operation. Many tasks can try to extract the next message from a given queue

but only one will successfully obtain it. Semaphores represent a single 32-bit value that

can be atomically incremented up to a predetermined maximum and atomically

decremented to a minimum of zero. Critical regions prevent sections of code that they

encompass from being executed by more than one task including the application at once.

The PowerPC architecture allows for writes to memory to be deferred [Cooksey

96]. This is a resource management feature that helps the PowerPC achieve its

tremendous speed (350 MHz). In order for another processor to see the correct values in

memory, certain hardware dependent instructions need to be executed. When a task uses a

synchronization method, these instructions are executed, thus ensuring that the processors

involved have a consistent view of memory from that point on. It is also important to use

synchronization methods so that when one of the communicants is not yet ready to

synchronize for some reason, the other one can yield the processor it is on. This makes

the processor immediately available to some other task that may be able to make more

productive use of it.

___..__

60

Before creating tasks it is usually a good idea to create the means by which to

synchronize them with. Queues and semaphores are the two most common methods used.

Semaphores are quicker and less memory intensive but do not offer the same degree of

flexibility as Queues. Queues and semaphores are usually created in pairs [Cooksey 96]:

one by which to signal a request and the other by which to signal results. If a developer

creates only one synchronization object and try to use it for both purposes, it will not

work. After a request is posted, the application will at some point start waiting for results.

If it waits at the same place the request was posted, the request itself may appear to be the

result. Since the application clears the request in the mistaken belief that it was a result,

no work gets done. So to have the work done successfully, it is important to use two

distinct synchronization objects for two-way communication.

CHAPTER VI

COMAPARATIVE EVALUATION

6.1 Comparison

A detailed comparative study on how synchronization is achieved in UNIX,

Windows NT, and Apple Macintosh operating system was carried out and the results

were tabulated as shown in Table ill.

Table III consists of four columns; they are Property, UNIX, Windows NT and

Apple Macintosh. For each_ property in the first column, the remaining three columns

contains a Yes, No or NA with a brief explanation. This comparison is carried out based

on the information collected in Chapters III, N and V. Table III is followed by a section

on observations concerning this study.

61

T
ab

le
 I

II
.

C
om

pa
ri

so
n

o
f

U
N

IX
,

W
in

do
w

s
N

T
,

an
d

A
pp

le
 M

ac
in

to
sh

 O
pe

ra
ti

ng
 S

ys
te

m
s

B
as

ed
 o

n
S

yn
ch

ro
ni

za
ti

on
.

Pr
op

er
ty

U

N
IX

W

IN
D

O
W

S
N

T

A
PP

L
E

 M
A

C
IN

T
O

SH

Is
 i

t
a

pr
ee

m
pt

iv
e

Y
es

,
re

ce
nt

 v
er

si
on

s
o

f
U

N
IX

 s
uc

h
Y

es
,

W
in

do
w

s
N

T
 is

 a

N
o,

 A
pp

le
 M

ac
in

to
sh

 is
 a

m

ul
ti

ta
sk

in
g

op
er

at
in

g
as

 S
V

R
 4

.2
,

S
ol

ar
is

 2
.5

 a
re

P

re
em

pt
iv

e
m

ul
ti

ta
sk

in
g

co
op

er
at

iv
e

m
ul

ti
ta

sk
in

g
sy

st
em

?
pr

ee
m

pt
iv

e
m

ul
ti

ta
sk

in
g

op
er

at
in

g
op

er
at

in
g

sy
st

em
.

op
er

at
in

g
sy

st
em

.
F

or

sy
st

em
s.

de

ta
il

s
se

e
S

ec
ti

on
 5

.2
.

1
Is

 t
hr

ea
d

th
e

ba
si

c
un

it
 o

f
Y

es
,

in
 S

ol
ar

is
 2

.5
 (

a
va

ri
an

t o
f

Y
es

,
in

 W
in

do
w

s
N

T
 t

he
 b

as
ic

N

o,
 i

n
A

pp
le

 M
ac

in
to

sh

sc
he

du
li

ng
?

U
N

IX
)

th
e

ba
si

c
un

it
 o

f
sc

he
du

li
ng

un

it
 o

f
sc

he
du

li
ng

 is
 t

hr
ea

d.

th
e

ba
si

c
un

it
 o

f
is

 t
hr

ea
d.

sc

he
du

li
ng

 is
 p

ro
ce

ss
.

