A STUDY OF SYNCHRONIZATION MECHANISMS IN

UNIX, WINDOWS NT, AND MAC OS

By
RAMASAMY SATISHKUMAR
Bachelor of Engineering
University of Madras
Madras, India

1995

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December 1997

OKLAHOMA STATE UNIVERSITY

A STUDY OF SYNCHRONIZATION MECHANISMS IN

UNIX, WINDOWS NT, AND MAC OS

Thesis Approved:

/ L/l LA S e (x A ot if/(?"@ z*’(&f /[\ ya
Thesis Advisor /' /

k/‘/\ié /4‘ /(4; /]%/7 :"/ Ay (. ’ /,/ -
A 7’!*(' (i f &:f'b Lo S o

b I 7 "‘
T

(e L%é‘ ‘s

an of the Graduate College

—

PREFACE

In the world of operating systems, the wheels of progress turn rather slowly.
Operating systems take years to develop. Communication between processes is an
important and difficult topic in operating systems. Studies of interactions and
communications among processes have resulted in new synchronization primitives.
Existing commercial and popular operating systems use different synchronization
mechanisms to achieve kemel based synchronization as well as to provide
synchronization facilities for applications. Each of these synchronization mechanisms has
its advantages and disadvantages. The objective of this thesis work was to conduct a
comparative study on how synchronization is achieved in UNIX, Windows NT, and
Apple Macintosh operating systems. A detailed study on how synchronization is achieved
in these operating systems was carried out. Based on this study the operating systems
were compared and the results were tabulated.

The comparative study indicates that among other things UNIX and Windows NT
are preemptive multitasking and symmetric multiprocessing operating systems; Apple
Macintosh is a cooperative multitasking and master-slave multiprocessing operating
system; Thread is the basic unit of scheduling in Windows NT and in recent versions of
UNIX such as Solaris 2.5; and in a multiprocessor environment, both UNIX and

Windows NT use Spin Locks for achieving synchronization.

ii

ACKNOWLEDGMENTS

I would like to express my appreciation to and thank my graduate advisor Dr.
Mansur H. Samadzadeh for his advice, guidance, dedication, encouragement, and
instruction throughout my thesis research work. I got inspiration and motivation due to
his constant guidance. Without his support and motivation it would not have been
possible to complete this work.

I offer my sincere thanks to Drs. B. E. Mayfield and J. P. Chandler for serving on
my graduate committee.

Finally, I wish to thank my parents. Without their support and encouragement, it

would not have been possible for me to complete my graduate studies.

v

_

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION......ccctteicitieenrereeieesensteseesesestsssesstestessessesstessessessesnssssessesstonssnssssesanenes 1
II. LITERATURE REVIEWcotiiiietiententneteneeeeenesrectssses et esnesessscstossensesssensenns 4
2.1 SYNCRIONIZAtION.ccoiieierierirereereeeseeeter e e es s e eeeseeranassaesaee e e e seeeaeesarsanessanons 4
2.2 Communication Between ProCesses.cceeururrrrrcerrneereneerecereeeseecreeeceneenes 4
2.3 Synchronization MechaniSms............coeeericreereineeesirecereeeec et see s eeeenes 5
2.3.1 SOftWare SUPPOTT.......ccceeieeirriieeeeeecrntecerentesereeeeneecesseseseesneesesnns 5
2.3.2 Hardware SUPPOTLccecerrerrneemrreenerarieseseseereescretenseeeseesssssesesnseses 6
2.3.3 Operating SYStem SUPPOTL........cccvrveeerrmeererreereereersereeeseeresseeesesseesensaens 7
2.3 4 Language SUPPOTL........cc.eeireuernuesernererercesenncrresaenseesesnessseseessseneesessnees 8
ITL UNIX ..ottt et st eetesese et ese st et esesusesasaesaseseaseaesesnesuasstessesssseensesasansenseseenes 11
3.1 BasiC ATCRITECTUTEcceeeieemirentreteenerertereeeeeeacenteesee et e s e eeseeseeeseeesseessassrasseens 11
B2 UNIX PIOCESSESecuveeneeerueermesiseetenstetrasstenresessassesssesasonseseasesssessesstessessacas 12
3.3 Kernel Level Synchronization...........ccceevveeciirenieeeccenicneieneeneecreeeeeereeeseeeeesnnes 15
3.3.1 Blocking OPETations........cccceeeuerreeeereeenreermecreeeneesaceseecssssaeesssessssesases 16
332 INTETTUPLS wveieiercereieeeieeee e ee et et et e saeesee et e seeseaesstesneesnaeenesannen 15
3.4 Multiprocessor SynChronizZation...........c.cceceeeeeeuerrcererreeeeencescrsecneeeerscesecsssceas 18
3.4.1 Hardware SUPPOTLc..cocereieirerriececrieceenreereneseeseeeeeeenessssenns 19
3.4.2 SOftWare SUPPOTL........cccroerreeriereenteceernircrreeseeeeeeesesceeeseeseenessessessns 19
3.4.2.1 SEemMAaPhOIESccccccvreererrerieeerieerereereesseneeneeesaeeeseeesenens 20
3.4.2.2 Read-Write LOCKS......cccerirrirceeeeneeneeecreee e 23
3.4.2.3 Condition Variables.........cccecertrereririirnieneeecesceseeceneennes 26
3.4.2.4 S1eeP LOCKS ...oovieeireeceeceeeerene et 29
TV WINDOWS NT ...ttt st setess et e sse st e ese s e s e stas e s e s sesses s stssssossssennon 31
4.1 BasiC ATChItECTUTEcccueeeererircrretecneetesteseesteseesteseesseestesteseesseseestensensseseraees 31

v

Chapter Page
4.1.1 Protected SUbSYStEM.....c.ccovceeriiireienieiectiniiicne et 32

4. 1.2 NT EXCCULIVE. ...cneeiereieicenireceerraeessesessaressecsesseesesmtcssmessssenessssssusssns 34

4.2 Windows NT Processes and Threads..........coeveeeeicenerreicnrnncceneciciceniinnenens 36

4.3 Windows NT Thread Statesc.cocveeriierieenereeencncecreeieeesreeeeeeesnteecenas 37

4.4 User Level SYyNChronizZationccceceeecveeruesseesieessesersersieecneeeneeseeneneseseesnecnes 39

4.5 Kemnel Level Synchronizationcccceeeeiiveeensserecerseeeseneeeesneeneseseseseessesesseces 42

4.6 Multiprocessor Synchronization...........cceeueeeevemrreeinrencineenncicssinessecesneseeaeanes 43

V. APPLE MACINTOSH. ...ttt et teenesseeestssesestesessesssssssnsssssones 49
5.1 BasiC ATCRItECIULEcveeveeiiiiieciineerctrrteeeee e esteees st ste et seese e saesnnes 49

5.2 Cooperative Multitasking.......c..ccoevueemrrirnnrencrimnierneninrenenensssessnecsnesassaes 53

5.3 Processes and EVENLS......ccoeieirieieecieeteretrc et esec e ce e eenssseeane 53

5.4 Thread Managerccoeecviiiiriiiitrreesecciteeetes st eesrasesne s es st e s e aeesssesessanes 55

5.4.1 CODCUITENCY .coorruirrmmeraeeraerennereneeroneeeneesseesanensessssesssssessessssssssssssases 55

5.6 MUItIPIOCESSINGcoveiimeeinieiiiiteiiiieetresteerecstsnesteseesseatee s sessosassosesssesseensns 58

VI. COMPARATIVE EVALUATIONcooiiiiiiiiirtieienienscete e snecesasentasssessesasnee 61
6.1 COMPATISONoceneeinireiicrecereieeteese e s e eesseseemeseses s e eeeessaessseessntasasssssatosssanas 61

6.2 ODSEIVALIONS......ccceeieireirieeerieierentesreeteesteseeseeeseeseseseesaresesesseesesessasaserssssesnaes 67

VII. SUMMARY AND FUTURE WORKooooiiiimrtiiieeinrcenieeessaeseecraseeseesseeseeene 69
7.1 SUITNATY .ceeeeereeeeeererereeeeeentereesesessasessesnresssseesesersssssessssesesacesssssssessssseasssasesens 69
T2FUIIE WOTK ..ottt s as et s svassntsne e 70

vi

Lo

REFERENCES....... o titeeeieeiereciieecresssssssseercssssssssssssssassssssssesseserssssssssssssesssassesessesssnens 71

APPENDICES o eerieeeeeiitiescieessssessestesssssssasssssssssssssssessessessassssssssansssnssssansaressen 74

APPENDLIX A: GLOSSARY ..o oeeieiiiiiccetetreereeresssssssesessssssisssessessssssssssssssssnsssssssessssnen 75

APPENDIX B: TRADEMARK INFORMATIONooiiivevceteeeieecesseraeneserreseeeessssssasens 77
vii

LIST OF FIGURES
Figure Page
1. Block Diagram of the UNIX SYSteIML.....ccctreerierrerierrercrenirreeesenesaerennssasssssessaessaesssans 12
2. Process States and State TranSition........cccceeeceereeerererersesteseeeeere et e sesceseesensenns 14
3. UNIX Locking AIZOTIthINcouiiiioiieiiciiiireireriertetreneesteeeseeteseeecte e ssesseeseesasaeens 17
4. Semaphore CONVOYcccoceeiiiiiireiicenirrtrere e et et sreeseee e estee e e esse e e st st enmesnesseens 22
5. Block Diagram of Windows NT Operating SYSteIm.........ccceeeeerererreerceneeneesrcrseenenane 31
6. Windows NT Thread Statesccoeeeeiireirenentereeentreeceeceeeeesereeesessessesseesenas 38
7. Two Processors Competing for Spin LOcK........cccevvceriierieieicnececnecncnenencceeceeeene 44
8. Dispatcher Object-State Changes.........coceeveeeeerrcenirrrernetcetereeeenresserseesnsessesssresseeseees 47
9. Apple Macintosh Operating System Layers.........ccccveeererecerireteceereeenceseencsereesenenee 49
viii

LIST OF TABLES
Table Page
I. Macros Used to Set the Interrupt Priority Level in SVR4.........cooviviiriiniiiiiine 17
. Definitions of Signaled State for Synchronization Objects..........ccovvrvmvneeecieiinnnenens 40
II. Comparison of UNIX, Windows NT, and Apple Macintosh Operating Systems
Based on SyNChroniZationccveveececeirenienccr e e rccesat e sms e saesesssssasesseenns 62
ix

CHAPTER 1

INTRODUCTION

An operating system is the set of programs that control a computer. Many books
on operating systems describe various operating system concepts [Deitel 92] [Krakowiak
90] [Stallings 95] [Tanenbaum 92] [Tanenbaum and Woodhull 97]. Operating system
software includes several levels: kernel-level services, library-level services, and
application-level services. Applications are user programs that are linked together with
libraries.

The details of what constitutes a process differ from one system to another. At the
highest level of abstraction, a process comprises the following [Deitel 92]: a program
abstraction that defines the initial code and data, a private address space that is a set of
virtual memory addresses that the process can use, and system resources such as
semaphores, communication ports, and files, that the operating system allocates to the
process as the program executes.

An operating system consists of the following components [Tanenbaum 92]:

1. basic structure;

ii. synchronization and communication mechanisms;

iii. implementation of processes, process management, scheduling, and
protection;

R R RIS

iv. memory organization and management, including virtual memory; and

v. input output device management, secondary storage management, and file
system management.

A multitasking operating system concurrently executes more than one task or

process. A multitasking operating system is basically a logical extension of a
multiprogrammed operating system. Multiple jobs are executed by the CPU switching
between them, but the switches occur so frequently that the users may interact with each
| program while it is running. Time slicing, as used in operating systems, is when a process
is given a particular time period in which it can utilize the CPU and, when the time period
completes, the CPU is allocated to the next process and the current process is sent back to
the ready queue.
| Synchronization among processes is an important issue in operating systems: One
of the primary problems confronting the designers of operating systems is to provide an
efficient synchronization mechanism. A considerable amount of research work has been
reported in open literature in this area. Many synchronization primitives have been
proposed, e.g., Events, Sequences, Queues, and Conditional Critical Regions. Dunstan
and Fris did a study on semaphores as implemented in UNIX System V [Dunstan and Fris
95]. Avutu did an extensive study on synchronization mechanisms, and came up with a
new synchronization primitive [Avutu 93]. This thesis work comprises of a detailed
comparative study on how synchronization is achieved in UNIX, Windows NT, and
Apple Macintosh (“Mac”) operating systems.

The rest of this thesis report is organized as follows. Chapter II discusses

synchronization and different synchronization mechanisms. Chapter III, IV, and V deal

with UNIX, Windows NT, and Apple Macintosh operating systems, respectively. This
three chapters introduce the basic architecture of each operating system and then detail
how synchronization is achieved in them. Based on the information collected in this
study, Chapter VI compares how synchronization is achieved in the three operating
systems under consideration. Chapter VII concludes, summarizes, and suggests future

work.

CHAPTER II

LITERATURE REVIEW

2.1 Synchronization

Synchronization is the mechanism used to guarantee mutual exclusion among
processes when accessing a critical section and to achieve inter-process communication
[Wills 96]. A critical section is a sequence of instructions that may be executed by at
most one process at a time. Processes involved in synchronization become indirectly

aware of each other by waiting on a condition that is set by other processes [Deitel 93].

