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PREFACE 

In the world of operating systems, the wheels of progress tum rather slowly. 

Operating systems take years to develop. Communication between processes is an 

important and difficult topic in operating systems. Studies of interactions and 

communications among processes have resulted in new synchronization primitives. 

Existing commercial and popular operating systems use different synchronization 

mechanisms to achieve kernel based synchronization as well as to provide 

synchronization facilities for applications. Each of these synchronization mechanisms has 

its advantages and disadvantages. The objective of this thesis work was to conduct a 

comparative study on how synchronization is achieved in UNIX, Windows NT, and 

Apple Macintosh operating systems. A detailed study on how synchronization is achieved 

in these operating systems was carried out. Based on this study the operating systems 

were compared and the results were tabulated. 

The comparative study indicates that among other things UNIX and Windows NT 

are preemptive multitasking and symmetric multiprocessing operating systems; Apple 

Macintosh is a cooperative multitasking and master-slave multiprocessing operating 

system; Thread is the basic unit of scheduling in Windows NT and in recent versions of 

UNIX such as Solaris 2.5; and in a multiprocessor environment, both UNIX and 

Windows NT use Spin Locks for achieving synchronization. 

iii 
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CHAPTER I 

INTRODUCTION 

An operating system is the set of programs that control a computer. Many books 

on operating systems describe various operating system concepts [Deitel 92] [Krakowiak 

90] [Stallings 95] [Tanenbaum 92] [Tanenbaum and Woodhull 97]. Operating system 

software includes several levels: kernel-level services, library-level services, and 

application-level services. Applications are user programs that are linked together with 

libraries. 

The details of what constitutes a process differ from one system to another. At the 

highest level of abstraction, a process comprises the following [Dei tel 92]: a program 

abstraction that defines the initial code and data, a private address space that is a set of 

virtual memory addresses that the process can use, and system resources such as 

semaphores, communication ports, and files, that the operating system allocates to the 

process as the program executes. 

An operating system consists of the following components [Tanenbaum 92]: 

i. basic structure; 

ii. synchronization and communication mechanisms; 

iii. implementation of processes, process management, scheduling, and 
protection; 
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iv. memory organization and management, including virtual memory; and 

v. input output device management, secondary storage management, and file 
system management. 

A multitasking operating system concurrently executes more than one task or 

process. A multitasking operating system is basically a logical extension of a 

multiprogrammed operating system. Multiple jobs are executed by the CPU switching 

between them, but the switches occur so frequently that the users may interact with each 

program while it is running. Time slicing, as used in operating systems, is when a process 

is given a particular time period in which it can utilize the CPU and, when the time period 

completes, the CPU is allocated to the next process and the current process is sent back to 

the ready queue. 

Synchronization among processes is an important issue in operating systems. One 

of the primary problems confronting the designers of operating systems is to provide an 

efficient synchronization mechanism. A considerable amount of research work has been 

reported in open literature in this area. Many synchronization primitives have been 

proposed, e.g., Events, Sequences, Queues, and Conditional Critical Regions. Dunstan 

and Fris did a study on semaphores as implemented in UNIX System V [Dunstan and Fris 

95]. Avutu did an extensive study on synchronization mechanisms, and came up with a 

new synchronization primitive [Avutu 93]. This thesis work comprises of a detailed 

comparative study on how synchronization is achieved in UNIX, Windows NT, and 

Apple Macintosh ("Mac") operating systems. 

The rest of this thesis report is organized as follows. Chapter II discusses 

synchronization and different synchronization mechanisms. Chapter ill, N, and V deal 

--~·-·----- --·---~ 
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with UNIX, Windows NT, and Apple Macintosh operating systems, respectively. This 

three chapters introduce the basic architecture of each operating system and then detail 

how synchronization is achieved in them. Based on the information collected in this 

study, Chapter VI compares how synchronization is achieved in the three operating 

systems under consideration. Chapter Vll concludes, summarizes, and suggests future 

work. 

____....&._ ___.. 
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CHAPTER IT 

LITERATURE REVIEW 

2.1 Synchronization 

Synchronization is the mechanism used to guarantee mutual exclusion among 

processes when accessing a critical section and to achieve inter-process communication 

[Wills 96]. A critical section is a sequence of instructions that may be executed by at 

most one process at a time. Processes involved in synchronization become indirectly 

aware of each other by waiting on a condition that is set by other processes [Deitel 93]. 

2.2 Communication Between Processes 

Processes communicate with each other using inter-process communication (IPC) 

mechanisms. Files, pipes, and shared memory are some of the methods used for IPC. 

Files are the most obvious means of passing information between processes. One process 

writes to a file and the other reads from that file. Even though files are not interactive, 

they are often used for IPC. 

Another method of connecting the output data stream of one process to the input 

of another process is known as a pipe. A pipe can be of two types: unidirectional and bi-

directional. In unidirectional pipes, the second process cannot talk back to the first 

process. In bi-directional pipes, actually two unidirectional pipes connect the two 

processes, so that both of the processes can communicate with each other. Pipes 

4 
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can hold only a finite amount (10 blocks) of data [Vahalia 96]. Deadlock can occur when 

using pipes for IPC. For example, while using a bi-directional pipe between two 

processes, both unidirectional pipes get filled up, then if both processes are blocked 

writing to their pipes, neither can read any information from their own unidirectional pipe 

because they haven't finished writing into the other pipe. 

The use of shared memory is one of the fastest IPC mechanisms known. Two or 

more processes share part of the logical memory locations [Wills 96]. Shared memory 

IPC mechanisms are easy to implement in operating systems with paged memory 

architecture [Wills 96]. In the case of using shared memory for IPC, the operating system 

has to keep a link count (similar to the case of using shared files) so that a page can be 

freed when the link count becomes zero. Implementing shared memory IPC for operating 

systems without paged architecture is considerably more difficult than for those with 

paged architecture [Wills 96]. 

2.3 Synchronization Mechanisms 

Synchronization mechanisms can be broadly classified into four basic types based 

on their level and type of implementation and support: software support, hardware 

support, operating system support, and language support. In addition, hybrid 

synchronization solutions exist that combine more than one approach [Wills 96]. 

2.3.1 Software Support 

A correct software based solution for mutual exclusion was first devised by 

Dekker (as cited in [Dijkstra 68]). He used shared variables to control access to the 

critical section. Subsequently, other solutions were also proposed. A relatively simpler 

---~-b 
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solution to the two process mutual exclusion problem was presented by Peterson 

[Peterson 81]. Dijkstra presented a solution for solving the critical section problem for n 

processes called the Bakery algorithm [Silberschatz and Galvin 95]. 

2.3.2 Hardware Support 

Hardware based solutions are typically the conceptually simplest solutions. They 

can be achieved for instance by disabling hardware interrupts at the start of the critical 

section and enabling them at the end. This will not work in the case of having more than 

one processor, because even if interrupts are blocked in one processor, all other 

processors are free to access the critical section, so a different technique has to be 

followed. For hardware based solution many machines provide special hardware 

instructions that can be used either to test and modify the contents of a word or to swap 

the contents of two words atomically (i.e., indivisibly). 

95]. 

The Test-and-Set instruction can be defined as follows [Silberschatz and Galvin 

Function Test-and-Set (var target: boolean): boolean; 

begin 

end; 

Test-and-Set:= target; 
target := true; 

The Swap instruction swaps the contents of two words atomically and is defined as 

follows. 

Procedure Swap (var a, b: boolean); 

var temp: boolean; 
begin 

temp:= a; 
a:=b; 

---"""""-- =--- ------- ---~~ 
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b :=temp; 
end; 
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A context switch cannot occur in the middle of the critical section, as these hardware 

instructions are carried out in an atomic manner, i.e., their execution from beginning to 

end is indivisible. 

2.3.3 Operating System Support 

Operating system based solutions can be achieved by adding process-

synchronization support to an operating system [Silberschatz and Galvin 95]. The use of 

semaphores is one example of this type of support. Semaphores can be used to solve most 

of the synchronization problems. Dijkstra originally defined the semaphore concept 

[Dijkstra 68]. A semaphores is a non-negative integer variable that has an implicit queue 

associated with it. The value of the variable can be handled only by the following two 

primitive operations. 

P(s): ifs > 0 then s f- s- 1; 
else wait on s; 

V(s): s f- s + 1; 

The mutual exclusion scheme can be coded using a mutual exclusion semaphore 

called mutex (initialized to 1), as follows. 

Wait: P(mutex); 
<critical section> 

Signal: V(mutex); 

The Wait or P operation is used by a process wishing to enter a critical section. If 

the value of the semaphore variable is greater than zero, it is decrement by one and the 

process is executed. If the value is less than or equal to zero, then the process is added to 

··-·--- --. --- ·-- --__ -I. 
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the queue associated with the semaphore. The Signal or V operation is used by a process 

leaving a critical section. It checks the queue to see if there is a process waiting. The 

processes in the queue are in a passive waiting state. If there is a process, it is activated. If 

no process is waiting, the semaphore is incremented by one [Silberschatz and Galvin 95]. 

There are many extensions to the basic definition and implementation of the concept of a 

semaphore, intended to suit various synchronization requirements, runtime environments, 

and implementation platforms. 

2.3.4 Language Support 

Programming language based synchronization can be implemented, for example, 

by using a construct named monitor or a construct called rendezvous. Implementations of 

the monitor construct exist in Mesa and JAVA, programming languages from Xerox 

P ARC and Sun Microsystems, respectively. A monitor is characterized by a set of 

programmer-defined operators. The syntax of a monitor [Silberschatz and Galvin 95] is 

as follows: 

type monitor-name = monitor 
variable declarations 
procedure entry Pl ( ... ); 

begin ... end; 
procedure entry P2( ... ); 

begin ... end; 

procedure entry Pn( ... ); 
begin ... end; 

begin 
Initialization Code 

end. 

--------------- ---~-......... 
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Detailed information about monitors can be found in the original paper by Hoare [Hoare 

74]. 

