
A SIMPLE SCHEDULER GENERATOR TOOL

BY

YUNGAHPARK

Bachelor of Science

Pohang University of Science and Technology

Pohang, Korea

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfilment of
the requirements for

the Degree of
MASTER OF SCIENCE

December 1997

A SIMPLE SCHEDULER GENERATOR TOOL

Thesis Approved:

ii

PREFACE

The CPU scheduler is a basic component that supports mUltiprogramming in operating

systems. Many scheduling algorithms have been introduced to improve the performance of

systems in terms of processor utilization. The best scheduling algorithm for each system

may be different based on the specific circumstances of that system. Object-oriented

programming, which facilitates reusability and extcndibility, has become quite popular for

many computer applications. This thesis work involved the design and implementation of a

simple scheduler generator tool. The scheduler generator tool simulated several scheduling

algorithms by using object-oriented programming as the implementation language. The

various components of the environment (i.e., the simulated operating system) used for

CPU scheduling were developed as objects, and the scheduling algorithms were

implemented using the technitques and characteristics of object-oriented programming. For

a scheduling algorithm selected, the scheduler generator tool can compute performance

parameters such as turnaround time, wailing lime, and CPU utilization. The too l can be

used for investigating the relative merits of scheduling algOlithms.

Jll

ACKNOWLEDGMENTS

I would like to express special appreciation to my advisor Dr. Mansur H.

Samadzadeh. He provided essential guidance and inspiration through my thesis work. Dr.

Samadzadeh continued La spend endless hours reviewing my work and offering

suggestions for further refinement.

I would like to thank. my other committee members, Drs Blayne E. Mayfield and

Jacques LaFrance. Their time and effort are greatly appreciated.

Finally, I would like to express my sincere thanks to my family for their continued

support. They helped me throughout my MS program. I couldn't have done it without

their continued love and support.

iv

TABLE OF CONTENTS

Chapter

1. INTRODUCTION]

II. LITERATURE REVIEW 4

2.1 Process Scheduling 4
2.2 Criteria for Scheduling Algorithms ... 7
2.3 Scheduling Algorithms ... " 8

2.3.1 FCFS 8
2.3.2 SJF 9
2.3.3 Priority ..]0
2.3.4 Round Robin II
2.3.5 Multilevel Queue 12
2.3.6 Multilevel Feedback Queue ... 12

2.4 Ohject-Oriented Programming .. 13
2.4.1 Data Abstraction and Encapsulation 14
2.4.2 Class and Access Control ... 16
2.4.3 Message Passing .. 16
2.4.4 Class Relationship and Inheritance J 7
2.4.S Polymorphism, Overloading, and Overriding , " 19

III. DESIGN AND IMPLEMENTATION ISSUES ... 20

3. 1 Implementation P~atform and Environment 2()
3.2 Ohjective 20
3.3 Design and Implementation Issues 21

3.3.1 Overall Hierarchy of Scheduling Algorithms 2]
3.3.2 Components of Scheduling System 22
3.3.3 Communication Among Objects 36

IV. EVALUATION OF THE TOOL .. 39

4.1 Input Fil.es and Hardware Specification 39
4.2 Output 40

v

Chapter

V. SUMMARY AND FUTURE WORK ... 42

5.1 Summary 42
5.2 Future Work 43

REEFERENCES 45

APPENDIXES 47

APPEMDIX A: GLOSSARy 48

APPENDIX B: TRADEMARK INFORMATION SO

APPENDIX C: INPUT FILE 5 J

APPENDIX D: MEMSTAT OUTPUT FILE 56

APPENDIX E: JOBSTAT OUTPUT FILE 59

APPENDIX F: PROGRAM LISTINGS ()3

vi

LIST OF FIGURES

Figure

1. Some Common PCB Fields " 5

2. Process Scheduling Model 6

3. Multilevel Feedback Queue Scheduling Algorithm 13

4. An Object ... 15

5. Overall Classification of Scheduling Algorithms 22

6. Hierarchy of Six Scheduling Algorithms .. ,. 23

7. Components of Process Scbeduling .. 23

8. Inheritance of class PCB and its subclasses ... 25

9. Definition of class Queue 26

10. Organization of class Queue and its subclasses 27

11. Definition of class Memory 28

12. Definition of class Loader ... , .. 29

13. Definition of class Ex Loader 30

14. Definition of class Scheduler .. 31

15. Organization of Dispatcher ... 32

16. Organization of Scheduler 33

17. Definition of FCFS Scheduling Objects ... 33

vii

-1 -

Figure

18. Definition of SJF Scheduling Objects 34

19. Definition of RR Scheduling Objects 3S

20. Definition of MLQ Scheduling Objects 3S

21. Definition of MLFQ Scheduling Objects 3S

22. Communication Among Objects 3g

23 . Format and Example of Process Request 3Sl

24. Part of a sample jobstat File 41

25. Part of a sample memstat File 41

viii

LIST OF TABLES

TABLE

1. RESIDENCY RULES IN MULTILEVEL FEEDBACK QUEUE 40

ix

CHAPTER I

INTRODUCTION

Multiprogramming and time sharing systems, which were introduced to improve

the overall performance of computer systems, are the central themes of modem operating

systems [Silberschatz and Galvin 94]. The basic objective of multiprogramming is to keep

the CPU busy executing processes as much as possible. In multiprogramrn:mg, several

programs are kept simultaneously in memory by switching the CPU among the processes,

thus CPU utilization is increased. When a running process has to wait, the CPU is

switched to another process and executes that process.

The part of an operating system that deals with the decision as to which process in

the ready queue is to be executed next, is called the CPU scheduler [Tanenbaum 94J. The

scheduler is one of the basic mechanisms to support mUltiprogramming together with

virtual memory. To support multiprogramming, when the CPU is switched to another

process, the scheduler must save the information of the old process and load the new

process' information into CPU registers (i.e., a context switch must take place). Also, the

scheduler changes the state of the ruTIrung process to either ready or blocked, selects a

new process that is ready, and cbanges the new process's state to ruruilng. The strategy

which specifies the execution order of the processes in the ready queue, is the scheduling

algorithm.

]

There are many scheduling algorithms implementing various properties and

policies. Research into developing more efficient scheduling algorithms continues. The

best scheduling algorithm for each computing system may be different based on the

specific circumstances of that system. Thus the criteria used to deternrine the best

algorithm for a given system depend on the characteristic of that system. For example. if

the system is a real time system, the criteria may focus on guaranteeing that the processes

complete within the defined time constraints [Nun 92].

Several different methods can be used to evaluate scheduling algorithms

[S:ilberschatz and Galvin 94]: deterministic modelling, queueing models, and simulation.

Among them simulation is used more often because it generates a more accurate

evaluation. In simulation, the components of a system would be represented as data

structures. N; the value of a variable representing the CPU clock is increased, the system

state would be changed and the parameters indicating the performance of various

scheduling algorithms would be computed.

Since the late 1980's, the object-oriented approach based on data abstraction has

become quite popular in computer application areas such as database, graphics, and

simulation [Ghezzi et al. 91]. This approach is a paradigm that views a software system as

a collection of interacting objects which are composed of their states (i.e., attributes) and

behaviors [Sommervile 96]. The attributes are represented as data variables and the

behaviors are implemented by the operations within an object. By adding the mechanisms

of data encapsulation, inheritance, and message passing to the idea of data abstraction, the

object-oriented approach is completed [Budd 91].

2

In the object-oriented approach, objects are handled as independent entities.

Changing and/or adding object attributes and object operations can be done at any time

without affecting other objects. Objects that have been already developed can be reused in

other system designs. Also, the attributes and operations of an object can be reused in a

subclass or other objects througb inheritance. So, the object-oriented approach facilitates

reusability and extendibility of software. Furthermore, the understandability and

maintainability of a system can be improved because the object-oriented approach

provides a clear mapping between real-world objects and software objects [Sommervile

96].

Operations or servIces held within each object in a system make up the

functionality of the system. The system functions through communication among objects

implemented by calling services offered by other objects (rather than by using shared

data). So this approach reduces the possibility of unexpected changes to shared data.

The main goal of this thesis work was to develop a simple scheduler generator tool

for operating systems by using the object-oriented approach. Several different kinds of

scheduling algorithms were simulated and evaluated using the tool. To simulate a

scheduling algorithm, the various components of a typical operating system that are

related to CPU scheduling were developed as objects. The algorithms were implemented

by the techniques and characteristics of object-oriented programming.

The rest of this thesis report is organized as follows: Chapter II provides a

literature review about process scheduling, scheduling algorithms, and object-oriented

programming. Chapter III discusses design and implementation issues. Evaluation of the

tool is included in Chapter IV. Finally, Chapter V contains the summary and future work.

3

CHAPTER II

LUERATURE REVIEW

2.1 Process Scheduling

A process, which is usually referenced to as a program in execution, is a widely

used unit of work in modern operating systems [Silberschatz and Galvin 94J. A process

can be executed when the resources required by the process are allocated to it

[Tanenbaum 94].. A process may be running (using the CPU), ready (waiting for the

CPU), or blocked (waiting for I/O completion) while it is in the system [Nutt 92}.

In an operating system, each process is represented by a PCB (process

control/context block) that contains all the relevant information about the process. The

fields of a PCB may be different from system to system. Figure 1 gives the common fields

of a PCB. When the CPU is switched from one process to another, the first process' PCB

is saved so that it can be restarted later. To execute a process, various scheduling queues

that the operating system uses to select a process (such as ready queue, job queue, and

blocked queue) are required. These queues are important parts of schedulers and every

process must migrate through them to get resources. For example, to get I/O service,

processes must wait in a blocked queue, and, to use the CPU, processes must wait in a

ready queue.

4

In scheduling, if the memory required by a selected process is available and the

current number of processes is less than the maxlinum degree of mUltiprogramming, the

process can be loaded from disk mto main memory for execution. At this time, the

selected process rmgrates from the job queue to the ready queue, and the state of this

process becomes ready. The ready queue contains the ready processes that are kept :in

main memory and waiting to be dispatched to the CPU.

Process Number

Priority

Program Counter

Process State

Stack Pointer

Registers

Memory Allocation

Status oC Open Files

Time Process Started

CPU Time Used

Figure 1. Some common PCB fields

The ready queue may be implemented in a number of ways depending on each

scheduling algorithm's policy. The CPU scheduler selects a process from the ready queue

5

to allocate to the CPU by executing llhe scheduling algorithm utilized. After the running

process is executed for a certam amount of time, the process may be completed, placed in

a blocked queue for I/O service, or returned to the ready queue to wait for further service

[Lister and Eager 93]. A process waiting in a blocked queue would be returned to the

ready queue for further CPU bursts after the completion of the UO service. Figure 2

describes the general process scheduling model. Since each process typically consists of a

sequence of CPU and I/O bursts, processes repeat the cycle as shown in Figure 2.

·Job
Queue

new
process

Ready
Queue

returned
after I/O

preemption

process selected by
dispatcher

Bloc~ed

Queue

completed

bllocked due to 11/0 request

Figure 2. Process Scheduling Model

Some scheduling algorithms do not allow direct transitions from the CPU running

state to the ready queue. These are called nonpreemptive scheduling algorithms, with the

6

f

alternative being preemptive scheduling algorithms. In nonpreemptive scheduling

algorithms, once the CPU is allocated to a process, the process can run continually until it

voluntarily releases the CPU. The CPU is switched to another process only when the

current running process is terminated or blocks itself.

Nonpreemptive scheduling algorithms are easy and inexpensive to implement

because no extra hardware a.t:ld methods are necessary (since the scheduler does not need

to forcefully remove a running process from the CPU by a clock interrupt). Sometimes

nonpreemptive scheduling algorithms are not suitable for interactive systems (such as time

sharing systems) that focus on providing a fair share of the CPU to each process

[Tanenbaum 94] [Silberschatz and Galvin 94] [Nutt 92]. On the other hand,. preemptive

scheduling can lead to race conditions and process synchronization problems when

multiple processes access shared data. The reason being that interrupts can occur at any

instant unpredictably. Sophisticated methods used by operating systems, such as

semaphores and monitors, are needed to solve these problems [Tanenbaum 94].

2.2 Criteria for Scheduling Algorithms

When CPU scheduling algorithms are compared to determine which one is best for

a system, the following performance factors are usually considered [Silberschatz and

Galvin 94] [Tanenbaum 94].

• CPU Utilization: This factor indicates how busy the CPU is, with a range of 0 to 100

percent. The target is to maximize this value.

• Throughput: This factor indicates the number of processes that are completed per

some unifonn time interval. The target is to maximize the throughput.

7

• Waiting Time: This is the amount of time a process spends waiting to use the CPU in

the ready queue. The target is to minimize this value.

• Turnaround Time: This is the amount of time it takes to complete a process from its

arrival in the ready queue to its departure from the system. So this is the sum of the

waiting time and the processing time of a process. The target is to minimize this value.

• Response Time: This is the amount of time that it takes to produce the flIst response

for a process from its arrival in the ready queue. This is considered a more important

criterion than turnaround time for interactive systems. The target is to rnini.mize thits

value.

In general, it may be considered desirable to optimize the average value of each

factor, however, the overall goals of the systems must be considered. For example for

interactive systems, which require each process' equitable share of the CPU, it is more

advantageous to minimize the maximum response time than to minimize the average

response time [Tanenbaum 94] [Silberschatz and Galvin 94].

2.3 Scheduling Algorithms

There are many scheduling algorithms whitch implement various policies to decide

the execution order of the processes in the ready queue. The following subsections

describe several specific allgorithms that are widely used.

2.3.1 First Come First Served (PCFS)

In the First Come First Served (FCFS) algorithm, the order of processes in the

ready queue is assigned according to the time each process last requested the CPU. The

process that requested the CPU fIrst is executed [rrst. This allgorithm is easy to implement

8

smce a FIFO queue is used as the ready queue. An mcoming process from the job queue

to the ready queue is inserted at the tail of the ready queue, and the CPU is switched to

the process at the head of the ready queue. When a long process is allocated to the CPU,

other shorter processes must be wait for a relatively long time. So the FCFS algorithm

sometimes does not satisfy criteria such as minimizing the average waiting time or the

average turnaround time [Nutt 92] [Silberschatz and Galvin 94]. Also, the FCFS

scheduling algorithm does not allow preemption of the CPU. As a result, this algorithms is

rarely used for operating systems [Nutt 92],

2.3.2 Shortest Job Fist (SJF)

The process which has the shortest length for the next CPU burst is allocated to

the CPU fIrst in the Shortest Job First (SJF) algorithm. The ready queue is ordered

according to the lengths of the next CPU bursts required by each process. If multiple

processes have the same length, they are ordered FCFS. The SJF algorithm provides the

optimal average waiting time and average turnaround time [Tanenbaum 94] [Silberschatz

and Galvin 94].

Although SJF algorithm satisfies some criteria minimizing the average turnaround

time, the average waiting time, and the average response time, it is in general difficult to

know or estimate the length of the next CPU burst for interactive processes. The SJF

algorithm is especially suitable for batch systems in which one can acquire the length of

the CPU burst from job descriptions [Lister and Eager 93] [Tanembaum 94]. For

interactive systems, the length of the next CPU burst for a process can be estimated using

the previous behaviour of that process and exponential averaging [Silberschatz and Galvin

94].

9

2.1.3 Priority

In the priority schedubng algorithm, the ready queue is ordered by the processes'

assigned priority; the process with the highest priority is allocated to the CPU fIrst. If

multiple processes are assigned the same priority, FCFS scheduling is used to break tbe

tie. Priorities can be assigned internally by the operating system or externally by user

identification to accomplish the performance goals of the system. Some measurable

attributes such as time limits, the number of open fIle, and the memory requirements of the

processes can be used for internally assigned priorities. Users (i.e., process owners) can

also control the priorities based on the importance of each process, the social and political

factors, and so Oll. The SJF algorithm is a special example of priority scheduling

algorithms. In the SJF algorithm, the length of the next CPU burst is used by the scheduler

to internally compute the priority of a process.

A modification of the SJF algorithm as a priority algorithm is to allow the CPU to

be preempted. In the general preemptive case, when a new process with a higher priority

than the running process enters the ready queue, the new process is allocated to the CPU

(i.e., the CPU is preempted). In the case of the preemptive SJF algorithm, this preemption

will occur if a new process with a shorter next CPU burst than the remaining CPU burst of

the running process arrives. Another modification to the SJF algorithm, to prevent the

low-priority processes from being delayed indefmitely or starving, is to use the aging

technique [Silberschatz and Galvin 94].

10

2.3.4 Round Robin (RR)

The Round Robin eRR) scheduling is developed to provide fast response to

requests m interactive systems and time sharing system. Since RR was used in. CTSS (i.e.,

the earliest time sharing system), the RR algorithm including its several variations is one of

the most widely used scheduling algorithms [Lister and Eager 93]. Each process is

allocated to the CPU for a fixed time interval called the time quantum. After receiving one

quantum of service, the CPU is preempted and switched to another process. If the running

process has a current CPU burst that is less than one quantum, the CPU is switched to the

next process in the ready queue.

The ready queue for the RR algorithm can be easily implemented by using a

circular queue. The order of processes follows the FCFS rule. A clock interrupt (or a

timer interrupt) of the operating system is used to preempt the CPU, and the interrupt

interval is set to tbe time quantum size. It is important in the RR algorithm to define an

appropriate length for the quantum. If the length of quantum is too long, the RR algorithm

emulates the FCFS algorithm. On the other hand, if the length is too short, the execution . .

time may be increased due to tbe overhead incurred as a result of frequent context

switching. Some authors have discussed reasonable length for the time quantum.

Tanenbaum claimed "a quantum around 100 msec is often a reasonable compromise,"

[Tanenbaum 94], and Silberschatz and Galvin ment.ioned "a rule of thumb is that 80

percent of the CPU bursts should be shorter than the time quantum" [Silberschatz and

Galvin 94].

]I

2.3.5 Multilevel Queue

In a multilevel queue scheduling algorithm, the ready qUieue is partitioned mto

several subqueues which have their own policies. Each process is assigned to one of the

subqueues accord:ing to the properties of the process. This algorithm is a combination of

several schedul:ing algorithms. For scheduling between the subqueues of the ready queue,

the preemptive priority scheduling algorithm is typically used. Each subqueue has its own

scheduling algorithm because the goal of each queue may be different. For example, it is

better to use a FCFS discipline or a nonpreemptive SJF algorithm for the subqueue

conta:ining batch processes than to use a RR algorithm with a small quantum size, since for

batch processes we wa.nt to reduce turnaround time as opposed to response time. On the

other hand, for the subqueue containing interactive processes, which require fast response

times, a RR algorithm is usually used. In this situation, s:ince the subqueue containing

interactive processes has a higher priority than the batch process queue, the interactive

queue is executed first. Batch processes can use the CPU only when there are no

processes in the interactive process queue. When an :interactive process joins the ready

queue, the running batch process is preempted [Lister and Eager 93].

2.3.6 Multilevel Feedback Queue

The multilevel feedback queue algorithm, as a variation of the multilevel queue

algorithm, does not assign a process to a subqueue permanently but rather allows the

processes to move between the subqueues. Figure 3 illustrates a multilevel feedback queue

that has n subqueues, numbered from 0 to n-1, according to the order of priority. Each

queue i (0 ;::; i ;::; n-1) has a potentially different quantum size, these sizes generally increase

with i (e.g., the quantum of queue 0 is less than that of queue 1). Sometimes queue n-1

12

has the FCFS algorithm. All new incoming processes to the ready queue start in queue O.

