
A SYNCHRONIZAnON SCHEME FOR DELIVERING

MULTIMEDIA DATA STREAMS

By

AFTAB ACHMAD LUBrs

Bachelor of Engineering Science

Bandung Institute of Technology

Bandung, Indonesia

1988

Submitted to the Faculty ofthe
Graduate College of the

Oklahoma State University
in partial f-ulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
May, 1997

Oilaboma Stdte Unj~. libr611

A SYNCHRONlZATION SCHEME FOR DELIVERING

MULTIMEDIA DATA STREAMS

Thesis Approved:

----------AiF-~~~ 4_
~

Dean ofthe Graduate College

11

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my thesis advisor, Dr. K..M. George

for hits intelligent supervision, constructive guidance, inspiration, and help. My sincere

appreciation extends to Dr. J.P. Chandler and Dr. J. Hatcliff for serving on my graduate

committees, and providing me with some feedback to improve my thesis.

I would like to give my special appreciation to my wife, Dewi Gunawati, for her

encouragement at times of difficulty, love and understanding throughout this whole

process. My respectful and very special thanks also go to my parents, Mr. and Mrs. Syarif

Lubis, and parents-in-law, Mr. and Mrs. Bastari Halik, for their support, love, and

encouragement.

Hi

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. MPEG STA.NDARD 3

2.1 MPEG-Video 3
2.2 MPEG-Audio 9

3.NETWORKED MULTIMEDIA APPLICATIONS 11

3.1 Synchronization i I
3.2 Buffer Requirement 15
3.2.1 Traditional Buffering 15
3.2.2 Application-oriented Buffering 16
3.2.3 Buffer Management Philosophies 18

4. IMPLEMENTATION 19

4.1 Hardware 19
4.2 Software 19
4.3 Method of]mplementation 20
4.4 Server Process 23
4.5 Client Process....................... 27

5. RESULTS 30

5.1 Experiments 33
5.2 Discussion 37

6. CONCLUSION 39

6.1 Summary 39
6.2 Future Work 40

IV

BIBLIOGRAPHY , 41

APPENDIXES " " 45

APPENDIX A--DISCRETE COUSINE TRANSFORM ON
IMAGE COMPRESSION 46

APPENDIX B--QUANTIZAnON ON IMAGE COMPRESSION 48
APPENDIX C--CODING MODEL AND ENTROPY CODING 50

v

Table

LIST OF TABLES

Page

5.1 The Five Categories ofQOS Parameters [VKBG95] 30

5.2 Rating of Some QOS Parameters 33

5.3 Result of Measurement on Multimedia File Containing
Relatively Still Object 34

5.4 Result of Measurement on Multimedia File Containing
Relatively Moderate Moving Objects 34

5.5 Result of Measurement on Multimedia File Containing
Relatively Moderate Moving Animation 35

5.6 Result of Measurement on Multimedia File Containing
Moving Objects ." 35

5.7 Result of Measurement on Multimedia File Containing
A Moving Object " 36

Vl

Figure

LIST OF FIGURES

Page

2.1 Intra Frame Coding [PSR93] 7

2.2 B/P Frame Coding [PSR93] 8

2.3 Configuration of IBP Frames [Fur94].. 9

3.1 Synchronization Markers (SMs) Appended in
Data Streams [K.K94] 12

3.2 Traditional Buffering [VLP95] 16

3.3 Application-oriented Buffering [VLP95] 17

4.1 Client-Server and Parent-Child Scheme 22

4.2 Data Structures Used at Server and Client Sites 23

5.1 Presentation Time of Two Multimedia Data Streams 31

VB

B

DCT

I

ISO

kHz

MDU

MPEG

P

PCM

RGB

SNR

TCP

UDP

NOMENCLATURE

Bi-directional predicted frame

Discrete Cousine Transform

Intra frame

International Standard Organization

kiloHertz

Multimedia Data Unit

Motion Picture Expert Group

Predicted frame

Pulse Code Modulation

Red Green Blue

Signal Noise Ration

Transmission Control Protocol

User Datagram Protocol

VllI

CHAPTERl

INTRODUCTION

When computers were introduced, they were merely intended as tools for doing

computations. As software and hardware have become further developed, computers are

more widely used as tools for other purposes such as entertainment, communications,

learning, record keeping, and so on. Eventually, computer data types also become more

diverse. Multimedia systems are examples of computers that gather and process various

media or data types, such as text, voice, audio, video, graphics, and images. Nowadays,

research and development directions are leading toward multimedia systems connected

to computer networks, in which processing and representing multimedia data streams

introduce a number of new technical problems. These multimedia systems are often

called distributed multimedia systems. Technical problems associated with distributed

multimedia systems are as follows [CLSWC095]:

• synchronization: deals with synchronizing multiple media streams at a presentation

site.

• media transmission: deals with the transmission of multimedia streams between sites.

In this thesis work, we are proposing a synchronization scheme in delivering

multimedia data streams. The basic ideas of our synchronization scheme are as follows:

• Generating timestamps (markers) for inter media synchronization purposes.

• Discarding partially lower priority multimedia data stream based on network traffic.

Generating timestamps seems to be a standard for delivering multimedia over computer

networks. Ravindaran [Rav93] and Sheperd et al [SS90] are among researchers who have

2

been studying and implementing timestamps. So far, discarding partially lower priority

multimedia data stream has never been done. The idea came up since some of multimedia

data streams might be generated based on their past and future data streams. Thereafter,

we first have to define and choose which multimedia data streams fall into the category of

lower priority data streams.

As stated previously, information sources can be graphics, animation, Images,

audio, and full motion video. However, for simplicity of this thesis work, we are only

assuming that information sources are full motion video and audio. Then, we classify

streams generated from those sources as follows:

• High Priority: audio stream is considered the higher priority stream, since losing some

parts of the stream may convey wrong messages.

• Low Priority: video stream is considered the lower priority stream, since losing some

parts of the stream may not give a wrong interpretation as long as the associated audio

stream is still fully conecL

For sending a video stream over a computer network in this synchronization scheme, a

standard for storing and retrieving a video stream is used. This standard is known as

MPEG-l. As described later in chapter 2, the video stream is compressed such that the

stream is consisting of I, B, and P frames. From these three types of frames, I frames are

the frames that contain most information, since Band P frames are generated based on I

frames. Hence, when network congestion occurs, discarding Band/or P frames, we can

expect to get a good interpretation of the video stream.

CHAPTER 2

MPEGSTANDARD

In multimedia systems, audio, images, and video data captured in analog signals need to

be digitized before they are processed. These analog signals produce a vast amount of

digital signals that might be stored either in computers' memory or secondary storage.

These digital signals might also be shared and accessed by distributed multimedia

systems. Hence, a standard governing formatting and storing these digital signals is

obviously needed.

An international organization, called the International Standard Organization

(ISO), has developed a standard format of video and audio stored in digital storage

devices. The standard is known as MPEG, named after its experts group [Gal9l]. The

MPEG standard is divided .into MPEG-Video, MPEG-Audio, and MPEG-System

standards.

2.1 MPEG-Video

Video data is basically a continuous stream. Digitizing of video data takes place

by sampling the data stream at a certain rate. Usually the sampling rate is about 30 images

per second (the standard te.levision rate). The result of sampled video data is a set of

sequential images, 11 ,12, ... ,In, which can be represented as a two-dimensional array of

RGB triplets, where an RGB triplet is a set of three values that give the red, green, and

blue levels in the image [PSR93]. The RGB values are represented in 24 bits of

information, in which each color level is represented as 8 bits of information.