Synchronization (or rendezvous) is achieved in the Ada programming language by 

using the accept statements and entries in a task [Wheeler 96]. A task is a unit of 

parallelism in Ada. It consists of two parts: task specification and task body. Task 

specification contains declarations and definitions provided by a task called entry. The 

task body contains the implementations. The syntax of a task specification is as follows. 

task [type] <name> is 
entry specifications 
end; 

The syntax of a task body is given below. 

task body <name> is 
declarations of local variables 
begin 

end; 

list of statements 
exceptions 
exception handlers 

An accept statement is an entry into a task. It is similar to a procedure in conventional 

languages. There is a one-to-one correspondence between the entry statements in a task 

specification and the accept statements in a task body. The syntax of the accept statement 

is given below. 

accept <entry id> ( <formal parameters> ) do 
body of the accept statement 
end <entry id>; 

Once an entry is called, the corresponding accept entry will not be executed until control 

reaches the accept statement in the task. If the accept statement is reached first, the task is 

blocked until some other task executes the corresponding entry. When an entry and the 
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accept connect, it is said that rendezvous occurs. The rendezvous mechanism is more 

disciplined than a monitor, since the accept statements appear inside a context. 



_____....__ 

CHAPTER ill 

UNIX 

3.1 Basic Architecture 

The UNIX operating system can be divided into two major levels as shown in 

Figure 1: user level and kernel level. The UNIX kernel can be divided into two major 

entities: the file subsystem and the process subsystem [Bach 86]. The file subsystem and 

the process subsystem are shown in the left and right sides of Figure 1 [Bach 86], 

respectively. 

The system call and the library interfaces lie between the user level and the kernel 

level. The system calls can be further subdivided as those that interact with the file 

subsystem and those that interact with the process control subsystem. The file subsystem 

manages files, allocates file space, administers free space, controls access to files, and 

retrieves data for users. The device drivers block that is shown between the file subsystem 

and the hardware control are the kernel modules that control the peripheral devices. 

The process control subsystem is responsible for process synchronization, inter­

process communication, memory management, and process scheduling. Finally, the 

hardware control, shown above the hardware block in Figure 1, is responsible for 

handling interrupts and for communicating with the machine. 

11 
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user progrmns 

User Level I libraries I 
Kernel Level 

I ;. System call interfacp I 
I 

'4' ~ 
inter-process 

file subsystem process cormnunication 

'""'-~control 

I smaiDJu I 
~ buffer cache J subsystem 

memory 

character i 'block ~ management 
I 

device drivers 

hardware control 
------- --- -- ---

Kernel Level 
Hardware Level 

hardware 

Figure 1. Block Diagram of the UNIX System [Bach 86] 

I/0 devices and other peripherals may interrupt the operating system while a 

process is being executed. In such cases the kernel may resume the execution of the 

interrupted process after servicing the current interrupt. Interrupts are serviced by special 

functions in the kernel. 

3.2 UNIX Processes 

A process from the UNIX point of view is an entity that runs a program and 

provides an execution environment for it [Bach 86]. In other words, it is an instance of a 

___......_ -~~~ 
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running program. It comprises of an address space and a control point. Basically, a 

process is the fundamental scheduling entity, i.e., only one process runs on the CPU at a 

time. Each process has a definite life time. Most of the UNIX processes are created by a 

fork or vfork system call. A process invokes the exec system call to run a new program, 

thus during the life time of a process it may run one or more programs at a time [Bach 

86]. 

UNIX processes have a well-defined hierarchy. Each process has at most one 

parent process and zero or more child processes. The process hierarchy looks like an 

inverted tree with the init process at the top [Back 86]. The init process executes the 

program located at /etc/init, and it is the first user process that gets created when the 

system boots. UNIX processes are in well-defined states as shown in Figure 2 [V ahalia 

96]. In UNIX , the fork system call is used to create a process, until a process is fully 

created it is in the initial state and then it is moved to the ready-to-run state. The ready-to­

run state means that a process is ready to be scheduled by the kernel. When such a 

process is scheduled, it executes in the kernel mode (kernel running state) still the context 

switch gets completed. Mter this, if it was a user mode process, it shifts to the user 

running state, whereas if it was blocked for a resource while executing a system call, it 

resumes execution in the kernel mode. Processes switching can occur only in the kernel 

by explicit calls to the event-wait mechanism [Leffler, et al. 89]. 

As a result of a system call or an interrupt, a process that is running in the user 

mode enters the kernel mode, and returns to user mode when the system call/interrupt 

completes. If a process has to wait for an event or resource that is not available, it calls 

the sleep() function. This will put the process on a queue of sleeping processes (asleep 

-----· ---~J. 
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wait 

wakeup 

Figure 2. Process States and State Transition [V ahalia 96] 

state). When the resource becomes available or the event occurs, the kernel wakes up all 

of the processes waiting for the same. When a process is stopped or suspended by a stop 

signal, it moves from the ready-to-run state and asleep state to the stopped state and the 

stopped-plus-asleep state, respectively. A continue signal helps this process to return to 

its previous state. A process terminates by calling the exit system call. The kernel releases 

all of the resources of the process, except the exit status and resource usage information, 

and leaves the process in zombie state. A process remains in this state until its parent 

generates a wait signal, which destroys the process and returns the exit status to the parent 

[Vahalia 96]. 

~ -~" ~------ --- -----.-----'"~-- ____ --L 
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3.3 Kernel Level Synchronization 

UNIX kernel is re-entrant, meaning that several process may be involved in kernel 

activity concurrently. In fact, processes may even be executing the same routine in 

parallel. At any instant, several processes may be active but only one is actually running, 

the others are inactive (blocked, suspended, or asleep). UNIX implements kernel level 

synchronization to avoid race condition, as all processes share the same copy of the 

kernel. Race condition is a situation in which several processes access and manipulate the 

same data concurrently, and the outcome of the execution depends on the particular order 

in which the access takes place. UNIX uses several synchronization techniques. The first 

and foremost is that initially UNIX kernel was not preemptive [Vahalia 96]. Basically, 

process synchronization is accomplished by having processes wait for events. We will 

look at the synchronization issues involving the non-preemptive kernel in this section and 

then we will investigate additional synchronization techniques that are used in the case of 

the preemptive kernel. 

The situations under which we need synchronization in a non-preemptive UNIX 

kernel are [V ahalia 96]: when a blocking operation is being carried out, when an interrupt 

occurs, and for systems with more than one processor. We will next discuss how 

synchronization is achieved in the case of blocking operations and interrupts. 

Synchronization issues in the case of multiple processors is discussed in Section 3.4 

under the heading of Multiprocessor Synchronization. 

~---- ------------------.···--·----. 
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3.3.1 Blocking Operations 

The blocking operation places a process in the asleep state until the operation on 

which it blocked completes. Even in the case of a non-preemptive UNIX kernel, most of 

the objects (data structures and resources) need to be protected across a blocking 

operation. Let us consider the following example [Vahalia 96]: a process has to read from 

a file into a disk block buffer in kernel memory. As this is an 110 operation, the process 

has to wait until it completes. Meanwhile the kernel may schedule another process. Since 

the disk block buffer is in an inconsistent state, the kernel must ensure that other 

processes do not access the buffer in any way. 

UNIX kernel prevents such accesses by associating a lock with the various objects 

involved. All processes that need to use an object must check the lock. If it is open, the 

process can access the object, else the process must go to sleep until the object gets 

unlocked. Normally, the UNIX kernel associates a wanted flag with an object. This flag is 

set by a process that needs it while it was locked. When a process is ready to release a 

lock, it wakes up all the processes that have set the wanted flag for that object. By 

following this procedure, UNIX allows all other processes to execute safely even when a 

process has blocked after locking a resource. Figure 3 shows this locking algorithm 

[Leffler, et al. 89]. 

3.3.2 Interrupts 

In a non-preemptive UNIX kernel, even though a process cannot be preempted by 

another process, it still can be interrupted by devices. In order to provide proper 

synchronization, the interrupt handler should not be allowed to access the data that is in 



-----"""-

No lock resouce 

Yes 
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processeS) 

No 
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processing 

Figure 3. UNIX Locking Algorithm [Leffler, et al. 89] 

Table I. Macros used to set the Interrupt Priority Level in SVR4 [V ahalia 96] 

Macros Purpose 

sp 10 of splbase enable all interrupt 

spltimeout block functions scheduled by timers 

splstr block STREAMS interrupts 

spltty block terminal interrupts 

spldisk block disk interrupts 

sp 17 or splhi disable all interrupts 

splx restore ipl to previously saved value 

--'--------
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an inconsistent state. Synchronization in the case of interrupts is achieved by blocking 

interrupts while accessing the data that is in an inconsistent state. The UNIX kernel use 

macros similar to the ones in Table I [Vahalia 96]. These macros help to raise the ipl 

(interrupt priority level) and thereby help to block the interrupts while accessing the 

critical region. Using these macros, the current ipl value is recorded and it is raised to a 

new value. After raising the ipl value, the process enters the critical region. When the 

process leaves the critical region, the ipl value is restored with the recorded value. 

3.4 Multiprocessor Synchronization 

By increasing the number of processors, the system performance does not increase 

linearly [Kelley 89]. The need for appropriate synchronization primitives that are needed 

while accessing the shared data structures, and the extra functionality's like scheduling 

policies etc., to support multiple processors adds CPU overhead and thus reduces the 

overall performance gains. The operating system must try to minimize the overhead and 

allow for optimal CPU utilization. The traditional UNIX kernel needs major 

modifications to run on multiprocessor systems. One such major area of modification is 

synchronization. 

Synchronization primitives that we discussed earlier under uni-processor 

environments (see Section 3.3) are inadequate for multiprocessors and must be replaced 

with more powerful facilities. Synchronization in the case of more then one processor is 

fundamentally dependent on hardware support provided by the processors. In the 

subsections below, we will discuss hardware synchronization mechanisms and then 

...J.. 
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different software synchronization mechanisms for multiprocessor UNIX operating 

system. 

