A SIMPLE SCHEDULER GENERATOR TOOL

BY
YUNGAH PARK
Bachelor of Science
Pohang University of Science and Technology
Pohang, Korea

1992

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfilment of
the requirements for
the Degree of
MASTER OF SCIENCE
December 1997

A SIMPLE SCHEDULER GENERATOR TOOL

Thesis Approved:

M omsu ?MM /)

Thesis Adv isor

uw 274

ean ol the Graduate College

PREFACE

The CPU scheduler is a basic component that supports multiprogramming in operating
systems. Many scheduling algorithms have been introduced to improve the performance of
systems in terms of processor utilization. The best scheduling algorithm for each system
may be different based on the specific circumstances of that system. Object-oriented
programming, which facilitates reusability and extendibility, has become quite popular for
many computer applications. This thesis work involved the design and implementation of a
simple scheduler generator tool. The scheduler generator tool simulated several scheduling
algorithms by using object-oriented programming as the implementation language. The
various components of the environment (i.e., the simulated operating system) used for
CPU scheduling were developed as objects, and the scheduling algorithms were
implemented using the techniques and characteristics of object-oriented programming. For
a scheduling algorithm selected, the scheduler generator tool can compute performance
parameters such as turnaround time, waiting time, and CPU utilization. The tool can be

used for investigating the relative merits of scheduling algorithms.

iii

ACKNOWLEDGMENTS

I would like to express special appreciation to my advisor Dr. Mansur H.
Samadzadeh. He provided essential guidance and inspiration through my thesis work. Dr.
Samadzadeh continued to spend endless hours reviewing my work and offering
suggestions for further refinement.

I would like to thank my other committee members, Drs Blayne E. Mayfield and
Jacques LaFrance. Their time and effort are greatly appreciated.

Finally. I would like to express my sincere thanks to my family for their continued
support. They helped me throughout my MS program. 1 couldn’t have done it without

their continued love and support.

TABLE OF CONTENTS

Chapter
L INTRODUCTION Lottt et e e et e e ea e eee e I
I LITERATURE REVIEW: oo uiimnnivisnms s sonssuiies s sbnovsss v s s s mnpin e assss 4
2.1 Process Schedulingoviuiiioiiii e 4
2 2'Criteria for Scheduling AlBOHIAMS sseveavrie nanimis iy s i isissns siaeiver 7
2.3 SenedohnE AlOPHBME . coovnmmmmmss s e s ey S s S e 8
N BT TE T o commn s e s S R A R SRR R TSSO R AR SRS 8
2 B BIE . o nsenmanmnsnnmm s ety s s e B AR A R N 88 SRS E AR AR 9
233 PUHOHY suivmmemmnvins iawsiasinaesvos s st e s ds iy iie v v vss 335 10
2.3 ROMNE ROBIN icomvmonssonsimvensenm s omsssmess imionisss sises s s 11
2.3.5 Multilevel QUEUEvveeiiiet i e 12
2.3.6 Multilevel Feedback QUEUE ..o iimmivmina s vnissassm 12
2.4:0hjectzOnented PYORTamIOIID .o cormsvmvniniusioim i s baasasions s s s 13
2.4.1 Data Abstraction and Encapsulationcoovvviiiniiiieninnn.. 14
2.4.2 Class and Access COntroloouvueineiniieeinieeiaievnceaenanns 16
2.8 3 MEssapE PaSSIIE oo vvcuns s s s v s i b R o s e anans 16
2.4.4 Class Relationship and Inheritancecoooviiivinivini . 17
2.4.5 Polymorphism, Overloading, and Overridingc.cooeiveneen. 19
UL DESIGN AND IMPLEMENTATION. ISSUES.ciciovsusmismmsnisvsvsnpmmssssvosuassis 20
3.1 Implementation Platform and Environmentcooovviiviiiiininnnn. 20)
3.2 CMBEBTIVI. oo e e b S S B S o R e B S 20
3.3 13esipn and Taplerner Bt ON JETUEE oo ammmmms s s i A i S ana s s 21
3.3.1 Overall Hierarchy of Scheduling Algorithms............................ 21
3.3.2 Components of Scheduling Systemcocooiiiiiiiiiiin. 22
3.3.3 Communication Among Objectscouviiviieriieineiiiaaiiaannn. 36
V. EYALUATION OF THBE TOOL: aimminsrissvmsi it amsymmvesrmi 39
4.1 Input Files and Hardware: Spectlication corsasssssienssssswessms viassassanse 39
A2 OULPUL « et e et e e 40

Chapter

V. SUMMARY AND FUTUREWORK ... snmsmniis s s i 42
ST SUMMATY o e e e e 42
5.2 BUtuie WOk «somnnsmmmsm st s i st 43
REEFERENCES ittt e e et e et e ee e e e eiaae e 45
APPENDIRED oo vomumusmsmmmmm s i s st s e i s it i s s i i 47
APPEMDIX A: GLOSSARY ..ottt ee e 48
APPENDIX B: TRADEMARK INFORMATIONcoviviiiiiiiiiiiiiieieiinnes 50
APPENBDES G INPUT FILE conmnmsmsss s i aisess sr s dnuss 51

APPENDIX D: MEMSTAT OUTPUTFILEccooiiiiiiii e 56

APPENDIX E: JOBSTAT OUTPUT FILE ... swsesensiiosivsisiiviiasmi 99

APPENDIX F: PROGRAM LISTINGS ..ot 63

vi

LIST OF FIGURES

Figure

1. Some Common PCB Fieldsoooiiiiiiiiiii e e e baee e 5
2., Provess Scheduling Made] .vowamninminmmnsisnasnrssniinanbama v 6
3. Multlevel Feedback Queue Scheduling Algorithm ..o, 13
B AT CMIPEBE ciaram w53 A N A0 B S A B S 15
5. Overall Classification of Scheduling Algorithms ..., 22
O Eherarehy of Six Scheduling ALRoTIIPNS . suosemmusmmimasmssmmmmmmmim s s sea s 23
% Componemsof Process SEhsdulingcicmnnvimsasvmsidosm i inmsss 23
8. Inheritance of class PCB and its subclassescooooiiiiiiiiiiiiiii 25
9. Delinion Of CIASS QMBS .. v uivsiminivemans i sesmims vaus v i s s e s 26
10. Organization of class Queue and its SUbCIassesoovvviiiiiiiiiiiiiiiiiiiininnee 27
L1 Definition of class- MEMOEY . civosavnisnessnimmmsmncessinansinensmmns sonsms sssneoes soms sy 28
12, Delinition O C1ass LOQORT . oo casmvmmssaisimmids il 48 s eaue i saaveans is s s asuin 29
13. Definition of class EXLOaderoooviiiiiiii i e, 30
14, Defmition of class SCHeduler vuvmmuvsuiasses s s ssns sensasisevss 31
15. Organization of Dispatcher 32
16: Orgadization’of Seheduler .viaammnimsssssmasivsiasissssmesiesig 33
17: Dehnitien:ol. FCES Scheduling ODIetls . .uosnems s srves smsmesamamsnonsn o sosssis 33

vii

Figure

18.

19.

20.

21.

22.

23.

24.

25.

Definitivi 61 SIF Schedulifig OBIEEES <oviivviinisvsnssmnvmisiviisisiangs 34
Definition of RR Scheduling Objectscooouiiiiiiiiii e, 35
Préfniiaoin of ML Scheduling OBISEE ...cun s simrsniagsesuas 35
Definition of MLFQ Scheduling Objectsccooiiiiiiiiiiiiiiiiiiiieieiseeeeaa 39
COMMunICANON AN ODICEES <ovosimsmmiinssommsismsms iy s s s s s niss 38
Format and Example of Process Request ..., 39
ParigEa Saniple jabSat Rl . coocnmuemnpmnpiussss s ssnses sy sy as s 41
Part of a sample memstat Fileo o e e 41

vili

LIST OF TABLES

TABLE

|. RESIDENCY RULES IN MULTILEVEL FEEDBACK QUEUE

X

CHAPTER]

INTRODUCTION

Multiprogramming and time sharing systems, which were introduced to improve
the overall performance of computer systems, are the central themes of modern operating
systems [Silberschatz and Galvin 94]. The basic objective of multiprogramming is to keep
the CPU busy executing processes as much as possible. In multiprogramming, several
programs are kept simultaneously in memory by switching the CPU among the processes,
thus CPU utilization is increased. When a running process has to wait, the CPU is
switched to another process and executes that process.

The part of an operating system that deals with the decision as to which process in
the ready queue is to be executed next, is called the CPU scheduler [Tanenbaum 94]. The
scheduler is one of the basic mechanisms to support multiprogramming together with
virtual memory. To support multiprogramming, when the CPU is switched to another
process, the scheduler must save the information of the old process and load the new
process’ information into CPU registers (i.e., a context switch must take place). Also, the
scheduler changes the state of the running process to either ready or blocked, selects a
new process that is ready, and changes the new process’s state to running. The strategy
which specifies the execution order of the processes in the ready queue, is the scheduling

algorithm.

There are many scheduling algorithms implementing various properties and
policies. Research into developing more efficient scheduling algorithms continues. The
best scheduling algorithm for each computing system may be different based on the
specific circumstances of that system. Thus the criteria used to determine the best
algorithm for a given system depend on the characteristic of that system. For example, if
the system is a real time system, the criteria may focus on guaranteeing that the processes
complete within the defined time constraints [Nutt 92].

Several different methods can be used to evaluate scheduling algorithms
[Silberschatz and Galvin 94]: deterministic modelling, queueing models, and simulation.
Among them simulation is used more often because it generates a more accurate
evaluation. In simulation, the components of a system would be represented as data
structures. As the value of a variable representing the CPU clock is increased, the system
state would be changed and the parameters indicating the performance of various
scheduling algorithms would be computed.

Since the late 1980’s, the object-oriented approach based on data abstraction has
become quite popular in computer application arcas such as database, graphics, and
simulation [Ghezzi et al. 91]. This approach is a paradigm that views a software system as
a collection of interacting objects which are composed of their states (i.e., attributes) and
behaviors [Sommervile 96]. The attributes are represented as data variables and the
behaviors are implemented by the operations within an object. By adding thc mechanisms
of data encapsulation, inheritance, and message passing to the idea of data abstraction, the

object-oriented approach is completed [Budd 91].

In the object-oriented approach, objects are handled as independent entities.
Changing and/or adding object attributes and object operations can be done at any time
without affecting other objects. Objects that have been already developed can be reused in
other system designs. Also, the attributes and operations of an object can be reused in a
subclass or other objects through inheritance. So, the object-oriented approach facilitates
reusability and extendibility of software. Furthermore, the understandability and
maintainability of a system can be improved because the object-oriented approach
provides a clear mapping between real-world objects and software objects [Sommervile
96].

Operations or services held within each object in a system make up the
functionality of the system. The system functions through communication among objects
implemented by calling services offered by other objects (rather than by using shared
data). So this approach reduces the possibility of unexpected changes to shared data.

The main goal of this thesis work was to develop a simple scheduler generator tool
for operating systems by using the object-oriented approach. Several diffcrent kinds of
scheduling algorithms were simulated and evaluated using the tool. To simulate a
scheduling algorithm, the various components of a typical operating system that are
related to CPU scheduling were developed as objects. The algorithms were implemented
by the techniques and characteristics of object-oriented programming.

The rest of this thesis report is organized as follows: Chapter II provides a
literature review about process scheduling, scheduling algorithms, and object-oriented
programming. Chapter III discusses design and implementation issues. Evaluation of the

tool is included in Chapter IV. Finally, Chapter V contains the summary and future work.

CHAPTER I

LITERATURE REVIEW

2.1 Process Scheduling

A process, which is usually referenced to as a program in execution, is a widely
used unit of work in modern operating systems [Silberschatz and Galvin 94]. A process
can be executed when the resources required by the process are allocated to it
[Tanenbaum 94]. A process may be running (using the CPU), ready (waiting for the
CPU), or blocked (waiting for I/O completion) while it is in the system [Nutt 92].

In an operating system, each process is represented by a PCB (process
control/context block) that contains all the relevant information about the process. The
fields of a PCB may be different from system to system. Figure 1 gives the common fields
of a PCB. When the CPU is switched from one process to another, the first process” PCB
1s saved so that it can be restarted later. To execute a process, various scheduling queues
that the operating system uses to select a process (such as ready queue, job queue, and
blocked queue) are required. These queues are important parts of schedulers and cvery
process must migrate through them to get resources. For example, to get I/O service,
processes must wait in a blocked queue, and, to use the CPU, processes must wait in a

ready queue.

In scheduling, if the memory required by a selected process is available and the
current number of processes is less than the maximum degree of multiprogramming, the
process can be loaded from disk into main memory for execution. At this time, the
selected process migrates from the job queue to the ready queue, and the state of this
process becomes ready. The ready queue contains the ready processes that are kept in

main memory and waiting to be dispatched to the CPU.

Process Number

Priority

Program Counter

Process State

Stack Pointer

Registers

Memory Allocation

Status of Open Files

Time Process Started

CPU Time Used

Figure 1. Some common PCB fields

The ready queue may be implemented in a number of ways depending on each

scheduling algorithm’s policy. The CPU scheduler selects a process from the ready queue

to allocate to the CPU by executing the scheduling algorithm utilized. After the running
process is executed for a certain amount of time, the process may be completed, placed in
a blocked queue for I/O service, or returned to the ready queue to wait for further service
[Lister and Eager 93]. A process waiting in a blocked queue would be returned to the
ready queue for further CPU bursts after the completion of the I/O service. Figure 2
describes the general process scheduling model. Since each process typically consists of a

sequence of CPU and /O bursts, processes repeat the cycle as shown in Figure 2.

Job
Queue preemption
process selected by
dispatcher
new Ready f —
process | Queue Y completed
returned
after I/O blocked due to /O request
completion
Blocked
Queue

Figure 2. Process Scheduling Model

Some scheduling algorithms do not allow direct transitions from the CPU running

state to the ready queue. These are called nonpreemptive scheduling algorithms, with the

alternative being preemptive scheduling algorithms. In nonpreemptive scheduling
algorithms, once the CPU is allocated to a process, the process can run continually until it
voluntarily releases the CPU. The CPU is switched to another process only when the
current running process is terminated or blocks itself.

Nonpreemptive scheduling algorithms are easy and inexpensive to implement
because no extra hardware and methods are necessary (since the scheduler does not need
to forcefully remove a running process from the CPU by a clock interrupt). Sometimes
nonpreemptive scheduling algorithms are not suitable for interactive systems (such as time
sharing systems) that focus on providing a fair share of the CPU to each process
[Tanenbaum 94] [Silberschatz and Galvin 94] [Nutt 92]. On the other hand, preemptive
scheduling can lead to race conditions and process synchronization problems when
multiple processes access shared data. The reason being that interrupts can occur at any
instant unpredictably. Sophisticated methods used by operating systems, such as

semaphores and monitors, are needed to solve these problems [Tanenbaum 94].

2.2 Criteria for Scheduling Algorithms

When CPU scheduling algorithms are compared to determine which one is best for
a system, the following performance factors are usually considered [Silberschatz and
Galvin 94] [Tanenbaum 94].
e (CPU Utilization: This factor indicates how busy the CPU is, with a range of 0 to 100
percent. The target is to maximize this value.
e Throughput: This factor indicates the number of processes that are completed per

some uniform time interval. The target is to maximize the throughput.

¢ Waiting Time: This is the amount of time a process spends waiting to use the CPU in
the ready queue. The target is to minimize this value.

e Turnaround Time: This is the amount of time it takes to complete a process from its
arrival in the ready queue to its departure from the system. So this is the sum of the
waiting time and the processing time of a process. The target is to minimize this value.

e Response Time: This is the amount of time that it takes to produce the first response
for a process from its arrival in the ready queue. This is considered a more important
criterion than turnaround time for interactive systems. The target is to minimize this
value.

In general, it may be considered desirable to optimize the average value of each
factor, however, the overall goals of the systems must be considered. For example for
interactive systems, which require each process’ equitable share of the CPU, it is more
advantageous to minimize the maximum response time than to minimize the average

response time [Tanenbaum 94] [Silberschatz and Galvin 94].

2.3 Scheduling Algorithms

There are many scheduling algorithms which implement various policies to decide
the execution order of the processes in the ready queue. The following subsections
describe several specific algorithms that are widely used.

2.3.1 First Come First Served (FCFS)

In the First Come First Served (FCFS) algorithm, the order of processes in the
ready queue is assigned according to the time each process last requested the CPU. The

process that requested the CPU first is executed first. This algorithm is easy to implement

since a FIFO queue is used as the ready queue. An incoming process from the job queue
to the ready queue is inserted at the tail of the ready queue, and the CPU is switched to
the process at the head of the ready queue. When a long process is allocated to the CPU,
other shorter processes must be wait for a relatively long time. So the FCFS algorithm
sometimes does not satisfy criteria such as minimizing the average waiting time or the
average turnaround time [Nutt 92] [Silberschatz and Galvin 94]. Also, the FCFS
scheduling algorithm does not allow preemption of the CPU. As a result, this algorithms is
rarely used for operating systems [Nutt 92].

2.3.2 Shortest Job Fist (SJF)

The process which has the shortest length for the next CPU burst is allocated to
the CPU first in the Shortest Job First (SJF) algorithm. The ready queue is ordered
according to the lengths of the next CPU bursts required by each process. If multiple
processes have the same length, they are ordered FCFS. The SJF algorithm provides the
optimal average waiting time and average turnaround time [Tanenbaum 94] [Silberschatz
and Galvin 94].