D
ur

in
g

a
bl

oc
ki

ng
 o

pe
ra

ti
on

Y

es
,

in
 c

as
e

o
f a

 b
lo

ck
in

g
op

er
at

io
n

Y
es

,
W

in
do

w
s

N
T

 k
er

ne
l

al
so

N

o,
 i

t i
s

th
e

de
ve

lo
pe

r'
s

do
es

 t
he

 o
pe

ra
ti

ng
 s

ys
te

m

th
e

U
N

IX
 k

er
ne

l
en

su
re

s
th

at
 o

th
er

en

su
re

s
th

e
sa

m
e

as
 U

N
IX

.
re

sp
on

si
bi

li
ty

 to
 l

oc
k

th
e

sa
fe

gu
ar

d
th

e
da

ta
 th

at
 is

 i
n

pr
oc

es
se

s
do

 n
ot

 a
cc

es
s

th
e

da
ta

 th
at

da

ta
 th

at
 m

ay
 b

e
in

 a
n

an
 i

nc
on

si
st

en
t

st
at

e?

is
 i

n
an

 i
nc

on
si

st
en

t
st

at
e.

in

co
ns

is
te

nt
 s

ta
te

.
D

oe
s

th
e

op
er

at
in

g
sy

st
em

Y

es
,

w
he

n
th

e
re

so
ur

ce
 i

s
no

t
Y

es
,

W
in

do
w

s
N

T
 u

se
s

di
ff

er
en

t
Y

es
,

A
pp

le
 M

ac
in

to
sh

ha

ve
 f

un
ct

io
ns

 l
ik

e
sl

ee
p(

)
av

ai
la

bl
e,

 t
he

 p
ro

ce
ss

 b
lo

ck
s

it
se

lf

fu
nc

ti
on

 c
al

ls
,

bu
t

ba
si

ca
ll

y
do

es

al
so

 h
as

 s
im

il
ar

 f
un

ct
io

ns

an
d

sw
it

ch
()

 t
o

bl
oc

k
th

e
by

 c
al

li
ng

 t
he

 s
le

ep
()

 f
un

ct
io

n.
 A

ft
er

th

e
sa

m
e

op
er

at
io

n
as

 U
N

IX
.

w
hi

ch
 c

an
 b

e
ca

ll
ed

 b
y

th
e

j

pr
oc

es
se

s
an

d
to

 i
ni

ti
at

e
a

th
is

 i
t c

al
ls

 t
he

 s
w

it
ch

()
 f

un
ct

io
n

to

cu
rr

en
t

pr
oc

es
s.

 T
he

co

nt
ex

t
sw

it
ch

 in
 o

rd
er

 to

in
it

ia
te

 c
on

te
xt

 s
w

it
ch

 i
n

or
de

r
to

pr

oc
es

s
bl

oc
ks

 i
ts

el
f

an
d

al
lo

w
 a

no
th

er
 p

ro
ce

ss
 t

o
al

lo
w

 a
no

th
er

 p
ro

ce
ss

 t
o

ex
ec

ut
e.

al

lo
w

s
th

e
op

er
at

in
g

ex
ec

ut
e?

sy

st
em

 to
 s

ch
ed

ul
e

th
e

ne
xt

 p
ro

ce
ss

 i
n

a
ro

un
d

ro
bi

n
fa

sh
io

n.

-
-
-
-
·
-
-
-
·
·
-
-

-
-

-

0
\

N

f ,j

'

T
ab

le
 I

II
.

(C
on

ti
nu

ed
)

C
om

pa
ri

so
n

o
f

U
N

IX
, W

in
do

w
s

N
T

,
an

d
A

pp
le

 M
ac

in
to

sh
 O

pe
ra

ti
ng

 S
ys

te
m

s
B

as
ed

 o
n

S
yn

ch
ro

ni
za

ti
on

.

D
oe

s
th

e
op

er
at

in
g

sy
st

em

Y
es

,
in

te
rr

up
ts

 a
re

 b
lo

ck
ed

 w
hi

le

Y
es

,
W

in
do

w
s

N
T

 a
ls

o
fo

ll
ow

s
N

o,
 t

he
 d

ev
el

op
er

 h
as

 t
o

ra
is

e
th

e
in

te
rr

up
t

pr
io

ri
ty

ac

ce
ss

in
g

th
e

cr
it

ic
al

 s
ec

ti
on

 b
y

th
e

sa
m

e
pr

oc
ed

ur
e

as
 U

N
IX

 t
o

pr
og

ra
m

 th
e

ap
pl

ic
at

io
n

in

le
ve

l
(i

pl
)

in
 o

rd
er

 to
 b

lo
ck

ra

is
in

g
th

e
ip

l.
bl

oc
k

in
te

rr
up

ts
.

su
ch

 a
 w

ay
 t

ha
t

th
e

in
te

rr
up

ts
 w

hi
le

 a
cc

es
si

ng
 t

he

ap
pl

ic
at

io
n

by
 i

ts
el

f w
ill

cr

it
ic

al
 s

ec
ti

on
?

ch
ec

k
fo

r
ev

en
ts

 b
y

po
ll

in
g

th
e

ev
en

t
m

an
ag

er

an
d

yi
el

d
th

e
C

P
U

 b
ac

k
to

th

e
op

er
at

in
g

sy
st

em
 s

o
th

at
 it

 c
an

 s
ch

ed
ul

e
th

e
in

te
rr

up
t r

ou
ti

ne
.