3.4.1 Hardware Support 

Let us consider the basic operation of locking a resource, for exclusive use, by 

setting a locked flag maintained in a shared memory location. This may be achieved by 

performing the following three operations: 

i) read the flag; 

ii) if the flag is zero, lock the resource by setting the flag to one; and 

iii) return TRUE if the lock was obtained, else return FALSE. 

In the case of a multiprocessor systems, two processes on two different processors may 

simultaneously attempt to carry out this sequence of operations. In order to avoid the race 

condition (see Section 3.3) that may occur in such situations, the three operations above 

will have to be performed as one single indivisible operation. Two such indivisible 

operations that are available on most processors are the atomic Test-and-Set operation 

and the Conditional-Store instruction. For example, SUN SP ARC machines, that run a 

variant of UNIX, have LDSTUB (LoaD and STore Unsigned Byte) as an atomic Test­

and-Set instruction, similarly V AX-11 has BBSSI (Branch on Bit Set and Set Interlock) 

[Digital 87]. 

3.4.2 Software Support 

Software support for synchronization in an operating system is dependent on the 

type of multiprocessing technique used in that operating system. There are three types of 

multiprocessing systems [Vahalia 96]: master-slave, functionally asymmetric and 

---------~ 
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symmetric. The variants of UNIX such as SVR 4.2 and Solaris 2.5 are symmetric 

multiprocessing systems [Tanenbaum and Woodhull 97]. In a symmetric multiprocessing 

system, all CPU s are equal, they share a single copy of the kernel text and data, and 

compete for system resources such as devices and memory. Each CPU may run the kernel 

code, and any user process may be scheduled on any processor. It is no longer the case 

that a thread (see Section 4.3) retains exclusive use of the kernel or block on a resource, 

as several processors could be executing kernel code at the same time. 

We need to protect all kinds of data structures that were not protected in the case 

of a uni-processor system. The IPC resource table is one such data structure. This 

structure is not accessed by interrupt handlers and does not support any operations that 

might block the processes. The kernel manipulates the table without locking it. In the case 

of multiprocessor environment two threads can access the table simultaneously [V ahalia 

96], and hence the kernel must lock the table before using it. The locking primitives and 

the way interrupts are handled has to be changed so that proper synchronization can be 

achieved in a multiprocessor environment. In the following subsection let us discuss 

some of the locking mechanisms. 

3.4.2.1 Semaphores 

Earlier implementations of UNIX on multiple processors was almost completely 

dependent on semaphores for synchronization [Kelley 89]. UNIX kernel guarantees that 

the semaphore operations will be atomic [Lee and Luppi 87], even on a multiprocessor 

system. Thus, if two threads try to operate on the same semaphore, one operation will 

complete or block before the other starts. 
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Semaphores can be used to provide mutual exclusion on a resource. A semaphore, 

that is initialized to one, can be associated with a shared resource such as a linked list. 

Each thread does a P operation to lock a resource and a V operation to release it. The first 

P operation sets the value to zero, causing subsequent P operations to block. When a V is 

done, the value is incremented and one of the blocked threads is awakened. The code that 

represents the usage of semaphores in case of controlling the allocation of finite resources 

[Bach 86], such as message block headers, is as follows. 

semaphore counter; II initialization of semaphore followed by 
II initsem initialization done at the boot 
II time 

initsern (&counter, resourceCount); 

P (&counter); 

V (&counter) ; 

II thread calls P while acquiring an 
II instance of the resource 
II thread calls V while releasing an 
II instance of the resource 

The semaphore is initialized to the number of available instances of the resource 

under consideration. Threads call P to acquire an instance of the resource, and then call V 

to release it. Thus, at each point in time, the value of the semaphore indicates the number 

of pending requests (blocked threads) for that resource. 

Semaphores can also be used to cause threads to wait for an event by initializing 

them to zero. This is shown in the following code. 

semaphore event; 
initsern (&event, 0); 

P (&event); 
V (&event); 
V (&event); 

II initialization 
II initialized at boot time 

II code section executed by the thread 
II that may wait on an event 
II blocks if event has not occurred 
II called when an event occurs 
II each thread call this V upon waking up 

In this scenario threads doing a P operation will block. When the event occurs, a V 

operation needs to be done for each blocked thread. This is achieved by calling a single V 

L 
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operation when the event occurs and having each thread do another V operation upon 

waking up. 

In case of both uni-processor and multiprocessor UNIX systems the use of 

semaphores has a disadvantage called semaphore convoy. A semaphore convoy is created 

when there is frequent contention on a semaphore. Figure 4 [Lee and Luppi 87] depicts a 

semaphore convoy situation. R is a critical region protected by a semaphore, Pl and P2 

Pl and P2: Processors; R: Resource; 
Tl. T2. TI. and T4: Threads; a, h. and c: Instances; 

(a) 

~
blocks 

1 

holds 

~ 
~ 

sched 
queue 

sched 
queue 

Figure 4. Semaphore Convoy [V ahalia 96] 

are two different processors, and Tl, T2, T3, and T4 are the threads. At instance 'a', 

thread T2 holds the semaphore, while T3 is waiting to acquire it. Tl is running on 

processor Pl, T2 is running on processor P2 and T4 is waiting to be scheduled. Now 

suppose T2 exits the critical region and releases the semaphore. It wakes up T3 and puts it 

on the scheduler queue. T3 now holds the semaphore, as shown in instance 'b' in Figure 

4. Now Tl need to enter the critical region. Since the semaphore is held by T3, Tl will 
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block, freeing up processor Pl. The system schedules thread T4 to run on Pl. Hence, at 

instance 'c' thread T3 holds the semaphore and Tl is blocked on it; neither thread can run 

until T2 or T4 yields its processor. The problem lies in step 'c'. Although the semaphore 

has been assigned to T3, T3 is not running and hence it is not in the critical region. As a 

result, Tl must block on the semaphore even though no thread is in the critical region. 

The semaphore semantics force allocation in a first-come, first-served order. This forces a 

number of unnecessary context switches. In more recent variants of UNIX such as Solaris 

2.5, semaphore has been replaced by an exclusive lock, or mutex [Vahalia 96]. 

3.4.2.2 Read-Write Locks 

A read-write lock on multiprocessors may permit either a single writer or multiple 

readers [Vahalia 96]. The basic operations are lockShared(), lockExclusive(), 

unlockShared(), and unlockExclusive(). In addition, there might be tryLockShared() and 

tryLockExclusive() (which return FALSE instead of blocking), and also upgrade() and 

downgrade() (converts a shared lock to an exclusive lock and vice versa). A lockShared() 

operation must block if there is an exclusive lock present, whereas a lockExclusive() 

operation must block if there is either an exclusive or a shared lock on the resource. The 

code that implements a read-write lock is as follows [V ahalia 96]. 

Struct rwlock { 
int nActive; 

} ; 

int nPendingReads; 
int nPendingWrites; 
spinlock_t sl; 
condition canRead; 
condition canWrite; 

void lockShared (struct rwlock *r) 

II number of active 
II readers, or -1 if a 
II writer is active 

II this operation blocks 
II if there is an 

~ -- ~--- --- ---~---- --- ____ l 



-~ 

{ 

} 

spin_lock (&r->sl); 

r->nPendingReads ++; 

if (r->nPendingWrites > 0) 

wait (&r->canRead, &r->sl); 

while (r->nActive < 0) 

wait (&r->canRead, &r->sl); 
r->nActive ++; 

r->nPendingReads --; 

spin_unlock (&r->sl); 

void unlockShared (struct rwlock *r) 
{ 

} 

spin_lock (&r->sl); 
r->nActive --; 
if (r->nActive == 0) { 

} else 

spin_unlock (&r->sl); 
do_signal (&r->canWrite); 

spin_unlock (&r->sl); 

void lockExclusive (struct rwlock *r) 

{ 

} 

spin_lock (&r->sl); 
r->nPendingWrites ++; 

while (r->nActive) 

wait (&r->canWrite, &r->sl); 
r->nPendingWrites --; 
r->nActive = -1; 

spin_unlock (&r->sl); 

void unlockExclusive (struct rwlock *r) 
{ 

boolean_t wakeReaders; 
spin_lock (&r->sl); 
r->nActive = 0; 
wakeReaders = (r->nPendingReads != 
spin_unlock (&r->sl); 
if (wakeReaders) 

do_broadcast (&r->canRead); 

II exclusive lock 
II present 

II acquire the mutex 
II spin lock 
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II increment the count 
II of waiting readers 
II if there are writers 
II waiting then block 
II thereby don't starve 
II writers 
II someone has an 
II exclusive lock 
II hence block 
II increment the number 
II of readers associated 
II with this shared 
II lock 
II decrement the count 
II of waiting readers 
II release mutex 
II spin lock 

II no other readers has 
II the shared lock 

II wake up a single 
II writer 

II this operation blocks 
II if there is either an 
II exclusive or shared 
II lock on the resource 

II increment the count 
II of waiting writers 
II some one has a shared 
II lock associated with 
II the resource 
II hence block 

II now a writer has an 
II exclusive lock 

0) i 

II true if there are 
II readers waiting 
II wake up all readers 
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else 
do_signal (&r->canWrite); 

} 

void downgrade (struct rwlock *r) 

{ 
boolean_t wakeReaders; 
spin_lock (&r->sl); 
r->nActive = 1; 

II wake up a single 
II writer 

II this operation 
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II converts a exclusive 
II lock into a shared 
II lock 

wakeReaders = (r->nPendingReads != 0); 

} 

spin_unlock (&r->sl); 
if (wakeReaders) 

do_broadcast (&r->canRead); 

void upgrade (struct rwlock *r) 

{ 

} 

spin_lock (&r->sl) ; 
if (r->nActive == 1) { 

r->nActive = -1; 
} else { 

} 

r->nPendingWrites ++; 
r->nActive --; 
while (r->nActive) 

wait (&r->canWrite, &r->sl); 
r->nPendingWrites --; 
r->nActive = -1; 

spin_unlcok (&r->sl); 

II true if there are 
II readers waiting for 
II the resource 

II wake up all readers 

II this operation 
II converts a shared 
II lock to an exclusive 
II lock 

II no other reader 

II release shared lock 
II some one has a shared 
II lock associated with 
II the resource 
II hence block 

The UNIX operating system's solution for the Readers/Writers problem is to wake 

up all the threads waiting for the resource [V ahalia 96]. This is clearly inefficient 

[Vahalia 96], if a writer acquires the lock next, all readers and other writers will have to 

go to sleep; if a reader acquires the lock, other writers will have to go to sleep. It is 

preferable to find a protocol that avoids needless wakeups [Vahalia 96]. If a reader 

releases a resource, it takes no action if other readers are still active. When the last active 

reader releases its shared lock, it must wake up a single waiting writer. When a writer 

releases its lock, it must choose whether to wake up another writer or other readers. If 
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writers are given preference, the readers could starve under heavy contention [V ahalia 

96]. 

