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CHAPTER r 

INTRODUCTION 

STATEMENT OF PURPOS E 

The Anadarko basin is a deep sedimentary basin that eXlends in a southeast

no rthwest direction from south-central Oklahoma to northern Texas (Figure I) . T he 

Carter-Knox structure is located in the southeastern end of the Anadarko Basin in 

northeastern Stephens County and southeastern Grady County, Oklahoma (Figure 2). 

The basin, as well as the study area, is considered to have had a long and cOl11 plex 

geo log ic evolution from Early Cambrian to Permian. 

Tbe main purpose of this study is to investigate the structural evol ution o r the 

southern part of the Carter-Knox structure, located in the southeastern end ortlle 

Anadarko basin (Plate I and Figure 3) . Special emphasis was given to provide lime 

constraints on the structural events, such as formation of folds and faults The 

subsurface structure of the southe rn end of Carter-Knox was studied to provide a bett er 

understanding of the geometry of structural features within the Carter-Knox stru cture. 

111 order to achieve this, the main objectives were to dete rmine: 

(1) the sUbSUrf~ICC structural geometry of the southeast end urthe Carter

Knox structure 
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(2) types and numbers of major faults with in the southeast end of the 

Carter-Knox structure. 

(3) jf possible, the type and extent of displacement along the faults , by using 

wire-line well log data and seismic data provided by Marathon Oil Company. 

LOC AnON OF THE STUDY AREA 

The study area is in the southeastern end of the Anadarko basin (Figure I) . 11 

i nclucles parts of Grady and Stephens cOllnties, Ok lahoma (Figure 2). The C arter-Knox 

structure is an oil fIeld approximately it mi les long and 1.5 miles wide (Reedy alld 

Sykes, 1958); however, the study concentrated 0 11 the southern 6 miles of the structure. 

This includes all ofT2N , R.5W. and sections 19 through 36 in T.J N., R.SW . (Figure 3 

and Plate 1). The Carter-Knox structure is also north of the Doyle Held ami south of 

Chitwood and Bradley fields (Figure 4). 

METHODS Of INVESTIGATION 

Necessary to the main objectives, the study utilized the following information: 

(I) The electric logs Spontaneous Potential (SP), induction, gamma ray, 

conductivity, and resi stivity were exalllined to locate the tops and bottoms or 
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Figure 2. Location of Carter-Knox in Oklahoma . 
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the Morrow Series, Springeran Series, Caney Shale, Sycamore Limestone. 

Woodford Shale, Hunton Group, Sylvan Shale, Viola Limestone, and an 

informal marker referred as the "Boat Marker" within T.2N .. R.5W. and 

T.3N., R.5W. All electric logs were provided by Marathon Oil Company. 

(2) Three seismic profiles provided by Marathon Oil Company were 

examined to interpret the subsurface structural features in the area. 

(3) Four structural cross-sections and two structural contour maps were 

constructed to delineate the subsurface geometry of the southern part of the 

Carler-Knox structure. 

All structural cross-sections were constructed at or close to perpendicular with the 

subsurface structure, in order to reveal the most accurate structural geometry within the 

study area. The sedimentary units used to construct the structural cross-sections include 

the lops of the: Morrow Series, Springeran Series, Caney Shale, Woodford Shale, 

Hunton Group, Viola Limestone, and the Boat Marker. Figures 11-15 illustrate wire

line well log signatures that represent the beds within the structural cross-section. 

PREVIOUS INVESTIGATlONS 

The geologic evolution of the Alladarko Basin and surrounding areas has been 

disclIssed in numerous publications. Although a complete discussion of the voluminous 

literature IS beyond the scope of this study, a brief SUlllmary IS provided. For a more 
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nearly compl ete discussion, the reader is referred to Ham (1954), Tanner (1967), Ham 

(1964), Wickham (1978), and Gilbert (\ 983). 

Tectonics of the Anadarko Basin 

The Anadarko Basin, along with the Ardmore Basin and Wichita-Arbuckle uplift , is 

long recognized as part of tile Southern Oklahoma Aulacogen. This aulacogen evolved 

ill three main stages (Figure 5) (1) the stage of rifling, (2) the stage of subsidence 

(or sagging), and the stage of (3) deformation (or transcurrent stage) (Hoffman and 

others, 1974). 

HofTman, Dewey, and Burke ( 1974) explained the origin of an aulacogen by the 

concept of hot spots and plate tectonics . The rifting stage of an aulacogen begins with a 

series of hot spots that expand and uplift the lithosphere (Figure 5a). Continued uplift 

produces fracturing of the lithosphere and a rift-riFt-rift triple junction (Figure 5b) . 

Jgneous activity is associated with early rifling. As rifling continues, igneolls activity 

ceases, and a broad basin forms representing one of the failed arms of the rift-rift-rift 

system (Figure 5c). This failed ann, now an intracratonic basin, subsides at a ral e 

greater than that of the surrounding craton. As the basin subsides, it accumulates a thick 

sequence of sediments consisting of carbonate material and marine and nonmarine 

sandstones and shales (Figure 6b and 6c). 

The Southern Oklahoma Aulacogen is also explained as having gone through these 

stages (Wickham, J 978). Beginning in the Precambrian, with crustal consolidation 

representing its pre-rifting stage, dikes were emplaced; they trend about N. 60 V/ . 
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Figure 4. Location of Carter-Knox and other oil fields (from Reedy and Sykes. 1958) 



(Denison, 1982). This crustal consolidation probably was accompanied by steep 

basement faults that bound the rin-valley structLlTe (Webster, 1980). 

During the stage of early rifting in Late Precambrian to Early Cambrian, grabens 

were formed and both extrusive and shallow intrusive rocks were emplaced (Figure 6a). 

These rocks are represented by the Carlton Rhyolite and have been dated at 500-550 

million years old (Brown and others, 1985) . 

During the subsidence stage, from Late Cambrian through Mississippian, a passive 

conllllentaimargin developed (Brown and others, 1985) During this time marine 

transgression as well as subsidence took place within the Southern Oklahoma Aulacogel1 

(Figure 6b and 6c). The beginning of the subsidence stage maybe represented by the 

deposition of the Upper Cambrian Reagan Formation (Wickham, 1978) Soon after the 

deposition of the Reagan Formation carbonate sediment deposition became dominant 

\-vit hin the aulacogen and surrounding areas. Deposition of terrigenolls clasitic sediment 

became dominant in Pennsylvanian due to a combination of subsidence and orogenic 

activity (Brown and others, 1985). Wickham (1978), suggests that subsidence of the 

aulacoge11 is accommodated by displacements of major faults that were initiated in the 
~ "' 

I il1illg slagc. DisplaccTlIellt (II' these r<lulls probably cOlltillllCd througllout llle subsidellce 

stage due to sedimentation. However, Wickham (1978), does say that there is "little 

evidence to indicate active faults during sedimentation". 

The deformational stage of the aulacogen began in Pennsylvanian and is represented 

by several orogenic conglomerates (Brown and others, 1985 and Pybas, Cemen, and AJ-
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Shaicb, 19')5). During this phase, there was reactivation of faults (structural inversion), 

\vhich probably originated as Cambrian normal fauits, during the initial rifting 

stage(Figure 6d). These faults were high-angle faults with large displacements that 

produced major deformation within the aulacogen (Wick ham, 1978) This 

cleformational stage of the Southern Oklahoma Aulacogen is thought to have been 

brought about by a major collision between the North American plate and either the 

South American plate or some other microplate (Perry, 1989). Convergence of the 

North American plate with the South American plate continued into Late Mississippian 

(probably Chesterian) time (Perry, 1989), forming the Ouachita Mountains and other 

tectonic provinces in Oklahoma (Figure 1). The continued convergence is also thought 

to have deformed the south-central pal1 of the Anadarko Basin, producing several 

t hru st-cored, en-echelon anticlines (Perry, 1989). This deformation is explained as 

strike-slip or wrench fault tectonics (Tanner, 1.967; Wickham, 1978; Hartling, 1985, 

Pybns, Ccmen, and AI-Shaicb, 1995) or as compressional tectonics (Doll, 19.14, 

Denison, 1982; Brown and Grayson, 1985). Evidence f1·om the study area suggests that 

these thrust-cored, en-echelon anticlines would have been caused by transpressional 

forces produced by wrench fault tectonics during the deformational stage of the 

aulacogen. 