D
oe

s
th

e
op

er
at

in
g

sy
st

em

Y
es

,
S

ol
ar

is
 2

.5
 (

va
ri

an
t o

f
U

N
IX

)
Y

es
,

W
in

do
w

s
N

T
 a

ls
o

us
es

 o
th

er

N
A

pr

ov
id

e
ke

rn
el

us

es
 v

ar
io

us
 k

er
ne

l
sy

nc
hr

on
iz

at
io

n
ob

je
ct

s
to

 e
nh

an
ce

 th
e

sy
nc

hr
on

iz
at

io
n

ob
je

ct
s?

ob

je
ct

s
su

ch
 a

s
m

ut
ex

,
lo

ck
s,

 a
nd

sy

nc
hr

on
iz

at
io

n
in

 c
as

e
o

f
se

m
ap

ho
re

s
in

 o
rd

er
 to

 e
nh

an
ce

in

te
rr

up
ts

.
sy

nc
hr

on
iz

at
io

n
w

hi
le

 h
an

dl
in

g
in

te
rr

up
ts

.
D

o
th

e
pr

oc
es

se
s

ha
ve

 a

Y
es

,
U

N
IX

 p
ro

ce
ss

es
 h

av
e

a
N

o,
 t

he
re

 is
 n

o
su

ch
 r

el
at

io
ns

hi
p

N
o,

 t
he

re
 i

s
no

 s
uc

h
pa

re
nt

/c
hi

ld
 r

el
at

io
ns

hi
p

pa
re

nt
/c

hi
ld

 r
el

at
io

ns
hi

p.

am
on

g
pr

oc
es

se
s.

re

la
ti

on
sh

ip
 a

m
on

g
am

on
g

th
em

?
pr

oc
es

se
s.

Is

 i
t

a
sy

m
m

et
ri

c
Y

es
,

U
N

IX
 is

 a
 s

ym
m

et
ri

c
Y

es
,

W
in

do
w

s
N

T
 is

 a
 s

ym
m

et
ri

c
N

o,
 A

pp
le

 M
ac

in
to

sh

m
ul

ti
pr

oc
es

si
ng

 o
pe

ra
ti

ng

m
ul

ti
pr

oc
es

si
ng

 o
pe

ra
ti

ng
 s

ys
te

m
.

m
ul

ti
pr

oc
es

si
ng

 o
pe

ra
ti

ng
 s

ys
te

m
.

fo
ll

ow
s

a
M

as
te

r-
S

la
ve

sy

st
em

?
re

la
ti

on
sh

ip
 a

m
on

g
pr

oc
es

so
rs

 to
 p

ro
vi

de
 t

he

m
ul

ti
pr

oc
es

si
ng

-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-

ca
pa

bi
li

ty
. _

__
__

__
__

__
__

_

o­ w

T
ab

le
 I

II
.

(C
on

ti
nu

ed
)

C
om

pa
ri

so
n

o
f

U
N

IX
,

W
in

do
w

s
N

T
,

an
d

A
pp

le
 M

ac
in

to
sh

 O
pe

ra
ti

ng
 S

ys
te

m
s

B
as

ed
 o

n
S

yn
ch

ro
ni

za
ti

on
.

D
oe

s
th

e
op

er
at

in
g

sy
st

em

Y
es

,
S

ol
ar

is
 2

.5
 (

va
ri

an
t o

f
U

N
IX

)
N

o.