The preferred solution [V ahalia 96] is to wake up all waiting readers when 

releasing an exclusive lock. If there are no waiting readers, we wake up a single waiting 

writer. This scheme can lead to writer starvation [V ahalia 96]. If there is a constant 

stream of readers, they will keep the resource read-locked, and the writer will never 

acquire the lock. To avoid this situation, a lockShared() request must block if there is any 

waiting writer, even though the resource is currently only read-locked. Such a solution, 

under heavy contention, will alternate access between individual writers and batches of 

readers [V ahalia 96]. 

The upgrade() function that converts a shared lock to an exclusive lock must be 

used carefully in order to avoid deadlocks. A deadlock can occur unless the 

implementation takes care to give preference to upgrade requests over waiting writers 

[Vahalia 96]. If two threads try to convert a shared lock to an exclusive lock, each would 

block since the other holds a shared lock. One way to avoid that is for the upgrade() to 

release the shared lock before blocking, if it cannot get the exclusive lock immediately. 

This results in additional problems for the user, since another thread could have modified 

the resource before upgrade() returns. Another solution is for upgrade() to fail and release 

the shared lock if there is another pending upgrade. 

3.4.2.3 Condition Variables 

A conditional variable is a complex synchronization mechanism that has a 

predicate (a logical expression that evaluates to TRUE or FALSE) associated with it 
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based on some shared data [Vahalia 96]. It basically allows threads to block on it and 

provides facilities to wakeup one or all blocked threads when the result of the predicate 

changes. This mechanism is more useful for waiting on events than for resource locking. 

For example [Vahalia 96], let us assume that one or more server threads are waiting for 

clients requests. Incoming requests from the clients are to be passed to waiting threads or 

put on a queue. When a server thread is ready to process the next request, it first checks 

the queue. If there is a pending message, the thread removes it from the queue and 

services it. If the queue is empty, the thread blocks until a request arrives. This can be 

implemented by associating a condition variable with this queue. The shared data is the 

message queue itself, and the predicate is that the queue be nonempty. 

On a multiprocessor, we need to guard against race conditions, such as the lost 

wakeup problem [Vahalia 96]. Suppose a message arrives after a thread checks the queue 

but before the thread blocks. The thread will block even though a message is available. 

We therefore need an atomic operation to test the predicate and block the thread if 

necessary. Condition variables provide this atomicity by using an additional mutex i.e., a 

spin lock (see Section 4.6). The mutex protects the shared data and avoids the lost 

wakeup problem. The server thread acquires the mutex on the message queue and then 

checks if the queue is empty. If so, it calls the wait() function of the condition with the 

spin lock held. The wait() function takes the mutex as an argument and atomically blocks 

the thread and releases the mutex. When the message arrives on the queue and the thread 

is woken up, the wait() call reacquires the spin lock before returning. The following is a 

sample implementation of a condition variable [Vahalia 96] . 
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struct condition { 

} i 

proc *next; 
proc *prev; 

spinlock_t listlock; 

II doubly linked list of blocked 
II threads 

II spin lock protects the list of 
II threads 

void wait (condition *c, spinlock_t *s) 
{ II acquire lock on the doubly linked 

II list of blocked threads 

} 

spin_lock (&c->listLock); 
II add to the linked list 
II release the lock on the blocked 
II threads 

spin_unlock (&c->listLock); 
spin_unlock (s); II release spin lock on the 

swtch {); 

spin_lock (s); 
return; 

II predicate before blocking 
II perform context switch 
II when we return from the swtch(), 
II the event has occurred 
II acquire the spin on the predicate 

void do_signal (condition *c) 

{ 

} 

II wake up one thread waiting on 
II this condition 

spin_lock (&c->listLock); 
II remove one thread from linked 
II list, if it is nonempty 

spin_unlock (&c->listLock); 

return; 

II if a thread was removed from the 
II list, make it runnable 

void do_broadcast (condition *c) 

{ 

} 

II wake up all threads waiting on 
II this condition 

spin_lock (&c->listLock); 
while-(linked list is nonempty) { 

} 

II remove a thread from the linked 
II list and make it runnable. 

spin_unlock (&c->listlock); 

In the above implementation, the predicate itself is not part of the condition 

variable. It must be tested by the calling routine before calling wait(). The implementation 

also uses two separate mutexes. One is listLock, which protects the doubly linked list of 

threads blocked on the condition. The second mutex protects the tested data (predicate) 

itself. The spin lock mutex is not a part of the condition variable, but is passed as an 
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argument to the wait() function. The swtch() function and the code to make blocked 

threads runnable use a third mutex to protect the scheduler queues. We thus have a 

situation where a thread tries to acquire one spin lock while holding another. This is not 

disastrous since the restriction on spin locks is only that threads should not be allowed to 

block while holding one. Deadlocks are avoided by maintaining a strict locking order, the 

lock on the predicate must be acquired before listLock. 

One of the major advantages of a condition variable is that it provides two ways to 

handle event completion [Vahalia 96]. When an event occurs, there is the option of 

waking up just one thread with do_signal() or all threads with do_broadcast(). Each may 

be appropriate in different circumstances. In case of a multithreaded server application, 

waking one thread is sufficient as each request will be handled by a single thread. 

However, consider several threads running the same program, thus sharing a single copy 

of the program text. More than one of these threads may try to access the same 

nonresident page of the text, resulting in page faults in each of them. The first thread to 

fault initiates a disk access for that page. The other threads notices that the read has 

already been issued and blocks waiting for the 110 to complete. When the page is read 

into memory, it is desirable to call do_broadcast() and wake up all the blocked threads, 

since at that point they can all access the page without conflict. 

3.4.2.4 Sleep Locks 

A sleep lock is a nonrecursive mutex lock that permits long-term locking of 

resources [UNIX 92]. One such example is, the resources that are utilized by a process 
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can be locked when the process blocks in a blocking operation. It is implemented as a 

variable of type sleep_t, and provides the following operations: 

void SLEEP _LOCK (sleep_t *lockp, int pri); II the processes acquires the 
II lock over the resources by 
II calling this function and 
II this call cannot be 
II interrupted 

bool_t SLEEP _LOCK_SIG (sleep_t *lockp, int pri); II same as the above function 
II but can be interrupted 

void SLEEP _UNLOCK (sleep_t *lockp); II to unlock the resources 

The pri parameter specifies the scheduling priority to assign to the process after it 

awakens. If a process blocks on a call to SLEEP _LOCK, it will not be interrupted by a 

signal. If it blocks on a call to SLEEP _LOCK_SIG, a signal will interrupt the process; the 

call returns TRUE if the lock is acquired and FALSE if the sleep was interrupted. The 

lock also provides other operations such as SLEEP _LOCK_AV AIL (checks if the lock is 

available), SLEEP _LOCKOWNED (checks if the caller owns the lock), and 

SLEEP _TRYLOCK (returns failure instead of blocking if the lock cannot be acquired). 
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CHAPTER IV 

WINDOWS NT 

4.1 Basic Architecture 

The structure of Windows NT can be divided into two parts [Custer 93]: the user 

mode portion of the system and the kernel mode portion of the system. The Windows NT 

protected subsystems are collectively termed as the user mode portion, and the NT 

executive is termed as the kernel mode portion as shown in Figure 5. 

Applications 

Protected 
Subsystems 
(Servers) 

Kernel Mod w w 

System Services 
Process Local Vutual 

NT 
Executive 

Object Secwity 
Manager Reference Manager !Procedure Memory 

Call Manager 
Facility 
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I Hardware Abstraction Layer (HAL) 
I 

I i 
Hardware 

I 
I 

:user Mode 

y 

JIOManager 
File Systems 

Cache Manager 
Device Drivers 

!Network Drivers 

I 
Li 

Figure 5. Block Diagram of Windows NT Operating System [Custer 93] 
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The protected subsystems are also called as the Windows NT servers, as each one of them 

resides in a separate process whose memory is protected from other processes by 

the NT executive's virtual memory manager. In Windows NT, the subsystems do not 

automatically share memory, rather they communicate by passing messages. The NT 

executive is the operating system engine. The following subsections discuss the protected 

subsystem and the NT executive. 

4.1.1 Protected Subsystem 

Windows NT protected subsystems provide API's (e.g., Win32's, OS/2, etc.,) that 

programs can call [Richter 93a]. When an application calls an API routine, a message is 

sent to the server that implements the API routine via the NT executive's local procedure 

call (LPC) facility. LPC is a locally optimized message-passing mechanism in which an 

application calls an API routine in a DLL (Dynamic Link Library) to which it is linked, 

and the DLL does the work necessary to send the message to the Windows NT protected 

subsystem (servers). The server replies by sending a message. The API routine in the 

DLL receives the message and hands it over to the application. The LPC facility is 

specific to Windows NT. The protected subsystem can further be divided into the 

environment subsystems and the integral subsystems, as defined below. 

An environment subsystem is a user mode server that provides an API specific to 

an operating system. When an application calls an API routine, the call is delivered 

through the LPC facility to an environment subsystem. The chosen environment 

subsystem executes the API routine and returns the result to the application process by 

sending another LPC. The Win32 subsystem is the most important environment 

-~ _1 
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subsystem, because it is the one that provides the Microsoft's 32-bit Windows API to the 

application programs. It also provides the NT' s graphical user interface and controls all 

user input and application output. 