3

4

Since most of these sequential images do not change much within a small time

interval, MPEG encoding is done by exploiting temporal locality among these images. It

means that some of images can be generated by referencing other images close to them,

and redundancy among images might be removed in which data (images) are compressed.

This data compression could be implemented either in software or in hardware, and can

be dassified into lossless and lossy techniques [Fur94J. In a lossless technique, the

original representation can be perfectly recovered, while in a lossy technique, the

original representation still can be recovered with some loss of accuracy. Since the I.ossy

technique gives a higher compression ratio than the lossless technique, it is often used in

image and video compression.

MPEG-Video coding uses three techniques [SRD93] to compress video data. The

first technique is called transform coding and takes advantage of two facts:

L high frequency of visual information is more likely unrecognized by human eyes

2. using a mathematical transformation, the concentrated energy of an image can be

represented in fewer values.

In MPEG transform coding, each ROB triplet in an image is transformed into a YCrCh

triplet. The Y value represents the luminance (black and white) level and Cr/Cb values

represent chrominance (color information). Since the human eyes are less sensitive to

chrominance than luminance, the Cr and Cb planes are half-sampled. In other words, all

luminance information (Y), which contains 8 bits per pixel of luminance information, is

transformed, while in the case of clhrominance information (Cr and Cb), half of it is

removed by cutting in half the width and height of the Cr and Cb planes in the horizontal

and vertical directions. This transformation reduces by 4: I the ratio of Cr and CB

5

information, and generates 2 bits per pixel of Cr information and 2 bits per pixel of Cb

information. This process is a lossy compression. since the 24 bits per pixel of RGB

information is reduced to 12 bits of YCrCb information, which results in a 2: 1

compression ratio. The process continues by dividing the image into macroblocks. In the

original image. the macrobJock is a 16-by-16 pixel area. A transfonn coded macroblock is

composed of a set of six 8-by-8 pixel blocks, four from the Y plane and one from each of

the subsampled Cr and Cb planes. These six 8-by-8 pixel blocks then is transformed

using Discrete Cosine Transform (DCT), which decomposes them into frequencies (see

Appendix A).

The second technique MPEG used is called motion compensation. It exploits the

fact that a frame 12 is likely to be similar to its predecessor II, and 12 can be nearly

constructed from 11. Many of the macroblocks in frame 12 can be approximated by pieces

of frame II, which is called a reference frame. Similarly, many macroblocks in I3 can be

approximated by pieces of either I2 and/or II. The appropriate piece of the reference

frame requires fewer bits to encode than original pixels. This coding results in significant

data compression. FUlther compression can be obtained if, at the time 12 is coded both I I

and 13 are available as reference frames, then 12 can then be built using both 11 and n.

When a large pool of reference frames is available, motion compensation can be used to

construct more of the frame being encoded, reducing the number of bits required to

encode the frame.

The final technique used by MPEG to compress video data is entropy coding.

After motion compensation and transform coding, a final pass is made over the data using

Huffman encoding.

6

Based on a coding procedure, we might classify frames into three types which are given

below:

1. Intra (1) frame. This frame is encoded as a single image, with no reference to any past

or future frames (see Figure 2.1). The block is first transformed from the spatial

domain into a frequency domain using Discrete Cousine Transform (DCT), which

separates the signal into independent frequency bands. Most frequency information is

in the upper left comer of the resulting block. At this point, the data is quantized.

Quantization can be thought of as ignoring lower order bits, and is the only lossy part

of the compression scheme other than subsampling. The resulting data is then run

length encoded in a zig-zag ordering to optimize compression.

2. Predicted (P) frame. This frame is encoded relative to the past reference frame that

can be either a P or I frame (see Figure 2.2). The past reference frame is the closest

preceding reference frame. More formally, the past reference frame for a frame Ii is

the reference frame Ij such that Ij comes before Ii in display order, and there are no

other reference frames between Ij and Ii in display order. Each macroblock in a P

frame can be encoded either as an I macroblock or as a P macroblock. An I

macroblock is coded just like a macroblock in an I frame. A P-macroblock is some

16x 16 area of the past reference frame, plus an error term. To specify the 16x 16 area

of the reference frame, a motion vector is transmitted. The error term is generated

using the DCT, quantization, and run-length encoding.

3. Bi-directional predicted (B) frame. This frame is encoded relative to the past

reference frame, the future reference frame, or both frames. The future reference

frame is the closest following reference frame. It can be either an I or P frame. More

7

formally, the future reference frame for a frame Ii is the reference frame II<. such that

II<. comes after Ii in display order, and there are no other reference frames between Ii

and Ik in display order. The encoding for B frames is similar to that for P frames,

except that motion vectors may refer to areas in the future reference frame.

A typical IPB sequence is shown in Figure 2.3. The arrows represent the inter-frame

dependencies.

TI8lIsfODIl coded

maeroblocKs

Entropy

Coding

J---~ 010100101..."

Cr

YUY

Conversion

G

Input Image

B

R

Figure 2.1 Intra Frame Coding [PSR93]

8

Transform coded

maaoblocks

Entropy

Coding

I--~~ 010100101... ..

CbCr

YUV

G

Input Image

B

R

Error

te.rms

+ +

I-_~ I~--+-+-l-----I Transfonn Cljding

of Error Ten:ns

y

Cr Cb

Reference Frame(s)

Figure 2.2 BIP Frame Coding [PSR93]

To rebuild YCrCb frame, the following operations are needed [PSR93]:

1. the entropy coding must be inverted,

2. for P and B frames, the motion vectors must be reconstructed and the appropriate

parts of the reference frame copied, and

3. the error terms must be decoded and incorporated.

Once the YCrCb frame has been built, the frame IS converled to an appropriate

representation for dispJay. This step is called dithering.

9

Bi-directlonal
Prediction

\'- A'- --II \~____1A'- __'1
Prediction

Figure 2.3 Configuration of IBP Frames [Fur94]

2.2 MPEG-Audio

Digital audio is a numerical representation of the pressure wave from an audio

source. The usual representation is called PCM, for Pulse Code Modulation [Pan95]. The

analog waveform is encoded by a series of numbers or samples, typically severa.1

thousands per second. The encoding rate is called the sampling rate and is directly

proportional to the sound quality; the more samples per second, the higher the

(theoretical) fidelity of the sampled sound. Sampling rates vary from 8 kHz for telephone-

quality speech to the high-fidelity rates of 44.] kHz (Compact Disc) [DPBF 96]. The

higher the sampling rate, the more memory is needed for a given audio sample.

ISO/MPEG has define a standard, called MPEG-Audio, for coding PCM audio signals

with sampling rates of 32, 44.1, and 48 kHz at bit rates from 32 to 448 kbits/second. The

standard defines three layers of coding algorithms which are Layer 1, 2, and 3. In all

three layers the input PCM audio signal is converted from the time domain into a

frequency domain. The Layer I coding scheme is known as sub-band coding which is

based on resolving the audio signal into spectral components, or sub-bands [Pan95) .. The

peM audio input is set to be simultaneously passed through a filter bank and a

psychoacoustic model. The filter bank determines how the input stream should be

divided as sub-bands, while the psychoacoustic model sets the ratio of the signaJ energy

to the masking threshold for each sub-band. Using the signal to mask ratio, a bit/noise

allocation determines how to share the available code bits for the quantization of sub

bands. Then, a bit stream formatting formats the quantization of sub-bands into a coded

bitstream.