McBee (1995) suggested that the Anadarko Basin, along with other tectonic 

provinces in Oklahoma, was formed by a megashear. He explained tbe entire Southern 

Oklahoma Aulacogen as being the Oklahoma Megashear (OM) . Therefore, he 
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stipulated that wrench-fault tectonics were active throughout the evolution of the 

aulacogen. He proposed that the OM was a part ofa "long-lived, transcratonic, 

cOllvergent shear-fault (wrench) system." This OM system was form ed bycompressional 

shear fractures, forming a basin tbat was deformed over geologic time by several 

episodes of east-and-west orogenic stresses (McBee, 1995). 

Mcnee (1995) suggested that during Early Pennsylvanian, two orogenic events 

occurred. To the southeast, the South American Plate collided with the North American 

plate (Laurentia), an episode that lasted from Middle Mississippian to Middle 

Pennsylvanian. This episode is believed to have created the Ouachita folu-thrust belt to 

the south of the OM (Figure 7). However, McBee (1995) suggested that the continued 

Ouachita Orogeny into Middle Pennsylvanian had no effect on the OM. Instead an early 

Pennsylvanian east-west compressional stress regime termed "Alleghel1ian" (McBee, 

1995) produced very intense tectonic events, which were manifested by a great deal of 

left-lateral strike-slip movement on the Muenster Fault (MNF) and Washita Valley Fault 

(WVF) (Figure 7) which in turn created the tectonic provinces of Oklahoma (Figure I) . 

Regardless or tile origin of the Pennsylvanian strike-slip movement, there is an 

agreement that basins and uplifts in the area of the Southern Oklahoma Aulacogen were 

produced by strong strike-slip deformation. The aulacogen hypothesis prefers the 

interpretation that the formation of the Ouachita Mountains affected the aUlacogen and 

was responsible for its deformational stage However, McBee (1995) argued that the 

Ouachita Orogeny did not affect the areas to the west of the Anadarko Basin. He 
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proposed that reactivation of the older faults was owing to the A lIeghellian 

compressional-stress regime 

Carter-Knox structure 

Geologic studies of the Carter-Knox area started in 1916, when surface geologic 

work was done for the A.T. and S.F. Railway Company by Clyde T. Griswold, who 

mapped the southern portions of the anticline in Grady County. .I n 1921, Absher 

mapped the northern portion of Carter-Knox anticline for the Goldeline Oil Corporation 

and Guy H. Cox mapped it for the Jersey Oil Company. By 1923, the entire Carter

Knox area had been mapped, and several wells had been drilled by the previously 

mentioned companies. Oil production in the area started in 1923 , and by 1947 several 

other oil companies had claims within the area (Reedy and Sykes, 1958) 

Through the years, data accumulated in the form of surface mapping and wire-line 

well-log data, and seismic profiles have helped in the interpretation of the Carter-Knox 

area. However, the only literature on the area is by Reedy and Sykes (1958), and they 

interpreted Carter-Knox as having three separate structural features formed in pre

Pennsylvanian, Pennsylvanian, and Pemlian time. 

Reedy and Sykes (1958) delineated the pre-Pennsylvanian structure as an anticlinal 

fold, approximately one mile west of the Pennsylvanian structure (Figure 8). They 

believed that the thrust fault s in Pennsylvanian beds were confined to Pennsylvanian. anel 

do not distort the pre-Pennsylvanian structure 

Reedy and Sykes (1958) delineated the Pennsylvanian structure as an elongated, 

northwest-southeast trending fold that is faulted on the northeast limb (Figure 8). They 
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interpreted the faults as fold-thrust faults with dips of 50-60 degrees which flatten to the 

southeast within the Springer. 

Reedy and Sykes (1958) delineated the Permian structures as two normal faults that 

flank the Pennsylvanian structure (Figure 8). 

Many companies in the oil industry followed this train of thought by Reedy and 

Sykes (1958), because this was the only well-recognized published paper that described 

the Carter-Knox structure. However, based on the interpretation of recent data, this 

study suggests that the Carter-Knox structure is a transpressional structure that formed a 

positive flower structure. 
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CHAPTER II 

STRATIGRAPHY OF THE ANADARKO BASIN 

The Anadarko Basin contains a thick sequence of sedimentary rocks; however, the 

study only utilizes rocks from Ordovician to Middle Pennsylvanian (Figure 9). The 

Ordovician to Middle Pennsylvanian sedimentary units were used to construct the 

structural cross-sections of the study area; therefore, these strata will be discussed in 

detail. However, a brief description of the Pre Ordovician rock units of the Anadarko 

basin also is included. Figure 10 is a stratigraphic chart which shows the pre-Ordovician 

rocks and can be used to correlate the Anadarko Basin rock units with other areas . 

PRE-ORDOVICIAN ROCK UNITS 

The oldest sedimentary rock unit in the Anadarko basin is the Upper Cambrian 

Timbered Hills Group (Honey Creek Limestone and underlying Reagan Sandstone), 

which uncomforrnable overlie the Carlton Rhyolite (Perry, 1989) (Figure 10). The 

Reagan Sandstone is a transgressive basal sandstone which underlies the Honey Creek 

Limestone (Figure 10) which is a fossiliferous limestone (Ham, 1973). 
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The Arbuckle Group is composed of shallow-water marine sediments and 

conformable overlies the Timbered Hills Group (Figure 10). The Arbuckle is divided 

into the lower Arbuckle of Cambrian age and upper Arbuckle of Ordovician age. The 

lower Arbuckle consists of the Fort Sill Limestone, Royer Dolomite, and the Signal 

Mountain Fonnation . The upper Arbuckle consists of the Buttedy Dolomite, McKenzie, 

Cool Creek, Kindblade and West Spring Creek Formations (Johnson, 1991) (Figure 10) 

ORDOVICIAN-PENNSYL V ANIAN ROCK UNITS 

The Simpson Group uncomformable overlies the Arbuckle Group. The Simpson, 

from oldest to youngest, is composed of the Joins, Oil Creek, McLish, Tulip Creek, and 

Bromide Formations (Figure 10). The Joins Formation is mostly limestone. The Oil 

Creek Formation is composed of a basal limestone overlain by interbedded shale and 

fossiliferous limestone units. The McLish, Tulip Creek, and Bromide Formations also 

have basal sandstones; however, the formations are overlain by skeletal calcarenites 

(Ham, 1978). 

Overlying the Simpson Group is the Viola Limestone of Middle Ordovician age 

(Figure 9). The Viola Limestone is shown in structural cross-sections B-B', C-C', and 

O-D' (Figures 25-27 and Plates IV-VI). In the study area, the Viola Limestone is 650 

feet thick, on the average, and is composed of "mottled gray, fine to coarsely crystalline, 

and tan to brown, finely crystalline with tan to brown chert" (Reedy and Sykes, 1958). 
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Log characteristics used to distingui sh the Viola are: (l) conductivity close to 0 

(MMHO), (2) gamma ray of' ~ 30 (gAPI) or less, and n) shallow and deep induction of 

- 40 (ohm-rn) or more (Figure 11). 

Conformable above the Viola is the Sylvan Shale of Late Ordovician age (Figure 9). 

The Sylvan shale is 280 feet thick, on the average, and is composed of a "greenish gray, 

pyritic shale" (Reedy and Sykes, 1958). Log characteristics used to distinguish the 

Sylvan are: (1) conductivity ~ 100 (MMHO), (2) gamma ray of - 120 (gAP]), and (3) 

shallow and deep induction of 10-20 (ohm-m) (Figure J 1). 