Although SJF algorithm satisfies some criteria minimizing the average turnaround
time, the average waiting time, and the average response time, it is in general difficult to
know or estimate the length of the next CPU burst for interactive processes. The SJF
algorithm is especially suitable for batch systems in which one can acquire the length of
the CPU burst from job descriptions [Lister and Eager 93] [Tanembaum 94]. For
interactive systems, the length of the next CPU burst for a process can be estimated using
the previous behaviour of that process and exponential averaging [Silberschatz and Galvin

94).

2.3.3 Priority

In the priority scheduling algorithm, the ready queue is ordered by the processes’
assigned priority; the process with the highest priority is allocated to the CPU first. If
multiple processes are assigned the same priority, FCFS scheduling is used to break the
tie. Priorities can be assigned internally by the operating system or externally by user
identification to accomplish the performance goals of the system. Some measurable
attributes such as time limits, the number of open file, and the memory requirements of the
processes can be used for internally assigned priorities. Users (i.e., process owners) can
also control the priorities based on the importance of each process, the social and political
factors, and so on. The SJF algorithm is a special example of priority scheduling
algorithms. In the SJF algorithm, the length of the next CPU burst is used by the scheduler
to internally compute the priority of a process.

A modification of the SJF algorithm as a priority algorithm is to allow the CPU to
be preempted. In the general preemptive case, when a necw process with a higher priority
than the running process enters the ready queue, the new process is allocated to the CPU
(i.e., the CPU is preempted). In the case of the preemptive SJF algorithm, this preemption
will occur if a new process with a shorter next CPU burst than the remaining CPU burst of
the running process arrives. Another modification to the SJF algorithm, to prevent the
low-priority processes from being delayed indefinitely or starving, is to use the aging

technique [Silberschatz and Galvin 94].

10

2.3.4 Round Robin (RR)

The Round Robin (RR) scheduling is developed to provide fast response to
requests in interactive systems and time sharing system. Since RR was used in CTSS (i.e.,
the earliest time sharing system), the RR algorithm including its several variations is one of
the most widely used scheduling algorithms [Lister and Eager 93]. Each process is
allocated to the CPU for a fixed time interval called the time quantum. After receiving one
quantum of service, the CPU is preempted and switched to another process. If the running
process has a current CPU burst that is less than one quantum, the CPU is switched to the
next process in the ready queue.

The ready queue for the RR algorithm can be easily implemented by using a
circular queue. The order of processes follows the FCFS rule. A clock interrupt (or a
timer interrupt) of the operating system is used to preempt the CPU, and the interrupt
interval is set to the time quantum size. It is important in the RR algorithm to define an
appropriate length for the quantum. If the length of quantum is too long, the RR algorithm
emulates the FCFS algorithm. On the other hand, if the length is too short, the execution
time may be increased due to the overhead incurred as a result of frequent context
switching. Some authors have discussed reasonable length for the time quantum.
Tanenbaum claimed “a quantum around 100 msec is often a reasonable compromise,”
[Tanenbaum 94], and Silberschatz and Galvin mentioned “a rule of thumb is that 80
percent of the CPU bursts should be shorter than the time quantum” [Silberschatz and

Galvin 94].

11

2.3.5 Multilevel Quene

In a multilevel queue scheduling algorithm, the ready queue is partitioned into
several subqueues which have their own policies. Each process is assigned to one of the
subqueues according to the properties of the process. This algorithm is a combination of
several scheduling algorithms. For scheduling between the subqueues of the ready queue,
the preemptive priority scheduling algorithm is typically used. Each subqueue has its own
scheduling algorithm because the goal of each queue may be different. For example, it is
better to use a FCFS discipline or a nonpreemptive SJF algorithm for the subqueue
containing batch processes than to use a RR algorithm with a small quantum size, since for
batch processes we want to reduce turnaround time as opposed to response time. On the
other hand, for the subqueue containing interactive processes, which require fast response
times, a RR algorithm is usually used. In this situation, since the subqueue containing
interactive processes has a higher priority than the batch process queue, the interactive
queue is executed first. Batch processes can use the CPU only when there are no
processes in the interactive process queue. When an interactive process joins the ready
queue, the running batch process is preempted [Lister and Eager §3].

2.3.6 Mululevel Feedback Queue

The multilevel feedback queue algorithm, as a variation of the multilevel queue
algorithm, does not assign a process to a subqueue permanently but rather allows the
processes to move between the subqueues. Figure 3 illustrates a multilevel feedback queue
that has n subqueues, numbered from O to n-1, according to the order of priority. Each
queue i (0 <i<n-1) has a potentially different quantum size, these sizes generally increase

with i (e.g., the quantum of queue 0 is less than that of queue 1). Sometimes queue n-1

12

has the FCFS algorithm. All new incoming processes to the ready queue start in queue 0.
If a process in queue i is not completed within the quantum assigned to queue i, the
process is moved to queue i+1. In the case of queue n-1, the process is returned to that
queue again until it terminates [Krakowiak 88]. As s result, processes with long CPU
bursts are executed in the lower priority subqueues [Nutt 92] [Silberschatz and Galvin

94].

Queue n -1

Queue n -2

Queuen-3

Queue 1

Queue 0
In — CPU ——» Out

Figure 3. Multilevel feedback queue scheduling algorithm [Krakowiak 88]

2.4 Object-Oriented Programming

As the cost of computer hardware has been decreasing due to the revolutionary
improvements in hardware technology during the last several decades, ever larger number

of people can use computers. Computer users demand many software applications

13

including large and complicated software systems. However, the software technology has
difficulties in producing software at the appropriate time and also in maintaining the
existing systems. So, the cost of software, especially large software systems, rises rapidly.
The term ‘software crisis” has been used to characterize this situation. The object-oriented
programming approach is one of the proposed remedies for the software crisis [Florentin
91] [Ghezzi et al. 91] [Sommervile 96].

Object-oriented programming has its origins in Simula in 1967 [Kerr 91], but the
object-oriented approach has become popular since Smalltalk was released in 1980
[Goldberg and Robson 89]. Nowadays, there are many object-oriented programming
languages in use including C++, object-C, CLOS, ObjectLISP, and Object-Pascal. These
languages were developed by adding object-oriented concepts to existing popular
languages such as C, Lisp, and Pascal [Florentin 91]. Also, newly designed languages like
Eiffel and Java have been introduced, and Ada, which is called an object-based language,
is one of the programming languages that is widely used [Florentin 91] [Arnold and
Gosling 96] [Meyer and Hucklesby 91].

The next five subsections discuss the common concepts and characteristics that all
object-oriented programming languages should support.

2.4.1 Data Abstraction and Encapsulation

The state of an object, which is a static property of an object, is defined by its
instance variables. The behaviour of an object, which is a dynamic property of an object, is
defined by its methods [Budd 91]. The terms instance variable and method may have
different meanings for different programming languages. In C++, the term ‘data member’

is used instead of instance variable, and ‘member function’ is used instead of method. The

14

term ‘member’ is used as a general term that puts data member and member function
together [Lippman 91]. Methods create new states and change the state by manipulating

instance variables. As shown in Figure 4, instance variables are surrounded by methods.

Methods Instance
Variables

i Methods

Figure 4. An object

The methods that hide and protect instance variables (i.e., the inner nuclcus) from
other objects are the only interface of an object to the outer world. This kind of packing is
called data encapsulation which implements information hiding and provides modularity
(i.e., data abstraction). So, the clients cannot access instance variables directly, and the
clients do not have to know the details of the implementation of an object. The clients just
know the interface (i.e., the object methods), and access an object’s state only by using its
interface. When the implementation of an object is changed, a client’s program is not

affected because of requiring only the change of the interfaces associated with the object.

15

In addition to independence, data can be protected from unexpected behaviors such as
clients’ errors by using encapsulation [Booch 91] [Budd 91] [Arnold and Gosling 96].

2.4.2 Class and Access Control

There are many objects of the same kind that share common characteristics. A
class is a template that defines the instance variables and methods common to all objects
of a certain kind. An object is created by instantiating a previously defined class, and many
objects can be instantiated from one defined class. Since programmers can use the same
class to create many objects, classes provide the necessary condition for reusability of the
objects [Budd 91].

All declarations about members of a class may be classified according to the levels
of constraints of accessibility from other classes; ‘Public’, ‘Private’, and ‘Protected’ are
three categories into which members can be classified. Members of a class with public
declaration can be accessed by all other classes. In the case of members with private
declarations, the outer classes cannot access them directly. A member with protected
declarations is only accessible to its subclasses [Booch 91].

2.4.3 Message Passing

There are many objects in a program, and a program is executed by cach object
interacting and communicating with other objects. Message passing is used for all
interactions and communications among objects. If object A wants object B to do some
work on object A’s behalf, object A sends a message to object B. In response, object B
selects the appropriate method to perform the request. The name of the method to
perform is selector, which is used to find a matching method during the processing of

message passing. Sometimes a receiving object needs more information. Such information

16

is passed along with a message as parameters. So, In object-oriented programming, a
message is composed of a receiver (i.e., the object to which the message is addressed),
selector (i.e., the name of the method to perform), and the argument (i.e., any parameters
needed by the method). The message passing paradigm has benefits in heterogeneous
networking systems because it is not necessary for the sending object and the receiving
object to be the same process or to exist on the same machine [Booch 91] [Budd 91].

2.4.4 Class Relationships and Inheritance

In general, there are three kinds of relationships among classes: is_a relationship,
has_a (or has_a_part) relationship, and associated relationship. The is_a relationship is
formed when one class is a special instance of another class, just as it is said that a circle
is_a shape since a circle is a special instance of a shape. In other words, if class A is_a
class B, it means that A is a specialized class of the more general class B. Specialized
classes such as A and the circle are called subclasses or derived classes, and more
generalized classes such as B and the shape are called superclasses or base classes. The
is_a relationship supports generalization (i.e., a superclass can be extracted from its
subclasses) and specialization (i.e., a subclass is formed from its superclass), which are
abstraction techniques. A hierarchy of classes is based on this relationship [Booch 91]
[Budd 91].

It may be said that a composite class, which consists of several subcomponents,
has the has_a relationship with its subcomponent classes. For example, a complex number
class has_a real number class since the complex number class consists of real numbers and
imaginary numbers. The has_a relationship supports the aggregation technique which

creates a composite class from subcomponent classes [Budd 91].

17

The last relationship is associated, which represents some semantic connection
such as having the same purpose. A certain job is completed by interacting with the
associated classes. This relationshilﬁ is implemented by message passing techniques
between the requester and provider classes [Booch 91].

When a subclass is defined from an existing superclass (i.e., subclassing) by an is_a
relationship, the subclass may inherit the property (i.e., the instance variables and
methods) of the superclass. In other words, the subclass may have the property of the
superclass as well as its own property. Since the is_a relationship is transitive, a subclass
can inherit a property from a superclass that is higher in the hierarchy. For example, if
class car is_a class vehicle and class vehicle is_a class transporter, then class car is_a class
transporter, so class car inherits the property of class transporter. Since inheritance
generally enables software developers to reuse existing codes which are already developed
and tested, the cost of software development may be reduced by using the object-oriented
programming paradigm [Budd 91].

Sometimes some classes may inherit from more than one immediate superclass
(i.e., multiple inheritance). The properties of these classes are combinations of properties
from all relevant superclasses. Multiple inheritance can cause some problems. The problem
that arises when the same member may be inherited from more than one superclasses, is
one of such problems. Renaming of the instance variables and methods of the subclass is
usually used as a solution to this problem.

Since multiple inheritance generally makes a program more complex, discussions
about the necessity of this technique have continued. Actually, many object-oriented

programming languages except for C++ and CLOS, do not support multiple inheritance.

18

The Java language, which extends the object model and removes the major complexities of
C++, does not support multiple inheritance either [Budd 91] [Amold and Gosling 96].

2.4.5 Polymorphism, Overloading, and Overriding

In object-oriented programming, it is possible that a class has several variables and
methods with the same name, which is unlike procedural programming languages. This
mechanism is called polymorphism. Such methods are differentiated by their classes and
parameters. Polymorphic variables that have no type associated with them can contain any
type of data.

Sometimes several methods with the same name work for different classes and
provide different behaviors. For example, the ‘+’ method in the integer class operates
addition between integers, but the ‘+’ method in the complex number class opcrates
complex number addition (i.e., real numbers are added among themselves and imaginary
number are added among themselves). Overloading (i.e., ad hoc polymorphism) means
that methods already defined in a class are used differently in other classes. When a new
class is formed from the superclass, the new class can define its new method with the same
name as the superclass’s name. In this case, the subclass overrides the inherited methods

and provides a specialized implementation for this new method [Budd 91].

19

CHAPTER III

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

The tool was implemented on a Sequent Symmetry S/81 machine, a mainframe-
class multiprocessor system with 24 80386 processors running at 20Mhz each. The
operating system of this machine is DYNIX/ptx, a variant of the UNIX system. The
object-oriented programming language ANSI C++ version 2.0.1 was used to implement

the tool.

3.2 Objective

The purpose of this work was to develop a tool which simulates process
scheduling by using the object-oriented approach. In this tool, six scheduling algorithms
introduced in the literature review part of this thesis (Section 2.3) were simulated. To
simulate the scheduling algorithms, objects which simulate various components of an
operating system were developed. These could be reused for different kinds of scheduling
algorithm and even for other scheduling algorithms not discussed in this work. This
simulation was completed by using the techniques and characteristics of the object-

oriented programming described in Section 2.4. The extended and complex scheduling

20

algorithms were easily and compactly simulated by inheriting properties from basic
scheduling algorithms such as FCFS.

By running the simulation, performance parameters such as CPU utilization,
turnaround time, and response time were computed at regular time intervals. This
scheduler generator tool can help users choose from among a number of candidate

scheduling algorithms for a specific system.

3.3 Design and Implementation Issues

3.3.1 Overall Hierarchy of Scheduling Algorithms

Scheduling algorithms can generally be classified into priority/non-priority and
preemptive/non-preemptive. Non-priority scheduling algorithms include FCFS and RR,
and priority scheduling algorithms include SJF, multilevel queue, and multilevel feedback
queue. Also, RR, multilevel queue, and multilevel feedback queue scheduling algorithms
are preemptive. FCFS, SJF, and priority scheduling algorithms are non-preemptive. Figure
5 shows the overall classification of six scheduling algorithms.

Among the scheduling algorithms considered, the one that is both non-priority and
non-preemptive (i.e., FCFS) can be the most basic object, since this algorithm is more
general and simpler than the other algorithms. SJF, RR, and priority scheduling algorithms
could be inherited from the FCFS class. Multilevel queue which is a variant of the RR
algorithm could be inherited from RR, and Multilevel feedback queue which is a variant of
the multilevel queue algorithm could be inherited from multilevel queue. Figure 6 gives the

overall hierarchy of the six different scheduling algorithms considered in this study.

21

FCF3 * First Come First Served
MLQ : Multilevel Queue
MLFQ : Multileve] Peedback Queve

RR * Round-Robin
SIF : Sh i
ortest Job First Process Scheduli ng

Figure 5. Overall Classification of Scheduling Algorithms

i-:
)
]
1
_'1 3
1{

3.3.2 Components of Scheduling System H

The process scheduling model illustrated in Figure 2 was used as the main

procedure of the overall simulation. The operating system components for process
scheduling were designed and implemented as objects. These objects include: clock, PCB,
ready queue, job queue, blocked queue, memory manager, loader, dispatcher, and

scheduler (see Figure 7).

22

Figure 6. Hierarchy of Six Scheduling Algorithms

Job Queue

Ready Quecue

Memory Manager

Blocked Queue 4

PCB

Loader

Dispatcher

Scheduler

Clock

Figure 7. Components of Process Scheduling

T A— L BT S BARS S WITE T oECE—E=T D

The virtual CPU clock was simulated as a counter (i.e., data member ‘value’)
which is increased by the CPU burst of the process currently in the running state. The
CPU clock object was created by instantiating a class CLOCK which was previously
defined. The class CLOCK also has a data member to store the collected statistics
concerning system utilization. These statistics were collected and reported at every 500
clock units.

Each process in the main 'memory was represented by a PCB object. The object
PCB was created by instatiating a class PCB or its subclasses such as class ExPCB and
class EExPCB. Class PCB is the base class that contains the basic members necessary to
implement the simplest scheduling algorithm. At least the following data member are
included in class PCB: ID, size, priority, status, number of CPU bursts, burstoffset,
current burst length, time the process entered the system, CPU execution time, and current
I/O completion time. Most member functions were defined to access and update the data
members.

To implement the multilevel queue scheduling algorithm, class ExXPCB inherited
from class PCB and was further defined by adding the extra data member, which indicated
a current subqueue where a process was assigned. Class EExXPCB was defined from class
ExPCB with an extra data member indicating the number of turns spent in the current
subqueue.

In the multilevel feedback queue scheduling algorithm, if the number of turns that a
process has spent thus far in the current subqueue is greater than the number of turns
assigned to the subqueue, the process moves into another low-level subqueue. As a result,

while the object PCB as instantiated from class PCB was used in FCFS, SJF, priority, and

T B A T ETEE Sat S S B Ca e TE T Sses——a o

Ay

RR scheduling algorithms, the PCB from class ExPCB was used in the multilevel queue
scheduling algorithm, and the PCB from class EEXPCB was used in the multilvel feedback
queue scheduling algorithm. Figure 8 gives the relations among the class PCB and its

subclasses.