Layer 2 and 3 are improvement of Layer 1 coding [DPBF 96]. In Layer 2,

redundancy and irrelevance on scale factors are removed. In Layer 3, a hybrid filter bank

is used to get better frequency resolution.

CHAPTER 3

NETWORKED MULTIMEDIA APPLICATIONS

Multimedia systems gather various information sources, such as text, audio, video,

graphics, and images, which are processed by a wide range of applications such as remote

learning, multimedia mailing system, collaborative work systems, multimedia

communication systems (video phone, conference system and information on demand

system [Fur94]. Having various information sources, new technical problems need to be

taken care of. These problems basically result from the different features among different

information sources. More problems arise when multimedia systems are attached to

computer networks. Synchronization and media transmission problems are interesting

research areas in networked multimedia systems.

3.1 Synchronization

Synchronization problem arises when several related media are to be played back

or displayed with respect to their temporal relationship constraints. It becomes more

complex when these related media are also sent over computer networks, because of data

rates networks cannot be predicted. Two requirements [KK94] exist on presenting

multimedia data streams. The first requirement is Intra Media, in which the continuity of

multimedia data streams needs to be maintained in order to provide smooth presentation.

The second requirement is Inter Media which requires multimedia data to have temporal

relationship in order to be presented synchronously.

11

12

To solve the synchronization problem, many techniques have been proposed.

Ravindran [Rav93] has proposed transport models for temporal synchronization scheme.

At source site the data streams are segmented as Media Data Units (MDUs), and each

data stream is sent on separate channel. At destination site, MDDs are buffered before

they are presented. To build temporal relationship among data streams, we wait in an

interval of length K for completely receiving all data streams (since one MDU might

arrive earlier than others).

Multimedia Souroe Multimedia Destination

.... ~ ... ~ '
:"

".
' ~",'

Real-time Delivery

311

. -'-..~
."'

,.'....
.

~__--+ .-...L...-_~~ ---I DE STINAnONSOURCE

".'.....

Figure 3.] Synchronization Markers (SMs) Appended in Data Streams[KK94]

Shepherd et at [SS90] have proposed a mechanism using synchronization

markers, denoted as SMs, which are integrated with application layer of ISO model. The

synchronization markers are inserted into data streams at sender site. The destination site

buffers the arriving marked data stream until all marked data streams are received. Then,

using the temporal relationships included in SMs, the synchronization is pelformed.

Figure 3.1 shows this mechanism. Black squares at multimedia source represent

13

multimedia data streams. From multimedia source, each data stream is sent using separate

channel, and appended with synchronization marker, which is denoted as a blank square

adjacent to the black squares. Synchronization markers are removed at multimedia

destination. These synchronized streams then are passed on to applications running at

multimedia destination.

Basically, synchronization can be achieved by implementing the following

algorithm [CLSWC95]:

loop{
/* estimate the audio waiting time in advance */
estimate_audio_waiting_time();
/* show the related audio and video frame */
play_audio_segment();
play_video_frame();
/* waiting for audio data consumed completed by audio device */
sleep(audio_waiting_time);

} until end_oLplayback;

where audio waiting time is calculated as

. . . . audio segment size
audlO Waltzng tzme = - - + overhead

- - audio_ sampling _ rate

over_head = data_access_ time + system_overhead

Ideally, the audio waiting time is equal to the size of audio segment divided by the

sampling rate of the audio device. In single process environments, the overhead includes

interrupt service time and instruction execution time. The data access time ancl system

overhead time is critical. If the estimated time interval is longer than the real one, it will

be too late to load the next audio segment into the audio device in time. The buffer will

be exhausted before the next audio segment arrives. It leads to no audio data to be pl.ayed

between these two audio segment. This results in discontinuous audio output. If the

14

estimated time interval is shorter than the real one, it would be too early to load the next

audio segment into the audio device. In this case, audio device buffer could be full and

the phenomenon of out of synchronization occurs.

In the multi-process environment, process context switch time, which is difficult

to predict, must also be taken into account. The synchronization is implemented using

parent-child scheme, in which the following criteria must be satisfied [CLSWC095]:

1. There will be child processes supporting their parent processes.

2. Each process is responsible for playing back one medium.

3. The parent process plays the role of monitoring its child processes and playing back

the highest priority medium.

4. The child processes play back the lower priority media.

5. The responsibilities of the parent processes are

• pre-calculate the vital synchronization information.

• fork (generate) the child processes before the playback starts.

• kill (terminate) the child processes after playback ends.

6. Synchronization mechanism among different media processes: Two approaches are

implemented in this model.

• relative synchronization: Based on pre-calculated synchronization

information (some synchronization points), media processes can synchronize

with each other through some well-known internal process communication

techniques such as shared memory, socket, and pipe.

-',-

15

• absolute synchronization: Based on pre-calculated synchronization

infonnation (some time table), each medium process synchronizes with the

global system clock.

3.2 Buffer Requirement

Most networked multimedia systems rely heavily on the availability of communication

services. In todays computer networks, there are many types of network operating systems

attached to the networks. Handling multimedia data streams over computer networks can

be done by the network layers (protocols) and/or the multimedia applications themselves.

Buffering is one technique in handling multimedia data streams, and it is usually be done

at receiver sites (multimedia destinations). Two possible buffering approaches, which are

traditional buffering and application oriented buffering, have been described by Velthuys

et al [VLP95]. They are traditional buffering and application-oriented buffering.

3.2.1 Traditional Buffering

Figure 3. 1 shows incoming network data units (frames) being stored in buffer space,

somewhere in main memory. The buffers remain occupied until the application has

retrieved the data. Then, the buffers are freed and can be reused for storing subsequent

network frames.

One important function performed is segmentation and re-assembly. Often,

application data frames are too large to be sent as a single network data frame. Hence,

application data frames are segmented and transmitted as a series of network data frames.

At the receiving site, the network frames are stored in buffer space, and re-assembled into

application data frames.

16

A PPL1'CA TION

! f
APPLICATION DATA FRAME

r
REASSEMBLY

_____--'- .1...- ---'1-· ---. ----~-~~:-~~~-~-~~~~- ----
___ .. _... .Netw"oxk.. Da.t.a_Fx.a:rne . . _. __ . . . __ . _. ._

------------ .. ------------- ---- I -------L- ------L-- _____

Figure 3.2 Traditional Buffering [VLP9S]

In some multimedia systems, buffering management is adjusted to the network

operating systems (network oriented). Since buffer space is needed for receiving data

frames from the network, it seems appropriate to segment these buffers in data units that

are equal to the size of the network data frames. Then, if there are some data frames

received incorrectly (caused by some transmission error), network operating systems will

correct or remove them..

3.2.2 Application-oriented buffering

Nowadays, reliability of modern networks is more sophisticated, only few network frames

are lost, corrupted, or delivered out off order. Application data frames can be reassembled

II
!

I'

, I
L.

17

from incoming network data frames (figure 3.3) which are received consecutively in

contiguous buffer space, e.g., network data frame n+l follows network data frame n, etc.