Windows NT also provides several other environment subsystems to support each 

one of the following applications: POSIX, OS/2, 16-bit windows subsystem, and MS­

DOS subsystem. All these subsystems still use the Win32 subsystem to receive user input 

and to display output. 

The integral subsystems are the servers that perform major operating system 

functions. The security subsystem and the components of the networking software are 

some of the integral subsystems. The security subsystem runs in the user mode and 

records the security policies in effect on the local computer [Custer 93]. It keeps track of 

which user accounts have special privileges, it maintains a database of information about 

user accounts, and it also accepts user logon information and initiates logon 

authentication. 

The NT networking component implements the following two services: 

Workstation services and the Server services [Custer 93]. Both of these are user mode 

processes that implements an API to access and manage the LAN Manager network re­

director and server, respectively. The re-director is the network component responsible 

for sending I/0 requests across a network when the file or device to be accessed is not 

local. 

____ _L 
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4.1.2 NT Executive 

The NT executive is the kernel mode portion of Windows NT and, except for the 

user interface, is a complete operating system unto itself [Richter 93a]. Windows NT 

kernel is a part of the NT executive. The NT executive consists of a number of 

components, each of which implements two sets of functions: the system services which 

the environment subsystems and other executive components can call, and the internal 

routines which are available only to components within the executive. 

NT executive also provides API-like system services, but it does not run 

continually in a process of its own. Rather, it runs in the context of an existing process by 

taking over an executing thread when important system events occur. When a thread calls 

a system service and is trapped by the processor, or when an external device interrupts the 

processor, the NT kernel gains control of the thread that was running. The kernel calls the 

appropriate system code to handle the event, executes it, and then returns control to the 

code that was executing before the interruption. 

The Windows NT executive components maintain independence from one 

another, each creating and manipulating the system data structures it requires. The 

following are the executive components and their responsibilities. The Object manager 

creates, manages, and deletes NT executive objects, which are the abstract data types that 

are used to represent operating system resources. NT executive objects are objects (a 

single, runtime instance of a statically defined object type) implemented by various 

components of the NT executive. The security reference monitor enforces security 

policies on the local computer. The security reference monitor guards operating system 

resources, and performs run-time object protection and auditing. The process manager 

j_ 
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creates and terminates processes and threads. It also suspends and resumes the execution 

of threads and stores and retrieves information about NT processes and threads. The local 

procedure call facility passes messages between a client process and a server process on 

the same computer. It is an optimized version of the remote procedure call i.e., all 

communications takes place in the local machine. The virtual memory manager 

implements virtual memory, which is a memory management scheme that provides a 

large, private address space for each process and protects each processes address space 

from other processes. 

The NT kernel responds to interrupts (asynchronous events, that can occur at any 

time unrelated to what the processor is executing) and exceptions (a synchronous 

condition, resulting from the execution of a particular instruction), schedules threads for 

execution, synchronizes the activities of multiple processors, and supplies a set of objects 

and interfaces that the rest of the NT executive uses to implement higher-level objects 

[Custer 93]. The 110 system comprises a group of components responsible for processing 

input from and delivering output to a variety of devices. The following are the 

components of the 110 system [Richter 93a]: 110 manager, File systems, Network re-

director and Network server, NT executive device drivers, and Cache manager. 

The hardware abstraction layer (HAL) places a layer of code between the NT 

executive and the hardware platform on which Windows NT is running [Custer 93]. The 

hardware abstraction layer hides hardware-dependent details such as 110 interfaces, 

interrupt controllers, and multiprocessor communication mechanisms. Rather than access 

hardware directly, the NT executive components maintain maximum portability by 

calling the HAL routines when they need platform-dependent information. 

_ __..c _l _" __ _ 
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Windows NT provides synchronization by means of wait and signal capabilities as 

part of the executive object architecture. In Windows NT, threads can synchronize by 

using the synchronization objects. In order to understand the synchronization objects it is 

necessary to know about the NT' s process structure. The fundamental goal of the NT' s 

process manager is to provide a set of native process services that environment 

subsystems can use to emulate their unique process structures [Custer 93]. This is how 

NT provides multiple operating system environments that can run in user mode. 

4.2 Windows NT Processes and Threads 

Windows NT processes have the following characteristics that are different from 

other operating systems [Custer 93]: 

i) NT processes are implemented as objects and are accessed using object 
services (means for manipulating objects, usually read or change object 
attributes). 

ii) An NT process can have multiple threads executing within its address space. 

iii) Both process objects and thread objects have built-in synchronization 
capabilities (see Section 4.4). 

iv) The NT process manager maintains no parent/child or other relationships 
among the processes it creates. 

v) An NT process has to have at least one thread of execution. 

NT processes can be in either one of the following two modes: kernel mode or 

user mode [Richter 93b]. In the kernel mode, processes can execute operating system 

code or can access operating system memory. The kernel mode processes run in the 

unrestricted processor mode. The processes that run under restricted processor mode are 

called user mode processes . 
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A thread, sometimes called as lightweight process, is the basic unit of scheduling 

in Windows NT. A thread shares with peer threads its code section, data section, and 

operating system resources such as open files and signals [Custer 93]. A thread's life 

cycle start when a program creates a new thread by calling the process manager. The 

process manager in tum, calls the object manager to create a thread. Similar to NT 

processes, threads can also be in either one of the following two modes [Richter 93b]: 

kernel mode or user mode. 

A user mode thread gains access to the operating system by calling a system 

service (services provided by the components of NT executive for the environmental 

subsystem servers). When the thread calls the service, the processor traps it and switches 

its execution from user mode to kernel mode. The operating system takes control of the 

thread, validates the arguments the thread passed to the system service, and then executes 

the service. The operating system switches the thread back to user mode before returning 

control to the user's program. By following this procedure, the operating system protects 

itself and its data from modification by user mode threads. The following section 

discusses the Windows NT thread states. 

4.3 Windows NT Thread States 

A thread can be in any of six states at any given time, only one of which makes 

the thread eligible for execution [Custer 93]. The dispatcher states of a thread are 

illustrated in Figure 6 [Richter 93b]. Once initialized, the thread progresses through the 

following states: 
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i) Ready: When looking for a thread to execute, the dispatcher considers only the 
pool of threads that are in the ready state. These threads are simply waiting to 
execute. 

ii) Standby: A thread in the standby state has been selected to run next on a 
particular processor. When the correct conditions exists, the dispatcher 
performs a context switch to this thread. Only one thread can be in the standby 
state for each processor in the system. 

iii) Running: Once the dispatcher performs a context switch to a thread, the thread 
enters the running state and executes. The thread's execution continues until 
either the kernel preempts it to run a higher priority thread, its quantum ends, 
it terminates, or it voluntarily enters the waiting state. 

reinitialize 

execution 
completes 

thread 
waits on 

an object 
handle 

create and initialize 
thread object 

place in 
ready queue 

set object to 
signaled state 

preempt 
(or time quantum ends) 

context-switch to it 
and start its execution 

(dispatching) 

Figure 6. Windows NT Thread States [Richter 93b] 
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iv) Waiting: A thread can enter the waiting state in several ways: a thread can 
voluntarily wait on an object to synchronize its execution; the operating 
system (the 110 system, for example) can wait on the thread's behalf; or an 
environment subsystem can direct the thread to suspend itself. When the 
thread's wait ends, the thread moves back to the ready state to be rescheduled. 

v) Transition: A thread enters the transition state if it is ready for execution but 
the resources it needs are not available. For example, the thread's kernel stack 
might have been paged out of memory. Once its resources are available, the 
thread enters the ready state. 

vi) Terminated: When a thread finishes executing, it enters the terminated state. 
Once terminated, a thread object might or might not be deleted. If the 
executive has a pointer to the thread object, it can reinitialize the thread object 
and use it again. 

We will first discuss the objects that provide synchronization for user mode 

threads, and then the objects that provide synchronization for kernel mode threads in case 

of having more than one processor. 

4.4 User Level Synchronization 

The following are the synchronization objects that are used by the user mode 

threads for synchronization in Windows NT [Custer 93]: 

i) Process objects 
ii) Thread objects 
iii) File objects 
iv) Event objects 
v) Event pair objects 
vi) Semaphore objects 
vii) Timer objects 
viii) Mutant objects 

The first three objects listed serve other purposes in addition to synchronization, but the 

last five objects are just for synchronization purposes. At any given moment, a 

synchronization object is in one of two states, either signaled or the non-signaled state. 

--~-J, 
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The signaled state is defined differently for different objects. A thread object is . in the 

non-signaled state during its lifetime, and is set to the signaled state by the NT kernel 

when the thread terminates. Similarly, the kernel sets a process object to the signaled state 

when the process last thread terminates. In contrast, the timer object, like a stopwatch, is 

set to go off at a certain time. When its time comes up, the kernel sets the timer object to 

the signaled state. The following are the Windows NT objects that does not support 

synchronization [Custer 93]: section, port, access token, object directory, symbolic-link, 

profile, and key objects. 

To synchronize with an object, a thread calls one of the wait system services 

supplied by the object manager, passing a handle to the object it wants to synchronize 

with. The thread can wait on one or several objects and can also specify to the kernel that 

its wait should be canceled if it is not ended within a certain amount of time. Whenever 

Table II. Definitions of Signaled State for Synchronization Objects [Custer 93] 

Object Type Set to Signaled State When Effect on Waiting Threads 

Process Last thread terminates All released 

Thread Thread terminates All released 

File 110 operation completes All released 

Event Thread sets the event All released 

Event pair Dedicated client or server thread sets Other dedicated thread 
the event released 

Semaphore Semaphore count drops to zero All released 

Timer Set time arrives or time interval expires All released 

Mutant Thread releases the mutant One thread released 

-----""'- ~----~~"----· ---~ 
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the kernel sets an object to the signaled state, it checks to see whether there are any 

threads waiting on the object. If so, the kernel releases one or more of the threads from 

their waiting state so that they can continue executing. Table ll [Davis 94] shows the 

effects on the waiting threads when a user mode object is set to the signaled state. 