2.2 Communication Between Processes

Processes communicate with each other using inter-process communication (IPC)
mechanisms. Files, pipes, and shared memory are some of the methods used for IPC.
Files are the most obvious means of passing information between processes. One process
writes to a file and the other reads from that file. Even though files are not interactive,
they are often used for IPC.

Another method of connecting the output data stream of one process to the input
of another process is known as a pipe. A pipe can be of two types: unidirectional and bi-
directional. In unidirectional pipes, the second process cannot talk back to the first
process. In bi-directional pipes, actually two unidirectional pipes connect the two

processes, so that both of the processes can communicate with each other. Pipes

o

—

5

can hold only a finite amount (10 blocks) of data [Vahalia 96]. Deadlock can occur when
using pipes for IPC. For example, while using a bi-directional pipe between two
processes, both unidirectional pipes get filled up, then if both processes are blocked

writing to their pipes, neither can read any information from their own unidirectional pipe

because they haven’t finished writing into the other pipe.

The use of shared memory is one of the fastest IPC mechanisms known. Two or
more processes share part of the logical memory locations [Wills 96]. Shared memory
IPC mechanisms are easy to implement in operating systems with paged memory
architecture [Wills 96]. In the case of using shared memory for IPC, the operating system
has to keep a link count (similar to the case of using shared files) so that a page can be
freed when the link count becomes zero. Implementing shared memory IPC for operating
systems without paged architecture is considerably more difficult than for those with

paged architecture [Wills 96].

2.3 Synchronization Mechanisms

Synchronization mechanisms can be broadly classified into four basic types based
on their level and type of implementation and support: software support, hardware
support, operating system support, and language support. In addition, hybrid

synchronization solutions exist that combine more than one approach [Wills 96].

2.3.1 Software Support

A correct software based solution for mutual exclusion was first devised by
Dekker (as cited in [Dijkstra 68]). He used shared variables to control access to the

critical section. Subsequently, other solutions were also proposed. A relatively simpler

R EEEEEEEEEEE—E—m——SGmm————————

solution to the two process mutual exclusion problem was presented by Peterson
[Peterson 81]. Dijkstra presented a solution for solving the critical section problem for n

processes called the Bakery algorithm [Silberschatz and Galvin 95].

2.3.2 Hardware Support

Hardware based solutions are typically the conceptually simplest solutions. They
can be achieved for instance by disabling hardware interrupts at the start of the critical
section and enabling them at the end. This will not work in the case of having more than
one processor, because even if interrupts are blocked in one processor, all other
processors are free to access the critical section, so a different technique has to be
followed. For hardware based solution many machines provide special hardware
instructions that can be used either to test and modify the contents of a Qord or to swap
! the contents of two words atomically (i.e., indivisibly).

The Test-and-Set instruction can be defined as follows [Silberschatz and Galvin
95].

Function Test-and-Set (var target: boolean): boolean;

begin
Test-and-Set := target;
target := true;

end;

The Swap instruction swaps the contents of two words atomically and is defined as
follows.

Procedure Swap (var a, b: boolean);

var temp: boolean;

begin
temp := a;
a:=b;

RSB

b := temp;
end;

A context switch cannot occur in the middle of the critical section, as these hardware
instructions are carried out in an atomic manner, i.e., their execution from beginning to

end is indivisible.

2.3.3 Operating System Support

Operating system based solutions can be achieved by adding process-
synchronization support to an operating system [Silberschatz and Galvin 95]. The use of
semaphores is one example of this type of support. Semaphores can be used to solve most
of the synchronization problems. Dijkstra originally defined the semaphore concept

[Dijkstra 68]. A semaphore s is a non-negative integer variable that has an implicit queue

associated with it. The value of the variable can be handled only by the following two
primitive operations.

P(s):ifs > Othens « s- 1;
else wait on s;

l V(s):s «s+1;
The mutual exclusion scheme can be coded using a mutual exclusion semaphore
!‘ called mutex (initialized to 1), as follows.
! Wait: P(mutex);
<critical section>
Signal: V(mutex);
The Wait or P operation is used by a process wishing to enter a critical section. If

the value of the semaphore variable is greater than zero, it is decrement by one and the

process is executed. If the value is less than or equal to zero, then the process is added to

RN RS EEBDZmSSS

the queue associated with the semaphore. The Signal or V operation is used by a process
leaving a critical section. It checks the queue to see if there is a process waiting. The
processes in the queue are in a passive waiting state. If there is a process, it is activated. If
no process is waiting, the semaphore is incremented by one [Silberschatz and Galvin 95].
There are many extensions to the basic definition and implementation of the concept of a
semaphore, intended to suit various synchronization requirements, runtime environments,

and implementation platforms.

2.3.4 Language Support

Programming language based synchronization can be implemented, for example,
by using a construct named monitor or a construct called rendezvous. Implementations of
the monitor construct exist in Mesa and JAVA, programming languages from Xerox

PARC and Sun Microsystems, respectively. A monitor is characterized by a set of

1 programmer-defined operators. The syntax of a monitor [Silberschatz and Galvin 95] is

} as follows:

type monitor-name = monitor
variable declarations
procedure entry P1 (...);
begin ... end;
procedure entry P2(...); ‘
begin ... end; l

procedure entry Pn(...);
begin ... end;
begin
Initialization Code
end.

Detailed information about monitors can be found in the original paper by Hoare [Hoare
74].

Synchronization (or rendezvous) is achieved in the Ada programming language by

using the accept statements and entries in a task [Wheeler 96]. A task is a unit of
, parallelism in Ada. It consists of two parts: task specification and task body. Task
specification contains declarations and definitions provided by a task called entry. The

task body contains the implementations. The syntax of a task specification is as follows.

task [type] <name> is
entry specifications
end; f
The syntax of a task body is given below.
task body <name> is
declarations of local variables
begin
list of statements
exceptions
exception handlers
end;
An accept statement is an entry into a task. It is similar to a procedure in conventional
languages. There is a one-to-one correspondence between the entry statements in a task
specification and the accept statements in a task body. The syntax of the accept statement
is given below.
accept <entry id> (<formal parameters>) do
body of the accept statement
end <entry id>;
Once an entry is called, the corresponding accept entry will not be executed until control

reaches the accept statement in the task. If the accept statement is reached first, the task is

blocked until some other task executes the corresponding entry. When an entry and the

—

10

accept connect, it is said that rendezvous occurs. The rendezvous mechanism is more

disciplined than a monitor, since the accept statements appear inside a context.

CHAPTER IlI

UNIX

3.1 Basic Architecture

The UNIX operating system can be divided into two major levels as shown in
Figure 1: user level and kernel level. The UNIX kernel can be divided into two major
entities: the file subsystem and the process subsystem [Bach 86]. The file subsystem and
the process subsystem are shown in the left and right sides of Figure 1 [Bach 86],
respectively.

The system call and the library interfaces lie between the user level and the kernel
level. The system calls can be further subdivided as those that interact with the file
subsystem and those that interact with the process control subsystem. The file subsystem
manages files, allocates file space, administers free space, controls access to files, and
retrieves data for users. The device drivers block that is shown between the file subsystem
and the hardware control are the kernel modules that control the peripheral devices.

The process control subsystem is responsible for process synchronization, inter-
process communication, memory management, and process scheduling. Finally, the
hardware control, shown above the hardware block in Figure 1, is responsible for

handling interrupts and for communicating with the machine.

11

e

12

uSer programs

User Level ’ llbr?nes

Kemnel Level

System call interface

¥

inter-process
file subsystem process communication

™~

\\control

scheduler

buffer cache subsystem

memory
block } management

character

device drivers
A

v hardware control

Kemnel Level
Hardware Level

hardware

Figure 1. Block Diagram of the UNIX System [Bach 86]

I/O devices and other peripherals may interrupt the operating system while a
process is being executed. In such cases the kernel may resume the execution of the
interrupted process after servicing the current interrupt. Interrupts are serviced by special

functions in the kernel.

3.2 UNIX Processes

A process from the UNIX point of view is an entity that runs a program and

provides an execution environment for it [Bach 86]. In other words, it is an instance of a

R EEEE—mmmm————

13

running program. It comprises of an address space and a control point. Basically, a

process is the fundamental scheduling entity, i.e., only one process runs on the CPU at a

time. Each process has a definite life time. Most of the UNIX processes are created by a
fork or vfork system call. A process invokes the exec system call to run a new program,
thus during the life time of a process it may run one or more programs at a time [Bach
86].

UNIX processes have a well-defined hierarchy. Each process has at most one
parent process and zero or more child processes. The process hierarchy looks like an
inverted tree with the init process at the top [Back 86]. The init process executes the
program located at /etc/init, and it is the first user process that gets created when the
system boots. UNIX processes are in well-defined states as shown in Figure 2 [Vahalia
96]. In UNIX , the fork system call is used to create a process, until a process is fully
created it is in the initial state and then it is moved to the ready-to-run state. The ready-to-
run state means that a process is ready to be scheduled by the kemel. When such a
process is scheduled, it executes in the kernel mode (kernel running state) still the context
switch gets completed. After this, if it was a user mode process, it shifts to the user
running state, whereas if it was blocked for a resource while executing a system call, it
resumes execution in the kernel mode. Processes switching can occur only in the kemel
by explicit calls to the event-wait mechanism [Leffler, et al. 89].

As a result of a system call or an interrupt, a process that is running in the user
mode enters the kernel mode, and returns to user mode when the system call/interrupt
completes. If a process has to wait for an event or resource that is not available, it calls

the sleep() function. This will put the process on a queue of sleeping processes (asleep

—

14
user
rurming
fork syscall, ~fetum from
N t syscall or
interrup etmpt
wait
h
sleep
ready
to run wakeup
stop I contimue stop I contimie
o L
stopped Sop stopped
plus asleep
wakeup

Figure 2. Process States and State Transition [Vahalia 96]

state). When the resource becomes available or the event occurs, the kernel wakes up all

of the processes waiting for the same. When a process is stopped or suspended by a stop

signal, it moves from the ready-to-run state and asleep state to the stopped state and the
stopped-plus-asleep state, respectively. A continue signal helps this process to return to
its previous state. A process terminates by calling the exit system call. The kernel releases
all of the resources of the process, except the exit status and resource usage information,
and leaves the process in zombie state. A process remains in this state until its parent
generates a wait signal, which destroys the process and returns the exit status to the parent

[Vahalia 96].

_

15

3.3 Kemel Level Synchronization

UNIX kernel is re-entrant, meaning that several process may be involved in kernel

activity concurrently. In fact, processes may even be executing the same routine in
parallel. At any instant, several processes may be active but only one is actually running,
the others are inactive (blocked, suspended, or asleep). UNIX implements kernel level
synchronization to avoid race condition, as all processes share the same copy of the
kernel. Race condition is a situation in which several processes access and manipulate the
same data concurrently, and the outcome of the execution depends on the particular order
in which the access takes place. UNIX uses several synchronization techniques. The first
and foremost is that initially UNIX kernel was not preemptive [Vahalia 96]. Basically,
process synchronization is accomplished by having processes wait for events. We will
look at the synchronization issues involving the non-preemptive kernel in this section and
then we will investigate additional synchronization techniques that are used in the case of
the preemptive kernel.

The situations under which we need synchronization in a non-preemptive UNIX
kernel are [Vahalia 96]: when a bldcking operation is being carried out, when an interrupt
occurs, and for systems with more than one processor. We will next discuss how
synchronization is achieved in the case of blocking operations and interrupts.
Synchronization issues in the case of multiple processors is discussed in Section 3.4

under the heading of Multiprocessor Synchronization.

16

3.3.1 Blocking Operations

The blocking operation places a process in the asleep state until the operation on
which it blocked completes. Even in the case of a non-preemptive UNIX kernel, most of
the objects (data structures and resources) need to be protected across a blocking
operation. Let us consider the following example [Vahalia 96]: a process has to read from
a file into a disk block buffer in kernel memory. As this is an I/O operation, the process

has to wait until it completes. Meanwhile the kernel may schedule another process. Since

the disk block buffer is in an inconsistent state, the kernel must ensure that other
processes do not access the buffer in any way.

4 UNIX kernel prevents such accesses by associating a lock with the various objects
involved. All processes that need to use an object must check the lock. If it is open, the
process can access the object, else the process must go to sleep until the object gets
unlocked. Normally, the UNIX kernel associates a wanted flag with an object. This flag is
set by a process that needs it while it was locked. When a process is ready to release a
lock, it wakes up all the processes that have set the wanted flag for that object. By
following this procedure, UNIX allows all other processes to execute safely even when a
process has blocked after locking a resource. Figure 3 shows this locking algorithm

[Leffler, et al. 89]. 3

3.3.2 Interrupts

In a non-preemptive UNIX kernel, even though a process cannot be preempted by

another process, it still can be interrupted by devices. In order to provide proper

synchronization, the interrupt handler should not be allowed to access the data that is in

17

resource

process warnts

: w No—= lock resouce

Yes
{ ;
! sleep on resource use resource
i
1) r
— ened by unlock resource
sormeone else

L)
|

| wake up waiting
processes)

f resume other
L processing

Figure 3. UNIX Locking Algorithm [Leffler, et al. 89]

Table I. Macros used to set the Interrupt Priority Level in SVR4 [Vahalia 96]

Macros

Purpose

sp10 of splbase

enable all interrupt

spltimeout

block functions scheduled by timers

splstr

block STREAMS interrupts

spltty

block terminal interrupts

spldisk

block disk interrupts

spl7 or splhi

disable all interrupts

splx

restore ipl to previously saved value

—

18

an inconsistent state. Synchronization in the case of interrupts is achieved by blocking
interrupts while accessing the data that is in an inconsistent state. The UNIX kernel use
macros similar to the ones in Table I [Vahalia 96]. These macros help to raise the ipl
(interrupt priority level) and thereby help to block the interrupts while accessing the
critical region. Using these macros, the current ip/ value is recorded and it is raised to a
new value. After raising the ipl value, thé process enters the critical region. When the

process leaves the critical region, the ipl value is restored with the recorded value.