Once all network data frames for an entire application data frame has been received

(uncorrupted), the application data can be delivered to the application.

APPLICATION

r !
'- ---l ----L ---JI ~u~~r ~~~~~ .

L. ~p.pJ!!=.~~'()~ _J?-~~.8: .s.~c:!".~ _ .

......... ·.··.· ·.· ..· -.-.-·I'------------L....__

Figure 3.3 Application-oriented Buffering [VLP95]

In most cases, neither the communication protocols delivering the frames nor the

buffering mechanism storing them understand the data received from the network. The

data is not meaningful to the application until it is reassembled.

Meanwhile, audio and video applications need ongoing streams of incoming

application data frames. We often end up with so littJe time left in detecting and

recovering elTors in reassembled data streams [VLP95]. However, this does not mean that

the reassembled data frames cannot be cOlTected. Some of data streams might be tolerated

in having corrupted data. A video stream is one of the examples of tolerated data. A

!
I

i
I
,~

i8

corrupted network frame means that one out of a series of images is incorrect. In this

case, copying the previous image can be a solution. In audio stream, the loslnetwork data

frame cannol be tolerated. Loosing one network frame may lead us to different

perception. A solution for this problem is to retransmit the corrupted network frame,

which may introduce an additional delay. This buffering approach is often called as

application-oriented buffering.

3.2.3 Buffer Management Philosophies

Buffers can be rescheduled for allocation in one of two strategies [VLP95]:

• underestimating actual usage (or pessimistic): allocating more buffer space than Likely

to be needed. This comes with the risk of buffer conflicts because of

overcommitrnent.

• overestimating actual usage (or optimistic): allocating fewer buffers than requested.

This approach avoids buffer conflicts, it assumes that applications demand more

resources than necessary.

The only situation which causes problems during reception and presentation is if fewer

buffers are allocated then the actual need, since this means that more data is lost, causing

a reduction in presentation quality.

"

il
!.l

CHAPTER 4

IMPLEMENTATION

4.1 Hardware

In this implementation we use Sun Spare 20 as workstations, and Solaris 5.4 and

Openwindows as their operating systems and X-Window systems. Solads 5.4 is actually

Unix System V operating system which has facilities such as semaphore for controlling

mutual exclusion of processes, and TLI sockets for networking. These facilities are

needed in our implementation.

4.2 Software

Berkeley Multimedia Research Center at University of California at Berkeley has a

developed program caBed MPEG-l Encoder and Decoder [RPSGH95] which

implements MPEG-l standard for encoding and oecoding video stream. In this

implementation, MPEG-l Encoder can he called hy Server process to encode incoming

video stream. MPEG-I Decoder must be run by Client process.

Tobias Bading from Berlin University of Technology, has developed MAPLA Y

[Bad94], an audio player. It decodes audio streams sampled at frequencies 32, 44.1, or 48

kHZ, into raw 16 bit PCM stream. This software is called at Client site at presentation

time.

Phillip Lougher from Computing Department, Lancaster University, has

developed a software called mpegUtil [Loug95] that can generate information on MPEG

video files, and extract partial image sequences. This software is used at server site. It

]9

11
I

I !
!

20

takes compressed video file, and can generate another compressed video file containing a

certain sequence images.

TCP connection is set up to make Client and Server communicate. This is

connection oriented, which means connection must first be established between Client

and Server before they do transactions.

4.3 Method of Implementation

As stated in previous section, 10 multi-process environment such as Unix, the

synchronization must use parent-child scheme. However, in our implementation, we

made slight changes. Client server scheme is also used, since multimedia data streams are

sent over computer network, in which multimedia source is the server, while multimedia

destination is the client. To be able to accept multi requests from clients, concurrent

server is a better strategy. Hence, the following scenario is implemented:

I. Relative synchronization approach is illl1plemented. Inter Process Communication

techniques used are as follows:

• Socket: for communicating between server and client processes.

• Shared Memory: letting appropriate processes to access the same infonnation.

• Semaphore: controlling processes' access to share memory.

• Pipe: for communicating between parent server/client to their child processes.

2. There will be two child server processes supporting parent server processes.

3. There will be two child client processes supporting parent child processes.

4. One child server process is responsible for sending video segments, while another is

responsible for sending audio segments.

~I

21

5. One child client process is responsible for receiving, buffering and reassembling

video segments, while another IS responsible for buffering, receiving and

reassembling audio segments.

6. Application-oriented and pessimistic buffering strategy is implemented.

7. The responsibilities of parent server are:

• Fork off two server child processes.

• Pre-calculate the synchronization information: parent server divides incoming

video and audio streams into segments.

• Create timestamp for each segment every time an I (intra) frame is read from

compressed video stream generated by Berkeley's MPEGI Encoder. Hence,

the number of r frames is the number of segments generated. The timestamp

information is stored at a shared memory which can be accessed by both audio

and video server.

• Use two semaphore variables to avoid overrunning and to control child server

processes.

• Detect when discarding Band P frames should be taking place, and also let

video server process to send I frame only.

• Kill (terminate) child processes after clients' connection are disconnected.

8. The responsibilities of parent client are:

• Fork off two client child processes.

• Check how many segments are already received in buffer space.

• Infonn parent server to send all frames, no B frames, or no BfP frames.

22

• Use also two semaphore variables to avoid chHd client processes from

overrunning.

• Adjust frame rates based on what type of frames are sent from server

processes.

• Once video and audio streams are ready reassembled, calculate audio waiting

time, and inform video and audio client processes to play video and audio

player.

• Kill (terminate) child client processes after child processes has finished

displaying multimedia streams.

SERVER

VIDEO
SERVER

VIDEO
CLlEHf

~--------

CLIENT

AUDIO
CLIENT

Figure 4.1 Client-Server and Parent-Child Scheme I{.

23

i

~ Audio Segment 1
,

~

Time Stamp 1

Head Pointers
i

i

I

L,
Video Segment 1 [~!

TimeStamp 1

Audio Segment N

TimeStampN

~

Video Segment N

TimeStamp N

~

Figure 4.2 Data Structures Used at Server and Client Sites

4.4 Server Process

Since these workstations are not provided with video camera, we may use personal

computers to capture multimedia data. Then, the data is loaded into Sun Spare 20

workstation. Audio and video streams are encoded using Berkeley's MPEG Encoder,

which generates compressed video files consisting of sequence of l, P, and B frames,

and an audio files sampled at the rate of 44 kHz.

Before clients send requests for multimedia files, parent server has to be set up by

binding parent server to a certain port number. The parent server can IlJI1 in background.

Since we implement concurrent server, for every request connection parent server forks

off another parent server process which is exactly a duplicate of parent server. The

duplicate parent server communicates to and serves the client, while the original parent

24

server waits for other request connections. The following is algorithm used for parent

server:

create_a_TCP_transporcend-point();
socket =bind-parencserver_address_into a certatinyort();
loopJorever (

listenJor_any_requescconnection();
new_socket =accepcconnection();
fork_off_server-IJrocess(new_socket); /* concurrent server */
close(new_socket);
}

For sending the multimedia files, the duplicate parent server then forks off two child

processes which are video and audio server child processes. Before forking off child

processes, duplicate parent server must set up pipe connections in order to communicate

with its child processes.