When an object is set to the signaled state, the waiting threads are generally 

released from their wait states immediately. For example, an event object is used to 

announce the occurrence of some event. When the event object is set to the signaled state, 

all threads waiting on the event are released. The exception is any thread that is waiting 

on more than one object at a time; such a thread might be required to continue waiting 

until additional objects reach the signaled state. From Table ll it is clear that except event 

pair object and mutant object, all other objects release all the threads while shifting to the 

signaled state. 

Windows NT' s executive synchronization semantics are visible to Win32 

programmers through the WaitForSingleObject() and WaitForMultipleObjects() API 

routines [Davis 94], which the Win32 subsystem implements by calling analogous system 

services supplied by the NT object manager. A thread in a Win32 application can 

synchronize with a Win32 process, thread, event, semaphore, mutex, or file object. 

As an example, let us assume that a user is running a spreadsheet application 

program under the Windows NT operating system. The application has a main thread that 

performs ordinary spreadsheet functions and a secondary thread that spools spreadsheet 

files to the printer. Now suppose the user prints a spreadsheet and, before spooling is 

completed, enters a command to exit the program. The main thread, which accepts the 

exit request, doesn't terminate the process immediately. Instead, it calls the 

_...._ . ..I.. 
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W aitForSingleObject() routine to wait for the spooler thread to finish spooling and 

terminate. After the spooler thread terminates, the main thread is released from its wait 

operation and terminates itself, which ends the spreadsheet program and terminates the 

spreadsheet process. 

4.5 Kernel Level Synchronization 

Following the foot steps of the recently developed operating systems such as 

Mach, OS/2 etc., Windows NT also separates the operating system's mechanisms from its 

policies. The principle of separating policies from mechanisms exists at several levels in 

Windows NT [Davis 94]. At the highest level, each environment subsystem establishes a 

layer of operating system policies that differs from that of other subsystems. At the kernel 

level it avoids policy-making altogether. The kernel performs four main tasks [Custer 93]: 

i) Schedules threads for execution. 

ii) Performs low-level multiprocessor synchronization. 

iii) Transfers control to handler routines when interrupts and exceptions occur. 

iv) Implements system recovery procedures after a power failure occurs. 

Windows NT is a preemptive multitasking system, thus the operating system does 

not wait for a thread to voluntarily yield the processor to other threads. Instead, the 

operating system interrupts a thread after the thread has run for a preset amount of time, 

called the time quantum, or when a higher priority thread is ready to run. 

Windows NT processes are multithreaded. The kernel uses a priority-based 

scheme to select the order in which threads are executed. The kernel also changes a 

thread's priority periodically to ensure that all threads will execute. Outside the kernel, 

-----'c--- ---~ 
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the executive presents threads and other shareable resources as objects. These objects 

require some policy overhead, such as object handles (an index into the process-specific 

table that contains pointers to all the objects that the process has opened a handle to) to 

manipulate them [Custer 93], security checks to protect them, resource quotas to be 

deducted when they are created, etc. This overhead is eliminated in the kernel, which 

implements a set of simpler objects, called kernel objects, that help the kernel control 

central processing and support the creation of executive objects. Kernel objects are a 

more primitive set of objects implemented by the NT kernel. These objects are not visible 

to user mode code but are created and used only within the NT executive. 

Kernel objects provide fundamental capabilities, such as the ability to alter system 

scheduling, that can be accomplished only by the kernel. One set of kernel objects, called 

the dispatcher objects, incorporates synchronization capabilities and alters or affects 

thread scheduling. The dispatcher objects include kernel thread, kernel mutex, kernel 

mutant, kernel event, kernel event pair, kernel semaphore, and kernel timer. The 

Windows NT dispatcher also takes care of context switching, which is the procedure of 

saving the volatile machine state associated with a running thread, loading another 

thread's volatile state, and starting the new thread's execution. In the following section 

we will discuss multiprocessor synchronization and kernel dispatcher objects in detail. 

4.6 Multiprocessor Synchronization 

Synchronization is a major issue for symmetric multiprocessing operating 

systems. Analogous to Solaris 2.5 a variant of UNIX, Windows NT is a symmetric 

multiprocessing operating system. The Windows NT kernel guarantees mutual exclusion 

~ J. 
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in the case of having multiple processors by utilizing a mechanism called spin lock. The 

kernel's critical sections are the code segments that modify a global data structure such as 

the kernel's dispatcher database or its DPC (Deferred Procedure Call) queue. 

Before entering the critical section shown in the Figure 7 [Custer 93], the kernel 

must acquire the spin lock associated with the protected DPC queue. If the spin lock is 

not free, the kernel keeps trying to acquire the lock until it succeeds. The spin lock is 

called so because the kernel is held in limbo "spinning" until it gets the lock [Richter 93a]. 

Processor A 

Do 
Try to acquire 
DPC queue 
spin lock 

Until SUCCESS 
DPCQueue 

Release DPC queue spin lock 

-__.Critical section 

ProcessorB 

Do 
T1y to acquire 
DPC queue 
spin lock 

Until SUCCESS 

Release DPC queue spin lock 

Figure 7. Two Processors Competing for Spin Lock [Custer 93] 

Spin locks, like the data structures they protect, reside in global memory. The code to 

acquire and release a spin lock is written in the host assembly language for speed and to 

exploit whatever locking mechanism the underlying processor architecture provides. 
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On many architectures, spin locks are implemented with a hardware-supported 

test-and-set operation, which tests the value of a lock variable and acquires the lock in 

one atomic instruction. Testing and acquiring the lock in one instruction prevents a 

second thread from grabbing the lock between the time the first thread tests the variable 

and the time it acquires the lock. 

When a thread is trying to acquire a spin lock, all other activity ceases on that 

processor. Therefore, a thread that holds a spin lock is never preempted and is allowed to 

continue executing so that it will release the lock quickly. The kernel executes minimum 

number of instructions while it holds a spin lock [Custer 93]. 

The Windows NT kernel makes spin locks available to other parts of the 

executive through a set of kernel functions. Device drivers, for example, utilizes spin 

locks in order to guarantee that the global data structure is accessed by only one part of a 

device driver at a time. 

The executive software outside the kernel also needs to synchronize access to 

global data structures in a multiprocessor environment. Spin locks only partially fill the 

executive's needs for synchronization mechanisms. Waiting on a spin lock literally stalls 

a processor, spin locks can be used only under the following strictly limited 

circumstances [Custer 93]: 

i) The protected resource must be accessed quickly and without complicated 
interactions with other code. 

ii) The critical section code cannot be paged out of memory, cannot make 
references to pageable data, cannot call external procedures, and cannot 
generate interrupts or exceptions. 
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These restrictions cannot be met under all circumstances. The executive needs to perform 

other types of synchronization in addition to mutual exclusion and it must also provide 

synchronization mechanisms to the user mode processes. 

The Windows NT kernel provides additional synchronization mechanisms to the 

executive in the form of kernel objects, known collectively as dispatcher objects. A thread 

can synchronize with a dispatcher object by waiting on the object's handle. Doing so 

causes the kernel to suspend the thread and change its dispatcher state from running to 

waiting as shown in Figure 6. The kernel removes the thread from the dispatcher ready 

queue and no longer considers it for execution. A thread cannot resume its execution until 

the kernel changes its dispatcher state from waiting to ready. This change occurs when the 

dispatcher object, whose handle the thread is waiting on, also undergoes a state change, 

from the non-signaled state to the signaled state. The kernel is responsible for both types 

of transitions. The kernel dispatcher objects and the system events that induce their state 

changes are shown in Figure 8 [Custer 93]. 

Each type of dispatcher object provides a specialized type of synchronization capability. 

For example, mutex objects provide mutual exclusion, whereas semaphores act as a gate 

through which a variable number of threads can pass useful information when a number 

of identical resources are available. Events can be used either to announce that some 

action has occurred or to implement mutual exclusion. A thread can wait on another 

thread to terminate, which is useful for synchronizing the activities of two cooperating 

threads. Together, the kernel dispatcher objects provide synchronization facility for the 

Windows NT executive. 
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The user-visible synchronization objects acquire their synchronization capabilities 

from kernel dispatcher objects. Each user-visible object that supports synchronization 

encapsulates at least one kernel dispatcher object. The following example of setting an 

event illustrates how synchronization interacts with thread dispatching [Custer 93]: 

i) A user mode thread waits on an event object's handle. 

ii) The kernel changes the thread's scheduling state from ready to waiting and 
then adds the thread to a list of threads waiting for the event. 

iii) Another thread sets the event. 

iv) The kernel marches down the list of threads waiting on the event. If a thread's 
conditions for waiting are satisfied, the kernel changes the thread's state from 
waiting to ready. If it is a variable priority thread, the kernel might also boost 
its execution priority. 

v) Because a new thread has become ready to execute, . the dispatcher 
reschedules. If it finds a running thread with a lower priority than that of the 
newly ready thread, it preempts the lower priority thread, issuing a software 
interrupt to initiate a context switch to the higher priority thread. 

vi) If no processor can be preempted, the dispatcher places the ready thread in the 
dispatcher ready queue to be scheduled later . 
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CHAPTERV 

APPLE MACINTOSH 

5.1 Basic Architecture 

The Apple Macintosh operating system provides routines that allow a 

user/programmer to perform basic low-level tasks such as file input and output, memory 

management, and process and device control [Apple 96g]. The block diagram shown in 

Figure 9 shows the basic architecture of the Apple Macintosh operating system [Apple 

96h]. 

File Management 

Process Management 

Memory Management 

Device Management 

68k or Power PC architecture 
------

Figure 9. Apple Macintosh Operating System Layers 

The 68K and the Power PC are the two different hardware architectures supported 

by the Apple Macintosh operating system [Apple 96e]. The 68K microprocessors are 
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manufactured by Motorola. The Power PC microprocessors are manufactured by a 

collaboration of Apple Computers, Motorola, and IBM. Power PC architecture also 

supports other major PC operating systems such as Windows NT and Windows 95. 

