
AN OBJECT-ORIENTED GRAPI-llC USER INTERFACE

FOR VISUALIZATION OF B-TREES' .J\NlMATOR

By

BETTYH. LIN

Bachelor of Science

Harbin Medical University

Harbin, P. R. China

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1997

AN OBJECT-ORIENTED GRAPlDC USER INTERFACE

FOR VISUALIZATION OF B-TREES' ANIMATOR

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would [ike to thank my advisor Dr. John P Chandler for all his support, help, and

invaluable comments to keep my thesis research on course. My most heartfelt thanks go

to Dr. Jacques LaFrance. Without his guidance, creative ideas, and informative

suggestions, this ultimate step would have been impossible. My special thanks go to Dr.

George Hedrick for serving on my thesis committee as well as for his time, patience, and

constructive comments throughout the time I have been working on this project I would

also like to express my sincere thanks and gratitude to Dr. Nick Street for his time, help

and support to make my thesis defense on time.

I extend my sincere thanks to my husband, Huiyao Lin, for his love, understanding, and

support, and also to my parents, Zhenbing Hou and Shuhua Mao, my parents-in-law,

Kuanpo and Changtsaimei Lin, my sister and brother-in-law, Lee and Ray Harvick, for

their support, motivation, and continuous encouragement.

Finally, I would like to thank the Department of Computer Science at Oklahoma State

University for providing the facilities and resources for my study at the past two years

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

L l. OBJECTIVE OF THE THESIS 1
L 2. THE ORGA.:"<IZATION OF THE THESIS 2

II. THE PROBLEM OF ACCESSING SECONDARY STORAGE ..

III. B-TREES AND THEIR VA.RIANTS 8

III. 1. B-TREES .. , ' , 8
III. 2. PROPERTIES OF B-TREES , , l:-:
III. 3. B*-TREES , , 10
III. 4. B--TREES , , , , 11
III. 5. OTHER VARIA..l-.;TS ' , , 12

JIl. 5.1. Concurrent B-lree , , , " , 1]
JIl. 5. 2 B'-tree wirh parrial expansion , J:!

IV. LITERATURE REVIEW 13

IV. 1. OBJECT-ORIE 'TEDPROGRAMMI:"G(OOP.)., " , , , , .. 13
IT'. 1.1 Objects , , ,., , ', , ' , ,.1 j

IT'. 1. 2. C1asses , " ' , , 1-1
IV I. 3. 1nherilance , , " ' , , 1./
II'. l. -I. Po~vmorphism , 1./
Ii'. J. 5. Encapsulation , , , 15

IV. 2. WINDOWS 95 OVER\'IEW,........ ,... 15
JI'.2. J. The Graphical User 1nrerface (GLl) ,....... 16
IV. 2. 2. The Mu/ritasking AdvanLage ', ,.... 17
IV 2. 3. Memory Afanagement '............ . .., , 17
1J'. 2. 4. The Device-Independent Graphics Interfact' , , , 11'1
IT', 2. 5. Objecr-OrientedProgramming........ .. , , , '. IY
IV 2. 6. Message-Driven Architecture]0

IV 2. 7. The Window Procedure, ,...... .. ,................. ..] 1
IV. 3, BASIC TECHNOLOGY OF ANIMATIO~ , ,.. , ',........... , , , " .. 22

V. DESIGN AND IMPLEMENTATION ISSUES 2..

V 1, MAr]\; ELEMENTS OFTHE PROJECT , , , , , ,.. , , 2-t
V 1. 1. The File-Based Objects -Fmgr Class .. , " , , ,..]./
V 1. 2. Entry class ... ,.... ,... ,. 26
I~ J. 3. The Alulti-Way Nodes -Page Class 27
I: J. 4. The Btree Class..... , " , ,...................................... ... 29
l' 1. 5. The Bsrar Class, 29
I: 1. 6. The Bplus Class., , 30
I: 1. 7. The HNode Class.................. 30

V. 2. OBJECT-ORIENTED ApPROACH. .31

V. 3. Ar-.:IM.-\T!O\ APPROACH................... ..32

IV

VI. PROGRAM TESTING ,.. 35

VI. I. OBJECTIVE 35
VI. 2. TEST METHODOLOGy 36

VI. 2. 1. ParI J: DesiRIl Verificarion 36
VI. 2. 2. Part 1J : Functional Testing 37

VII. SUMMARY AND SUGGESTED FUTURE WORK 41

VII. I. SUMMARY .41
VII. 2. FUTURE WORK .43

BIBLIOGRAPHy 46

APPENDIXES 49

ApPENDIX A - GLOSSARy 50

ApPENDlxB - USER'S MENU 52
ApPENDIX C - CLASS OVERVIEW 54
ApPENDIX D - MAKEFlLE 70
APPENDIX E - SAMPLE OUTPUT SCREENS 78

v

Figure
LIST OF FIGURES

Page

1. Paged binary tree 5

2. Paged tree constructed from keys arriving in random input sequence 7

3. A B-tree of order 4 9

4. Original tree 10

5. Two-way split: Mter the insertion of the key B 10

6. A two-ta-three split: After the insertion of the key B 11

7. A B+-tree with separate index and key parts 11

8. Layout of an Page node of order 4 27

9. Initial Screen of this program 78

10. File open dialog box 79

11. Menu item "'Options" 80

12. Help screen 81

13. Screen of a B-tree while it is being built. 82

14. Screen of a B*-tree while it is being built. 83

15. Screen of a B+-tree while it is being built. 84

vi

I. INTRODUCTION

B-trees were invented by Bayer and McCreight in 191'2 [Bayer72]. A B-tree is a data

stmcture that maintains an ordered set of data and allows efficient operations 10 find.

delete, insert, and browse the data. There are widely uses of B-trees in a database system

as pointed OUI by D. Comer [Comer79] : "While no single scheme can be optimum for all

applications, the technique of organizing a file and its index called the B-tree is. de faCIO.

the standard organization for indexes in OJ database system."

I. 1. Objective of the Thesis

This thesis project uses Microsoft Visual C++ to implemenr data slructure animation. In

this thesis project, a class hierarchy for members of the B-Iree family is buill. These

members are B-tree, B*-tree and B+-tree. The trees and the dynamic movements as they

are being built or deslroyed are shown graphically.

The goal of this thesis is:

• To use object-oriented programming to make effeclive use of classes organized

into a hierarchical stmcture based on the concept of inheritance.

• To provide a GUI to enable the user to observe a graphical representation of the

B-tree family's data structures as they are being built or destroyed.

Since this project is to present a visualization of the trees, Microsoft Windows 95 15

chosen as the environment to develop the program.

1. 2. The organization ofthe thesis

The thesis provides the related topics and concepts of the research. such as The problem

of accessing secondary storage, A quick review of B-trees and their variants. Object­

oriented programming concepts, Windows 95 overview, and Basic technology of

animation, etc. The thesis also gives the detail discussion of program design and

implementation, and program testing and evaluation.

Associated with a large, randomly accessed file in a computer system is an index. The

fundamental p:roblem with keeping an index on secondary storage is that accessing

secondary storage is slow. Chapter II gives the brief discussion ahout the problem of

accessing secondary storage and the solutions which intend to solve the problem.

B-trees and B-tree variants have been used for maintaining large index files since their

first presentation by Bayer and McCreight in 1972 [Bayer72}. The versatility of B-trees is

the reason they are applications in database programs from mainframe packages (such as

IBM's VSAM) to PC products (such as dBase and its competitors. or the database facility

in OS/2 Extended Edition). There have been a number of variations in bOlh data

structures and algorithms ever since the invention of B-trees. They efficiently support the

2

two types of access to data elements:

• Random access to an arbitrary data record

• Sequential processing of data records in key sequence.

Chapter ill presents the literature review of several variations of the original idea of B­

trees. A good survey is given by Douglas Comer [Comer79J.

Object-oriented programming is a ne,,·/ way of approaching the job of programming. and

is based on the concept of an object. Object-oriented programming is a technique that

facilitates code reuse. Inheritance. polymorphism, and encapsulation are examples of Its

important features, which are defined in Chapter IV. Windows 95 is a very large.

complex programming environment. It is part of the next generation of operating systems

intended to operate PCs well into the next century. A brief picture of Windows 95 is also

presented in Chapter IV. In the same Chapter, the basic technology of animation is

discussed briefly.

For the rest of the thesis, the design and implementation issues are discussed in detail in

Chapter V. Program testing is included in Chapter VI and Chapter VII contains the

summary and some possible areas of future work.

II. THE PROBLEM OF ACCESSING SECONDARY STORAGE

The secondary storage facilities available on large computer systems allow users to store.

update, and recall data from large collections of information called file. A computer must

retrieve an item and place it in main memory before it can be processed. In order to make

good use of the computer resources, one must organize files intelligently, making the

retrieval process efficient [Comer79].

Associa.ted with a large, randomly accessed file in a computer system is an index that

speeds retrieval by directing the searcher to the small part of the file contai ning the

desired item.

The fundamental problem with keeping an index on secondary storage. such as disk or

tape, is that accessing secondary storage is slow because of its physical characteristics. If

searching on a tape, the elements can only be accessed sequentially. And if it is on a disk.

the delay is still required to spin the disk and move the disk head. Binary searching.

requires too many seeks. Searching for a key on a disk often involves seeking on differellt

disk tracks. Since seeks are expensive. a search that must look 111 more than three or four

locations before finding the key often requires more time than is desirable. For a

completely balanced tree, the worst-case search to find a key. given N possible keys.

looks at IOg2 (N + I) keys. So if we are using a binary search, an average of about 9.5

seeks is required to find a key in an index of 1.000 items. Although there is a potential

solution to the searching problem, that is by dividing a binary tree into pages and then

storing each page in a block of contiguous loca~ions on disk. In that way, we shou ld be

able £0 reduce the number of seeks associated with any search. Figure I illustrates such a

paged tree.

/

Figure J. Paged binary tree.

In this tree we are able to locate anyone of the 63 nodes in the tree with no more than two

disk accesses. The number of seeks required for the paged versions of a completely full.

balanced tree is log k+1 (N + 1), where N is the number of keys, k is the number of keys

held in a single page. It is the logarithmic effect of the page size that makes the 1Jllpact of

paging so dramatic:

log 2 (134,217,727 + I) = 27 seeks

log 511 + I (134,217.727 + I) = 3 seeks.

From the formulas showing above, we can see that breaking a tree into pages is a strategy

that is well suited to the physical characteristics of secondary storage devices such as

5

disk. The problem is how to build the tree once we decide to implement a paged tree. If

we have the entire set of keys in hand before the tree is built. the solution is to sorl the list

of keys then build the tree from this sorted list. If we plan to start building the tree fWIn

the roar, we know where to begin and are assured that this beginning point will divide the

set of keys in a balanced manner. There will be a potential problem if we are receivlI1g

keys in random order and inserting them as soon as we receive them. When we start from

the root, the initial keys must go into the root For example, suppose we recei \Ie the

following sequence of single-letter keys to build a paged tree:

CSDTAMPIB WNGURKEHOLJYQZFXV

Suppose we will build a paged binary tree that contains a maximum of three keys per

page. As we insert the keys, we rotate them within a page as necessary to keep each page

as balanced as possible. The resulting tree is illustrated in Figure 2. Since the keys are

received in random order and insel1ed as soon as they arrive. so the initia.1 keys, C Sand

D will go into the root. But at least two of these keys. C and D. are nol keys that we want

in the root page. They are adjacent in sequence and tend toward the hegJnning of the lotal

set of keys. Consequently, they force the tree out of balance. This is the problem caused

by the top-down construction of paged trees.

6

G

/\
~ H

\

F

K

/\
J L

Figure 2. Paged tree constructed from keys arriving In random tnrut s.::quenl"\:,

Bayer and McCreight's B-tree provides a solution directed precisely toward this problem,

A B-tree is built upward from the bottom (leaves) instead of dov.'nward from the top

(root). Bayer and McCreight recognized that the decision to work down from the root

was. of itself, the problem, Ralher than finding ways to undo a bad situation. they decided

to avoid the difficulty altogether. With B-trees. \ve allow the root 10 emerge. rather than

set it up and then find ways to change it rFolk92].