Type of frames needed must be specified by client before sending or receiving

multimedia data streams begin. Client can issue three options which are to send all

frames, to discard B frames, or to discard P and B frames. Video server child, who is set

up to be run first, calls mpegUtil software to fulfill client request.

For writing timestamp information to data structure, a semaphore variable which

is also a shared memory, is used. Video child server process increments this timestamp

information before it reads a video segment. Since timestamp information is in shared

memory, audio server process can always reads this timestamp information when it needs.

In controlling parent and child server processes, two semaphore variables are used

and initially set to zero. Control is first handed to duplicate parent server which reads

message from client (using socket) and passes on the message to video child server (using

pipe). Based on the message, video child server process reads video segment from source,

'I

25

and sends the video segment back to duplicate parent server using pipe. Next, this video

segment is sent to client by duplicate parent server (using socket). Similarly, almost the

same sequence steps are followed by audio child server. The difference is that audio child

server does not increment the timestamp. Please notice that even all server processes get

the same copy of algorithm, they do not execute every statement. For example, statement

block for video process is only executed by video child server. The following is the

algorithm used by duplicate parent server, video child server, and audio child server.

create_and_initialize_semaphore_variables(audio_server_child);
create_and_initialize_semaphore_variables(video_server_child);
create_and_initialize_semaphore_variables(time_stamp);
create_and_initialize_semaphore_variables(audio_server-parent);
create_and_initialize_semaphore_variables(video_server-parent);
create-fJipeJor_communication_between(parent_and_audio_server_child);
create-fJipeJor_communication_between(parencand_video_server_child);

for_loop_index(O, .. ,1) {
childpid =fork /* fork off child process */
if (child process == video-process) { /* video child server */

loopJorever (
DOWN(video_server_chiLd); /* video child gets blocked */
increment time_stamp;
read_messageJrom-pipe(parent_and_video_server_child);
if(message == "openjile") (

translate_request(message, parameters);
system_calle mpegUtil -parameters);
set message = "continue");

}
if(message = = "continue") (

read_videoJile(filename);
write_message_into-pipe(parencand_video_server_child);
UP(video_server-fJarent); /* lets parent run */
if(bytes_read <> defaulcread_data) /* end offile */

exit(O);
}

J

if(child process == audio-fJrocess) { /* audio child server */
loopJorever (

DOWN(audio_server_child); /* audio child gets blocked */

read time_stamp;
read_messageJrom-pipe(parencand_audio_server_child);
iff message == "open file") (

translate_request(message, parameters);
set message = "continue");

}
ij(message == "continue") {

read_audioJile(filename);
write_message_into-pipe(parencand_audio_server_child);
UP(audio_server-parent);
ij(bytes_read <> defaultJead_data) /* end offile */

exit(O);
}

}

} /* endfo r_loop_index(0, .. , I) */

/* parent process */

while(VIDEO_DATA <> EOF or AUDIO_DATA <> EOF) {
iff VIDEO_DATA <> EOF) (

read_messageJrom_ socket(to_client);
write_message_intoyipe(parencand_video_server_child);
UP(video_server_child); /* lets video child run */
DOWN(video_server-parent); /* parent gets blocked */
read_messageJromyipe(parencand_video_server_child);
write_message_into_socket(to_client);

}

iff AUDIO_DATA <> EOF) {
read_messageJrom_ socket(to_client);
write_message_into-pipe(parencand_audio_server_child);
UP(audio_server_child); /* lets audio child run */
DOWN(audio_serveryarent); /* parent gets blocked */
read_messageJrom-pipe(parencand_Qudio_server_child);
write_message_into_socket(to_client);

}
}

parencwaicuntiCalCchild-process_exit();
remove_semaphore_variablesJrom_memory();

26

-

l

'to

create_a_TCP_transporcend-poincand_bind_it();
conneccro_server();
if (connection not established) then

send_error_message_and_quit();
callyrocedure~doit();
display_result(),:

procedure doir();.
create_and_initialize_semaphore_variables(audio_cliencchild);
create_and_initialize_semaphore_variables(video_cliencchild);
create_and_initialize_semaphore_variables(audio_clientyarenr);
create_and_initialize_semaphore_variables(video_clientyarent);
createyipeJor_communication_between(parencand_audio_cliencchild);
createyipeJor_communication_between(parencand_video_cliencchild);

for_loop_index(O, .. ,]) (
childpid =fork() /* fork off child process */
iff child process == videoyrocess) (/* video child client */

send_requesCto_server();
loopJorever (

UP(video_clientyarent);
DOWN(video_client_child);
read_messageJromyipe(parencand_video_c1iencchild);
write_toJile();
UP(video_clientyarent);
DOWN(video_cliencchild);

d (". ")sen Jnessa/?e contmue ;

J
}

if (child process ==audioyrocess) { /* video client child*/
loopJorever (

UP(audio_clientyarent);
DOWN(audio_ciienCchild);
read_messageJromyipe(parent_and_audi_client_child);
write_toJile();
UP(audio_clientyarent);
DOWN(audio_cliencchild);
send_message("continue");

}
}

J/* endfor_loop_index(O, .. ,1) */

28

/* parent process */

while(VIDEO_DATA <> EOF or AUDIO_DATA <> EOF) (
if(VIDEO_DATA <> EOF) (

DOWN(video_clien(-parent);
read_messageJrorn_video_clienCchild();
send_message_to_server();
read_messageJrom_ server();
write_message_to_video_cliencchild();
UP(video_cliencchild); /* lets video child run */
DOWN(video_clien(jJarent); /* parent gets blocked */

}

if(AUDIO_DATA <> EOF) (
DOWN(audio_clientyarent);
read_messageJrom_audio_client_child();
send_message_to_server();
read_messageJrom_ server();
write_message_to_audio_cliencchild();
UP(audio_cliencchild); /* lets audio child run */
DOWN(audio_client""'parent); /* parent gets blocked */

}
}

parenCwaicuntiCalCchild""'process_exit();
remove_semaphore_variablesJrom_memory();

29

CHAPTERS

RESULTS

Quality of Servrce is a key parameter to determine the effectiveness of this

synchronization scheme. Vogel et al [VKBG95] have detennined five categories (see

Table 5.1) to be uscd! to measure Quality of Service.

Table 5.1 The Five Categories of QOS Parameters [VKBG95]

Category Example Parameters

Performance-oriented End-to-end delay and bit rate

Format-oriented Video resolution, frame rate, storage format, and compression

scheme.

Synchronization-oriented Skew between the beginning of audio and video sequences

Cost-oriented Connection and data transmission charges and copyright fees

User-oriented Subjective image and sound quality

Some of the parameters given In table 5.1 are applicable to this work, others are not

applicable. End-to-end delay and bit/rate parameters depend on system load which vary

from time to time, and therefore is not applicable in our simulation. Connection and data

transmission charges cannot be used, since we put both server and client in the same

system. Video resolution, compression scheme, or storage format cannot also be used,

since we do not alter video resolution, compression scheme, nor storage format. Sound

quahty cannot be used since we do not alter the sound stream. Hence, parameters to be

measured are as follows:

30

31

• frame rates: measures the number of encoded frames per second. In addition to frame

rates, we also measure number of I, P, or B frames sent.

Stream 1

•

•

skew: measures the synchronization between video and audio streams.

video quality: measures the smoothness video stream presentation. It is subject to

opinion of viewers.