If a process in queue i is not completed within the quantum assigned to queue i, the

process is moved to queue i+ 1. In the case of queue n-l , the process is returned to that

queue again until it terminates [Krakowiak 88]. As s result, processes with long CPU

bursts are executed in the lower priority subqueues [Nutt 92] [Silberschatz and Galvin

94].

Queue n-1

Queue n-2

Queue n - 3

Queue 1

In
Queue 0 ~

-----41t~L...-.I--I 1 --1----+-1 1 ~I 11---1 ---I~ Out ,

Figure 3. Multilevel feedback queue scheduling algorithm [Krakowiak 88]

2.4 Object-Oriented Programming

As the cost of computer hardware has been decreasing due to the revolutionary

improvements in hardware technology during the last several decades, ever larger number

of people can use computers. Computer users demand many software applications

including large and complicated software systems. However. the software technology has

difficulties in producing software at the appropriate time and also in· maintaining the

existing systems. So, the cost of software, especially large software systems, rises rapidly.

The tenn 'software crisis' has been used to characterize this situation. The o~ject-oriented

programming approach is one of the proposed remedies for the software crisis [Florentin

91] [Ghezzi et al. 91] [Sommervile 96].

Object-oriented programming has its origins in Simula in 1967 [Kerr 91], but the

object-oriented approach has become popular since Smalltalk: was released in 1980

[Goldberg and Robson 89]. Nowadays, there are many object-oriented programming

languages in use including C++, object-C, CLOS, ObjectLISP, and Object-PascaL These

languages were developed by adding object-oriented concepts to existing popular

languages such as C, Lisp, and Pascal [Fl.orentin 91]. Also, newly designed languages like

Eiffel and Java have been introduced, and Ada, which is called an object-based language,

is one of the programming languages that is widely used [Florentin 9]] [Arnold and

Gosling 96] [Meyer and Huck]esby 91].

The next five subsections discuss the common concepts and characteristics that all

object-oriented programming languages should support.

2.4.1 Data Abstraction and Encapsulation

The state of an object, which is a static property of an object, is defmed by its

instance variabJ.es. The behaviour of an object, which is a dynamic property of an object, is

defined by its methods [Budd 91]. The tenns instance variable and method may have

different meanings for different programming languages. In C++, the term 'data member'

is used instead of instance variable, and 'member function' is used instead of method. The

14

term 'member' is used as a general term that puts data member and member function

together [Lippman 91]. Methods create new states and change the state by manipulating

instance variables. As shown in Figure 4, instance variables are surrounded by methods.

Figure 4. An object

Instal"JOe
Variables

The methods that hide and protect instance variables (i.e., the inner nucleus) from

other objects are the only interface of an object to the outer world. This kind of packing is

called data encapsulation which implements information hiding and provides modularity

(i.e., data abstraction). So, the clients cannot access instance variables directly, and the

clients do not have to know the details of the implementation of an object. The clients just

know ~he interface (i.e., the object methods), and access an object's state only by using its

interface. When the implementation of an object is changed, a client's program is not

affected because of requiring only the change of the interfaces associated with the object.

15

In addition to independence, data can be protected from unexpected behaviors such as

clients' errors by using encapsulation [Booch 91] [Budd 91] [Arnold and Gosling 96] .

2.4.2 Class and Access Control

There are many objects of the same kind that share common characteristics. A

class is a. template that defmes the instance variables and methods common to all objects

of a certain kind. An object is created by instantiating a previously defmed class, and many

objects can be instantiated from one defined class. Since programmers can use the same

class to create many objects, classes provide the necessary condition for reusability of the

objects [Budd 91].

All declarations about members of a class may be classified according to the levels

of constraints of accessibility from other classes; 'Public', 'Private', and 'Protected' are

three categories into which members can be classified. Members of a class with public

declaration can be accessed by all other classes. In the case of members with private

declarations,. the outer classes cannot access them directly. A member with protected

declarations is only accessible to its subclasses [Booch 91].

2.4.3 Message Passing

There are many objects in a program, and a program is executed by each object

itnteracting and communicating with other objects. Message passing is used for all

itnteractions and communications among objects. If object A wants object B to do some

work on object A's behalf, object A sends a message to object B. In response, object B

selects the appropriate method to perform the request. The name of the method to

perform :is selector, which :is used to find a matching method during the processing of

message passing. Sometimes a receiving object needs more information. Such information

16

is passed along with a message as parameters. So, In object-oriented programming, a

message is composed of a receiver (i.e., the object to which the message is addressed),

selector (i.e., the name of the method to perform), and the ,argument (i.e .• any parameters

needed by the method). The message passing paradigm has benefits in heterogeneous

networkIDg systems because it is not necessary for the sending object and the receiving

object to be the same process or to exist on the same machine [Booch 91] [Budd 91].

2.4.4 Class Relationships and Inheritance

In general, there are three kinds of relationships among classes: is_a relationship.

has_a (or has_a-part) relationship, and associated relationship. The is_a relationship is

formed when one class is a special instance of another class, just as it is said that a circle

is_Q shape since a circle is a special instance of a shape .. In other words, if class A is_Q

class B, it means that A is a specialized class of the more general class B. Specialized

classes such as A and the circle are called subclasses or derived classes, and more

generalized classes such as B and the shape are called supcrclasses or base classes. The

is_a relationship supports generalization (i.e., a superclass can be extracted from its

subcllasses) and specialization (i.e., a subclass is formed from its superclass), which are

abstraction techniques. A hierarchy of classes is based on this relationship [Booch 91]

[Budd 91].

It may be said that a composite class, which consists of several subcomponents,

has the has_a rellationship with its subcomponent classes. For example, a complex number

class has_a real number class since the complex number class consists of real numbers and

imaginary numbers. The has_a relationship supports the aggregation technique which

creates a composite class from subcomponent classes [Budd 91].

17

The last relationship is associated, which represents some semantic connection

such as baving the same purpose. A certain job lis completed by interacting with the

associated classes. This relationship is implemented by message passing techniques

between the requester and provider classes [Booch 91].

When a subclass is defmed from an existing superclass (i.e., subclassing) by an is_a

relationship, the subclass may inherit the property (i.e., the instance variables and

methods) of the superc1ass. In other words, the subclass may have the property of the

superclass as well as its own property. Since the is_a relationship is transitive, a subclass

can inherit a property from a superclass that is higher in the hierarchy. For example, if

class car is_a class vehicle and class vehicle is_.a class transporter, then class car is_a class

transporter, so class car inherits the property of class transporter. Since inheritance

generally enables software developers to reuse existing codes which are already developed

and tested, the cost of software development may be reduced by using the object-oriented

programming paradigm [Budd 91].

Sometimes some classes may inherit from more than one immediate superc1ass

(i.e., mUltiple inheritance). The properties of these classes are combinations of properties

from all relevant superclasses. Multiple inheritance can cause some problems. The problem

that arises when the same member may be inherited from more than one superclasses, is

one of such problems. Renaming of the instance variables and methods of the subclass is

usually used as a solution to this problem.

Since multiple inheritance generally makes a program more complex, discussions

about the necessity of this technique have continued. Actually, many object-oriented

programming languages except for C++ and CLOS, do not support multiple inheritance.

18

The Java language, which extends the object model and removes the major complexities of

C++, does not support multiple inheritance either [Budd 91] [Arnold and Gosling 96].

2.4.5 Polymorphism, Overloading, and Overriding

In object-oriented programming, it is possible that a class has several variables and

methods with the same name, which is unlike procedural programming languages. This

mechanism is called polymorphism. Such methods are differentiated by their classes and

parameters. Polymorphic variables that have no type associated with them can contain any

type of data.

Sometimes several methods with the same name work for different classes and

provide different behaviors. For example, the '+' method in the integer class operates

addition between integers., but the '+' method in the complex number class operates

complex number addition (i.e., real numbers are addedarnong themselves and imaginary

number are added among themselves). Overloading (i.e., ad hoc polymorphism) means

that methods already defmed in a class are used differently in other classes. When a new

class is formed from the superclass, the new class can defme its new method with the same

name as the superclass's name. In this case, the subclass overrides the inherited methods

and provides a specialized implementation for this new method {Budd 91].

19

CHAPTER III

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platfonn and Environment

The tool was implemented on a Sequent Symmetry S/81 machine, a mainframe­

class multiprocessor system with 24 80386 processors running at 20Mhz each. The

operating system of this machine is DYNIXIptx, a variant of the UNIX system. The

object-oriented programming language ANSI C++ version 2.0.1 was used to implement

the tool.

3.2 Objective

The purpose of this work was to develop a tool which simulates process

scheduling by using the object-oriented approach. In this tool, six scheduling algorithms

introduced in the literature review part of this thesis (Section 2.3) were simulated. To

simulate the scheduling algorithms, objects which simulate various components of an

operating system were developed. These could be reused for different kinds of scheduling

algorithm and even for other scheduling algorithms not discussed in this work. This

simulation was completed by usmg the techniques and characteristics of the object­

oriented programming described in Section 2.4. The extended and complex scheduling

20

algorithms were easily and compactly simulated by inheriting properties from basic

scheduling algorithms such as FCFS.

By running the simulation, perfonnance parameters such as CPU utilization,

turnaround time, and response time were computed at regular time intervals. This

scheduler generator tool can belp users choose from among a number of candidate

scheduling algorithms for a specific system.

3.3 Design and Implementation Issues

3.3.1 Overall Hierarchy of Scheduling Algorithms

Scheduling algorithms can generally be classified into priority/non-priority and

preemptive/non-preemptive. Non-priority scheduling algorithms include PCFS and RR,

and priority scheduling algorithms include SJF, multilevel queue, and multilevel feedback

queue. Also, RR, multilevel queue, and multilevel feedback queue scheduling algorithms

are preemptive. FCFS, SJF, and priority scheduling algorithms are non-preemptive. Figure

5 shows the overall classification of six scheduling algorithms.

Among the scheduling algorithms considered, the one that is both non-priority and

non-preemptive (i.e., FCFS) can be the most basic object, since this algorithm is more

general and simpler than the other algorithms. SJF, RR, and priority scheduling algorithms

could be inherited from the FCFS class. Multilevel queue which is a variant of the RR

algorithm could be inherited from RR, and Multilevel feedback queue which is a variant of

the multilevel queue algorithm could be inherited from multilevel queue. Figure 6 gives the

overall hierarchy of the six different scheduling algorithms considered in this study.

21

PCFS
MLQ
MLFQ
RR
SJF

FiISl Cane B .. , Served
MuJ~Je .. l Qu
MuJUk.e) Peedb>cli: Queue
Rouoo· Robin
ShorleS!]"b P'U:SI Process Scheduling

Figure 5. Overall Classification of Scheduling Algorithms

3.3.2 Components of Scheduling System

The process scheduling model illustrated In Figure 2 was used as the mam

procedure of the overall simulation. The operating system components for process

scheduling were designed and implemented as objects. These objects include: clock, PCB,

ready queue, job queue, blocked queue, memory manager, loader, dispatcher, and

scheduler (see Figure 7).

22

,

1
;)

Figure 6. Hierarchy of Six Scheduling Algorithms

Job Queue Memory Manager

Ready Queue Loader

Blocked Queue
Dispatcher

Scheduler

Clock

Figure 7. Components of Process Scheduling

23

The virtua~ CPU clock was simulated as a counter (i.e., data member 'value')

which is increased by the CPU burst of the process currently in the running state. The

CPU clock object was created by instantiating a class CLOCK which was previously

defined. The class CLOCK also has a data member to store the collected statistics

concerning system utilization. These statistics were collected and reported at every 500

clock units.

Each process in the main memory was represented by a PCB object. The object

PCB was created by instatiating a class PCB or its subclasses such as class ExPCB and

class EExPCB. Class PCB is the base class that contains the basic members necessary to

implement the simplest scheduling algorithm. At least the following data member are

included in class PCB: ID, size, priority, status, number of CPU bursts, burstoffset,

current burst length, time the process entered the system, CPU execution time, and current

IJO completion time. Most member functions were defmed to access and update the data

members.

To implement the multilevel queue scheduling algorithm, class ExPCB inherited

from class PCB and was further defmed by adding the extra data member, which indicated

a current subqueue where a process was assigned. Class EExPCB was defmed from class

ExPCB with an extra data member indicating the number of turns spent in the current

subqueue,

In the multilevel feedback queue scheduling algorithm, if the number of turns that a

process has spent thus far in the current subqueue is greater than the number of turns

assigned to the subqueue, the process moves into another low-level subqueue. As a result,

while the object PCB as instantiated from class PCB was used in FCFS, SJF, priority, and

24

L

~

~ • · ' a'
t , • • • , · , I " ;'i)1,' , ,

"
~

I , '. I ~
),

RR scheduling algorithms, the PCB from class ExPCB was used in the multilevel queue

scheduling algorithm, and the PCB from class EExPCB was used in the multilvel feedback

queue scheduling algorithm. Figure 8 gives the relations among the class PCB and its

subclasses.

Class PCB
: FCFS, SJF, Priority, RR

add data member 'queue'

: Multilevel Queue
add data member 'lurn'

Class EExPCB : Multilevel Feedback Queue

Figure 8. Inheritance of class PCB and its subclasses

Class Queue was defmed to implement the FIFO queue. The blocked queue and

job queue objects used in all of the scheduling algorithms, as well as the hasic ready queue

objects used in the FCFS and RR scheduling algorithms, were created by class Queue.

PCB 0 bjects were llsed for elements of class Queue. The FIFO queue was constructed

based on class PCB by including a pointer to another PCB. The data member 'top'

indicates the header of a queue, 'end' indicates the tail of the queue, and 'num' indicates

the number of processes in the queue. The main operations of class Queue are enqueue,

dequeue, and remove. Figure 9 gives the data structure and operations of class Queue. In

this figure, T may be class PCB or its subclasses according to the algorithm.

25

.1

; I

,
, ,

. """

Since the blocked and job queues were implemented as FIFO queues, their types

are the same in different kinds of algorithms, but the ready queue type may be different

according to each scheduling algorithm under consideration. Class SortedQueue defines a

queue whose elements are arranged in ascending order. Class SortedQueue inherited class

Queue's data member and function member except for the 'Enqueue' member function.

The function Enqueue of SortedQueue overrides the super class's Enqueue function. So

the Enqueue of class Queue must be defined as a virtual function. The ready queues used

in the priority and SJP algorithms were created from class SortedQueue.

class Queue {
protected:

public:

};

T *top;
T *end;
intnum;

QueueO;
virtual void Enqueue(T *Node);
T *dequeue(void);.
T *Head(void) { return top; }
T *Tail(void) (return end;)
void print(void);
int GetNumProcessO (return num;}
void change_numCint i) { num=num+i; }
T *remove_pcb(int id);

Figure 9. Definition of Class Queue

In the multilevel queue and multilevel feedback queue scheduling algorithms, the

ready queue was divided into several subqueues. In this simulation, each subqueue had RR

scheduling algorithm with different quantum sizes (the highest priority subqueue, which is

26

, '1.(

d

the lowest numbered subqueue, has the smallest quantum size). for scheduling between

the subqueues, the preemptive priority policy was used. So each subqueue contained the

relevant information about its own quantum size. By adding the extra data member

indicating the quantum size, class SubQueue was defined from class Queue. While a

process is assigned to its subqueue permanently in the multilevel queue algorithm, in the

multilevel feedback queue algorithm, a process can move to a lower-level subqueue after

spending the assigned number of turns in the current subqueue. So class ExSubQueue

which adds the 'tum' data member to class SubQueue was defmed. Figure 10 shows the

organization of class Queue and its subclasses.

PCPS ; Fust Come Firs' Served
MLQ ; Mllllilevel Queue
MlFQ ; MulllJevel Feedback Q •• ue
RR ; Round-Robi"
SlF ; ShorltSt Job Fin I

Add 'queue' data
member ------::Ji.,.-

Subqueue i :MLQ
I
I

Add 'tum' data member

Ex Subqueue :MLFQ

: FCFS,RR

~:--__ Override Enqueue function

: Priority :SJF

Figure 10. Organization of class Queue and its subclasses

For this simulation memory was simulated as a counter. The user can specu)' the

maximum and minimum number of allocable units. At default, 512 illocable units are

specified as the upper bound and 12 units as the lower bound. Class Memory defmes all

27

I, k
I V
·C

infonnatioJ!l and functions to manage the simulated memory. Memory manager is

responsible for checking, acquiring, releasing, and reporting statistics about the sllnulated

memory. The same type of memory object was used in different kinds of scheduling

algorithm. Figure 11 presents the definition of class Memory. The data member 'pcbcount'

indicates the total number of processes in main memory, and this number should be less

than the maximum degree of multiprogramming.

class Memory (
protected:

public:

int availmemory;.
int minmemory;
int pcbcount;

MemoryO;
Memory(int n);
rvalue checksizeO;
Boole.an acquire(int job_size);
void reJease(int jsize);
void print(void);
int getpcbO { return pcbcount; }

checksize

void compute_pcbcount(int i)(pcbcount = pcbcount + i; }
};

Figure 11. Definition of class Memory

print

The object loader, which is responsible for loading processes into main memory

from the job queue and the disk until memory is full, was created from class Loader.

Processes are in the fonn of <process ID> < process size> <process priority> <burst 1 ...

28

burst n> in an input data fIle. The value 0 for process size indicates that these are no new

processes arriving at that time. If enough memory is available, the loader creates a PCB

and inserts it into the ready queue. Otherwise, the loader creates a PCB and inserts it into

the job queue. The processes in the job queue wait to be loaded to main memory. The

loader stops 10ading processes when there is not enough memory or there are no new

process arrivals. In this simulation, when the loader load a process, the process in the job

queue have priority over new arrivals. The definition of class Loader is presented in Figure

12.

class Loader {
protected:

public:

} ;

FILE "'inputfile;

loaderO;
void Loadlob(Queue &jqueue, Memory &m, RQTYPE "'rqueue);
virtual void GoToReadyQueue(T "'cur, RQTYPE *rq);
rvalue Status(Queue Jqueue);

Figure 12. Definition of class Loader

Since the loader assigns a process to a subqueue permanently based on the priority

of the process in the multilevel queue scheduling algorithm, extra action is required when

the process goes to the ready queue. A subclass of class Loader, Class ExLoader, has its

own GotoReadyQueue function that overrides the super classs's corresponding function.

In the multilevel feedback queue scheduling algorithm, every process start at the highest

29

level subqueue. So class Loader was used for its loader. Figure 13 shows the definition of

class ExLoader.

class ExLoader: public loader {
public:

void GoToReadyQueue(T *cur, RQTYPE *rqueue);
} ;

Figure 13. Definition of class ExLoader

The process scheduler dispatches a process and maintains the process after the

execution. The dispatcher, which is a part of the scheduler, dispatches the process at the

head of the ready queue. In non-preemptive scheduling, once a process is running, the

following actions can occur:

1. Process requests I/O: the scheduler lets the process go to the blocked queue and stay
there until its I/O is completed (blocked member function of class scheduler). Ten time
units is specified as default for I/O service time. A user can redefme the service time.
When a process completes its UO and is ready to run again, it is placed on the ready
queue (unblocked member function).