The Device management block shown in Figure 9 constitutes the Device manager, 

Slot manager, Small Computer System Interface (SCSI) manager, Apple Desktop Bus 

(ADB) manager, Power manager, and the Serial driver manager [Apple 96a]. The Device 

manager acts as an interface for all other blocks to interact with the hardware, thus it 

provides input from and output to the hardware. On system startup the Slot manager 

examines each slot and initializes any expansion cards it finds. The Slot manager 

maintains data structures that contain information about each slot and every available 

system resource, and it provides functions that allow an application developer to get 

information about expansion cards and their system resources. The Small Computer 

System Interface (SCSI) manager is a software layer that mediates between device drivers 

or applications and the SCSI controller hardware in the Apple Macintosh computer. 

The Apple Desktop Bus (ADB) manager allows the application developer to get 

information about and communicate with hardware devices attached to the Apple 

Desktop Bus. The Apple Desktop Bus is a low speed bus that connects input devices, 

such as keyboards, mouse devices, and graphic devices, to an Apple Macintosh computer 

or to other hardware equipment. The Power manager software controls power to the 

internal devices of portable Apple Macintosh computers. The Serial driver in the Device 

management block provides low level support for asynchronous, interrupt driven serial 

data transfers through the modem and printer ports. 
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The Process management block constitutes the Process manager, Time manager, 

Vertical retrace manager, Notification manager, Deferred task manager, Segment 

manager, and Shutdown manager [Apple 96i]. The Process manager handles the 

launching, scheduling, and termination of applications. It also provides information about 

open processes (process that are initialized and have not terminated). The Time manager 

allows a developer to execute a routine periodically or after a specified time delay. The 

Vertical retrace manager allows a developer to synchronize the execution of an 

application with the redrawing of the screen. The Notification manager provides 

notification service. The Notification manager allows applications running in the 

background to communicate information to the user. The Deferred task manager 

maintains a deferred task queue of records where each record is a deferred task. A 

deferred task is an interrupt that will take a long time to process and hence will block all 

other interrupts of the same or lower priority when it is executed. The Deferred task 

manager executes interrupts (deferred tasks) whenever there is no other interrupt to 

process i.e., the interrupt priority level is zero. 

The Process Manager loads code segments into memory when an application is 

launched. The Segment Manager loads code segments whenever any externally 

referenced routine containing those code segments are called for. Both of these operations 

occur completely automatically and rely on information stored in the application and in 

the individual code segments themselves. A segment is locked when it is first read into 

memory and at any time thereafter when routines in the segment are being executed. This 

locking prevents the block from being moved during compaction and purging of the 

applications memory. The Segment manager also has an unload utility to unload the 
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loaded segments. The Shutdown manager allows a programmer to execute a routine while 

the computer is shutting down or restarting. 

The Memory management block constitutes the Memory manager, Virtual 

memory manager, and Memory management utility [Apple 96f]. The Memory manager 

manages the dynamic allocation and release of memory in the application's memory 

partition. The Virtual memory manager provides virtual memory services, i.e., it provides 

the ability to have a logical address space that is larger than the total amount of available 

RAM. The Memory management utility is used to ensure the following [Apple 96f]: 

i) the applications call back routines, interrupt tasks, and stand alone codes can 
access the applications global variables. 

ii) the application or driver functions properly in both 24 and 32 bit modes. 

iii) the data and instructions in the microprocessor's internal cache remain 
consistent with data and instructions in the RAM. 

The File management block constitutes the File manager, Standard file package 

manager, Alias manager, and Disk initialization manager [Apple 96b]. The File manager 

provides access to the file system and allows applications to create, open, read, write, and 

close files. The Standard file package provides routines that handle the interface between 

the user and the application when the user saves or opens a document. The Alias manager 

helps to locate specified files, directories, or volumes. The Disk initialization manager 

manages the process of initializing disks. 

The Apple Macintosh operating system doesn't have a kernel like the ones 

available in UNIX and Windows NT [Apple 96h]. So there is no such thing as kernel 

synchronization, but the Apple Macintosh operating system supports multitasking by 

using the cooperative multitasking mechanism as explained in the next section. 

___..._ -- ----=,----==-~--~~---- ~-J 
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5.2 Cooperative Multitasking 

The process manager in the Apple Macintosh operating system resolves the time 

sharing problem that arises while supporting the multitasking feature [Apple 96i]. This is 

achieved by cooperative multitasking between applications. In cooperative multitasking 

systems, each application has to surrender its CPU time to the system at regular intervals, 

the system then mediates the distribution of processor time to various other applications 

[May and Whittle 95]. Preemptive multitasking is also made possible in the Apple 

Macintosh operating system by the Thread manager API [Apple 96j]. Preemptive 

multitasking is made possible only in the case of the 68k architecture. 

Cooperative multitasking doesn't have much in the way of synchronization. It is 

the programmer's responsibility to make sure that their program is in a suitable state 

before the program surrenders its CPU time to the system. Basically, the event manager 

and process manager maintain the cooperative multitasking environment in an Apple 

Macintosh operating system. 

5.3 Processes and Events 

In the Apple Macintosh operating system, a process is an open application or, an 

open desk accessory (small applications that can be opened from the Apple menu in an 

Apple Macintosh system). The number of processes that can be executed by the operating 

system is limited only by the available memory [Apple 96i]. The process manager 

maintains information about each process. It maintains the current state of each process, 

the address and size of its partition, its type, its creator, a copy of all process specific 

information such as global system variables, information about its resources, and a 
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process serial number (similar to process id in UNIX). The process manager assigns a 

process serial number to identify each process. This number is unique during a single 

boot of the local machine [Apple 96i]. The process specific information is referred to as 

the context of each process. 

When an application is first launched, it starts executing as a foreground process 

[Apple 96i]. In the Apple Macintosh operating system, a foreground process has control 

of the CPU and other system resources, but it can relinquish control of the CPU if there 

are no events pending for it to process. A process that is open but is not currently a 

foreground process is said to be a background process. 

A context switch can be of two types [Apple 96i]: major switch and minor switch. 

A major context switch is a complete switch, the application's windows are moved from 

the back to the front, or vice versa. In a major switch, two applications are involved; the 

one being switched to the foreground and the one being switched to the background. A 

minor switch occurs when the process manager gives time to a background process 

without bringing the background process to the front. The two processes involved in a 

minor switch can be two background processes or a foreground process and a background 

process. 

Events are usually divided into three categories [Apple 96d]: low-level events, 

operating-system events, and high-level events. The event manager returns low-level 

events to applications for occurrences such as the user pressing the mouse button, 

releasing the mouse button, pressing a key on the keyboard, or inserting a disk [Apple 

96d]. The event manager also returns low-level events to the applications if the 

applications needs to activate a window or update a window. When an application 
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requests an event and there are no other events to report, the event manager returns a null 

event. 

The event manager returns the operating-system events to the application when 

the processing status of the application is about to change or has changed. For example 

[Apple 96d], if a user brings an application to the foreground, the process manager sends 

an event through the event manager to the application. Some of the work of reactivating 

the application is done automatically, both by the process manager and by the window 

manager. The application must take care of any further processing needed as a result of 

the application being reactivated. The event manager returns high-level events to the 

application as a result of communication directed to the application from another 

application or process. 

5.4 Thread Manager 

In the Apple Macintosh operating system, a thread is defined as a separate process 

running inside the application space i.e., the memory space occupied by the application 

[Apple 96j]. This is directly analogous to an application running as a process inside the 

computer space. It is possible to have several applications sharing memory. With a thread 

manager, multiple threads can work simultaneously inside an application [Apple 96j]. 

The thread manager is a simple implementation of concurrent processing within a single 

application. 

5 .4.1 Concurrency 

Concurrency is a series of processes running simultaneously in a single memory 

space [Apple 96j]. MultiFinder, introduced in the Apple Macintosh operating system 
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Version 6.0, brought higher level of concurrency to the Macintosh. Starting from Version 

6, the process manager implements cooperative multitasking [Apple 96j]. The Process 

manager basically depends upon each application to cooperatively surrender time to the 

system, it then mediates the distribution of processor time to other applications. 

At the thread manager level, concurrency means that an application process is 

divided into simpler sub-processes that run concurrently inside the same application. 

Each of these sub-processes in the application follows the cooperative multitasking as 

followed by the application itself. Threads are of two types [Apple 96j]: cooperative and 

preemptive. The cooperative and preemptive threads exists inside the application. 

A multithreaded process is associated with one or more threads. Codes that 

operate only within an application can use the thread manager. Cooperative threads allow 

cooperative multitasking. Operationally, cooperative threads yield to other cooperative 

threads only when the application explicitly makes one of the thread manager yield calls 

or changes the state of the current cooperative thread. A thread can be in one of the 

following three states [Apple 96j]: running, ready, or stopped. 

Preemptive threads allow true multitasking at the application level. When an 

application gets control from the process manager, preemptive threads for that application 

are allowed to run. Preemptive threads differ from cooperative threads because they can 

interrupt the currently executing thread at any time to resume execution. If the interrupted 

cooperative thread is in the stopped state when the preemptive thread yields to the system, 

the next available preemptive thread is scheduled to run [Apple 96j]. Preemptive threads 

then preempt each other in a round-robin fashion until the interrupted cooperative thread 

is made ready. 

-----"c ..J... 
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Thread implementation is different for the 68k architecture and the Power 

Macintosh computers [Apple 96j]. Each thread has an associated data storage that 

includes the program counter, the registers, and the function stack. The stored stack is not 

swapped in and out with the main application stack. The stored stack is an independent 

stack, particular to the thread [Apple 96j]. The thread manager treats the main application 

as a separate thread. 

Although the thread manager preserves each thread's context, threads can work on 

shared data within the application but outside the threads context. If two or more threads 

operate on the same data, then the data is at risk. Suppose we have a thread in an 

application filtering part of an image, at this time a user erases that part of the image. We 

don't want this to happen. In such cases, the application developer has to provide enough 

protection using a semaphore or some other locking mechanism. So, it is the developer's 

responsibility to make sure that his/her data will always be in a consistent state. So all 

synchronization issues are handled by the developer and not by the operating system. The 

developer has full control over his/her application as the Apple Macintosh operating 

system follows the cooperative multitasking mechanism. 