3.4 Multiprocessor Synchronization

By increasing the number of processors, the system performance does not increase
linearly [Kelley 89]. The need for appropriate synchronization primitives that are needed
while accessing the shared data structures, and the extra functionality’s like scheduling
policies etc., to support multiple processors adds CPU overhead and thus reduces the
| overall performance gains. The operating system must try to minimize the overhead and

allow for optimal CPU utilization. The traditional UNIX kemel needs major
modifications to run on multiprocessor systems. One such major area of modification is
‘ synchronization.

Synchronization primitives that we discussed earlier under uni-processor
environments (see Section 3.3) are inadequate for multiprocessors and must be replaced
with more powerful facilities. Synchronization in the case of more then one processor is
fundamentally dependent on hardware support provided by the processors. In the

subsections below, we will discuss hardware synchronization mechanisms and then

—

19

different software synchronization mechanisms for multiprocessor UNIX operating

system.

3.4.1 Hardware Support

Let us consider the basic operation of locking a resource, for exclusive use, by
setting a locked flag maintained in a shared memory location. This may be achieved by

‘3 performing the following three operations:

1) read the flag;
ii) if the flag is zero, lock the resource by setting the flag to one; and
iii) return TRUE if the lock was obtained, else return FALSE.
In the case of a multiprocessor systems, two processes on two different processors may
simultaneously attempt to carry out this sequence of operations. In order to avoid the' race
‘: condition (see Section 3.3) that may occur in such situations, the three operations above
will have to be performed as one single indivisible opefation. Two such indivisible
operations that are available on most processors are the atomic Test-and-Set operation
and the Conditional-Store instruction. For example, SUN SPARC machines, that run a
variant of UNIX, have LDSTUB (LoaD and STore Unsigned Byte) as an atomic Test-
and-Set instruction, similarly VAX-11 has BBSSI (Branch on Bit Set and Set Interlock)

[Digital 87].

3.4.2 Software Support

Software support for synchronization in an operating system is dependent on the
type of multiprocessing technique used in that operating system. There are three types of

multiprocessing systems [Vahalia 96]: master-slave, functionally asymmetric and

—

20

symmetric. The variants of UNIX such as SVR 4.2 and Solaris 2.5 are symmetric
multiprocessing systems [Tanenbaum and Woodhull 97]. In a symmetric multiprocessing
system, all CPUs are equal, they share a single copy of the kernel text and data, and

compete for system resources such as devices and memory. Each CPU may run the kernel

code, and any user process may be scheduled on any processor. It is no longer the case

that a thread (see Section 4.3) retains exclusive use of the kernel or block on a resource,

as several processors could be executing kernel code at the same time.

We need to protect all kinds of data structures that were not protected in the case
of a uni-processor system. The IPC resource table is one such data structure. This
structure is not accessed by interrupt handlers and does not support any operations that
might block the processes. The kernel manipulates the table without locking it. In the case
of multiprocessor environment two threads can access the table simultaneously [Vahalia
96], and hence the kernel must lock the table before using it . The locking primitives and
the way interrupts are handled has to be changed so that proper synchronization can be
achieved in a multiprocessor environment. In the following subsection let us discuss

some of the locking mechanisms.

3.4.2.1 Semaphores

Earlier implementations of UNIX on multiple processors was almost completely
dependent on semaphores for synchronization [Kelley 89]. UNIX kernel guarantees that
the semaphore operations will be atomic [Lee and Luppi 87], even on a multiprocessor
system. Thus, if two threads try to operate on the same semaphore, one operation will

complete or block before the other starts.

B

21

Semaphores can be used to provide mutual exclusion on a resource. A semaphore,
that is initialized to one, can be associated with a shared resource such as a linked list.
Each thread does a P operation to lock a resource and a V operation to release it. The first

P operation sets the value to zero, causing subsequent P operations to block. When a V is

done, the value is incremented and one of the blocked threads is awakened. The code that

represents the usage of semaphores in case of controlling the allocation of finite resources

[Bach 86], such as message block headers, is as follows.

semaphore counter; // initialization of semaphore followed by
// initsem initialization done at the boot
// time
initsem (&counter, resourceCount);
P (&counter); // thread calls P while acquiring an
// instance of the resource ’
V (&counter) ; // thread calls V while releasing an

// instance of the resource

The semaphore is initialized to the number of available instances of the resource
under consideration. Threads call P to acquire an instance of the resource, and then call V
to release it. Thus, at each point in time, the value of the semaphore indicates the number
of pending requests (blocked threads) for that resource.

Semaphores can also be used to cause threads to wait for an event by initializing

them to zero. This is shown in the following code.

semaphore event; // initialization
initsem (&event, 0); // initialized at boot time

// code section executed by the thread
// that may wait on an event

P (&event); // blocks if event has not occurred
V (&event); // called when an event occurs
V (&event); // each thread call this V upon waking up

In this scenario threads doing a P operation will block. When the event occurs, a V

operation needs to be done for each blocked thread. This is achieved by calling a single V

R RSB iim—

22

operation when the event occurs and having each thread do another V operation upon

waking up.

In case of both uni-processor and multiprocessor UNIX systems the use of
i semaphores has a disadvantage called semaphore convoy. A semaphore convoy is created
when there is frequent contention on a semaphore. Figure 4 [Lee and Luppi 87] depicts a

semaphore convoy situation. R is a critical region protected by a semaphore, P1 and P2

P1 and P2: Processors; R: Resource;
T1, T2, T3, and T4: Threads; a, b, and c: Instances;

Pl _g_z_lﬁ

. holds - Plocks sched

T2 R —{T3) quetie

o
blocks

R (T3] e

holds

Figure 4. Semaphore Convoy [Vahalia 96]

are two different processors, and T1, T2, T3, and T4 are the threads. At instance ‘a’,
thread T2 holds the semaphore, while T3 is waiting to acquire it. T1 is running on
processor P1, T2 is running on processor P2 and T4 is waiting to be scheduled. Now
suppose T2 exits the critical region and releases the semaphore. It wakes up T3 and puts it

on the scheduler queue. T3 now holds the semaphore, as shown in instance ‘b’ in Figure

4. Now T1 need to enter the critical region. Since the semaphore is held by T3, T1 will

23

block, freeing up processor P1. The system schedules thread T4 to run on P1. Hence, at

instance ‘c’ thread T3 holds the semaphore and T1 is blocked on it; neither thread can run

until T2 or T4 yields its processor. The problem lies in step ‘c’. Although the semaphore
has been assigned to T3, T3 is not running and hence it is not in the critical region. As a
result, T1 must block on the semaphore even though no thread is in the critical region.
The semaphore semantics force allocation in a first-come, first-served order. This forces a
number of unnecessary context switches. In more recent variants of UNIX such as Solaris

2.5, semaphore has been replaced by an exclusive lock, or mutex [Vahalia 96].

3.4.2.2 Read-Write Locks

A read-write lock on multiprocessors may permit either a single writer or multiple

readers [Vahalia 96]. The basic operations are lockShared(), lockExclusive(),

unlockShared(), and unlockExclusive(). In addition, there might be tryL.ockShared() and
tryLockExclusive() (which return FALSE instead of blocking), and also upgrade() and
downgrade() (converts a shared lock to an exclusive lock and vice versa). A lockShared()
operation must block if there is an exclusive lock present, whereas a lockExclusive()
operation must block if there is either an exclusive or a shared lock on the resource. The

code that implements a read-write lock is as follows [Vahalia 96].

Struct rwlock {
int nActive; // number of active
// readers, or -1 if a
// writer is active
int nPendingReads;
int nPendingWrites;
spinlock_t sl;
condition canRead;
condition canWrite;
}i

void lockShared (struct rwlock *r) // this operation blocks
// if there is an

spin_lock (&r->sl);

r->nPendingReads ++;

if (r->nPendingWrites > 0)
wait (&r->canRead, &r->sl);

while (r->nActive < 0)

wait (&r->canRead, &r->sl);
r->nActive ++;

r->nPendingReads --;
spin_unlock (&r->sl);
}

void unlockShared (struct rwlock *r)
{

spin_lock (&r->sl);

r->nActive --;

if (r->nActive == 0) {

spin_unlock (&r->sl);
do_signal (&r->canWrite);

} else
spin_unlock (&r->sl);

}

void lockExclusive (struct rwlock *r)

spin_lock {(&r->sl);
r->nPendingWrites ++;

while (r->nActive)

wait (&r->canWrite, &r->sl);
r->nPendingWrites --;
r->nActive = -1;

spin_unlock (&r->sl);

}

void unlockExclusive (struct rwlock *r)
{

boolean_t wakeReaders;

spin_lock (&r->sl);

r->nActive = 0;

—

24

// exclusive lock
// present

// acquire the mutex

// spin lock

// increment the count
// of waiting readers
// i1f there are writers
// waiting then block
// thereby don’t starve
// writers

// someone has an

// exclusive lock

// hence block

// increment the number
// of readers associated
// with this shared

// lock

// decrement the count
// of waiting readers
// release mutex

// spin lock

// no other readers has
// the shared lock

// wake up a single
// writer

// this operation blocks
// if there is either an
// exclusive or shared
// lock on the resource

// increment the count
// of waiting writers

// some one has a shared
// lock associated with
// the resource

// hence block

// now a writer has an
// exclusive lock

wakeReaders = (r->nPendingReads != 0);

spin_unlock (&r->sl);
if (wakeReaders)

do_broadcast (&r->canRead) ;

// true if there are
// readers waiting
// wake up all readers

—

25
else
; do_signal (&r->canWrite); // wake up a single
: // writer
| }
E void downgrade (struct rwlock *r) // this operation

// converts a exclusive
// lock into a shared
// lock

boolean_t wakeReaders;

spin_lock (&r->sl);

r->nActive = 1;

wakeReaders = (r->nPendingReads != 0);
// true if there are
// readers waiting for
// the resource

spin_unlock (&r->sl);
if (wakeReaders)
do_broadcast (&r->canRead) ; // wake up all readers

}

void upgrade {(struct rwlock *r) // this operation
// converts a shared
// lock to an exclusive

// lock
{

spin_lock (&r->sl);

if (r->nActive == 1) { // no other reader
r->nActive = -1;

} else {
r->nPendingWrites ++;
r->nActive --; // release shared lock
while (r->nActive) // some one has a shared

// lock associated with
// the resource
wait (&r->canWrite, &r->sl); // hence block
r->nPendingWrites --;
r->nActive = -1;
}
spin_unlcok (&r->sl);

}

The UNIX operating system’s solution for the Readers/Writers problem is to wake
up all the threads waiting for the resource [Vahalia 96]. This is clearly inefficient
[Vahalia 96], if a writer acquires the lock next, all readers and other writers will have to
go to sleep; if a reader acquires the lock, other writers will have to go to sleep. It is
preferable to find a protocol that avoids needless wakeups [Vahalia 96]. If a reader
releases a resource, it takes no action if other readers are still active. When the last active

reader releases its shared lock, it must wake up a single waiting writer. When a writer

releases its lock, it must choose whether to wake up another writer or other readers. If

—

26

writers are given preference, the readers could starve under heavy contention [Vahalia
96].

The preferred solution [Vahalia 96] is to wake up all waiting readers when
releasing an exclusive lock. If there are no waiting readers, we wake up a single waiting
writer. This scheme can lead to writer starvation [Vahalia 96]. If there is a constant
stream of readers, they will keep the resource read-locked, and the writer will never

acquire the lock. To avoid this situation, a lockShared() request must block if there is any

waiting writer, even though the resource is currently only read-locked. Such a solution,
under heavy contention, will alternate access between individual writers and batches of
readers [Vahalia 96].

The upgrade() function that converts a shared lock to an exclusive lock muét be
used carefully in order to avoid deadlocks. A deadlock can occur unless the
implementation takes care to give preference to upgrade requests over waiting writers
[Vahalia 96]. If two threads try to convert a shared lock to an exclusive lock, each would
block since the other holds a shared lock. One way to avoid that is for the upgrade() to
release the shared lock before blocking, if it cannot get the exclusive lock immediately.
This results in additional problems for the user, since another thread could have modified
the resource before upgrade() returns. Another solution is for upgrade() to fail and release

the shared lock if there is another pending upgrade.