2. Process terminates: the process's memory is released by the memory manager and the
PCB is destroyed, and the statistics related to the process are reported (terminate
member function).

Class Dispatcher and class Scheduler were used to create object dispatcher and object

scheduler for non-preemptive scheduling. Figure 14 presents the definition of class

Scheduler.

For the preemptive scheduling algorithm, some activities and information were

added for implementing CPU preemption to class Dispatcher (class RR_Dispather). Since

mutilevel queue and multilevel feedback queue are variations of the RR scheduling

30

~-f ,

. ,

algorithm, the dispatcber and scheduler inherited from RR's functions. For the multilevel

queue and multilevel feedback queue scheduling algorithms, some actions for dispatching

the process at the head of the higbest priority non-empty subqueue was added to class

RR_Dispatcher. Figure 15 shows the relations among class Dispatcher and its subclasses.

class Scheduler {
protected:

public:

} ;

FILE *memoryf:tle;
FILE *jobdoneftle;
int jobdonecount;

Scheduler();
void Ulpdate_burst(T *cur);
void biocked(Queue &bq, RQTYPE &rq, CLOCK &cl);
rvalue unblocked(RQTYPE *rq, Queue &bq, CLOCK cl);
void report(Queue jq, RQTYPE &rq, Queue bq, CLOCK cl,
Memoryml);
void telIDinate(T *cur, Memory &m I);
void close_file();
virtual void GoToReadyQueuc(T *cur, RQTYPE *rq);

Figure 14. Definition of class Scheduler

When the CPU is preempted, the scheduler appends the preempted process to the

ready queue. For this action, the function UpdateQueueO was added to class

RR_Scheduler. In multilevel queue scheduling, since the ready queue consists of several

subqueues, the scheduler appends the process to its own assigned subqueue when the

CPU is preempted and the I/O request is completed. So the GoToReadyQueue function in

class ML_Scheduler overrides the superdass's definition of that function. To implement

31

" '

the multilevel feedback queue algorithm, appropriate actions for the movement of

processes between the subqueues were added to class ML_Scheduler. The UpdateQueue

and GoToReadyQueue member functions in class MLFQ_Schedulcr overrides the

superc1ass's definition. Figure 16 gIves the organization of the scheduler for the SIX

scheduling algorithms.

: FCFS, SJF, Priority

Add. actions for CPU preemption
r-----~~-----.

:RR

Add actions for bandling the subqlleues
r-----~~-----.

Class ML_Dispatcher : MLQ, MLFQ

Figure] 5. Organization of dispatcher

In trus simulation, each scheduling algorithm itself was developed as a complex

object created from six subcomponents. Class FCFS, which implements the FCFS

scheduling algorithm, was defmed ito Figure 17. The 'system' member function is the main

program to drive the sumulation and the overall loop that accesses the memory manager,

loader, clock, queues, dispatcher, and scheduler.

32

};

: FCPS, SJF, Priority

Add actions for movement among subqueues ,-__ ----1 ___ --,

Class MLFQ_Sclleduler,
:MLFQ

Figure 16. Organization of Scheduler

class fcfs (
protected:

public:

CLOCK cl;
Memory ml;
Queue JobQueue;
Queue blockedQueue;
Loader 11;
Scheduler sch;
Dispatcher d 1 ;
Queue readyQueue;

void system(loader &1 1, scheduler &sch, Dispatcher &d 1,
Queue *readyQueue);
virtual void CPU(T *cur, RQTYPE *readyQueue);

Figure 17. Definition of FCFS Scheduling Objects

33

." ,,,

f.

The SJF and priority algorithms have the same procedure a.nd components as

FCFS scheduling but the type of the ready queue is a sorted queue. They are defined in

Figure 18.

Preemptive scheduling (that includes RR, multilevel queue, and multilevel feedback

queue scheduling) has the following extra procedure: if the quantum is used up, place the

process in the ready queue. Figures] 9 10 21 give the definition of the RR, multilevel

queue, and multilevel feedback queue scheduling. They satisfy the relations among the six

scheduling aJgorithms as illustrated in Figure 6.

class sjf: public ids {
protected:

} ;

Sorted_Queue readyQueue;
public:

void systemO;

void sjf::systemO
{

fcfs::system(1l,sch ,dl, &readyQueue);
}

Figure 18. Definition of SJF Scheduling Ohject

34

: i

r'

d

class n: public fcfs {
protected:

} ;

RR_Dispatber d 1 ;
RR_scheduler sch;

public :
void systemO;
virtual void epU(T *cur, RQTYPE *readyQueue);

Figure 19. Definition of RR Scheduling Object

class mlqueue: public rr (
private:

public:

};

Exloader II ;
mLDispatcher d 1 ;
ML_scheduler sch;
SubQueue Sq[lO];

virtual void CPU(T *cur, RQTYPE *rq);
void systemO;

Figure 20. Definition of MLQ Scheduling Object

class mlfq :public mlqueue {

};

pro~ected:

public:

loader 11;
m1fq_Dispatcher dl;
MLFQ_scheduler sch;
ExSubQueue Sq[lO];

void systemO;
virtual void CPU(T *cur, RQTYPE *rq);

Figure 21. Definition of MLFQ Scheduling Object

35

.-~,

1"

3.33 Communication among Objects

Several objects were developed in the simulation. Execution of the program was

carried out by each object interacting and communicating with other objects. The system

interacts with the object loader by calling loader.status(JobQueue) to eheek if there is a

process on disk, and by calling loader.LoadJob(JobQueue, Memory, ReadyQueue) to load

the process. Loader communicates with the job queue by calling JobQueue.HeadO to get

the head of the job queue, by calling JobQueue.EnqueueO to place a process in the job

queue, and by calling JobQueue.remove_pcbO to remove the process from the job queue,

with the memory by calling Memory.checksizeO to check if there is enough memory to

load, and by calling Memory.acquireO to allocate tbe memory requested, and with the

ready queue by calling ReadyQueue.EnqueueO to place a process in the ready queue.

The system communicates with the dispatcher object by calling

dispatcber.Dispatch(PCB, ReadyQueue, dock), and the dispatcher interacts with the ready

queue to remove the terminating process from the ready queue (ReadyQueue .. Dequeue(»),

and with the clock to compute the current virtual clock (clock.ComputerClock()).

The system interacts with the scheduler by calling schedu]er.update_burst(PCB),

scheduler. blocked(BlockedQueue, ReadyQueue, clock), scheduler. terminate(PCB,

Memroy), scheduler. unblocked(ReadyQueue, BlockedQueue), and

scheduleLreport(JobQueue, ReadyQueue, BlockedQueue, clock, Memory). The scheduler

communicates the ready queue, the blocked queue, the job queue, PCB, memory, and

clock to maintain the ready queue and the blocked queue (blocked, unblocked), to report

the statistics about system performance (report), to release memory when the process is

36

terminated (terminate), and to update the process :information (update_burst). Figure 22

describes the communication among objects.

37

Memory Manager lobQueue

BlockedQueue

I I;PCB!

Figure 22 Communication Among Objects

38

CHAPTER IV

EVALUATION OF THE TOOL

4.1 Input file and Hardware specification

The secondary store and disk was simulated as an input flle where process requests

resided in this simulation. A process request was formed of: Process ID as the fITst

parameter, amount of memory units requested as the second parameter, process priority as

the third parameter, and the given CPU bursts as the remaining parameters. A process size

of 0 indicated that there was no incoming process at that time. Figure 23 gives the format

and an example of process requests. Appendix C contains a sample input file used to test

the simulation.

<Process ID> <Memory Size> <Priority> < Burst 1> <Burst 2> <Burst n>

4
5
o
o

4
71
o
o

3
2

50
51

163
53

17
57

Figure 23. Format and Example of Process Requests

For the process of evaluation, 512 allocable memory units was chosen as the upper

bound, and 12 uni~s as the lower bound. A period of] 0 virtual time ul1its was used per I/O

39

t.
, I

request. Quamurn sizes of 30 were used in RR scheduling. and the ready queue was

divided into 4 subqueues in multilevel queue scheduling. In multilevel feedback q ueue

scheduling, the ready queue was divided into four subqueues with residency rules as

specified in TABLE 1.

TABLE 1. RESIDENCY RULES IN MULTILEVEL FEEDBACK QUEUE

Subqucue 1 Subqueuc 2 Subqueue 3 Subqucue 4

, # of turns 3 5 6 --.--

quantum 20 30 50 80
I

slze I!

4.2 Output

When the simulation of each scheduling algorithm was finished, two output files

named jobstat and memstat were created by the tool. When a process terminated, the

following statistics about the process was written to the jobstat file: <Process ID> <Time

process entered the system> <Time process is leaving the system> <Executlon time>

<Turnaround time>. The execution time of each process was compl\ted by adding its CPU

running lime to its 1/0 service time. Figure 25 shows a segment of the jobstat, and

Appendix E shows a sample jobstat file.

Every 500 time unils, the following information relating to the system utj]jzation

and status was written to a fIle called memstat: <allocated memory units> <free memory

units> <number of processes in job queue> <number of processes in ready queue>

40

<number of processes in blocked queue> <number processes delivered>. Figure 25 shows

the part of the memtat file. Appendix 0 shows the whole memstat file.

1D: 8 Entered: 220 Left: 2250 Execution: 341 TAT: 2030
10: 4 Entered: 0 Left: 3063 Execution: 371 TAT: 3063
1D: 7 Entered: 220 Left: 3212 Execution: 400 TAT: 2992
1D: 10 Entered: 3212 Left: 4125 Execution: 512 TAT: 3102
1D: 13 Entered: 2250 Left: 4823 Execution: 726 TAT: 2237

'.'

Figure 24. Part of a sample jobstat file

Stat. Time Allocated Mem. Free Mem. Job_ll Blocked_Q Read_Q Jobs Done

515 510 2 ()]0 0
JOOO 510 2 0 10 0
]522 510 2 1 9 0
2022 510 2 1 0 10 0
2517 505 7 2 0 10 1
3016 505 7 2 0]0 1

............

Figure 25. Part of a sample memstat file

41

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

Chapter I introduced the overall concepts of process scheduling and object-

oriented programming. It also addressed the importance and necessity of process
. :~

scheduling and popularit:y of the object-oriented approach. Chapter I ended by presenting

the purpose and outlining the organization of this thesis.

In Chapter II, the general process scheduling model used for this simulation was
. {
I .. :

described. Chapter II also presented several common system utilization factors, and six

widely-used scheduling algorithms. It also discussed the advantages and problems of each

of the six scheduling algorithms. The origin of object-oriented programming was briefly

addressed in this chapter. The chapter ended by discussing the common concepts and

characteristics that all object-oriented programming languages should support

Chapter HI presented the implementation platform and the designhmplernentation

ISsues of the simultaion. The overall hierarchy of six scheduling algorithms, and the

development of the various components of the scheduling system (i.c., loader, clock,

memory, scheduler,. dispatcher, PCB, ready queue, blocked queue, and job queue) were

discussed in Chapter III. This chapter included a discussion about the relations and

communications among the components of the system. The development of each

42

scheduling algorithm as an object, and the relation among such objects was also discussed

in Chapter ilL

Chapter [V presented the input file and other specifications including memory size,

quantum length, degree of multiprogramming, number of subqueues, and residency rules

that were used to test the tool. This chapter also described two output flles and the

performance factors obtained from each execution of the simulation.

The simple scheduler generator tool, which was simulated on Sequent S/8}

running DYNlXfptx using C++ version 2.0.1, could serve as an object-oriented

prototyping environment for conventional and innovative process scheduling algorithms.

Extended andcomp]ex objects with their own properties and operations were easily

created by inheriting from the existing objects with the most basic and common properties

and operations. This wal can be used to choose from among a number of scheduling

algorithms in a given system environments.

5.2 Future Work

Real-time scheduling, distributed scheduling, and multiprocessor scheduling are the

difficult problems of process scheduling. [n this tool, multiprocessor, distributed, and real-

time scheduling were not be included .. As an area of future work, these could be

implemented by adding new complex objects and updating the features of some existing

objects.

This tool was developed using C++ version 2.0.1 under a flavor of the UNIX

environment (i.e., DYNIXIptx). This version does not support the "template", which is a

43

• [

I';

"

keyword for polymorphic variables. It can be argued that if templates were used, the

program would be more legible.

44

REFERENCES

[Arnold and Gosling 96] K. Arnold and 1. Gosling, The Java™ Programming Language,
Addison-Welsey Publishing Company, Inc., Reading,. MA, 1996.

[Booch 91] G. Booch, Object Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1991.

[Budd 91] T. Budd, An Introuction to Object-Oriented Programming, Addison-Welsey
Publishing Company, Inc., Reading, MA, 1991.

[Florentin 91] J. Florentin,. "Object-Oriented Techniques: Now and the Future", In Object­
Oriented Programming Systems Tools and Applications (pp. 1-6), J. 1. Florentin
(Ed.), Chapman & Hall, Inc., London, UK, 1991.

[Ghezzi et aI. 91] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

[Goldberg and Robinson 89] A Goldberg and D. Robinson, Smalltalk-80: The language,
Addison-Welsey Publishing Company, Inc., Reading, MA, 1989.

[Kerr 91] R. Kerr, "Simula - Ancient and Modem", In Object-Oriented Programming
Systems Tools and Applications (pp. 125-134), 1. 1. Florentin (Ed . .), Chapman &
Hall, Inc., London, UK, 1991.

[Krakowiak88] S. Krakowiak, Principles of Operating Systems, The MIT Press,
Cambridge, MA, 1988.

[Lippman 91] S. B. Lippman, C++ Primer, Second Edition, Addison-Welsey Publishing
Company, Inc., Reading, MA, 1991.

[Lister and Eager 93] A. M. Lister and R. D. Eager, Fundamentals of Operating Systems,
Fifth Edition, Spring-Verlag, Inc., London, UK, 1993.

[Meyer and Hucklesby 91] B. Meyer and P. Hucklesby, "Eiffel: An Introduction", In
Object-Oriented Progmmming Systems Tools and Applications (pp. 125-134), J.
J. Florentin (Ed.), Chapman & Hall, Inc., London, UK, 1991.

45

[Nun 92] G. 1. Nutt, CentraLized and Distributed Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[Silberschatz and Galvin 94] A. Silberschatz and P. B. Galvin, Operating System
Concepts, Fourth Edition, Addison-Welsey Publishing Company, Inc., Reading,
MA, 1994.

[Sommerville 96] I. Sommerville, Software Engineering, Fifth Edi~ion, Addison-Welsey
Publishing Company, Inc., Workingham, England, 1996.

[Tanenbaum 92] A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NI, 1992.

46

APPENDIXES

47

Aging:

Batch Process:

CTSS:

Information Hiding:

Instance:

Instance Variable:

Interactive Process:

Member:

Method:

MLQ:

MLFQ:

APPEND [X A:

GLOSSARY

The gradual increasing of the priority of the processes that are
waiting in the ready queue.

A process whose user cannot interact with it when the process
is executing.

Compatible Time Sharing System. It was an experimental time
sharing system designed at MIT and implemented on an IBM
7090.

The principle that users do not need to know the details of
implementation of software components but need to know the
essential details of how to initialize and access a component.

A specific example of a defined class.

The data associated with each instance of a class. In C++, these
are called data members.

A process whose user can make on-line interactions with it. The
user gives instructions to the operating system and the program,
and receives a response.

A general term used for both a data member and a function
member in C++.

A procedure or function associated with a class. In C++, these
are called function members.

Multilevel Queue

Multilevel Feedback Queue

48

" ,

Multiprogramming:

PCB:

Polymorphism:

Process:

Resource:

Subclass:

Superclass:

Time Sharing:

Multiprogramming allows processes to slhare memory and
CPU. Several programs can run on the same machine virtually
at the same time in a multiprogrammed system.

The Process Control or Context Block of a process contains the
information associa~ed with that process.

A property that indicates the instance variables and methods
have more than one form.

A program in execution and a sequential unit of computation.

A resource denotes any abstract machine environment object
that is required by a process for execution.

A class that inherits from another class.

A class from which other classes inherit attributes.

A logical extension of mUltiprogramming that switches the CPU
among processes so frequently that the users can interact with
each process.

49

Ada:

DYNIXfptx:

Eiffel:

APPENDIX B:

TRADEMARK INFORMATION

A registered trademark of the U.S. Government (Ada Joint
Program Office).

A registered trademark of Sequent Computer Systems, Inc.

A registered trademark of Interactive Software Engineering,
Inc.

Java: A registered trademark of SUD Microsystems, Inc.

NeD: A registered trademark of Network Computing Devices, Inc.

Sequent Symmetry S/81: A registered trademark of Sequent Computer Systems, Inc.

UNIX: A registered trademark of AT&T.

50

, I

APPENDIX C:

INPUT FILE

This is a sample input file used to test the scheduler generator tool. The process

requests are in the form of <process ID> <process size> <process priority> <burst 1> ...

<burst n>, where the bursts are the periods of uninterrupted CPU activity. The value 0 for

process ID and size indicates that there is no incoming process at that time.