7

III. B-TREES AND THEIR VARIANTS

Ill. 1. B-trees

B-trees were discovered by Bayer and McCreight in 1972 [Bayer72] and are a natural

evolution of earlier database designs.

A B-tree is a shallow tree structure that allows to store and retrieve a set of data records

based on the keys. The shallow structure minimizes the number of disk seek required to

access data records.

Unlike an arbitrary binary search tree, a B-tree is a balanced tree structure. Every leaf is at

the same distance from the root. In a B-tree. one tree node can be made to correspond tp a

page. Because binary nodes are usually not large enough to take up one page. a B-tree

node stores multiple keys and branches. A beneficial side effect of such multi-way nodc\

is that the height of the tree can be smaller than that of a binary tree. This properlY. of

course, will lower the cost of find, insert. and delete operations.

lII. 2. Properties ofB-trees

B-trees are classified by their order. which refers to the maximum number of branches in

a node. For example, in a B-tree of order 4. each node can have up to 4 branches.

Corresponding to these branches are 3 keys that help determine which branch to take

during at search. In general. a B-tree of order 111 has nodes with up to Tn branches and /1/-1

keys. The order specifies the maximum number of branches. A node may ha\'e fewer

branches than the maximum [Flamig93]. Figure 3 shows a B-tree of order 4. with aU

nodes full.

Figure 3. A B-lree or order 4.

Not all multi-way trees are B-trees. A multi-way tree is considered to be a B-tree only ir 11

is balanced. In the cJassicCiI definition of a B-tree of order m. the balance is achle\'ed hy

maintaining the following properties:

• Except for the root node, all nodes must have at least Im/21- Ikeys and

ImJ21 branches. Th is means all nodes except the root are at Ie ast hal r ru! I.

• All of the leaves of the tree are always on the same level.

• The root node has at least two children (unless it is a leaf).

9

III. 3. B*-trees

Knuth [Knuth?3] defines a B-tree using a redistribution overflow technique to be a B*-

tree. The insertion of a B*-tree employs a local redistribution scheme to delay spliHing

until two sibling nodes are full. Then the two nodes are divided into three, each 2/3 full

(see Figure 6 for such a split) instead of just 1/2 full (see Figure 5). This scheme

guarantees that storage utilization is at least 66'70, while requiring only moderate

adjustment of the maintenance algorithms. Note that increasing storage utihzation has the

side effect of speeding lip the search since the height of the resulting tree is smaller.

Figure 4. OrigInal tree.

Figure 5. T vo-way split: After the insertion of the key B.

10

Figure 6. A two-lo-three split: After the insertion of the key B.

Ill. 4. B+-Trees

In a B+-tree. all keys reside in the leaves. The upper levels, which are organized as a B-

tree, consist only of an index, a roadmap to enable rapid location of the index and key

parts [Comer79]. Figure 7 shows the logical separation of the index and key parts.

Figure 7. A B+-tree with separale index and key rart~. Operaltons "hy key" hcgin al the roOI

as in a B-tree; sequential processing hegins al lhe leftmost leal.

Index nodes and leaf nodes may have different formals or even different sizes. In

particular. leaf nodes usually are linked together left-to-right. The linked 'list of leaves is

j J

referred to as the sequence set. Sequence set links allow easy sequential processing

[Comer79].

A beneficial side effect of having an independent index and sequence set is thaI it IS well

suited to applications that require both random and sequential processing.

III. 5. Other variants

III. 5. 1. Concurrent B-tree

Concurrent B-tree algorithms have been proposed for high-performance on-line

transaction applications that allow concurrent accesses to B-trees. By concurrent accesses.

we mean that Illany inserts/deletes/searches may occur during the same time interv<ll.

Many Jocking schemes are Llsed in such cases, but all require exclusive locks on all nodes

that are changed.

III. 5. 2. B+-tree with partial expansion

A B+-tree with partial expansion is based on the idea of gradually increasing the size of an

overflowing bucket, instead of immediately splitting it. When the bucket reaches some

maximum size. it is split in the normal way. The result showed hy Baeza-Yates and

Larson [Baeza- Yates89] research is that the storage util ization of B+-trees with partial

expansion is higher than standard B+-trees.

12

IV. LITERATURE REVIEW

IV. 1. Object-Oriented Programming (OOP.)

Object-oriented programming is a method of implementation in which programs are

organized as cooperative collections of objects, each of which represents an instance of

some class. and whose classes are all members of a hierarchy of classes united \'ia

inheritance relationships [Booch94]. It is by the interaction of objects that computation

proceeds [Budd9I].

IV. 1.1 Objects

An object is an encapsulation of state (data values) and behavior (operations). An object

is defined via its class, which determines everything about an object. Objects are

individual instances of a class. All instances of the same class will hehave in a SImilar

fashion in response to a similar request. Terry Montlick gives the following definition for

an object: "An object is a "black box" which receives and sends messages"[MolHllck95I,

As the user of an object, one should never need to peek inside the box. All

communication to it is done via messages. An object will exhibit its behavior by invoking

a method in response to a message. The interpretation of the message is decided by the

object, and may differ from one class of objects to another.

13

IV. 1. 2. Classes

A class is a user-defined type which is just a collection of variables. often of different

types, combined with a set of related functions. A class declaration specifies the

representation of objects of the class and the set of operations that can be applied to such

objects.

IV. 1. 3. Inheritance

Objects and classes extend the concept of abstract data types by adding the notion of

inheritance. Classes can be organized into a hierarchical inheritance trec. Data and

behavior associated with classes higher in the tree can also be accessed and used by

classes lower i.n the tree. Such classes are said to inherit their behavior from the parent

classes.

IV. 1. 4. Polymorphism

Another feature of Object-oriented programming is the ability of the objects to behave in

different ways according to the message passed, and the ability to design operators to

carry out object manipulation. This feature is called po!mlOrphisJIl and It can be either

overriding or overloading.

14

IV. 1. 5. Encapsulation

Within an object. some of the code, functions, and/or data may be private to the object

and inaccessible directly by anything outside the o~iect. In this way. an object provide:-; u

significant level of protection against some other, unrelated part of the program

accidentally modifying or incorrectly using the private parts of the object. The linkage of

code and data in this way is often referred to as encapsulation [Schildt90].

IV. 2. Windows 95 Overview

Windows 95 was designed specifically to overcome several of the limitations Imposed by

its earlier incarnation: Windows 3.] [Schildt95]. The most important characteristic of

Windows 95 is that it is a 32-bit operating system. Unlike Windows 3.1. DOS. and other

8086-family operating systems, which use segmented memory. Windows 95 treats

memory as though it were linear. In this new "Windows" world. each application has u.s

much memory as it could possibly need.

Windows 95 was designed to be compatible with the large base of existing PC

applications. Toward this end, Windows 95 can run four types of programs: those written

for DOS, those written for Windows 3.1, those written for Windows NT. and those

written specifically for Windows 95. Windows 95 automatically creates the right

environment for the type of program people run. For example. when the user executes a

15

DOS program, Windows 9S automatically creates a windowed command prompl in

which the program runs.

IV. 2.1. The Graphical User Interface (GUI)

Windows is a graphical interface. A graphical interface is not only more attractive in

appearance, but it can also impart a high level of information to the user.

Windows 95 is graphics-oriented, which means that it provides a Graphical User Interface

(GUT). All graphical user interfaces make use of graphics on a bitmapped video display.

Graphics provides better utilization of screen real estate. a visually rich environment for

conveying information, and the possibility of a WYSIWYG (what you see is what you

get) video display of graphics and formatted text prepared for a printed document

[Petzold96).

In a graphical user interface, the video display shows various graphical objects in the

form of icons and input devices such as buttons and scroll bars. Using the keyboard or

mouse, the user can manipulate these objects directly on the screen. Graphics objects can

be dragged, buttons can be pushed, and scroll bars can be scrolled.

With GUIs, the user can directly interact with the objects on the display instead of the

one-way cycle of information from the keyboard to the program to the video display.

16

IV. 2. 2. The Multitasking Advantage

Under Windows, every program in effect becomes a RAM-resident popup. Several

Windows programs can be displayed and running at the same time. Each program

occupies a rectangular window on the screen. The user can move the windows around 011

the screen. change their size, switch among different programs, and transfer data from one

program to another.

Earlier versions of Windows used a system of multitasking called "nonpreemptive". Thi~

meant that Windows did not use the system timer to a.llocate processing time among the

various programs running under the system. The programs themselves had to give up

control voluntarily so that other programs could run. Under Windows 95. Illullitilsking is

preemptive, and programs themselves can split into multiple threads of execution that

seem to run concurrently.

IV. 2. 3. Memory Management

An operating system cannot implement multitasking without doing something about

memory management. As new programs are starred up and old ones terminate. memory

can become fragmented. The system must be able to consolidate free memory SP:.lcc. ThiS

requires the system to move blocks of code and data in memory,

17

Even Windows I, running on an 8088 microprocessor. was able to perform this type of

memory management. Programs running under Windows can overcommit memory: a

program can contain more code than can fit into memory at anyone time. Windows can

discard code from memory and later reload the code from the program's .EXE file. A user

can run several copies,. called "instances," of a program; all these instances share the same

code in memory. Programs running in Windows can share routines located in other files

called "dynamic link libraries." Windows includes a mechanism to link the program with

the routines in the dynamic link libraries at run time. Windows itself is basically a set of

dynamic link libraries.

Thus, even in Windows 1, the 640-kilobyle (KB) memory limit oflhe PC's architecture

was effectively stretched without requiring any additional memory. Windows 2 gave the

Windows applications access to expanded memory, and Windows 3 ran in protected

mode to give Windows applications access to up to 16 MB of extended memory. And

now Windows 95 blows these old restrictions away by being a full-fledged .32-bll

operating system with a flat memory space [Petzold96].

IV. 2.4. The Device-Independent Graphics Interface

Windows programs can make full use of graphics and formatted text 011 both the video

display and the printer. Programs written for Windows do not directly access the

hardware of graphics display devices such as the screen and printer. Instead. Windows

includes a graphics programming language. called the Graphics Device Interface. or GD!.

18

that makes it easy to display graphics and fonnatted text. Windows virtualize' display

hardware. A program written for Windows will run with any video board or any primer

for which a Windows device driver is avai.lable. The program does not need to determine

what type of device is attached to the system.

Putting a device-independent graphics interface on the IBM PC was not an easy job for

the developers of Windows. The PC design was balled on the principle of open

architecture. Third-party hardware manufacturers were encouraged to develop peripherals

for the Pc. Although several standards have emerged, conventional MS-DOS progral11~

for the PC must individually support many different hardware configurations. For

example, it is fairly common for an MS-DOS word-processing program to be sold wilh

one or two disks of small files, each one supporting a particular printer. Windows 95

programs do not require these drivers because their support is part of Windows

[PetzoId96].

IV. 2. 5. Object-Oriented Programming

Windows are rectangular areas on the screen. A window receives user inpul from the

keyboard or the mouse and displays graphical output on its surface. Windows

programming is a type of object-oriented programming (OOP). In object-oriented

programming, an "object" is a combinations of code and data. A window is an object

The code is the window procedure. The data is information retained by the window

19

procedure and information retained by Windows for each window and window class that

exists in the system.

An application window usually contains the program's title bar. menu, sizing border, and

perhaps some scroll bars. Dialog boxes are additional windows. Moreover, the surface of

a dialog box always contains several additional windows called "child windows.'" These

child windows take the form of push buttons, radio buttons, check boxes, text entry

fields, list boxes, and scroll bars.

The user sees these windows as objects on the screen and interacts directly with these

objects by pushing a button or scroIJing a scroll bar. Interestingly enough, the

programmer's perspective is analogous to the user's perspective. The window receives

this user input in the form of "messages" to the window. A window also uscs messages to

communicate with other windows.