3.4.2.3 Condition Variables

A conditional variable is a complex synchronization mechanism that has a

predicate (a logical expression that evaluates to TRUE or FALSE) associated with it

—

27

based on some shared data [Vahalia 96]. It basically allows threads to block on it and
provides facilities to wakeup one or all blocked threads when the result of the predicate
changes. This mechanism is more useful for waiting on events than for resource locking.
For example [Vahalia 96], let us assume that one or more server threads are waiting for
clients requests. Incoming requests from the clients are to be passed to waiting threads or
put on a queue. When a server thread is ready to process the next request, it first checks
the queue. If there is a pending message, the thread removes it from the queue and
services it. If the queue is empty, the thread blocks until a request arrives. This can be
implemented by associating a condition variable with this queue. The shared data is the
message queue itself, and the predicéte is that the queue be nonempty.

On a multiprocessor, we need to guard against race conditions, such as the lost
wakeup problem [Vahalia 96]. Suppose a message arrives after a thread checks the queue
but before the thread blocks. The thread will block even though a message is available.
We therefore need an atomic operation to test the predicate and block the thread if
necessary. Condition variables provide this atomicity by using an additional mutex i.e., a
spin lock (see Section 4.6). The mutex protects the shared data and avoids the lost
wakeup problem. The server thread acquires the mutex on the message queue and then
checks if the queue is empty. If so, it calls the wait() function of the condition with the
spin lock held. The wait() function takes the mutex as an argument and atomically blocks
the thread and releases the mutex. When the message arrives on the queue and the thread
is woken up, the wait() call reacquires the spin lock before returning. The following is a

sample implementation of a condition variable [Vahalia 96].

e ———

28

struct condition {

proc *next; // doubly linked list of blocked

proc *prev; // threads

spinlock_t listlock; // spin lock protects the list of
// threads

}s;

void wait (condition *c, spinlock_t *s)
{ // acquire lock on the doubly linked
// list of blocked threads
spin_lock (&c->listLock);
// add to the linked list
// release the lock on the blocked

// threads
spin_unlock (&c->listLock);
spin unlock (s); // release spin lock on the
// predicate before blocking
swtch () ; // perform context switch

// when we return from the swtch(),
// the event has occurred
spin_lock (s): // acquire the spin on the predicate
return;

}

void do_signal (condition *c)
// wake up one thread waiting on
// this condition

spin_lock (&c->listLock);

// remove one thread from linked

// list, if it is nonempty
spin_unlock (&c~>listLock);

// if a thread was removed from the

// list, make it runnable
return;

}

void do_broadcast (condition *c)

// wake up all threads waiting on
// this condition

spin_lock (&c->1listLock);

while (linked list is nonempty) {

: // remove a thread from the linked
// list and make it runnable.

}

spin_unlock (&c->listlock);

}

In the above implementation, the predicate itself is not part of the condition
variable. It must be tested by the calling routine before calling wait(). The implementation
also uses two separate mutexes. One is listLock, which protects the doubly linked list of

threads blocked on the condition. The second mutex protects the tested data (predicate)

itself. The spin lock mutex is not a part of the condition variable, but is passed as an

—

29

argument to the wait() function. The swtch() function and the code to make blocked
threads runnable use a third mutex to protect the scheduler queues. We thus have a
situation where a thread tries to acquire one spin lock while holding another. This is not
disastrous since the restriction on spin locks is only that threads should not be allowed to
block while holding one. Deadlocks are avoided by maintaining a strict locking order, the
lock on the predicate must be acquired before listLock.

One of the major advantages of a condition variable is that it provides two ways to
handle event completion [Vahalia 96]. When an event occurs, there is the option of
waking up just one thread with do_signal() or all threads with do_broadcast(). Each may
be appropriate in different circumstances. In case of a multithreaded server application,
waking one thread is sufficient as each request will be handled by a single thread.
However, consider several threads running the same program, thus sharing a single copy
of the program text. More than one of these threads may try to access the same
nonresident page of the text, resulting in page faults in each of them. The first thread to
fault initiates a disk access for that page. The other threads notices that the read has
already been issued and blocks waiting for the I/O to complete. When the page is read
into memory, it is desirable to call do_broadcast() and wake up all the blocked threads,

since at that point they can all access the page without conflict.

3.4.2.4 Sleep Locks

A sleep lock is a nonrecursive mutex lock that permits long-term locking of

resources [UNIX 92]. One such example is, the resources that are utilized by a process

30

can be locked when the process blocks in a blocking operation. It is implemented as a
variable of type sleep_t, and provides the following operations:
void SLEEP_LOCK (sleep_t *lockp, int pri); // the processes acquires the
/1 lock over the resources by
// calling this function and
/1 this call cannot be
// interrupted
bool_t SLEEP_LOCK_SIG (sleep_t *lockp, int pri); // same as the above function
~ //but can be interrupted
void SLEEP_UNLOCK (sleep_t *lockp); // to unlock the resources
The pri parameter specifies the scheduling priority to assign to the process after it
awakens. If a process blocks on a call to SLEEP_ILOCK, it will not be interrupted by a
signal. If it blocks on a call to SLEEP_LOCK_SIG, a signal will interrupt the process; the
call returns TRUE if the lock is acquired and FALSE if the sleep was interrupted. The
lock also provides other operations such as SLEEP_LOCK_AVAIL (checks if the lock is
available), SLEEP_LOCKOWNED (checks if the caller owns the lock), and

SLEEP_TRYLOCK (returns failure instead of blocking if ‘the lock cannot be acquired).

CHAPTER IV

WINDOWS NT

4.1 Basic Architecture

The structure of Windows NT can be divided into two parts [Custer 93)]: the user

Applications

mode portion of the system and the kernel mode portion of the system. The Windows NT
protected subsystems are collectively termed as the user mode portion, and the NT

executive is termed as the kernel mode portion as shown in Figure 5.

Protected
Subsystems .
(ServerS) ' '
' 1 User Mode
Kernel Mode i H H
f System Services)
NT | Obiest |Security |Process Local |Virtual | /O Manager
ExecutiveMAPECReference| Manager [Procedure | Memory | File Systems
ecutive Call
- Manager| cache Manager
Facility Device Drivers |
Kemel Network Drivers
E Hardware Abstraction Layer (HAL) : i
T]
' v Y ¥
Hardware

Figure 5. Block Diagram of Windows NT Operating System [Custer 93]

31

B

32

The protected subsystems are also called as the Windows NT servers, as each one of them
resides in a separate process whose memory is protected from other processes by
the NT executive’s virtual memory manager. In Windows NT, the subsystems do not

automatically share memory, rather they communicate by passing messages. The NT i

executive is the operating system engine. The following subsections discuss the protected §

subsystem and the NT executive.

4.1.1 Protected Subsystem

Windows NT protected subsystems provide API’s (e.g., Win32’s, OS/2, etc.,) that
programs can call [Richter 93a]. When an application calls an API routine, a message is
sent to the server that implements the API routine via the NT executive’s local procedure
call (LPC) facility. LPC is a locally optimized message-passing mechanism in which an
application calls an API routine in a DLL (Dynamic Link Library) to which it is linked,
and the DLL does the work necessary to send the message to the Windows NT protected
subsystem (servers). The server replies by sending a message. The API routine in the
DLL receives the message and hands it over to the application. The LPC facility is
specific to Windows NT. The protected subsystem can further be divided into the
environment subsystems and the integral subsystems, as defined below.

An environment subsystem is a user mode server that provides an API specific to
an operating system. When an application calls an API routine, the call is delivered
through the LPC facility to an environment subsystem. The chosen environment
subsystem executes the API routine and returns the result to the application process by

sending another LPC. The Win32 subsystem is the most important environment

33

subsystem, because it is the one that provides the Microsoft’s 32-bit Windows API to the
application programs. It also provides the NT’s graphical user interface and controls all
user input and application output.

Windows NT also provides several other environment subsystems to support each
one of the following applications: POSIX, OS/2, 16-bit windows subsystem, and MS-
DOS subsystem. All these subsystems still use the Win32 subsystem to receive user input
and to display output.

The integral subsystems are the servers that perform major operating system

functions. The security subsystem and the components of the networking software are
some of the integral subsystems. The security subsystem runs in the user mode and
records the security policies in effect on the local computer [Custer 93]. It keeps track of
which user accounts have special privileges, it maintains a database of information about
user accounts, and it also accepts user logon information and initiates logon
authentication.

The NT networking component implements the following two services:
Workstation services and the Server services [Custer 93]. Both of these are user mode
processes that implements an API to access and manage the LAN Manager network re-
director and server, respectively. The re-director is the network component responsible ‘
for sending I/O requests across a network when the file or device to be accessed is not

local.

A

34

4.1.2 NT Executive

The NT executive is the kernel mode portion of Windows NT and, except for the
user interface, is a complete operating system unto itself [Richter 93a]. Windows NT
kernel is a part of the NT executive. Thé NT executive consists of a number of
components, each of which implements two sets of functions: the system services which
the environment subsystems and other executive components can call, and the internal
routines which are available only to components within the executive.

NT executive also provides API-like system services, but it does not run
continually in a process of its own. Rather, it runs in the context of an existing process by
taking over an executing thread when important system events occur. When a thread calls
a system service and is trapped by the proceSsor, or when an external device interrupts the
processor, the NT kernel gains control of the thread that was running. The kernel calls the
appropriate system code to handle the event, executes it, and then returns control to the
code that was executing before the interruption.

The Windows NT executive components maintain independence from one
another, each creating and manipulating the system data structures it requires. The
following are the executive components and their responsibilities. The Object manager
creates, manages, and deletes NT executive objects, which are the abstract data types that
are used to represent operating system resources. NT executive objects are objects (a
single, runtime instance of a statically defined object type) implemented by various
components of the NT executive. The security reference monitor enforces security
policies on the local computer. The security reference monitor guards operating system

resources, and performs run-time object protection and auditing. The process manager

35

creates and terminates processes and threads. It also suspends and resumes the execution
of threads and stores and retrieves information about NT processes and threads. The local
procedure call facility passes messages between a client process and a server process on
the same computer. It is an optimized version of the remote procedure call i.e., all
communications takes place in the local machine. The virtual memory manager

implements virtual memory, which is a memory management scheme that provides a

large, private address space for each process and protects each processes address space
from other processes.

The NT kernel responds to interrupts (asynchronous events, that can occur at any
time unrelated to what the processor is executing) and exceptions (a synchronous
condition, resulting from the execution of a particular instruction), schedules threads for
execution, synchfonizes the activities of multiple processors, and supplies a set of objects -
and interfaces that the rest of the NT executive uses to implement higher-level objects
[Custer 93]. The I/O system comprises a group of components responsible for processing
input from and delivering output to a variety of devices. The following are the
components of the IO system [Richter 93a]: /O manager, File systems, Network re-
director and Network server, NT executive device drivers, and Cache manager.

The hardware abstraction layer (HAL) places a layer of code between the NT
executive and the hardware platform on which Windows NT is running [Custer 93]. The
hardware abstraction layer hides hardware-dependent details such as I/O interfaces,
interrupt controllers, and multiprocessor communication mechanisms. Rather than access

hardware directly, the NT executive components maintain maximum portability by

calling the HAL routines when they need platform-dependent information.

36

Windows NT provides synchronization by means of wait and signal capabilities as
part of the executive object architecture. In Windows NT, threads can synchronize by
using the synchronization objects. In order to understand the synchronization objects it is
necessary to know about the NT’s process structure. The fundamental goal of the NT’s
process manager is to provide a set of native process services that environment
subsystems can use to emulate their unique process structures [Custer 93]. This is how

NT provides multiple operating system environments that can run in user mode.

4.2 Windows NT Processes and Threads

Windows NT processes have the following characteristics that are different from
other operating systems [Custer 93]:
i) NT processes are implemented as objects and are accessed using object
services (means for manipulating objects, usually read or change object
attributes).

ii) An NT process can have multiple threads executing within its address space.

iii) Both process objects and thread objects have built-in synchronization
capabilities (see Section 4.4).

iv) The NT process manager maintains no parent/child or other relationships
among the processes it creates.

v) An NT process has to have at least one thread of execution.

NT processes can be in either one of the following two modes: kernel mode or
user mode [Richter 93b]. In the kernel mode, processes can execute operating system
code or can access operating system memory. The kernel mode processes run in the
unrestricted processor mode. The processes that run under restricted processor mode are

called user mode processes.

37

A thread, sometimes called as lightweight process, is the basic unit of scheduling
in Windows NT. A thread shares with peer threads its code section, data section, and
operating system resources such as open files and signals [Custer 93]. A thread’s life
cycle start when a program creates a new thread by calling the process manager. The
process manager in turn, calls the object manager to create a thread. Similar to NT
processes, threads can also be in either one of the following two modes [Richter 93b]:

kernel mode or user mode.

A user mode thread gains access to the operating system by calling a system
service (services provided by the components of NT executive for the environmental
subsystem servers). When the thread calls the service, the processor traps it and switches
its execution from user mode to kernel mode. The operating system takes control of the
thread, validates the arguments the thread passed to the system service, and then executes
the service. The operating system switches the thread back to user mode before returning
control to the user’s program. By following this procedure, the operating system protects
itself and its data from modification by user mode threads. The following section

discusses the Windows NT thread states.