Conformable above the Sylvan Shale is the Hunton Group of Silurian to Devonian 

age (Figure 9). The Hunton Group is shown in structural cross-section A-A' 

(Figure 24). The Hunton Group is composed, from oldest to youngest, of the 

Chimneyhill Subgroup, consisting of the Keel, Cochrane, and Clarita Formations, and 

the Henryhouse, Haragan-Bois d' Are, and Frisco Formations. Within the Chimneyhill 

Subgroup, the Keel Formation is an oolitic limestone. The Cochrane is composed or 

fossiliferous mudstone/wackestone and fossiliferous packstone/grainstone. The Clarita 

Formation is composed of glaucorutic pelematazoan packstone/grainstone. The 

Henryhouse Formation is composed of marlstone, with some calcareous shale beds in 

the lower part. The Haragan-Bois d' Arc Formation consists of marlstone grading 

upward into packstone/grainstone The Frisco Formation is composed of bioclastic 

packstone/grainstone, which has abundant crinodal fragments (AI-Shaieb and others, 

1993). The Hunton, within the study area, lies unconformable below the Woodford 

Shale (Reedy and Sykes, ) 958) The Hunton has been seen in the study area as thin as 
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--
20 feet at the axis of the Baker anticline and as thick as 330 feet on the limbs of the 

Baker anticline. Log characteristics used to distinguish the top of the Hunton are: (1) 

conductivity around to 200 (MMHO) after the Woodford Shale then settling to near 0 

(MMHO), (2) shallow and deep induction of 15 ohm-m , and (3) gamma ray decreasing 

to 100 (gAPI) after the Woodford Shale (Figure 11). 

Unconformable above the Hunton Group is the Woodford Shale (Figure 9) of Late 

Devonian to Early Mississippian age. The Woodford Shale is shown in all four 

stmctural cross-sections (Figures 24-27 and Plates III-VI). The Woodford Shale is 

characterized as black, highly organic shale, and is the primary source rock for 

hydrocarbons (AJ-Shaieb and others, 1993). Throughout the study area the Woodford 

Shale is about 350 feet thick (Reedy and Sykes, 1958). Log characteristics used to 

distinguish the Woodford are: (1) conductivity close to 0 (MMHO), (2) shallow and 

deep induction of 10 (ohm-m) and less, and (3) a gamma ray of270 (gAPJ) plus 

(Figure 12). 

Conformable above the Woodford Shale is the Sycamore Limestone of Middle 

Mississippian age (Figure 9). The Sycamore is about 200-250 feet thick within the study 

area, and is composed of "gray to tan, siliceous, argilaceous limestone"(Reedy and 

Sykes, 1958). Log characteristics used to distinguish the Sycamore are: (l) 

conductivity near 0 (MMHO) with the lower quarter ha.lf having a conductivity of 50 

(MMHO), (2) gamma ray of - 30 (gAPl), and (3) shallow and deep induction varying 

from 10 - 50 (ohm-m) (Figure 12). 
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Conformable above the Sycamore Limestone is the Caney Shale (Figure 9) of 

Middle Mississippian age. The Caney is shown in all four structural cross-sections 

(Figures 24-27 and Plates III-VI). The Caney is about 200 feet thick throughout the 

study area, and is composed of "dark gray to brown shale" (Reedy and Sykes, 1958). 

Log characteristics used to distinguish the Caney are: (1) decrease in conductivity to 

100 (l\flv1HO), (2) an increase in shallow and deep induction of 30 (ohm-m) plus, and 

(3) gamma ray increasing to -120 (gAPI) (Figure 12). 

Comformable on the c<mey Shale is the Goddard Shale (Figure 9) ofT.ate 

Mississippian age. The Goddard is a gray to dark gray shale with sparse nodules of 

siderite. The Goddard is about 1000 feet thick in the study area (Reedy and Sykes, 

1958). The Goddard has not been distinguished using log characteristics, due to 

uncertainty about the boundary between the Goddard and the Springeran Series. 

Above the Goddard is an infonnal marker named the "Boat". The Boat Marker is 

useful in distinguishing possible faults within the study area. This marker is detectable 

only by log characteristics. The Boat Marker is shown in all the structural cross-sections 

(Figures 24-27 and Plates III-VI) because it is very prominent within all wells in the 

study area. The Boat Marker is a black shale having an average thickness of about 100 

feet in the study area. Its log characteristics are: (1) drop in conductivity to near a 

(MMHO) and (2) an increase in shallow and deep induction to 50 (ohm-m) 

(Figure 13). 

Conformable overlying the Goddard Shale is the Springeran Series ofEarIy 

Pennsylvanian age (Figure 9). The Springer consists of the Woods, Hutson and 
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Anderson Sandstones, and the Brown Shale. However, only the uppennost part of the 

Springeran Series is shown in the four structural cross-sections, in order to maintain 

legible cross-sections (Figures 24-27 and Plates IU-VI). The Woods and Hutson are 

glauconitic sandstones whereas the Anderson is characterized as a fine grained, tightly 

cemented sandstone. The Brown Shale is dark gray to brown (Reedy and Sykes, 1958). 

Thickness of the Springer-Caney interval varies due to faulting and/or compression of 

the Goddard Shale. The Ledbetter well operated by Chesapeake (Sec. 12, T,2N., 

R.5W,) was used as the control well to determine the actual thickness in the study area. 

The control well shows the thickness between the top of the Springer-Caney interval at 

about 2900 feet Log characteristics used to distinguish the top of the Springer Series 

are: (1) conductivity around 400 (MMHO) and (2) a shallow and deep induction 

around 5 (ohm-m) (Figure 14). 

The Morrowan Series is comformable above the Springeran Series (Figure 9) and is 

shown in all four structural cross-sections, In order to simplify the structural cross

sections, only the uppermost part of the Morrowan Series is used (Figures 24-27 and 

Plates lIJ-VI), The Morrowan Seri,es is divided into the lower and upper Domick Hills 

Group The lower Dornick Hills Group is composed of a micaceous shale with 

occasional thin glauconitic limestone beds (Reedy and Sykes, 1958), The Primrose 

Sandstone is within the lower Domick Hills Group and is characterized as semi

crystalline sandstone with interbedded shales (Tomlinson, 1959) Log characteristics 

used to distinguish the top of the Morrowan Series are ( l) conductivity around 50 
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(MMHO), (2) increase in shallow and deep induction to 25 (ohm-m) plus, (3) a 

decrease in the gamma ray to 45 (gAFI) and (4) directly below this thin bed, about 100 

ICet, is a thicker bed of about 50 feel with similar log characteristics (Figure 15). 

There are several other rock-stratigraphic unjts above the Morrowan Series 

(Figure 9), but they are not shown in the structural cross-sections. This is done in order 

to simplifY the four structural cross-sections. Other Ordovician-Pennsylvanian units 

penetrated by wells but not used in the structural cross-sections are the Sylvan 

Formation and Sycamore Formation. This is also done in order to simplify the four 

structural cross-sections. The pre-Ordovician rock units (Timbered] lills Group, 

Arbuckle Group, and Simpson Group) are not used in the structural cross-sections due 

to the lack of wells penetrating to this depth. 
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CHAPTER III 

STRrKE-SLIP F AUL TS 

Strike-slip faults are high-angle faults which usually involve the basement extending 

tens to hundreds of miles in a straight to slightly curved trace on the Earth's surface (i .e 

San Andres Fault). The strike-slip faults which form lithospheric plate boundaries are 

called Transform faults, and the strike-slip faults which are within continental crust 

maybe termed Transcurrent faults (Sylvester, 1988) Through laboratory studies by 

Wilcox, Harding, and Seely, (1973) and Tchlanko, (1970) a mechanical understanding of 

strike-slip faults has been obtained which has produced the concepts of pure shear and 

simple shear. Pure shear strike-slip faults are usually associated with conjugate sets of 

strike-slip faults located along the strike of convergent orogenic belts. Simple shear is 

usually associated with major strike-slip faults forming in regional belts, typically parallel 

to orogenic belts (Sylvester, 1988) 

When these faults move parallel to one another there is no addition or subtraction of 

crust in anyone place along the trace of the fault. However, there can be convergence 

or divergence within a strike-slip fault depending on the bending along the fault (Figure 

16). Divergence along a strike-slip fault may produce an elongate basin which can range 

in size depending on the amount of displacement. This type of occurrence is termed 
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pull-apart basin. Convergence along a strike-slip fault may produce an elongated uplift 

which can also range in size from small hills to mountain ranges depending on the 

amount of displacement. Both of these occurrences produce a feature called a wrench 

fault which produce flower structures witrun the subsurface (Sylvester, 1988; Wilcox, 

Harding, and Seely, 1973). 