Class PCB o _
: FCFS, SJF, Priority, RR
add data member ‘queue’
Class ExPCB
: Multilevel Queue
add data member ‘tum’
Class EExPCB : Multilevel Feedback Queue

Figure 8. Inheritance of class PCB and its subclasses

Class Queue was defined to implement the FIFO queue. The blocked gqucue and
job queue objects used in all of the scheduling algorithms, as well as the basic ready queue
objects used in the FCFS and RR scheduling algorithms, were.crealed by class Queue.
PCB objects were used for elements of class Queue. The FIFO queue was constructed
based on class PCB by including a pointer to another PCB. The dala member ‘top’
indicates the header of a queue, ‘end’ indicates the tail of the queue, and ‘num’ indicales
the number of processes in the queuve. The main operations of class Queue arc enqueue,
dequeue, and remove. Figure 9 gives the data structure and operations of class Queue. In

this figure, T may be class PCB or its subclasses according to the algorithm.

e ——— —— T — - - ——

Since the blocked and job queues were implemented as FIFO queues, their types
are the same in different kinds of algorithms, but the ready queuve type may be different
according to each scheduling algorithm under consideration. Class SortedQueue defines a
queue whose elements are arranged in ascending order. Class SortedQueue inherited class
Queue’s data member and function member except for the ‘Enqueue’ member function.
The function Enqueue of SortedQueue overrides the super class’s Enqueue function. So
the Enqueue of class Queue must be defined as a virtual function. The ready queues used

in the priority and SJF algorithms were created from class SortedQueue.

class Queue {
protected :
T *top;
T *end;
int num,;
public:
Queue();
virtual void Enqueue(T *Node);
T *dequeue(void);
T *Head(void) { return top; }
T *Tail(void) { return end;)
void print(void);
int GetNumProcess() { return num;}
void change_num(int i) { num=num-+i; }
T *remove_pcb(int id);

Figure 9. Definition of Class Queue

In the multilevel queue and multilevel feedback queue scheduling algorithms, the
ready queue was divided into several subqueues. In this simulation, each subqueue had RR

scheduling algorithm with different quantum sizes (the highest priority subqueue, which is

26

—

the lowest numbered subqueue, has the smallest quantum size). For scheduling between
the subqueues, the preemptive priority policy was used. So each subqueue contained the
relevant information about its own quantum size. By adding the extra data member
indicating the quantum size, class SubQueue was defined from class Queue. While a
process is assigned to its subqueue permanently in the multilevel queue algorithm, in the
multilevel feedback queue algorithm, a process can move to a lower-level subqueue after
spending the assigned number of turns in the current subqueue. So class ExSubQueue
which adds the ‘turn’ data member to class SubQueue was defined. Figure 10 shows the

organization of class Queue and its subclasses.

FCFs : First Come First Served
MLQ : Multilevel Queue
MLFQ : Mullilevel Feedback Queue
RR : Round-Robin
SIF : Sheriest Job First
Queue : FCFS, RR
Add “queue” data QOverride Enqueue function
member
Subqueue : MLQ Sorted_Queue

+— Add ‘turn’ data member

Ex Subqueue : MLFQ Sorted by priority Sorted by CPU burst

: Priority :SJF

Figure 10. Organization of class Queue and its subclasses

For this simulation memory was simulated as a counter. The user can specify the
maximum and minimum number of allocable units. At default, 512 allocable units are

specified as the upper bound and 12 units as the lower bound. Class Memory defines all

21

information and functions to manage the simulated memory. Memory manager is
responsible for checking, acquiring, releasing, and reporting statistics about the simulated
memory. The same type of memory object was used in different kinds of scheduling
algorithm. Figure 11 presents the definition of class Memory. The data member ‘pcbcount’
indicates the total number of processes in main memory, and this number should be less

than the maximum degree of multiprogramming.

class Memory {

protected: _
int availmemory; acquire | release
int minmemory; :
int pcbcount; availmemory

public: checksize [minmemory print

. Memory(); pcbeount

Memory(int n); el
rvalue checksize(); getpch nehoosnt
Boolean acquire(int job_size);

void release(int jsize);

void print(void);

int getpcb() { return pcbcount; }

void compute_pcbcount(int i) { pcbcount = pcbcount + 1;)

Figure 11. Definition of class Memory

The object loader, which is responsible for loading processes into main memory

from the job queue and the disk until memory is full, was created from class Loader.

Processes are in the form of <process ID> < process size> <process priority> <burst 1 ...

28

burst n> in an input data file. The value 0 for process size indicates that these are no new
processes arriving at that time. If enough memory is available, the loader creates a PCB
and inserts it into the ready queue. Otherwise, the loader creates a PCB and inserts it into
the job queue. The processes in the job queue wait to be loaded to main memory. The
loader stops loading processes when there is not enough memory or therc are no new
process arrivals. In this simulation, when the loader load a process, the process in the job
queue have priority over new arrivals. The definition of class Loader is presented in Figure

12.

class Loader {
protected:
FILE *inputfile;
public:
loader();
void LoadJob(Queue &jqueue, Memory &m, RQTYPE *rqueue);
virtual void GoToReadyQueue(T *cur, RQTYPE *rq);
rvalue Status(Queue Jqueue);

Figure 12. Definition of class Loader

Since the loader assigns a process to a subqueue permanently based on the priority
of the process in the multilevel queue scheduling algorithm, extra action is required when
the process goes to the ready queue. A subclass of class Loader, Class ExLoader, has its
own GotoReadyQueue function that overrides the super classs’s corresponding function.

In the multilevel feedback queue scheduling algorithm, every process start at the highest

29

level subqueue. So class Loader was used for its loader. Figure 13 shows the definition of

class ExLoader.

class ExLoader: public loader {
public:
void GoToReadyQueue(T *cur, RQTYPE *rqueue);

Figure 13. Definition of class ExLoader

The process scheduler dispatches a process and maintains the process after the
execution. The dispatcher, which is a part of the scheduler, dispatches the process at the
head of the ready queue. In non-preemptive scheduling, once a process is running, the
following actions can occur:

1. Process requests I/O: the scheduler lets the process go to the blocked queue and stay
there until its I/O is completed (blocked member function of class scheduler). Ten time
units is specified as default for I/O service time. A user can redefine the service time.
When a process completes its /O and is ready to run again, it is placed on the ready
queue (unblocked member function).

2. Process terminates: the process’s memory is released by the memory manager and the
PCB is destroyed, and the statistics related to the process are reported (terminate
member function).

Class Dispatcher and class Scheduler were used to create object dispatcher and object

scheduler for non-preemptive scheduling. Figure 14 presents the definition of class

Scheduler.

For the preemptive scheduling algorithm, some activities and information were

added for implementing CPU preemption to class Dispatcher (class RR_Dispather). Since

mutilevel queue and multilevel feedback queue are variations of the RR scheduling

30

algonthm, the dispatcher and scheduler inherited from RR’s functions. For the multilevel
queue and multilevel feedback queue scheduling algorithms, some actions for dispatching
the process at the head of the highest priority non-empty subqueue was added to class

RR_Dispatcher. Figure 15 shows the relations among class Dispatcher and its subclasses.

class Scheduler {

protected:
FILE *memoryfile;
FILE *jobdonefile;
int jobdonecount;

public:
Scheduler();
void update_burst(T *cur);
void blocked(Queue &bg, RQTYPE &rq, CLOCK &cl);
rvalue unblocked(RQTYPE *rq, Queue &bg, CLOCK ¢l);
void report(Queue jq, RQTYPE &rq, Queue bq, CLOCK cl,
Memory m1);
void terminate(T *cur, Memory &m1);
void close_file();
virtual void GoToReadyQueue(T *cur, RQTYPE *rq);

4

Figure 14. Definition of class Scheduler

When the CPU is preempted, the scheduler appends the preempted process to the
ready queue. For this action, the function UpdateQueue() was added to Cclass
RR_Scheduler. In multilevel queue scheduling, since the ready queue consists of several
subqueues, the scheduler appends the process to its own assigned subqueue when the
CPU is preempted and the IO request is completed. So the GoToReadyQueue function in

class ML_Scheduler overrides the superclass’s definition of that function. To implement

31

the multilevel feedback queue algorithm, appropriate actions for the movement of
processes between the subqueues were added to class ML_Scheduler. The UpdateQueue
and GoToReadyQueue member functions in class MLFQ_Scheduler overrides the
superclass’s definition. Figure 16 gives the organization of the scheduler for the six

scheduling algorithms.

Class Dispatcher : FCFS, SJF, Priority

Add actions for CPU preemption
Class RR_Dispatcher :RR

Add actions for handling the subqueues
Class ML_Dispatcher | : MLQ, MLFQ

Figure 15. Organization of dispatcher

In this simulation, each scheduling algorithm itself was developed as a complex
object created from six subcomponents. Class FCFES, which implements the FCFS
scheduling algorithm, was defined in Figure 17. The ‘system’ member function is the main
program to drive the sumulation and the overall loop that accesses the memory manager,

loader, clock, queues, dispatcher, and scheduler.

32

Class Scheduler : FCFS, SJF, Priority

i Add actions for CPU preemption

Class RR_Scheduler :RR

i Add actions for handling subqueues

Class ML_Scheduler :MLQ

Add actions for movement among subqueues

Class MLFQ_Scheduler

: MLFQ

Figure 16. Organization of Scheduler

class fcfs {
protected:
CLOCK cl;
Memory ml;
Queue JobQueue;
Queue blockedQueue;
Loader11;
Scheduler sch;
Dispatcher d1;
Queue readyQueue;
public:
void system(loader &11, scheduler &sch, Dispatcher &dl1,
Queuc *readyQueue);
virtual void CPU(T *cur, RQTYPE *readyQueue):

Figure 17. Definition of FCFS Scheduling Objects

33

The SJF and priority algorithms have the same procedure and components as
FCFES scheduling but the type of the ready queue is a sorted queue. They are defined in
Figure 18.

Preemptive scheduling (that includes RR, multilevel queue, and multilevel feedback
queue scheduling) has the following extra procedure: if the quantum is used up, place the
process in the ready queue. Figures 19 to 21 give the definition of the RR, multilevel
queue, and multilevel feedback queue scheduling. They satisfy the relations among the six

scheduling algorithms as illustrated in Figure 6.

class sjf: public fcfs {
protected:
Sorted_Queue readyQueuc;
public:
void system();

};

void sjl::system()

{
}

fefs::system(11,sch,d1, &readyQueue);

Figure 18. Definition of SJF Scheduling Object

34

class rr: public fcfs {
protected:

public:

RR_Dispather dl;
RR_scheduler sch;

void system();

virtual void CPU(T *cur, RQTYPE *readyQueue);

Figure 19. Definition of RR Scheduling Object

class mlqueue:
private:

public:

)i

public rr {

Exloader11;

ml_Dispatcherdl;
ML._scheduler sch;
SubQueue Sq[10];

virtual void CPU(T *cur, RQTYPE *rq);
void system();

Figure 20. Definition of MLQ Scheduling Objcct

class mlfq :public mlqueue {
protected:

public:

loader 11;
mlfq_Dispatcher dl;
MLFQ_scheduler sch;
ExSubQueue Sq[10];

void system();
virtual void CPU(T *cur, RQTYPE *rq);

Figure 21. Definition of MLFQ Scheduling Object

";"—‘.*.-':‘

3.3.3 Communication among Objects

Several objects were developed in the simulation. Execution of the program was
carried out by each object intcracting and communicating with other objects. The systcm
interacts with the object loader by calling loader.status(JobQueue) to check if there is a
process on disk, and by calling loader.LoadJob(JobQueue, Memory, ReadyQueue) to load
the process. Loader communicates with the job queue by calling JobQueue.Head() to get
the head of the job queue, by calling JobQueue.Enqueue() to place a process in the job
queue, and by calling JobQueue.remove_pcb() to remove the process from the job queue,
with the memory by calling Memory.checksize() to check if there is enough memory to
load, and by calling Memory.acquire() to allocate the memory requested, and with the
ready queue by calling ReadyQueue.Enqueue() to place a process in the ready queue.

The system communicates with the dispatcher object by calling
dispatcher.Dispatch(PCB, ReadyQueue, clock), and the dispatcher interacts with the ready
queue to remove the terminating process from the ready queue (ReadyQueue.Dequeue()),
and with the clock to compute the current virtual clock (clock.ComputerClock()).

The system interacts with the scheduler by calling scheduler.update_burst(PCB),
scheduler.blocked(BlockedQueue, ReadyQueue, clock), scheduler.terminate(PCB,
Memroy), scheduler.unblocked(ReadyQueue, BlockedQueue), and
scheduler.report(JobQueue, ReadyQueue, BlockedQueue, clock, Memory). The scheduler
communicates the ready queue, the blocked queue, the job queue, PCB, memory, and
clock to maintain the ready queune and the blocked queue (blocked, unblocked), to report

the statistics about system performance (report), to release memory when the process is

36

terminated (terminate), and to update the process information (update_burst). Figure 22

describes the communication among objects.

37

SYSTEM

Memory Manager / JobQueue
Enqueue | |Engqueue #anuwc Dequeue
%
\ | 1Get num! {Remove
Enqueue | [Enqueye - _peb
* i 7
/ PCB
Loayr | - V

\
Smu\sﬁmﬂmﬁ ReadyQueue
| /

Ee
Enqueue | o Dequeue
A Ly
- , R
Dispatcller . e
Aum| |_pc
Dnsy\atch \/ ﬁ
PCB
Schedule ‘ BlockedQueue
\ yyd
update pad
burst cked 7 Enqueuc|y{ Dequeue
|y Remove
unbloc le Get_num| |_pcb
ed —T |d
P~
*L FCB
rep 7 """
CLOCK
-\‘H
Compute | |Get_valu
_clock c

Figure 22 Communication Among Objects

38

CHAPTER IV

EVALUATION OF THE TOOL

4.1 Input file and Hardware specification

The secondary store and disk was simulated as an input file where process requests
resided in this simulation. A process request was formed of: Process ID as the first
parameter, amount of memory units requested as the second parameter, process priority as
the third parameter, and the given CPU bursts as the remaining parameters. A process size
of 0 indicated that there was no incoming process at that time. Figure 23 gives the format
and an example of process requests. Appendix C contains a sample input file used to test

the simulation.

<Process ID> <Memory Size> <Priority> < Burst 1> <Burst 2> <Burst n>
4 4 3 50 163 17
5 71 2 51 53 57
0 0
0 0

Figure 23. Format and Example of Process Requests

For the process of evaluation, 512 allocable memory units was chosen as the upper

bound, and 12 units as the lower bound. A period of 10 virtual time units was used per I/O

39

request. Quantum sizes of 30 were used in RR scheduling, and the ready queue was
divided into 4 subqueues in multilevel queue scheduling. In multilevel feedback queue
scheduling, the ready queue was divided into four subqueues with residency rules as

specified in TABLE L

TABLE I. RESIDENCY RULES IN MULTILEVEL FEEDBACK QUEUE

Subqueue 1 Subqueue 2 | Subqueue 3 Subqueue 4
of turns 3 5 6 e
quantum 20 30 50 80
size
4.2 Output

When the simulation of each scheduling algorithm was finished, two output files
named jobstat and memstat were created by the tool. When a process terminated, the
following statistics about the process was written to the jobstat file: <Process ID> <Time
process entered the system> <Time process is leaving the system> <Execution time>
<Turnaround time>. The execution time of each process was computed by adding its CPU
running time to its /O service time. Figure 25 shows a segment of the jobstat, and
Appendix E shows a sample jobstat file.

Every 500 time units, the following information relating to the system utilization
and status was written to a file called memstat: <allocated memory units> <frec memory

units> <number of processes in job queue> <number of processes in ready queue>

40

——e

<number of processes in blocked queue> <number processes delivered>. Figure 25 shows

the part of the memtat file. Appendix D shows the whole memstat file.

ID: 8 Entered: 220 Left: 2250 Execution: 341 TAT: 2030
ID: 4 Entered: 0 Left: 3063 Execution: 371 TAT: 3063
ID: 7 Entered: 220 Left: 3212 Execution: 400 TAT: 2992
ID: 10 Entered: 3212 Left: 4125 Execution: 512 TAT: 3102
ID: 13 Entered: 2250 Left: 4823 Execution: 726 TAT: 2237

Figure 24. Part of a sample jobstat file

Stat. Time Allocated Mem. Free Mem. Job_g Blocked _Q Read_Q Jobs Done

515 510 2 1 0 10 0
1000 510 2] 0 10 0
1522 510 2 1 1 g 0
2022 510 2 1 0 10 0
2517 505 7 2 0 10 I
3016 505 7 2 0 10 1

Figure 25. Part of a sample memstat file

41

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

Chapter I introduced the overall concepts of process scheduling and object-
oriented programming. It also addressed the importance and necessity of process
scheduling and popularity of the object-oriented approach. Chapter I ended by presenting
the purpose and outlining the organization of this thesis.

In Chapter II, the general process scheduling model used for this simulation was
described. Chapter II also presented several common system utilization factors, and six
widely-used scheduling algorithms. It also discussed the advantages and problems of each
of the six scheduling algorithms. The origin of object-oriented programming was briefly
addressed in this chapter. The chapter ended by discussing the common concepts and
characteristics that all object-oriented programming languages should support.