N
o,

 b
ut

 A
pp

le
 M

ac
in

to
sh

pr

ov
id

e
a

po
ol

 o
f

pr
e-

m
ai

nt
ai

ns
 a

 p
oo

l
o

f
in

te
rr

up
te

d
pr

ov
id

es
 s

uc
h

a
po

ol
 o

f
al

lo
ca

te
d

th
re

ad
s

in
 o

rd
er

 to

th
re

ad
s,

 w
hi

ch
 a

re
 p

re
-a

ll
oc

at
ed

 a
nd

pr

e-
al

lo
ca

te
d

th
re

ad
s

fo
r

re
du

ce
 t

he
 t

im
e

in
vo

lv
ed

 in

pa
rt

ia
ll

y
in

it
ia

li
ze

d.
 B

y
de

fa
ul

t,
th

is

en
ti

re
ly

 d
if

fe
re

nt
 p

ur
po

se
.

pr
oc

es
si

ng
 t

he
 i

nt
er

ru
pt

s?

po
ol

 c
on

ta
in

s
on

e
th

re
ad

 p
er

in

te
rr

up
t

le
ve

l
fo

r
ea

ch
 C

P
U

,
pl

us
 a

si

ng
le

 t
hr

ea
d

fo
r

th
e

cl
oc

k.
 T

he
se

th

re
ad

s
us

e
th

e
sa

m
e

sy
nc

hr
on

iz
at

io
n

pr
im

it
iv

es
 a

s
ot

he
r

th
re

ad
s,

 a
nd

 t
hu

s
ca

n
bl

oc
k

if
 th

ey
 n

ee
d

a
re

so
ur

ce

he
ld

 b
y

an
ot

he
r

th
re

ad
.

T
he

 k
er

ne
l

bl
oc

ks
 i

nt
er

ru
pt

s
on

ly
 in

 a
 f

ew

ex
ce

pt
io

na
l

si
tu

at
io

ns
 s

uc
h

as
 w

he
n

ac
qu

ir
in

g
th

e
m

ut
ex

 l
oc

k
th

at

pr
ot

ec
ti

ng
 a

 s
le

ep
 q

ue
ue

.

D
oe

s
th

e
op

er
at

in
g

sy
st

em

Y
es

,
S

pi
n

L
oc

ks
 a

re
 u

se
d

fo
r

sh
or

t
Y

es
,

W
in

do
w

s
N

T
 a

ls
o

pr
ov

id
es

N

A

us
e

S
pi

n
L

oc
ks

 f
or

 a
ch

ie
vi

ng

te
rm

 l
ow

 l
ev

el
 s

yn
ch

ro
ni

za
ti

on

si
m

il
ar

 lo
ck

s.

lo
w

 l
ev

el
 s

yn
ch

ro
ni

za
ti

on
?

m
ec

ha
ni

sm
s.

D

oe
s

th
e

op
er

at
in

g
sy

st
em

Y

es
,

S
ol

ar
is

 2
.5

 (
va

ri
an

t
o

f
U

N
IX

)
Y

es
,

W
in

do
w

s
N

T
 a

ls
o

pr
ov

id
es

Y

es
,

A
pp

le
 M

ac
in

to
sh

pr

ov
id

e
an

y
hi

gh
 l

ev
el

pr

ov
id

es
 s

em
ap

ho
re

s,
 r

ea
de

r-
w

ri
te

r
so

m
e,

 t
he

y
ar

e
pr

oc
es

s
ob

je
ct

,
do

es
 p

ro
vi

de
 s

om
e,

 t
he

y
sy

nc
hr

on
iz

at
io

n
ob

je
ct

s?

lo
ck

s,
 a

nd
 c

on
di

ti
on

 v
ar

ia
bl

es
 a

s
th

re
ad

 o
bj

ec
t,

fi
le

 o
bj

ec
t,

ev
en

t
ar

e
se

m
ap

ho
re

s
an

d
hi

gh
 l

ev
el

 s
yn

ch
ro

ni
za

ti
on

 o
bj

ec
ts

.
ob

je
ct

,
ev

en
t

pa
ir

 o
bj

ec
t,

qu
eu

es
.

se
m

ap
ho

re
 o

bj
ec

t,
ti

m
er

 o
bj

ec
t,

an
d

m
ut

an
t

ob
je

ct
.

~

T
ab

le
 I

II
.

(C
on

ti
nu

ed
)

C
om

pa
ri

so
n

o
f

U
N

IX
,

W
in

do
w

s
N

T
,

an
d

A
pp

le
 M

ac
in

to
sh

 O
pe

ra
ti

ng
 S

ys
te

m
s

B
as

ed
 o

n
S

yn
ch

ro
ni

za
ti

on
.

D
oe

s
th

e
op

er
at

in
g

sy
st

em

Y
es

,
T

ab
le

 I
 s

ho
w

s
th

e
di

ff
er

en
t

Y
es

,
W

in
do

w
s

N
T

 a
ls

o
pr

ov
id

es

N
A

pr

ov
id

e
a

se
t o

f
m

ac
ro

s
to

m

ac
ro

s
to

 h
an

dl
e

in
te

rr
up

ts
.