"
".,
"___......D..D__._.'_'_'0_"_"_"_'_'0_"'_"_0_"_'0_00_0'_0_"_".........'[]"""- >~... time

t11 t1n

Stream 2

D.D
'... :....
I •.. .•,. .
I" •--'-"

~21

".'

.0 •• ". 0 •• " 0000.". o. o. 0"' 0 ••• 0.0. W"!"':------>a'3l.. time

t2n

tlx: Presentation Time of Stream 1

t2x: Presentation Thne of Stream 2

.6. tx = tlx - t2x

where x = 1,2,3, ... ,n

n = number of segments

Figure 5.1 Presentation Time of Two Multimedia
Data Streams

As we mentioned earlier, multimedia data streams are segmented and gl yen

timestamps by server processes. Client processes reassemble and present them after

receiving the streams. Figure 5.] is a picture of presentation time line of two multimedia

streams. Each segment is expected to be presented at their designated time. The different

32

presentation times between the audio and video segments can be denoted as Atx. where x

= 1,2,...•n, and n is the number of video and video segments. If audio and video streams

start and end at the very same time, then An = At2 = An = ... = Atn = O. This is rated as

a good skew. A moderate skew is rated when Atx is less than 1 sec. It means that either

audio or video streams might be started and/or ended at most 1 second earlier than

another. A poor skew is rated when Atx is greater than 1 sec. An unknown skew is rated

when multimedia files have only one data stream, either audio or video stream.

Object movements in video stream play important role in compressed video

quality. Losing some image sequences in multlmedia files that have fast moving objects

might not generate smooth object movements. The pixel areas, where the object

movements are captured, are the most significant parts generating the level of video

quality. Some of object movements' information might be kept in Band P frames. Losing

these frames might cause distortion on these pixel areas. A good video quality is rated

when no distortion occurred in any parts of image sequences. A moderate video quality is

rated when distortion occasionally occurred in some part of image sequences. In other

words, object movements are rardy captured. However, if distortion occurs in multimedia

files, which object movements are frequently captured and the pixel areas of object

movements are relatively small portion compared to their frames' size. their video

qualities still can be considered as moderate. A poor video quality rating is given when

frequent distortion occurred in most of the image sequences. The rating of skew and

video quality parameters can be described in the following table:

33

Table 5.2 Rating of Some QOS Parameters

Rating Skew Parameter Video Quality

Good AU presentation time of Audio and No distortion occurred in any parts
video segments are simultaneous. of image sequences.

Moderate All presentation time of audio and Distortion occasionally occurred in
video segments differ from one some of the image sequences.
another by at most 1 second.

Poor Preserltation time of audio and video Frequent distortion occurred in most
segments differ from one another by of image sequences.
more than 1 second.

Unknown Multimedia files contain only one Multimedia files contain only audio
multimedia data stream. stream.

5.1 Experiments

Five multimedia files were used to test the synchronization scheme. For each

multimedia file, (if applicable) we had conducted three simulations which were as

follows:

• First simulation was set up such that a client requested a multimedia file from server

with all I, B, and P frames being sent.

• The second simulation was set up such that a client requested a multimedia file from

server with I and P frames being sent.

• The third simulation was set up such that a client requested a multimedia file [Tom

server with I frames being sent.

The first multimedia file was about self-introduction of three researchers from

Multimedia Communication Labs at Boston University. During the presentation, they

..

34

rarely moved, and lhe background of the scene was a still object. Hence, just a few

movements were captured in this file. The file had both video and audio streams. The

video stream was encoded in IPB frame configuration. The frame size was 80x64 pixels

area. The result of measured parameters are tabulated in table 5.3.

Table 5.3 Result of Measurement on Multimedia File
Containing Relatively Still Objects.

Simulatio I Number of Number of Number of frames/sec skew video
n I frames P frames B frames quality
I 741 741 2222 60 Moderate Moderate
II 741 741 a 24 Moderate Moderate
ill 741 a a 12 Moderate Moderate

The second multimedia file was about a person speaking in German language.

During the presentation, the person occasionally moved, and the background of the scene

was launching of a rocket. Hence, a lot of movements were captured in this file. The file

had both video and audio streams. The video stream was encoded in IPB frame

configuration. The frame size was 320x240 pixels area. The resuIL of measured

parameters are tabulated in table 5.4.

Table 5.4 Result of Measurement on Multimedia File
Containing Relatively Moderate Moving Objects.

Simulatio Number of Number of Number of frames/sec skew video
n I frames P frames B frames quality

I 41 80 359 25 Moderate Moderate

II 41 80 0 10 Moderate Poor I

ill 41 a 0 5 Moderate Poor

35

The third multimedia file was about an animation from IRlX Inc. The animahon

contained moving and resizing letters. The background of the scene was a btack (frame)

object. Hence, relatively a lot of movements were captured in this file. The file had both

video and audio streams. The video stream wa~ encoded in I frame configuration. The

frame size was 160x 120 pixels area. The result of measured parameters are tabulated in

table 5.5.

Table 5.5 Result of Measurement on Multimedia File Containing
Relatively Moderate Moving Animation.

Simulatio Number of Number of Number of I frames/sec skew video
n I frames P frames .B frames quality
I 901 80 359 25 Moderate Moderate

The fourth multimedia file was a basket ball game. Many objects were captured in

this file. The objects were basket ball, players, referees, and observers. Basket ball and

players were the most focused objects, and were moving frequently. Hence, a lot

movements were captured in this file. The file had only video stream, which was encoded

in IPB frame configuration. The frame size was 320x240 pixels area. The result of

measured parameters are tabulated in table 5.6.

Table 5.6 Result of Measurement on Multimedia File
Containing Moving Objects.

Simulatio Number of Number of Number of frames/sec skew video
n I frames P frames B frames quality

I 786 2355 6278 30 Unknown Moderate

II 786 2355 0 12 Unknown Poor

ill 786 0 0 6 Unknown Poor

36

The fifth multimedia file was a scene of a bus circling a park. A rotating camera

was placed al the center of the park. During the presentation, background was changing

frequently. Hence, it seemed that we had a still object (bus) with a lot of movements in

the background. The file had only video stream, which was encoded in lPB frame

configuration. The frame size was 352x240 pixels area. The result of measured

parameters are tabulated in table 5.7.

Table 5.7 Result of M,easurement on Multimedia File
Containing A Moving Object.

Simulatio Number of Number of Number of frames/sec skew video
n I frames P frames Bframes quality
I 786 2355 6278 30 Unknown Moderate
II 786 2355 0 12 Unknown Poor
m 786 0 0 6 Unknown Poor

37

5.2 Discussion

There are three factors determining skew parameters of multimedia files. They are

encoding (sampling) process of audio and video streams, segmenting and assigning

timestamps on multimedia data streams, and adjusting frame rates of video streams.

Multimedia files used in this study are pre-sampled. Audio files are sampled at 44.1 kHz.

This audio sampling rate is sufficient enough since it generates about 44000 samples per

second. While video files are sampled in varying rate. The MPEG-video standard

suggests 30 frames per second to be used. Higher sampling rates on video stream give

moderate skew parameter (refer to tables 5.3, 5.4, and 5.5).