Chapter III presented the implementation platform and the design/implementation
issues of the simultaion. The overall hierarchy of six scheduling algorithms, and the
development of the various components of the scheduling system (i.e., loader, clock,
memory, scheduler, dispatcher, PCB, ready queue, blocked queue, and job queue) were
discussed in Chapter III. This chapter included a discussion about the relations and

communications among the components of the system. The development of each

42

scheduling algorithm as an object, and the relation among such objects was also discussed
in Chapter III.

Chapter IV presented the input file and other specifications including memory size,
quantum length, degree of multiprogramming, number of subqueues, and residency rules
that were used to test the tool. This chapter also described two output files and the
performance factors obtained from each execution of the simulation.

The simple scheduler generator tool, which was simulated on Sequent S/81
running DYNIX/ptx using C++ version 2.0.1, could serve as an object-oriented
prototyping environment for conventional and innovative process scheduling algorithms.
Extended and complex objects with their own properties and operations were easily
created by inheriting from the existing objects with the most basic and common properties
and operations. This tool can be used to choose from among a number of scheduling

algorithms in a given system environments.

5.2 Future Work

Real-time scheduling, distributed scheduling, and multiprocessor scheduling are the
difficult problems of process scheduling. In this tool, multiprocessor, distributed, and real-
time scheduling were not be included. As an area of future work, these could be
implemented by adding new complex objects and updating the features of some existing
objects.

This tool was developed using C++ version 2.0.1 under a flavor of the UNIX

environment (i.e., DYNIX/ptx). This version does not support the “template”, which is a

43

keyword for polymorphic variables. It can be argued that if templates were used, the

program would be more legible.

REFERENCES

[Arnold and Gosling 96] K. Arnold and J. Gosling, The Java™ Programming Language,
Addison-Welsey Publishing Company, Inc., Reading, MA, 1996.

[Booch 91] G. Booch, Object Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1991.

[Budd 91] T. Budd, An Introuction to Object-Oriented Programming, Addison-Welsey
Publishing Company, Inc., Reading, MA, 1991.

[Florentin 91] J. Florentin, “Object-Oriented Techniques: Now and the Future”, In Object-
Oriented Programming Systems Tools and Applications (pp. 1-6), J. J. Florentin
(Ed.), Chapman & Hall, Inc., London, UK, 1991.

[Ghezzi et al. 91] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

[Goldberg and Robinson 89] A. Goldberg and D. Robinson , Smalltalk-80: The language,
Addison-Welsey Publishing Company, Inc., Reading, MA, 1989.

[Kerr 91] R. Kerr, “Simula - Ancient and Modem”, In Object-Oriented Programming
Systems Tools and Applications (pp. 125-134), J. J. Florentin (Ed.), Chapman &
Hall, Inc., London, UK, 1991.

[Krakowiak 88] S. Krakowiak, Principles of Operating Systems, The MIT Press,
Cambridge, MA, 1988.

[Lippman 91] S. B. Lippman, C++ Primer, Second Edition, Addison-Welsey Publishing
Company, Inc., Reading, MA, 1991.

[Lister and Eager 93] A. M. Lister and R. D. Eager, Fundamentals of Operating Systems,
Fifth Edition, Spring-Verlag, Inc., London, UK, 1993.

[Meyer and Hucklesby 91] B. Meyer and P. Hucklesby, “Eiffel: An Introduction”, In

Object-Oriented Programming Systems Tools and Applications (pp. 125-134), J.
J. Florentin (Ed.), Chapman & Hall, Inc., London, UK, 1991.

45

[Nutt 92] G. J. Nutt, Centralized and Distributed Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[Silberschatz and Galvin 94] A. Silberschatz and P. B. Galvin, Operating System
Concepts, Fourth Edition, Addison-Welsey Publishing Company, Inc., Reading,
MA, 1994,

[Sommerville 96] I. Sommerville, Software Engineering, Fifth Edition, Addison-Welsey
Publishing Company, Inc., Workingham, England, 1996.

[Tanenbaum 92] A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

46

APPENDIXES

47

Aging:

Batch Process:

CTSS:

Information Hiding:

Instance:

Instance Variable:

Interactive Process:

Member:

Method:

MLQ:

MLFQ:

APPENDIX A:
GLOSSARY
The gradual increasing of the priority of the processes that are

waiting in the ready queue.

A process whose user cannot interact with it when the process
is executing.

Compatible Time Sharing System. It was an experimental time
sharing system designed at MIT and implemented on an IBM
7090.

The principle that users do not need to know the details of
implementation of software components but need to know the
essential details of how to initialize and access a component.

A specific example of a defined class.

The data associated with each instance of a class. In C++, these
are called data members.

A process whose user can make on-line interactions with it. The
user gives instructions to the operating system and the program,

and receives a response.

A general term used for both a data member and a function
member in C4++.

A procedure or function associated with a class. In C++, these
are called function members.

Multilevel Queue

Multilevel Feedback Queue

48

Multiprogramming: Multiprogramming allows processes to share memory and
CPU. Several programs can run on the same machine virtually
at the same time in a multiprogrammed system.

PCB: The Process Control or Context Block of a process contains the
information associated with that process.

Polymorphism: A property that indicates the instance variables and methods
have more than one form.

Process: A program in execution and a sequential unit of computation.

Resource: A resource denotes any abstract machine environment object
that is required by a process for execution.

Subclass: A class that inherits from another class.
Superclass: A class from which other classes inherit attributes.
Time Sharing: A logical extension of multiprogramming that switches the CPU

among processes so frequently that the users can interact with
each process.

49

Ada:

DYNIX/ptx:

Eiffel:

Java:
NCD:
Sequent Symmetry S/81:

UNIX:

APPENDIX B:
TRADEMARK INFORMATION
A registered trademark of the U.S. Government (Ada Joint
Program Office).

A registered trademark of Sequent Computer Systems, Inc.

A registered trademark of Interactive Software Engineenng,
Inc.

A registered trademark of Sun Microsystems, Inc.
A registered trademark of Network Computing Devices, Inc.
A registered trademark of Sequent Computer Systems, Inc.

A registercd trademark of AT&T.

50

APPENDIX C:

INPUT FILE

This is a sample input file used to test the scheduler generator tool. The process
requests are in the form of <process ID> <process size> <process priority> <burst 1> ...
<burst n>, where the bursts are the periods of uninterrupted CPU activity. The value O for

process ID and size indicates that there is no incoming process at that time.

IDp size priority CPU bursts
1 20 0 40 44 53 40 63 163 56
2 1 2 147 51 346 56 44 63 15 56
3 17 3 6 145 64 16 461 112
4 4 1 50 163 111 17
5 71 2 51 53 115 440 156 57
0 o
0 0
0 o
0 o
0 0
0 0
0 o
0 0
0 0
0 o
0 0
6 62 3 66 163 14 30
7 67 2 14 44 190 54 15 11 12
B &7 (1] 51 56 31 63 36 54
92 64 1 64 15 40 157 151 66 163 151
10 72 1 141 145 143 53
1l 67 2 440 146 56 52 141 B9
12 70 1 1z 141 564 40 17 11 78
13 62 2 27 156 44 143 54 16 54 162
14 64 3 164 145 14 546 64 40
15 60 a 54 43 12 41 45 71 12
16 64 2 50 13 52 15 51 40
17 20 1 157 43 89 16 15 44 54
18 10 2 15 16 56 15 4 15 190
19 10 3 14 16 14 &7
20 13 0 15 124 49 156
21 103 2 56 190 44 54 189 25 4
22 10 1 15 56 55 56 4 78 41
23 14 3 15 17 4 16 14
24 14 0 90 65 47 55 15 190 48
25 - b 1 15 4 16 16
26 109 1 15 54 15 15 54 120
27 31 0 14 44 16 56 50 16 1é 67
28 31 1 44 17 90 16 44 15 17 55
29 10 2 15 54 54 44 i5
30 30 0 44 16 62 54

51

O WRWNHODWREO

NHEROoONWR

WNNHEEOWNEHOO

NRPRWWRNNEF OO W

MENORWEMPMPORE OO WWMNN

14
15
16
56
44
54
67

14

14
16

44
15
15
56

=3

48
56

[=Y

15
55

14
16

25
79
297
14

62
54

123
54
15
56
15

74

20
54
15
15
16
14
12

52

15

56
54
55
14

44
16

15

15
56

14

54
17

150

85
44

16
Se

14

56
16

174

12
I5

56

42
14

314

16
54
14

55
S5

54
15

44
56
15
189

15
44
59
15

56
44

18

15
14
15
14

16

44

90

54

96

126

133

CRNWWNHROOWONOFOOWWWRNWEWORNLW

NN N

COOHNORRMRMM

o R

16
16

14
14

53

15
56
44
55
11

16
54
16
44

12

55
56

S5

44

56

44

16

55

56

56

54

67

15

44

17

14

56

56

14

134

135
136
137
138

139
140

171
172

173
174

175

176
177
178
179

180
181
182
183
184

(== I = I = B o

105

W
oooocoopR

Lt B et b

PFPWNROoONNOHFWNOOKRFOONER NP W w

O WWERENRN

V] LS coRPPKE

L =t L L

oM WO o

33
56
16

le
56

14
180

81

14

44
12

72
87

88

80

16
12

44

17

54
56

66

14
32

30
55

45
92
56
14

56

15

120
56

45

55
44

12

32
34

67

56

14
56
56

15

12
44
44

15

279
14
36

54

56
44
14
33

26

17
56
54

56
44

70

15
45

14
54
14

56
22

30

44

56
14
81
87

54
44

189
44

67
15
54
56

46
56
16

56
15

120
14

190

56
278

16
14

56

16
89

54

56
19
56
56

28
44
16

14

16
14

588

16

44

15

12

16

56

234

235

OWNKHEBMMEORWREMNRERRE

FNWWRpRRFRFoOoHRPWWNN

L R N - N S SESE SN 8]

W o w

55
36
44
90

44

54

56
18
44
72

14

88

56
29

56
55

56
14
46
90
52
67
44
71
15
56
67
44
320

55

60
44
56

S0
76

44
27
15

72
14
90
19

50
14
56
21
16

56
51

15
56

89
47
44
90
56
44
40
25

16
16

289

56

90

15

127

280

14
17
55
44
56
56

89

15
14

62

74
55

15
5S4
32
43

15
14

50

52

56

16

10

46

14

56

51

42

26

14

57

34

18
56

APPENDIX D:

MEMSTAT OUTPUT FILE

This appendix gives the system specification that produces the “memstat’” output
file, and shows a sample “memstat” file to which information related to system utilization
was written at every 500 time units during the executing of the simulation. The fields of
this file are: <current clock> <allocated memory units> <free memory units> <number of
processes in the job queue> <number of processes in the ready queue> <number of

processes in the blocked queue> and <number of processes delivered>.

Specification:

e Scheduling Algorithm I FEFS

e Memory Size 2 512 units (mininum :12 units)
e Degree of Multiprogramming W

e J/O Service Time - 10

memstat file

Stat. Time Allocated Mem. Free Mem. Job_Q Blocked_ @ Ready_Q Jobs Done

528 183 329 0 1 4 0
1207 510 2 1 1 9]
1515 510 2 1 1 9 0
2084 510 2 1 . 9 0
2641 510 2 1 1 9 0
3098 506 6 1 1 8 1
3522 506 6 1 1 8 1
4101 509 2 6 1 8 z
481l 509 3 6 1 8 2
5024 510 2 4 1 B 4
5508 500 12 4 1 8 E
6110 509 3 3 1 9 3
6531 512 0 1 1 10 -3
70329 508 3 0 1 10 9
7602 506 3 1 1 13 10
8499 504 8 2 1 14 1L

8513

9003

9813
10071
10539
11157
11539
12004
12507
13027
13545
14043
14504
15011
15552
16040
16515
17184
17551
18052
19208
19302
19538
20033
20504
21178
21685
22001
22553
23012
23543
24006
24544
25022
25505
26051
26505
27033
27501
28015
28550
29017
29543
30021
30529
31007
31509
32005
32514
33005
33527
34001
34516
350867
35514
36002
36502
37049
37603
38064
38552
39004
39544
40010
40516
41045
41516
42041
42503
43179
43518
44007
44502
45006
45555

504

438

HRPWWUWNMODOOMNPRNPREPPRPORPMNMMNMBEBELUNUN®DOORRFER R WIWRE FWWE P PR WS B R R Wil uinum ugn bl bl b b bl b s Wb = B W Wb B bR

57

PR O PR R OR PR RERERE R RENRE O OOR R REREPEERE PP OOR P POR D00 RPRORRPRRPERPEEORRPREREPREORHREROREOROR

149
150
152
153

160

46033 475
46505 446
47001 422
47515 425
48002 438
48505 457
49013 477
49536 494
50034 471
507086 450
51384 436
51739 481
52064 450
52509 481
53065 436
53517 505
54091 475
54512 481
55027 488
55565 506
56017 488
56528 488
57014 481
57542 471
58018 471
58606 471
59038 504
59564 504
60006 505
60574 422
61018 457
61531 457
62011 457
62504 480
63046 379
63578 469
64006 354
64507 471
65066 403
65531 182
65813 0

158

41
109
130

Final Values
512

1 1 14 161
1 1 13 163
3 1 14 165
3 0 14 187
3 0 14 168
4 1 14 170
3 1 14 172
4 1 14 175
4 1 14 177
4 1 14 178
4 0 14 179
4 1 14 179
5 1 13 180
6 1 14 182
6 0 14 183
5 1 14 185
5 0 14 186
5 1 14 187
4 1 14 1920
5 1 14 192
5 1 14 193
5 1 14 183
6 1 14 185
6 1 14 187
6 1 14 127
6 1 14 197
4 1 14 201
3 1 14 203
4 1 13 209
4 1 12 211
4 1 14 212
4 1 14 212
4 1 14 212
4 1 14 214
4 0 14 217
2 1 11 221
2 0 10 223
1] 9 225
1 1 4 229
0 o 3 232
0 0 0 235

58

APENDIX E:

JOBSTAT OUTPUT FILE

This appendix shows a sample “jobstat’’ file that is automatically created when the
simulation is finished. When a process is terminated, the following information is written
to this file: <Process ID> <Time the process entered the system> <Time the process is

leaving the system> <Execution time> <Turnaround time>.

Jobstat file

ID: 4 Entered: 0 Left: 2658 Execution: 3141 TAT: 2658
ID: 3 Entered: 0 Left: 3741 Execution: 798 TAT: 3741
ID: 5 Entered: 0 Left: 4668 Execution: 872 TAT: 4668
ID: 6 Entered: B6l Lefr: 4698 Execution: 273 TAT: 3837
ID: 1 Entered: 0 Left: 5080 Execution: 459 TAT: 5080
ID: 2 Entered: 0 Left: 5720 Execution: 778 TAT: 5720
1D: 8 Entered: 861 Left: 6175 Execution: 291 TAT: 5314
ID: 11 Entered: 861 Lefr: 6330 Execution: 924 TAT: 5469
1D: 7 Entered: 861 Left: 6587 Execution: 340 TAT: 5726
1D: 10 Entered: 4668 Left: 7264 Execution: 482 TAT: 2596
ID: 9 Entered: 861 Lett: 7753 Execution: 807 TAT: 6892
1D: 19 Entered: 5720 Lefk: 9003 Execution: 111 TAT: 3283
iD: 17 Entered: 3741 Left: 9057 Execution: 418 TAT: 5316
ID: 20 Entered: 6330 Left: 10071 Execution: 344 TAT: 31741
ID: 18 Entered: 5080 Lefrt: 10773 Execution: 311 TAT: 5691
ID: 25 Entered: 7264 Left: 10995 Execution: 51 TAT: 3731
I1D: 13 Entered: 4698 Left: 11157 Execution: 656 TAT: 6459
1D: 14 Entered: 6175 Left: 11248 Execution: 973 TAT: 50713
1D: 12 Entered: 5720 Left: 11485 Execution: 863 TAT: 5765
ID: 23 Entered: 7264 Left: 11611 Execution: 66 TAT: 4347
ID: 16 Entered: 6587 Left: 11782 Execution: 221 TAT: 5195
1D: 15 Entered: 6330 Left: 11942 Execution: 278 TAT: 5612
ID: 30 Entered: 10071 Left: 12787 Execution: 176 TAT: 2696
1D: 29 Entered: 9003 Left: 12972 Execution: 182 TAT: 31989
ID: 22 Entered: 7264 Left: 13027 Execution: 305 TAT: 5763
1D: 24 Entered: 7264 Left: 13131 Execution: 510 TAT: 5887
ID: 35 Entered: 11157 Left: 13708 Execution: 140 TAT: 2551
ID: 27 Entered: 7753 Left: 13875 Execution: 279 TAT: 6122
ID: 28 Entered: 7753 Left: 13930 Execution: 298 TAT: 6177
ID: 33 Entered: 10995 Left: 14436 Execution: 366 TAT: 3441
1D: 32 Entered: 9057 Left: 14955 Execution: 186 TAT: 5898
iD: 34 Entered: 10995 Left: 15114 Execution: 308 TAT: 4119
1D: 36 Entered: 11248 Left: 15205 Execution: 266 TAT: 3957
1D: 26 Entered: 11942 Left: 16040 Execution: 273 TAT: 4098
1D: 21 Entered: 11485 Left: 16088 Execution: 562 TAT: 4603
ID: 37 Entered: 11611 Left: 18147 Execuktion: 328 TRT: 4535
ID: 38 Entered: 11782 Left: 16444 Execution: 294 TAT: 4662
1D: 44 Entered: 13764 Left: 16817 Execution: 103 TAT: 3053

