AN OBJECT-ORIENTED GRAPHIC USER INTERFACE

FOR VISUALIZATION OF B-TREES’ ANIMATOR

By

BETTY H. LIN
Bachelor of Science
Harbin Medical University
Harbin, P. R. China

1984

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1997

AN OBJECT-ORIENTED GRAPHIC USER INTERFACE

FOR VISUALIZATION OF B-TREES’ ANIMATOR

Thesis Approved:

) ol it

oy £ e

Jegpurn. €. fiPrme.

jﬁ(m’nm C. Collins

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. John P. Chandler for all his support, help, and
invaluable comments to keep my thesis research on course. My most heartfelt thanks go
to Dr. Jacques LaFrance. Without his guidance, creative ideas, and informative
suggestions, this ultimate step would have been impossible. My special thanks go to Dr.
George Hedrick for serving on my thesis committee as well as for his time, patience, and
constructive comments throughout the time I have been working on this project [would
also like to express my sincere thanks and gratitude to Dr. Nick Street for his time, help

and support to make my thesis defense on time.

[extend my sincere thanks to my husband, Huiyao Lin, for his love, understanding, and
support, and also to my parents, Zhenbing Hou and Shuhua Mao, my parents-in-law,
Kuanpo and Changtsaimei Lin, my sister and brother-in-law, Lee and Ray Harvick, for

their support, motivation, and continuous encouragement.

Finally, I would like to thank the Department of Computer Science at Oklahoma State

University for providing the facilities and resources for my study at the past two years

11

TABLE OF CONTENTS

L INTRODUCTION 1

T:-Y. OBIECTIVEOF THE THESIR: . vt cmimiaiait s st s s s e e s i nanssa s vasasice]
L2, THE ORGANIZATION OF THE THESIS .. s iviiim i o v i s e o s v s moy b b e i i s e 2

IL THE PROBLEM OF ACCESSING SECONDARY STORAGE 4

II1. B-TREES AND THEIR VARIANTS T R 8

2 P RO PER T TES O F BT REE e s o s o s e S T S S T A SR e
TIL 5. OTHER VARIANTS ... iciuitiieetiieiessistssiseecssees e see s snee e seesene s ceeae s toeensnnsseeneensonnies e snen s L2
JI1. 5. 1. CONCUPFERT B-IFEC........c..veiieveeieiieeeiiie ettt et]2
HL.5.. 2 Bi<tvee Witk fartiGleXDaNSION vyvvosess vevvonsrsisvsorsssomsssusonts sorssstsss i ssssss s somssessssasesssnsssss 12

IV EITERATURE REVIEW . s ne (i tisiistsnistbtasstimmeiinst srasassasassssssssrsnsstiisnnsssassnssfas ol

IV. 1. OBJIECT-ORIENTED PROGRAMMING (P,) ... iiiiisiiiiiiais i essensesssiisass i eisias ahas v i 13
D O] L T |-
TT7 0 20 ClASSES. ..ot e 14
P B TETTURIGE. . v voonsrsomansmsronsasssers st e s e e S A S A Y ST RN A A A PR 4
L e e OISO ISR o osenvesvissrsimmien s oo basn s W S oK B P B G L KNG e AR S SRR 14
TV L 5. BRCAPSUIGHON soisvsvisissisomusesoswesmmessi ivs bins vasuasa sinyinesaibis S R R A SR S L 15

IV. 2. WINDOWS 95 OVERVIEW ...ccuiiiinsiviniinionmmmnami i R N R 15
. i The:Graphical lser Interfoce [GUI oo i s i s b s e ol gt g 6
TV 2 2 The Mulltasking AdVanTage. ..o ssivmiismsmimmssmn renssbbaml nas TEAAm by Vi es Smsdmsies s 44 5208 17
. - Memory Management ... A7
1. . The Device-Independent Graphics Interface R — e 1N
i . Object-Oriented Programming..................cccccoveiieeeiiiiieeiiseiroe oo SRR SRR S S 19
1 o NSOGB LI IVER AR CHIEBCIINS: s vovvinisomiassoss i s S S o A R A S S 20
IV. 2. 7. The Window Procedutrecccc.c..... R S N R e 24

IV:3; BASIC TECHNOLOGY OF AMIMATION .vioiusussiis cismnsbissismeniamintintsuors it it s vmen ot sibavisssessasniierive 22

V. DESIGN AND IMPLEMENTATION ISSUES e R D R 24

Vol MADS ELEMENTS OETHE BROTECE. . ooomimesmsiesi e i s s s s e e S R v i 24

wdi A The File-Based Objects —Figr CIASScomommimii i St S e s aies st 24
B 1 s o R A T R A B S AR NV VAT 26
1. 3. The Multi-Way Nodes — Page Class...........................ccii i e 27
1. 4. The Biree Class............cccccoouenan.. T — 20
L. TRE BSIOFCIASS ccssnisesvr covminvsionssssnsms e nisitsvsmsssinss sy oms s s b S S S s S S S 29
!
!
0