T
he

se

si
m

il
ar

 m
ac

ro
s.

ha

nd
le

 i
nt

er
ru

pt
s?

m

ac
ro

s
he

lp
 to

 p
ro

vi
de

sy

nc
hr

on
iz

at
io

n
by

 r
ai

si
ng

 th
e

ip
l,

an
d

by
 r

es
to

ri
ng

 th
e

ip
l

to
 i

ts

pr
ev

io
us

 v
al

ue
 a

nd
 s

o
on

.
I

D
oe

s
th

e
op

er
at

in
g

sy
st

em

Y
es

,
di

ff
er

en
t

va
ri

an
ts

 o
f

U
N

IX

Y
es

, W
in

do
w

s
N

T
 a

ls
o

pr
ov

id
es

Y

es
,

m
ul

ti
pr

oc
es

si
ng

 A
PI

ut

il
iz

e
th

e
ha

rd
w

ar
e

ut
il

iz
e

di
ff

er
en

t
ha

rd
w

ar
e

in
st

ru
ct

io
n

sy
nc

hr
on

iz
at

io
n

ba
se

d
on

de

ve
lo

pe
d

in
 c

ol
la

bo
ra

ti
on

in

st
ru

ct
io

ns
 s

et
s

in
 o

rd
er

 to

se
ts

 t
o

pr
ov

id
e

sy
nc

hr
on

iz
at

io
n,

 b
ut

ha

rd
w

ar
e

in
st

ru
ct

io
n

se
ts

w

it
h

D
ay

S
ta

r
D

ig
it

al
 u

se
s

!
pr

ov
id

e
sy

nc
hr

on
iz

at
io

n?

th
ey

 a
ll

ar
e

si
m

il
ar

 to
 t

es
t-

an
d-

se
t

av
ai

la
bl

e
on

 t
he

 p
ar

ti
cu

la
r

th
e

ha
rd

w
ar

e
in

st
ru

ct
io

ns

an
d

co
nd

it
io

na
l-

st
or

e
in

st
ru

ct
io

ns
.

pr
oc

es
so

r
on

 w
hi

ch
 it

 r
un

s.

se
ts

 a
va

il
ab

le
 in

 6
8k

 a
nd

P

ow
er

P
C

 p
ro

ce
ss

or
s

in

or
de

r
to

 p
ro

vi
de

 p
ro

pe
r

sy
nc

hr
on

iz
at

io
n

in
 c

as
e

o
f

'
m

ul
ti

pl
e

pr
oc

es
so

rs
.

I
D

oe
s

th
e

op
er

at
in

g
sy

st
em

Y

es
,

U
N

IX
 h

as
 s

om
e

fa
ci

li
ti

es

Y
es

,
W

in
do

w
s

N
T

 p
ro

vi
de

s
th

e
N

A

pr
ov

id
e

an
y

pr
ov

is
io

n
to

si

m
il

ar
 to

 t
he

 o
ne

s
av

ai
la

bl
e

in

te
rm

in
at

io
n

ha
nd

le
rs

 a
nd

re

m
ov

e
m

em
or

y
le

ak
s?

W

in
do

w
s

N
T

 to
 r

em
ov

e
m

em
or

y
ex

ce
pt

io
n

ha
nd

le
rs

 in
 o

rd
er

 to

le
ak

s.

re
m

ov
e

m
em

or
y

le
ak

s
ca

us
ed

 b
y

ab
no

rm
al

 t
er

m
in

at
io

n
o

f

I
pr

oc
es

se
s

w
hi

le
 h

av
in

g
a

m
em

or
y

lo
ca

ti
on

 l
oc

ke
d.

!

0
\

V
l

k-

T
ab

le
 I

II
.

(C
on

ti
nu

ed
)

C
om

pa
ri

so
n

o
f

U
N

IX
,

W
in

do
w

s
N

T
,

an
d

A
pp

le
 M

ac
in

to
sh

 O
pe

ra
ti

ng
 S

ys
te

m
s

B
as

ed
 o

n
S

yn
ch

ro
ni

za
ti

on
.

C
an

 a
 th

re
ad

 s
yn

ch
ro

ni
ze

Y

es
,

bu
t

U
N

IX
 d

oe
sn

't
pr

ov
id

e
Y

es
,

a
th

re
ad

 c
an

 s
yn

ch
ro

ni
ze

N

A

w
it

h
va

ri
ou

s
ot

he
r

ob
je

ct
s?

m

an
y

op
ti

on
s

as
 t

he
 W

in
do

w
s

N
T

w

it
h

th
e

ex
ec

ut
iv

e
pr

oc
es

se
s,

do

es
 to

 p
ro

vi
de

 t
hr

ea
d

th
re

ad
s,

 f
ile

s,
 e

ve
nt

s,
 e

ve
nt

 p
ai

rs
,

sy
nc

hr
on

iz
at

io
n.

se

m
ap

ho
re

s,
 m

ut
an

t,
an

d
ti

m
er

ob

je
ct

s.