ID:
ID:
IDz

Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:

12767
13131
13764
15205
12972
13830
14436
13875
15085
15114
16088
16040
17649
16147
16444
17214
16817
18308
169295
195806
17375
17441
19400
20033
20699
19627
18308
20883
20612
22855
20683
22581
22074
24048
21295
22464
22553
22167
23012
23068
22755
22167
22946
24658
25203
24880
24048
26051
25637
25784
27189
26191
27159
26876
26505
27065
27554
26930
26705
28860
28577
29349
27931
28577
29440
29758
29440
29140
30077
31081
30155
30852
29884
310334
30474

Left:
Left:
Left:
Left:
Left:
Left:
Lefrt:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Lefrc:
Left:
Left:
Left:
Left:
Left:
Left:
Lefr:

Left
Left
Left
Left

Left:
Left:
Left:
Left:
Left:
Left:
Laft:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:

16995
17214
17375
17441
17649
17996
18278
19400
19627
192806
20033
20612
20683
20699
20883
21295
22001
22059
22167
22464
22553
22581
22755
22855
22946
23012
23068
240086
24048
24658
24880
25203
25637
25784
26051
26191
26505
26705
26876
26930
27065
27159
27189
27554
27931
28218
28577
28696
28860
29140
29349
29440
29758
29884
30077
30155
30334
30474
30852
30902
Jlo8l
31261
31509
3lelsg
32005
32166
32400
32534
32787
32802
32831
32907
33005
33412
33471

60

Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Exacution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:

200
177
210
127
464
379
170
257
148
340
182
289

207
251
245

104
381
213
1270

TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:

4228
4083
1611
2236
4677
4066
3842
5525
4542
4692
3945
4572
3034
4552
4439
4081
5184
3751
5172
2658
5178
5140
3355
2822
2247
3385
4760
3123
3436
1303
4197
2622
3563
1736
4756
3727
3952
4538
3864
3862
4310
4932
4243
2896
2728
3338
4529
2645
3223
3356
2160
3249
2599
3008
3572
3090
2780
3544
4147
2042
2504
1912
3578
3041
2565
2408
2960
3384
2710
1721
2676
2055
3121
3078
2997

114

133
120
118
134

123
119
121
117

151
152
155
158

184
183
186
185
188
187
150
189
196

Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:

30902
31618
32961
32787
32534
34057
32534
32863
32802
32863
32534
33005
342680
32863
32883
33412
33471
35388
35285
36073
35720
370865
37241
36189
37786
39004
36581
35946
36882
36238
37728
37728
37351
39378
40718
40316
40674
40212
39683
40900
39913
40086
40660
41060
40461
41130
41842
40989
44502
41698
44804
44562
42714
42818
43474
43532
43660
44748
46655
46309
45253
45253
45555
45612
45343
46505
47386
46909
48002
47918
48067
49371
48597
48134
49844

Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Lefr:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Lefrt:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:

34057
34260
35285
35388
35707
35946
36073
36189
36581
36705
36938
37065
37241
37351
37423
37728
37786
39004
39378
39683
35913
40086
40212
40316
40461
40660
40674
40718
40900
40989
41060
41130
41392
41683
42714
42818
43474
43532
43660
44502
44562
44748
44804
45238
45253
45297
45495
45612
46309
46505
46521
46909
47386
47515
48002
48067
48134
48573
48597
49337
49367
49371
49624
49844
50106
51384
51904
52082
52433
53065
53159
53417
54091
54476
54708

61

Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:

249
288
101

198

456
301
419

226
203
218
305
422
S
917
228
516
106
457
261
252
346

289

TAT:
TAT:

TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:

202
227
225
228
232
229
230
233
171
234
235
226
215
180

Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:

48573
49624
49337
49367
52082
51384
50106
52068
52433
53065
53159
54476
53417
54885
54081
55403
54708
56924
54973
559805
55361
56791
58725
57041
57321
58579
58620
59343
58982
59674
59858
60575
58849
59186
59939
59954
60043
62207
60574
60574
62468
64021
62559
62909
63322
632046
65084

Left:
Left:
Left:
Left:
Left:
Left:
Left:
Lefr:
Left:
Left:
Lefr:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Lefc:
Left:
Left:
Left:
Left:
Left:

54885
54973
55361
55403
555805
56791
56816
57041
57321
58620
58725
58845
58982
59186
59343
59579
59674
59858
59939
59954
59996
60043
60284
60575
62117
62412
62559
62830
63046
632050
63172
63322
62488
63766
64006
64021
64507
64540
64558
64614
64714
65084
65423
65531
65702
65784
65813

62

Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:

TAT :
TAT:

TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:

TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT :
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:

6312
5349
6024
6036
3823
5407
6710
4973
4888
5555
5566
4373
5565
4301
5252
4176
4966
2934
4966
4049
4635
3252
1559
3534
4796
2833
3939
3487
4064
3376
3314
2747
4639
4580
4067
4067
4464
2333
3984
4040
2246
1062
2864
2622
2380
2738

729

APPENDIX F:

PROGRAM LISTING

LILPELLEELERTLL P00 TP 0 0T b2 P8Ittt iidiitliiiiiiiiiitirsitiietiily
T

!/ const.h

/7

// This head file defines the program constants and the default hardware

// specificaticn.

Fo'd

LIILILIRTEEL P70 0000000000000 700070t P i ird it rieriiriititlrriiirty

#include <iostream.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <malloc.h>

#define FINAL 1

#define NONFINAL 0

#define MAXBURSTCOUNT 100 // maximum # of CPU burst fixed as 100
const int degree_MP = 15; // default degree of multiprogramming
const int maxmemory = 512; // default maximum allocatable memory 2
const int IOTIME = 10; // default I/O service time is 10

enum status (START, READY, RUNNING, BLOCKED, TERMINATED }; // process states

enum Boolean { FALSE, TRUE };
enum rvalue (MOREJOBS, NOMOREJOBS, MOREMEMORY, NOMEMORY, NOBLOCKEDJOBS,
CANNOTBLOCKED, UNBLOCKED) ; // function return value

POTLELLET LT E LI r i it e i e i rirryidiidiririrriitrdidtirrtrrrirt

1/

17/ clock.h

/!

// This is the header file to implement the CPU virtual clock. The clock is

// simulated as a counter ('value' data member). 'old' data member is to store

// the last time collected the statistics concerning the system performance.
// They are collected and reported at every 500 clock units. Class clock is
// used in every scheduling algorithm with same type. Clock cbject are called
// from dispatcher to compute CPU clock and from scheduler to get the current
// CPU clock.

//
PEPEPRLLELPE DR R0 E i ELIT LI Ed i iii it iir it ird it iriirtirtrtirtd

class CLOCK {

private:
long value; // the CPU wvirtual clock value
long old; // clock value for last time collected
// statistics
public:
CLOCK({) { value = 0, o0ld=0 ;) // constructor: initialize the values
long get_value() (return value;} // get clock wvalue
long get_old() { return old;)} // get value of old

63

Vo%d compute_clock(long burst) { value=value+burst; } // compute clock
vo%d assign_clock(long currenttime) (value = currenttime;)
veid compute_old(long burst) (old=ocld+burst; } // compute old value

;j//!//////////////////l////////f/!///////}/f/////////////////////f///f//f////

/7 pcb.h
/7
// This is the header file to implement object Process Control Block (PCB)

This object represents a process which stays in main memory and store the
information about a process such as ID, size, priority, status, bursts,

subclasses are defined in this file.
/7

current burst length and so on. Queue could easily be constructed based on
PCB objects by including the pointer to another PCB. Class PCB and its

TELLTTEIRIET LT EI 20T I P LT LIPS 000080 d 0L T Ei b iititittit

// object PCB which represents a process is created by instantiating a class

// PCB. class PCB is the base class which
// necessary to implement the most simple

class PCB {
friend class Queue;
friend class Sorted_Queue;
friend class sub_gqueue;

// data members

private:
int id; /7
int priority; /7
status state; /7

//
//

int size;
int bursts [MAXBURSTCOUNT] ;

int burstcount; rl
int burstoffset; /7
int currentburst; /7
long arrivaltime; /7
long iocomptime; /7
long exectime; !/l
PCB *next; /i

contains the basic members which are
scheduling algorithm such as FCFS.

process ID

priority of process

process status

size of process

bursts

of bursts

index of current burst

length of current burst

time when a process was loaded
time when I/0 completion will occur
total run time

pointer to another PCB

// member functions, most member functions are defined to access and update

// the data members

public:
PCB(char *jstr); 1/
PCB(); //
PCB(const PCE &) ; ¥ 4
~PCBE (void); //

int get_id() (return id;)}
status get_statel()
int get_size() (return size;)
int& get_bursts(int boffset)
int get_burstcount()

int get_burstoffset()
long get_arrivaltime()
long get_iocomptime()

long get_exectime()
int get_priority()

void print(); /7
void release(); I/
void change_state(status st)

void inc_burstoffset()
void comp_arrivaltime(long curtime)
void comp_iocomptime(long curtime)

{return state; }

constructor
constructor
constructor
destructor

{ return bursts{boffset]; }
{ return burstcount; }
{ return burstoffset;)}
{ return arrivaltime; }
{ return iocomptime;)
{ return exectime;}
{ return priority;)}

print the PCB
destory the PCB

(state=st;)}
{ burstoffset++;)

{ arrivaltime=curtime;)}

(iocomptime=curtime; }

void comp_exectime(long curtime) {exectime += curtime; }
PCB *get_next() (return next;)
int get_currentburst() { return currentburst;)
void comp_currentburst() { currentburst = bursts(burstoffset];)
void currentburst_makezero() (currentburst = 0;)
) void update_burst(int guantum) { currentburst -= quantum;)

// class EXPCB is one of subclass of class PCB. This class is defined by
// adding data member 'queue' which indicates the current subgueue where
// a process was assigned to implement multilevel queue scheduling algorithm

class EXPCB : public PCB {
friend class Queue;
friend class Sorted_Queue;
protected:
int queue; // indicate the current subqueue
ExXPCB *next; // pointer to another PCB object
public:
ExPCB(char *jstr): PCB(jstr) (queue=0; }
ExPCB(const PCB &) { queue= 0;)}
int get_gqueue() { return(queue); }
void comp_gueue() { queue++;)
void queue_makezero(int n) (gueue = n; }
EXPCB *get_next() (return next;)

Yi

// class EExXPCB inherited from class EXPCB is defined by adding the data
// member ‘turn' to store the number of turns which a process spent in the
// current subgueue to implement multilevel feedback queue scheduling

// algorithm.

class EEXPCB : public ExPCB (
friend class Queue;
friend class Sorted_Queue;

protected:
int turn; // # of turns which a process spent in a
// subqueue
EEXPCB *next; // pointer to another PCB objects
public:

EEXPCB (char *jstr): ExPCB(jstr) (turn=0;)
void comp_turn() (turn++;)}

void comp_gueue() ;

void turn_makezero() (turn = 0;)

EEXPCB *get_next() { return next; }

int get_turn() (return turn;)

LELLLELTELETLFPEL L0 0P 0PIl 007008t iririiilrirririiridiniiiliizey
/7

/7 queue.h

/7

// This is a header file to implement the queues (the ready queue, the job

// queue, the blocked queue) which are used in process scheduling. Class Queue
// and its subclasses are defined in this file.

/7

FRLEERLELL LR EL R L LR L LR LR L EE LTSI E L LR L L LT AL R R Lt L Lo

// Class Queue was defined to implement FIFO queue. The ready gueue of FCFS

// and RR scheduling, the job gueue, and blocked queue are created from class
// Queue. FIFO queue is easily constructed based on class PCB by including the
// pointer to another PCB.

65

class Queue (

protected :

T *top; // header of the gueue

T *end; // tail of the queue

int num; // number of processes in the queue
public:

Queue () ; // constructor, initialize data members

virtual wvoid Enqueue(T *Node) ; // enqueue operation of the queue

T *dequeue (void) ; // degqueue operation of the queue

T *remove_pcb(int id); // remove a process from the queue

T *Head(void) (return top;) // return the header

T *Tail (void) (return end;) // return the tail

void print(void); // print the elements of the gueue

int GetNumProcess() (return num;) // return # of processes in a
queue

void change_num{int i) (num=num+i;) // increase the # of processes
3

// This class is to implement a subgueue of multilevel queue scheduling

// algorithm. This is inherited by class Queue. The ‘'quantum' data member is
// added since each subgueue is scheduled by RR scheduling with the different
// quantum size in multilevel queue scheduling.

class sub_queue : public Queue

protected:
int gquantum; // each subgueue has its own guantum
public:
void put_values(int m,int n){ quantum =m; } // assign quantum size
int get_guantum() { return(this->gquantum);)} // return guantum size

Y

// This class is defined as a subclass of class subgueue by adding the 'turn®
// data member to class subgueue for multilevel feedback queue scheduling. In
// multilevel feedback queue, residency rule is assigned to each subgueue.

// When a process used up amount assigned to a subgueue (amount = turn*gquantum
// size), the process moves the lower-level subgqueue.

class Exsub_gqueue : public sub_gueue {

protected:

int turn; // turn assigned to a subgueue
public:

void put_values(int m,int n) (gquantum =m; turn=n ;.)

int get_turn() { return(this->turn); } // return value of turn
Y

FPELITELEIPEL 200000007000 E i iii it rrrrirrriiiliiiiiiiriideliiririreilsly
1/

/7 sortedqueue.h

1/

// This file implements the sorted queue in ascending order. Sorted gqueue is
// used as the ready queue in the SJF and priority algorithm. This queue is

// inherited from class Queue but it has its own engueue member function which
// overrides the parent’s engueue function.

/7

FILLTTLEIIEE 0TI L0000 Er i iil i iiitrrriiriririiirrriiidiiirriiirtily

#define BURSTSIZE 2

#define PRIORITY 1
class Sorted_Queue : public Exsub_gueue ({
private:
int bywhat;
public:

void assignbywhat(int n) (bywhat = n;)}

void Enqueue(T *cur);

PIPTTEEEITEEEREIER PRI EREEET LI Ed L E R0t 0 00070t iiiiiiiiteiiitttlitery
/7

/! memory.h

/7

// This header file is for the simulated memory. The main memory is simulated
// as a counter which decreases when a process acquires memory and increases
// when a process releases memory. At default, 512 allocable units are

// specified as an upper bound and 12 units as a lower bound.

1/
LEEETTITEEPLETTELEREEPFEEL I P LR L b3 0T EE I Eiiidiiritittiiitiriieis!

// This class defines the information and functions to manage the simulated

// memory. Memory manager is responsible for checking, acquiring, releasing,
// and reporting statistics about the memory. This class is used in different
// kinds of scheduling algorithm with same type. The total number of processes
// should be less than the degree of multiprogramming.

class Memory (
friend class loader;

protected:
int availmemory; // maximum allocable units of memory
int minmemory; // minimum allocable units of memory
int pcbcount; // total # of processes in main memory
public:
Memory () ; // constructor, values are assigned by
// default
Memory(int n); // constructor, values are assigned by
// user
rvalue checksizel(); // check if there is enough memory to
// load a process
Boolean acquire(int job_size); // acquire the memory when load a
// process
void release(int jsize); // release the memory when a process
// terminates
void print (FILE *memoryfile); // print the information about memory
int getpcb() (return pcbcount;) // return total # of processes in
system

void compute_pcbecount(int i) { pcbcount = pcbecount + 1i;)
// compute the total number of
Processes

¥;

FLLLLPLLEP TP E0 00000007707t i il iiidiiiiiririrriiiediririilrlitistiriiril
Y

// loader.h

1/

// This is a header file to implement object loader which is responsible for
// loading processes into main memory. Loader moves all available jobs from

// the disk and the job queue to the ready queue. Loader stops when there is
// no incoming process and memory is full. Disk is simulated as input file.