IV. 2. 6. Message-Driven Architecture

In Windows, when a user resizes a window, Windows sends a message to the program

indicating the new window size. The program can then adjust the contents of its window

to reflect the new size. So "Windows sends a message to the program"' means Windows

calls a function within the program. The parameters to this function describe the

particular message. This function located in the Windows program is known as the

"window procedure."' A window procedure processes messages to the window. Very

20

-

often these messages inform a window of user input from the keyboard or the mouse.

This is how a push-button window knows that it's being "pressed," for example. Other

messages tell a window when it is being resized or when the surface of the window needs

to be redrawn.

When a Windows program begins execution, Windows creates a '"message queue" for the

program. This message queue stores messages to all the various windows a program

might create. The program includes a short chunk of code called the "message loop" to

retrieve these messages from the queue and dispatch them to the appropriate window

procedure. Other messages are sent directly to the window procedure without being

placed in the message queuf'.

IV. 2. 7. The Window Procedure

Programs written in the traditional way call the operating system. However. Windows 95

generally works in the opposite way - the operating system making calls to the program.

This is fundamental to Windows 95's object-oriented architecture.

Every window that a program creates has an associated window procedure. This window

procedure is a function that could be either in the program itself or in a dynamic link

library. Windows sends a message to a window by calling the window procedure. The

window procedure does some processing based on the message and then returns control

to Windows.

21

More precisely, a window is always created based on a "window class." The window

class identifies the window procedure that processes messages to the window. The use of

a window class allows multiple windows to be based on the same window class and

hence use the same window procedure. For example, all buttons in all Windows programs

are based on the same window class. This window class is associated with a window

procedure (located in a Windows dynamic link library) that processes messages to all the

button windows.

IV. 3. Basic Technology ofAnimation

Animation is effective way to communicate information. For example, it can illustrate the

operation of a particular tool or reflect a particular state. It also can be used to include an

element of fun in user's interface. One can use animation effects for objects within a

window and interi"ace elements, such as icons. buttons. and pOlTIters.

Effective animation involves many of the same design considerations as other graphics

elements, particularly with respect to color and sound. Fluid animation requires

presenting images at 16 (or more) frames per second.

There are two basic types of animation on a computer: cast-based animation. which

makes use of sprites, and frame-based animation, which operates more like a movie.

consisting of a series of fixed images played in sequence. Cast-based animation is more

interesting as a programming topic because it calls for dealing with concepts such as

transparency and may involve interaction with the user. You can convert a cast-based

animation into a frame-based animation by shooting each step in each scene and

connecting the snapshots as a sequence of frames in a single file.

In this project, the image objects that we deal with are many identical rectangular boxes

with different character strings printing inside the boxes. Whenever an animating

operation occurs, the program moves only one node or one rectangular each time. It is not

necessary to repaint the whole screen since it is very time-consuming. In order to make

image displayed more effectively, only the moving node and few related nodes need to be

repainted. Therefore, cast-based animation is selected to demonstrate the motion of

moving B-tree nodes during insertion or deletion operations.

23

v. DESIGN AND IMPLEMENTATION ISSUES

The main focus of this thesis is the implementation of data structure animation. The

project, which is written in Microsoft Visual C++, graphically shows the trees and the

motion of a page's splitting and concatenating due to insertion and deletion operations. In

this thesis project. a class hierarchy for members of the B-tree family is buill by using the

object-oriented approach. These members are B-tree, B*-tree and B+-tree. The project

provides a GUI to enable the user to observe a graphical representation of the B-tree

family's data structures as they are being built or destroyed. Since this pr~ject is to

present a visualization of the trees, Microsoft Windows 95 is chosen as the environment

to develop the program.

V. 1. Main Elements ofthe Project

V. 1. 1. The File-Based Objects - Fmgr Class

Since B-trees and B-tree variants have been used for maintaining large files. Ihis prc~ject

is designed to implement data structures that reside in files. At Ihe heart of the file-based

object design in this project is the Fmgr class that manages objects stored in files. It has

two functions, AllocO and FreeO, which are analogous 10 the C functions mallocO and

freeO. In addition, the Fmgr class has FetchO and StoreO functions that read and write

objects. The following example creates an Fmgr file and stores n Part objecl in it:

#include <iostream.h>
#include "fmgLh"

struct Part (
in! id;
float price:
Part(int 1=0, float p = 0) {id = 1, price = p; I
};

mam()
{

Part parte 17, 42.0); II Memory buffer of part to be stored.
FmgrPtr f(new Fmgr); II Should always create dynamically.
f-> Create("test.dat"): If Create and open file.

long addr = f->AlJoc(sizeof(Part)); II Allocate room for part.
f->Store(&pan, sizeof(Part). addr):

fl Close and reopen file for testing.
f->Open("tesl.dat"); II OpenO closes first.

If See if we can get the part back.
f->Fetch(&part. sizeof(Parl). addr);
cout« "Part: <"« part.id« ", "« parl.pricc« ">\11";

II Now delete the part.
f->Free(sizeof(PaI1). addr):

return 0; II File automatically closed by destructor.

Although the Fmgr class is fairly sophisticated, it is a low-level design. The evidence of

the low-level nature of Fmgr can be found in functions like Alloc(). Fetch(). Slmc(). and

FreeO. These functions must be told the size of the objects being used. The detail

information about the other member functions of the Fmgr class can be found in

Appendix B.

25

-

V. 1. 2. Entry class

The Entry class contains a pair of key and RRN, Relative Record Number. along with its

associated data which is ignored in this project implementation. Most functions for the

Entry class, which are described in Appendix B, are straightforward. Only two of the

functions, CompareO and FulIcompareO, need some explanation:

int Compare(const Entry &a, const Entry &b)
(

return strcmp(a ..key. b.ke]');

int FullCompare(const Entry &a. const Entry &b)
(

inl rv = slrcmp(a.key. b.key);
if (rv > 0) return 1:
if (rv < 0) Teturn -I:
if (a.data > b.data) return I;
if (a.data < b.data) return. -I:
return 0:

The CompareO functIOns is used when searching for data based on a key. Tht: idea here i"

that once an entry is found, the data field can be used to retrieve the data for the entry.

However. when deleting an entry, the data field should already be known, so the

FullCompareO function, which treats the data field as a secondary key. is used to find the

specific entry to delete. Thus, duplicate keys are supported, but each key and datl.l pair

must be unique.

26

V.I. 3. The Multi.Way Nodes-Page Class

The main feature of B-trees is the multi-way nodes that make up the trees. Multi-way

nodes are essentially generalizations of binary nodes. Since there is always one more

branch than keys in a multi-way node. the Page class is designed to have a left branch. a

pointer to left most child, that leads to all nodes with keys smaller than the smallest key in

the given node. The other right branches will be paired with a key. A key. along with its

associated data and right branch field, is defined in the Entry class.

An array of entries is packaged inw a multi-way node which is defined as Page class.

In this class, ORDER is the naximum number of branches possible for the node. Since

there is one less key than branch, ORDER - I entries are reserved. The ellT field indicates

how may entries are actually in use. The extra branch, !lit, is placed immediately before

the entries. as illustrated in Figure 8.

Entry: () 2

Branch: -1 0 2

Figure 8. Layoul of an Page node of order 4

(The cnl and data fields are not shown).

This ammgemem allows us to index the branches from -I to ORDER - 2, where the -I st

branch represents the left branch, the Oth branch is the right branch of the first entry, and

so on.

27

-

The Page class has functions to support searching for keys in a node. and for inserting

entries into and deleting entries from a node. The functions of the Page class are also

fairly straightforward, and they are dlescribed in Appendix B. Only the SearchO function

and FullSearchO function need to give some explanation. The SearchO function

sequentially scans the entries of the node, looking for a match. The FullSearch() function

can be defined by simply replacing the call to CompareO with a call to FuIlCompare().

The code for these two functions are as following:

int Page::Search(const Entry &e, l &posn)
(

pasn = cnt - 1:

while (posn >= 0)

I
iot rv =Compare(e. entrylposn]);
If (rv > 0) return I:
If (rv == 0) return 0:
pasn--;

J
return -I:

int Page::FuJlSearch(consl Entry &e. int &posn)
II like the Search(). except we use FullComparcO.
(

posn =cnt - I:

while (posn >= 0)

I
int rv = FullCompare(e, entry! posn IJ:
if (rv > 0) relurn I:
if(rv == OJ return 0;
pasn--:

I
return -I:

2X

V. 1. 4. The Btree Class

In this project. the Btree class is the base class of the Bstar etass and the BpillS class.

Since the Btree class is file based, it has numerous file-management functions. such as

ConnectO, DisconnectO, CreateO, Open(), CloseO, and FlushO, among others. These

functions allow multiple B-trees to be stored in a single file. Each B-tree has a header.

defined in BtreeHeader which is a type of struct. The BtreeHeader points to the root node

of the tree. and stores some other pertinent data used mostly for testing. The headers are

meant to be stored in the static data area of the file. The information for other member

functions of this class is given in Appendix B.

V. 1. 5. The Bstar Class

The Bstar class is derived from the Btree class. This class inherits all the functions of the

Btree class except InsertO function. The insertion into a B*-tree employs a local

redistribution scheme to delay splitting until two sibling nodes are full. then the two

nodes are divided into three. each 2/3 full. 50 the InsertO function here is overriding the

InserlO function in the base class. The other two functions. FindParent() and

5etParametersO, in the Bstar class are involved in redistribution of the tree structure. The

Bstar class and its associated data structures are used to set up a B·-tree.

29

V.I. 6. The Bplus Class

The BplllS class is derived from the Btree class too. Because of the nature of a B+-tree. it

inherits all the functions of the Btree class except the functions such as InsertO. Search()'

FullSearchO. and Remove(). These functions overrides the member functions in the base

class. The Bplus class also overloads the DeleteO function of the base class. The Bpills

class and its associated data structures are used to set up a B+-tree.

V. 1. 7. The WNode Class

The primary purpose of creating this class is to link the B-tree data structure and the

Windows 95 graphics data structure together. The Wnode class serves as the carner that

carries the data generated by the B-tree classes and gives the image output to the GUI

window. Another purpose of this class is to provide animation mechanism to show the

detail transition of B-trees' inseltion and deletion dynamically. The image objects.

RBoxes and KBoxes, of this class are declared in RECT structure which is defined in

WINDOWS.H. These two data members provide coordinate information to Windows 95

for drawing the object image boundary. The other two important data members are

chRRN, which is RRN of the child node, and Keys which are keys in the node. Both data

members receive data from B-tree modules. This class provides IniteWNodeO to

initialize all the data members. The functions of MoveLeft(), MoveRight(), MoveUpO.

and MoveDownO provide the basic animation mechanism and they are called by

ShowNodeO which is the function that animates image objects of this class. The

30

-

SetKey(), SetchRRNO, and UpdatedO are the methods to port B-trees' data into the

Wnode class. The Wnode class also fumishs many output methods for program to achieve

animation. They are PrintO, EraseNodeO, Sho\'v·NodeO. PrintNodeO. MoveParentSbU.

and MoveTreeO. There are many supporting fu.nctions that provide methods to

manipulate private data members, such as GetChildO, DelChildO, FindChiJdrenO,

MoveChildrenO, InsChildO. SetParentO, GetParentO, Set PositionO. GetPositionO.

AddSibJingO, GetSiblingO. CopySiblingsO, SetLeftSbO,GetLeftSbO, and lIpdateLSb().

The detail information on each class and its member functions is given in Appendix B.

V. 2. Object-Oriented Approach

Inheritance, encapsulation. and polymorphism are the important features of ohject-

oriented programming. The encapsulation is also useful in conventionallanguag~s. such

as using structures inside structures. But it is more important in object-oriented languages

because of the natures of objects themselves. [t is practical to built new objects from

different simpler objects with different behaviors. The unique behavior of each nc\'.'

object will be partially based on the result of its components' behaviors.