4.3 Windows NT Thread States

A thread can be in any of six states at any given time, only one of which makes
the thread eligible for execution [Custer 93]. The dispatcher states of a thread are
illustrated in Figure 6 [Richter 93b]. Once initialized, the thread progresses through the

following states:

38

i) Ready: When looking for a thread to execute, the dispatcher considers only the
pool of threads that are in the ready state. These threads are simply waiting to
execute.

ii)) Standby: A thread in the standby state has been selected to run next on a
particular processor. When the correct conditions exists, the dispatcher
performs a context switch to this thread. Only one thread can be in the standby
state for each processor in the system.

iii) Running: Once the dispatcher performs a context switch to a thread, the thread
enters the running state and executes. The thread’s execution continues until
either the kernel preempts it to run a higher priority thread, its quantum ends,
it terminates, or it voluntarily enters the waiting state.

create and initialize
thread object

Initialized place in

/reinitialize/ﬁ ready queue\

Tem;mated set object to I Ready
execution signaled state /
completes resources
become
thread Waiig available select .for
waits on execution
an object
handle resolress
/ unavailable preernpt
Rurming preempt \
(or time quantum ends) Standby
! context-switch to it /J
and start its execution |
(dispatching)
Figure 6. Windows NT Thread States [Richter 93b]
. , - 1

39

iv) Waiting: A thread can enter the waiting state in several ways: a thread can
voluntarily wait on an object to synchronize its execution; the operating
system (the I/O system, for example) can wait on the thread’s behalf; or an
environment subsystem can direct the thread to suspend itself. When the
thread’s wait ends, the thread moves back to the ready state to be rescheduled.

v) Transition: A thread enters the transition state if it is ready for execution but
the resources it needs are not available. For example, the thread’s kernel stack
might have been paged out of memory. Once its resources are available, the
thread enters the ready state.

vi) Terminated: When a thread finishes executing, it enters the terminated state.
Once terminated, a thread object might or might not be deleted. If the
executive has a pointer to the thread object, it can reinitialize the thread object
and use it again.

We will first discuss the objects that provide synchronization for user mode

threads, and then the objects that provide synchronization for kernel mode threads in case

of having more than one processor.

4.4 User Level Synchronization

The following are the synchronization objects that are used by the user mode
threads for synchronization in Windows NT [Custer 93]:

1) Process objects

i1) Thread objects

iii) File objects

iv) Event objects

v) Event pair objects
vi) Semaphore objects
vii) . Timer objects

viii) Mutant objects

The first three objects listed serve other purposes in addition to synchronization, but the
last five objects are just for synchronization purposes. At any given moment, a

synchronization object is in one of two states, either signaled or the non-signaled state.

t

40

The signaled state is defined differently for different objects. A thread object is.in the
non-signaled state during its lifetime, and is set to the signaled state by the NT kernel
when the thread terminates. Similarly, the kernel sets a process object to the signaled state
when the process last thread terminates. In contrast, the timer object, like a stopwatch, is
set to go off at a certain time. When its time comes up, the kernel sets the timer object to
the signaled state. The following are the Windows NT objects that does not support
synchronization [Custer 93]: section, port, access token, object directory, symbolic-link,
profile, and key objects.

To synchronize with an object, a thread calls one of the wait system services
supplied by the object manager, passing a handle to the object it wants to synchronize
with. The thread can wait on one or several objects and can also specify to the kernel that

its wait should be canceled if it is not ended within a certain amount of time. Whenever

Table II. Definitions of Signaled State for Synchronization Objects [Custer 93]

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File I/O operation completes All released

Event Thread sets the event All released

Event pair Dedicated client or server thread sets Other dedicated thread

the event released

Semaphore Semaphore count drops to zero All released

Timer Set time arrives or time interval expires [All released

Mutant Thread releases the mutant One thread released

41

the kernel sets an object to the signaled state, it checks to see whether there are any .
threads waiting on the object. If so, the kernel releases one or more of the threads from
their waiting state so that they can continue executing. Table II [Davis 94] shows the
effects on the waiting threads when a user mode object is set to the signaled state.

When an object is set to the signaled state, the waiting threads are generally
released from their wait states immediately. For example, an event object is used to
announce the occurrence of some event. When the event object is set to the signaled state,
all threads waiting on the event are released. The exception is any thread that is waiting
on more than one object at a time; such a thread might be required to continue waiting
until additional objects reach the signaled state. From Table II it is clear that except event
pair object and mutant object, all other objects release all the threads while shifting to the
signaled state.

Windows NT’s executive synchronization semantics are visible to Win32
programmers through the WaitForSingleObject() and WaitForMultipleObjects() API
routines [Davis 94], which the Win32 subsystem implements by calling analogous system
services supplied by the NT object manager. A thread in a Win32 application can
synchronize with a Win32 process, thread, event, semaphore, mutex, or file object.

As an example, let us assume that a user is running a spreadsheet application
program under the Windows NT operating system. The application has a main thread that
performs ordinary spreadsheet functions and a secondary thread that spools spreadsheet
files to the printer. Now suppose the user prints a spreadsheet and, before spooling is
completed, enters a command to exit the program. The main thread, which accepts the

exit request, doesn’t terminate the process immediately. Instead, it calls the

42

WaitForSingleObject() routine to wait for the spooler thread to finish spooling and
terminate. After the spooler thread terminates, the main thread is released from its wait
operation and terminates itself, which ends the spreadsheet program and terminates the

spreadsheet process.

4.5 Kernel Level Synchronization

Following the foot steps of the recently developed operating systems such as

Mach, OS/2 etc., Windows NT also separates the operating system’s mechanisms from its

policies. The principle of separating policies from mechanisms exists at several levels in
Windows NT [Davis 94]. At the highest level, each environment subsystem establishes a
layer of operating system policies that differs from that of other subsystems. At the kernel
level it avoids policy-making altogether. The kernel performs four main tasks [Custer 93]:

i) Schedules threads for execution.

ii) Performs low-level multiprocessor synchronization.

iii) Transfers control to handler routines when interrupts and exceptions occur.

iv) Implements system recovery procedures after a power failure occurs.

Windows NT is a preemptive multitasking system, thus the operating system does
not wait for a thread to voluntarily yield the processor to other threads. Instead, the
operating system interrupts a thread after the thread has run for a preset amount of time,
called the time quantum, or when a higher priority thread is ready to run.

Windows NT processes are muitithreadecl. The kernel uses a priority-based
scheme to select the order in which threads are executed. The kernel also changes a

thread’s priority periodically to ensure that all threads will execute. Outside the kernel,

43

the executive presents threads and other shareable resources as objects. These objects
require some policy overhead, such as object handles (an index into the process-specific
table that contains pointers to all the objects that the process has opened a handle to) to

manipulate them [Custer 93], security checks to protect them, resource quotas to be

deducted when they are created, etc. This overhead is eliminated in the kernel, which i
implements a set of simpler objects, called kernel objects, that help the kernel control

central processing and support the creation of executive objects. Kernel objects are a

more primitive set of objects implemented by the NT kernel. These objects are not visible

to user mode code but are created and used only within the NT executive.

Kernel objects provide fundamental capabilities, such as the ability to alter system
scheduling, that can be accomplished only by the kernel. One set of kernel objects, called
the dispatcher objects, incorporates synchronization capabilities and alters or affects
thread scheduling. The dispatcher objects include kernel thread, kernel mutex, kernel
mutant, kernel event, kermel event pair, kernel semaphore, and kernel timer. The
Windows NT dispatcher also takes care of context switching, which is the procedure of
saving the volatile machine state associated with a running thread, loading another
thread’s volatile state, and starting the new thread’s execution. In the following section

we will discuss multiprocessor synchronization and kernel dispatcher objects in detail.

4.6 Multiprocessor Synchronization

Synchronization is a major issue for symmetric multiprocessing operating
systems. Analogous to Solaris 2.5 a variant of UNIX, Windows NT is a symmetric

multiprocessing operating system. The Windows NT kemnel guarantees mutual exclusion

44

in the case of having multiple processors by utilizing a mechanism called spin lock. The
kernel’s critical sections are the code segments that modify a global data structure such as
the kernel’s dispatcher database or its DPC (Deferred Procedure Call) queue.

Before entering the critical section shown in the Figure 7 [Custer 93], the kernel

must acquire the spin lock associated with the protected DPC queue. If the spin lock is

not free, the kernel keeps trying to acquire the lock until it succeeds. The spin lock is

called so because the kernel is held in limbo “spinning” until it gets the lock [Richter 93a).

Processor A Processor B

.

. .

Do Do
Try to acquire Try to acquire
DPC queue DPC queue
spin lock spin lock
Until SUCCESS Until SUCCESS
DPC Queue
Release DPC queue spin lock Release DPC queue spin lock

. —» Critical section

Figure 7. Two Processors Competing for Spin Lock [Custer 93]

Spin locks, like the data structures they protect, reside in global memory. The code to

acquire and release a spin lock is written in the host assembly language for speed and to

exploit whatever locking mechanism the underlying processor architecture provides.

45

On many architectures, spin locks are implemented with a hardware-supported
test-and-set operation, which tests the value of a lock variable and acquires the lock in
one atomic instruction. Testing and acquiring the lock in one instruction prevents a
second thread from grabbing the lock between the time the first thread tests the variable
and the time it acquires the lock.

When a thread is trying to acquire a spin lock, all other activity ceases on that
processor. Therefore, a thread that holds a spin lock is never preempted and is allowed to
continue executing so that it will release the lock quickly. The kernel executes minimum
number of instructions while it holds a spin lock [Custer 93].

The Windows NT kernel makes spin locks available to other parts of the
executive through a set of kernel functions. Device drivers, for example, utilizes spin
locks in order to guarantee that the global data structure is accessed by only one part of a
device driver at a time.

The executive software outside the kernel also needs to synchronize access to
global data structures in a multiprocessor environment. Spin locks only partially fill the
executive’s needs for synchronization mechanisms. Waiting on a spin lock literally stalls
a processor, spin locks can be used only under the following strictly limited
circumstances [Custer 93]:

1) The protected resource must be accessed quickly and without complicated
interactions with other code.

ii) The critical section code cannot be paged out of memory, cannot make
references to pageable data, cannot call external procedures, and cannot
generate interrupts or exceptions.

46

These restrictions cannot be met under all circumstances. The executive needs to perform
other types of synchronization in addition to mutual exclusion and it must also provide
synchronization mechanisms to the user mode processes.

The Windows NT kernel provides additional synchronization mechanisms to the
executive in the form of kernel objects, known collectively as dispatcher objects. A thread
can synchronize with a dispatcher object by waiting on the object’s handle. Doing so
causes the kernel to suspend the thread and change its dispatcher state from running to
waiting as shown in Figure 6. The kernel removes the thread from the dispatcher ready
queue and no longer considers it for execution. A thread cannot resume its execution until
the kernel changes its dispatcher state from waiting to ready. This change occurs when the
dispatcher object, whose handle the thread is waiting on, also undergoes a state change,
from the non-signaled state to the signaled state. The kernel is responsible for both types -
of transitions. The kernel dispatcher objects and the system events that induce their state
changes are shown in Figure 8 [Custer 93].

Each type of dispatcher object provides a specialized type of synchronization capability.
For example, mutex objects provide mutual exclusion, whereas semaphores act as a gate
through which a variable number of threads can pass useful information when a number
of identical resources are available. Events can be used either to announce that some
action has occurred or to implement mutual exclusion. A thread can wait on another
thread to terminate, which is useful for synchronizing the activities of two cooperating
threads. Together, the kernel dispatcher objects provide synchronization facility for the

Windows NT executive.

Dispatcher State Change Effect of Signaled State
Object on Waiting Threads
Owning thread
Mutex releases the mutex
(kemel- - - Kemnel resumes
mode Non Signaled - Signaled | one waiting
use only) Resumed thread thread
acquires the mutex
Owning thread or
- other thread releases
(exported : the mutant i Kemel resumes
touser | 1Non Signaled - Signaled | one waiting
mode) Resumed thread thread
acquires the rmutant
One thread releases
thq semaphore,
freeing a resource Kemel resumes
Semaphore | Non Signaled - ore or more
waiting threads

A thread acquires the
semaphore. More resources
are not available

A thread sets the event
Event Non Signaled

Signaled
Kemel resummnes one
or more threads

Dedicated thread sets one
event in the event pair

Event pair |Non Si ignaled

!
0
!

Kemnel resumes the
other dedicated thread

Timer expires
Timer Non Signaled

Signaled
A thread (re)initializes
the timer
Thread terminates

Thread |Non Signaled Signaled

A thread reinitializes
the thread object

Figure 8. Dispatcher Object-State Changes

Kemel resumes
OI€ Or more
waiting threads

Kemel resumes
waiting
dedicated thread

Kemel resurmnes
all waiting
threads

Kemel resumes
all waiting
threads

47

e ———

48

The user-visible synchronization objects acquire their synchronization capabilities
from kernel dispatcher objects. Each user-visible object that supports synchronization
encapsulates at least one kernel dispatcher object. The following example of setting an
event illustrates how synchronization interacts with thread dispatching [Custer 93]:

i) A user mode thread waits on an event object’s handle.

ii) The kernel changes the thread’s scheduling state from ready to waiting and
then adds the thread to a list of threads waiting for the event.

iii) Another thread sets the event.

iv) The kernel marches down the list of threads waiting on the event. If a thread’s
conditions for waiting are satisfied, the kernel changes the thread’s state from
waiting to ready. If it is a variable priority thread, the kernel might also boost
its execution priority.

v) Because a new thread has become ready to execute, the dispatcher
reschedules. If it finds a running thread with a lower priority than that of the
newly ready thread, it preempts the lower priority thread, issuing a software
interrupt to initiate a context switch to the higher priority thread.

vi) If no processor can be preempted, the dispatcher places the ready thread in the
dispatcher ready queue to be scheduled later.