MECHANICS 

Pure shear and simple shear are the types of mechanics which produce strike-slip 

faulting . Pure shear produces conjugate sets of sinistral and dextral strike-slip faults. 

Strike-slip faults which are produced by pure shear do not produce large displacement, 

due to the fact that they are located within large crustal masses (Sylvester. 1988) sllch as 

the tear faults seen in fold-thrust belts. 

Simple shear produces major strike-slip faults around the world which can have 

displacement measuring in hundreds of kilometers. Wilcox, Harding, and Seely, ( 1973) 

recreated the evolution of a strike-slip environment using simple shear mechanics 

(Figures 17 and 18). An earlier experiment by Tchlanko using simple shear, (1970), also 

proposed five sets of fractures which are seen in strike-slip zones of different magnitudes 

(Figure 19): (\) Rjedel (R) shears or "synthetic", (2) Conjugate Riedel (R') shears or 

"antithetic", (3) secondary synthetic strike-slip faults, (4) extension fractures at 45 

degrees to the zone of displacement, and (5) faults which are parallel to the zone of 
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displacement. The evolution of the strike-slip environment recreated in the laboratory 

by Wilcox, Harding, and Seely (1973), and Tchalanko (1970) provide supporting 

evidence that strike-slip faults can form using simple shear mechanics. 

CHARACTERISTICS 

Strike-slip faults are recognized by physiographic features, geologic features, andlor 

the use of subsurface data in the form of well logs and seismic profiles. If the strike-slip 

fault is active, the use of focal mechanisms could also be used to help pJace the strike

slip fault within the subsurface (Sylvester, 1988). Since this study deals mostly with 

subsurface structural features, only subsurface characteristics of the strike-sl ip faults will 

be discussed. 

Seismic characteristics of strike-slip faults 

Seismic profiles, which were used in the study area, may be the most useful 

mechanism for identifying a strike-slip fault within the subsurface. When looking at a 

seismic profile, certain characteristics should be present to validate the presence of a 

strike-slip fault. The following are important criteria when identifing a wrench fault 

(Harding, 1990): 

(1) The presence of a steeply dipping single or master fault which cuts all 

sedimentary units down to the basement . 

(2) A narrow zone of deformation , which may have steeply dipping faults 
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converging with the master fault at depth. These faults can be seen on one or 

both sides of the master fault and have reverse or normal separation forming 

flower structures. The presence of these faults form a symmetrical antiform 

(Figure 20) or synform (Figure 21) on a seismic profile 

(3) The presence of juxtaposed dissimilar strata thickness or stratigraphic 

successions. 

(4) The presence of anomalous faults or folds which cannot be explained 

using fold geometries. 

Of these four characteristics, the most important is the presence of a master fault. 

Strike-slip faults are most commonly recognized by the master fault due to its length and 

tectonic dominance. On a sequence of parallel seismic lines, normal to the main 

structures, the master fault will be thoroughgoing and undisrupted along its trace 

(Figure 22) ifit truly is a strike-slip fault (Harding, 1990). 

GEOMETRIES 

When a strike-slip fault bends, it either converges or diverges depending on which 

direction the fault bends (Figure 16). Convergence occurs when the strike-slip 

movement is inhibited by restraining bends which produce crustal shortening and uplifts 

(Figure 16). Divergence occurs when the strike-slip movement is uninhibited by 

releasing bends (Figure 16), producing crustal extension, and pull-apart basins 

(Sylvester, 1988). 
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Releasing bends will produce a negative flower structure in the subsurface (Figure 

21), and restraining bends will produce a positive flower structure in the subsurface 

(Figure 20), When using seismic profiles certain criteria are used to distinguish between 

a negative flower structure and a positive flower structure. 

First, the splays which diverge from the master fault differ in type of displacement. 

The individual splays in a negative flower structure (Figure 21) have normal separation 

(Harding, 1985) due to fault blocks diverging from one another. The splays within a 

positive flower structure (Figure 20) have reverse separation (Harding, 1985) which is 

due to fault blocks convergjng toward one another. 

A negative flower structure (Figure 21) has fault blocks which diverge rrom one 

another. This produces nonnal separation of the blocks giving the fault slices a graben 

like appearance (Figure 21) . This creates a synform appearance on seismic (Harding, 

1985), A positive flower structure (Figure 20), has fault blocks converging toward one 

another. This produces reverse seperation of the blocks, which creates an antiform 

appearance on a seismic profile (Harding, ] 985). 

Positive flower structures can be divided into "squeeze-up" structures or "pop-up" 

structures (Harding, 1983). "Squeeze-up" structures (Figure 23a) are usually formed in 

basins or grabens which have a thick sequence of shale, much like the Mississippian 

strata in the study area, If transpressional forces are applied to this shale, a deformation 

of plastic flow occures forming rootless, faulted, and tightly folded en-echelon anticlines 
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Figure 20. Seismic profile showing a positive flower structure (from Harding, 1983). 
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figure 21. Seismic profile showing a negative flower slructure (from Harding, 1983). 
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with upward diverging splays. These structures, on seismic profiles, have an appearance 

which displays a great amount of horizontal shortening where in fact there is little if any 

shortening at the basement level. With increase in strata depth comes a decrease in 

deformation with the "squeeze-up" structure (Harding, 1983). 

"Pop-up" structures are formed where two large thoroughgoing strike-slip faults join 

forming a graben like uplift (Figure 23b). These structures form in intricate shear fault 

systems with rigid strata (Harding, 1983). 

The splays, which create the blocks, on a positive flower structure can have steep 

upthrust to shallow dipping thrusts that merge with depth to the master fault . These 

splays flank the overall structure and have a linear antiform appearance on a seismic 

profile (Harding, 1985) The splays that come off the main fault can diverge to one or 

both sides of the structure. Splays can also diverge upward in a wide to narrow 

spreading zone. This in turn will produce a wide or narrow zone of deformation 

(Hardening, 1985) 

PITFALLS 

There is also evidence which refutes the presence of a strike-slip fault and flower 

structures. As explained by Harding (1985), evidence which can refute the presence of a 

master fault in a strike-slip tectonic environment are as follows: 

(J) The master fault does not displace the top of the basement. 
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(2) Tn a succession ofparaJJeJ seismic profiles perpendicular 10 tohe 

subsurface structure, the master faul t is not thoroughgoing or linear. 

(3) The master fault is just one fault in a group of closely spaced faults with 

similar structural appearances. 

As explained by Harding (1985), pitfalls which can cause the misidentification of a 

wrench fault producing a flower structure are as follows: 

(1) The use of a single seismic profile for interpretation. 

(2) The strike-slip zone has only one splay and is asymmetric. 

(3) Geometries within the core of the structure are not clear in seismic due 

to a loss in reflection continuity. 

(4) The contact with the master fault to basement is lost due to deterioration 

of the seismic profile with increase in time. 
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CHAPTER IV 

STRUCTURAL GEOLOGY 

The structural geometry of the study area is delineated by constructing four 

structural cross-sections (Figures 24-27, Plates IIl-VI) and two structural contour 

maps (Figures 28 and 29, Plates VII and VlIJ) using wire-line well-log data and 

seismjc profiles donated by Marathon Oi! Company. The markers shown in the cross

sections are the tops of the Morrow and Springer Series, as well as the Caney, 

Woodford, Hunton, and Viola Formations. Also shown in the cross-section is a bed 

termed the "Boat Marker", which is used to determine types of faults and differentiate 

the thickness between it and the Caney Shale using the Ledbetter (Sec. 12, T. 2N., 

R.SW., operator Chesapeake) as the control well. 