As mentioned before, B*-tree and B+-tree are the variants of the B-tree. A B-tree is a B*-

tree if each its node is at least 2/3 full. instead of just 1/2 full. This results from the B*-

tree insertion operation. B*-tree insertion employs a local redistribution scheme to delay

splitting until two sibling nodes are full. A B+-tree is derived from B-tree. In a B+-tree,

the upper levels are organized as a B-tree which consists of an index. All the keys reside

31

in the leaves. In other words, a B+-tree maintains an independent index and sequence set.

According to these characteristics of B-trees data structure, during the program design

and implementation, we designed a class called Btree as a base class. And the other two

classes, Bstar and Bplus, are derived from the Stree class. They inherit all the functions or

the Btree class except the Insert(), DeleteO. SearchO, FullSearchO, and RemoveO

functions. These functions either override or overload the functions of the base class with

different behaviors of the objects.

V. 3. Animation Approach

In this project. we are basically dealing with the tree nodes' movement to achieve the

animation. There are only two events. split and merge, in B-trees' operations that will

cause the tree nodes to rearrange and move to new locations. The analysis of tree nodes'

behavior during the spliuing and merging is the key step to see if the animation is

achieved successfully. According to the behavior analysis, there are four different

categories of the tree nodes in splitting and merging which are shown as following:

• Leaf nodes:

Split: The leaf nodes that have the same parent node are arranged right under the

parent node one by one with a fixed gap along the y-axis. In the other words.

they have the same x coordinate value and it means that the movement of the leaf

nodes will be only along the y-axis during leaf nodes splitting. During the

splitting, the new node needs to be moved down along the y-axis with a fixed

distance which is the node height plus the gap. Before the new node is moved, its

32

right sibling nodes will be moved down first in the same distance. This is

implemented by the member function, PrintNodeO, of Wnode class.

Merge: This is done by reversing the procedure of the split operation.

Other movement: There are two situations that make leaf nodes move. Whenever the

leaf nodes' parent is moved, leaf nodes have to be moved as well. In this case, we

use the parent's new x and y coordinate values as references to detelIDine the

movement on both x and y axis direction. In the program design, we always move

the node along the x direction first and then the y direction. This is implemented

by the member function, MoveChildrenO, of Wnode class.

• Leaf parent nodes (the nodes' children are leave):

Split: This kind of nodes will only move along the x - axis and they will affect all the

nodes on therr right hand side. During the splitting, the new node will be moved to

the right in the distance of node length plus gap. Before the new node is moved,

all its right sibling tree, its parents' right sibling tree, its grand parent's right

sibling tree, its grand grand parent's right sibling tree, and so on will be moved

first to the right in tbe same distance. These are done by the member functions,

MoveParentSbO and MoveTreeO, of Wnode class. After all tbe non-leaf nodes are

moved, the MoveChildrenO of Wnode class is called to move all the leaf nodes,

whose parent nodes have been moved during this rearrangement, to the proper

locations.

Merge: This is done by reversing the procedure of the split operation.

33

• Normal nodes (the nodes' children are non-leaf nodes):

Split: This kind of nodes also only moves along the x - axis and they do not affect any

other nodes during the movement. Since all the movements are done when the leaf

parent node is being split. When the splitting propagates to the nonnal node, all

the nodes are in the right positions and the only one that is not ill the place is the

new node. This is simply implemented by the member function, PrintNodeO, of

Wnode class.

Merge: This is simply done by reversing the procedure of the split operation.

• Root node:

Promotion: When the root node is split, a new root is created and it is moved up along

the y-axis in the distance of node height plus gap with the same x coordinate

value as the old root node. This operation will not affect any other nodes.

Demotion: This is done by reversing the procedure of the promotion operation

Split: It is the same as normal node's split.

34

VI. PROGRAM TESTING

VI. 1. Objective

There are five phases in the software life cycle. The first phase is the analysis which is to

develop specifications describing the project and its requirements. The second phase is

software design which is to construct a relatively detailed design plan according to the

specifications. The third phase is coding that includes the writing of programs and the

insertion of explanatory remarks into programs. Thefuurth phase is testing to ensure that

programs are functional working we]l. The fifth phase is program mai ntenance that is to

continue implementing the features that users request later or fixing problems. The

purpose of this section is to map out the test plan and its strategy of the fourth phase,

testing and design verification. The strategy can be divided into two parts, design

verification and functional testing.

• Design Verification Objective

The objective of design verification is to ensure that this program is implemented

according to the specification that is defined in the phase II -- top_down design.

• Functional Testing Objective

The objecti ve of functional testing is to ensure that al J the features of this software are

working as intended.

35

L~ ._

VI. 2. Test Methodology

The test methodology for this software has two parts: part I relates to the design

verification that is to go through each module and each class which are defined in th~

design phase; and part II is primarily concerned with functionality of each program

feature and ease of use of the user interface.

VI. 2. 1. Part I : Design Verification

• Program Modules Verification

In this stage, each program module is revisited and the joh is to remove any unused

variables, functions, and statements as we]J as add more comments to wherever is

needed. This ensures that the module does not contain redundant codes and variables

and also improves the readability of the program.

• Classes Verification

This stage reviews the relationship among classes along wIth their inheritance

hierarchy. The intention is to confirm the design with original definition.

36

VI. 2. 2. Part II : Functional Testing

• GUI User Interface Testing

I , File Menu

The file menu provides an interface for users to specify a file name to open the file

and contains the data generated by the program. This test verifies if the file open

dialog box is popping up when the user click the menu item "File", The test also

checks if there any unusual data appears in the dialog box.

2. Option Menu

The option menu gives users a list of three choices to specify a type of B-tree

variant, The testing of option menu includes menu selection and image output

verification. When the user selects one of three tree types. a check mark ('./) should

appear in its left hand side. This can be confinned visually by popping up the

option menu again. The image output generated by the selected tree can be

inspected by checking its splitting position for the choice of B-tree (lr B'-tree to sec

if it splits in the correct position, For the choice of B+-tree. the image output

verification can be done by checking its separators to see if the separators appear in

the expected position of the index set.

37

3. Quit Menu

The quit menu lets user to exit the program. This step examines if the program

ends when the user click this menu item.

4. Help Menu

This menu item instructs WINHELP.EXE to open WBTREE.HLP when the user

selects it. The testing focuses on the readability and organization of the help file.

5. Re-sizing and Moving

Since there may be some other programs coexisting with this program.so the

window of this program can be minimized. max.imized. moved. or re-slzed. These

operations potentially may result In the image lost in the client area. Thi~ lest is to

ensure that the client area is properly repainted whenever the above situations

occur.

6. Animation

This step examines the moving of each object image to assure that the path is

within the expectation.

• Data Handling Testing

In this stage, random number and size of data are input to the lIldex file by uSing the

selected tree type data structure. The insertion and deletion are also randomly

-

-

performed to inspect the dynamic stability of this program. The verification of data

handling is based on the specifications of three tree types.

l. B-Tree

Insertion: The testing verifies if the key inserted by the user goes to the proper

object image as well as data integrity. This test also applies to the other

two tree types.

Deletion: Redistribution and concatenation are key operations to evaluate deletion

procedure. The testing examines these two operations to see if they

perform the way as expected.

Splitting: This tests if the B-tree splits from the middle position.

2. B"-tree

Insertion: The testing verifies if the key inserted by the user goes to the proper

object tmage as well as data integrity. The result should be de!Tcrent

from the one of B-tree insertion, due to the property of B' -tree that it

does not split until its siblings are also full. In this case. the

redistribution occurs during the operation of insertion.

Deletion: This test is same as the test perfonncd on the B-tree.

Splitting: This tests if the B"-tree splits from the two third position.

39

-

Insertion: One important property of BT"-tree is that it maintains an index set

comaining separators. The index set is in B-tree fomlat. All the keys are

inserted into the sequence set (, or kaf). The test inspects if the separators

are created properly.

Deletion: Since the key to be deleted must always reside in a leaf. As long as the

leaf remains at least half fuB, the index need not be changed. even if a

copy of the key (separator) had been propagated up into it. This test is to

ensure that the B+-tree"s deletion preserves the separators.

Splitting: This test is same as the test performed on the B-tree.

40

•

r

-

VII. SUMMARY AND SUGGESTED FUTURE WORK

V/l. 1. Summary

B-trees were invented by Bayer and McCreight in 1972. B-trees. or variations of them.

have become the data structures of choice for database applications. B-trees anow fast

database searching, due to the ability to optimalJy size the nodes to the paging

requirements of a file system, and due to the relative flatness that results by using multi-

way nodes [Flamig93]. Object-oriented programming is a new way of approaching the

job of programming, and is based on the concept of an object. Object-oriented

programming is a technique that facilitates code reuse. Inheritance, polymorphism. and

encapsulation are examples of its important features. Animation is one effective way to

communicate information. Effective animation involves many of the same design

considerations as other graphics elements. There are two basic types of animation on a

computer: cast-based animation. which makes use of sprites, and frame-based animation.

which operates more like a movie, consisting of a series of fixed images played in

sequence. Cast-based animation is more interesting as a programming topic because it

uses concepts such as transparency and may involve interaction with the user.

This thesis project is implemented by using Microsoft Visual C++. In this project. an

animator of B-trees is created by employing the cast-based animation technique to

demonstrate the motion of moving B-trees' nodes during insertion or deletion operations.

A class hierarchy for members of the B-tree family is built. These members are B-tree,

41

'i...
I

)

~
~
·1
'I
~

1

g

-

B*-tree and B+-tree. The trees and the dynamic movements as they are being built or

destroyed are shown graphically. The thesis project is designed by using object-oriented

approach to make effective use of classes organized into a hierarchical structure based on

the concept of inheritance. Since B-trees and B-tree variants have been used for

maintaining large files, this project is designed to implement data structures thm reside in

files. At the heart of the file-based object design in this project is the Fmgr class that

manages objects stored in files. The Btree class is a base class of the Bstar cia 's and the

Bp/us class. Because the Btree class is also file based, it has numerous file-management

functions. The main feature of B-trees is the multi-way nodes that make up the trees.

Since there is always one more branch than keys in a multi-way node. the Page class i~

designed to have a left branch that leads to all nodes with keys smaller than the smallest

key in the given node. The other right branches will be paired with a key. So a key. along

with its associated data and right branch field, is defined in the Entry class. The Sswr

class is deri ved from the Btree class. This class inherits all the member functions of the

Btree class except Insert() function. The Bpills class is derived from the Blree class too.

Because of the nature of B+-tree, it inherits all the member functions of the SIreI' class

except the functions such as Inserl(). Delete(), SearchO and FullSearch(). Since the

project also provides a GUI to enable the user to observe a graphical representation or the

B-tree family's data structures as they are being built or destroyed. the Wllode class is

created to link the B-tree data structures and the Windows 95 graphics dara structures

together. The Wnode class serves as the carrier that carries the data generated by the B-

tree classes and gives the image output to the CUI window. Another purpose of this class

is to provide animation mechanism to dynamically show the detail transition of B-trees'

•

I
)

I
I
I
I
I
I

·1

J
I
')

-

insertion and deletion. The program is designed to present a visualization of the tree: and

is, therefore, developed under Microsoft Windows 95 which is a very large. complex

programming environment.

•
Vll. 2. Futu.re Work

The design that this project has presented for B-trees is a simple graphical demonstration

with animation effects. There is ample space to extend this design to give more f1exihility

to the data structure, add more graphical technique, and improve the performance.

• Flexibility

There are several in the data structure are hard coded. In this design. the type of keys In

the B-tree nodes is character string. This can be designed to accept various data type wlth

flexible size. B-trees in this program has fixed order of five. And it can also be ahle to

make it flexible to handle any order of the tree. All these C(ln be implemented by utilizlI1g

template, function overloading. dynamically memory allocating techniques.

Another area that can be addressed for the future work is the key length. The key length in

this design is fixed, and therefore, it could result in a lot of wasted space in the nodes

when the keys are not in the maximum size. The approach is to allow variable-length keys

in B-trees, where each key occupies only as much space as needed in a node. By using

this strategy we can pack as many keys as possible into each node. This means the nodes

can have a variable number of keys and branches. The result is a variable order of B-tree.