// The processes in the job queue have a higher priority than any new arrival.
//

FELFETLL LT EE R TR LR LA L L EE L L EL L LT LR LR L L LT L L L L E LA LA EE LY

// This class creates the object loader of all scheduling except multilevel
// gqueue. GoToReadyQueue function is defined as virtual function since a
// subclass’s GoToReadyQueue overrides it.

class loader (
friend class Memory;

67

friend class scheduler;

protected:

FILE *inputfile; // simulated disk
public:

loader(); // constructor

void LoadJob(Queue &jqueue, Memory &m, RQTYPE *rqueue, CLOCK cl);

// load a process
virtual void GoToReadyQueue{T *cur, RQTYPE *rq);

// enter a process into the ready queue
rvalue Status(Queue Jqueue) ; // check status of disk and the job

// queue

;!/////f////f//J///////////f////////!//!!//!///!////i/////!//f////f///////////
/

!/ exloader.h

//

// This class inherited from class loader is defined by having the its own

// GotoReadyQueue function. This function includes the extra actions to assign
// a process into its subgueue permanently by priority of the process in

// multilevel queue scheduling.

i

TIIELTIILET TP TP T 007070000 i 17 h0 0 i1t iiitiiiiiniiitiiilrili

class Exloader: public loader ({
public:
void GoToReadyQueue(T *cur, RQTYPE *rqueue);
// enter a process into its own subgueue

}:

TITEETTITETT L ET 000000 Ei T i it ririirr it iri it iiri ittt i riirirriy
;j scheduler.h

;; This is a header file to implement scheduler which dispatches a process to
// the CPU and maintains the process after execution.
;;////////f//f//////f////////f!////f////f//f///!/////////////////f////////////

// This class is to implement dispatcher (a part of scheduler), which removes
// the process from the ready queue and gives it to the CPU. This class
// creates the object dispatcher of FCFS, SJF, priority scheduling.

class Dispatcher (
public:
T* Dispatcher: :Dispatch(T *CurrentPCB, RQTYPE &Rgueue, CLOCK &cl);
// dispatch the process

}i

// This is to implement cbject scheduler of non-preemptive scheduling

// including FCFS,SJF, priority scheduling. This class could be a prototyping

// of extended and complex scheduler. This class places a process on the

// blocked gueue when the process request I/0. After I/0 service, a process is
// moved to the ready queue by scheduler. When a process terminates, process's
// memory is released and the process is destroyed. Also the information about
// the process is reported to the jobdone file. The statistics about system

// performance are collected and reported to a memory file at every 500 clock

// units

class scheduler {
protected:
FILE *memoryfile;
// output file to contains the information about the system

68

FILE *jobdonefile; // output file to contains the information about the

// terminating process

int jobdonecount; // total number of processes terminated
public:
scheduler () ; // constructor
void update_burst (T *cur); // update the information of current
PCB
void blocked(Queue &bg, RQTYPE &rqg, CLOCK &cl);
// place to the blocked queue
rvalue unblocked (RQTYPE *rg, Queue &bg, CLOCK cl);
// place to the ready gueue
void report(int option, Queue jg, RQTYPE &rg, Queue bg, CLOCK cl,
Memory ml); // print information to the output file
void terminate(T *cur, Memory &ml, CLOCK cl);
// actions when a process leaves the
// system
void close_file(); // closes the output files

virtual void GoToReadyQueue(T *cur,
Lf

RQTYPE *rq);
enter the process to the ready queue

j;f!///!///////f////f////////f/////!///////////f/f//f//////f////f/////////////
!/
L/
// This source file contains the member functions of class PCB and its

// subclasses.

/7

VLIS LR LR LR L L BT LB T L L L P L L LR B F L LR L L L AL EE LT P LR

pch.C

#include "pcb.h"

FLELLTEELILERPLELI PR LT 0PI TR0 T R0 EET i ET i di i it i iiieiitireriiiteitly
/

/! PCB Constructor of class PCB
/7 Purpose : This function is used to construct an object PCB. It
// initialize some data member as 0 and assign the ID,

// size, priority, CPU bursts, and current burst by the input string. A

// process is in one line with the form of <ID> <size> <priority> <burst 1

// burst n>. This is called from loader.LoadJob() to create a new PCB.
LILLLELTTL T ET I E i i T I T ITT i i il iiiiiiririititiiirittil?iililly

PCB: : PCB(char *jstr)
(

char *tmp;

tmp = new char[81];

id = atoi(strtok(jstr," "));

state=START;

size = atoil (strtok(NULL," "));

priority = atoi(strtok(NULL,"

burstcount = 0;

while((tmp= strtok(NULL, " \t\n")) != NULL)
bursts[burstcount++]=atoi (tmp) ;

// get the process ID
// initialize the status to START
// get the size of a process
" // get the priority of a process

// get the CPU bursts
// get the count of burst

iocomptime =0; //
exectime = 0; 1/
currentburst=bursts[0]; i

initialize iocomptime to 0
initialize exectime to 0
put the first CPU burst as current

// burst
burstoffset = 0; // initialize burstoffset to 0
next=NULL; // initialize next pointer to NULL

}

FLEPEPILEEREELN I ELE0 P08 0E 00000 E 80 b it i b iitiiiriiiiediititietiiitrliie

/!

// ~PCB

69

: Destructor of class PCB

// Purpose : This function is used to destroy a PCB when the precess
1/ terminates.
PEEEETLIEIELTLEI 200 AL L0 P20 EILI 2000 IT 200 E 0212 b i i 2101008000 011701117

PCB: :~PCB(void)
(

}
LITELEEETLLTLI L P LELEL LTI LTI 00 000000000 Et 10000t iiiit1108itliiteliretts

cout << "destorying “<<endl;

l/ release : Member Function of class PCB
/1l Puepose : This function is used to destroy a PCB when the process
I/ terminates.

TELIEEELTIIZEI L2 E2 000000000070 0007000 0000000000000 00000000001000007081010811171

vold PCB::release()
{
if (this->state == TERMINATED)
delete(this);
)

LILEELIDEELEL P LTI ETTET LT E TP TE LTI R LI E LI A0 8P r i1 i 7iiiitiliritdl

/7 Print : Member Function of class PCE
/7 Purpose : This function is used to print the information of a
// process when the process terminates.

LELELLEETEIEE LRI EITEEEI IR RI A0 R EEE I 00 b i b iin bbbt iiidiiittiiiiiirtl

void PCB: :print{void)
{
cout<< "id :" <<id << " state :" << state <<endl;
cout<< "size :" <<size << " burstcount :" << burstcount <<endl;
cout<< "burstoffset: "<<burstoffset<<endl;
cout<< " arrival times :" << arrivaltime <<endl;
cout<< "currentburst :" <<currentburst<<endl;
cout<< " ::::::::==========================='dﬂendl;,

}
LITLEEEILEEEEI L ELET PRI E BRI R R0 TR bbbt bbb iri b bt bi ittt bbb iell

/Y CompQueue : Member Function of class EExPCB

// Purpose: : This function is to used to update the subgueue for next
/! execution when the process used the amount assigned to
' the current subgueue. The turn for next subgueue is

/7 assigned to 0. This is called by

¥4 MLFQ_schduler.update_gueue() .

PLFPTITEETLI LT EP P T E TP T T ittt ririideiriiid i irediiiiirtiriiiiiitirtiy

void EExXPCRB::comp_gueue ()
(

queue++; // update the subgueue which a process
// will stay
turn = 0; // initialize to 0

SILEDEEP I LTI PR 0 0008t i i i iireiiiiidiyiriiririiititiiiirtriitrrliziel
/!
/7 queue.C

{7
// This file contains the source programs about member functions of class

// Queue.

H
JIIIITELE P07 0 E 0 E7 T ittt iir il iiiiiiiitriiiririirrrrsiiiiitiliilirirgy

#include "gqueue.h"

70

LELEEELLTLLEELTHTTRIS LI L0 EL L L EE LI ELE L E 0 i d b7 dTiisitIliriiriirii

l/ Queue : Constructor of class Queue
!/ Purpose : This is use to construct the object FIFO queue. It
!/ initializes data members.

PEELLTITIER L AL EL L0 L0 B0 EL I E B0 E i D i b L it i ireiiestiy

Queue: :Queue(void)

(
top =end = NULL;
num=0;

}

LOLLLEELLLLEEEITLI IR LE L0080 1000000 E 200t id i i ieritteiirtitiiy

// Enqueue : Member Function of class Queue
/1 Purpose : This is use to append the PCB at the tail of the FIFO
// queue. It is called from loader and scheduler.

FEEETRERTI LR EEL B0 T EE 70000 EE i Ea i it ii izttt iiit it idrittintitizeitiiislt

. void Queue: :Enqueue(T *Node)
{
Node->next = NULL;

if (this->top == NULL) // queue is empty
this->top = this->end= Node;

else

{
{this->end) ->next = Node; // append at the tail
this->end=Node;

}

this->num++;

LLLLELIETETI L EL 70700t itiriridit i iriiiiiritriiiitiiiiiiririris

/7 dequeue : Member Function of class Queue

/7 Purpose : This is used to removes the process at header from

/Y gueue. It returns a pointer to the PCB removed. It is
/Y called from lcader and scheduler.

R NN NN

T *Queue::dequeue (void)
{

T *tmp;
if (top != NULL) // queue is not empty
{
tmp=top;
top=top->next; // remove the process at header
if (top == NULL) // queue become empty
end=NULL;
num-- ; // decrease the number
tmp->next=NULL;
return(tmp) ;
}
else

return (NULL) ;
)

FELLEELLTILEI L IEET I T E LI EL it iriiiiitirtriieriniitid

// print : Member Function of class Queue
/7 Purpose : This is used to print all PCB in the queue. It traces
/7 whole gqueue.

LEEETLLEETEEEEEEF LRI EIEEEEE TP L EEI L E TR i i i bbb i it i iei bl iiii it i iii it ir

void Queue::print(void)

71

T *tmp;

cout<< "Queue::print :";
cout<< num<<endl;

tmp=top;

while(tmp != NULL)

(// traverse whole queue
tmp->print(}; // print the PCB
tmp=tmp->next; // go to next PCB

}

cout<<"\n ~-=-mcmmmm "<<endl;

}

LETLEETELEIIEEEIPETER PP 0000t bid i iiiditiritidiiriitdiinititiitiiiilitd

/1l RemovePCB : Member Function of class Queue

/7 Purpose : This is used to remove the PCB which has same ID as

!/ input. It traverse the queue until it finds a PCB which
A has same ID as input. It then removes this PCB and

/! update the queue. It returns the PCB removed.

HELLTETIII PP PP I 08Tt it i i iridl id ittt itiii i rriidei it itrri i ininiidiiliryr

T *Queue::remove_pcb(int id)
{

T *eur;

T *prev = NULL;

cur=top;
while(cur->id != id)
{ // traverse the gqueue until finds the PCB that has input ID

prev = cur;

cur= cur->next;
}
if (prev == NULL) // header has same ID
{

top = top->next;

if (top == NULL)

end =NULL;
}
else
(
prev->next=cur->next; // remove the PCE
if (prev->next == NULL) // update the gueue
end=prev;
}
num-- ;
return(cur) ; // return the PCB removed

LEELTTELELERL L LA L0 bbb it irrriiii i iri i tiriiriidirrridriiitl
;; sortedqueue.C

ﬁﬁ This is a souce file to contain the member function of class Sorted_Queue.
jﬁ/!////!/!/////////////////////////////////////!f///////!////////////////f///

#include “sortedgueue.h”

PELLTIIEN PP B0 i tii it irii it i ririd it rt it rrrrfr bt iriririnirtiitey
/4

/7 Enqueue : Member Function of class sorted_gueue

/7 Purpose : This function is used to implement the enqueue operation
/7 of ordered queue. When a process is inserted to the

/7 gueue, processes are sorted by priority or the CPU

72

1/
s
/7
/7

burst. Until finds the process which has the lower-level
pricrity or the larger CPU burst than the inserting

process,

it traces queue.

Ny NNV Ny N v aay.

void Sorted_Queue::Enqueue(T *cur)

{

T *tmp;
int flag:;

cur->next = NULL;
if (top == NULL)
{

top=end=cur;
num++ ;

else
if (bywhat == PRIORITY)

(
tmp=top;
flag =1;
while (
NULL))
(

(tmp->priority

flag=0;

if (tmp->next ==

{
tmp->next
end = cur;
num++;
break;

// queue is sorted by
// priority

<= cur->priority) && (tmp !=

NULL) // insert at the tail

= Ccur;

else if ((tmp->next)->priority <= cur->priority)

tmp=tmp->next;

else

cur->next=
tmp->next=

num++ ;
break;
)
}
if (flag == 1)
{
cur->next =
top= cur;
num++;
)
}
else if (bywhat == BURSTSIZE)
(

tmp=top;
flag =1;

// go to the next process

// insert at appropriate
// position

tmp->next;

cur;

// insert at header

top;

// sorted by the length of
// current CPU burst

while ((tmp->currentburst <= cur->currentburst) && (tmp

'= NULL))
(
flag=0;
if (tm‘p——bnext =
{
tmp->next
end = cur;
num++ ;

73

NULL)
// insert at tail
= cur;

break;
}

else if ((tmp->next)->currentburst <= cur->
currentburst)

tmp=tmp->next; // go to next process
else
(// insert at appropriate

// positicn
cur->next=tmp->next;
tmp->next=cur;
num++ ;
break;

}
)
if (flag == 1) // insert at header
{

cur->next = top;

top= cur;

num++;

LTI EEP LT E LT R E e i i iiiiiiriieriiririierinirtiiiritrirtritiitlirlily
/1

/7 memory.C

//

// This is source program to contain the member functions of class memory.

/7

LILELLITETIEI I LA Er T ii it st iiriidiririiitiitirtidiirtirtiriy

#include “"memory.h"

LIETTLELI NPT 0P 0 TT 00 P iEdii ittt i il ir b tiititidiriiiiiiieriiis
o

I/ Memory : Constructor of class Memory without argument
/7 Purpose : This is used to create object memory. The values are
I/ given as default.

LETELLELEEE 0000000000 PP LT PP P00 P r et iiiitirieiiiitiniiriiriisy

Memory: :Memory ()

(
availmemory = maxmemory;
minmemory = 12;
pcbecount = 0;

)

PEIEPPETEL AP EI T T I i it iiit il ididefiiitiiiiiiiditididriititititirirtis/
/!

// Memory : Constructor of class Memory with argument
// Purpose : This is used to create object memory. The values are
/7 given by user.

LEPETEEETITEEd it ittt itir it irtiri ittt ririiitidreriirtriiitiitiriritiiid

Memory: :Memory (int n)
{
if (n > maxmemory) {
cerr<< " Memory size max = 512"<<endl;
exit (0) ;
}
availmemory = n;
minmemory = 12;

74

LOTLEEELET LTI IS0 L LT L8000 0BT T LR LTI I I8 i i itiitiellilrill
’H

/1 acquire : Member Function of class Memory

/ Purpose : This is used to acquire the memory to a process when the
/ process is loaded. It returns FALSE when there is no

'y enough memory to load the process, Otherwise returns

// TRUE. It is called from loader.

LELLIEITELDI TR LI TR B TFTF I P00 E 0L i P Il I 7 il el i iiinliiiiiititi

Boolean Memory::acquire(int job_size)
{
if (job_size > availmemory)
return(FALSE) ;
avallmemory-=job_size; // acquire memory for a process
return (TRUE) ;
}

LETEREITITEERPEEEE P EER 00 R 0 LR b E b b i ii bbbttt it idi ittt iiiitirey

e checksize : Member Function of class Memory

I/ Purpocse : This is used to check if there is minimum memory to

/il execute the system and total number of processes is less
I than the degree of multiprogramming. It is called from
!/ loader.

FOIPPETTEII 000007 r b i b i ittt trriid il iridirditiiiitrdiiililtitiiii

rvalue Memory: :checksize()

{

if ((availmemory > minmemory) && (pcbcount < degree MP))
return (MOREMEMORY) ;
else
return (NOMEMOCRY) ;
}

LELPIELLLEL T L0000 0P80 07000 iriii i i fi it riitiieiiriirtitirtittlritls

// release : Member function of class Memory
// Purpose : This is used to release the memory when the process
/7 terminates. It is called from scheduler.

FIEEETEPEIIL LIS P PP il i i P E e 7 e b it irif sttt biirriiriiiirirtinily

void Memory::release(int jsize)
{
availmemory+=jsize;

}
PEEETELEPTEL I Pt d i i r it iiryiriistliiiririrdrtiliitiitiliiifiitiry

// print : Member Function of class memory
/1l Purpose : This is used to print the current allocable memory and
/7 allocated memory to memory file.

LLFLIRIEETEL 0P i 7 ittt iiiii e b iiriiirirrifritiiiiiiriiiiininiy

void Memory: :print (FILE *memoryfile)
(
// print the allocated memory and free memory to memory file
fprintf (memoryfile, " %124 %12d ", maxmemory-availlmemory,
availmemory) ;
}

JILETLLLLT APttt riitiiitiitdiiiiirititidrtirirt ittt ritiititliiilt
/7

/7 loader.C

/7

// This is a source program to contain the member functions of class loader

// and its subclass.

/7

JILLTILLERT LTI LD P LI E PPl el dririirririteiiriirirrtittiliiiriiri/

75

#include "loader.h"

PETELTEIILILIERETEI LGP0 0 0L 00000 ET LTI 2RI 2TEETEI L0000 Ei L1 iliiiittl!

1/ loader : Constructor of class loader
/7 Purpose : This is used to create object loader. When the loader is
/7 created, the input file which simulates disk is opened.

PEETETELFLIEEL TR L0 0 EL L0001 P8 EL P TP P b0 b i1 8 bbb i1 tdt ittt

loader::loader ()
{
if((inputfile =fopen("in.data", "r")) == NULL)
cerr<<"Error file open®"<<endl;

}
CITTELTERTIED L0 PP T L0 E LI D000 007007000 i1t itrilediiriilitilll

/7 GoToReadyQueue : (sub) Member function of class loader

/7 Purpose : This is used to place the process on the ready
/7 queue. It is defined as virtual since the

/7 subclass's function should override it. It is
i 4 called from LoadJob member function.

FEEVIIEELEETEPER IR EL TR EE LT T2 b0 i i iii i tiriitirdiiiditrridirtirilittirilge

void loader: :GoToReadyQueue (T *cur, RQTYPE *rq)
{

}

rg->Engueue (cur) ;

LEFETEETILEEIEEEFEI LR IET DL LT EL PP E i b it iie it it it iiiibin i tiie il

1/ LoadJob : Member function of class loader

1 Purpose : This is used to load all available process from the disk
!/ and the job gueue into the ready queue. It stops when

!/ there is no incoming process and memory is full. It is
/7 called from system.