Plate II is a base map showing the locations of the cross-sections within the study 

area The base map also shows !ocations of the oil-wells used in the construction of 

the structural cross-sections. Appendix I includes the information obtained from the 

oil- wells used for the construction of the structural cross-sections. Structural contour 

maps were also prepared on top of the Springer series (Figure 28 and Plate Vll) and 

Hunton (figure 29 and Plate VIII) Formation The cross-sections, as well as the 
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structural contour maps, show interpretations of the subsurface geometry within the 

study area. 

The four structural cross-sections (Figures 24-27, Plates III-VI), as well as the 

seismic profiles (Figures 30 and 32, Plates IX and X), show a prominent anticline. 

This anticline is informally named the "Baker Anticline". It involves the Caney, 

Sycamore, Woodford, Hunton, Sylvan, and Viola Formations. 

The faults within the study are informally named, because they have not been 

previously named; although several of them have been known by oil-industry workers 

for many years. The faults in the study were determined using by wire-line well-log 

data and/or seismic data. The main fault cuts the northeast limb of the Baker anticline 

and trends northwest (Figures 30 and 32). This fault is interpreted as the master fault 

of a wrench fault system and is named "Knox fault". 

Another fault cutting the northeastern limb of the Baker anticline is seen southwest 

of Knox fault in the cross-sections (Figures 24-27, Plates Ill-VI), and in seismic 

(Figures 30 and 32, Plates IX and X) . The fault is named the Brickle fault and is 

interpreted as a splay joining the Knox fault at depth. The interpretation of a splay is 

due to the fact that the fault is seen diping toward the Knox fault in seismic (Figure 30 

and 32, Plates IX and X). If this dip remains constant with increase in depth, it may 

eventually join Knox fault. The Brickle fault also trends northwest. The fault is well 

recognized in the Brickle well (Sec. 4, T.2N., T.SW., operator British Amer. Oil 

Prod. Co.) using wire-line well log data by a repeat of the Boat Marker. This repeat, 

due to the Brickle fault, is also seen in well HPC (Sec. 14, T.2N., RSW., operator 
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Chesapeake), P. Diane No. I (Sec. 24, T.2N., R.SW. operator NA.), 1. Kaye No. I 

(Sec. 3, T.3N., R.5W., operator N.A.) and 1. W. Baker No.1 ( Sec. 33, T 3N., R.SW. 

operator British Arner. Oil Prod . Co.). 

A third fault named LTarter fault" is located to the northeast of Knox fault. This 

fault could be a splay joining the Knox fault at depth, or a fault parallel to the Knox 

(Figures 24-27, Plates III-VI) . The fault is interpreted as having reverse separation 

and parallel to the Knox. This interpretation of the fault being a reverse fault parallel 

to the Knox fault is based on the interpretation of seismic, which shows a similar dip 

direction as Knox fault (Figure 32 and Plate X). Therefore, the Carter fault may not be 

joining the Knox fault at depth. The fault is interpreted on seismic profiles trending 

northwest, but is difficult to see in wire-line well-log data due to its almost vertical dip 

on the seismic profiles (Figures 30 and 32, Plates IX and X). 

Marathon Oil Company donated two 2-D seismic profiles which were used for 

structural interpretation of the study area. One of the seismic profiles (Figure 32 and 

Plate X) is located in the northern part of the study area and is used in conjunction 

with wire-line well-log data to construct the four structural cross-sections (Figures 24-

27, Plates Ill-VI) . The second seismic profile (Figure 30 and Plate IX) is located in 

the southern part of the study area and is used for the interpretation of t he trends of 

the Brickle and Knox faults. Between the northern and southern profiles is a gap 

which makes it diffi·cult to correctly interpret what is happening to the trend of the 

faults between the seismic profiles. The seismic profiles are interpreted and are shown 
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in Plates IX and X and Figures 30 and 32. The non interpreted seismic profiles are 

seen in Plates XI and XlI and Figures 31 and 33. 

The structural cross-sections, structural contour maps, and interpreted seismic 

protlles all depict the presence of a wrench fault system which produced a positive 

flower structure in the study area. The structural features in the area were previously 

interpreted as being formed by compressional tectonics similar to fold-thrust belts by 

Reedy and Sykes (1958). However, the structures interpreted on the seismic profiles 

and the interpreted cross-sections, based on wire-line well-log data and seismic 

profiles, can not be produced by a typical fold-thrust belt structure. They have most of 

the characteristics of a typical wrench fault system. 

A major characteristic in the interpretation of a wrench fault in the study area is the 

presence of a single thoroughgoing master fault (Knox fault) which is unaltered in its 

treneL The second, a splay (Brickle fault) which has reverse separation, also giving 

evidence for the presence of a wrench fault forming a positive flower structure. The 

presence of a vertical fault slice like, the Brickle fault, is thought to be the most 

concrete evidence for a wrench fault (Harding, 1990). The third is the presence of a 

narrow zone of deformation which also gives credible evidence for a wrench fault If 

the tectonic environment were a typical compressional fold-thrust belt, it would 

consist of several fault sets or several faults seen in a zig zag pattern trace in map 

view, and have a large zone of deformation, sometimes many kilometers. These faults 

would also tend to join to a horizontal detachment surface at depth. 

Baker Anticline 
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The Baker Anticline is seen in the structual cross-sections and interpreted seismic 

profiles (Figures 24-27, Plates III-VI). The Baker Anticline involves the Caney. 

Sycamore, Woodford, Hunton, Sylvan, and Viola Formations. The anticline is faulted 

on the northeast limb by the Knox and Brickle fault. 

The Baker Anticline may have formed in Silurian time. Examination of wire-l ine 

well-log data reveals a thinning of the Hunton on the crest of the anticline, and a 

thickening of the Hunton on the limbs of the anticline. Reedy & Sykes (I958), also 

reported this thinning of the Hunton. The other fonnations within the anticline remain 

at a {~Iirly constant. stratigraphic thickness on the crest and limbs of the anticline . Thi s 

suggests some type of orogenic activity during or after the deposition of the Hunton in 

Silurian time which may have produced the Baker Anticline. 

Knox Fault 

The Knox fault is interpreted as the master fault of a positive flower stmcture in a 

wrench fault system. Evidence used to delineate the study area as a strike-slip tectonic 

environment , rather than a compressional fold-thrust belt type structure as previously 

interpreted, came from the use of wire-line well-log data and 2-D seismic profiles. 

Dr. Cemen and I have also had a chance to study Marathon Oil Company's 

confidential 3-D seismic data at the Oklahoma City office, which backs our structural 

interpretations. 

The interpreted 2-D seismic profiles show a steeply dipping to vertical fault which 

probably cuts the basement rock within the study area. However, continuation of the 

fau lt into the basement cannot be confirmed by sei smic interpretations, due to 
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deterioration of the seismic with increase in time (Figures 30 and 32, Plates IX and X). 

When looking at the sequence of parallel seismic lines, this fault is seen cutting strata 

at all depths (Figures 30 and 32, Plates IX and X). 

Map criteria, which gives good evidence for the Knox fault being the master fault 

is its undisrupted trace, seen in the Springer and Hunton structural contour maps 

(Figures 28 and 29, Plates VII and VIII). The trend of Knox fault is northwest and is 

straight to nearly straight. Wire-line well-log data, along with seismic data, was used 

to place the fault on the Springer and Hunton structural contour maps. The placement 

of Knox fault, using wire-line well-log data, was done by looking at the differences in 

depths by neighborillg wells to either the Lop oftlJe SpriJlger (hgure 2)), Plate XII) 01 

Hunton (Figure 29, Plate XIII). The combination of wire-line well-log data and 

seismic helped to accuratly place the fault on both stlllctural contour maps. 

The four structural cross-sections show the Knox fault cutting the Viola, Hunton, 

Woodford, Caney, Morrow, and Springer Formations as well as the Boat Marker. 

Seismic profiles were used for the placement of the fault on the structural cross

sections (Figures 24-27, Plates III-VI) because the vertical dip of the fault makes it 

difficult to determine on wire-line well-log data. The four structural cross-sections 

were constructed perpendicular to the trend of the southern end of the Carter-Knox 

structure. 