43

I

l'
I

1~
I

,
)

I
'I
I
I
I

I
I

l
;
)

----------------------n

In such a tree, the size of the node is used as the criteria for minimum node size. rather

than using the number of keys.

• Graphics

In this implementation, a node is formed in a set of two dimension rectangular boxes

for which the program only draws the boundary. It will really impress users to cre~lte

high-quality 3-D color images completed with shading. lighting. and other effects.

Windows provides OpenGL API functions to deal with graphics primitives. matnx

transformations. lighting, shading, coloring. texture mapping. and more. OpenGL is

based on an industry standard that is maintained by an independent group called Ihe

Architectural Review Board (ARB) and is supported by a variety of plalforms. The

OpenGL API functions can be used to perform 3-D drawing amI rendering for the

future graphical implementation.

• Performance

Since a B-tree is a file-based data structure, It involves heavy file orcrations such as

reading from and writing to a file. Furthermore. the file is usually stored on the disk or

backup storage device which is always mllch slower than main storage in lerms of the

access time. To solve this problem, a cache mechanism can be added to the design 10

enhance performance. Rather than felching pages from the file every time they are

needed, the copies kept in main storage are accessed instead.

44

I

I'
I

!~
1

~--------------------_.-

The animated images shown in this application rely solely on Windows graphical device

interface (GDl) functions which could be too slow. To make the animated picture more

smoothly, it is necessary to create its own set of bitmaps to improve performance and

memory use.

•

i

\~
\

45__________________'W

BIBLIOGRAPHY

Baeza-Yates, R. A. & Larson, P. (1989). Performance of B+-trees with Partial
Expansions. lEEE Transactions on Knowledge and Data Engineering. Vol. I.
No.2, 248-257.

Baeza-Yates, R. A. (1987). The Expected Behavior ofB+-trees. Technical Report
CS-86-68. Dept of Computer Science, University of Waterloo. Ont.lrio.
Canada.

Bayer, R. & McCreight, E. M. (1972). Organization and Maintenance of Large
Ordered Indices. Acta Informatica. I (3), 173-189.

Budd, T. (1991). An Introduction to Object-Oriented Programminz. Addi.-;on­
Wesley.

Chu, J. H. & Knot, G. D. (1989). An Analysis of B-trees and Their Variants.
Information systems, Vol. 14, No.5, 359-370.

Comer, D. (1979). The Ubiquitous B-tree. Computing. Surveys. Vol. II. No.2. 121­
137.

Crotzer, A. D. (] 975). Efficacy of B-trees in An Information Storage and Retrieval
Environment. Unpublished Master's Thesis, OSU.

Davis, W. S. (1974). Empirical Behavior ofB-trees. Unpublished M:..Ister·s Thesis.
OSU.

Eckel, G., Houlette, F., Stoddard, J. and Wagner, R. (1993). Inside Windows NT.
New Riders Publishing.

Eisenbarth, B. Siviani. N. , Gonnet, G. H., Mehlhorn. K. & Wood, D. (1982) The
Theory of Fringe Analysis and Its Application to 2-3 Trees and B-trecs.
Inform. and Control 55 (1-3), 125- I 74.

Haming, B. (1993). Practical Data Structures in C++. John Wiley & Sons, Inc.

Folk, M. J. & Soellick, B. (1992}. File Structures. Second edition. AddisOll- Wesley.

Johnson, T. & Shasha, D. (1992). Reexamining B-trees. Dr. Dobb's Journal. Vol.
17, No. 1,44-46.

Johnson, T. & Shasha. D. (1993). The Performance of Current B-tree Algorithms.
ACM Transactions on Database Systems, Vol. 18, No.1, 5 1-10 1.

46

, .
I

:~
1

Knuth, D. (1973). The Art of Computer Programming Vol. 3. Searching and
Sorting. Reading. Mass.: Addison-Wesley.

Kuspert, K. (1983). Storage Utilization in B*+-trees With a Generalized O\'erflow
Technique. Acta Informatica 19 (1), 35-55.

Leung, C. (1984). Approximate Storage Utilization of B-trees, A Simple Derintion
and Generalizations. Intonn. Process. Lett. 19, 199-20 I.

Lippman, S. (199]) C++ Primer. Second Edition. Addison-Wesley

Montlick, T. (1995). What Is Object-Oriented Software? Web site: http://www.soft­
design.com/softinf%bjects .html.

Petzold, C. (1996). Programming Windows 95. Microsoft Press.

Quitzow, K. H. & Kloprogge, M. R. (1980). Space Utilization and Access Path
Length in B-trees. Inform. Systems 5. 7-16.

Rodent. H. (1994). Animation in Win32. 1995 (January) - Microsoft Developer
Network Library.

Rogerson, D. (1994). OpenGL 1: Quick Start. Microsoft Developer Network
Technology Group.

Schildt, H. (1995). Schildt's Windows 95 ProgrammirH! in C and C++. McGraw­
Hill, Inc.

Schildt, H. (1995). Using Turbo C++. McGraw-HilI. Inc.

Shasha, D., Lanin, V. & Schmidt, J. (1987). An Analytical Model for the
Performance of Concurrent B-tree Algorithms. Ultracomputer Note 31 I. Dept.
of Computer Science, New York Univ., New York.

Srinivasan.v. & Carey, M.(1991). Performance uf B-tree Concurrency Control
Algorithms. In proceedings of the 1991 ACM-SIGMoD International
Conference on Management of Data, ACM, New York.425-461.

Stroustrup, B. (1995). The C++ Pro!!rammin!:! Langualrc. Second Edition. Addison­
Wesley.

Tamura, R., Belew, P., Blakely, J., Grantham. E.. Griswold. R., Hall. W., Hipson,
P., Kenner, B., Montemer. B.. Parker. T .. Thayer. 1.. Toth. V.. KotLler. J.,
Woelfel', T., Harris. L., Laeremans, R., Lujan. P., Tntjillo, S, Pietrocarlo. D..
and Eman, O. (1995). Pro!!ramming Windows 95. Sams Publishing.

47

•

)
I

-

Tello, E. (1991). Object-Oriented Programming for Windows. John Wiley & Sons.

Inc.

Thompson, N. (\995). Animation Techniques in Win32. Microsoft Press

Wagner, W. (1992). The Windows Cartoon £m~ine Supplies High-Qualitv
Animation to Anv Application. 1995 (January) - Microsoft Developer

Network Library.

Wright, W. E. (1985). Some Average Performance Measures for the B-tree. Acta
informatica 21 (I), 54 J-557.

-

APPENDIXES

49

Appendix A • Glossary

API API (Application Programming Interface) is a library of routines and services. each
built from low-level operating system commands, which accomplish common
tasks.

Cast-Based Animation Cast-based (or sprite-based) animation involves drawing an
image on top of a background image. Sprites are generally used for game
animation. To produce motion using sprites. one changes the location where the
sprite is drawn.

DOS DOS is an acronym for Disk Operating System. It is a text-based. keyboard­
oriented operating system. DOS was originally released in 1981 with the IBM Pc.
and it is still the de facto operating system for all IBM and compatible personal
computers.

Frame-Based Animation Frame-based animation involves drawing a image on top of a
background. Frame-based animation operates more like a movie. it is always llsed
for cartoons. To produce motion using frame animation. one changes the
foreground image.

CDI GDI (Graphic Device Interface) is the subsystem of Windows 95. It is responsible
for displaying graphics (including text) on video displays and printers. The
Windows GDI allows graphics output to be created by bitmaps. brushes. and pens.
The GDI predefines three pens: Black. Null. and White. These can he used hy
caJling the GetStockObject function. Seven brushes are predefined: Black. Dark­
Gray, Gray, Hollow, Light-Gray .. Null. and White. There are six hatched hrush
patterns. The GDI also supplies twelve text formatting styles.

GUI GUT (Graphical User Interface) is a metaphor representing the interacti011 between
end user and computers. In particular, GUls enable users to hegm to think in terms
of colors, icons, and graphics. With GU!, the system IS more user-friendly. easier to
learn and easier to use.

MS-DOS MS-DOS is the Microsoft implementation. IBM and Microsoft make efforts
together to ensure that MS-DOS is functionally equivalent with PC-DOS which is
the IBM implementation.

OpenGL The Microsoft implementation of OpenGL in Windows NT and Windows 95 is
an implementation of the industry-standard OpenGL three-dimensional (3D)
graphics software interface with which programmers create high-quality still and
animated 3D color images.

50

d

-

OS/2 OS/2 i.s an operating system. In the mid - j 980s. Microsoft and IBM developed all

operating system so superior to DOS that it was to become the dominant operating
system of the 1980s and 1990s. They called it Operating System 2. or OS/2.

RAM-Resident Popup RAM-resident programs are designed to reside in memory while
other programs run. Users can activate their services by clicking those programs'
Icons.

Sprite A sprite is an irregularly shaped picture that can be moved anywhere on the
screen. A sprite can be in front of or behind another sprite. A character in all
animation could be a sprite. To make the character move around in a scene. one
moves the sprite for that character and change its image to simulate ch:.lnges in the
appearance of the character as it moves.

Transparency The simplest way to define transparency is to select a color not used
elsewhere in the image and paint all the transparent areas with that color. When the
sprite image is drawn, the transparent-colored pixels won't be copied to the screen.

VSAM VSAM (Virtual Sequential Access Method) is IBM's general purpose B-tree
based access method. VSAM is designed to support sequential searching as \I,,;cll as
logarithmic cost inser:ion, deletion, and find operations. VSAM supports two
forms of sequential searching, one is key-sequenced, the other one is entry­
sequenced. The entry-sequenced VSAM files allow efficient sequentIal processlIlg
when no key accompanies a record. Since entry-sequenced VSAM fi les require no
index, they are less expensive to maintain.

5)

-

Appendix B - User's Menu

Wbtree: A Windows Version of B-Trees Application

WBTree is an animator of B-tree and its variants (B-tree, B*-tree and B+-tree). This

program illustrates the dynamic movements of B-trees while they are being built or

destroyed.

The follows are the detail descriptions for each menu items and controls supported by this

program.

Deletion

Each word can be deleted from an order five B-tree's family, The rearrangement of the

tree structure will be animated to illustrate node redistribution and concatenation of the

B-tree's family data structure. The leaf nodes are arranged vertically under the parcnl

node, Initially click on the box beside "Delete", Then enter one to three letter words one

at a time, clicking ''Delete'' to delete the word.

Insertion

Each word entered will be inserted into an order five B-tree's family. The tree expansion

will be animated to illustrate node di vision and root promotion of the B-tree' s fumily data

structure. The leaf nodes are arranged vertically under the parent node, Initially click on

52

s

-

the box beside "Insert". Then enter one to three letter words one at a time. clicking

"Insert" to enter the word. The program is limited to 156 nodes. which is sufficient to

illustrate the structure of a B-tree or its variants. Don't enter so many words as to exceed

this limit.

Open File

"File" menu pops up a command dialog box to allow users to specify a file to be

contained the B-tree index dara.

Options

WBtree supports three types of B-tree variants, B_tree. B*_tree, and B+_tree. The tree

type is selected by clicking the "Options" from the menu bar and marking one of three

tree types.

Quit

Quit: To quit this application simply click the "Quit" from the menu bar.

53

Appendix C - Class Overview

Entrv Class

Entry class contains a pair of key and RRN (Relative Record Number) along with data

which is ignored in this project implementation. This class is the foundation or Page class

which is the base class of Pobj class.

Data Member:

char key[] Character string serves as key

long data Long integer

long right RRN of right child

Construction:

EntryO;

Entry(const char *c):

Entry(const char *c. long d):

Entry(const Entry &e);

-Entry(l

Methods:

void operator=(const Entry &e) Assigns all data members

void operator=(const char *c) Assigns key only ,

friend int Compare(const Entry &a Compares the key string only. Returns -I

const Entry &b) if a < b. 0 if a = b. and 1 if a > b.

friend int FuliCompare(const Entry &a. Compares the key string as well as the

const Entry &b) data. Returns -I if a < b. 0 if a = b, and I if

a> b.