Segmenting and assigning timestamps on multimedia data streams is one of the

factors that skew parameter depends on. In this study, video and audio streams are

segmented based on I frames found in video stream. When Band/or P frames are

discarded, audio segments associated with them are either assigned to be a-;sociated to the

I frame preced]ng or foUowing the discarded frames. This might generate i.nappropriate

segmenting and assigning timestamps on multimedia data streams. Furthermore, it might

not generate good skew parameter.

Another factor in determining skew parameter is frame rate of video stream.

When Band/or P frames are discarded from original multimedia files, the frame rates of

video stream need to be adjusted. This adjustment is calculated as frame rate of original

video stream times the ratio of total frame number of modified video stream over total

frame number of original video stream. The experiment shows that multimedia files that

originally sampled at higher sampling rate have moderate skew parameter in simulations

which are discarding Band/or P frames (see tables 5.3 and 5.4).

38

Discarding some sequence of images and lowering rate of frame sampling might

cause poor video quality. When some sequences of images are discarded, the frame rate

of the video stream needs to be adjusted in order to have synchronized presentation of

audio and video streams. Choking effect is the impact of discarding some sequences of

images, and it decreases quality of video streams. The appearance of this effect depends

on the sampling rales of original video streams. If original video streams are sampled at

higher rates, the choking effect may not be recognized during presentation of video

streams. As an example, the original first multimedia file had sampling rate at 60 frames

per second (fps).When B frames were discarded, the frame rate was adjusted to 24 fps,

which was close to the sampling rate of MPEG-Video standard (30 fps). Its video

quality was rated as moderate.

CHAPTER 6

CONCLUSION

6.1 Summary

In this thesis work, we have described a method of synchronization which

discards parts of a compressed video stream at the sender site. This synchronization

scheme also implements relative synchronization, and application-oriented and

pessimistic buffering strategy.

An advantage of ~his synchronization is that How data rate sent can be adjusted by

client according to the metwork traffic. However, some disadvantages occur which are as

fol1ows:

• Chokimg effect may appear when the multimedia data are played back, since Band/or

P frames might be discarded when it is necessary.

• A Tep connection must be made up before transactions begins. This connection

might not be reliable when multimedia source and multimedia destination are far

apart. If network congestion problem often occurs, a choking effect may appear

frequently.

Experiments suggest that original video streams need to be sampled at higher

sampling rate in order to reduce choking effect. This suggestion does not seem to be

encouraging since having higher sampling rate on video streams requires large amount of

storage to store compressed video stream.

39

40

6.2 Future Work

Following are suggested as future work:

• UDP con.nection: to have more reliable connection, we need to change the type of

connection to be a UDP connection. Using this type of connection we might be

experiencing less "choking" effect. However, a major modification of client and

server codes need to be done, since we have to provide a mechanism that makes sure

that all video and audio segments are well received, and aITange them in the cOITect

order.

• Self-adjustment Mechanism: implement a self-adjustment flow mechanism such that

flow data rate can be adjusted by both client and server dynamically by evaluating

current network traffic without the user's intervention.

[AS94]

[Bad94]

BmLIOGRAPHY

Frank Adelslein and Mukesh Singal. "Pr~ority Ethernet". In Proceedings

of the IASTEDIISMM: Distributed Multimedia Systems and Applications,

pages 45-48, Honolulu, Hawaii, August 1994.

Tobias Bading. "MPEG Audio Player MAPLAY 1.2". Archived software

ftp://jtp.crs4.it/mpeglprograms/maplayJ _2.tar.z. Berlin University of

Technology, June 1994.

[CLSWC095] HerTIg-Yow Chen, Nien-Bao Liu, Chee-Wen Shiah, la-Ling Wu, Wen

Chin Chen, and Ming Ouhyoung. "A Novel Multimedia Synchronization

Model and Its Applications in Multimedia Systems". Communication and

Multimedia Laboratory, Department of Computer Science and Information

Engineering, National Taiwan University, Taipei, Taiwan, R.O.c.

[Cri93]

[DGJJ94]

S.M. Crimmings. "Analysis of Video Conferencing on A Token Ring

Local Area Network". In Proceedings ACM Multimedia 93, pages 301

310, ACM Press, New York, 1993.

D. Davcev, S. Gievska, S. 10rdanoski, and Lj 10sifovski. "Real-Time

Multimedia Tele-Teaching System". In Proceedings o/the

IASTEDIISMM: Distributed Multimedia Systems and Applications, pages

131-134, Honolulu, Hawaii, August 1994.

41

42

[DPBF 96] Martin Dietz, Harald Popp, Karlheinz Brandenburg, and Robert Friedrich.

"Audio Compression for Network Transmission". Journal of the Audio

Engineering Society, vol. 44, pages: 58-60, JanuarylFebruary 1996.

[Fur94]

[Oa191]

[Hung91]

[JSN95]

[KK94]

[Loug95]

Borko Furht." Multimedia Systems: An Overview". IEEE Multimedia, 1

(1): 47-49, Spring 1994.

Didier Le Gall. "MPEG: A Video Compression Standard for Multimedia

Applications". Communications of the ACM, 34 (4) :47-58, April 1991.

Andy C. Hung, "PVRG-MPEG Codec", Archived file MPEGv1.1.tar.Z,

Portable Video Research Group, Standford Uni versity, 1991.

Spaul W. Jardetzky, Cormac 1. Sreenan, Roger M. Needham. "Storage and

Synchronization for Distributed Continuos Media". Multimedia Systems,

yol. 3, pages 151-161, 1995.

Cheeha Kim and Sang Wook Kang. "A Media Synchronization Scheme

for Distributed Multimedia Systems". In Proceedings of the

/ASTED/ISMM: Distributed Multimedia Systems and Applications, pages

163-166, Honolulu, Hawaii, August 1994.

Phillip Lougher. "mpegUtil". Archived software mpeRUtil.tar.gz.

Computing Department, Lancaster University. Lancaster, LA] 4YR,

United Kingdom, March 1995.

43

[OWCLL95] Ye-Jen Oyang, Chun-HungWen, Chih-Yuan Cheng, Meng-Huang Lee and

Jian-Tian U./EEE Transactions on Computer Electronics, 41 (1),

February 1995.

[Pan95]

[PSR93]

[Rav93]

Davis Pan. "A Tutorial on MPEG/Audio Compression". IEEE

Multimedia, 1(1): 47-49, Summer 1995

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe. "Performance of a

Software MPEG Video Decoder". Proceedings ACM Multimedia 93,

Anaheim, California, August 1993.

K Ravindran. "Transport Models for Synchronization of Multimedia Data

Streams". Technical Report TR:93-8, Department of Computing and

Information Science, Kansas State University, January 1993.

[RPSGH95J Lawrence A. Rowe, Ketan Patel, Brian Smith, Kevin Gong, Eugene Hung,

Steve Smoot, Doug Banks, Sam Tze-San Fung, Darryl Brown, and Dan

Wallach. "Berkeley MPEG Tools". Archived software jip://mm-

Jtp. cs.berkeley.edu/pub/multimedia/mpeg/bmtJrJ. tar.gz. Computer

Science Division-BECS University of California at Berkeley, February

1995.

[SRD93] Ke Shen, Lawrance A. Rowe, and Edward J. Delp. "A Parallel

Implementation of an MPEGI Encoder: Faster Than Real-Time".

Technical Report MM93, University of California at Berkeley, 1993.