PHEIEEELILEL PP E0 TP 0 00 it it iti i i ir it iid b7t itiiitirrrririirriiitirtrlrniity

void loader: :LoadJob(Queue &jgqueue, Memory &m, RQTYPE *rqueue, CLOCK cl)
(

T *currentPCB;

T *readyPCB;

T *newPCB;

char buf[80];

int jid, jsize;

// traverse the job queue for all available processes candidates
currentPCB=jqueue.Head () ;

while((currentPCB != NULL) && (m.checksize() == MOREMEMORY))

(// finds the available processes
if(m.acquire(currentPCB->get_size()) == TRUE)
{ // load the process from the job gueue

readyPCB = currentPCE;

current PCB=currentPCB->get_next() ;

readyPCB =jgueue.remove_pcb(readyPCB->get_1d());
/ /rqueue.Enqueue (readyPCB) ;
readyPCB->comp_arrivaltime(cl.get_value());
readyPCB->change_state (READY) ;
this->GoToReadyQueue (readyPCB, rgueue) ;
m.compute_pcbcount (1) ;

else
currentPCB=currentPCB->get_next() ;

)

// load the process from input file
while(m.checksize() == MOREMEMORY)
{
if(!fgets(buf,B80,inputfile))
break;

76

cout<<buf<<endl;
sscanf (buf, "%d4d %4d", &jid, &jsize);
if (jid == 46)

cout<<"ggggg\n';

if (jsize == 0)
break;

if (m.acquire(jsize) == TRUE)

(// load the process from disk to the ready queue
readyPCB = new T(buf};
cout<<"readygueue ======"<<endl;

cout<<readyPCB->get_state()<<" : “;
readyPCB->change_state (READY) ;
cout<<readyPCB->get_state()<<"\n";
//rgqueue.Enqueue (readyPCB) ;
readyPCB->comp_arrivaltime(cl.get_value());
this->GoToReadyQueue (readyPCB, rqueue);
m.compute_pcbcount (1) ;

else
(// place to the job queue to wait loading
newPCB = new T(buf);
jaueue.Engueue (newPCB) ;
)

LEELEEEEIIEERIEEI PRI DI 00 0P E b b bii it iid it i idii i et idi it rei ittt i bt i it il

i Status : Member Function of class loader

1/ Purpose : This is used to check if there is new arrival. It there
1/ is no arrival, it returns NOMOREJOBS. Otherwise, it

1/ returns MOREJOBS. It is called from the system to stop
/7 the simulation.

LEPTETERTTIPET 0000 TP PP i it b iiiiiriidiririd i it ir i itiiriritittiririg/

rvalue loader::Status(Queue jgueue)
(
if (feof(inputfile) && (jgueue.Head() == NULL))
return (NOMOREJOBS) ;
else
return (MOREJOBS) ;
)

LEELTELEDIELIR I LR EEELTI R0 IR0 700 i i i i ii it il tiiii i iiriitidr it teriri

/7 GoToReadyQueue : Member function of class ExLoader
/7 Purpose : This is used to place a process to its assigned
1/ subgueue by the priority of the process.

POPLEIIITIE LTI T R0 i i it irdit i i it riiiiirsribiitirdintiiriiiiiilrti

void Exloader::GoToReadyQueue(T *cur, RQTYPE *rqueue)

{
int which_gueue;

which_gueue=cur->get_priority(); // assign the subgueue by priority
//cur->queue_makezero(which_queue) ;
rgueue [which_queue] .Enqueue(cur);// enter a process to its subqueue

LEEREEE LR EE P LR BB L B LEEL B L L LT L PR LR E B LA L LA E A L LR L LT
/7

/7 fcfsoj.h

/7

// class fcfs implements First-Come, First Served scheduling algorithm.

// FCFS scheduling algorithm is a non-priority and non-preemptive algorithm.
// class fcfs would be a superclass of other objects which implement

// scheduling algorithm. This class is a composite class which consists of

// several subcomponents classes. It has the "has_a" relationship with

77

// subcomponets. The subcomponets classes communicate with each other.
i
PILLELLTELL LTI LRI A0 8T E it i bt iriiidiitiriririttiliititittiiirly

typedef class loader LOADERTYPE:
typedef class scheduler SCHEDTYPE;
typedef class Dispatcher DISPATYPE;

class fcfs {

protected:
CLOCK cl; // object clock
Memory ml; // object memory
Queue JobQueue; // object job queue
Queue blockedQueue; // cbject blocked queue
LOADERTYPE 11; // object loader
SCHEDTYPE sch; // object scheduler
DISPATYPE dil; // object dispatcher
RQTYPE readyQueue; // object ready queue
public:

void call_system();

void system(loader &11, scheduler &sch, Dispatcher &dl, RQTYPE
*readyQueue) ;

virtual RQTYPE *get_ready() { return &readyQueue;)}

void report (RQTYPE &readyQueue) ;

void timer_lock(int &noreadyflag, int &unblockflag);

virtual void CPU(T *cur, RQTYPE *readyQueue);

virtual T *choose_next (RQTYPE *rg) { return rg->Head();)
virtual void LOAD(Queue &JobQueue, Memory &ml, RQTYPE
*readyQueue) ;

+i

PELTEEERETEETL 0P EE LI IR EEF LTI 2 bbb it iibiitdiedsidtitiitrtiiitiielie?

1/
!/ fcfsoj.C

!/
// This is a source code to contain the member functions of class fcfs.

// system member function is the main function and other functions are the
// sub functions called from system.

/
PELEERRETEIEEELL PP P EELETEEL R0 0000000 E it iriiid) iiiriied ity iiiirily

#include "fcfsoj.h"

LIELLPE00L 0000000 R0 00000000l riitrisidiriiiiidiriiisritliitilitiitiiirs/
/7 call_system : Member Function
/7 Purpose : This is used to call the system in main.

LIFTEELIILELEL LT HEEET PRI PP TP R LI i i i i it i iiiiitiid it ttiiiiiersrt

void fcfs::call_system()
{

)

SRR AT RS E TR E AU AR H G880 8 Al & 0 0 S48 01407 60 I A A 08 0 0 0 A
/7 LOAD : (sub) Member Function

1/ Purpose : This is used to call its own loader for leoading the process.
LIEITEL L EET LR 0007007 i i iidrii riiidiiiryiirriritilsirrtiiriririiilird

system(l1l, sch,dl, &readyQueue) ;

void fcfs::LOAD(Queue &JobQueue, Memory &ml, RQTYPE *readyQueue, CLOCK cl)
(

)

11.LoadJob (JobQueue,ml, readyQueue,cl);

78

///f/f///////////////f/f//////f//////////////////!/////////!/!/f!!///////!////

17/
Iy
1/
/i
r
//

1/

system

Member Function

Purpose : This simulates the system. It is a overall loop that

accesses the memory manager, the loader, and the
scheduler. The main procedures to execute the process
scheduling simulation are:
- loads the available processes from input file
- dispatch the process stayed at header of the ready
queue to the CPU and execute the CPU
- places the process which reguests I/0 on the
blocked queue.
- terminates the process which executed the last CPU
burst.
- moves all processes whose I/C reguest have been
completed to the ready queue for later execution
- reports the informations about the system every
500 time units
- check the input and the job queue to finish the
simulation
Above procedures are continue until there is no new
arrival process.

LETEEEILLEREI L EEEERT LR TR bR bR 200 I I LT P i LIt b Eriiitiiiiiliitttiet it

void fcfs:

*readyQueue)

{

:system(loader &1l1, scheduler &sch, Dispatcher &dl, RQTYPE

int donesimulation = FALSE;

int unblockflag
int noreadyflag

FALSE;
FALSE;

non

T *cur;

while(donesimulation == FALSE)

{

}

if ((11.Status (JobQueue) == MOREJOBES) && (ml.checksize() ==
MOREMEMORY))
// load all available processes into the ready gqueue
this->LOAD (JobQueue,ml, readyQueue, cl) ;
//({this->11) .LoadJob(JobQueue,ml, readyQueue) ;
// select the process which will be dispatched
if ((cur =choose_next (readyQueue)) != NULL)
{
if (cur->get_currentburst() == 0)
sch.update_burst (cur);
// update the variable of current PCB

this->CPU(cur, readyQueue); // simulate the CPU
}
else
noreadyflag= TRUE;
// unbleock all processes that have completed their I/O
if (sch.unblocked(readyQueue, blockedQueue,cl) ==CANNOTBLOCKED)
unblockflag=TRUE;
// when all processes stayed in the blocked queue
timer_lock(noreadyflag,unblockflag) ;

report { *readyQueue) ; // output statistics every 500 time
// units test for end of simulation
if({ (ll1l.Status(JobQueue) == NOMOREJOBS) && (ml.getpcbhb() == 0))

donesimulation = TRUE;

sch.report (FINAL, JobQueue, *readyQueue, blockedQueue,cl,ml);
sch.close_file();

79

LILITITLTLELELIEI 0200 ET LI I I 200820 L it riiiiriitetitirtly

/37 CPU : (sub) Member Function
I/ Purpose : This is a subfunction called by system to use the
Il system's own dispatcher and scheduler.

LILETTELIL R LI L D0 L0000 2L L EL 8P B L 802l ti i irirte i itittitlny

void fcfs::CPU(T *cur, RQTYPE *readyQueue)
{

dl.Dispatch(cur, *readyQueue,cl) ;
if (cur->get_state() == BLOCKED)
sch.blocked (blockedQueue, *readyQueue,cl) ;
else if(cur->get_state() == TERMINATED)
sch.terminate(cur,ml,cl);

)

LELTEETIPTELEEL L EH P00 00000t i it i ridttiiiririittiitiitiittitrisrilsy

/7 report : (sub) Member Function
/7 Purpose : This is a subfunction called by system to print the
/7 information every 500 clock units.

FILEHITTERETET L8000 0007000007000 i i iiirirtisiiiliiiiiritiniirititiriirs

void fcfs::report (RQTYPE &readyQueue)
{
if(cl.get_value() > {(cl.get_old()+500))
{
sch.report (NONFINAL, JobQueue, readyQueue, blockedQueue,cl,ml);
cl.compute_old(500) ;

}
LIELIPTIEEEEETETPT L0 P I IR b e i it b i i it ifiirdritrriridririlittiiritits/

/7 timer_lock : (sub) Member Function
1/ Purpose : This is to execute 1/0 when all processes in the memory
!/ stay in the blocked queue for unblocking the processes.

LLELLTEPPTETT P I EII L i ii i i iitiirird i riiiiiiliididdrodiidiriririirirtiry

void fcfs::timer_lock(int &noreadyflag, int &unblockflag)

{
T *tmp;

if{ (noreadyflag== TRUE) && (unblockflag==TRUE))

{
tmp=blockedQueue.Head () ;
cl.assign_clock(tmp->get_iocomptime()); // increase the clock
unblockflag=FALSE;
noreadyflag=FALSE;

)

LLLILELLPE0 T TR0 L0000 70000 i i il iidiriiiiiididiiiiiiititiiitiryy
{7

/! sjfoj.C

// This file implements the SJF scheduling algorithm. SJF scheduling algorithm
// 1s simulated by reusing the class FCFS except the ready gqueue.

1/

LIILLLTTIETT I8 EP PP E 70 P I P il irriiiiriiiriirdiiltiiiiliiltiiirtiilrl

class sjf: public fcfs {
protected:
Sorted_Queue readyQueue;
public:
virtual void system();

80

;///////!/////!///////f///////!////f//f/////////!!////////////////////////////
/

I system : Member Function

< /! Purpose : This function is used to call the fcfs’'s system.
/;/f/!/////f!/f////f///////////////f////////////f/f//f/////////!//f!///f///f//
/

void sjf::system()

{
readyQueue.assignbywhat (BURSTSIZE) ;
fcfs::system(ll,sch,dl, &readyQueue);

FEIITETEL L EEET 7000000000000 00000700t i i irirriiiiiiertiriritt/
&

// priority.cC

e

// This file implements the priority scheduling algorithm. Priority scheduling
// algorithm is simulated by reusing the class FCFS except the ready gueue.

/7

TIIITTEETEEE LT P00 b 00 i reiiiriirriidiirdiriidiiirirdiiliirititiiliirtiy

class priority: public fcfs {
private:
Sorted_Queue readyQueue;
public:
void system() ;
}i

LLDLLTIP PP E P00 7070000000700 E0 0800007 ririiiirdriiriliitiillitliirill/
!/

7/ system : Member Function of class priority

/7 Purpose : This function is used to call the fcfs’s system.
LETLPEEPPP L8 E TP i i i iiiiiiliii?iditiiriiiiitiiriiiiiiiiiiiliirilel
/!

void priority::system()

{
readyQueue.assignbywhat (PRIORITY) ;
fcfs::system(ll, sch,dl, &readyQueue);

PR s Q0 X8 0 A0 0 0 0 0 Y 40 7 0 A 80 I AT A S0 00 00 A 47 50 O 40 A 6 R T A 0 00 A A A i 6
/1717 rrscheduler.h

/7

// This is a header file to implement dispatcher and scheduler of RR

// scheduling algorithm. They are inherited from class dispatcher and class

// scheduler but they have extra actions to implement preemptive scheduling.
pir

FLLLLLETELPITFT LTI I8 00 E 7T i i iiliriidiiiirliiriiiliiriiirililesly

// class RR_scheduler inherited from class scheduler has some extra members to
// implement preemptive schedulings

class RR_scheduler : public scheduler {

protected:

int quantum; // guantum size
public:

RR_schedulex () ; // constructor

int get_guantum() { return(guantum); } // return guantum number
void update_queue(T *cur, Queue &rq);
// append to the ready queue after expiring the guantum

81

// class RR_Dispatcher inherited from class dispatcher has its own Dispatch
// function modified from parent’s Dispatch and two function related to update
// the variables related to the process and clock.

class RR_Dispatcher: public Dispatcher {
public:

virtual void update_value(CLOCK &cl, T *currentPCB, int quantum);
virtual void update_turn{ T *currentPCB, int quantum) (
cout<<"ddd\n";)}
T *Dispatch(T *currentPCB, RQTYPE &rgueue, CLOCK &cl, int
gquantum) ;

}i

LLEELEITTEEEI 770 0T 0 0008000000008 id it 7 iiiiiiiiiiiiiilittiiirtiitilrit
Fi rrscheduler.C

// This file contains the source code to implement of dispatcher and scheduler
// of RR scheduling

/

PILEEELTHIEL LTI I0E L P il r 20t iiirtritirtifriiiitiiitiiititly

LILLETETEFLIEE I LEP 00T PEDT TP E TR 007 P i it iriiiiiiiilriiliiiniirtittid
/7 RR_scheduler : Constructor

L Purpose : This file is used to create the object RR_scheduler. It
1/ gets the guantum size by the user.

LEILLETITLEL 00T ET 00080t i riiiiiiiidrilridirirtieiidtititiitiiily

RR_scheduler: :RR_scheduler ()
{

cout<<"Put the guantum”;
cin>>quantum; // get the quantum size

)
LIPETTETEII LT EEI PP PP LRI P TP E bbb r i iiiiiirir it iiiritrirtiiriirt/

// update_gqueue : Member Function of RR_scheduler
s Purpose : This file is used to append a process to the ready gueue
s when the CPU is preempted.

PEEPPEETETEP TR T P L7 i i i i td bt it it rrt bt b riirid i ndi b iiriridriisbdiliiiirsi

void RR_scheduler::update_gueue(T *cur, Queue &rq)
{

cur=rq.dequeue() ; // remove the process from the header
rg.Enqueue(cur) ; // append the process into the tail

)
LELLLELTRELTELL LTI L 0 E b T i 00t ii ittt iiiiiitdiniitiifittiirtiiisi

/7 update_value : Member Function of RR_dispatcher

I Purpose : This function is used to update clock wvalue, current
// burst and state of the process when the CPU is

// preempted.

PIPIEPELEEL LTI ri i trt it iri i iririri b iriiiiiriirtritiririiiiittirss

void RR_Dispather::update_value(CLOCK &cl, T *currentPCB, int guantum)
{

cl.compute_clock(guantum) ; // update the clock
currentPCB->update_burst (quantum) ; // update the current burst
currentPCB->change_state (READY) ; // update the state of process

}
PIEEIILTELERIPEEIPPEET L ELE LT EE0 it i i i i ii i tiriiitiiiitiidiliiri st

//// Dispatch : Member Function of RR_dispatcher
/4 Purpose : This function contains some extra actions for CPU
/7 preemption. When the current CPU burst is not greater

82

/ than the guantum, it uses the Dispatch function of its
// parent.
LELELTERETLEET IR I T IR T IR FED0 P80 i ET R i bbb it i i ri i idiiirtidi et iiiirit

T *RR_Dispather:: Dispatch(T *currentPCB, RQTYPE &rqueue, CLOCK &cl, int
quantum)
(

int offset;

currentPCB->change_state (RUNNING) ;
offset=currentPCB->get_burstoffset() ;

if (currentPCB->get_currentburst() > quantum)

{ // the CPU is preemted
this->update_value(cl, currentPCB, quantum) ;
return(currentPCB) ;

else

this->update_turn(currentPCB, quantum) ;
currentPCB=Dispatcher: :Dispatch(currentPCB, rqueue,cl);
return({currentPCB) ;

}

TIELLEELTITIT LT P00 00 E 000000ttt it iyl iiiiiiiiirilitirititiliititiy
Fi

/7 rroj.c

/7

// This file is used to implement the Round-Robin scheduling algorithm. The

// class rr inherited from class fcfs has its own dispatcher and scheduler for
// CPU preemption.