54

Pa!!e Class

Page class forms the basic data model of an individual B-tree node which includes an

Entry class array (it has order-I cells), a key counter, and the RRN of the left most child,

This class is the base class of Pobj class which combines the Fmgr class and Page class

together and constructs a file based data structure.

Data Member:

int cnt Number of entries or keys

long left RRN of the left most child,

Entryentry[ORDER-I]

Construction:

PageO Set up an empty node

-Page\,)
I

Methods
,

int Search(const Entry &e, int &n) Tries to match e's key with the keys in the

entries of this node. Returns -I if c's key is

less than all keys in the node. returns 0 if

there was a match. return I if e's key is

greater than all keys in the node, Passes

back n of matching entry if any. or the n of

the entry containing the appropriate branch

to keep searching down.

int FullSearch(const Entry &e, int &n) Like the first Search(). except we use

FullCompJre().

void Split(Page &b. int n): Moves right half of this node at n into

empty b. Assumes n is in range.
i

55

void InsEntry(Entry &e, int n); Inserts entry e into node at position fl.

Assumes there is room and assumes n <=

cnt

void Concatenate(Emry &e); Adds entry e to the end of the node

void Concatenate(Page &p); Adds all entries of node n to the end of

this node. Assumes there is room.

void DelEntry(int n): Deletes the entry at position posn.

Assumes n is In range.

long &Branch(int n); . Returns the branch for the given position.

Due to the layout of the Ilode, ...ve'll get tbe

left branch if n = -I.

int LastPosn(): Returns the position of the last entry ill the

node

int IsEmptyO; Returns I jf cnt = O.

I
int IsFull(); Returns 1 if cnt = ORDER - I.

int IsPoorO; Returns I if flode has fewer thall the

minimum entries.
..-

int IsPlentifulO: Returns I if node has more than the

minimum number of entries.

Pobj Class

Since B-tree is a file based data structure, Pobj is the class which is designed to meet this

requirement. Pobj inherits Page class and includes a file object in its data memher that

makes file accessing more convenient.

56

Data Members:

long addr File address of Page data

FmgrPtr fp File object pointer

Construction:

PobjO

Pobj(Page &c, long p)

Pobj(FmgrPtf f)

Pobj(const Pobj &c) Copy constructor.

-PobjO

Methods:

void Copy(const Pobj &c) Copies one Pobj into another

Pobj branch(int psl Loads the child page ill posi tion ps into

memory_

void NewPage() Calls fmgr to reserve a new page III the

file.

void UpdatedO Writes Page data to file

operator longO const Returns RRN

void operator=(consl Pobj &c)

void operator=(long p)

Fmgr Class

Fmgr is designed for file based data structure to fulfill the file operations such as opening.

files, closing files, reading bytes, writing bytes, and seeking. The Fmgr pointer is the d;,ita

member of Pobj and Btree classes.

57

Data Members:
,

enum Io_op fetch, store, seek

enum AccessMode read_write. read_only

enum CheckWord

char name[] Name of the fi~e

long fs Address to first block of "heap" free space

long Fe Address of byte after end of fi Ie

long hs Address of the start of the "heap"

FILE *fp Stream file handle

Io_op lastop Last I/O operation

char status

Construction:

FmgrO

virtual -FmgrO

Methods:
I

void FetchFBlkHdr(FBlkHeader &h, Reads in free block header. and tests chee\(

long p); word to make sure the file is still ill ."ync.

void StoreFBlkHdr(const FBlkHeader Writes out free block header.

&h, long p);

long Rec1aim(unsigned nbytes): Finds the first block on the free space list

that is big enough for nbytes of data. Puts

back on the free list all those bytes that

aren't needed. Note that the amount put

back must be at least the size of the free

block header, otherwise, the entire block is

considered not an appropriate size and I

rejected. Returns address of the newly

reclaimed elata. or 0 if there wasn't a free

space block that was appropriate.

58

virtual int Create(char "'fname, long Creates and opens a new file named
i

static_sz) fname, truncating it if it already exists.

The area at the front of the file of length

static_sz + sizeof(FmgrHeader) is

reserved. Returns I if the file was

successfully created and opened. else 0

virtual im Open(char *fname, Opens the (name file. File must exist file

AccessMode mode) or error occurs. First closes the current file I

if open. Returns I if fi Ie opened

successfully, else O.

virtual void Close(int flush) Closes the file if not already closed. Does

nothing if in the error state.

long AlIoc(unsigned nbytes) Allocates a block of at least nbytes of data.

either from the free space list. or from the

end of the file. The number of bytes

allocated is adjusted to be large enough to

hold a FBlkHeader. Nothing is ,.vritten to

the newly allocated space. Returns

location of space allocated, or returns <.l 0

jf some error occurred.

void Free(ul1signed nbytes, long r) Frees the block allocation r assumed to

be nbytes in size. Block is placed on the

front of the free space Jist. If nbytes is <

sizeof(FBlkHeader). it is forced to that

size, since that's the minimum size

allocated.

I void Fetch(void *d, unsigned n, long p) Fetches n bytes from address p imo buffer

d. The address is always interpreted to be

from the heginning of the file, unless i.t's

CURRADDR, which means from the

5Y

current position. :

void Store(const void *d, unsigned n, Stores n bytes from buffer d to addr p. The

! long p) addr is always interpreted to be from the

beginning of the file. unless it's

CURRADDR. which means from the

current position.

void Seek(long ofs, il1t seek_mode) Moves the file pointer to the byte offset

ofs, using seek_mode. (which should be

either SEEK_SET. SEEK_CUR. or

SEEK_END).

int IsOpenO const Returns true open status bit is I

int ReadOnlyO canst

int ReadyForWritingO canst File is ready for writing if it is ok and not

read-only

void ClearErrO

int OKO const

inr operator!() const

operator const int () const

Btree Class

Btree class is the base class of Bstar and Bplus classes. This class defines all the

operations and data structure used to set up a B-tree. Its data members include a file

object pointer which points to a file to store B-tree index data. a Pobj to the root of the

Iree to ease access, a BtreeHeader data structure which contains B-tree's tree information

such as address of root page. order of tree. height of tree. number of total entries, and

number of total nodes.

60

Data Members:

FmgrPtr f Fi Ie the Btree is connected to

long bh_addr Address of the Btree header

BtreeHeader bh Btree header

Pobj root Root node

Construction:

, BtreeO

-Btree()

Mothods:

void ReadHdrO

void WriteHdrO

virtual int Insert(Entry &e, Pobj &t) Recursive function that tries to insert entry

e into subtree t. Returns SUCCESS.

DUPLKEY. ALLOCERR. or

NODE - OVERFLOW. If

NODE_OVERFLOW, then e becomes the

median_entry to pass back to t's parenl.

int Delete(Entry &e, Pobj &t) Recursive function that deletes entry e

from the subtree with root p. Returns

SUCCESS, or FAIL if we couldn't find the

entry .

void RestoreBalance(Pobj &p. int posn) Node down branch at position posn in

node p has one too few entries. Give it an

entry from either its left or right sihling, or

perhaps just merge the node with a sibling.

void RotateRight(Pobj &p. int posn) Does a "right rotation" using the entry at

node p, position posn as the pivot poin!.

Assumes p is not a leaf and that there is a

61

left and right child. Also assumes right

child isn't full, and that p and left child

aren't empty.

void RotateLeft(Pobj &p, int posn) Does a "left rotation" using the entry at

node p, position posn as the pivOl point.

Assumes p is not a leaf and that there is a

left and right child. Also assumes left

child isn't fuJI, and that p and right chi.ld

aren't empty.

void Merge(Pobj &p, int posn) Merges the node on the branch left of the

entry at position posn of node p. with the

entry of p and the node on the branch to

the right of the entry of p. Assumes posn

In range.

static void PrintNode(Pobj &n) Prints only node n.

static void PrintTree(Pobj &t. int sp)

void SetParameters() Sets the split position. ,
[

int Connect(FmgrPtr &fptr. int create. Connect to an already open file. If create is

long bh_addr) I, we're creating a new btree (but not

necessarily a new file.) Returns SUCCESS
I

or FAIL.
,

void Disconnect() Disconnects the btree from the file.
[

I

int Create(char *fname, long bh_addr) Creates a new file to hold the tHrec.
,

I Disconnects from any file that VIC may he

! connected to first. Returns SUCCESS or
[

FAIL.

[int Open(char *fname, Opens an existing file to hold the blrcc.
[

[Fmgr::AccessMode mode, long Disconnect from any file that we may be

i bh_addr) connected to first. Retums SUCCESS or

FAIL.

62

void Close() !I

virtual int Search(Entry &e) Search the tree for the first node having a

matching entry (ie: keys must match). If

found, the data field of e is filled ~n.

Returns SUCCESS or FAIL.

virtual int FullSearch(const Entry &e) Like SearchO. except both keys and data

must match. Returns SUCCESS or FAIL.

int Add(char *k, long d) Creates a new entry with key k and data d.
I

and attempts to add the entry to the tree.
[

I

I

Returns SUCCESS. DUPLKEY. or

ALLOCERR. i

vlrtual int Remove(char *k, long d) Deletes entry having key k and data d from

the tree. Returns SUCCESS. or FAIL if

we couldn't find the entry.

jot IsEmptyO canst

int IsOpenO const

im OKO canst

int operator!O canst

operator intO const

void ClearErrO

vuid Statistics(int full) Display tree status

void PrintTreeO

Bstar Class

Bstar class inherits Btree class and overrides the InsertO function which makes the B*-

tree different from the B-lree in terms of splitting. This class also defines additiona.1 data

members and methods to support the changes in Insert().

63

Data Members:

ill! path[20]; Records the search path top->down

int index

Construction i

! i

BstarO I,

i

-BstarO

Methods:

int Insert(Entry &e, Pobj &t): B*-tree version of Insert function.

Pobj FindParent(int in); This function uses path[] to find the (in-

I)th level of node which is the (in)lh

levers parent in a par1icular search.

void SetParameters(); Set the split position.
I

BpJus Class

Bplus class inherits Btree class and overrides the lnsert(), SearchO. FullSearchO, and

RemoveO functions from the base class. The Bplus class also overloadcs the Dclclc()

function which is a member function of the base class. The changes of B+-tree are used 10

maintain an index set as well as a sequence set.

Data Members:

None

Construction:

BplusO

-BplusO

64

Methods:

int Insert{Entry &e, Pobj &t); B+-tree version of Insert function.

int Delete(Entry &e, Pobj &t, Pobj This DeleteO overloading Btree's DelereO.

&Parent);

int Search(Enrry &e); R"-tree version of Search function.

int FullSearch(const Entry &e); B+-tree version of FullSearch function.

int Remove(char *k, long d); W"-tree version of Remove function.
,

Wnode Class

Wnode class is created as an inten'ace for B-trees to call Windows 95 API to display B-

trees as graphical images to the screen. It creates several methods to accomplish the

animation which occurs during tree splitting and merging. Thi.s class also defines many

associated methods to assist an individual node to locate its relative nodes which would

help to achieve animating the output image.

Data Members

RECT *RBoxes Provides data structures to draw boxes to

hold ehRRN.

long *chRRN Child nodes' RRN

RECT *KBoxes Provides data structures to draw boxes to

hold key strings,

char Keys[J[] Key strings

int Parent Index of parent block

int *RSibling Index of the right siblings

int LSibling Index of the left sibling

65

int *Children I Index of children
I'

int Entrys I, Number of entries

long x x is the coordinate of up left corner of

wnode.
!

long y y is the coordinate of up left comer of

wnode.

long RRN RRN of itself

int id Index of itself

int Order Order of the tree

BYTE direct Move direction

int dist Move distance

Construction:

WNode()

WNode(int n)

-WNodeO

Methods:

void InitWNode(int n.int ID) All the data members arc initialized in this

function.

void ResetWNodeO When the node is deleted. this function is

called to reset all the data memhers back

to initial state except the id.

void MoveLeft(long dx) Moves the whole object image left in dx

units.

void MoveRight(long dx) Moves the whole object image right in dx
I

units.

void MoveUp(long dy) Moves the whole object image up in dy

un its.

void MoveDown(long dy) Moves the whole object image down in dy

I' units.