ID s i ze priority CPU bursts
1 20 0 40 44 53 40 63 163 56
2 71 2 147 51 346 56 44 63 15 56
3 17 3 6 145 64 16 461 112
4 4 1 50 163 111 17
5 71 2 51 53 115 440 156 57 ' I

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
6 62 3 66 163 14 30
7 67 2 14 44 190 54 15 11 12
8 67 0 51 56 31 63 36 54
9 64 1 64 15 40 157 151 66 163 151

10 72 1 141 1415 143 53
11 67 2 440 146 56 52 141 89
12 70 1 12 1411 564 40 17 11 78
13 62 2 27 156 44 1413 54 16 54 162
14 64 3 164 145 14 546 64 40
15 60 0 54 43 12 41 45 71 12
16 64 2 50 13 52 15 51 40
17 20 1 157 43 89 16 15 44 54
18 10 2 15 16 56 15 4 15 190
19 10 3 14 16 14 67
20 13 0 15 124 49 156
21 103 2 56 190 44 54 189 25 4
22 10 1 15 56 55 56 4 78 41
23 14 3 15 17 4 16 14
24 14 0 90 65 47 55 15 19 0 48
25 31 1 15 4 16 16
26 109 1 15 54 15 15 54 120
27 31 0 14 44 16 56 50 16 16 67
28 31 1 44 17 90 16 44 15 17 55
29 10 2 15 54 54 44 15
30 30 0 44 16 62 54

51

31 105 0 14 14 62 56 45 44 54
32 10 1 15 14 54 14 14 16 15 44
33 10 2 16 54 4 14 278
34 31 3 56 45 123 15 54 15
35 30 0 44 15 54 27
36 32 1 54 84 54 44 15 15
37 30 2 67 56 15 34 56 56 44
38 10 3 16 92 56 14 56 4 56
39 14 1 14 44 15 54 44 14 15
40 32 3 4 54 4 54 15 54 189 90
41 31 1 14 12 74 44 15 17 1
42 105 0 16 15 4 54 419 44

0 a
0 0
0 0

43 185 1 4 14 15 90 15 150
44 10 3 14 16 15 54 4
45 25 2 57 4 44 15 5 85
46 13 0 44 25 4 15 56 44 15 54
47 32 1 54 79 128 16 54 4 44
48 32 1 56 97 43 14 55 16 59
49 14 2 14 14 45 12 141 56 15

0 0
0 0

50 30 0 44 56 1 5 12
51 10 0 15 15 56 15 16 15 16
52 112 1 15 180 54 14 44
53 31 2 56 14 14 16 4 87 16
54 14 3 4 54 56 94 16 1 2 15
55 10 0 48 16 14 16 54 54 1 6 16
56 30 1 56 56 54 16 9 54
57 30 1 4 900 54 4 15 200 4 89
58 14 2 4 15 44 190 44 15 55 14
59 10 2 15 44 15 1 4 44 4 14 14
60 30 3 55 15 16 12

0 0
0 0
0 0
0 0
a a
0 a
0 a
0 0
0 0
0 0

61 112 3 1 5 5 16 56 56 14
62 105 0 14 46 15
63 30 0 90 78 16 12 14 56 56
64 56 1 78 54 54 180 44 16 44 96
65 14 2 14 14 15 17 44
66 31 2 54 12 56 1 5 16 174
67 32 3 12 45 56 1 5 85
68 10 3 16 15 89 15 16 12
69 10 1 4 56 14 1 6 55 15 18
70 31 1 44 4 56 56
71 10 2 14 15 14 15 44

0 0
72 31 2 15 15 4 67 4 56
73 14 2 16 56 14 4 4 15
74 10 3 15 1 4 14 189 63 42 15
75 14 3 4 55 44 15 55 14 14 4
76 32 0 56 14 55 55 56 44 15
77 10 0 84 44 184 56 54 314
78 31 1 55 14 14 54
79 31 1 56 14 55 53 1 4 14
80 30 0 54 44 55 4 54 54
81 30 1 44 16 19 55 15 16 16 4
82 31 2 55 44 14
83 14 1 56 14 16 14 14 54
84 32 3 56 4 55 4 17
85 10 1 15 55 44 15 55 14
86 105 0 55 56 4 44 55
87 10 2 1 6 56 44 14 15 55
88 10 1 15 56 16 16 16 55
89 10 2 15 56 14 55 15

52

90 30 3 47 44 54 4 54 16
91 105 2 14 14 14 56 55 47 56
92 10 0 15 67 54 44 56 54 12 14
93 30 3 55 15 29 54 44 16
94 105 1 56 4 56 4 S5 44 55
95 79 3 120 15 55 56 124
96 31 2 55 16 63 55 16 12 4
97 12 3 4 52 23 14 16 14
98 30 3 56 15 15 44 15
99 10 3 17 54 14 54

1C10 10 a 44 56 44 16 16
1C11 31 0 55 56 15 54 14
102 28 1 54 56 16 4 14 55
103 31 0 54 4 40 12 54 56 44
104 14 2 15 17 55 16
105 14 0 16 55 16 14 56 55 16
106 14 3 56 15 15 16
107 10 0 64 12 89 14 54 16
108 14 0 44 4 16 55 14
109 14 1 16 14 14 54 56 64
110 10 2 74 56 56 15 4 14
111 31 3 56 16 15 4 55 24 55
112 30 3 15 66 15 94 14 54 45
113 15 2 49 55 16 15 16
114 14 1 4 56 54 49 16 14 56
115 105 0 54 15 44 15

0 0
a 0
0 0
a 0
0 0
a 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
a 0
0 0
0 0
0 0
0 0
0 0

116 32 2 16 45 55 15 190 14 56
117 14 2 16 56 15 56 55 44 55 56
118 31 2 4 15 14 44 15 55
119 54 2 14 55 49 55 40 56 <I
120 10 2 14 15 4 11 4

0 0
0 0
0 0
0 0

121 :n 1 55 4 56 4 55 14 54
122 10 1 16 56 57 44 63 47 54 56
123 10 1 15 56 16 14 15 55
124 10 1 16 55 56 56 16 44 67 14
125 25 1 56 4 35 4 56 15 15
126 112 0 14 17 15 54 56
127 32 2 56 57 15 13 87 14 44
128 30 1 44 56 15 44 56 1 4
129 105 0 54 16 56 48 56 54 14
130 112 0 44 15 14 44 54
131 32 0 56 15 81 54 1 44 17

0 0
132 31 1 14 44 54 4 54 56
133 10 0 14 16 56 15

53

-

134 11 2 33 80 56
0 0

135 32 2 56 16 81 67 56 56 16
136 13 3 16 12 23 4 44 14 14 44
137 14 2 16 54 54 56 14 81
138 14 3 56 44 16 54 33 87 56

0 0
0 0
0 0

139 13 3 14 17 45 4 56 56 16
140 14 3 180 4 56 14 15 4 89
141 32 1 56 54 55 56 44
142 9 2 81 56 44 56 44 56 54

0 0
0 0
0 0

143 10 1 14 54 56 72 19 15
144 98 2 79 44 56 54 2 14
145 30 0 30 16 14 25 4 14
146 30 0 44 16 16 28 6
147 31 1 54 4 90
148 14 0 4 55 12 15
149 105 0 15 14 14 15 44
150 31 2 4 15 89 54 16 54 56
151 28 3 56 56 16 14 1 20 12 4
152 14 1 54 18 15 5 22 44 19 44
153 14 0 16 54 14 56 44
154 32 2 56 54 67 56 26 189 56 15
155 10 2 14 4 89 30 29 44 56
156 14 0 16 1 6 56 44
157 78 1 12 34 14 54 56 67
158 32 2 44 16 78 54 4 15 28
159 30 3 54 56 40 190 4 54 44
160 3 1 42 54 15 17 56 56 16 12

0 0
161 10 2 4 4 178 10 17 46 6 6
162 32 2 56 16 15 4 78 50 14
163 14 1 44 12 57 44 56 56 52
164 14 3 16 122 44 15 54 16 54
165 25 3 47 129 5S 56 56 56 57
166 32 2 56 15 60 56 44 15 55
167 49 a 58 14 56
168 32 1 56 16 87 39

0 0
0 0
0 0
0 0
0 0

169 105 1 14 66 12 189 70 68
170 12 1 4 4 72 72 15 12
171 167 0 44 14 14 14
172 30 0 12 32 4

0 0
173 31 3 72 30 54 16 15 14 2
174 30 2 87 55 4 18 45 5 4

0 0
175 31 2 98 4 6 15 14 4 14 16

0 0
176 30 3 54 4.5 4 12 54 120 16
177 10 3 14 92 230 44 14 14 14
178 30 1 54 56 16 44 56
179 14 3 16 14 20 67 22 190 588

0 0
0 0

180 165 0 55 56 4 15
181 10 0 1 4 4 12
182 105 3 14 15 4 279 30 56 16 56
183 14 2 54 120 32 14 4 278 14
184 31 0 4 56 34 36 44 54

0 0
0 0
0 0
0 0
0 0
0 0

54

0 0
185 45 1 97 56 56 56 60 42 90
186 32 1 12 14: 18 14 44 4
187 89 1 92 14 44 46 56
188 14 2 16 14 72 90 4 50 15
189 30 1 26 56 1 52 90 14 5 56
190 30 3 44 4 14 67 76 14 127
191 112 1 68 56 56 44 56 56 56 16
192 16 0 45 60 4 71 44 21 280
193 105 1 75 62 aa 15 27 16 4
1 94 3 2 64 6 16 56 15 56 28
1 95 14. 2 44 66 56 67 5 51
196 3 1 70 4 99 44 72
197 10 2 16 88 5 320 14 4 74 10
198 45 3 123 54 56 16 90 15 76
199 1 05 0 44 14 55 1 19 56 55

0 a
0 a
0 a
0 a

200 14 2 4 56 2ao 54 56 a9 4
201 32 2 16 15 15 14 4
202 105 3 55 14 15 10 16 47 4 46
203 31 3 4 57 35 14 56 4 14
204 30 1 54 56 44 16 15 44 17 14
205 30 1 44 15 55 20 90 90 55 1
206 5 0 22 34 24 16 17 56 44 56
207 31 0 54 4 14 54 55 4 56
208 14 1 16 63 34 32 26 44 56 51
209 10 2 14 34 23 16 56 56 4 17
210 5 1 36 54 15 47 34 40 89 42
211 90 3 45 44 54
212 32 3 56 55 46 89 50 25 15
213 14 2 44 15 56 56 52 16 14
214 18 1 4 44 120 56 28 16

0 0
0 0
0 0

215 112 2 14 4 57 29 60 289 62 26
216 30 1 44 16 15 56 16
217 30 2 55 14 12 56 16 1
218 5 2 70 29 72 29 15 44 74 14
219 10 2 16 56 80 14 44 76 55
220 31 3 56 1 39 2 79 14 14 57
221 5 2 4 290 44 230 56 15
222 5 0 10 4 54 1 12
223 56 3 78 14 " 90 14 16
224 10 3 7 6 59 5 20 " 225 25 1 60 89 78 4 24 90 IS
226 105 3 54 54 16 26 97 56 54
227 10 3 1 30 14 54 79 55 32
228 25 2 12 34 14 16 14 56 43 34

0 0
229 30 3 55 56 15 44 16 54 15 18
230 5 0 36 56 35 57 16 81 14 56
231 30 3 44 40 15 4 118

0 0
232 28 1 90 42 15 57 16

a 0
233 5 2 44 16 55 15 14
234 5 1 46 56 38 17 16 56 50

0 0
235 14 0 54 4 56 56 54 4 52

55

APPENDIX D:

MEMSTA T OUTPUT FILE

This appendix gives the system specification that produces the "memstat" output

fLle, and shows a sample "memstat" fLle to which information related to system utilization

was written at every 500 time units during the executing of the simulation. The fields of

this fLle are: <cu:rrent clock> <allocated memory units> <free memory units> <number of

processes in the job queue> <number of processes in the ready queue> <number of

processes in the blocked queue> and <number of processes delivered>.

Specification:

• Scheduling Algorithm
• Memory Size
• Degree of Multiprogramming

• I/O Service Time

memstat Jile

St.at. Time Allocated Mem. Free l~em.

528 1 83 329
1207 51 0 2
1515 510 2
2084 510 2
2641 510 2
3098 506 6
3522 506 6
4101 509 3
4611 509 3
5024 510 2
5508 500 12
6110 509 3
6531 512 0
7039 509 3
7602 506 6
8499 504 8

: FCFS
: 512 units (mininum : 12 units)
: 15
:10

Job_Q Blocked_Q ReadY_Q Jobs Do n e
0 1 4 0
1 1 9 0
1 1 9 0
1 1 9 0
1 1 9 0
1 1 8 1
1 1 B 1
6 1 B 2
6 1 B 2
4 1 B 4
4 1 B 5
3 1 9 6
1 1 10 B
0 1 10 9
1 1 13 10
2 1 14 11

56

8513 504 8 2 1 14 11
9003 494 18 2 0 14 12
9813 494 18 4 1 14 13

10071 481 31 4 0 14 14
10539 511 1 3 1 14 14.
11157 449 63 3 0 14 17
11539 480 32 2 1 14 19
12004 491 21 1 1 14 22
12507 491 21 1 1 14 22
13027 487 25 1 0 14 25
13545 504 8 2 1 13 26
14043 492 20 3 1 14 29
14504 496 16 4 1 14 30
15011 486 26 4 1 13 31
15552 495 17 3 1 14 33
16040 386 126 3 0 14 34
16515 498 14 2 1 14 37
17184 498 14 4 1 14 39
17551 482 30 2 1 14 4.2
18052 448 64 2 1 13 44
19208 478 34 5 1 14 45
19302 478 34 5 1 14 45
19538 496 16 5 1 14 46
20033 391 121 5 0 14 49
20504 503 9 4 1 14 49
21178 486 26 3 1 14 53
21685 512 0 2 1 14 54
22001 502 10 2 0 14 55
22553 481 31 2 0 14 59
23012 496 16 1 0 14 ,64
23543 510 2 3 1 14 ,liS
24006 500 12 3 0 14 ,66
24544 449 63 1 1 14 ,li7
25022 376 136 1 1 14 ,69
25505 450 62 1 1 14 70
26051 369 143 1 0 14 73
26505 368 144 1 0 14 75
27033 490 22 3 1 14 78
27501 465 47 3 1 14 81
28015 512 0 1 1 14 83
28550 502 10 1 1 13 84
29017 504 8 3 1 13 87
29543 506 6 3 1 14 90
30021 508 4 1 1 14 92
30529 366 146 1 1 14 96
31007 371 141 1 1 14 98
31509 347 165 1 0 13 101
32005 490 22 0 0 12 103
32514 449 63 0 1 9 105
33005 472 40 8 0 14 111
33527 498 14 5 1 14 1.13
34001 498 14 5 2 13 113
34516 422 90 4 1 14 115
35067 422 90 4 1 14 115
35514 465 47 2 1 14 117
36002 468 44 2 1 14 119
36502 454 58 2 1 14 121
37049 487 25 1 1 14 124
37603 483 29 0 1 13 128
38064 491 21 1 1 14 130
38552 491 21 1 1 14 130
39004 460 52 1 0 14 131
39544 473 39 1 1 14 132
40010 486 26 2 1 14 134
40516 456 56 1 1 14 138
41045 490 22 2 1 14 143
41516 503 9 0 1 13 146
42041 511 1 8 1 14 147
42503 511 1 8 1 14 147
43179 511 1 6 1 14 149
43518 438 74 '5 1 14 150
44007 366 146 3 1 14 152
44502 288 224 3 0 14 153
45006 452 60 1 1 14 156
45555 438 74 1 1 13 160

57

46033 475 :n 1 1 14 161
46505 446 66 1 1 13 163
47001 422 90 3 1 14 165
47515 425 87 3 0 14 167
48002 438 74 3 0 14 168
485Cl5 457 55 4 1 14 170
49013 477 35 3 1 14 172
49536 494 18 4 1 14 175
50034 471 41 4 1 14 177
50706 450 62 4 1 14 178
51384 4.36 76 4 0 14 179
51739 481 31 4 1 14 179
52064 450 62 5 1 13 180
52509 481 31 6 1 14 182
53065 436 76 6 0 14 183
53517 505 7 5 1 14 185
54091 475 37 5 0 14 186
54512 481 31 5 1 14 187
55027 488 24 4 1 14 190
55565 506 6 5 1 14 192
56017 488 24 5 1 14 193
56528 488 24 5 1 14 193
5701 4 481 31 6 1 14 195
57542 471 41 6 1 14 197
58018 471 41 6 1 14 197
58606 471 41 6 1 14 197
59038 504 8 4 1 14 201
59564 504 8 3 1 14 203
60006 505 7 4 1 13 209
60574 422 90 4 1 12 211
61018 457 55 4 1 14 212
61531 457 55 4 1 14 2 12
62011 457 55 4 1 14 212
62504 480 32 4 1 14 214
63046 379 133 4 0 14 217
63578 469 43 2 1 11 221
64006 354 158 2 0 10 223
64507 471 41 1 0 9 225
65066 403 109 1 1 4 229
65531 382 130 0 0 3 232

====================== Final Values =====================================
65813 0 512 0 0 0 235

58

APENDIXE:

JOBSTAT OUTPUT FILE

This appendix shows a sample "jobstat" me that is automatica]]y created when the

simulation is fmished. When a process is terminated, the following information is written

to this file: <Process ID> <Time the process entered the system> <Time the process 1S

leaving the system> <Execution time> <Turnaround time>.

jobstat file

ID: 4 Entered: 0 Left : 2658 Execution : 341 TA.T : 2 658
ID: 3 Entered : 0 Left: 3741 Execution : 798 TAT: 3741
ID: 5 Entered: 0 Left: 4668 Execution : 872 TAT : 4668
ID: 6 Entered: 861 Lef c : 4698 Execucion: 273 TAT: 3837
ID: 1 Entered: 0 Let t : 5080 Execution: 45 9 TAT: 5080
ID : 2 Entered : 0 Left: 5720 Execution : 778 TAT : 5720
ID : 8 Entered : 861 Le f t: 617 5 Execution : 291 TAT : 53 14
ID : 11 Entered: 861 Le f t: 6330 Execution: 92 4 TAT: 5469
ID : 7 Entered : 861 Left : 6587 Executi on: 340 TAT: 5726
ID : 10 Entered : 4668 Left : 7264 Execution : 482 TAT: 2 5 9 6
ID : 9 Entered : 861 Lett : 7753 Execution: 807 TAT: 689 2
ID: 19 Entered : 5720 Left: 9003 Ex ecution : 111 TAT : 3 2 83
ID : 17 Entered : 3741 Lett : 9057 Execution : 41 8 TAT: 53 1 6
ID : 20 Entered : 6330 Left : 10 071 Execu t i on: 344 TAT: 3741
ID: 18 Entered: 5080 Left: 10773 Execution : 311 TAT: 5 693
ID: 25 Entered : 7264 Lett : 1099 5 Exe·cution: 51 TAT: 373 1
ID: 13 Entered : 4698 Left: 11157 Execu t i on: 656 TAT : 64 5 9
ID: 14 Entered : 6175 LIO'ft : 1124B Execution: 973 TAT : 5073
I D: 12 Entered: 5720 Left: 11485 Execution: 863 TP_T: 57 65
I D : 23 Entered: 7264 Left: 11611 Execut ion : 66 TAT : 43 47
I D: 16 Entered : 6587 Left : 11782 Execu t i on : 221 TAT : 5195
ID : 15 Entered: 6330 Left: 11942 Execut ion: 278 TAT : 5 612
ID: 30 Entered: 10071 Left: 12767 Execu tion: 176 TAT : 2696
ID : 29 Entered: 9003 Left : 12972 Execu tion : 182 TAT : 3969
I D: 22 Entered: 726 4 Left : 13027 Execution: 305 TAT : 57 63
I D : 24 Entered: 7264 Left : 13131 Execut ion: 510 TAT: 5867
I D: 35 Entered: 11157 Left: 13708 Execut i on : 140 TAT : 255 1
I D: 27 Entered: 7753 Left : 13875 Execut ion : 279 TAT : 612 2
ID: 28 Entered : 7753 Left: 139 3 0 Execu ti on : 298 TJ.I.T: 617 7
ID: 33 Entered: 10995 Left: 144 3 6 Execu tion: 366 TAT: 3441
ID: 32 Entered: 90 57 Left: 14955 Execution: 186 TAT: 5898
ID: 3 4 Entered: 10995 Left: 15114 Execution: 3 08 T}I_T : 4119
ID : 36 Entered : 11248 Left : 15205 Execution: 266 TAT: 3957
I D : 26 Entered: 11942 Left: 16040 Execut ion : 273 TAT: 409 8
I D: 21 Entered: 11485 Left: 1608B Execution: 562 TAT : 4603
ID : 37 Entered: 11611 Le f t : 16147 Execution: 32B TAT : 4 536
ID: 38 Entered: 11782 Left: 1 6444 Execution : 294 TAT : 4662
ID: 44 Entered: 13764 Le f t : 16817 Execution : 103 TAT: 3053

59

ID:
ID:
ID :
ID :
ID:
ID:
ID:
ID :
ID:
ID:
ID:
ID:
1.0:
1.0:
ID:
1.0:
ID:
1.0:
1.0:
ID:
1.0:
1.0:
ID:
1.0 :
1.0:
10:
10:
10:
ID:
10:
10:
ID:
ID:
10:
10:
10:
10:
1.0:
10:
10:
10:
10:
10:
ID:
ID:
ID:
ID:
ID :
ID .:
ID:
1.0:
1.0:
1.0:
1.0:
ID:
1.0:
1.0:
ID:
ID:
ID:
ID :
ID:
ID:
ID :
ID:
ID:
ID:
ID:
ID :
ID:
ID:
ID:
ID:
ID:
1.0:

39
41
45
50
40
47
49
46
51
48
42
31
60
53
54
5,6
55
65
58
67
57
59
66
52
70
68
63
71
61
62
69
78
73
82
64
72
77
74
83
80
79
75
76
84
86
85
81
89
87
88
99
90
98
93
91
97
95
96
92

104
100
106

94
102
108
101
107
105
1 09
115
110
113
103
111
112

E.ntered:
Entered :
Entered:
Entered :
Entered:
Entered :
Entered :
Entered:
Entered :
Ent.ered:
Entered:
Entered :
Entered :
Entered:
Entered :
Entered:
Entered :
Entered:
Entered :
Entered :
Entered :
Entered:
Entered:
Entered:.
Entered:
Entered :
Entered:
Entered:·
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered :
Entered:
Entered :
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Ent ered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:
Entered:

12767
D13l
13764
15205
12972
D930
14436
DS7S
15085
15114
16088
16040
17649
16147
16444
17214
16817
1 83 0 8
16995
19806
17375
17441
194GO
20033
20699
19627
18308
20883
20612
22855
20683
22581
22074
24048
21295
22464
22553
22167
23012
23068
22755
22167
22946
24658
25203
24880
24048
26051
25637
25784
27189
26191
27159
26876
26505
27065
27554
26930
26705
28860
28577
29349
2793 1
28577
29440
29758
29440
29140
30077
31081
30155
30852
29884
30334
30474

Left:
Left:
Left :
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left.:
Left:
Left:
Left:
Left:
Left:
Left :
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left:
Left :
Left:
Left:
Left:
Left:
Left :
Left :
Left:
L,eft :
Left:
Left:
Left:
Left :
Left :

16995
17214
17375
17441
17649
17996
18278
19400
19627
19806
20033
20612
20683
20699
20883
21 295
22001
22059
22167
22464
22553
22581
22155
22855
22946
23012
23068
24006
24048
24658
24880
25203
25637
25784
26051
26191
26505
26705
26876
26930
27065
27159
27189
27554
27931
28218
28577
28696
28860
29140
29349
29440
2.9758
29884
30077
30155
30334
30474
30852
30902
31081
31261
31509
31618
32005
32166
32400
32534
32787
32802
32831
32907
3300 5
33412
33471

60

EXecution:
EX·ecution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Ex·ecution:
Execution:
Execution:
Execution:
E.x·e,cu t ion:
Execution:
Execution:
Execution:
Ex·ecution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution :
Execution :
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
E.xecution:
Execution:
Execution:
Execution:
Execution :
Execution:
Execution:
Execution:
Ex·ecution:
Execution:
Execution:
Execution:
Execution:
Ex.ecution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution :
Execution :
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execution:
Execut ion:
Execution :
Execution :

200
177
2 10
127
464
379
170
257
148
340
182
289

98
207
251
245
234
104
381
213

1270
164
327
307
160
163
322
1 02
162

75
178
137
1 09
113
566
161
736
352
168
265
1 .97
205
295
136
214
198
1 85
155
200
174
139
219
145
213
256
123
370
221
316
1 03
176
1 02
274
1 99
1 33
1 94
249
228
218
128
219
151
264
225
303

TAT:
TAT:
TAT:
TAT:
TAT :
TAT :
TAT:
TAT:
TAT:
TAT:
TA:T:
TilT:
TilT:
TA:T:
TAT:
TA.T:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT :
TAT:
TAT:
TAT :
TAT :
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT :
TAT :
TAT :
TAT :
TAT:
TAT:
TAT:
TAT:
TAT:
TAT :
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:
TAT:

4228
4083
3611
2236
4677
4066
384.2
5525
4.542
4692
3945
4572
3034
4552
4439
4GB1
5184
3751
5172
2658
5178
5140
3355
2822
2247
3385
4760
3123
3436
1803
41.97
2622
3563
1736
4756
3727
3952
4538
3864
3862
4310
4992
4243
2896
2728
3338
4529
264.5
3223
3356
2160
3249
2599
3008
3572
3090
2780
3544
41 47
2042
2504
1912
35'78
3041
2565
2408
2960
3394
2710
1721
2676
2 0 55
3121
3078
2997

ID: 114 Entered: 30902 Lef.t: 34057 Execution: 249 TAT: 3155
ID: 43 Entered : 31618 Left : 34260 Execution : 288 TAT: 2642
ID: 133 Entered : 32961 Left: 35285 Execution: 101 TAT: 2324
ID: 120 Entered: 32787 Left : 35388 Execution : 48 TAT: 2601
ID: 118 Entered: 32534 Left: 35707 Execution : 147 TAT: 3173
ID: 134 Entered: 34057 Left: 35946 Execution: 169 TAT: 1889
ID: 116 Entered: 32534 Left: 36073 Execution: 391 TAT: 3539
ID: 123 Entered: 32863 Left: 36189 Execution: 171 TAT: 3326
ID: 119 Entered : 32802 Left: 36581 Execution : 273 TAT: 37'79'
ID: 121 Entered : 32863 Left : 36705 Execution : 24.2 TAT: 3842
ID: 117 Entered: 32534 Left : 36938 Execution: 353 TAT: 4404
ID: 125 Entered : 33005 Left: 37065 Execution: 185 TAT: 4060
ID: 126 Entered: 34260 Left : 37241 Execution: 156 TAT: 2981
ID : 122 Entered : 32863 .Left : 37351 Execution: 393 TAT: 4488
ID : 124 Entered: 32863 Left : 37423 Execution: 324 TAT: 4560
ID : 127 Entered: 334,12 .Left : 37728 Execution : 286 TAT: 4316
ID: 128 Entered:. 33471 Left : 37786 Execution: 220 TAT: 4315
ID: 132 Entered: 35388 Left: 39004 Execution: 226 TAT: 361 6
ID: 131 Entered: 35285 Left: 39378 Execution: 268 TAT: 4093
ID: 137 Entered: 36073 Left : 39683 Execution: 275 TAT: 361 0
ID: 135 Entered: 35720 Left: 39913 Execution: 348 TAT: 4193
ID: 141 Entered:, 37065 Left: 40086 Execution: 265 TAT: 3021
ID: 130 Entered: 37241 Left : 40212 Execution: 171 TAT: 2971
ID: 138 Entered: 36189 Left: 40316 Execution: 346 TAT': 4127
ID: 146 Entered: 37786 Left: 40461 Execution : 1 10 TAT: 2675
ID: 147 Entered: 39004 Left : 40660 Execution: 1 48 TAT: 1656
ID: 129 Entered: 36581 Left: 40674 Execution: 298 TAT: 4093
ID: 136 Entered: 35946 Left : 40718 Execution: 171 TAT: 4772
ID: 139 Entered: 36882 Left : 40900 Execution: 208 TAT : 4018
ID: 140 Entered: 36938 Left : 40989 Execution: 362 TA,T: 4051
ID : 143 Entered: 37728 ,Left : 41060 Execution: 230 TAT: 3332
ID: 145 Entered: 37728 Left : 41130 Execution: 103 TAT: 3402
ID: 142 Entered: 37351 Left : 41392 Execution: 391 TAT : 4041
ID : 148 Entered: 39378 Left: 41683 Execution: 86 TAT: 2305
ID: 156 Entered: 40718 Left : 42714 Execution: 132 TAT : 1996
ID : 153 Entered: 40316 Left: 42818 Execution: 184 TAT: 2502
ID: 149 Entered: 40674 Left : 43474 Execution: 102 TAT: 2800
ID : 144 Entered: 4,0212 Left: 43532 Execution: 249 TAT: 3320
ID: 150 Entered: 39683 Left: 43660 Executio'n: 288 TAT: 3977
ID : 157 Entered: 40900 Left : 44502 Execution: 237 TAT: 3602
ID : 151 Entered: 39913 Left : 44562 Execution: 179 TAT: 4649
ID : 152 Ent.ered: 40086 Left: 44748 Execut.ion : 221 TAT: 4662
ID: 155 Entered: 40660 Left: 44804 Execution: 266 TllT: 4144
ID: 158 Entered : 4.1060 Left : 45238 Execution: 239 TAT : 4178
10: 154 Entered: 404,61 Left: 45253 Execution: 519 TllT: 4792
ID: 159 Entered: 41130 Left: 45297 Execution: 442 TllT: 4167
ID: 170 Entered : 41842 Left: 45495 Exe.cution: 179 TllT: 3653
10.: 160 Ent.ered: 4 0989 Left: 45612 Execution: 268 TAT: 4623
ID : 167 Entered: 4,4502 Left: 46309 Execution: 128 TAT: 1807
10: 161 Entered : 41698 Left: 46505 Execution: 271 TAT: 4807
ID: 172 Entered: 4,4804 Left: 46521 Execution: 48 TAT: 1717
10: 168 Entered: 44562 Left: 46909 Execution: 198 TAT: 2347
ID: 163 Entered: 42714 Left: 47386 Execution: 321 TAT: 4 672
ID: 164 Entered: 42818 Left.: 47515 Execution: 321 TAT: 4697
10: 162 Entered : 43474 Left: 48002 Execution : 233 TAT: 4528
ID: 165 Entered : 43532 Left: 48067 Execution: 456 TAT: 4535
ID: 166 Entered: 43660 Left: 48134 Execution: 301 TAT: 4474
ID: 169 Entered: 44748 Left: 48573 Execution: 419 TAT: 3825
ID: 181 Entered: 46655 Left: 48597 Execution: 30 TAT: 1942
10: 178 Entered : 46309 Left: 49337 Execution: 226 TAT: 3028
ID: 173 Entered : 45253 Left: 49367 Execution: 203 TAT: 4114
ID: 174 Entered: 45253 Left: 49371 Exe,cution: 218 TAT: 4.118
10: 176 Entered: 45555 Left: 49624 Execution: 305 TAT: 4069
ID: 177 Entered: 45612 Left: 49844 Execution : 422 TAT: 4232
10: 175 Entered: 45343 Left: 50106 Execution : 171 TAT: 4763
rD: 179 Entered: 46505 Left: 51384 Execution: 917 TAT: 4879
10: 184 Entered: 47386 Left: 51904 Execution : 228 TAT: 4518
ID: 183 Entered: 46909 Left: 52082 Execution: 516 TAT: 5173
10: 186 Entered: 48002 Left: 52433 Execution : 106 TAT: 4431
ID: 185 Entered: 47918 Left: 53065 Ex,ecution : 457 TAT: 5147
ID: 188 Entered: 48067 Left: 53159 Ex,ecution: 261 TAT : 5092
ID: 187 Entered: 4.9371 Left: 53417 Executio.n: 252 TAT : 40 4 6
10: 190 Entered: 48597 Left: 54091 Execution: 346 TAT : 5494
ID: 189 Entered: 48134 Left: 54476 Execution: 300 TAT : 6342
ID: 196 Entered: 49844 Left: 54708 Execution : 289 TAT: 4864

61

10: 182 Entered: 48573 Left: 54885 Execution: 470 TAT: 6312
10: 195 Entered: 49624 L,eft: 54973 Execution: 289 TAT: 5349
ID: 192 Entered: 49337 Left: 55361 Execution: 525 TAT: 6024
ID: 194 Entered: 49367 Left : 55403 Execution: 241 TAT: 6036
ID: 201 Entered: 52082 Le.ft : 55905 Execution: 64 TAT: 3B23
ID: 198 Entered: 51384 Left: 567n Execution: 430 TAT: 5407
ID: 19'7 Entered: 50106 Left: 56816 Execution: 531 TAT: 6710
ID: 200 Entered: 52068 Left: 57041 Execution: 543 TAT: 4973
rD: 203 Enterad: 52433 Left : 57321 Execution: 184 TAT: 48BB
10: 204. Entered: 53065 Left: 58620 Execution: 260 TAT: 5555
ID: 205 Entered: 53159 Left : 58725 Ex,ecution: 370 TAT : 5566
ID: 207 Entered: 54,476 Left: 58849 Execution: 241 TAT: 4373
ID : 191 Entered: 53417 Left: 589B2 Execution: 408 TAT: 5565
ID: 193 Entered: 54B85 Left: 59186 Execution: 287 TAT: 4301
ID: 206 Entered: 54091 Left: 59343 Execution: 269 TAT: 5252
ID: 212 Entered: 55403 Left: 59579 Execution: 336 TAT: 4.176
ID: 208 Ent,ered: 5470B Le·ft: 59674 Execution: 322 TAT: 4966
ID: 216 Entered: 56924 Left: 59858 Execution: 14,7 TAT: 2934
ID: 209 Entered: 54973 Left: 59939 Execution: 220 TAT: 4,966
rD: 213 Entered: 55905 Left: 59954 Execution: 253 TAT: 4049
ID: 210 Entered: 55361 Left: 59996 Execution: 351 TAT: 4635
ID: 214 Entered: 56791 Left: 60043 Execution: 26B TAT: 3252
ID: 211 Entered: 58725 Left: 60284 Ex.ecution: 143 TAT: 1559
ID: 217 Entered: 57041 L,eft: 60575 Execution: 154 TA,T: 3534
ID: 218 Entered : 51321 L,eft: 62117 Execution: 347 TAT: 4796
10: 222 Entered: 59579 Left: 62412 Execution : 81 TAT: 2833
10: 219 Entered: 58620 Left: 62559 Execution: 341 TAT: 3939
ID: 221 Entered: 59343 Lett: 62830 Execution: 639 TAT: 3487
ID: 199 Entered: 589B2 Lett: 63046 Execution: 244 TAT: 4064
ID: 224 Entered: 59674 Left: 63050 Execution: 101 TAT: 3376
10: 223 Entered: 59858 Left: 63112 Execution: 2.16 TAT: 3314
ID: 231 Entered: 60575 Left: 63322 Execution: 221 TAT: 2747
ID: 220 Entered: 58849 Left: 6348B Execution: 262 TAT: 4639
ID: 202 Entered: 59186 Left: 63766 Execution: 207 TAT: 4580
ID: 227 Entered: 59939 Left: 64006 Execution: 265 TAT: 4067
ID: 225 Entered: 59954 L,eft: 64021 Execution: 360 TAT: 4067
ID: 22B Entered: 60043 Left: 64507 Execution: 223 TAT : 4464
ID: 232 Entered: 62207 Left: 64540 Execution: 220 TAT: 2333
ID: 229 Ent,ered: 60574 Left: 64558 Execution: 273 TAT: 398.4
ID : 230 Entered: 60574 Le,ft: 64614 Execution: 351 TAT: 4040
ID : 233 Entered: 62468 Left: 64714 Execution: 144 TAT: 2246
ID : 171 Entered: 64021 Left: 65084 Execution: 86 TAT: 1063
ID: 234 Entered: 62559 Left: 65423 Execution: 279 TAT: 2s64
ID: 235 Entered: 62909 Left: 65531 Execution: 2BO TAT: 2622
10: 226 Entered: 63322 Left: 65702 Execution: 357 TAT: 23BO
10: 215 Entered: 63046 Left: 65784 Execution: 541 TAT : 273B
10: 180 Entered: 65084 Left: 65813 Execution : 130 TAT: 729

62

APPENDIXF:

PROGRAM LISTING

11/ / /////////////////1 / 1/ / 11111111111 1 111/1 1 /1111111////11///1//1///1111/11// /
1/
// const.h
1/
/1 This head file defines the program constants and the default hardware
1/ specification.
1/
/1//11111111///1/11/1/1 1 1/1111111111111/111111 1 11111// / 11//11//1/111111/ / /1///

#include <iostream.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <malloc.h>

#define FINAL 1
#define NONFINAL 0
#define MAXBURSTCOUNT 100 1/ maximum # of CPU burst fixed as 100
cons tint degree_MP = 15; 1/ def aul t degre,e 0 f mu l tiprogramming
canst int maxmemory = 512; // defaul t maximum allocatable memory 2
canst int IOTIME '" 10; 1/ default 110 service time is 10
enum status { START, READY, RUNNING, BLOCKED, TERMINATED}; /I process states
enum Boolean { FALSE , TRUE } ;
enum rval ue {MOREJOBS, NOMOREJOBS, MOREM.EMORY, NOMEMORY, NOBLOCKEDJOBS,
CANNOTBLOCKED, UNBLOCKED } ; II function return value

1/11////1///1/////1//1//////////////////////////1///////1/11//////1///////1//1
//
// clock.h
II
// This is the header fi l e to implement the CPU virtual clock. The clock is
1/ simulated as a counter ('value' data member). 'old' data member is to store
/ / the last time collected the statistics concerning the system performance.
// They are collected and reported at every 500 clock units. Class clock is
// used in every scheduling algorithm with same type. Cl ock object are called
// from dispatcher to compute CPU clock and from schedul er to get the current
II CPU clock .
1/
///////////////////1////////////////// / ///////1//// / ////////////1/////////////

class CLOCK (
private:

long val ue;
l ong old;

public:
CLOCK() (value", 0, old=O ;)
long get_value() (return value;}
long get_ol d() { return old; }

// the CPU virtual clock value
// clock value for last time col l ected
// statistics

// constructor: initI alize the values
1/ get clock value
// get value of old

63

-

) ;

void compute_cloclc(long burst) { value=value+burst; } // compute clock
void assign_clock (long currenttime) (value = currenttime; }
void compute_old(long burst) { old=old+burst;} /1 compute old value

// //////1///11111111///11/
II
// pcb.h
//
// This is the header file to implement object Process Control Block (PCB)
// This object represents a process which stays in main memory and stor,e the
// information about a process such as ID. size, priority, status, bursts,
// current burst length and so on. Queue could easily be constructed based on
// PCB objects by including the pointer to another PCB . Class PCB and its
// subclasses are defined in this file.
//
///1///1///11////1///1/1/1//1//1//11/1/1//11//1//////1/11////////////1///1////

1/ object PCB which represents a process is created by instantiating a class
// PCB. class PCB is the base class which contains the basic members which are
/1 necessary to implement the most simple scheduling algorithm such as FCFS.

class PCB (
friend class Queue;
friend class Sorted_Queue;
friend class sub_queue;

1/ data members
private:

int id;
int priority;
status state;
int size;
int burs ts [MAXBURSTCOUNT) ;
int burstcount;
int burstoffset;
int currentburst;
long arrivaltime;
long iocomptime;
l ong exectime;
PCB *next;

1/ process ID
/1 priority of process
1/ process status
// size of process
// bursts
// # of bursts
// index of current burst
// length of current burst
1/ time when a. process was loaded
// time when I/O completion will occur
// total run time
II pointer to another PCB

// member functions, most member functions are defined to access and update
// the data members
public:

PCB (char *jstr);
PCB () ;
PCB (const PCB &) ;
-PCB (void) ;
int get_id() (return id;)

II constructor
II
1/
1/

constructor
constructor
destructor

status get_state() (return state; I
int get_size() (return size;)
int& get_bursts(int boffset) { return bursts(boffset);
int get_burstcount() (return burstcount;)
int get_burstoffset() { return burstoffset; }
long get_arrivaltime() (return arrivaltime; }
long g'et_iocomptime () { return iocomptime;)
long get_exectime() { return exectime;}
int get-prior i ty () (return priori ty;)
void print(); 1/ print the PCB
void release(); // destory the PCB
void change_state (status st) (state=st.;)
void inc_burstoffset() (burstoffset++;)
void comp_arrivaltime(long curtimel (arrivaltime=curtime;
void comp_iocomptime(long curtime) (iocomptime=curtime;)

64

} ;

void comp_exectime(long curtime) {exectime += curtime;
PCB *get_next() (return next;)
lnt get_currentburst() (return currentburst;
void comp_currentburst() (currentburst = bursts(burstoffset];
void currentburst_makezero{) (currentburst = O;)
void update_burst (int quantum) (currentburst -= quantum;)

// class ExPCB is one of subclass of class PCB . This class is defined by
// adding data member 'queue' which indicates the current subqueue where
// a process was assigned to implement multilevel gueue scheduling algorithm

class ExPCB : public PCB {
friend class Queue;
friend class Sorted_Queue;

protected:

pUblic:

int queue;
ExPCB *next;

// indicate the current subqueue
// pointer to another PCB object

ExPCB(char *jstr}: PCB(jstr) queue=O;

} ;

ExPCB(const PCB &J {queue= 0; }
int get_queue() { return (queue) ; }
void camp_queue () { queue++; }
void queue_makezero (int nJ (queue n;}
ExPCB *get_next() { return next;}

// class EExPCB inherited from class ExPCB is defined by adding the data
// member 'turn' to store the number of turns which a process spent in the
// current subqueue to impl ement multilevel feedback queue scheduling
// algorithm.

class EExPCB
friend
friend

protected:

public ExPCB (
class Queue;
class Sorted_Queue;

int turn;

EExPCB *next;
public:

1/ It of turns which a process spent in a
// subqueue
// pointer to another PCB objects

EExPCB(char *jstr): ExPCB(jstr) (turn=O;)
void comp_turn() (turn++;

};

void comp_queue();
void turn_makezero() (turn 0;)
EExPCB *get_next() (return next;
int get_turn () (return turn; }

// ///////////////////1////
1/
/ / queue.h
/1
// This is a header file to impl ement the queues (the ready queue, the job
// queue, t h e b l ocked queue) which are used in process scheduling. Class Queue
1/ and its subclasses are defined in this file.
/!
//1/// ////////////////////////

// Class Queue was defined to implement FIFO queue. The .ready queue of FCFS
// and RR scheduling, the job queue, and blocked queue a.re created from class
// Queue. FIFO queue is easily constructed based on class PCB by including the
// pointer to another PCB.