Is
 t

he
re

 a
ny

 s
et

 o
f

ob
je

ct
s

th
at

Y

es
,

U
N

IX
 h

as
 o

bj
ec

ts
 t

ha
t

do
 n

ot

Y
es

,
in

 W
in

do
w

s
N

T
 s

ec
ti

on
,

N
A

a

th
re

ad
 c

an
no

t
sy

nc
hr

on
iz

e
su

pp
or

t
sy

nc
hr

on
iz

at
io

n.

po
rt

,
ac

ce
ss

 t
ok

en
, o

bj
ec

t
w

it
h?

di

re
ct

or
y,

 s
ym

bo
li

c-
li

nk
, p

ro
fi

le
,

an
d

ke
y

ob
je

ct
s

do
 n

ot
 s

up
po

rt

sy
nc

hr
on

iz
at

io
n.

C
an

 a
 th

re
ad

 s
pe

ci
fy

 t
he

Y

es
,

U
N

IX
 t

hr
ea

ds
 c

an
 s

pe
ci

fy
 t

ha
t

Y
es

,
in

 W
in

do
w

s
N

T
 a

 t
hr

ea
d

ca
n

N
A

op

er
at

in
g

sy
st

em
 th

at
 i

ts
 w

ai
t

it
s

w
ai

t
sh

ou
ld

 b
e

ca
nc

el
ed

 i
f

it
 is

w

ai
t

on
 s

ev
er

al
 o

bj
ec

ts
 a

nd
 c

an

sh
ou

ld
 b

e
ca

nc
el

ed
 i

f i
t

is
 n

ot

no
t e

nd
ed

 w
it

hi
n

a
ce

rt
ai

n
am

ou
nt

 o
f

al
so

 s
pe

ci
fy

 t
ha

t
its

 w
ai

t
sh

ou
ld

en

de
d

w
it

hi
n

a
ce

rt
ai

n
tim

e.

be
 c

an
ce

le
d

if
 it

 is
 n

ot
 e

nd
ed

am

ou
nt

 o
f

ti
m

e?

w
it

hi
n

a
ce

rt
ai

n
am

ou
nt

 o
f

tim
e.

-
-
-
-
-

-
-
-
-
-
-

-
~

-
-
-
-

0
\

0
\

67

6.2 Observations

The following observations were made in this comparative study: The UNIX

operating system is the most reliable of the three operating systems taken into

consideration, Windows NT comes next and then the Apple Macintosh operating system.

Windows NT is becoming increasingly popular because it helps to build small business

machines at a low cost, and it also has an attractive user interface. Windows NT is

popular because it is easy to maintain and administer both as a server and as a client

operating system. Windows NT and recent versions of UNIX, such as SVR 4.2 and

Solaris 2.5, are preemptive multitasking operating systems. The Apple Macintosh

operating system is a cooperative multitasking system.

In Solaris 2.5 and Windows NT the basic unit of scheduling is a thread. Some of

the better synchronization mechanisms utilized by these three operating systems are

hardware dependent. One such hardware dependent synchronization mechanism is the

Spin lock. Unix processes have a well defined hierarchy. Each process has at most one

parent and zero or more child processes. In Windows NT and Apple Macintosh operating

systems there is no parent/child relationship among processes.

UNIX and Windows NT kernels are re-entrant, but the Apple Macintosh operating

system is not. Apple does support re-entrant codes to some extent but it is limited to the

68k architecture. UNIX and Windows NT are symmetric multiprocessing operating

systems, but Apple Macintosh is not. The Apple Macintosh operating system also

supports multiple processors, but it is made possible by using the multiprocessing API

developed in collaboration with Daystar International. Thus the operating system by itself

~

68

does not support multiprocessing and all the synchronization issues have to be handled by

the application developers.

CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Summary

In Chapter I we discussed operating systems in general, their components, and

multitasking operating systems. Various studies carried out in this area (i.e.,

synchronization) were also mentioned. Chapter II provided information about

synchronization, process communication, and different synchronization mechanisms.

The results of the study on synchronization in UNIX, Windows NT, and Apple

Macintosh operating systems were listed in Chapters ill, IV, and V, respectively. Before

discussing synchronization issues, a brief discussion of the internals of the UNIX,

Windows NT, and Apple Macintosh operating systems was provided at the beginning of

their respective chapters.