66

void SetID(int i) Assigns i to the data member id.

void SetKey(char *k.int i) Copys k to Keys{i].

void SelchRRN(long cr. int i) Assigns cr to chRRN[i].

void InsChild(int id, int posn) Assigns id 10 Children[posn] and shift out

all the chi ldren after the (posn)th chi Idren

one position right.

int GetChild(int n) Returns the index of the nth child

void DelChildren(int posn) Resets the content of Children[] into -I

starting from the Tlth child (n=posn).

void FindChildren(WNode *wn) This function locates several WNodes that

have the RRNs match chRRN. It also sets

up the sibling relation among children.

void MoveChildren(HDC hdc,WNode If the chi Idren nodes are the leaL th is

*wn) function moves them accroding to this

wnode's position.

void SetParent(int p) Assigns p to Parenl.

illt GetParentO Returns Parent to caller.

void SetPosition(long X,long Y) Sets the new location on all the RECT

data members to make them reference to

(X.Y).

void GetPosition(long &dX, long &dY) Returns x and y into dX and dY.

void AddSibJing(int s) Assigns s to RSibling[O) and pushes the

rest of right siblings accordingly.

int* GetSiblingsO Returns an integer array containing right

sibling index

void CopySiblings(int *S) Copys S[] to RSiblingrJ·

void SetLeftSb(int Is) Assigns Is to LSibling.
I

int GetLeftSb(} Returns Lsihling.
I

void UpdateLSb(WNode *wn) Recursive function. It updates each child's

67

right sibling information. The call starts

from the rightmost child and stop at the

left most child.

void Print(HDC hdc) Simply prints to Windows

void EraseNode(HDC hdc) This function prims wnode using

background color. The effect is same as

I the eraser
I
I void ShowNode(HDC hdc, WNode

*wn)

void PrintNode(HDC hdc, WNode *wn) The function determines the move

algorithm and calls ShowNodeO to display

the animation of nodes.

void MoveParentSb(HDC hdc, WNode This is recursive function to move parcnt"s

*wn,BYTE dirt,int dst) siblings.

void MoveTree(HDC hdc, WNode Recursive function to move nodes under

*wn,BYTE di.rt,int dst) it. This function also call ShowNode to

display nodes.

int GetEntrysO Returns data member of Entrvs

void Updated(Page p) Gets Page structure to update certain daL.l

members

void Updated(Pobj P) Passes Pobj structure to update certain

data members

void SetDirect(int d) Sets the move direction. () - up. I - down.

2 - right. 3 - left. and 4 - not move.

int GetDirect() Returns the move direction.

void SetDist(int d) Sets the move distance.

int GetDistO Returns the move distance.

BOOL IsLeafO

void operator=(1ong r)

68

void operator=(int I)

operator]ongO const

69

Appendix D - lVlakefile

Microsoft Developer Studio Generated NMAKE File. Format VerslOn 4.00
** DO NOT EDlT **

TARGTYPE "Win32 (x86) Application" OxOIOl

!IF "$(CFG)" == ""
CFG=wbtree - Win32 Debug
'MESSAGE No configuration specified. Defaulting to wbtree - Win32 Debug.
!ENDIF

!IF "$(CFG)" != "wbtree - Win32 Release" && "$(CFG)" != "wblrce - Win32 Debug"
!MESSAGE Invalid configuration "$(CFG)" specified.
'MESSAGE You can specify a configuration when running NMAKE un this makefik
'MESSAGE by defining the macro CFG on the command line. Fur example:
'MESSAGE
I MESSAGE NMAKE If "wbtree.ml.lk" CFG="wbtree - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "wbtree - Win32 Release" (based on "Win32 (x86) Application")
!MESSAGE "wbtree - Win32 Debug" (based on "Win32 (x86) Application")
!MESSAGE
!ERROR An invalid configurallon lS specitied.
'ENDIF

!IF "$(OS}" == "Windows_NT"
NULL=
!ELSE
NULL=nul
!ENDlF
###11##########

Begin Project
PROP Target_Last_Scanned "wblree - Win32 Debug"
MTL=mktyplib.cxe
CPP=cl.exc
RSC=rc.exe

IIF "$(CFG)" == "wbtree - Win32 Release"

PROP BASE Use_MFC 0
PROP BASE Use_Debug_Libraries a
PROP BASE OUlput_Dir "Release"
PROP BASE Intermediate_Dir "Release"
PROP BASE Target_Dir ""
PROP Usc_MFC 0
PROP Use_DebuLLibrarics a
PROP OutpuCDir "Release"

70

-

PROP Intermediate_Oir "Release"
PROP Targel_Ojr ""
OUTDIR=.\Release
INTOIR=.\Release

ALL: "$(OUTDIR)\wbtree.exe"

CLEAN:
-@erase ".\Release\wbtree.exe"
-@erase ".\Release\page.obj"
-@erase ".\Release\wmain.obj"
-@erase ".\Release\WBT.obj'·
-@erase ".\Release\Bstar.obj'·
-@erase ".\Release\wnode.obj"
-@erase \Release\Exchdlr.obj"
-@erase \Release\Fmgr.obj"
-@erase ".\Release\Htree.obj"
-@erase ".\Release\pobj.obj"
-@erase ".\Release\bplus.obj"
-@erase ".\Release\wbt.res"

"$(OUTDIR)" :
if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"

AOO BASE cpr Inologo 1W3 fGX 102 /D "WIN32" ID "NOEBUG" fO" WINOO\VS" IYX Ie
ADO CPP Inologo fW3/GX f02/0 "WIN32" 10 "NOEBUG" 10 "_WINOOWS" IYX Ie
cpr]ROJ=/nologo /l'V1L 1W3 IGX 102 10 "WIN32" fO "NDEB UG" fD "_WINOOWS "\
IFp"$(lNTDIR)/wblree.pch" fYX lFo"$(INTOIR)/" Ie:.
cpr_OBJS=.\Releasel
CPP_SBRS=
AOD BASE MTL Inologo 10 "NDEBUG" Iwin32
ADD MTL Inologo fO "NOEBUG" Iwin32
MTL]ROJ=/nologo /0 "NDEB UG" IWlO32
ADO BASE RSC II Ox409 /d "NOEB UG"
AOO RSC 11 Ox409/d "NDEBUG"
RSC]ROJ=/I Ox409 ffo"$(lNTDIR)/whtres" IJ "I 'OEBllG"
BSC32=bscmake.exe
ADO BASE BSC.32 Inologo
AOD BSC32/noiogo
BSC32_FLAGS=/nologo lo"$(OUTDIR)/whtrcc.bsc"
BSC32_SBRS=
LINK32=link.exe
ADO BASE LINK32 kernel32.lib uscd2.1ib gdi32.lib wlOspool.lib ct>ntdlg32.1ih aJ\·apI32.lih shclU211b
ole32.1ib oleaul32.lib uuid.lib odbc32.lib odhccp32.lib /nolog:o Isubsyslcm:winuows Im'lchinc:mI6
ADD LINK32 kernel32.lih user32.lib gdi32.lib winspool.lib comdlgJ2.1ii'> ad\·apI32.lih shclr32.lih
ole32.lib oleaul32.lib uuid.lib odbc32.lib odhe:.e:.p32.1ih Inologo Isuhsyslcm:wlIldows fmachlOc:I3H6
LINK32_FLAGS=kerneI32Jib uscr32.lih gdi32.lih wmspool.lib comdlg32.lih\
advap132.lib shel132.1ib ole32.lib oleaut32.lib uuid.lib odbc32.lib\
odbccp32.lib /noJogo /subsystem:windows lincremcntal:no\
/pdb:"$(OUTDlR)/wbtrce.pdb" Imachine:I386/out:"$(OUTDIR)/wbtrce.exc"
LlNK32_0BJS= ,

"$(lNTDIR)/page .obj" \
"$(INTDIR)/wmain.obj" \
"$<INTDlR)/WBT.obj" \
"$(lNTDIR)/Bslar.obj" \

71

-

"$(lNTDIR)/wnode.obj" \
"$(!NTDIR)/Exchdlr.obj" \
"$(INTDlR)/Fmgr.obj" \
"$(lNTDIR)/Btree.obj" \
"$(lNTDIR)/pobj.obj" \
"$(lNTDIR)/bplus.obj" \
"$(INTDIR)/wbues"

"$(OUTDIR)\wbtree.exe" : "$(OUTDIR)" S(DEF_FILE) $(LlNK32_0BJS)
$(LINK32) @«

$(LINK32_FLAGS) $(LINK32_0BJS)
«

'ELSEIF "$(CFG)" == "wbtree - Wm32 Debug"

PROP BASE Use_MFC 0
PROP BASE Use_Debug_Libraries I
PROP BASE Output_Dir "Debug"
PROP BASE Imermediate_Dir "Debug"
PROP BASE Target_Dir .. "
PROP Use_MFC 0
PROP Use_Debug_Libraries I
PROP Output_Dir "Debug"
PROP Intermediate_Dir "Debug"
PROP Target_Dir ""
OUTDlR=.\Debug
INTDIR=.\Debug

ALL: "$rOUTDIR)\wbtree.exe"

CLEAN:
-@erase ".\Debug\vc40.pdh"
-@erase ".\Debug\\'c40.idb"
-@erase ".\Debug\wblree.exc"
-@"'erase ".\Debug\WBT.ob.!"
-@erase ".\Debug\Fmgr.obj"
-@erase ".\Debug\bplus.obj"
-@erase ".\Debug\wnode.obj"
-@erase ".\Dehug\pooj.obj"
-@erase ".\Debug\Bstar.obj ,.
-@erase ".\Debug\pagc.obj"
-@erase ".\Debug\wmain.obj"
-@erase ".\Debug\Btree.obj"
-@erase ".\Debug\Exchdlr.obj"
-@erase ".\Debug\wbt.res"
-@erase ".\Debug\wbtree.ilk"
-@erase ".\Debug\wbtrcc.pdb"

"$(OUTDlR)" :
if not emt "$(OUTDlR)I$(NULL)" mkdir "$(OUTDlR)"

ADD BASE CPP Inologo JW3/Gm IGX lZi IOd ID "WIN3}" ID "_DEBUG" ID "_WINDOWS" IYX Ie
ADD CPP Inologo JW3/Gm IGX lZi /Od ID "W[N32" 10 "_DEBUG" /D "_WINDOWS" IYX Ie:
CPP]ROJ=/nologo IMLd JW3/Gm IGX IZi IOd 10 "WIN32" 10 "_DEBUG" ID "_WINDOWS"\
IFp"$(lNTDlR)/wbtree.pch" IYX lFo"$(lNTDIRJ/" IFd"$(lNTDIR)/" Ie

72

5

-

CPP_OBJS=.\Debug/
CPP_SBRS=
ADD BASE MTL /nologo!D" DEBUG" /win32
ADD MTL /nologo ID "_DEBUG" /win32
MTL_PROJ=/nologo ID "_DEBUG" /win32
ADD BASE RSC /I Ox409 /d "_DEBUG"
ADD RSC /I Ox409 /d "_DEBUG"
RSC]ROJ=/l Ox409 /fo"S(INTDIRJ/wbt.res" /d "_DEBUG"
BSC32=bscmalce .exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
BSC32_FLAGS=/nologo /o"$(OUTDIR)/wbtree.bsc"
BSC32_SBRS=
LINK32=link.exe
ADD BASE LINK32 kerneI32.lib user32.1ib gdi32.lib wmspool.lib comdlg32.lib ad\'apI32.lib shcll32lih
ole32.lib oleaut32.lib uuid.lib odbc32.1ib odbccp32.lib /nologo /sunsystem:windows /debug /machinc:l3X6
ADD LINK32 kernel32.1ib user32.lib gdi32.lib winspool.lib comdlg32.lib advapI32.. Jih shdl32.lih
ole32.lib oleaut32.lib uuid.lih odbc32.lib odbccp32.lib /nologo /subsystem:wmdows /debug /l11lll:hlll<;,:IJ~6