Brickle Fault 
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The Brickle fault is located southwest of the Knox fault, and is interpreted as a 

fault splay converging at depth with the Knox-fault . Convergence of the Brickle fault 

to the master fault can not be confirmed on seismic due to deterioration of the seismic 

with increased time (Figures 30 and 32, Plates IX and X). However, the dip of the 

fault is toward the Knox fault on the seismic profiles ( Figures 30 and 32, Plates IX 

and X). If the Brickle fault continues with the same dip direction, then it should join 

the Knox fault at depth. The seismic profiles give preliminary evidence for the Brickle 

fault, with wire-line well-log data giving supporting evidence. 

In wire-line well-log data, a repeated Boat Marker bed in the Brickle well 

(Sec. 4, T.2N., R.5W., operator British Amer. Oil Prod. Co.) is seen close to where 

the fault is believed to cut the Hunton. This repeat in the Boat Marker, along with the 

seismic profiles, gives good evidence for the Brickle fault being a splay with reverse 

separation. This repeat in the Boat Marker is also seen in wens HPC (Sec. 14, T.2N., 

R.5W., operator Chesapeake), P. Diane No.1 (Sec. 24, T.2N., R.5W., operator 

N.A.), 1. Kaye No.1 (Sec. 3, T.3N., R.5W., operator N.A.), and J. W. Baker No.1 

(Sec. 33, T.3N., R.5W., operator British Amer. Oil Prod. Co.). 

The wells with a repeat Boat Marker, along with the seismic profiles, were used to 

place the Brickle fault on the Hunton structural countour map (Figure 29 and Plate 

VIII). The repeat of the Boat Marker seen in wire-line well-log data also helps in 

placing the BrickJe fault on the structural cross-sections (Figures 24-27, Plates III -VI). 

Carter fault 
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Figure 30. Interpreled Seismic A. Faults- % 



Figure 3 J. Uninterpreted Seismic A. 
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Figure 32. Interpreted Seismic B. Faults· J1, 
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Figure 33 Uninterpreted Seismic B. 
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The Carter fault is interpreted as a faul t with reverse seperation. Evidence used to 

deli nate this is done by the use of 2-D seismic data rather than wire-line well-lot!. data 
~ , 

due to the steepness of the fault. The northern 2-D seismic profile (Figure 32 and Plate 

X) shows a steeply dipping fault cutting up to the Springeran Series. However, the 

southern seismic profile shows no trace of the Carter fault (Figure JO and Plate IX) 

This fault appears to have the same dip direction as the Knox fault, and therefore 1S 

believed not to join the Knox fault at depth. 

The Car1er fault is placed all the Hunton cOllntour map (Figure 29 and Plate VllJ) 

by the use of seismic profiles only. The fault is also positioned on the four structural 

cross-sections (Figures 24-27, Plates III-VI) using seismic profiles only. 

Goddard Detachment 

Between the Brickle fault and Knox fault is a thick sedimentary core (Figures 30 

and 32, Plates IX and X). This increase in sedimentary thickness is interpreted as 

being caused by a fault named the "Goddard Detachment". The fault is interpreted as 

diverging off the Brickle fault and thrusting toward the Knox fault (Figures 24-27, 

Plates Ill-VI) . It is unknown if the fault joins the Knox fault. The fault is interpreted 

as being present throughout the study area and confined between the Springeran Series 

and Caney Formation. When looking at the seismic profiles, it is difficult if not 

impossible to see this fault. This difficulty in delineating the thrust withjn the seismic 

is probable due to reflection continuity lost between the Knox and Brickle fault within 

the core of the structure. This phenomenon usually occurs in the presence of a ductile 

sedimentary section (Harding, 1985). This ductile sedimentary section is in the study 
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area between the Springeran Series and the Caney Formation (Figure 9) . Between the 

Springeran Series and Caney Formation are sedimentary beds consisting primarily of 

shale. Therefore, there is probably a reflection continuity lost. Another possibility for 

the difficulty in delineating the detachment in seismic is the fact that the seismic 

profiles may not be perpendicular to the detachment. 

The positioning of the Goddard detachment, on the structural cross-sections, is 

done by using wire-line well-log data. First, the control well Ledbetter (Sec. 12, 

T.2N, R.SW., operator Chesapeake), is used to determine the stratigraphic thickness 

between the Caney Formation and Boat Marker. The positioning of the fault is then 

determined by looking at the differences in thickness between the Caney and Boat 

Marker in wells between the Brickle and Knox fault. compared to the control well 

thickness between the Caney and the Boat Marker. The stratigraphic thickness 

between the Caney and the Boat Marker increases from the Brickle fault toward the 

Knox fault (Figures 24-27, Plates HI-VI). The exact placement of the Goddard 

detachment in wire-line well-log data is difficult. This is due to wire-line well logs 

being old and the thrust is probably confined to the Goddard shale. 

Other possible scenarios for explaining the thickening of strata between the Brickle 

and Knox fault could be the presence of smaller detachments or faults off of the main 

Goddard detachment fault The increase could also be caused from a hanging wall 

anticline produced by the Goddard detachment . The thick core could also be caused by 

squeezing of the ductile shale making the shale sequence thicker . However, the 
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thickening in sedimentary strata within the core of the wrench fault is probab ly due to 

a combination of all of these. 

Positive flower structures can also exhibit extra materi al within the core o f the 

structure and are thought to be formed through small drag folds and/or thru s t 

repetitions (Harding, 1985) This type of occurrence happens where positive fl ower 

structures are disharmonic with the basement. The relief of these structures usually 

decreases with depth and in some "instances replaced at depth by a simple, vertical 

separation of a sub horizontal basement surface" called a "squeeze-up" (figure 23a) 

structure (Harding, 1983) . 

The inlerpreted 2-D seismic profiles ami slruclural cross-sections within the study 

area exhibit similar subsurface characteristics of a " squeeze-up" structure. This is seen 

with the Springeran and Morrowan Series having a great amollnt of vertical 

displacement, whereas the deeper formations have very little vertical displacement 

(Figures 24-27, Plates III-VI). However, the characteristic orthe master fault being 

disharmonic with the basement cannot be made by seismic interpretation, due to 

deterioration of the seismic with increase in time (Figures 30 and 32, Plates IX and X). 

However, the seismic does show a greater amount of vertical displacement in the 

Pennsylvanian beds compared to the Silurian bed. 

A wrench fault producing a positive flower structure always forms an anticlinal 

appearance on a seismic profile (Harding, J 990). This is also seen in the seismic 

profiles in the study area (Figures 30 and 32, Plates IX and X). These positive flower 

stmctures are usually fonned due to convergence of two blocks normal to the wrench 

66 



fault ("pop-up" structures), or are formed in a basin with a thick and ductile 

sedimentary section bounded by large faults with strike-slip movement ("squeeze-up" 

structures). This type of ductile sedimentary section is in the study area between the 

Springer Series and Caney Formation (Figure 9). 
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CHAPTER V 

STRUCTURAL EVOLUTION OF THE STUDY AREA 

The structural evolution of Carter-Knox, written by Reedy and Sykes, (1958), had 

a compressional event which produced thrusting in Late Pennsylvanian. Perry ( 1988), 

also explains that in Late Mississippian to Early Pennsylvanian the Anadarko Basin 

formed by compressional forces implemented on it by the convergence of the South 

American plate or a micro-continent with the North American plate during the close of 

the proto-Atlantic ocean. Perry (1988), also stated that with continued convergence in 

Late Pennsylvanian, transpressional forces became dominate forming many thrust 

cored en echelon anticlines within the southeastern Anadarko Basin. The 

compressional forces, in Late Mississippian to Early Pennsylvanian, and 

transpressional forces, in Late Pennsylvanian are thought to be part of the 

deformational stage of the Southern Oklahoma Aulacogen. 

McBee (1995), proposed that the Anadarko Basin as well as other tectonjc 

provinces (Figure I), in Oklahoma were formed by a megashear known as the 

Oklahoma Megashear (OM). McBee stipulated that transpressional forces were active 

throughout the evolution, of the aulacogen. The transpressional forces, in Late 
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Pennsylvanian are thought to be brought about by an east west compressional stress 

regime termed "Alleghelliall" (McBee, 1995). Regardless of the origin of the 

Pennsylvanian strike-slip movement, there is an agreement that the basins and uplifts in 

the area of the Southern Oklahoma Aulacogen (Figure 1) were produced by strong 

strike-slip deformation . 