Chapter ill presented some details about UNIX process states, parent/child

relationship among processes, kernel level, and multiprocessor synchronization. Among

other synchronization mechanisms and issues, semaphores, semaphore convoy effect,

read-write locks, sleep locks, etc., were also discussed. After the discussion about basic

architecture of Windows NT, Chapter IV provided some details about the protected

subsystem, Windows NT executive, processes, thread states, user-level, and kernel-level

synchronization mechanisms, as well as multiprocessor synchronization issues.

69

70

We discussed cooperative multitasking, processes and events, thread manager and

concurrency, and multiprocessing API in Chapter V. Based only on the synchronization

issue, Chapter VI compares these operating systems and tabulates their differences and

similarities, followed by the observations of this study.

7.2 Future Work

It is possible to design a new synchronization primitive based on the study

conducted in this thesis. It is also possible to extend this study further to explain the

reasons for the success or failure of these operating systems based on synchronization.

The Apple Macintosh operating system Version 8.0, which is the most recent release, has

undergone some major changes. Multitasking capability has improved a lot, but no proper

documentation is available on this as of today. This comparative study can be updated by

including the latest version of these operating systems.

REFERENCES

[Apple 96a] Apple Technical Library, Inside Macintosh: Devices, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96b] Apple Technical Library, Inside Macintosh: Files, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96c] Apple Technical Library, Inside Macintosh: Interapplication
Communication, Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96d] Apple Technical Library, Inside Macintosh: Macintosh Toolbox Essentials,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96e] Apple Technical Library, Inside Macintosh: Mac OS Runtime Architecture,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96f] Apple Technical Library, Inside Macintosh: Memory, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96g] Apple Technical Library, Inside Macintosh: Operating System Utilities,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96h] Apple Technical Library, Inside Macintosh: Overview, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96i] Apple Technical Library, Inside Macintosh: Processes, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96j] Apple Technical Library, Inside Macintosh: System 7.5 Technologies,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Avutu 93] Raveendra Reddy Avutu, A General Mutual Exclusion Primitive, Masters
Thesis, Computer Science Department, Oklahoma State University, Stillwater,
OK, 1993.

[Bach 86] Maurice J. Bach, The Design of the UNIX Operating System, Prentice-Hall
Inc., Englewood Cliffs, NJ, 1986.

71

72

[Cooksey 96] Chris Cooksey, "Working with Apple's Multiprocessing APf', Apple
Technical Information Library, Technote 1071, Reading, MA, October 1996.

[Custer 93] Helen Custer, Inside Windows NT, Microsoft Press, Redmond, W A, 1993.

[Davis 94] Ralph Davis, Windows NT Network Programming, Addison-Wesley
Publishing Company, Menlo Park, CA, 1994.

[Deitel 92] H. M. Deitel, An Introduction to Operating Systems, Addison-Wesley
Publishing Company, Reading, MA, 1992.

[Digital87] Digital Equipment Corporation, VAX Architecture Reference Manual, 1987.

[Dijkstra 68] E. W. Dijkstra, "Co-operating Sequential Processes", In Programming
Languages, F. Genuys (Ed.); Academic Press, pp. 43-112, Eindhoven, The
Netherlands, 1968.

[Dunstan 89] N. Dunstan, "Synchronization Problems and UNIX System V", ACM
Computing Surveys, Vol. 21, No.4, pp. 15-19, December 1989.

[Dunstan and Fris 95] Neil Dunstan and Ivan Fris, "Process Scheduling and. UNIX
Semaphores", Software: Practice and Experience, Vol. 25, No. 10, pp. 1141-
1153, October 1995.

[Hoare 74] C. A. R. Hoare, "Monitors: An Operating System Structuring Concept",
Communications of the ACM, Vol. 17, No. 10, pp. 549-557, October 1974.

[Kelley 89] M. H. Kelley, "Multiprocessor Aspects of the DG/UX Kernel", Proceedings
of the Winter 1989 USENIX Conference, pp. 85-99, San Diego, CA, January 1989.

[Krakowiak 90] Sacha Krakowiak, Principles of Operating Systems, MIT Press,
Cambridge, MA, 1990.

[Lee and Luppi 87] T. P. Lee and M. W. Luppi, "Solving Performance Problems on a
Multiprocessor UNIX System", Proceeding of the Summer 1987 USENIX
Conference, pp. 399-405, Phoenix, AZ, June 1987.

[Leffler, et al. 89] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The
Design and Implementation of the 4.3 BSD UNIX Operating System, Addison­
Wesley, Reading, MA, 1989.

[May and Whittle 95] John C. May and Judith B. Whittle, Programming Primer for the
Macintosh, Volume 1, AP Professional, Cambridge, MA, 1995.