CHAPTER V

APPLE MACINTOSH

5.1 Basic Architecture

The Apple Macintosh operating system provides routines that allow a
user/programmer to perform basic low-level tasks such as file input and output, memory
management, and process and device control [Apple 96g]. The block diagram shown in
Figure 9 shows the basic architecture of the Apple Macintosh operating system [Apple

96h].

File Management

Process Management
Memory Management

Device Management

68k or Power PC architecture

Figure 9. Apple Macintosh Operating System Layers

The 68K and the Power PC are the two different hardware architectures supported

by the Apple Macintosh operating system [Apple 96e]. The 68K microprocessors are

49

_

50

manufactured by Motorola. The Power PC microprocessors are manufactured by a
collaboration of Apple Computers, Motorola, and IBM. Power PC architecture also
supports other major PC operating systems such as Windows NT and Windows 95.

The Device management block shown in Figure 9 constitutes the Device manager,
Slot manager, Small Computer System Interface (SCSI) manager, Apple Desktop Bus
(ADB) manager, Power manager, and the Serial driver manager [Apple 96a]. The Device
manager acts as an interface for all other blocks to interact with the hardware, thus it
provides input from and output to the hardware. On system startup the Slot manager
examines each slot and initializes any expansion cards it finds. The Slot manager
maintains data structures that contain information about each slot and every available
system resource, and it provides functions that allow an application developer to get
information about expansion cards and their system resources. The Small Computer
System Interface (SCSI) manager is a software layer that mediates between device drivers
or applications and the SCSI controller hardware in the Apple Macintosh computer.

The Apple Desktop Bus (ADB) manager allows the application developer to get
information about and communicate with hardware devices attached to the Apple
Desktop Bus. The Apple Desktop Bus is a low speed bus that connects input devices,
such as keyboards, mouse devices, and graphic devices, to an Apple Macintosh computer
or to other hardware equipment. The Power manager software controls power to the
internal devices of portable Apple Macintosh computers. The Serial driver in the Device
management block provides low level support for asynchronous, interrupt driven serial

data transfers through the modem and printer ports.

S

51

The Process management block constitutes the Process manager, Time manager,
Vertical retrace manager, Notification manager, Deferred task manager, Segment
manager, and Shutdown manager [Apple 96i]. The Process manager handles the
launching, scheduling, and termination of applications. It also provides information about
open processes (process that are initialized and have not terminated). The Time manager
allows a developer to execute a routine periodically or after a specified time delay. The
Vertical retrace manager allows a developer to synchronize the execution of an
application with the redrawing of the screen. The Notification manager provides
notification service. The Notification manager allows applications running in the
background to communicate information to the user. The Deferred task manager
maintains a deferred task queue of records where each record is a deferred task. A
deferred task is an interrupt that will take a long time to process and hence will block all

other interrupts of the same or lower priority when it is executed. The Deferred task

manager executes interrupts (deferred tasks) whenever there is no other interrupt to
process i.e., the interrupt priority level is zero. |

The Process Manager loads code segments into memory when an application is
launched. The Segment Manager loads code segments whenever any externally
referenced routine containing those code segments are called for. Both of these operations
occur completely automatically and rely on information stored in the application and in
the individual code segments themselves. A segment is locked when it is first read into
memory and at any time thereafter when routines in the segment are being executed. This

locking prevents the block from being moved during compaction and purging of the

applications memory. The Segment manager also has an unload utility to unload the

—

52

loaded segments. The Shutdown manager allows a programmer to execute a routine while
the computer is shutting down or restarting.

The Memory management block constitutes the Memory manager, Virtual
memory manager, and Memory management utility [Apple 96f]. The Memory manager
manages the dynamic allocation and release of memory in the application’s memory
partition. The Virtual memory manager provides virtual memory services, i.e., it provides
the ability to have a logical address space that is larger than the total amount of available
RAM. The Memory management utility is used to ensure the following [Apple 96f]:

i) the applications call back routines, interrupt tasks, and stand alone codes can
access the applications global variables.

ii) the application or driver functions properly in both 24 and 32 bit modes.

iii) the data and instructions in the microprocessor’s intermal cache remain
consistent with data and instructions in the RAM.

The File management block constitutes the File manager, Standard file package
manager, Alias manager, and Disk initialization manager [Apple 96b]. The File manager
provides access to the file system and allows applications to create, open, read, write, and
close files. The Standard file package provides routines that handle the interface between
the user and the application when the user saves or opens a document. The Alias manager
helps to locate specified files, directories, or volumes. The Disk initialization manager
manages the process of initializing disks.

The Apple Macintosh operating system doesn’t have a kemel like the ones
available in UNIX and Windows NT [Apple 96h]. So there is no such thing as kemel
synchronization, but the Apple Macintosh operating system supports multitasking by

using the cooperative multitasking mechanism as explained in the next section.

Lo

53

5.2 Cooperative Multitasking

The process manager in the Apple Macintosh operating system resolves the time
sharing problem that arises while supporting the multitasking feature [Apple 96i]. This is
achieved by cooperative multitasking between applications. In cooperative multitasking
systems, each application has to surrender its CPU time to the system at regular intervals,
the system then mediates the distribution of processor time to various other applications
[May and Whittle 95]. Preemptive multitasking is also made possible in the Apple
Macintosh operating system by the Thread manager API [Apple 96j]. Preemptive
multitasking is made possible only in the case of the 68k architecture.

Cooperative multitasking doesn’t have much in the way of synchronization. It is
the programmer’s responsibility to make sure that their program is in a suitable state
before the program surrenders its CPU time to the system. Basically, the event manager
and process manager maintain the cooperative multitasking environment in an Apple

Macintosh operating system.

5.3 Processes and Events

In the Apple Macintosh operating system, a process is an open application or, an
open desk accessory (small applications that can be opened from the Apple menu in an
Apple Macintosh system). The number of processes that can be executed by the operating
system is limited only by the available memory [Apple 96i]. The process manager
maintains information about each process. It maintains the current state of each process,
the address and size of its partition, its type, its creator, a copy of all process specific

information such as global system variables, information about its resources, and a

54

process serial number (similar to process id in UNIX). The process manager assigns a
process serial number to identify each process. This number is unique during a single
boot of the local machine [Apple 96i]. The process specific information is referred to as
the context of each process.

When an application is first launched, it starts executing as a foreground process
[Apple 96i]. In the Apple Macintosh operating system, a foreground process has control
of the CPU and other system resources, but it can relinquish control of the CPU if there
are no events pending for it to process. A process that is open but is not currently a
foreground process is said to be a background process.

A context switch can be of two types [Apple 96i]: major switch and minor switch.
A major context switch is a complete switch, the application’s windows are moved from

the back to the front, or vice versa. In a major switch, two applications are involved; the

one being switched to the foreground and the one being switched to the background. A
minor switch occurs when the process manager gives time to a background process
without bringing the background process to the front. The two processes involved in a
minor switch can be two background processes or a foreground process and a background
process.

Events are usually divided into three categories [Apple 96d]: low-level events,
operating-system events, and high-level events. The event manager returns low-level
events to applications for occurrences such as the user pressing the mouse button,
releasing the mouse button, pressing a key on the keyboard, or inserting a disk [Apple
96d]. The event manager also returns low-level events to the applications if the

applications needs to activate a window or update a window. When an application

55

requests an event and there are no other events to report, the event manager returns a null
event.

The event manager returns the operating-system events to the application when
the processing status of the application is about to change or has changed. For example
[Apple 96d], if a user brings an application to the foreground, the process manager sends
an event through the event manager to the application. Some of the work of reactivating
the application is done automatically, both by the process manager and by the window
manager. The application must take care of any further processing needed as a result of
the application being reactivated. The event manager returns high-level events to the

application as a result of communication directed to the application from another

application or process.

5.4 Thread Manager

In the Apple Macintosh operating system, a thread is defined as a separate process
running inside the application space i.e., the memory space occupied by the application
[Apple 96j]. This is directly analogous to an application running as a process inside the
computer space. It is possible to have several applications sharing memory. With a thread
manager, multiple threads can work simultaneously inside an application [Apple 96i].
The thread manager is a simple implementation of concurrent processing within a single

application.

5.4.1 Concurrency

Concurrency is a series of processes running simultaneously in a single memory

space [Apple 96j]. MultiFinder, introduced in the Apple Macintosh operating system

56

Version 6.0, brought higher level of concurrency to the Macintosh. Starting from Version
6, the process manager implements cooperative multitasking [Apple 96j]. The Process
manager basically depends upon each application to cooperatively surrender time to the
system, it then mediates the distribution of processor time to other applications.

At the thread manager level, concurrency means that an application process is
divided into simpler sub-processes that run concurrently inside the same application.
Each of these sub-processes in the application follows the cooperative multitasking as

followed by the application itself. Threads are of two types [Apple 96j]: cooperative and

preemptive. The cooperative and preemptive threads exists inside the application.

A multithreaded process is associated with one or more threads. Codes that
operate only within an application can use the thread manager. Cooperative threads allow
cooperative multitasking. Operationally, cooperative threads yield to other cooperative
threads only when the application explicitly makes one of the thread manager yield calls
or changes the state of the current cooperative thread. A thread can be in one of the
following three states [Apple 96j]: running, ready, or stopped.

Preemptive threads allow true multitasking at the application level. When an
application gets control from the process manager, preemptive threads for that application
are allowed to run. Preemptive threads differ from cooperative threads because they can
interrupt the currently executing thread at any time to resume execution. If the interrupted
cooperative thread is in the stopped state when the preemptive thread yields to the system,
the next available preemptive thread is scheduled to run [Apple 96j]. Preemptive threads
then preempt each other in a round-robin fashion until the interrupted cooperative thread

is made ready.

-

57

Thread implementation is different for the 68k architecture and the Power
Macintosh computers [Apple 96j]. Each thread has an associated data storage that
includes the program counter, the registers, and the function stack. The stored stack is not
swapped in and out with the main application stack. The stored stack is an independent
stack, particular to the thread [Apple 96j]. The thread manager treats the main application
as a separate thread.

Although the thread manager preserves each thread’s context, threads can work on

shared data within the application but outside the threads context. If two or more threads
operate on the same data, then the data is at risk. Suppose we have a thread in an
application filtering part of an image, at this time a user erases that part of the image. We
don’t want this to happen. In such cases, the application developer has to provide enough
protection using a semaphore or some other locking mechanism. So, it is the developer’s
responsibility to make sure that his/her data will always be in a consistent state. So all
synchronization issues are handled by the developer and not by the operating system. The
developer has full control over his/her application as the Apple Macintosh operating
system follows the cooperative multitasking mechanism.

In the Apple Macintosh operating system, threads or processes do not have a
priority associated with them [Apple 96j]. Basic scheduling unit is the application. Inside
the application, the developer can share the processor’s time among different threads or
yield the processor time to the system voluntarily. The scheduling of the processes and
threads inside the application space is done based on the round robin mechanism [Apple

96j]. If an event is waiting, the main application thread receives control. The developer

can create threads when needed, or can create a pool of threads and withdraw a thread

58

from the pool when it is necessary. This mechanism allows the developer to pre-allocate

threads at a time when memory is not fragmented.

5.6 Multiprocessing

DayStar Digital developed the Apple Multiprocessing API under a contract signed
with Apple Computers, Inc. [Cooksey 96]. Mac OS compatible computers that are
compliant with the Apple multiprocessing specifications, have one main processor and
one or more attached PowerPC processors. The main processor runs all applications and
the Mac OS. The Apple Multiprocessing API provides a set of calls that allow an
application to create separate threads of execution called tasks. Tasks are preemptively
scheduled on the available processors in the system, even if there is only one.

The command MPProcessors is used to count the number of processors iﬁ the

system [Cooksey 96]. If there is only one processor, the application may proceed as

though the multiprocessing service is not available. However, the developer can still
create preemptive tasks in a single processor environment. The count returned by the
MPProcessors is usually used as an indication of how many tasks to create. While
designing an application for a multiprocessing Mac OS, it is the developer’s
responsibility to make sure that the application will strive to keep all the processors busy.
The simplest way to do this is to create at least as many tasks as there are processors
[Cooksey 96]. The application then splits the work to be done into that many pieces and
asks each task to work on a piece. An alternative and frequently-adopted technique is to

create one less task than there are processors.

59

Communication among the application and the tasks occurs in two basic ways
[Cooksey 96]: shared memory and synchronization methods. Since all memory is shared,
anything the application writes into memory is available to the tasks and vice versa.
However, before a task tries to access the memory space occupied by the application, the
task must synchronize with the application using one of the three methods available in the

Multiprocessing API Library [Cooksey 96]: queues, semaphores, and critical regions.