LINK32_FLAGS=kerneI32.1ib user32.lib gdi32.lib winspool.lib comdlg32.lib\
advapi32.1ib she1l32.lib ole32.Jib olcaUl32.1ib uuid.lib odbc32.lib\
odbccp32.lib /nologo /subsystem:windows /incremental:yes\
/pdb:"$(OUTDIR}/wbtree.pdb" /debug /machine:1386 /out"$(OUTDIR)/wotree.exc"
LINK32_0BJiS= \

"$(lNTDIR)/WBT.obj" \
"SONTDIR)/Fmgr.obj" \
"$(INTDIR)/bplus.obj" \
"S(INTDIR)/wnode.obj" \
"$ONTDIR)/pobj.obj" \
"$(!NTDIR}/Bstar.obj" \
"$([NTDIR)lpage.obj" \
"S(INTDIRJ/wmam.obj" \
"$IINTDIR }/Blrce.obj" \
"$(lNTDIR)/Exchdlr.obj" \
"$(INTDIR)/wbucs"

"$(OUTDIR)\wblree.cxc" : "$(OUTDlR)" $(DEFJILE) S(LlNK32_0BJS)
$(LINK32) @«

$(UNK32_FLAGS; $, L1NK32_0BJSJ
«

'ENOIF

.c{$(CPP_OBJS)}.obj:
$(cpp) $(CPP]ROJ J $<

.cpp{ $(CPP_OBJS) l·obj:
$(CPP) $(CPP]ROJ) $<

.cxx {$(CPP_OBJS)} .obj:
$(CPP) $(CPP_PROJ) $<

.c{ $(CPP_SBRS)l·sbr:
$(CPP) $(CPP_PROJ) $<

.cpp! $(CPP_SBRS)} .sbr:

-

.cxx I$(CPP_SBRS)} .sbe
$(CPP) $(CPP]ROJ) $<

tt##/lif 1/11 Jill It 1/ 111111 till 11############################1: li#iI II 1111 111111" II:: !/#########!/1I1f######:###
Begin Target

Name "wbtree - Win32 Release"
Name "wbtree - Win32 Debug"

!IF "$(CFG)" == "wbtree - Win3:? Release"

!ELSEIF "$(CFG)" = "wblree - Win32 Debug"

!ENDIF

II Ii /I 11:1 II NII II III/lilt II /II/ if U#######4t####4NI

Begin Source File

SOURCE=.\wnode.cpp

!IF "$(CFG)" == "whlrce - Win32 Release"

DEP_CPP_WNODE=\
".\wnode.h"\
".\wbt.h"\
".\pobj.h"\
".\page.h'"
".\Fmgr.h"\
" .\Exchdlr.h"\

"$(lNTDlR)'wnode.obj" : $(SOURCE) $(DEP_CPP_WNODE) "$([NTDIR (

IELSEIF "$(CFG)" == "wblIce - Win32 Debug"

DEP_CPP_WNODE=\
".\wnode.h"\
".\wbt.h"\
".\pobj.h'"
".\page.h"\
".\Fmgr.h"\
" .\Exchdlr.h"\

NODEP_CPP_WNODE=\
".\wn'"
".\i "\

"S([NTDlR)\wnode.obj" : $(SOURCEl S(DEP_CPP_WNODE) "S(lNTDlR)"

!ENDIF

74

....

End Source File
################111111#####111111 i1111f1/Jllilfll},' IIIIIf#####11 /111# 1/ Nil II #ilil II t'1I1I1I 1111 II II 1111 Ii II II i/II II II /I II II II III! It
Begin Source File

SOURCE=.\Exchdlr.cpp
DE?_CPP_EXCHD=\

".\Exchdlr.h"\

"5;(INTDIR)\Exchdlr.obj" : $(SOURCE) $(DEP_CPP_EXCHD) "$(INTDIR)"

End Source File
################## 1111 ii lit: i.' /; fill fI NI: 1111######################/11111111111111111#11###############
Begin Source File

SOURCE=.\Fmgr.cpp
DEP_CPPJMGR_=\

... \Fmgr.h"\
".\Exchdlr.h"\

"$(INTDIR)\Fmgr.obj" : $(SOURCE) $(DEP_CPP_FMGR_) "$(INTDIR)"

End Source File
##################################/111 Ii If 1/11 II /I 1111####################################

Begin Source File

SOURCE=.\page.CPP
DEP_CPP]AGL=\

".\page.h"\

"$([NTDIR)\page.obj" : $(SOURCE) $(DEP_CPP_PAGE_) "$(INTDIR)"

End Source File
###############:###

Begin Source File

SOURCE=.\pobj.CPP
DEP_Cl)P_POBJ_=\

".\pobj.h"\
" .\page.h"\
".\Fmgr.h"\
".\Exchdlr.h"\

"S(lNTDIR)\pobj.obj" : $(SOURCE) $eDEP_CPP]OBJ_, "SIINTDIR)"

End Source File
############11111111111111111111## liN 11###

75

-

Begin Source File

SOURCE=.\WBT.cpp
DEP_CPP_WBT_C=\

".\wbt.h"\
".\Blree.h"\
".\Bslar.h"\
".\bplus.h"\
... \wnode.h"\
'·.\Fmgr.h"\
... \pobj.h"\
... \Exchdlr.h"\
".\page.h"\

"$({NTDIR)\WBT.obj": $(SOURCE) $(DEP_CPP_WBT_C) "$(!NTDlR)"

End Source File
###################1111 II tI 1111##11 ;1/1 II JlNIIIlIi' It 1# /I fill 1111 11111111###########11I; fill ##################
Begin Source File

SOURCE=.\wbt. rc
DEP_RSC_WBT_R=\

".\wbt.h"\

"$({NTDIR)\wbt.res" : $(SOURCE) $rDEP_RSC_WBLR) "$({NTDIR)"
$(RSC) $(RSC]ROJ) $(SOURCEl

End Source File
##1#1##############################

Begin Source File

SOURCE=.\wmain.cpp
DEP_CPP_WMAIN=\

".\woLh"\

"$(lNTDIR)\wmain.obj" • $(SOURCE) $(DEP_CPP_WMAIN) "${INTDIR)"

End Source File

###fllI#####III1UfI##lIillIlIlI###

Begm Source File

SOURCE=\Btree.cpp
DEP_CPP_BTREE=\

".\Btree.h"\
".\Fmgr.h"\

76

-

".\pobj.h"\
".\wnode.h"\
".\Exchdlr.h"\
".\page.h"\
".\wbl.h"\

"$rINTDlRl\Btrce.obj" : S(SOURCE) $(DEP_CPP_BTREE) "$(1NTDIR)"

End Source File
#######lIlIilillJlJflfiNllllfilllllillil!lIiIiIli1l1i1tillllilillllllllllltllllllll1il/l,l;1/###########11111111111111############
Begin Source File

SOURCE=.\Bstar.cpp
DEP_CPP_BSTAR=\

".\Bstar.h"\
".\Blree.h"\
".\Fmgr.h'"
".\pobj.h"\
".\wnode.h"\
".\Exchdlr.h"\
".\page .. h"\
".\wbl.h"\

"$(INTDIR)\BsLar.obj" : $(SOURCE) S(DEP_CPP_BSTAR) "$(INTDIRJ"

End Source File
##
Begin Source File

SOURCE=.\bplus.cpp
DEP_CPP_BPLUS=\

".\bplus.h"\
".\Blree.h"\
".\Fmgr.h"\
".\pobj.h"\
".\wnode.h"\
".\Exchdlr.h'"
".\page.h"\
".\wbt.h"\

"S(lNTDIR)\bplus.obj" : $(SOURCE) $(DEP_CPP_BPLUS) "$(]NTDfR)"

End Source File
End Target
End Project
##11###############################

77

Appendix E - Sample Output Screens

-TheWOTreePraqram I!!IGltJ
~:~~< a~~, ..;~~: :J:letp.<

!I I "lriSeri'l ····nidete ·1

Figure 9 This is the initial screen of this program.

78

bittl1J:liiSiQ..Hlfill

Dpen 01.:1

r:) bplus. obi ':'I page. obt ~ "Ibbee.uk

; r.) Bslar.obi "" pobj.obl ~wbbee.ll'4l

~ BTl.idx r:'I vc40.idb r:) wbaeepch

~ BTindex.id>< C'l vc40.pdb [) wbbee.pd)

C'l Bllee.obl '-?\ WBT.obj () "\I1Mn.obi
Q Exchdll.obj f.) wbl.les Q wnode obi
r:) Fmgl.obi Ll wbtlee.exe

,·~~.;':··1~13ii)iii!~~.mm·.!i"3""';"--'------·~-·-···'-·""",,..:2:"":-'jf~;.;'~ .. -F
. Files'd~·IA.II~~e,S("J ~{{~?~"l

Figure I0 This screen shows a open file dialog box which is popped up by chckm,g (hI: "File" III (he ml:IlU

bar.

79

-

Iii The 'WBr lee Program 1!13 r:t

Figure II This screen shows the options menu.

gO

,I'

iii TheWBTIl~ePIOglam I!!IGt:J

lIe1lp Topics: W'BTlee D~

··;~~t;!~~~~f1~~~;:~~~~~~~~~~~F'·;'
" 'Cickll rooIi:.nJ . tick Open, Ofcick another teb,wc!ucll'ldel<:,.

~_. :~. • .t .• ". "".;~. \ • : • ,'....

ill Inl'oducuonIJ:J_
11 Delelion

[1J Inseltion

~ OpenF~e

11 Ophom
[1) Qu~

.:- '. ~" ., . ~. :

I ". frri. .. ' Carcel I

Figure 12 This is the help screen when it IS initially popped up by users.

81

.. 1he \1161 ree Plogram I!!GJ E:I
;: ~t., ~:.!-~Lil ~ ~~?-I~ ,~:~i;i/tZ_~,11~ ;~:~~t~~: '>..~;i't~;£1>~c.:~~~t.~tt:~{:. i:;~'>.:~~~~~~'"~~~-~~~-::: ... ~~ .~",<"', .

II I '¥'fnsert':,·,1 . gelete~""~1

Figure 13 ThIS screen shows the program is building a B-trct:.

82

III The WBTree P'D!J1am I!EH:J

·t~;Jl~: ..:~~ fiei»_:.~ ~~:l. ;.~~.;·~~~~t<:~·'~·:a.~~~~~;.~ ~:_ ~ ~~..;~:.£.~,t~~ri'.f..~~..)l ~:~~L\ i!f)..' ... ~ ~·....~·;t

,II I ~')ns'eitT::1 f"'Deiitll- .'

Figure 14. Screen of a B*-tree while it is belllg buill

83

I=t lhe \VBllee ProgJam 1!!8 C
.J~..~. Q~.~ij~o . _0/"''''''

II I:';insert.

Figure 150 Screen of a B+-tree while It IS being built

84

Thesis:

"',("

c.....~--_...--;
~"-.:

VITA

Betty RLin

Candidate for the Degree of

Master of Science

AN OBJECT-ORIENTED GRAPHIC USER INTERFACE FOR
VISUALIZATION OF B-TREES' ANIMATOR

Major Field: Computer Science

Biographical:

Education: Graduated from Harbin #35 High School, Harbin, P. R. China;
received Bachelor of Science degree in Public Health from Harbin Medica]
University in July 1984. Completed the requirements for the Master of
Science degree with a major in Computer Science at Oklahoma State
University in May 1997.

Professional Experience: Employed as a newspaper reporter by Shanghai Public
Health Newspaper, Shanghai, P. R. China from 1984 to]987: attended an
English and Communication Skill Training Program at World Health
Organization (WHO) of United NaLions, Manila, Philippines from]987 to
1988; employed as a health education coordinator hy WHO - Shanghai
Collaborating Center for Health Education, Shanghai, P. R. China from
1988 to 1989.