The study area became invaded by the sea in Late Cambrian. During this time, 

pre-Cambrian basaltic and gabbroic rocks were overlain by the deposition of marine 

sediments. Marine sedimentation continued with little orogenic activity until Silurian 

time. It is during Silurian time that the Baker Anticline probably formed 

The Baker Anticline may have formed by either a rollover on normal faults that 

were active in the area, or by transpression of the area. An anticlinal stmcture would 

be produced by either proposal. However, the Baker Anticline may have formed by a 

rollover on a normal fault followed by transpression of the area (Figure 34). 

The Baker Anticline may have first formed by a rollover on a normal fault that was 

active within the area before Silurian time (Figure 34b) . This normal fault may have 

been the Knox fault. Some orogenic activity followed producing transpressional 

forces. This transpression may have produced stmctural inversion of the normal fau It 

thought to be the Knox fault. This stmctural inversion of the fault would produce 

uplift, eroding the axis of the anticline but not the limbs (Figure 34d). The orogenic 

activity may have been confined to Silurian, since only tile I [unUm is thinned 011 tile 

axis of the Baker Anticline (Figure 34e). 
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After the Silurian orogenic activity, deposition continued from Devonian into 

Mississippian with no major orogenic stresses implemented on the study area. Then in 

Pennsylvanian, major orogenic activity occured. This orogenic activity is probably 

responsible for reactivating the Knox fault, and fomling the Brickle and Carter fault 

along with the Goddard detachment 

Perry (1988), and McBee (1995) give two differing origins for this orogenic 

activity. However, both origins produce transpressional forces in the study area 

producing strong strike-slip deformation. 

The transpressional forces in Pennsylvanian probably produced strong strike-slip 

motion on the Sulphur, Washita, Criner, and Muenster faults (Figure 7). Tanner 

(1967), proposed that tbe Washita fault had left-lateral offset as mucb as 64 km. 

Carter (1979), also suggested that the Washita had left-lateral offset measuring 32 km 

The Sulphur fault just to the nor1h (Figure 7) is also thought to have left-lateral 

movement resulting in the uplift of the Tishamingo-BeIton block (McBee, 1995). 

Since the study area is located between the Sulphur and Washita faults (Figure 7) 

it was probably subjected to strong transpression between the faults beginning in Early 

Pennsylvanian. This transpression may have led to the formation of many flower 

structures including Carter-Knox. 

The Carter-Knox structure, which includes the study area, is probably a "squeeze

up" flower structure. "Squeeze-up" structures are commonly formed in thick ductile 

shale filled basins which are flanked by larger faults much like the study area. 
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· The "squeeze-up" structure in the study consists of the Knox fault Brickle fault , . , 

and Goddard detachment. The "squeeze-up" structure subjected little deformation to 

the Baker Anticline; however, subjected a large amount of defomlation, in the form of 

folding and faulting, on the younger strata above the Baker Anticline (Figure 30 and 

32). 

The Knox fault was probably the first fault formed within the study area. The 

Knox fault is possibily an older normal fault formed in Cambrian. The Pennsylvanian 

transpressional forces produced structural inversion of the Knox fault since it was 

between the Washita Valley fault and Sulphure fault. Continued transpressional forces 

into Late Pennsylvanian solidified the Knox fault as the master fault in a strike-slip 

region, cutting strata at all depths in the study area (Figures 24-27, 30, and 32) 

The Brickle fault probably formed after the Knox fault due to continued 

transpressional force in Pennsylvanian. The Brickle fault formed as a splay from the 

Knox fault cutting the northeast limb of the Baker Anticline with reverse separation 

(Figures 24-27, 30, and 32). 

The fault block produced by the Knox and Brickle fault deformed due to continued 

transpressional forces implemented on the study area into Late Pennsylvanian. The 

deformation of the block is probably due to a fault within the block. This fault which 

was probably formed after the Brickle fault is termed the "Goddard Detachment" 

(Figures 24-27,30, and 32). The deformaion of tile block by the Goddard detachment 

may have been accompanied by other faults splintering off of the Goddarad, and/or 

squeezing of the shale strata within the fault block 
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The Carter fault may have been the last fault formed in Pennsylvanian. This 

interpretation is brought about by the short trend of the Carter fault seen within the 

study area (Figure 29 and Plate VIII). The fault is interpreted as having reverse 

seperation and may not joining with the Knox at depth due to both having similar dips 

(Figure 32 and Plate X) . 
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CHAPTER Vl 

CONCLUSIONS 

The major conclusion of this study is the reinterpretation of the southern part of 

the Carter-Knox structure as "squeeze-up" structure forming a positive flower 

structure. This interpretation is based on the interpretation of seismic profiles, 

construction of structural cross-sections, and structural contour maps which reveal the 

presence of: 

1) A single subsurfac structure believed to be a "squeeze-up" stntcture, 

having a narrow zone of deformation consisting of the Knox fault, Brickle 

fault, and Goddard detachement 

2) The Knox fault being the master fault of the structure cutti ng strata at 

all depths and being straight to almost straight in map view. 

3) The Brickle fault showing reverse separation in wire-line well-log data 

probably forming as a splay from the Knox fault. 

4) Thickening in the core of the structure due to the Goddard detachment 

along with other detachments and/or squeezing of the shale strata within 

the core. 
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Also, the Baker Anticline is interpreted as an older structure below the "squeeze

up" structure. It had little deformation implemented on it by the younger "squeeze

up" structure formed in Pennsylvanian. Wire-line well-log data reveals that the Baker 

Anticline has thinning of the Hunton on the axis and not on the limbs. This is 

interpreted as being due to uplift and erosion in Silurian time, or before deposition of 

the Woodford Shale. 
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APPENDIX 
Well log data sheets 
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iOperator Well Location Sec. Field K.B. G.L ICounty Top Sprg. Top Hntn 
~9"co. Bessie Mae 3N-SW-NE-NE-SE 21 carter-Knox Grady 9828 
MICit 011 Co. Sledge deep 1 3N-5W-NE-NE-NW 21 Carter-Knox Grady 9883 
Marathon Oil Co. Sledge deep 2 3N-5W-NE-NE-NW 21 Carter-Knox Grady 10536 
MacJt Oil Co. Barter 3N-5W-NW·NE-NE 21 carter-Knox Grady 8629 
Avalon Exp!. loc. Marcer By-G 3N·5W-SW-SW-NE 21 Carter-Knox Grady 5115 
Chesapeake oper. Inc. Russel 3N-SW-EJ2-WI2-SW 21 carter-Knox Grady 4497 13267 
Chesapeake Oper. Inc. Philmore 3N-5W-C-SW-NW 21 Carter-Knox Grady 9745 NlA 
Humble Oil & Refg. Co. Eason-Knox 3N-SW-NE-NW-SE 21 carter-Knox Grady 4739 N/A 
Stanolind Oil & Gas Co. Olen Sledge A 3N-SW·C-SE-SW 21 carter-Knox Grady 10578' 14385 
Chesapeake Oper. loc. Monarch 3N-SW-SI2-N/2-SW 22 carter-Knox Grady 10793 14053 
Mack Energy Corp Magnolia 3N-SW-SW-SW-NW 27 Carter-Knox Grady 9934 14526. 
Chesapeake Oper. Inc. Sumner 3N-5W-SW-NE-SW 27 Carter-Kno)t Grady NlA 14880 
Chesapeake Oper. Inc. Cleb 3N-SW-SW-SW-SE 27 carter-Knox Grad~ 10i04 NlA 
Amer. Quasar Petro Co. Cunningham 3N-SW-C-SE-NW 27 Carter-Knox Grady 9301 N/A ..... 
Meek Enet'Qy CorJ). Hamson Daniel 3N-5W-NE-SE~NE 28 Carter-Knox Grady 864S 12307 . J 