[SS90]

44

D. Sheperd and M. Salmony. "Extending OSI to Support Synchronization

Required by Multimedia Applications". Computer Communication, 7(13),

page: 399-406, 1990.

[VKBG95] Andreas Vogel, Brigitte Kerherve, Gregor von Bochman, and Jan Gescei.

"Distributed Multimedia and QOS: A Survey". IEEE Multimedia, 1 (1):

10-17, Summer 1995

[VLP95] Rolf Velthuys, Kelly Lyons, and Ian Parsons. "Multireception Service for

a Multimedia News Application". Fourth International Conference on

Computer Communications and Networks (ICCCN'95). IEEE Computer

Society Press, Los Alamitos, California, September 1995.

APPENDIXES

45

APPENDIX A

DISCRETE COUSINE TRANSFORM ON IMAGE COMPRESSION

The following paragraphs are taken verbatim from PVRG-MPEG Codec [Hung91]:

"For each separate color component, the image is broken into 8 x 8 blocks

that cover the entire image. These blocks are the input to the DCT.

Typically, in the 8 x 8 blocks, the pixel values vary slowly. Therefore, the

energy is of low spatial frequency. A transform that can be used to

concentrate the energy into a few coefficients is the two-dimensional, 8 x 8

DCT which is extremely efficient for highly correlated data. Conceptually,

a one-dimensional DCT can be thought of as taking the Fourier transform

and retaining only the rea] (cosine) part. The two-dimensional DCT can be

obtained by performing a one-dimensional DCT on the columns and then,

a one-dimensional OCT on the rows. Formula for the two dimensional 8

by 8 DCT can be written in tenus of the pixel values f(i,j) , and the

frequency domain transform cofficients,

7 7

F(u, v) = (1/ 4)C(u)C(v)I I f (i, j) cos«2i + l)un /16) cos((2j + i)vn /] 6)
;=0 j=O

where

46

{
l/ .fi

C(x) = I
x=o

otherwise

The transfonned output from the two-dimensional DCT is ordered so that

the mean value (the DC coefficient) is in the upper left corner of the 8 x 8

coefficient block, and the higher frequency coefficients progress by

distance from the DC coefficient. Higher vertical frequencies are

represented by higher row numbers, and higher horizontal frequencies are

represented by higher column numbers.

The mverse of the two-dimensional OCT IS written as

f (i, j) = (1/4)I I C(u)C(v)F(u, v) cos((2i + l)un /16) cos((2j + l)vn /16)

47

APPENDIXB

QUANTIZATION ON IMAGE COMPRESSION

The fo]]owing paragraphs are taken verbatim from PVRG-MPEG Codec [Hung91]:

"The coefficients of the DCT are quantized to reduce their magnitude and

to increase the number of zero value coefficients. The uniform quantizer is

used for the MPEG method, with a different stepsize per DCT coefficient

position.

The intraframe blocks are quantized with DC and the AC terms separately;

the AC and DC quantization are

C(O,O) = L(F(O,O) ± 4) / 8J

A(u, v) =L« F (u, v) * 16) ± Q(u, v) / 2) / Q(u, v)J

C(u, v) =L«A(u, v) ± Q,..) / 2QF J

where C(u, v) is the quantized coefficient, F(u, v) is the DCT frequency

48

coefficient, Q(u, v) is the quantizer stepsize, Q F is the quantizing

parameter (for rate control); and ± is positive for F(u,v) positive, negative

otherwise.

The inverse intra quantize is

F(O,O) =8C(O,O)

F(u, v) =C(u, v)Q,..Q(u, v) /8

For forward predicted and interpolated blocks, the qunatisizer has a dead

band around zero, and is the same for both AC and DC components as

-

A(u, v) = L«F9u,v) * 16) ± Q(u, v) / 2Q(u, v)J

Then if QF is odd

C(u, v)=A(u, v) /2Q F

otherwise

C(u, v) =(A(u, v) ± 1) / 2QF)

where ± is positive for A(u, v»O, otherwise is negative.

The inverse quantizer is then

F(u,v) = (2F(u, v) ± l)QFQ(u, v) / 16)

where ± is positive for F(u, v»O, negative otherwise.

Quantization is the lossy stage in the MPEG coding scheme. If we

quantize too coarse, we may end up with images that look "blocky", but if

we quantize too fine, we may spend useless bits coding.".

49

APPENDIXC

CODING MODEL AND ENTROPY CODING

The following paragraphs are taken verbatim from PVRG-MPEG Codec [Hung91]:

"The coding model rearranges the quantisized DCT coefficients into a zig

zag pattern, with the lowest frequencies first and the highest frequencies

last. The zig-zag pattern is used to increase the run-length of zero

coefficients found in the block. The assumption is that the lowest

frequencies tend to have larger coefficients and the highest frequencies

predominantly by zero.

50

AC Coefficient Start

o

1

2

3

4

5

6

7

Horizontal Frequency

Ve:rt1cel Frequency

AC Coefficient End

Figure C.l zig-zag pattern [Hung91)

The first coefficient (0,0) is called the DC coefficient, and the rest

of coefficients are called AC coefficients (see figure C.1). The AC

coefficients are traversed by the zig-zag pattern from the (0,1) location to

the (7,7) location.

The quantisized DC coefficients are encoded by the number of

significant bits, followed by the bits themselves. The quantisized AC

coefficients usually contain runs of consecutive zeros. Therefore, a coding

advantage can be obtained by using a run-length technique. The AC

coefficients are encoded based on the number of zeroes before the next

non-zero coefficient. For frequently occurring combinations of zero-run

length/nonzero-coefficient, a unique variabk length code is used. For the

other codes, an ESCAPE variable length code allows the definition of run

length of zeroes, and the level of the coefficients, as is. The inverse of run

length coder translates the input coded stream into an output array if AC

coefficients. Based on the nm-length code, it takes the current position in

the output array and appends a number of zeroes followed by the next non

zero coefficient.

The block codes from run-length models can be further

compressed using entropy coding. For the MPEG method, the Huffman

coder is used to compress the data closer to symbol entropy. To compress

data symbols, the Huffman coder creates shorter codes for frequently

51

occurring symbols and longer codes for occasionally occurring symbols.

The first step in creating Huffman codes is to create a table assigning a

frequency count to each symbol. Then, initially designate all symbols as

leaf nodes for a tree. Starting from two the two least weight nodes,

aggregate the pair into a new node. Repeat this process for the new set

until the entire symbol set is represented by a single node. Attach a binary

digit to each branch and assign a 0 and 1 to left and right branches. The

symbol code is generated by following the path of branches from the top

node to the symbol leaf node.".

52

VITA

Aftab Achmad Lubis

Candidate for the Degree of

Master of Science

Thesis: A SYNCHRONIZATION SCHEME FOR DELIVERING MULTIMEDIA
DATA STREAMS.

Major Field: Computer Science

Biographical:

Personal Data: Born in Jakarta, Indonesia, On May 21, 1965, the son of Syarif
Ahmad Lubis and Organi Semiarti Siregar.

Education: Received Insinyur Fisika Teknik from Institut Teknologi Bandung,
Indonesia in October 1988. Completed the requirements for the
Master of Science degree with major in Computer Science at
Oklahoma State University in May 1997.

Experience: Software Quality Controller at Computing Center, Nusantara
Aircraft Industries, Indonesia from June 1989 to July 1992.