Queues are first-in-first-out queues of 96-bit messages, inserting and extracting elements
is an atomic operation. Many tasks can try to extract the next message from a given queue
but only one will successfully obtain it. Semaphores represent a single 32-bit value that
can be atomically incremented up to a predetermined maximum and atomically
decremented to a minimum of zero. Critical regions prevent sections of code that they
encompass from being executed by more than one task including the application at once.
The PowerPC architecture allows for writes to memory to be deferred [Cooksey
96]. This is a resource management feature that helps the PowerPC achieve its
tremendous speed (350 MHz). In order for another processor to see the correct values in
memory, certain hardware dependent instructions need to be executed. When a task uses a
synchronizationv method, these instructions are executed, thus ensuring that the processors
involved have a consistent view of memory from that point on. It is also important to use
synchronization methods so that when one of the communicants is not yet ready to
synchronize for some reason, the other one can yield the processor it is on. This makes
the processor immediately available to some other task that may be able to make more

productive use of it.

60

Before creating tasks it is usually a good idea to create the means by which to
synchronize them with. Queues and semaphores are the two most common methods used.
Semaphores are quicker and less memory intensive but do not offer the same degree of
flexibility as Queues. Queues and semaphores are usually created in pairs [Cooksey 96]:
one by which to signal a request and the other by which to signal results. If a developer
creates only one synchronization object and try to use it for both purposes, it will not
work. After a request is posted, the application will at some point start waiting for results.

If it waits at the same place the request was posted, the request itself may appear to be the

result. Since the application clears the request in the mistaken belief that it was a result,
no work gets done. So to have the work done successfully, it is important to use two

distinct synchronization objects for two-way communication.

CHAPTER VI

COMAPARATIVE EVALUATION

6.1 Comparison

A detailed comparative study on how syﬁchronization is achieved in UNIX,
Windows NT, and Apple Macintosh operating system was carried out and the results
were tabulated as shown in Table III.

Table III consists of four columns; they are Property, UNIX, Windows NT and
Apple Macintosh. For each. property in the first column, the remaining three collllmns
contains a Yes, No or NA with a brief explanation. This comparison is carried out based
on the information collected in Chapters I, IV and V. Tablé II is followed by a section

on observations concerning this study.

61

62

‘uorysej urqol

punoi e ur ssad01d 1xou
AU} 2[NPAYDS 0} WIASAS
Sunerado ayy smoj[e

pue J[9s1t s)}o0[q ssao01d
9y L, 'ss9001d Jua1nd

ay Aq pa[[ed 2q Ued Yorym
suorouny IRJIWIS SBY OS[e
ysouoeA o[ddy ‘sax

“XINQ Se uonerado aures ay)
So0p A[[eoIseq Inq ‘s[[ed uoljounj
JUDIQJJIP Sasn N SMOPUIAN ‘SO L

"91n99x2 0) ssa001d Iayjour Moj[e

0) I3pIO Ul YIJIMS IXI)UO0D eIl

0} uonouny (JYa11ms ayl s[[eo 1 siyy
1913y ‘uonounj ()dosys oy Surpes £q
J19s) syoo]q ssaooid ay) ‘o[qe[iear
10U ST 92INOSAT AY) UM ‘SIX

{,9IMIAXd

03 ssa001d 19yjoue moj[e
0] I3pIO Ul YIJIMS 1XIU0D
© 9Jeniul 0) pue sassadord
341 }20[q 01 (Jyanms pue
()daars a1] suonouny aaey
wdsAs unerado oY) se0(

"91B)S JUI)SISUOIUT

ue ur aq Aew Jey) vIRp
ay) yoo[03 Ajiqisuodsal
s Jadotaaap ay1 ST 11 ‘ON

“XIN[] se auies 3y} saInsua
OS[e [ouIdy LN SMOPUIA\ ‘Sax

*9)B)S JUQISISUODUT UR UI ST

181) BIEP 9Y) SS2I0B J0U Op $Issavoxd
I3Y10 ey SAINSUD [dUIdY XINN Y
uonerado Fun{o0[q & JO SO UI ‘SI L

{9®]S JU)SISUOdUI UB

ur s1jey) eiep ay) prengajes
wia)sAs Sunerado ay) seop
uonerado uryooiq e Juung

"ssa00.1d st Jurnpayos
Jo Jun d1seq oY)
ysojuroey o[ddy ur ‘oN

"pea1y) st Juinpayos jo yun
o158q 9Y) LN SMOPUIA UI ‘SO X

"peaIy) st

Sunmpayos Jo jtun otseq 3y (XINN
JO JuBLIRA B) G'7 SHIR[OS UI ‘S X

{3urnpayos
Jo j1un o1seq 9y} pea1y) s|

“’G UOIJIS 39S S[IRIIp
10, "walsAs Junerado
Sunyseinnu saneradood
e st ysojuroey 9[ddy ‘oN

‘walsAs Sunerado
Supysemnnu aandwoaalg

© ST LN SMOPUIM ‘S9X

“SWIR)SAS

Sunerado unysennw aandwoard
oIe G°C SHR[OS T’y YAS S

Yons XN JO SUOISIOA JUdDI ‘S X

{WI9ISAS
Zunerado Sunysennw
aandwoaid e 11 5|

HSOINIDOVIA TT1ddV

- INSMOGNIM

XINA

LyRdoag

"UONRZIUOIYOUAS UO paseq swasAS JuneradQ ysojurory 2[ddy pue ‘ LN SMopuip ‘XIN(Jo uostredwio)) ‘[I[9[qe.L

63

‘Aiiqeded
Surssasoidnnu

a1 ap1aoid 0y s10ss9001d
Suowre diysuoneja:
QAB[S-IISBIA B SMO[[O]
ysojuroe 91ddy ‘oN

‘walsAs Funerado Furssasordnnu
OLIJSWIWAS B ST [N SMOPUIA\ ‘SOX

‘walsAs Junerado urssascordnnu
OLIJOWIWIAS B ST XIN(] ‘SoA

PRI
Sunesado Surssasoadnnw
OLIJOWIWAS ® 1 S|

"$3ssa001d
Suowre drysuone[al
ons ou ST 213y} ‘ON

‘sassasold Suowe
diysuone[ar yons ou st 213Y) ‘ON

-diysuonejai pyiyopuared
© aaey $9ssa001d XN ‘SOA

{uIay) suoure
diysuoneja priyopuared
© oAy sassa001d ay) o(q

VN

‘sydnizoyur

JO 3Sed Ul UONRZIUOIYIUAS

ay) 2dueyua 03 $193(qo

1910 Sasn OS[e [N SMOPUIA ‘S9x

‘sydnirojut

Surjpuey s[1Iym UONBZIUOIYOUAS
2oueyua 0) Japio ul saloydewas
pue ‘sy00[‘xaInul se yons s192(qo
UOTJBZIUOIYOUAS [9UISY SNOLIBA SISN
(XINN JO WUBLIBA) G'T SLIR[OS ‘S

($192[qo uoneziuoiyouAs
[oway apiaoid
wdsAs Sunerado o) ssog

"aunnol jdnugul

3y} 2[NPIYDS Ued I1 1BY)

0s wasAs unerado ay)

01 joeq NdD 24 P[4 pue
1a3euew JuaA9 ay) urjjod
£Q S1U2A2 10J YO9YD

1M J1asi Aq uoneorjdde
ay) 1eY) Aem e yons

ur uoneosijdde ay) weioxd
0) sey Jadofaaap ay) ‘ON

‘sydnaigyur yoo[q
0) XINQ Se 21npadoid sures ay)
SMO[[0J OS[e [N SMOPUIA\ ‘SO

‘1d1 ayy 3uisiel
£q uonoas [eonuod ay) Jurssadoe
A[IyMm payoo[q a1e sydnirojur ‘s X

{UOTII3S [BINIID

3y Surssadoe a[iym sydnarajur

¥20[q 01 Japio ut ([d1) [9A9]
Auond ydniroyur ay) asrel
wa)sAs Junerado ay) seoq

"uonezZIuoIyoukg uo paseq swasA§ SuneradQ ysoyuroey 9[ddy pue ‘ [N smopuip ‘XINQ jo uosuedwo) (panunuo))) ‘111 2[qe.lL

‘sananb

pue saioydewas are
A9y “owios apraoid saop
ysojuroey o[ddy ‘s

"193[qo jueinw pue

“90(qo 1o “999(qo a1oydeuras
403[qo 1red juaaa 93[qo

JU3A2 493[qo 3113 “193[qo peaIy)
492[qo ssao01d are Aay) ‘owos
sop1aoid os[e [N SMOPUIA ‘S9&

'$103[qo uoneZIUOIYOUAS [9A9] Y31y
S SO[qeLIEA UOT)IPUOD PUR ‘SYI0]
I9)1Im-Iopear ‘sasoydewas sapraoid

(XINN JO JUBLIBA) G°T SLIR[OS ‘SO

{,5192[qo uoneziuoIyouAs
[oA9] Y31y Aue apiaoid
walsAs unerado oY) seoq

VN

"S$YO0[IR[IWIS
sap1aoid os[e [N SMOPUIA ‘S9X

"SwIsIuey Ul
UOTJRZIUOIYIUAS [9AJ] MO ULIJ)
MoYs 10j pasn aIe syoo urdg ‘sa g

{UOTIRZIUOIYIUAS [AJ] MO[
Zuraaryoe 10y syo07 uldg asn
wolsAs unerado ay) seoq

-asodiand yuaiagjip Ajonuo
10J spea1y) pajedoje-aid
Jo jood e yons sapiaoid
ysojuroey 9[ddy nq ‘oN

‘ON

-ananb daoys e Sunosjord

1e1) O0[X9Inw ay) Suuinboe

uaym se yons suonen)is feuondadxa
maj e ut Ajuo sydnaiajur syo0[q
[ouIay Y], "pealy) Iayjoue Aq p[oy
90IN0SAI B Paau A3Y) J1 00[q ued
sny) pue ‘spealy) 19yjo se saanmund
UOIBZIUOIYOUAS SUIBS I} SN SPeaIy)
3saY [, "O0[2 2y} JoJ pea1y) o[3urs

e sn[d ‘ndD yoea 10§ [aa9] ydn1rdyur
Iad peaiy) auo surejuod [ood

siy) yneyop g -pazijeniur Ajrenred
pue pajedo[[e-a1d a1e yorym ‘speaiy)
pardnuaur jo [ood e surejurew
(XINN JO JueLIeA) T SLIR[OS ‘SO

(S1dnaagyur oy Surssaooad
Ul PAA[OAUT 3WT) 3Y) 0Npal
0) J9pIO Ul SpeaIy) pajedo[[e

-aid jo [ood e op1aoid
wsAs Junerado ay) seoq

"UOIJRZIUOIYOUAS UO paseq swasAS SunesadQ ysoyuory o[ddy pue ‘[N SMOpPUIp ‘XIN(JO uostreduior) (panunuosy) ‘IiI 2[qeL

65

VN

"Payo0] UOIRIO]

AJowsur e 3uiAey I[Iym sassadoid
JO uolBUIWIY) [BULIOUQE

AQ pasned syea] AIoUaUI JAOUII
01 IoplIo ur sid[puey uondaoxa
pue SI9[puey UOIRUIULID)

o sop1aoad [N SMOPUIM ‘S9 L

) B
AIOWUW JAOWAI 0} [N SMOPUIAA
ur 9[qe[IBAR SQUO J) 0] Je[iwIs
SONI[IOR] JWOS SeY XIN[] ‘SOA

{SYe9[AJOWIU IAOWA
03 uoisiaoid Aue opiaoid
waysAs Sunerado ayy ssoq

"sJ0ssa001d Jrdnnu

JO 25BD UI UONBZIUOIYOUAS
1adouid apraoiad 03 19pI10

ur s10ss9201d DdIomod
pue 389 Ul J[qe[IeAR S)3S
SUOIIONIISUL rempiey ay)
sasn [engi(IeiSAe(yum
uonjeioqe[od ur pado[oAap
IdV Suissacoxdiynu ‘so x

"suni 31 yorym uo 10ssa201d
Ternonred oy} uo J[qe[ieae

S19S UOIONIISUI dIempIey

Uo paseq UONBZIUOIYOUAS
sopraoxd os[e [N SMOPUIM ‘SoX

"SUOTIONIISUT 2I0JS-[RUONIPUOD pue
19s-pue-1s3) O} JB[IWIS Ik [[& A3Y)
1nq ‘UoNeZIUOIYdUAS apraoid o) s1as
UoNONISUT dTBMPIRY JUIIJJIP ZI[NHN
XIN[JO SIUBLIBA JUDIJJJIP ‘SOL

Juoneziuoiyduis apraoid
0} J9pIO UI $J2S SUOHONISUI
arempley ay) 2ZInn
wa)sAs Junerado ay) seo(q

VN

"SOIOBUI JR[IUIIS
sopiaoxd os[e [N SMOPUIA ‘S9 X

"Uo 0S pue anjeA snoiaaid

S)1 0} 7d1 24) Sun1o}sal Aq pue

‘7d1 oy) 3uisiel AQ UOIBZIUOIYDUAS
apiaoid 03 djoy soroewr

959y [, 'sydni1aur 9[puey 0) soidewl
JUQIJJIp Y} SMOUS [9[qGRL ‘SOL

(sidnirour ofpuey
0] soIdew Jo)as & apiaoid
wasAs Jurrerado ays sa0(q

"UONRZIUOIYOUAS U0 paseq swAsAS Funeradp ysojurdely 9(ddy pue ‘N Smopuip ‘XIN[jo uostredwo)) (psnunuo))) ‘I[1 2[qeL