In the Apple Macintosh operating system, threads or processes do not have a 

priority associated with them [Apple 96j]. Basic scheduling unit is the application. Inside 

the application, the developer can share the processor's time among different threads or 

yield the processor time to the system voluntarily. The scheduling of the processes and 

threads inside the application space is done based on the round robin mechanism [Apple 

96j]. If an event is waiting, the main application thread receives control. The developer 

can create threads when needed, or can create a pool of threads and withdraw a thread 
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from the pool when it is necessary. This mechanism allows the developer to pre-allocate 

threads at a time when memory is not fragmented. 

5.6 Multiprocessing 

DayStar Digital developed the Apple Multiprocessing API under a contract signed 

with Apple Computers, Inc. [Cooksey 96]. Mac OS compatible computers that are 

compliant with the Apple multiprocessing specifications, have one main processor and 

one or more attached PowerPC processors. The main processor runs all applications and 

the Mac OS. The Apple Multiprocessing API provides a set of calls that allow an 

application to create separate threads of execution called tasks. Tasks are preemptively 

scheduled on the available processors in the system, even if there is only one. 

The command MPProcessors is used to count the number of processors in the 

system [Cooksey 96]. If there is only one processor, the application may proceed as 

though the multiprocessing service is not available. However, the developer can still 

create preemptive tasks in a single processor environment. The count returned by the 

MPProcessors is usually used as an indication of how many tasks to create. While 

designing an application for a multiprocessing Mac OS, it is the developer's 

responsibility to make sure that the application will strive to keep all the processors busy. 

The simplest way to do this is to create at least as many tasks as there are processors 

[Cooksey 96]. The application then splits the work to be done into that many pieces and 

asks each task to work on a piece. An alternative and frequently-adopted technique is to 

create one less task than there are processors. 
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Communication among the application and the tasks occurs in two basic ways 

[Cooksey 96]: shared memory and synchronization methods. Since all memory is shared, 

anything the application writes into memory is available to the tasks and vice versa. 

However, before a task tries to access the memory space occupied by the application, the 

task must synchronize with the application using one of the three methods available in the 

Multiprocessing API Library [Cooksey 96]: queues, semaphores, and critical regions. 

Queues are first-in-first-out queues of 96-bit messages, inserting and extracting elements 

is an atomic operation. Many tasks can try to extract the next message from a given queue 

but only one will successfully obtain it. Semaphores represent a single 32-bit value that 

can be atomically incremented up to a predetermined maximum and atomically 

decremented to a minimum of zero. Critical regions prevent sections of code that they 

encompass from being executed by more than one task including the application at once. 

The PowerPC architecture allows for writes to memory to be deferred [Cooksey 

96]. This is a resource management feature that helps the PowerPC achieve its 

tremendous speed (350 MHz). In order for another processor to see the correct values in 

memory, certain hardware dependent instructions need to be executed. When a task uses a 

synchronization method, these instructions are executed, thus ensuring that the processors 

involved have a consistent view of memory from that point on. It is also important to use 

synchronization methods so that when one of the communicants is not yet ready to 

synchronize for some reason, the other one can yield the processor it is on. This makes 

the processor immediately available to some other task that may be able to make more 

productive use of it. 
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Before creating tasks it is usually a good idea to create the means by which to 

synchronize them with. Queues and semaphores are the two most common methods used. 

Semaphores are quicker and less memory intensive but do not offer the same degree of 

flexibility as Queues. Queues and semaphores are usually created in pairs [Cooksey 96]: 

one by which to signal a request and the other by which to signal results. If a developer 

creates only one synchronization object and try to use it for both purposes, it will not 

work. After a request is posted, the application will at some point start waiting for results. 

If it waits at the same place the request was posted, the request itself may appear to be the 

result. Since the application clears the request in the mistaken belief that it was a result, 

no work gets done. So to have the work done successfully, it is important to use two 

distinct synchronization objects for two-way communication. 



CHAPTER VI 

COMAPARATIVE EVALUATION 

6.1 Comparison 

A detailed comparative study on how synchronization is achieved in UNIX, 

Windows NT, and Apple Macintosh operating system was carried out and the results 

were tabulated as shown in Table ill. 

Table III consists of four columns; they are Property, UNIX, Windows NT and 

Apple Macintosh. For each_ property in the first column, the remaining three columns 

contains a Yes, No or NA with a brief explanation. This comparison is carried out based 

on the information collected in Chapters III, N and V. Table III is followed by a section 

on observations concerning this study. 
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6.2 Observations 

The following observations were made in this comparative study: The UNIX 

operating system is the most reliable of the three operating systems taken into 

consideration, Windows NT comes next and then the Apple Macintosh operating system. 

Windows NT is becoming increasingly popular because it helps to build small business 

machines at a low cost, and it also has an attractive user interface. Windows NT is 

popular because it is easy to maintain and administer both as a server and as a client 

operating system. Windows NT and recent versions of UNIX, such as SVR 4.2 and 

Solaris 2.5, are preemptive multitasking operating systems. The Apple Macintosh 

operating system is a cooperative multitasking system. 

In Solaris 2.5 and Windows NT the basic unit of scheduling is a thread. Some of 

the better synchronization mechanisms utilized by these three operating systems are 

hardware dependent. One such hardware dependent synchronization mechanism is the 

Spin lock. Unix processes have a well defined hierarchy. Each process has at most one 

parent and zero or more child processes. In Windows NT and Apple Macintosh operating 

systems there is no parent/child relationship among processes. 

UNIX and Windows NT kernels are re-entrant, but the Apple Macintosh operating 

system is not. Apple does support re-entrant codes to some extent but it is limited to the 

68k architecture. UNIX and Windows NT are symmetric multiprocessing operating 

systems, but Apple Macintosh is not. The Apple Macintosh operating system also 

supports multiple processors, but it is made possible by using the multiprocessing API 

developed in collaboration with Daystar International. Thus the operating system by itself 
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does not support multiprocessing and all the synchronization issues have to be handled by 

the application developers. 



CHAPTER VII 

SUMMARY AND FUTURE WORK 

7.1 Summary 

In Chapter I we discussed operating systems in general, their components, and 

multitasking operating systems. Various studies carried out in this area (i.e., 

synchronization) were also mentioned. Chapter II provided information about 

synchronization, process communication, and different synchronization mechanisms. 

The results of the study on synchronization in UNIX, Windows NT, and Apple 

Macintosh operating systems were listed in Chapters ill, IV, and V, respectively. Before 

discussing synchronization issues, a brief discussion of the internals of the UNIX, 

Windows NT, and Apple Macintosh operating systems was provided at the beginning of 

their respective chapters. 

Chapter ill presented some details about UNIX process states, parent/child 

relationship among processes, kernel level, and multiprocessor synchronization. Among 

other synchronization mechanisms and issues, semaphores, semaphore convoy effect, 

read-write locks, sleep locks, etc., were also discussed. After the discussion about basic 

architecture of Windows NT, Chapter IV provided some details about the protected 

subsystem, Windows NT executive, processes, thread states, user-level, and kernel-level 

synchronization mechanisms, as well as multiprocessor synchronization issues. 

69 



70 

We discussed cooperative multitasking, processes and events, thread manager and 

concurrency, and multiprocessing API in Chapter V. Based only on the synchronization 

issue, Chapter VI compares these operating systems and tabulates their differences and 

similarities, followed by the observations of this study. 

7.2 Future Work 

It is possible to design a new synchronization primitive based on the study 

conducted in this thesis. It is also possible to extend this study further to explain the 

reasons for the success or failure of these operating systems based on synchronization. 

The Apple Macintosh operating system Version 8.0, which is the most recent release, has 

undergone some major changes. Multitasking capability has improved a lot, but no proper 

documentation is available on this as of today. This comparative study can be updated by 

including the latest version of these operating systems. 
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ADB 

BSD 

Critical Section 

DPC 

IPC 

IPL 

LPC 

Mac 

MPProcessors 

Mutual Exclusion 

Object handle 

p 

SCSI 

Semaphore 

SVR4 

APPENDIX A: GLOSSARY 

Apple Desktop Bus. 

Berkeley Software Distribution, a flavor of UNIX. 

When a process is accessing shared data, the process must 
be in its critical section to insure the integrity of the data. 

Deferred Procedure Call. 

Inter-Process Communication. 

Interrupt Priority Level. 

Local Procedure Call. 

Macintosh. 

Command used in an Apple Macintosh multiprocessing 
operating system to count the number of processors. 

Each process accessing the shared data excludes all other 
accesses from doing so simultaneously. This is called 
mutual exclusion. 

An index into a process-specific table that contains 
pointers to all the objects that the process has opened a 
handle to. 

Proberen, a Dutch word meaning "to test". 

Small Computer System Interface. 

A semaphore is a non-negative integer variable that can be 
handled only by the P and V operations. 

System V Release 4. 
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XeroxPARC 

V erhogen, a Dutch word meaning "to increment". 

Xerox Palo Alto Research Center. 

76 

l 



Macintosh 

UNIX 

Windows NT 

Win32 

APPENDIX B: TRADEMARK INFORMATION 

A registered trademark of Apple Computer, Inc. 

A registered trademark of AT&T. 

A registered trademark of Microsoft Corporation. 

A registered trademark of Microsoft Corporation. 

77 



VITA 

Ramasamy Satishkumar \. 

Candidate for the Degree of 

Master of Science 

Thesis: A STUDY OF SYNCHRONIZATION MECHANISMS IN UNIX, WINDOWS 
NT,ANDMACOS 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Lakshmipuram, India, July 15, 1974, son of Mr. and Mrs. 
N. Ramasamy. 

Education: Received Bachelor of Engineering in Electronics and Communication 
Engineering from University of Madras, Madras, India, in July 1995; 
completed requirements for the Master of Science Degree in Computer 
Science at the Computer Science Department at Oklahoma State University 
in December 1997. 

Professional Experience: Working as a Database and System Administrator in the 
Writing Center at Oklahoma State University, from June 1996 to July 1997. 

--~l 