65

class Queue (
protected :

T *top;
T *end;
int num;

1/ header of the queu,e
1/ tail of the queue
// number of processes in the queue

public:

queue

};

Queue () ;
virtual void Enqueue(T
T "'dequeue (void) ;

*Node) ;
1/
1/
II
1/

top;) 1/
end;) 1/

T *removeJ)cb(int id);
T *Head(void) (return
T *Tail{void) (return
void print (void) ; II print

{ return num;} int GetNwnProcess ()

void change_num(int i) { num=num+i;

constructor, initialize data members
enqu.eue operation of the queue
dequeue operation of the queue
remove a process from the queue
return the header
return the tail

the elements of the queue
// return # of processes in a

/1 increase the # of processes

II This class is to implement a subqueue of multilevel queue scheduling
// algorithm. This is inherited by class Queue. The 'quantum' data member is
/1 added since each subqueue is scheduled by RR scheduling with the different
/1 quantum size in multi l evel queue scheduling.

class sub_queue : public Queue
protected:

int quantum;
public:

// each subqueue has its own quantum

void put_values (int m,int n) (quantum =m;
int get_quantum() { return (this->quantum) ;

// assign quantum size
1/ return quantum size

// This class is defined as a subclass of class subqueue by adding the 'turn'
/1 data member to c.lass subqueue for multilevel feedback queue scheduling. In
/ / multilevel fe,edback queue, residency rule is assigned to each subqueue.
// When a process used up amount assigned to a subqueue (amount = turn*quantum
// size) , the process moves the .lower-level subqueue.

class Exsub_queue : public sub_queue {
protected:

int turn; /1 turn assigned to a subqueue
public:

void put_values (int ro, int n) (quaptum =m; turn~n ;.)
int get_turn() { return (this->turn) ; } // return value of turn

};

/1/1////11/11/////11111////1//1/1///////1////////////////1/////1111//1///1/11/
/I
/ I sortedqueue. h
/I
// This file implements the sorted queue in ascending order. Sorted queue is
// used as the ready queue in the SJF and priority algorithm. This queue is
// inherited from class Queue but it has its own enqueue member function which
1/ overrides the parent's enqueue function.
/I
//////////////////////////////////1/1//11/////1/////1////1/////////////////11/

#define BURSTSIZE 2
#define PRIORITY 1

class Sorted_Queue public Exsub~queue {
private:

int bywhat;
public:

void assignbywhat lint nJ {bywhat n;}

66

d

void Enqueue(T *cur) ;
) ;

///////////1/ / 1111/1 1 //1/11/1/1////1/111/11/111111111111///////111/11111111111
/I
/1 mernory . h
/I
/1 This header file is for the simulated memory. The main memory is simulated
/1 as a counter which decreases when a process acquires memory and increases
1/ when a process releases memory. At default, 512 allocable units are
// specified as an upper bound and 12 units as a lower bound.
/I
1// /1 1111//111// / ////1/1111//1/ /// //////1//////1 1 ////1///11 / 1///1/1///1///////

// This class defines t h e information and functions to manage the simul ated
// memory. Memory manager is responsible for checking, acquiring, re l easing,
// and repor ting statistics about the memory. This class is used in different
/ / kinds of schedul ing algorithm wi t h same type. The to 'tal number of processes
// should be less than the degree of multiprogramming.

class Memory (
f riend class loader ;

protected:

pUblic:

int availmemory;
int minmemory;
int pcbcount;

Memory () ;

Memory(int n) ;

rvalue ch ecksize();

Bool ean acquire(int job_size);

void re1easelint jsize);

void print (FI LE *memoryfile) ;
int getpcb () (return pcbcount;

system

// maximum allocable units of memory
// minimum allocabl e uni ts of memory
// total # of processes in main memory

// constructor, values are assigned by
/I default
/ / constructor, values are assigned by
1/ user
/I check if there is enough memory to
/I load a process
// acquire the memory when load a
/I process
1/ release the memory when a process
/I terminates
1/ print the info r mation about memory
1/ return total # of processes in

void compute"'pcbcount(int i) (pcbcount = pcbcount + i ;)

processes
} ;

/ / compute the tota,l number of

////////////////////1////1/// / ///1////1//1 1 ///////1/////// / // / //111/1/1///// //
//
// loader . h
//
/ / This is a header file to implement object loader which is responsible for
// loading processes into main memory_ Loader moves all availab le jobs from
// the disk and the job queu e to the ready queue. Loader stops when there is
// no incoming process and memory is full. Disk is simulat ed as i n put file.
// The processes in the job queue have a higher priority than any new arrival.
//
//1/////1/// ////////////////////////

// This class creates the ob ject loader of all schedu l ing excep t multilevel
// queue. GoToReadyQueue function is defined as virtual function since a
// subclass ' s GoToReadyQueue overrides i t.

class loader (
friend class Memory;

67

friend class scheduler;
protected:

FILE *inputfile; // simulated disk
public:

} ;

loader'); /1 constructor
void LoadJob(Queue &jqueue, Memory &m. RQTYPE *rqueue, CLOCK cll ;

/1 load a process
virtual void GoToReadyQueue (T *cur. RQTYPE *rq);

rvalue Status (Queue Jqueue);
// enter a process into the ready queue
II check status of disk and the job
// queue

11111//1/1//11/111////11/1////11/11111/11/1//11111/1/1111111111/1///1111/1/111
1/
// exloader.h
1/
// This class inherited from class loader is defined by having the its own
// GotoReadyQueue function. This function includes the extra actions to assign
// a process into its subqueue permanently by priority of the process in
// multilevel queue scheduling.
//
//////1//11//11/11//1/1/11///111111//1111//111///////1/1///1////////////1/////

class Exloader: public loader (
public:

void GoToReadyQueue{T *cur, RQTYPE *rqueue);
// enter a process into its own subqueue

) ;

//1///1//1////////11/////1/11/////
/1
/1 scheduler.h
/1
// This is a header file to implement scheduler which dispatches a process to
// the CPU and maintains the process after execution.
1/
///1////1//////////1//////1//1/////1/1///11///1111/111/11/1///1///////////////

/1 This class is to implement dispatcher (a part of scheduler), which removes
// the process from the ready queue and gives it to the CPU. This class
// creates the object dispatcher of FCFS, SJF, priority scheduling.

class Dispatcher (
pUblic:

T* Dispatcher: : Dispatch (T *CurrentPCI3, RQTYPE &Rqueue, CLOCK &cl);
// dispatch the process

} ;

/ / This is to implement obj·ect scheduler of non-preemptive scheduling
// including FCFS,SJF, priority scheduling. This class could be a prototyping
1/ of extended and complex scheduler. This class places a process on the
1/ blocked queue when the process request I/O. After I/O service, a process is
// moved to the ready queue by scheduler. When a process terminates. process's
// memory is released and the process is destroyed. Also the information about
/1 the process is reported to the jobdone file . The statistics about system
// performance are collected and reported to a memory file at every 500 clock
// units

class scheduler
protected:

FILE *memoryfile;
1/ output file to contains the information about the system

68

FILE *jobdonef i le; II output file to contains the information about the
// te.rminating process

int jobdonecount;
pUblic :

// total number of processes terminated

PCB

scheduler() ; 1/ constructor
void update_burst(T *cur) ; // update the information of current

void blocked (Queue &bq, RQ'TYPE &rq, CLOCK &cl) ;
// place to the blocked queue

rvalue unblocked(RQTYPE *rq, Queue &bq, CLOCK cl);
1/ pl.ace to the ready queue

vo i d report (int option, Queue
Memory ml);

jq, RQTYPE &rq, Queue bq, CLOCK cl,
1/ print information to the output file

&ml, CLOCK cl);

} ;

voi d te.rminate (T *cur, Memory
/ / actions wh en a process leaves the
// system

void close_fi l et) i // closes the output fi l es
virtual void GoToReadyQueue(T *cur, RQTYPE *rq);

// enter the process to the ready queue

//////////////// / ////////////1//////////////////////////////// / ///////1111////
//
/ / pcb . C
/I
// This source file contains the member functions of class PCB and its
// subclasses.
/I
1///////////////////1////////////////1/////11/1/11111/ I /III/i//ii//i///i / i///!

#incl ude .. pcb. h"

////1/11//11111/1/11111111/11111111/11/111111111111/11111111/1111111111/1111/1
I
I / PCB Constructor of cla.ss PCB
I I Purpose This function is used to construct an object PCB. It
I I initialize some data member as 0 and assign the 10,
/1 size, priority, CPU bursts, and current burst by the input string. A
/1 process is in one line with t h e form of <ID> <size> <priority> <burst 1 .. .
/1 burst n>. This is called from l oader.LoadJob() to create a new PCB.
/11/11//1/ 111/1/1/11///////11/1/111111/1//1/////////// / /1/1/1111/ 11/ 1 1/11//11/

PCB: : PCB (char * j s tr)
(

char *tmpi

tmp = new char[81] ;
id = atoi(s t rtok(jstr," .»; II get the process ID
stat.e=START; /1 initialize the status to START
size = atoi (strtok (NUL,L," "»; /1 get the size of a process
priority = atoi(strtok(NULL," "»); 1/ get the priority of a process
burstcount = 0;
whi l e«(tmp= strtok(NULL, " \t\n " » != NULL) // get the CPU bursts

bursts [burstcount++] =atoi (tmp) i / / get the count of burst
iocomptime =0; // initialize iocomptime to 0
exectime = 0; // initialize exectime to 0
currentburst=bursts[O]; // put the first CPU burst as current

burstoffset = 0;
next=NULL;

1/ burst
// initialize burstoffset to 0
// initialize next pointer to NULL

/////////////1////////////////1///1/1//1////////1////////1///////////////////1
II
/ I -PCB : Destructor of class PCB

69

- -

/ / Purpose : This function is used to destroy a PCB when the process
// terminates.
//1/1111/11111///111111111111/1111111111/1/1/111111/1111111////11/1111111/////

PCB: : -PCB (void)
{

cout « "destorying "«endl;
}

////1111/11//111////////111///1//1///1//
/ / release : Member Function of class PCB
// Puepose : This function is used to destroy a PCB when the process
// terminates.
//////////////////////////////1/1///////1///////////////////1/////////////////

void PCB: :release ()
{

if (this->state == TERMINATED
delete (this) ;

//1//1/////////////////1111/////
/ / Print Member Function of c l ass PCB
/ / Purpose : This function is used to print the information of a
// process when the process terminates.
/1///1///////////////1/11//////////1//////////////1/// ////////////////////////

void PCB::print(void)
(

cout« "id :" «id « " state :" « state «endl;
cout« "size:" «size « ," burstcount : ," « burstcount «endl;
cout« "burstoffset: "«burstoffset«endl;
cout« " arrival times :" « arrivaltime «endl;
cout« "currentburst :" «currentburst«endl;
cout« .. ==================================="«endl;

///////////////////1////////////1/1/1////////1//////// /////// / ////////////////
/ / CompQueue Member Function of class EExPCB
/ / Purpose: This function is to used to update ths subqueue for next
// executi on when the process used the amount assigned to
// the current subqueue. The turn for next subqueue is
// assigned to O. This is called by
/1 MLFQ_schduler.update_queue().
////1////////////////////////////11/////////////1/////1//1/////1//1////1///1//

void EExPCB: : comp_queue()
{

queue++ ;

turn = 0;

// update the subqueue which a process
/ / will stay
// initial ize to 0

/////1111//111//1////1//1/1/1//////////////1//////////////////////////1//////1
1/
// queue.C
/I
// This file contains the source programs about member functions of class
II Queue.
1/
/111///11111////11///11111//11/111/1111//11//1111 / 11///1////////1//11/11/11/11

#include "queue.h"

70

1111/1/1111/111/11////1////1/////////////11111111111/111111/1/11///1/11///1///
// Queue : Constructor of class Queue
// Purpose : This is use to construct the object FIFO queue. It
1/ initializes data members.
/////////////1//////////1///////////////////////////1//////////1////////1/11//

Queue::Queue(void)
(

top =end = NULL,
num=O,

//////1111////11////1//1/////////1//////1/1///1////1///111//11/1/1//////1/1/11
// Enqueue : Member Function of class Queue
1/ Purpose : This is use to append the PCB at the tail of the FIFO
1/ queue. It is called from loader and scheduler.
////////1//1//111/1//1/////1///1/1111/1/1/1//////11//1//1//1//////////////////

void Queue: : Enqueue (T *Node)
{

Node->next = NULL;

if (this->top == NULL / / queue is empty
t.his->top = this->end= Node;

else
{

(this->end)->next
this->end=Node;

this->num++;

Node; // append at the tail

////11/1/////////////////1/1/////////////1/111///11//////1//////////1/1/1/////
/ I dequeue Member Function of class Queue
II Purpose : This is used to removes the process at header from
// queue. It returns a pointer to the PCB removed. It is
// called from loader and scheduler.
/11/11//11//////////////////1///11///1/1///////1///1////////11/1//1/111/111//1

T *Queue: :dequeue(void)
{

T *tmp,

if (top != NULL
(

else

tmp=top;
top=top->next,
if(top == NULL

end=NULL,
num--;
tmp->next=.NULL;
return(tmp) ;

return (NULL) ;

// queue is not empty

/ I remove the process at heade.r
1/ queue become empty

// decrease the number

//////1////1///////1///////11/1//////////11/11////111/////11///11//////11////1
/ / print : Member Function of class Queue
/ I Purpose : This is used to print al l PCB in the queue. It traces
// who l e queue.
///1/////////1//1//////////11//////111//11//1////1//11//1/111/1///////////////

void Queue: :print(void)

71

....

T *tmp;

cout« "Queue: :print
cout« num«endl;
tmp=top;
while(tmp != NULL)
(

tmp->print() ;
tmp=tmp->next;

• ill • . ,

// traverse whole queue
// print the PCB
1/ go to next PCB

cout«"\n ------------------"«endl;

11111111111/1111111111111111111111111111/111111/1111///1111//1111/111111111111
1/ RemovePCB Member Function of class Queue
// Purpose Thi s is used to remove the PCB which has same ID as
// input. It traverse the queue until it finds a PCB which
1/ has same ID as input. It then removes this PCB and
II update the queue. It returns the PCB removed.
111111111111111111111111111111/11111111/1/1//111111/1/111/11//11111/1/1//////1

T *Queue: : rernove-pcb lint id)
{

T *cur;
T *prev = NULL ;

cur=top;
while(cur->id != id)
{ 1/ traverse the queue until finds the PCB that has input ID

prev = cur;
cur= cur->next;

}
if (prev == NULL)
{

else
{

top = top->next;
if (top == NULL

end =NULL ;

prev->next=cur- >next;
if (prev->next == NULL

end=prev;

num--;
return (cur) ;

// header has same ID

// remove the PCB
/1 update the queue

// return the PCB removed

/1//1/1//11/11111111/11//////1/1///1/1//
II
1/ sortedqueue.C
/I
// This is a souce file t o contain the member function of class Sorted_Queue .
/!
1////1/ 11///////11//111///1///111/111111/11/11/1/////1//11111//1111111//1/11//

#include "sortedqueue.h"

11//1//111//11//1111/11//1111//1///1/11/1///1/1/11/1/ 1/1/1/1// 1///1/111111//1/
//
//
/1
/I
//

Enqueue
Purpose

Member Function of cla.ss sorted_queue
This function is used to implement the enqueue operation
of ordered queue. When a process is inserted to the
queue, processes are sorted by priority or the CPU

72

...

-

II
//
//
//

burst. Until finds the process which has the lower-level
priority or the larger CPU burst than the inserti ng
process, it traces queue.