73

[McGilton 83] Henry McGilton, Introducing the UNIX System, McGraw-Hill, New York,
NY, 1983.

[Peterson 81] G. L. Peterson, "Myths About the Mutual Exclusion Problem",
Information Processing Letters, Vol. 12, No.3, pp. 115-116, June 1981.

[Richter 93a] Jeff Richter, Advanced Windows NT, Microsoft Press, Redmond, WA,
1993.

[Richter 93b] Jeff Richter, "Creating, Managing, and Destroying Processes and Threads
Under Windows NT", Microsoft Systems Journal, Vol. 8, No.7, pp. 55-78, July
1993.

[Ritchie 78] D. M. Ritchie, "Synchronization and Scheduling", The Bell System Technical
Journal, Vol. 57, No.6, pp. 1935-1937, July 1978.

[Silberschatz and Galvin 95] A vi Silberschatz and Peter Galvin, Operating System
Concepts, Addison-Wesley Publishing Company, Reading, MA, 1995.

[Stallings 95] William Stallings, Operating Systems, Prentice-Hall, Englewood Cliffs, NJ,
1995.

[Tanenbaum 92] A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1992.

[Tanenbaum and Woodhull 97] A. S. Tanenbaum and A. S. Woodhull, Operating
Systems: Design and Implementation, Prentice-Hall Inc., Englewood Cliffs, NJ,
1997.

[UNIX 92] UNIX System Laboratories, Device Driver Reference-UNIX SVR4.2, UNIX
Press, Prentice-Hall Inc., Englewood Cliffs, NJ, 1992.

[Vahalia 96] Uresh Vahalia, Unix Internals: The New Frontiers, Prentice-Hall Inc.,
Upper Saddle River, NJ, 1996.

[Wheeler 96] D. A. Wheeler, Ada 95: The Lovelace Tutorial, Springer-Verlag Inc., New
York, NY, 1996.

[Wills 96] Craig E. Wills, "Process Synchronization and IPC", ACM Computing Surveys,
Vol. 28, No. 1, pp. 209-211, March 1996.

··~ •---~ "' ·---·~ ·--• "'"" _ . ..,_,_~, ... ---~--- -~,,.._ •~·- - .,_,-,;o· --,·---~-~~--~·-~·~,-..,-~-~---~-~ •·'·"~-~~-~. ---~--~.~~~"""'~"' ., .. ,._.,._,,,.oo•--"~"-'''-~'''·-

tL

S3:>ION3dciV

ADB

BSD

Critical Section

DPC

IPC

IPL

LPC

Mac

MPProcessors

Mutual Exclusion

Object handle

p

SCSI

Semaphore

SVR4

APPENDIX A: GLOSSARY

Apple Desktop Bus.

Berkeley Software Distribution, a flavor of UNIX.

When a process is accessing shared data, the process must
be in its critical section to insure the integrity of the data.

Deferred Procedure Call.

Inter-Process Communication.

Interrupt Priority Level.

Local Procedure Call.

Macintosh.

Command used in an Apple Macintosh multiprocessing
operating system to count the number of processors.

Each process accessing the shared data excludes all other
accesses from doing so simultaneously. This is called
mutual exclusion.

An index into a process-specific table that contains
pointers to all the objects that the process has opened a
handle to.

Proberen, a Dutch word meaning "to test".

Small Computer System Interface.

A semaphore is a non-negative integer variable that can be
handled only by the P and V operations.

System V Release 4.

75

v

XeroxPARC

V erhogen, a Dutch word meaning "to increment".

Xerox Palo Alto Research Center.

76

l

Macintosh

UNIX

Windows NT

Win32

APPENDIX B: TRADEMARK INFORMATION

A registered trademark of Apple Computer, Inc.

A registered trademark of AT&T.

A registered trademark of Microsoft Corporation.

A registered trademark of Microsoft Corporation.

77

VITA

Ramasamy Satishkumar \.

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF SYNCHRONIZATION MECHANISMS IN UNIX, WINDOWS
NT,ANDMACOS

Major Field: Computer Science

Biographical:

Personal Data: Born in Lakshmipuram, India, July 15, 1974, son of Mr. and Mrs.
N. Ramasamy.

Education: Received Bachelor of Engineering in Electronics and Communication
Engineering from University of Madras, Madras, India, in July 1995;
completed requirements for the Master of Science Degree in Computer
Science at the Computer Science Department at Oklahoma State University
in December 1997.

Professional Experience: Working as a Database and System Administrator in the
Writing Center at Oklahoma State University, from June 1996 to July 1997.

--~l