/7

LHLLPIEHEL AL E i E I i i it i iiiliii iyt iiitiiiirtdrdifiirtdiriiitriirililt

class rr: public fcfs {

protected:
RR_Dispather dl; // object dispatcher
RR_scheduler sch; // object scheduler
public:

void system() ;
virtual void CPU(T *cur, RQTYPE *readyQueue) ;
)i

FIILIPELII L EL LTI T 0 P TR F P i iR I L i ittt iiiiiiiriiririitriiitltitl
//// system : Member Function of class rr

// Purpose : This function is used to call class fcfs’s system
LIITTETEIEPELTLTIIE P 0L ET il Er i iiitrii i i ririiiiiiiirtriirriliirtiiti
/7

void rr::system()

{
}

fcfs::system(1ll, sch,dl, &readyQueue) ;

PELLILLTELL0T L0 P LTI P PP d P i i iri i iiiiiiiitiiidiritiitiitriitiisry

//// CBU : Member Function of class rr

/7 Purpose : This is sub member function called from the class fcfs's
/7 system. Only this part is different as the system of

/7 parent class.

LELLETTELEETT LT L LTI 000 E il i iy trreriririntiitirtiririliriiiriiri
/7

void rr::CPU(T *cur, RQTYPE *readyQueue)

{

cur=dl.Dispatch(cur, *readyQueue, cl,sch.get_guantum());
// use its own dispatcher for the CPU preemption

83

if (cur->get_state() == READY) // when the CPU is preempted
sch.update_gueue(cur, *readyQueue) ;
// append to the ready queue
if (cur->get_state() == BLOCKED) // when the process reguests I/0
sch.blocked (blockedQueue, *readyQueue,cl}) ;
// place on the ready gqueue
else if(cur->get_state() == TERMINATED) // when the process terminates
} sch.terminate(cur,ml);

;;//!///f/////////Z/////////////!////////!//!//////////////////!///////l!/////
/7 ML_scheduler.h

!/

// This file is a header file to implement the dispatcher and scheduler of

// multilevel queue scheduling algorithm. In multilevel scheduling, the ready

// gqueue is divided into several subqgueues. The priority scheduling is used

// among the subqueue and each subgqueue is scheduled by the RR scheduling with
// different gquantum size. Non-empty lowest numbered subgueue has the highest

// prority.

/7

TALLILELET LT REPP 000007000 i L iii i alidiriiririiyeiiirilririltiiell

// class ML_scheduler has the extra data member to indicate the number of
// subgueues and different GoToReadyQueue member function for the process to
// place on the ready queue.

class ML_scheduler : public RR_scheduler (

protected:

int maxsubgueue; // # of subqueues
public:

ML_scheduler () ; // constructor

int get_maxsubqueue() { return(maxsubgueue); }
void GoToReadyQueue (T *cur, RQTYPE *rq);
2

// class ml_Dispatcher inherited class RR_dispatcher has extra member function
// used to select the process which is in header of non-empty highest priority
// queue.

class ml_Dispatcher : public RR_Dispather
(
public:
T *findnext (RQTYPE *sq, ML_scheduler ml);
// select the highest priority process
Y:

LIT00ELLE00 I 0077 i T F il ieiiliiidrrrrlitilirrietittirlirtiriy
//

H ML_scheduler.C

// This file contains the source code to implement class ML_scheduler and

// ML_dispatcher.

7/

LIILLTLTEPLTEPETET L0000 P EP i it i i il iidiiiridriirirriiririfiliisilirtiiilri

#include “ML_scheduler.h”

LITEFTELIPIT L0000 r i tii et ititridiririrririrtiririniiiitrrlrrd
i ML_scheduler : Constructor of class ML_scheduler

// Purpose : This function is used to create the scheduler of the

// mltilevel queue scheduling. It gets the # of subqueues
[from the user.

PALELIIITLTTELE L0 L 08P i 0800700000007 00 00000000 iiiiiiiitirrr
MI_scheduler: :ML._scheduler ()

{
cout<<"Enter the numner of sub queues";// get the # of subgueues

84

cin>>maxsubqueue;

)
LITETTELEIIIRT L0 EE LT L0208 E b it bi it idnil el i iestitntiriiireiettl

//// GoToReadyQueue : Member Function of class ML_scheduler

/1 Purpose : This function is used to place a process on the

I subqueue where the process is assigned permanently
1/ according to the priority.

TELLLTIERLELET I I L0 LB B LT ET LT F L EL It I Ed 8B i i it iibitiiitiesly

void ML_scheduler: :GoToReadyQueue(T *cur, RQTYPE *rq)
(

)

rglcur->get_gueue()].Engqueue(cur) ; // go to assigned subgqueue

PLETEHEEREL DI 000 E 0200000000000 0 080 0P irtifdiiriritriiriiiti/

1/ findnext : Member Function of ML_scheduler
1 Purpose : This function is used to search the process which is the
'/ oldest at the non-empty highest priority subgueue.

PLEETEPPEEETIILEEILE 0000 L0 bR R 2 b i tiiiiirdiiidir i iiritiiitiiiriieills

T *ml_Dispatcher::findnext (RQTYPE *sg, ML_scheduler mlgqg)
{
int i;

for{(i=0; i <mlg.get_maxsubgqueue(); i ++)
{ // search the highest priority process
if(sg[i] .Head() != NULL)
return(sg[i] .Head());
}
return (NULL) ;

LLLEEEELE P S E LG L L P L LE T B E L LB L P L L L P L b L L L TS
[/

// mloj.C

/7

// This file is used to implement object multilevel gqueue scheduling. The

// class mlqueue inherited from class rr has its own loader, dispatcher,

// scheduler and ready queue which consists of several subqueue and some

// member functions which override the parent’'s functions.

1/

LELLLLTELPPL 0P Er i iiiridtdrtirirttirtitdrtiitridtidiiditdiriidririrdiry/

class mlgueue: public rr (

private:
Exloader 11; // loader
ml_Dispatcher dl; // dispatcher
ML_scheduler sch; // scheduler
RQTYPE Sg[l10]; // ready gqueue
public:

T *choose_next (RQTYPE *rq) ;
virtual void CPU(T *cur, RQTYPE *rq):;
RQTYPE *get_ready() (return Sq;)
void setupl); // give the quantum to subgueues
void system() ;
virtual void LOAD(Queue &JobQueue, Memory &ml, RQTYPE
*readyQueue) ;
}i

PELTETI DL PTEL 0PI P T ir i rriid ittt rdrir i idrt i it iri i iririns
/7 system : Member Function of class mlgueue

7/ Purpose : This function is used to call class fcfs’'s system.
PLILEPTIEI 700000000000 00000 i 0 i i iiidiiirrdiirilirridiriiliiiriftilirly

85

void mlgueue::system()
{

)

fcfs::system(ll,sch, dl, Sq);

LILELLLLTI 00T LET T TP Td LI LD S LT R b I E i E i i bii i ertettiilittitl ity

/1 LOAD : Member Function of class mlgueue
// Purpose : This function is used to call its own loader extended
/7 from parent's

LELITLELEL T DT 0L DT T LD EI T EET L b b DT E i T di i iri i iiiiiniiitliintlt/

void mlqueue: :LOAD(Queue &JobQueue, Memory &ml, RQTYPE *readyQueue)
(

11 .LoadJob (JobQueue, ml, readyQueue) ;
)

FEEETELEEREEEIP 0000000000000 TR b i i i iii i idbliidiiiiiiiriritiiird

// choose_next : Member Function of class mlgueue
1/ Purpose : This function is used to call its own dispatcher to
1/ select the highest priority process.

FELTTELLEELL PP TT T L0 0T R0 0 0000000807000 00 ittt iiiitiirifiriiriiririiieiils

T *mlgueue::choose_next (RQTYPE *rq)
{
T *cur;

cur = dl.findnext(rg, sch); // get the highest priority process
return(cur) ;
}

LHLLEELPETLIT 000 Ei it ireddiiriiriiiiidieddrdrriiisiitiitiririiis

/7 CPU : Member Function of class mlgueue
/1 Purpose : This function is called from the system of class fcfs’'s
// to implement the CPU of multilevel gueue scheduling.

FLETEPEPLPE i I EL P II P P L EL i P i it it i i iridirii it rtitiiiritrtier/

void mlgueue: :CPU(T *cur, RQTYPE *rq)
(
int which_qgueue;

which_gueue = cur->get_gqueuel() ;
dl.Dispatch(cur, rqlwhich_gueue],cl,rg(which_gueue] .get_gquantum()) ;

if (cur->get_state() == READY)

sch.update_queue (cur,rgl[cur->get_gqueue()]);
else if (cur->get_state() == BLOCKED)

sch.blocked (blockedQueue, rgl[cur->get_qgueue()],cl);
else if (cur->get_state() == TERMINATED)

sch.terminate (cur,ml) ;

}
LEPLELLELELPELLTEI L0000 PP I L 0 i i i i itiiiedfitiiriiiiittiiieiirill/

/1 setup : Member Function of class mlgueue
/7 Purpose : This function is used to assigns the quantum to each
I/ subgueue.

LELERERE L EEE LS G L LD L LA L P LR L L L L L L 8 E L H LT T

void mlgqueue: :setup()

{
Sq[0] .put_values (20,0);
Sqg[l] .put_values(30,0);
Sqgl(2] .put_values (50,0);
Sg(3] .put_values(80,0);

86

LITLTLLEELLL0 P2 LT EL LTI I0 00000700 bd i firdiirtiririliitiiiteiy
/7

/7 MLFQ_scheduler.h

//

// This is a header file to define object dispatcher and scheduler of

// multilevel feedback queue scheduling. They have some extra actions and

// variables to allow the movements of the processes among the subgueues.

/7

LEETELEETEIETEEFEEEIT LR LB RELII IR ERL R EFEE b L it i b it irirttbiiiititintiii

// This class has its own member functions which override its parent’s since
// queue and turn variables of the PCB are updated after dispatching to the
// CPU

class mlfg Dispatcher : public ml_Dispatcher
{
public:
void update_value(CLOCK &cl, T *cur, int guantum) ;
) void update_turn(T *cur, int quantum);
}i

// class MLFQ_scheduler adds the some extra actions to its parent for
// movements of the processes among subgueues.

class MLFQ scheduler : public ML_scheduler {
public:
void update_gueue(T *cur,RQTYPE *Rqg) ;
void GoToReadyQueue (T *cur, RQTYPE *rq);

LITEETPPELETLT I ELT T LTI EE P T ELi I 8L r i ifireiiiiriiziiriitiitsirss
j; MLFQ_scheduler.C

;ﬁ This file contains the source code about member functions of class

// MLFQ_scheduler and MLFQ_dispatcher.
;;////f//////////////////////!////////////////////////////////!///////////////

#include "MLFQ_scheduler.h

LEELLELETE 0P 0 0000000000007 0 0 i it iiiirididtriridrdlitirdiiriltiiiiitlilirt
/! update_gueue : Member Function of class MLFQ_scheduler

1/ Purpose : This function is used to move the process from current
17 subgqueue to another subqueue which has lower priority

/7 when the process used up # of turns assigned to the

// current subgueue.

LEILTEILERELLS I ITEIT L0000 0T P i i iidriid it iiriiiiriritittiiiirsy

void MLFQ_scheduler: :update_gqueue(T *cur, RQTYPE *Rqg)
{
int whichqueue;

whichgqueue=cur->get_qgueue() ; // get the current subgueue

Rg[whichgqueue] .dequeue() ; // remove from the ready queue

if ((cur->»get_turn() == Rglwhichqueue] .get_turn()) && (cur->get_gueue()

1= 13)) // when used up # of turns assigned to the current gueue
cur->comp_gueue () ; // get the subgueue where the process

// will stay
Rg[cur->get_queue()].Enqueue(cur) ; // place on the subgqueue
obtained

)

87

/////////!///f////////f/f//////f///////!/!f////////////////////!/f//f//!l/////

7/ GoToReadyQueue : Member Function of MLFQ_scheduler

’ Purpose : This function adds the extra actions when the

/H process place on the ready queue after I/O is

// completed. If the process is blocked after staying
/H in the lowest priority subqueue, the process goes
! to the highest priority subgueue after finishing
// the I/0 (aging).

PITITIIEITE P LR8I 000000010 h b i i i ii i tir i iritiiiiiilitiiitrty

void MLFQ_scheduler::GoToReadyQueue (T *cur, RQTYPE *rqg)
{ if (cur->get_gueue() == 3) // aging
{ cur->queue_makezero(0) ;
cur->turn_makezero() ;
;q[cur->get_queueli].Enqueue{cur];

FITITELEITEELTL PP 7000700 H 0L i i riiis i iiiriiitittiitrieittiftily

/7 update_vwvalue : Member Function of class mlfg Dispatcher
/1 Purpose : This function is used to update the ‘turn’ variable of
/7 the PCB

LEPTERETLEERERLE R ELEI I EE 0 P00 EEF T T b i bt e d i it it il itz iidiiitiitired

void mlfg Dispatcher::update_value(CLOCK &cl, T *cur, int gquantum)
{

cl.compute_clock (quantum) ;

cur->update_burst (quantum) ;

cur->comp_turn() ;

cur->change_state (READY) ;
)

POITTLPTETE P II P I e id it it i i i ir i i i i iriiiriririiiiriiiiiiitiiiiiiiril

/f update_turn : Member Function of class mlfg Dispatcher
/! Purpose : This function is used to reset the turn variable of the
/7 PCB when the current CPU burst is less than the gquantum.

SIEITETE I P A0 P ELHEEL P L i i i iirdirriiiitiriiiirtliririry

void mlfqg Dispatcher::update_turn(T *cur, int gquantum)
{
if (cur->get_currentburst() < guantum)
cur->turn_makezerol() ;

}

LIPIELEP I P00 I TP Ir T it riiisiiiryrritiirdiitiriiiriiliiriiirtiliry
!/

/! mlfgoj.C

//

// This file is used to implement multilevel feedback queue scheduling

// algorithm. The class mlfg inherited from class mlqueue has its own loader,
// dispatcher, scheduler, and ready queue.

/7

LLLLEEPET LRI L i it i it idririiriredririidiirirdiidiitiriritiiniililrzy

class mlfg :public mlgqueue ({

protected:

loader 11; // loader

mlfg Dispatcher dl; // dispatcher

MLFQ scheduler sch; // scheduler

RQTYPE Sq[10]; // ready queue : Exsubgqueue type
public:

void setup();
void system();

88

virtual void LOAD(Queue &JobQueue, Memory &ml, RQTYPE
*readyQueue) ;
virtual void CPU(T *cur, RQTYPE *rq);

i

FELETLLEIELLE 0700000000000 E 700878t bi i i it ieitdidiiditrititiiiitesiy
// LOAD : Member Function of class mlig

71/ Purpose : This is used to call class mlfg‘'s own loader.

LELITEEI LB EELEIIFEET I I LI EI LI FTELEI P EL LI EE 70 bt iiiriirtint ittt

void mlfqg::LOAD(Queue &JobQueue, Memory &ml, RQTYPE *readyQueue)
(

)

11.LoadJdob (JobQueue,ml, readyQueue) ;

LHELTETLIIEI 0070000000000 0000000000000 0000 0007007000000l iiliriiriiiti
7/ setup : Member Function of class mlfqg

Vi Purpose : This is used to assign the residency rule of each queue.
FEELLERTTRRELELEI PR 0 ELEEE 20000 bR i bbb iiiii i biiiiiiiintiiiniiiitiiirettl

void mlfqg::setup()

{
Sg(0] .put_values(20,3);
Sg(l].put_values (30,5);
Sg[2] .put_values (50,6) ;
Sg[3].put_values(80,-1);

}

LOLTTLDTETEE I ETE T i riir i it it ird i rdiiiiiiiiiifisriiiiiriiiiriiriy

/! CEU : Member Function of class mlfg
// Purpose : This function contains the different parts of parent'’'s
/7 system.

FEELLLERELERET LD R PIEDTEF I TP i L0 i i i iri i b iiii bt i it ib e i iiirriiiiinty

void mlfq::CPU(T *cur, RQTYPE *rq)
{

int which_queue;

which_gqueue = cur->get_queuel) ;
dl.Dispatch(cur, rg[which_gqueue],cl, rg[which_gueue].get_quantum());
if (cur->get_state() == READY)
sch.update_gqueue (cur, rq) ;
else if (cur->get_state() == BLOCKED) ;
sch.blocked (blockedQueue, rq[cur->get_gqueue()],cl);
else if (cur->get_state() == TERMINATED)
sch.terminate(cur,ml) ;

}

PELTEILLEEL DT E L LI E it T i i i i i it iiiitiriidr it ritriittiiititiitiilly
1/ system : Member Function of class mlfg

/1 Purpose : This is used to reuse system of class fcfs.
PIPLEETTETTEET LI P LT LT P L T P i 77 i i i i iitiiiiriitdiritiririii

void mlfg::system()
{

)

fcfs::system(ll,sch, dl,5q);

89

VITA
Yungah Park
Candidate for the Degree of

Master of Science

Thesis: A SIMPLE SCHEDULER GENERATOR TOOL
Major Field: Computer Science
Biographical:

Personal Data: Born in Bonghwa, Korea, October 18, 1968, daughter of Mr. Jongman
Park and Mrs. Hyunju Hwang Park.

Education: Received Bachelor of Science in Computer Science from Pohang University of
Science and Technology, Pohang, Korea, in August 1992; completed the
requirements for the Master of Science Degree at the Computer Science
Department at Oklahoma State University in December 1997.

Experience: Employed by Oklahoma State University, Computer Science Department as a
teaching assistant, January 1997 to August 1997.

Professional Membership: Korean-American Scientists and Engineers Association.