// ///////////////11/11111/

void Sorted_Queue: : Enqueue (T *cur)
{

T *tmp;
int flag;

cur->next = NULL;
if (top == NUL,L)
{

else
{

top=end=cur;
num++;

if (bywhat

tmp=top;
flag =1 ;

PRIORITY) // queue is sorted by
/1 priority

while ((trnp->priority <= cur->priority) && (tmp !=
NULL))
{

flag=O;
i f (trnp->next
{

NULL

tmp->next = cur;
end = cur;
nurn++;
break;

1/ insert at the tai l

else if ((trnp->next)->priority <= cur->priority)
trnp=trnp->next; II go to the next process

1/ insert at appropriate
1/ position

cur- >next=tmp-.>next;
tmp->next=cur;
num++;
break;

}

if (flag == 1)
{

ctlr->next
top: cur;
num++;

top;

else if (bywhat
(

BURSTSIZE)

tmp=top;
flag =1;

// insert at header

1/ sorted by the l ength of
/1 current CPU burst

while ((tmp->currentburst <= cur->currentburst) && (tmp
!= NULL)

flag=O;
if (trnp->next -­
(

NULL)

t .mp->next = cur;
end = cur;
num++;

73

// insert at tail

break;

else if ((tmp->next)->currentburst <= cur->
currentburst)

}

else
{

tmp=tmp->next;

cur->next=trnp->next;
tmp->next=cur;
num++;
break;

if (flag == 1)
{

cur->next
top= cur;
num++;

top;

// go to next process

// insert at appropriate
/f position

/f insert at header

1///1///111/11/111/1/111//1//11111///////////1//1/1///11////1111//11//11 / /1///
/!
// memory.C
//
// This is source program to contain the member functions of class memory.
/!
////////////1////1//1//////1/1////////////////1/////11/11/1//1//1/////////////

#include "memory.h"

//////// 11////////////////////////1///////////11//1//////1///////1//1/1//////1
//
1/ Memory : Cons t.ructor b f clas s Memory wi thou t argumen t
1/ Purpose : This is used to create object memory. The values are
// given as default.
/1////11/111///1///////1//////1/1//1/1//1//11/11111111/1/11/11/111 / ///11/111/1

Memory: : Memory ()
(

availrnemory = maxmernorYi
minmernory = 12;
pcbcount = 0;

//11///1///1//11/1//1//////11/////////1//////////////////111////11//111/1///11
1/
/ / Memory : Cons tructor of class Memory wi th argument
/ / Purpose : This is used to create ob j ect memory . The values are
/ I given by user.
/1///////1/////11/////////////11/1/////111////111// / 1/11111111111111//111111/1

Memory::Mernory{int n)
{

if (n > rnaxmemory) {
cerr« " Memory size max
exit {OJ;

availmemory = n;
minmemory = 12;

512 "«endl;

74

/////////////////////////////1///////////////////////////1////111/1///////////
/I
// acquire Member Function of class Memory
/ / Purpose This is used to acquire the memory to a process when the
/ / process is loaded. It returns FALSE when there i .s no
// enough memory to load the process, Otherwise returns
/ / TRUE. It is called from loader.
/////1//////////////1/1///////////////////////////11///1///11///1///111///1/1/

Boolean Memory: :acquire(int job_size)
{

if (job_size> availmernory)
return (FALSE) ;

availmemory-=job_size;
return (TRUE) ;

// acquire memory for a process

///1/1///1//1///////////////////1////
/ / checksize Member Function of class Memory
/ / Purpose This is used to check if ther,e is minimum memory to
// execute the system and total number of processes is less
// than the degree of multiprogramming. It is called from
// loader.
///1//////////////1///11/11/1///1///

rvalue Memory: : checksi ze ()
{

if ((availmemory > minmemory) && (pcbcount < degree_MP »
return (MOREMEMORY) ;

else
return (NOMEMORY) ;

/////////////////////111/1//////////////////////////////1////11///1//1////////
/ / release : Member function of class Memory
// Purpose : This is used to release the memory when the process
/1 t,erminates. It is called from scheduler.
1/1/111//111/11///1////11///////////////////1////////1/1111////11/1111111/1111

void Memory: :release(int jsize)
{

availmemory+=jsize;

111111/111111111111111/11/111/1////////////1/1//////1/////////////1//11//1///
/ / print : Member Function of class memory
/ / Purpose : This is used to print the current allocable memory and
// allocated memory to memory file.
//1/1///1/////////////////////1//////////1///////////1///11/////////1//1///1

void Memory: :print (FILE *memoryfile)
(

// print the allocated memory and free memory to memory file
fprintf(mernoryfile, " %12d %12d ", maxrnemory-availmemory,

availmemory) ;
)

/////11/1/1/11///11/11///1////1///////////////////////////////////////1//1///
//
// loader.C
//
// This is a source program to contain the member functions of class loader
// and its subclass.
/!
//1////1///////////////////////////////////1///////////////////////1//1/////1/

75

-A

linclude "loader.h"

/1//111/1/111/1111111///11/11/1//111////111/111//11/11///1//////1//////////11/
1/ loader Constructor of class loader
// Purpose : This is used to create object loader. When the loader is
/ / created. the input file which simulates disk is opened.
//////////////1/1//////1//111/1///1/////1//1111111111//////11////////1///1////

loader: : loader ()
{

if ((inputfil e =fopen ("in. data", "r"» -- NULL,}
cerr«"Error file open"«endl;

//1/1//11//////1/////1////1////1///1/////1/////1/////1/1/////1//1////111111/11
// GoToReadyQueue (sub} Member function of class loader
// Purpose This is used to place the process on the ready
// queue. It is defined as virtual since the
// subclass's function should override it. It is

"II called from LoadJob member function.
/1///////1////////////1/////////////////1///////////1/////////////////1///////

void loader: :GoToReadyQueue(T *cur, RQTYPE *rq)
{

rq->Enqueue(cur) ;

////////1/////1/////11////11/11/1////1//////111//1111111//////////////1///////
/1 LoadJob Member function of class loader
1/ Purpose This is used to load all ava.ilable process from the disk
/ I and the job queue into the ready queue. It stops when
/1 there is no incoming process and memory is full. It is
/1 called from system.
/11/1/////11//11/////1//1//1/////1/////////////////1// ////////////////////////

void loader: : LoadJob(Queue &.jqueue, Memory &.m, RQTYPE *rqueue, CLOCK cl)
(

T *currentPCB;
T *readyPCB;
T *newPCB;
char buf[80);
int jid,jsize;

// traverse the job queue for all available processes candidates
currentPCB=jqueue.Head{) ;
while { (currentPCB != NULL) &&. (m.checksize() == MOREMEMORY»
(1/ finds the available processes

if(m.acquire(currentPCB->get_size(» == TRUE)
{ 1/ load the proces s from the job queue

else

readyPCB = currentPCB;
currentPCB=currentPCB->get_next();
readyPCB =jqueue.remove--pcb{readyPCB->get_id(»;
//rqueue.Enqueue(readyPCB);
readyPCB->comp_arrivaltime(cl.get_value(» ;
readyPCB->change_state(READY) ;
this->GoToReadyQueue(readyPCB, rqueue);
m.compute--pcbcount{l);

currentPCB=currentPCB->get_next{) ;

1/ load the process from input file
whi l e(m.checksize() == MOREMEMORY)
{

if (! fgets (buf, 80, inputfile))
break;

76

cout«buf«endl;
sscant (but, "%d %d", &jid, &jsize);
if (jid == 46)

cout«"ggggg\n" ;
if (jsize == 0)

break;
if (m.acquire(jsize) == TRUE)
(II load the process from disk to the ready queue

readyPCB = new T(but) ;

else
(

cout«" readyqueue ======"" «endl;
cout«readyPCB->get_state () «" : ";
readypcB->change_state(READY) ;
cout«readyPC'B->get_state ()«" \n" ;
1/ rqueue . Enqueue (readyPCB) ;
readyPCB->comp_arrivaltime(cl.get_value(}) ;
this->GoToReadyQueue (readyPCB, rqueue) "
m. compute-pcbcount, (1) ;

// place to the job queue to wait loading
newPCB = new T(buf) ;
jqueue.Enqueue (newPCB) ;

/1/111/1/111//111111111111//1111111111111111111111111111111111/1/11111/111//11
/1 Status Member Function of class loader
/1 Purpose This is used to check if there is new arrival. It there
1/ is no arrival, it returns NOMOREJOBS. Otherwise, it
1/ returns MOREJOBS. It is called from the syst,em to stop
II the simulation.
11111111111//11111111//1/111/11/1111111111/1//111/1111/111//11//11/111111///11

rvalue loader: : Status (Queue jqueue)
(

if (feof(inputfile) && (jqueue.Head()
return(NOMOREJOBS);

else
return (MOREJOBS) ;

NULL))

//1//11/1///1//1/11/1/1///11//1/1//11/11/1//11/111111////////1///////////1/11
1/ GoToReadyQueue Member function of class ExLoader
1/ Purpose : This is used to place a process to its assigned
/1 subqueue by the priority of the process.
11///11/111111/11111//////////////1//1//1//1//11/1/////1////1///1//1////1///

void Exloader:: GoToReadyQueue (T * cur, RQTYPE * rqueue)
{

lnt which_queue;

which_queue=cur->get-priori ty (); 1/ assign the subqueue by priority
//cur->queue_rnakezero(which_queue) ;
rqueue[which_queue] .Enqueue(cur);// enter a process to its subqueue

/11//1//1/111/11///////1//////1/1//1///////////1//1/////1//////////////1/11/1/
//
// fcfsoj.h
//
// class fcfs implements First-Come, First Served scheduling algorithm.
1/ FeFS scheduling algorithm is a non-priority and non-preemptive algoritrun.
// class fcfs would be a superclass of other objects which implement
// scheduling algorithm. This class is a composite class which consists of
// several subcomponents classes. It has the "has_a" relationship with

77

I I sUbcomponets. The subcomponet.s classes communicate wi th each other.
II
11111111111111111111111//1/11////11/111/1/1111/111//1/1/1111/111/1////11/1//1/

typedef class loader LOADERTYPE;
typedet class scheduler SCHEDTYPE;
typedef class Dispatcher DISPATYPE;

class fcfs {

) j

protected:
CLOCK c1;
Memory m1;
Queue JobQueue;
Queue blockedQueue;
LOADERTYPE 11;
SCHEDTYPE sch;
DISPATYPE d1;
RQTYPE readyQueue;

public:
void ca l 1_syst.em () ;

// object clock
/1 object memory
/1 object job queue
// object blocked queue
/1 object loader
I I obje,ct scheduler
II object dispatcher
1/ object ready queue

void system (lo.ader &11, scheduler &sch, Dispatcher &d1, RQTYPE
* readyQueue) ;
virtual RQTYPE *get_ready() (return &readyQueue;)
void report (RQTYPE &readyQueue);
void timer_lock(int &noreadyflag, int &unblockflag);
virtual void CPU(T *cur, RQTYPE *readYQueue);
virtual T *choose~next(RQTYPE *rq) { return rq->Head();
virtual void LOAD(Queue &JobQueue, Memory &rnl. RQTYPE
*readyQueue) ;

1111111111111111/1111/1111/11//11//111/11111111/11111111/111111111111111111111
/I
II fcfsoj.C
/I
II This is a source code to contain the member functions of class fcfs.
/1 system member function is the main function and other functions are the
II sub functions called from system.
/I
11/1111111

#include "fcfsoj.h"

IIIIIIIIIIIII/IIII!I/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111111111111111
II call_system: Member Function
II Purpose : This is used to call the system in main.
111///1/1111/1111/1111111111/1/111

void fcfs: :call_system()
(

system(11,sch,d1,&readyQueue);

111111/11111111111111111/////1//1/11/111////1/11/11111////11/11//1111111111111
I I LOAD: (sub) Member Function
/1 Purpose: This is used to call its own loader for loading the process.
111111111/1///11/1111/1/111111111111111//1//1/1111/111111/1111111/1111/1111111

void fcfs: : LOAD (Queue &JobQue.ue, Memory &m1, RQTYPE *readyQueue, CLOCK ell
{

11. LoadJob (JobQueue, ml, readyQueue, c1);

78

////11///11//11////////1///////1////////1/11/////1////////11//111111111/11/1//
1/ system Member Function
// Purpose This simulates the system. It is a overall loop that
/ I accesses the memory manag,er, the loader, and the
/1 scheduler. The main procedures to execute the process
/ I scheduling simulation are:
// - loads the available processes from input file
// - dispatch the process stayed at header of the ready
II queue to the CPU and execute the CPU
/1 - places the process which requests 1/0 on the
/ / blocked queue.
// - terminates the process which executed the last CPU
// burst.
1/ - moves all processes whose I/O request have been
/1 completed to the ready queue for later execution
1/ - reports the informations about the system every
// 500 time units
1/ - check the input and the job queue t .o finish the
1/ simulation

' 1/ Above procedures are continue until there, is no new
// arrival process .
////11/1//111111/111/1///11/1////111/1/1///1////////1///1//11/1//1111//1//1/11

void fcfs::system(loacter &11, scheduler &sch, Dispatcher &dl, RQTYPE
*readYQueue)
(

int donesimulation = FALSE;
int unblockfla.g FALSE;
int noreadlyflag = FALSE;

T *cur;

while(donesimulation == FALSE
{

if«ll.Status(JobQueue) MOREJOBS) && (rnl . checksize()
MOREMEMORY))
II load all available processes into the ready qu,eue
this->LOAD(JobQueue,m1,readlyQueue,c1) ;
II (this->11) . LoadlJob(JobQueue,ml, readlyQueue) ;
// sel ect the process which wi l l be d i spatched
if ((cur =choos8_next(readyQueue» != NULL)
{

e l se

if (cur->get_currentburst () == 0)
sch.update_burst(cur);

// update the variable of current PCB

this->CPU(cur, readyQueue); II simulate the CPU

noreadyflag= TRUE;
/1 unblock all processes that have completed their I/O
if (sch.unblocked(readyQueue, blockedQueue,cl) =:=CANNOTBLOCKED

unblockflag=TRUE;
/1 when all processe.s stayed in the b l ocked queue
timer_lock(noreadyflag,unbl ockflag);
report (*readYQueue); 1/ output statistics every 500 time

1/ units test for end of simulat ion
if ((11. status (JobQueue) == NOMOREJOBS) && (ml. getpcb () == 0 »

donesimulation = TRUE;

sch.report (FlNAL,JobQueue, *readyQueue, blockedQueue,cl ,ml);
sch.close_file() ;

79

.....

1/11/1111/1/1/111/1/111//1/111111/111/11/1///111/111/1//1///11111/1/1/1/1/111/
1/ CPU : (sub) Member Function
I I Purpose : This is a subfunction called by system to use the
II system's own dispatcher and scheduler .
111//1//1//1/11//111//11//11111/1/111111/1/1/////1//////111//111//11//1/11111/

void fcfs: :CPU(T *cur, RQTYPE *readyQueue)
{

dl.Dispatch(cur,*readYQueue,cl) ;
if (cur->get_state() == BLOCKED}

sch.blocked(blockedQueue,*readYQueue,cl) ;
else if(cur->get_state() == TERMINATED)

sch.terminate(cur,ml,cl);

11//1//11//1////////1/1///////////////111//////11////1/1/1//////1/1//////11111
// report : (sub) Member Function
// Purpose : This is a subfunction called by system to print the
/ I information every SOD clock units.
1111//11///111/111/1/1//1//1/11/111111//1/1111///1/1/11/1//11/111/1/111111///1

void fcfs::report(RQTYPE &readyQueue)
(

if(cl.get_value() > (cl.get_old()+SOO))
(

sch.report(NONFINAL,JobQueue, readyQueue, b l ockedQueue,cl,ml);
cl.compute_old(500);

/111111111/111111111111111111/11111111/1111//1//////1111//////111/1/1////1///1
/ I timer_lock : (sub) Member Function
1/ Purpose : This is to execute I/O when all processes in the memory
II stay in the blocked queue for unblocking the processes.
111///1//////1//11/1//1/////1/////1/1//111/1111//1//1//1/11///1//1/1//1///1111

void fcfs: :timer_Iock(int &noreadyflag, int &unblockflag)
{

T *tmp;

if ((noreadyflag== TRUE) && (unblockflag==TRUE))
(

tmp=blockedQueue.Head() ;
cl.assign_clock(tmp->get_iocomptime(»); I! increase the clock
unblockflag=FALSE;
noreadyflag=FALSE;

1!//II!/!!/I/////!I!I/I!/!!!!I!!I!/!!/!!//II!IIII!III/IIIII!II///i!///i/i/ii//
/!
/1 sjfoj.C
!I This file implements the SJF scheduling algorithm. SJ.F scheduling algorithm
/1 is simulated by reusing the class FCFS except the ready queue.
/!
!i/i/il/!///!/I////III!I////III!II!///II!//!II!/!///!!//!/!///!!//I/IIIIII!/i/

c l ass sjf: public fcfs {
protected:

} ;

Sorted~Queue readyQueue;
public:

virtual void system();

80

11111111111/11111/1111/11/1/1/1//1//1/////1///1///1///1//1/11//11///11////1/1/
II
// system : Member Function
// Purpose : This function is used to call the fcfs's system.
/1///////111/1/11//111//11///11/11/1//1/1/1/11//1//1///II////IJ//////I////////
II

void sjf: :system()
{

readyQueue.assignbywhat(BURSTSIZE) ;
fcfs: :system(ll,sch,dl, &readyQueue);

/11//11111111/1/1//1/11111/1/11///1/1/11/1111/11/1//1////11//11/11/1//1///1///
II
// priority.C
II
1/ This file implements the priority scheduling algorithm. Priority scheduling
// algorithm is simulated by reusing the class FCFSexcept the ready queue.
//
/1////1//1/1111111111111111111111111/11111/1/1///1//1//1/11//////////1/1//////

class priority: public fcfs {
private:

} ;

Sorted_Queue readyQueue;
pUblic:

void system();

/1/////11//1111////11/1///////////1/////1////////////////1/1/////////1////1111
1/
1/ system : Member Function of class priority
1/ Purpose : This function is used to call the fcfs's system.
1//////1111/1/11111111/1///111/1111111111/11111111//11//11/111111//1111111//11
1/

void priori ty: : system ()
{

readyQueue.assignbywhat(PRIORITY) ;
fcfs: :system(ll,sch,dl, &readyQueue);

1/1111//1////////////1/11/1/1/1/1//1/1///1/1111111/1/////11/1/11/111////////1/
fIll rrscheduler. h
II
// This is a header file to implement dispatcher and scheduler of RR
// scheduling algorithm. They are inherited from class dispatcher and class
// schedul er but they have extra actions to implement preemptive scheduling.
//
111111/1111/1111111111/111/1/1111111/11111111//1111111//////1/1/1///11/1

1/ class RR_scheduler inherited from class scheduler has some extra members to
1/ implement preemptive schedulings

class RR_scheduler : public scheduler
protected:

} ;

int qua.ntum; // quantum size
pUblic:

RR_scheduler () ; / / constructor
int get_quantum() { return (quantum) ;) // return quantum number
void update_queue(T *cur, Queue &rq);

1/ append to the ready queue after expiring the quantum

81

/1 class RR_Dispatcher inherited from class dispatcher has its own Dispatch
/1 function modified from parent's Dispatch and two function related to update
// the variables related to the process and clock.

class RR_Dispatcher: public Dispatcher (

) ;

pUblic:
virtual void update_value(CLOCK Secl, T *currentPCB, int quantum);
virtual void updats_turn{ T *currentPCB, int quantum) (
cout«"ddd\n";)
T *Dispatch(T *currentPCB, RQTYPE &rqueue, CLOCK &cl, int
quantum) ;

/1//1/1/////1//1/1//1//1//////////////1////////1/////1//11/1///11///1/11////1/
1/
/1 rrscheduler.C
/1
'/1 This file contains the source code to implement of dispatcher and scheduler
1/ of RR scheduling
/1
11//11/1/1111111//1///1111/11//11//1111/1/1111111/1/111/1///1//1///1/1/1/ // /1/

111111/1///1///1//1111//11///////111111///1///11/1//11/1/1/1////////////11/111
I I RR_schedul,er Constructor
I I Purpose : This file is used to create the object RR_scheduler. It
I I gets the quantum si ze by the user,
111/////////////1/1//11///1/1/////1/////////1/1/1///1////1////////1111/1////1/