—

66

"9uIr) JO JUNOWe UTe}ad B uryiim

papua 10U SI) J1 Po[adUeRd 9q
pInoys e st 1ey) £3102ds os[e
ued pue $199[qQ0 [BISAIS UO Jiem

aun
JO JUNOUR UIB)IID € UIYIIM PIpU? Jou
SI 1 JI pa[adued 2q p[noys Jrem s

{oumn Jo junowe

UIeLIad € uIyiim papuo

10U ST 1 JI pP9[oduRd 3q p[NOYS
em sI1 Jey) widsAs Sunerado

VN | ueo peary) e I N smopuipy ut ‘sox | eyl £J10ads ued speary) XIN[‘SO A oy Ajroads pearyy e ue)
"UONBZIUOIYIULS
yoddns jou op s1a9(qo Koy pue
‘oqyoid “urj-orjoquiAs ‘A1010211p Jynm
192[qo ‘uax0) ssaooe ‘yrod ‘uoneziuoryouAs yoddns 9ZIUOIYOUAS JoUuURd prAIY) B
VN ‘U0103S I N SMOPUIAN UT ‘S9 & j0U Op JBY) $192[qO sey XINQ ‘S3A | 1Y) $102[qo Jo 13s Aue a1y} S|
‘s303[qo
Iowr) pue ‘yuejnuw ‘sasoydewras "UOTIBZIUOIYOUAS
‘sared JUQAQ ‘SJUIAD ‘SO ‘SpRAIY) pea1y) ap1aoid 03 seop
¢$9550001d AIINDIX Y] YPIIm LN smopurpy ay3 se suondo Auewr (5199[q0 12410 SnoLIeA YlIm
VN 9ZIUOIYOUAS UBD PBAIY) B ‘SQ & ap1aoid 3 usaop XIN[1nq ‘sox 9ZIUOIYDUAS peaIy) & ue)

“UONRZIUOIYOUAS uo paseq swsAS SuneradQ ysouoey 9iddy pue ‘ LN smopuipy “XINQ jo uosueduwio) (panunuo)) 11l 2[qeL

—

67

6.2 Observations

The following observations were made in this comparative study: The UNIX
operating system is the most reliable of the three operating systems taken into
consideration, Windows NT comes next and then the Apple Macintosh operating system.

Windows NT is becoming increasingly popular because it helps to build small business

machines at a low cost, and it also has an attractive user interface. Windows NT is
popular because it is easy to maintain and administer both as a server and as a client
operating system. Windows NT and recent versions of UNIX, such as SVR 4.2 and
Solaris 2.5, are preemptive multitasking operating systems. The Apple Macintosh
operating system is a cooperative multitasking system.

In Solaris 2.5 and Windows NT the basic unit of scheduling is a thread. Some of
the better synchronization mechanisms utilized by these three operating systems are
hardware dependent. One such hardware dependent synchronization mechanism is the
Spin lock. Unix processes have a well defined hierarchy. Each process has at most one
parent and zero or more child processes. In Windows NT and Apple Macintosh operating
systems there is no parent/child relationship among processes.

UNIX and Windows NT kernels are re-entrant, but the Apple Macintosh operating

system is not. Apple does support re-entrant codes to some extent but it is limited to the
68k architecture. UNIX and Windows NT are symmetric multiprocessing operating
systems, but Apple Macintosh is not. The Apple Macintosh operating system also
supports multiple processors, but it is made possible by using the multiprocessing API

developed in collaboration with Daystar International. Thus the operating system by itself

68

does not support multiprocessing and all the synchronization issues have to be handled by

the application developers.

CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Summary

In Chapter I we discussed operating systems in general, their components, and
multitasking operating systems. Various studies carried out in this area (i.e.,
synchronization) were also mentioned. Chapter II provided information about
synchronization, process communication, and different synchronization mechanisms.

The results of the study on synchronization in UNIX, Windows NT, and Apple
Macintosh operating systems were listed in Chapters II, IV, and V, respectively. Before
discussing synchronization issues, a brief discussion of the internals of the UNIX,
Windows NT, and Apple Macintosh operating systems was provided at the beginning of
their respective chapters.

Chapter Il presented some details about UNIX process states, parent/child
relationship among processes, kernel level, and multiprocessor synchronization. Among
other synchronization mechanisms and issues, semaphores, semaphore convoy effect,
read-write locks, sleep locks, etc., were also discussed. After the discussion about basic
architecture of Windows NT, Chapter IV provided some details about the protected
subsystem, Windows NT executive, processes, thread states, user-level, and kernel-level

synchronization mechanisms, as well as multiprocessor synchronization issues.

69

70

We discussed cooperative multitasking, processes and events, thread manager and
concurrency, and multiprocessing API in Chapter V. Based only on the synchronization
issue, Chapter VI compares these operating systems and tabulates their differences and

similarities, followed by the observations of this study.

7.2 Future Work

It is possible to design a new synchronization primitive based on the study
conducted in this thesis. It is also possible to extend this study further to explain the
reasons for the success or failure of these operating systems based on synchronization.
The Apple Macintosh operating system Version 8.0, which is the most recent release, has
undergone some major changes. Multitasking capability has improved a lot, but no proper

documentation is available on this as of today. This comparative study can be updated by

including the latest version of these operating systems.

REFERENCES

[Apple 96a] Apple Technical Library, Inside Macintosh: Devices, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96b] Apple Technical Library, Inside Macintosh: Files, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96c] Apple Technical Library, Inside Macintosh: Interapplication
Communication, Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96d] Apple Technical Library, Inside Macintosh: Macintosh Toolbox Essentials,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96¢] Apple Technical Library, Inside Macintosh: Mac OS Runtime Architecture,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96f] Apple Technical Library, Inside Macintosh: Memory, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96g] Apple Technical Library, Inside Macintosh: Operating System Ultilities,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Apple 96h] Apple Technical Library, Inside Macintosh: Overview, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96i] Apple Technical Library, Inside Macintosh: Processes, Addison-Wesley
Publishing Company, Reading, MA, 1996.

[Apple 96j1 Apple Technical Library, Inside Macintosh: System 7.5 Technologies,
Addison-Wesley Publishing Company, Reading, MA, 1996.

[Avutu 93] Raveendra Reddy Avutu, A General Mutual Exclusion Primitive, Masters
Thesis, Computer Science Department, Oklahoma State University, Stillwater,
OK, 1993.

[Bach 86] Maurice J. Bach, The Design of the UNIX Operating System, Prentice-Hall
Inc., Englewood Cliffs, NJ, 1986.

71

72

[Cooksey 96] Chris Cooksey, “Working with Apple’s Multiprocessing API”, Apple
Technical Information Library, Technote 1071, Reading, MA, October 1996.

[Custer 93] Helen Custer, Inside Windows NT, Microsoft Press, Redmond, WA, 1993.

[Davis 94] Ralph Davis, Windows NT Network Programming, Addison-Wesley
Publishing Company, Menlo Park, CA, 1994.

[Deitel 92] H. M. Deitel, An Introduction to Operating Systems, Addison-Wesley
Publishing Company, Reading, MA, 1992.

[Digital 87] Digital Equipment Corporation, VAX Architecture Reference Manual, 1987.

[Dijkstra 68] E. W. Dijkstra, “Co-operating Sequential Processes”, In Programming
Languages, F. Genuys (Ed.); Academic Press, pp. 43-112, Eindhoven, The
Netherlands, 1968.

[Dunstan 89] N. Dunstan, “Synchronization Problems and UNIX System V”, ACM
Computing Surveys, Vol. 21, No. 4, pp. 15-19, December 1989.

[Dunstan and Fris 95] Neil Dunstan and Ivan Fris, “Process Scheduling and UNIX
Semaphores”, Software: Practice and Experience, Vol. 25, No. 10, pp. 1141-
1153, October 1995.

[Hoare 74] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept”,
Communications of the ACM, Vol. 17, No. 10, pp. 549-557, October 1974.

[Kelley 89] M. H. Kelley, “Multiprocessor Aspects of the DG/UX Kemnel”, Proceedings
of the Winter 1989 USENIX Conference, pp. 85-99, San Diego, CA, January 1989.

[Krakowiak 90] Sacha Krakowiak, Principles of Operating Systems, MIT Press,
Cambridge, MA, 1990.

[Lee and Luppi 87] T. P. Lee and M. W. Luppi, “Solving Performance Problems on a
Multiprocessor UNIX System”, Proceeding of the Summer 1987 USENIX
Conference, pp. 399-405, Phoenix, AZ, June 1987.

[Leffler, et al. 89] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The
Design and Implementation of the 4.3 BSD UNIX Operating System, Addison-
Wesley, Reading, MA, 1989.

[May and Whittle 95] John C. May and Judith B. Whittle, Programming Primer for the
Macintosh, Volume 1, AP Professional, Cambridge, MA, 1995.

73

[McGilton 83] Henry McGilton, Introducing the UNIX System, McGraw-Hill, New York,
NY, 1983.

[Peterson 811 G. L. Peterson, “Myths About the Mutual Exclusion Problem”,
Information Processing Letters, Vol. 12, No. 3, pp. 115-116, June 1981.

[Richter 93a] Jeff Richter, Advanced Windows NT, Microsoft Press, Redmond, WA,
1993.

[Richter 93b] Jeff Richter, “Creating, Managing, and Destroying Processes and Threads
Under Windows NT”, Microsoft Systems Journal, Vol. 8, No. 7, pp. 55-78, July
1993.

[Ritchie 78] D. M. Ritchie, “Synchronization and Scheduling”, The Bell System Technical
Journal, Vol. 57, No. 6, pp. 1935-1937, July 1978.

[Silberschatz and Galvin 95] Avi Silberschatz and Peter Galvin, Operating System
Concepts, Addison-Wesley Publishing Company, Reading, MA, 1995.

[Stallings 95] William Stallings, Operating Systems, Prentice-Hall, Englewood Cliffs, NJ,
1995.

[Tanenbaum 92] A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1992.

[Tanenbaum and Woodhull 97] A. S. Tanenbaum and A. S. Woodhull, Operating
Systems: Design and Implementation, Prentice-Hall Inc., Englewood Cliffs, NJ,
1997.

[UNIX 92] UNIX System Laboratories, Device Driver Reference-UNIX SVR4.2, UNIX
Press, Prentice-Hall Inc., Englewood Cliffs, NJ, 1992.

[Vahalia 96] Uresh Vahalia, Unix Internals: The New Frontiers, Prentice-Hall Inc.,
Upper Saddle River, NJ, 1996.

[Wheeler 96] D. A. Wheeler, Ada 95: The Lovelace Tutorial, Springer-Verlag Inc., New
York, NY, 1996.

[Wills 96] Craig E. Wills, “Process Synchronization and IPC”, ACM Computing Surveys,
Vol. 28, No. 1, pp. 209-211, March 1996.

APPENDICES

74

—

APPENDIX A: GLOSSARY

ADB Apple Desktop Bus.
BSD Berkeley Software Distribution, a flavor of UNIX.
Critical Section When a process is accessing shared data, the process must

be in its critical section to insure the integrity of the data.

DPC Deferred Procedure Call.

PC Inter-Process Communication.

IPL Interrupt Priority Level.

LPC Local Procedure Call.

Mac Macintosh.

MPProcessors Command used in an Apple Macintosh multiprocessing

operating system to count the number of processors.

Mutual Exclusion Each process accessing the shared data excludes all other
accesses from doing so simultaneously. This is called
mutual exclusion.

Object handle An index into a process-specific table that contains
pointers to all the objects that the process has opened a
handle to.

P Proberen, a Dutch word meaning “to test”.

SCSI Small Computer System Interface.

Semaphore A semaphore is a non-negative integer variable that can be

handled only by the P and V operations.

SVR4 System V Release 4.

75

\% Verhogen, a Dutch word meaning “to increment”.
Xerox PARC Xerox Palo Alto Research Center.
76

—

APPENDIX B: TRADEMARK INFORMATION

Macintosh A registered trademark of Apple Computer, Inc.

UNIX A registered trademark of AT&T.

Windows NT A registered trademark of Microsoft Corporation.

Win32 A registered trademark of Microsoft Corporation.
77

VITA |
Ramasamy Satishkumar o .
Candidate for the Degree of
Master of Science

Thesis: A STUDY OF SYNCHRONIZATION MECHANISMS IN UNIX, WINDOWS
NT, AND MAC OS

Major Field: Computer Science
Biographical:

Personal Data: Born in Lakshmipuram, India, July 15, 1974, son of Mr. and Mrs.
N. Ramasamy.

Education: Received Bachelor of Engineering in Electronics and Communication
Engineering from University of Madras, Madras, India, in July 1995;
completed requirements for the Master of Science Degree in Computer

Science at the Computer Science Department at Oklahoma State University
in December 1997.

Professional Experience: Working as a Database and System Administrator in the
Writing Center at Oklahoma State University, from June 1996 to July 1997.