Chevron USA Inc. Gray Eva 3N-SW-NW-NW-SW 28 carter-Kno)t Grady N/A 12871 
Chevron USA Inc. Gray Eva 3N-SW-NE-NE-NW 28 Carter-Knox Grady 5996 NlA 
British American Oil Harrison B 3N-5W-SW 28 carter·Knox Grady N/A 12323 
Chevron USA Inc. Randall Shl 3N-5W-SE-SW-NE 29 Carter-Knox Grady 7273 12157 
British American Oil Harrison 3N-SW-NE 29 Carter-Knox Grady 6979 12141 
Ohio Oil Co. E E Hamson 3N-5W-C-NE-~W 29 Carter-Knox Grady 8655 NlA 
Chesapeake Oper. loc. Dan Mary 3N-SW-SW-SW-NE 30 carter-Knox Grady 10292 N/A 
Pan American Pelr. Harrison Unit 3N-5W-NE-SW-NE 30 Carter-Knox Grady 10978 14293 
Helrnerich & Payne Inc. Harrison 3N-5W-C-NE-SE 31 Carter-Knox Grady 11705 NlA 
Chesapeake 9per. Inc. Hosely-A 3N-5W-NW-NW·SE 32 Carter-Knox Grady 9642 1393e 
British Arner. Oil Prod. Baker John W. 3N-SW-SW-SW-SW-NE 33 Carter-Knox Grady 7397 1242B 
N.A. J. Kaye.1 3N.5W 33 Carter-Knox 1273 1245 Grady_ 7976 12m 
Chesapeake Co. Chandler'1-34 3N. S-W. SW. SE. NW. N 34 Cox City 1210 1183 Grady 10038 1488C 

Mitchell Unit Deep #1 
.. -- .- - --- . - 1---34" Pan Amer. Petro Corp. 3N·SW-SW-NE-NE-SW Knox N.A. 1204 Grady 4663 1438E 

Walsh F H Jr. Oper. Co. Wright 3N-SW-SW-NE-SW 35 Carter· Knox Grady 10963 N/A 



Operator Well Location s.c. Field K.B. 
Maxwell,1 2~W-SW 30 S.w. Bray 1172 

Chesapeake Oper .• INC. Hodge.1-2 2N·5W 2 Carter-Knox 1259 
Avalon ExpI. Inc. Jean Sharon 1 2N-5W-Ne·Se·Sw 2 carter-Knox 
Brttlsh Amer. Oil Prod. Co. sally Krteger .1 2N-5W-NE-NW-SW-SW 3 Carter-Knox 12"5 
Chevron USA Prod. Co. Fox Alliance '1 2N-5W 3 Carter· Knox 1235 
Chevron USA Inc. Fox Alliance ~ 2N-5W-SE-NE-SE <4 Carter·Knox 
8rltish Amer. 011 Prod. Co. H.C. Brickell 11 2N·5W-SW·Ne 4 Carter-Knox 1248 
Chesapeake Oper., INC. Clary '1-5 2N-W 5 Carter-Knox 1265 
Chesapeake Oper., INC. Greiner 11-9 2N-5W 9 Carter-Knox 1182 
HG&G,INC. Hussey,1-10 2N-5W·NW 10 Carter-Knox 1225 
Alpine Oil & Gas Hussey t1·1 0 2N-5W·NW 10 Carter-Knox 1223 
BritiSh Amer. 011 Prod. Co. Hussey'1-X 2N-5W-NW..sW-SW·NE 10 Carter·Knox 1235 
Chesapeake Oper. Inc. Spraglns 2N-SW·C-SW-SE 10 Carter·Knox 
HG&G. INC. Hussey'" AX·11 2N-5W·SW 11 Carter-Knox 1202 
HG&G Incorporated Hussey Trust.1 2N-5W·NE-SW-SW-SW 11 Carter-Knox 1176 
Chesapeake Oper. Inc. Ledbetter '1-12 2N-5W-NE-SW-NE-SW 12 Carter·Knox 1234 
Chesapeake Oper. Inc. Gassius 2N·SW-NW-SW·SW 12 Carter-Knox 
Sinclair Oil & Gas Co. Moody 11 2N-5W-SW-SW 13 Knox 
Marathon Anderson"" -13 2N-SW 13 Knox 1212 
StandaAS Oil Hussey'" 2N-5W-SW-SE-NW 14 Carter-Knox 1195 
Chesapeake Oper. Co. HPC '1-14 2N-5W 14 E. Bray 1212 
Gulf Oil Corp. Jones Stella 2N-5W-NE-NE-NW 14 Carter-Knox 
:Chesapeake Oper., INC. Maxwell '1-15 2N-5W 15 ~~x __ " 1170 

Sledge Unit #1 
.- _._--

Texas Pacific Coal & 011 Co. 2N-5W·NW-Se·NE 23 Knox Deep 1145 
Gulf Oil Corp. Daisy McKinney '1 2N-5W-SE-SE·NW 24 Carter-Knox 1180 
N.A. P. Diane #1 2N,5W 24 1170 
Gulf 011 Corp. Earl Graham '1 2N-5W-NW-SW-NE 25 Carter-Knox 1101 
Chesapeake Oper. Inc. Mahaffey 3N-5W-Sl2-$I2-Nl2 19 Carter-Knox 
British Amer. Oil WA Reed 1 3N-SW-SW-SW-NW 20 Carter·Knox 
Chevron USA Inc. Sierra K 1 3N-5W-SW-SW-NW 20 Carter-Knox 
Chevron USA Inc. Sierra K 2 3N-5W-SE-Se·SW 20 Carter-Knox I 

G.L County 
1150 Stephens 
1231 Stephens 

Stephens 
1230 Stephens 
1210 Stephens 

Stephens 
1235 Stephens 
1242 Stephens 
1160 Stephens 
1199 Stephens 
1201 Stephens 
1218 Stephens 

Stephens 
1175 Stephens 
1149 Stephens 
1202 Stephens 

Ste!lhens 
1164 Stephens 
1186 Stephens 
1170 Stephens 
1184 Ste~ens 

Stephens 
1139 ~~phens 
1126 Stephens 
1158 Stephens 
1138 
1083 Stephens 

Grady 
Grady 
Grady 
Grady 

-

Top Sprg. Top Hntn. 
12212 15398 

NJA 15071 
9616 NlA 
81<43 12163 
2839 13428 
8026 12055 
8597 12671 

10597 14917 
9957 14510 
8441 12663 
M96 12546 
8114 12589 

NlA 12920' 
5533 13488 
6301 13211 

11597 15079 
10931 15056 

8799 13226 
9136 13304 
7604 13193 
4235 13431 
7705 NJA 
9602 13«8 
9101 13031 
7810 12990 
8513 1292~ 

10438 1321$ 
: 9540 132~ 

6360 12~ 
7546 123~ 

104~~IN/A - - -

N 
C. 



Plates I, 2, 3 , 

4, 5, 6, 7, 8, 9, 

la, 11 and 12. 



























VITA 

Tony Perkins 

(';lIIdidill e ((II the Degree of" 

Master of Science 

Thesis: STRUCTURAL GEOMETRY OF THE SOUTHERN PART or THE 
CARTER-KNOX STRUCTURE, ANADARKO BASIN, SO UTHERN 
OKLAHOMA 

Maior Field: Geology 

Biographical: 

Personal Data. Born in Corpus Christi, Texas, on December 3, 1971, the son of 
David and Cheryl Perkins. 

Education: Graduated from Edmon High School, Edmond, Oklahoma in May 
1990; received Bachelor of Science degree in Geology from Oklahoma 
State University in December, 1994; completed the reCluirements for the 
Master of Science degree in Geology at Oklahoma State University in May, 
1997 

Professional Experience: Teaching Assistant: Department of Geology, Oklahoma 
State University. 


	Plates 1-12 for 1997-P451g.pdf
	Thesis-1997-P451g-Plate-1
	Thesis-1997-P451g-Plate-2
	Thesis-1997-P451g-Plate-3
	Thesis-1997-P451g-Plate-4
	Thesis-1997-P451g-Plate-5
	Thesis-1997-P451g-Plate-6
	Thesis-1997-P451g-Plate-7
	Thesis-1997-P451g-Plate-8
	Thesis-1997-P451g-Plate-9