RR_scheduler: :RR_scheduler()
{

cout«"'Put the quantum";
cin»quanturn; // get the quantum size

//1/1///////111//1111///11///111///1//111//11/1//////1////11//1////1/1/11//11/
II update_queue: Member Functi on of RR_schedu l er
/ I Purpose : This file is used to append a proces,g to the ready queue
1/ when the CPU is preempted.
/////////1///111///1//111/1/11//1//11//11/1/11//1/1//11/11///11/11///11/1111/1

void RR_schedul er: :update_queue(T *cur, Queue &rq)
{

cur=rq.dequeue() ;
rq. Enqueue (cur) ;

// remove the process from the header
/1 append the process into the tail

//1////1/////11111/11/1111111/1/1111/11/11/1/1//1/11111/11//1/11////1/////1//1
// update_value Member Function of RR_dispatcher
// Purpose : This function is used to update clock val ue, current
1/ burst and state of the process when the CPU is
1/ preempted.
//1//11//11/////1/11//111/1//1///1///1//1//1//11/11/////11//1//11/////1111///1

void RR_Dispather: : update_value {CLOCK &cl, T *currentPCB, int quantum)
(

cl.coIDpute_clock(quantum);
currentPCB->update_burst(quantum) ;
currentPCB->change_state(READY);

// update the clock
// update the current burst
// update the state of process

//11///////1111////1///////1/1///1/11////1//1///11////1///////////////////1///
/11/ Dispatch Member Funct ion of RR_dispatcher
// Purpose This function contains some extra actions for CPU
/1 preemption. When the current CPU burst is not greater

82

II than the quantum, it uses the Dispatch function of its
/ I parent.
/11111111/11111/1/1111//1/1/1111//1//1/111/1//1/111/11/11111111111111111111111

T *RR_Dispather:: Dispatch (T *currentPCB, RQTYPlE &rqueue, CLOCK &cl, int
quantum)
(

int offset;

currentPCB->change_state(RUNNING) ;
offset=currentPCB->get_burstoffset() ;

if currentPCB->get_currentburst() > quantum)
(I I the CPU is preemted

this->update_value(cl,currentPCB,quantum) ;
return(currentPCB)i

else
(

this->update_turn(currentPCB,quantum) ;
currentPCB=Dispatcher: :Dispatch(currentPCB, rqueue,cl);
return(currentPCB);

11
/1
II rroj.C
/I
II This file is used to impl ement the Round-Robin scheduling algorithm. The
II class rr inherited from class fcfs has its own dispatcher and scheduler for
II CPU preemption.
/I
111111111111111111111111/11111111111111/11111111111/111111111111/1111111111111

class rr: public fcfs (
protected:

RR_Dispather dl;
RR_scheduler sch;

pUblic:

1/ object dispatcher
1/ object scheduler

void system();
virtual void CPU(T *cur, RQTYPE *readyQueue);

} ;

111111111111111111111111111111111111111/1111111111111111111/111111/1/11/111111
/1/1 system : Member Function of class rr
II Purpose : This function is used to call class fcfs's system
11111//1/1/111111111111/111/1111/11111111///11111//111//111111111111/111111111
II

void rr: : system ()
(

fcfs: :system(ll,sch,dl,&readyQueue);

1111111111/1111/11111/111111111111111111111111111111111/11111/11111/11/11/1/1/
1/// CPU Member Function of class rr
1/ Purpose This is sub member function called from the class fcfs's
// system. Only this part is different as the system of
II parent class.
11//1111111111111/1111111/1111/11111/1111//11/111/1111111111//111/11111/111111
/1
void rr: :CPU(T *cur, RQTYPE *readyQueue)
{

cur=dl.Dispatch(cur,*readyQueue,cl,sch.get_quantum(»;
// use its own dispatcher for the CPU preemption

83

if Icur->get_state () == READY) /I when the CPU is preempted
sch.update_queue(cur,*readYQueue) ;

II append to the ready queue
if (cur->get_state() == BLOCKED) II when the process requests I/O

sch.blocked(bl ockedQueue,*readyQueue,cl};
II place on the ready queue

else if (cur->get_state() == TERMINATED) II when the process terminates
sch. terrninate (cur,ml) ;

//11111/1/////1/1/11/11///1//1////1/111/11111/11//111/1////1/1111////111//111/
1/
/ / ML,_scheduler. h
/I
II This file is a header file to implement the dispatcher and scheduler of
1/ multilevel queue scheduling algorithm. In multilevel scheduling, the ready
/ I queue is divided into several subqueues .. The priority scheduling is used
II among the subqueue and each subqueue is scheduled by the RR scheduling with
/ I different quantum size. Non-empty lowest numbered subque.ue has the highest
II prority.
/I
11/////////1/1/11/11/1/1///1/11////1////1/1/1//1//1/1///////1//1/1/1/1//

/1 class ML_scheduler has the extra data member to indicate the number of
1/ subqueues and different GoToReadyQueue member function for the process to
// place on the ready queue.

class ML_scheduler : public RR_schedul er
protected:

} ;

int maxsubqueue; // # of subqueues
pUblic:

ML_scheduler(); // constructor
int get_maxsubqueue() return (maxsubqueue) ;
void GoToReadyQueue(T *cur, RQTYPE *rq) i

// class rnl_Dispatcher inherited class RR_dispatcher has extra member function
// used to select the process which is in header of non-empty highest priority
// queue.

class ml_Dispatcher : public RR_Dispather
(

pUblic:
T *findnext(RQT¥PE ·sq, ML_scheduler ml) ;

1/ select the highest priority process
} ;

//1////////////1//1//////////1/1///1///1/1///1/1//1/11//1//1///1/1///111/1///1
/I
1/ ML_scheduler. C
1/ This file contains the source code to implement class ML_scheduler and
// ML_dispatcher.
II
11/11111/1//11/11/111/1/1//1/1//////11////////11////1///11/11//1111/1/111/1111

#inc!ude ~ML scheduler.h n

/1/11////1////////1/1/1///111/1/1//////1/1111/////1/11//////11//11///11/////11
// ML_scheduler Constructor of class ML_scheduler
/ I Purpose This function is used to create the scheduler of the
/1 mltilevel queue scheduling. It gets the # of subgueues
II from the user.
1111//1/1////////1/11/1/1/1111/111///11/11/1//1///11////1/1/111//1////11//11/1

ML_scheduler: : ML,_schedul er {)
(

cout«"Enter the numner of sub queues";// get the # of subqueues

84

cin»maxsubqueue;

11111111111111/11111/11/1111/11111111111/1//////1///1/1//111111/11/1/11111//11
1 /1/ GoToReadyQueue Member Function of class ML_schedu l er
I I Purpose : This function is used to place a process on the
II subqueue where the process is assigned permanently
II according to the priority.
111/1//111111/1111//1/11/11111111/111111111111/1/1111/1/111/11/111111/1///////

void ML_scheduler: :GoToReadyQueue(T *cur, RQTYPE *rq)
(

rq[cur->get_queue()] . Enqueue (cur) ; 1/ go to assigned .subqueue

Ililll//I/II/I//I/I//II/I/I//II/I//////I/IIII/I/II//1111111/1/1//111/111111111
/ I findnext Member Function of ML_scheduler
/1 Purpose ; This function is used to search the process which is the
'II oldest at the non-empty highest priori ty subqu,eue.
11/111111111/111/11/1//1/111111/11/111/11111/111/1/1/11111/1///1111/1//11//1//

T *ml_Dispatcher::findnext(RQTYPE *sq, ML_schedu l er mlq)
(

int i;

for{i=O; i <mlq.get_maxsubqueue (); i ++)
{ I I search the highest priority process

if (sq [i] . Head () ! = NULL)
return(sq[iJ.Head();

return (NULL) ;

/1111111///11//1//111111//1////1/111/1/11/1////1/1111/11///11//1/111111/1/11/1
/I
1/ mloj.C
/I
// This file is used to implement object multilevel queue scheduling. The
1/ class mlqueue inherited from class rr has its own loader, dispatcher,
// scheduler and ready queue which consists of several subqueue and some
// member functions which override the parent's functions.
/I
11/1/1/1/11/11/11/1/11/11111//1111111//1/1111//1/1///1/11////111/1//1/111/11/1

class mlqueue: public rr (

} ;

private:
Exloader 11; II loader
ml_Dispatcher dl i I I dispatcher
ML_scheduler sch; /1 scheduler
RQTYPE Sq[lO]; 1/ ready queue

pUblic:
T *choose_next(RQTYPE *rq);
virtual void CPU{T *cur, RQTYPE *rq);
RQTYPE *get_ready() (return Sq;)
void setup() i II give the quantum to subqueues
void sys tern () ;
virtual void LOAD(Queue &JobQueue, Memory &m1, RQTYPE
* readyQueue) ;

11111111//1111/11111//11/111111//1111/1/11111111//1/1111111//11111/11/11111111
1/ system : Member Function of class mlqueue
1/ Purpose : This function is used to call class fcfs' s system.
111111//1/111111111/1/11/11/1/111111111/11/11/11111111//111/11111/11/1/111111/

85

.-

void mlqueue: : sys tern ()
{

fcfs: :system(ll,sch, dl, Sq);

IJllf/IIIIIIIIIIIII!!IIIIIIII!I!IIIIIII!!II!I!III!1111II/I!IIIIIIJ/II/I//!//il
I I LOAD : Member Function of class mlqueue
1/ Purpose : This function is used to call its own loader extended
1/ from parent's
111111/11/1/1///111/1111111111111/1111/1//111/1/1/1/11III/IIII!III/I/IIIIIII!I

void mlqueue: : LOAD (Queue &JobQueue, Memory &ml, RQTYPE *readyQueue)
(

11.LoadJob(JobQueue,ml,readyQueue) ;

11/11/1/111//II/IIIII//III/IIIIIIIIIIIIIJIJIIIIIIIIIII1/111/11111//1111///1111
// choose_next: Member Function of class mlqueue
I I Purpose : This function is us ed to call its own dispa tcher to
'I I select the highest priority process.
1111/1111/11111/1//111/11111/11111111111111111/1/111111111///111111/1111111//1

T *mlqueue:: choose_next (RQTYPE *rq)
{

T *cur;

cur == dl, findnext (rq, sch);
return(cur) ;

1/ get the highest priority process

1/1111111111111111////1//1/1//1/11/1111///1///1//111111111111111111111111/1111
/1 CPU : Member Function of class mlqueue
/1 Purpose : This function is called from the system of class fcfs's
II to implement the CPU of multilevel queue scheduling.
111///1111/111/11111/1/11/11/1/11111111/11/1111///11///11/11/111//1//1/////111

void mlqueue: :CPU(T *cur, RQTYPE *rq)
(

int which_queue;

which_queue == cur->get_queue();
dl.Dispatch(cur, rq[which_queue],cl,rq[which_queue] ,get_quantum());
if (cur->get_state() == READY)

sch.update_queue(cur,rq[cur->get_queue()]) ;
else if (cur->get_state() === BLOCKED)

sch.blocked(blockedQueue,rqlcur->get_queue()],cl) ;
else if (cur->get._state () === TERMINATED)

sch. terminate (cur, ml) ;

////1/////////////1////////11///1//1////11/1/1///////1////////////////1///////
// setup : Member Function of class mlqueue
// Purpose : This function is used to assigns the quantum to each
// subqueue.
//////////////1////////////1//////////////////1////1//////////////1////1////1/

void mlqueue: : setup ()
(

Sq[OJ . put_values (20, 0) i

Sq[1} .put_values(30,0);
Sq[2] . put_values (50,0) ;
Sq[3] . put_values (80,0) i

86

//////1///////1///////1//1/1/1////11/11///11111/11/1111111/1/1111111111111111/
II
/1 MLFQ_scheduler. h
1/
1/ This is a header file to define object dispatcher and scheduler of
1/ multilevel feedback queue scheduling .. They have some e.xtraactions and
I I variables to allow the movements of the proce,sses among the subqueues.
II
///1////111/////////////1////111/1/1//////1/1/11//1//1///1//11///111//////////

// This class has its own member functions which override its parent's since
// queue and turn variables of the PCB are updated after dispatching to the
1/ CPU

class mlf~Dispatcher public ml_Dispatcher

} i

pUblic:
void update_value(CLOCK &cl, T *cur, int quantum) i

void update_turn(T *cur, int quantum};

// class MLFQ_scheduler adds the some extra actions to its parent for
1/ movements of the processes among subql.leues.

class MLFQ_scheduler : public ML_scheduler {
pUblic:

} ;

void update_queue (T *cur, RQTYPE *Rq);
void GoToReadyQueue(T *cur, RQTYPE *rq) i

///1/////1/////1/1///1////////1/1////////1/1/11//////1////////1/1///////1/////
/I
// MLFQ_scheduler . C
//
/1 Thi.s file conta.ins the source code about member functions of class
/1 MLFQ_scheduler and MLFQ_dispatcher.
//
///1////////1//1//1//////////////11/11///1/////////11/1/////1111///11//1/111//

#include "MLFQ_scheduler.h

111/11//1/1111/111/1/1/1//1//1/////////////1/1//1/////1//11/11////1/1///////1/
// update_queue Member Function of class MLFQ_scheduler
II Purpose This function is used to move the process from current
1/ subqueue to another subqueue which has lower priority
II when the process used up # of turns assigned to the
/ I current subqueue.
111/1/111/1/1111/111/11/1111//111////11/1///1111/1///1111////////1//1//1111/11

void MLFQ_scheduler: :update_queue(T "cur, RQTYPE *Rq)
{

int whichqueue;

whichqueue=cur->get_queue () ;
Rq[whichqueue] . dequeue() i

/1 get the current subqueue
/1 remove from the ready queue

if ((cur->get_turn () == Rq [whichqueue] . get_turn (») && (cur->get_queue ()
!= 3)) II when used up # of turns assigned to the current queue

cur->comp_qu,eue () ill get the subqueue where the process
// will stay

Rq[cur->get_queue(I] .Enqueue(cur); II place on the subqueue
obtained
)

87

-

///////////////1/////111/////////////////////1/1///11///1/////1/1//////1/1////
/1 GoToReadyQueue Member Function of MLF~scheduler
// Purpose This function adds the extra actions when the
/1 process place on the ready queue after I/O is
// completed. If the process is blocked after staying
// in the lowest priority subqueue, the process goes
// to the highest priority subqueue after finishing
/ / the I/O (aging).
//////////11//1/1/////1/1////1///1////////11/1111//11/I//////////////I!/////I/

void MLFQ_scheduler: : GoToReadyQueue (T *cur, RQTYPE *rq)
{

if
(

cur->get_queue{) == 3)

cur->queue_makezero(O) i

cur->turn_makezero() ;

rq [cur - >get_queue ()] . Enqueue (cu.r) i

1/ aging

//////////1//1///////////////////1//////
// update_value: Member Function of class mlfCLDispatcher
/ / Purpose : This function is used to update the' turn' variable of
// the PCB
////////////11/1//1//////////////////1/////////////////////////1//////////////

void mlfCLDispatcher::update_value(CLOCK &cl, T *cur. int qu.antum)
(

cl.compute_clock(quanturn) ;
cur->update_burst(quantum)i
cur->comp_turn() i

cur->change_state(READY) i

/1/1//////////////////11/1//1///////1//1/1////1/////1///////1///////11////////
/ / update_turn: Member Function of class mlfCLDispatcher
/ / Purpose : This function is used to reset the turn variable of the
// PCB when the current CPU burst is less than the quantum.
//11///11/11//1//////////1////////////////////////////1//////////////1////1///

void mlfCLDispatcher: :update_turn(T *cur. int quantum)
{

if (cur->get_currentburst() < quantum)
cur->turn_makezero() ;

/11/1//////1////////////////1//////1////////1////1///1 ////////////////////////
/I
// mlfqoj.C
/I
// This file is used to implement multilevel feedback queue scheduling
// algorithm. The class mlfq inherited from class mlqueue has its own loader,
// dispatcher, scheduler, and ready queue.
/I
///////////1//////////////////////1///////////////1///1/1//////1//////////////

class mlfq : public mlqueue {
protected:

loader 11;
mlfCLDispatcher dl;
MLF<2-scheduler sch;
RQTYPE Sq [lDJ i

public:
void setup() i

void system{)i

// loader
/ / dispatcher
// scheduler
/1 ready queue

88

Exsubqueue type

-

virtual void LOAD(Queue &JobQueue, Memory &ml, RQTYPE
*readYQueue) i
virtual void CPU(T "cur, RQTYPE *rq);

1/1/////////111/1////1111/1///////1////////1////////11///1///////1/////1/1////
/ / LOAD : Member Function of class mlfq
// Purpose : This is used to call c l ass mlfq's own loader.
//1 11/11///1/11/11//11////1/1////11/////////////////1///1///1//1//1///////1///

void mlfq: : LOAD (Queue &JobQueue, .Memory &ml, RQTYPE *readyQueue)
(

11.LoadJob(JobQueue,ml,readyQueu6) ;

1/1/111/////////////1/////////////////1/1///////1///1////!/I//!///!//!///II///
/ / setup : Member Function of class mlfq
1/ Purpose : This is used to assign the residency rule of each queue.
!II///////////I//II/I////////I///////I/!//!////!//!///////I//!/////I///!!!!I!I

void mlfq: : setup ()
{

Sq[O] .put_values{20,3);
Sq[lJ . put_values(30,5);
Sq[2J .put_values (50, 6);
Sq[3] .put_values(80,-1);

////!!I///II/II///!I///I/IIIII/I//I/!I/!IIII/IIII!!I!!1/111111111/111111111111
II CPU : Member Function of class mlfq
I! Purpose : This function contains the different parts of parent's
I! system.
1/1/////////!I!///I//!II/II//II////IIIIII/II!I///I//!!//!!!II/!IIIIII/IIII!I!I

void mlfq: :CPU(T *cur, RQTYPE *rq)
(

int which_queue;

which_queue = cur->get_queue () ;
dl. Dispatch{cur. rq [whi ch_queue] , cl, rq [which_queue] . get_quantum() } ;
if (cur->get_state() == READY)

sch.update_queue(cur,rq) ;
else if(cur->get_state{) == BLOCKED)

sch.blocked(blockedQueue,rq[cur->get_queue()],cl);
e l se if (cur->get_state () == TERMINATED) .

sch. terminate (cur, ml) ;

II/III!/!/II!IIII!I//II/II!/IIII///!II///i//i//I//////I//I/!I!/I//////!I/I!!/!
! I system : Member Function of class mlfq
I I Purpose : This is used to reuse system of class fcfs.
I!I!II/I!!/!I!/I!!II!I!/!!!I/!II!!!!!!!II!I!I/I!!!!I!IIII!II!/!I!III!///IIIIII

void mlfq: : system ()
(

fcfs::system(ll,sch, dl,Sq);

-

VITA

Yungah Park

Candidate for the Degree of

Master of Science

Thesis: A SIMPLE SCHEDULER GENERATOR TOOL

Major Field: Computer Science

Biographical:

Personal Data: Born in Bonghwa, Korea, October 18, 1968, daughter of Mr. Jongman
Park and Mrs. Hyunju Hwang Park.

Education: Received Bachelor of Science in Computer Science from Pohang University of
Science and Technology, Pohang, Korea, in August 1992; completed the
requirements for the Master of Science Degree at the Computer Science
Department at Oklahoma State University in December 1997.

Experience: Employed by Oklahoma State University, Computer Science Department as a
teaching assistant, January 1997 to August 1997.

Professional Membership: Korean-American Scientists and Engineers Association.

-