—

LIS SCR SR N R O
= N T S

O T) 1 L O o s 30
i The TENCHSICTIASS - avavismui o G i v s e S P AR T B R R 30
2, OBIECT=ORIENTED APPROACHot it oo eee e e e e k|
3. ANIMATION APPROACH. ... oot e 32

iv

VI. PROGRAM TESTING 35

VI 1 OBIECTIVE coiisioniumoninius s bis s s s s s b 57 s S 5 S ey E i g (S Oy Ty S e e ANy S R 35
VL 20 TEST METHOD OLOGY - vvvciisiiaisis wretaitsn s mmmaissiinis R R A RN R cuspaRs 36
VL 2. 1. Part Ly Dasipn VerHiOamON s e v sy s v s diovanin sod b ims i pasamte v soritn 36

VL 2. 2./ Partill; Functional TeSting .« cemeiommmsaimemms o imsiroississisisim isodsassas sisesiven B 37

VII. SUMMARY AND SUGGESTED FUTURE WORK.......... 41
L B o e e e e L e s e e S s e e o 4]
VIIL. 2. FUTURE WORK ...ccooevrennn vaRiER e R D O i B 0 S s s M A S N O ke 43
BIBLIOGRAPHY 46
S T B B D e e e e 49
APPENDIX A= BL O S AR ot e e S R A S e e A T 50
APPERDIN Bi=USERESIMERIL oo ciinisviinmss mrisiis s simnmsiis foh i o s s ks srimacs s san bt bais Shdsrmmmna intssvan fnssn basas 52
APPENDIX C - CLASS OVERVIEWcotitieiitieeeisiseestsseesaeessesaeen srmneease eesnssstssesnnsssas ettt et e 54
APPENDIX D = MAKEFILE ..oiveeiiiiietieessesssnsssesssessssassssasssssasssassesessssnsasssnnsssnsensssnmnsasssnsssesssnssnssssessennsssnnnsnsnns 70
APPENDIX E - SAMPLE QUTPUT SCREENS ...cetieteteveeissassseseesaessssssssssssssssassssssnes sessassesasssessssesnses . 78

LIST OF FIGURES

Figure Page

1 PARel BIEATY TEOR. o cniimarsnsin o soss et o s e s S e e s e e A s e ey
Paged tree constructed from keys arriving in random input SEQUENCE.cceeeeerereceenens
A BATEE O OUARE R, e narsism ineiis i s R RS Em dasns e ranammmsmy nsase nme s sy R SRRV SATH S

0

EIFPINAL IFBE oo st s b s saR S AR

2.

3.

4. s s

5. Two-way split: After the insertion of the Key B.cccocoeciiiiiieinicineee e e
6. A two-to-three split: After the insertion of the Key B........cccccveiiiiiininiiisnececeiecnsaessonas
7. A B#-treg:with separaic index and Key Partsi....msmmssmssssamsarsrassusasisasssssasrsonemasseons
8. Layout of an'Page node of Order 4 ... cunimvninmnsismmassis it
9. Initia] SCreen OFf This PROBIAKDL. oswssassssesasssioemsissassvsedssnsssninsinssiaassdasuismesmiamnsusis
10, File open RalOB DOinseoncssnterresrmst mmreasat isrts o Rasmn e nas 0 e S e s B A5
DL DRI USRI I PIORNETS s micsomsn s onds s s s 9 5o R R R A8 S F WS R A S SR SRS
12, HELP SCIEEIL. ... vtetceieeeeieet ettt st e et e e sttt e et e e ess e e sbae e eembeaeeseanaanmnae sresenseaaessanes

13.-Scircen of 4 B-tree wihitle #:35 being blilt.......cvunvnmmnnnmasinmnsssasisinisi

14. Screen of a B*-tree while 1t 1s being built.coovviiiiiiiiiii e

15. Scieen of a B"-trée while At 4 BEINE BIIE: v wniimisssmismsrsssssesimstsyramssssscoisies

vi

10
11
11
27
78
79
80
81

.. 82

84

I. INTRODUCTION

B-trees were invented by Bayer and McCreight in 1972 [Bayer72]. A B-tree is a data
structure that maintains an ordered set of data and allows efficient operations to find.
delete, insert, and browse the data. There are widely uses of B-trees in a database system
as pointed out by D. Comer [Comer79] : “While no single scheme can be optimum for all
applications, the technique of organizing a file and its index called the B-tree is. de facto.

the standard organization for indexes in a database system.”

I. 1. Objective of the Thesis

This thesis project uses Microsoft Visual C++ to implement data structure animation. In
this thesis project, a class hierarchy for members of the B-tree tamily is built. These
members are B-tree, B*-tree and B"-tree. The trees and the dynamic movements as they

are being built or destroyed are shown graphically.

The goal of this thesis is:

. To use object-oriented programming to make effective use of classes organized
into a hierarchical structure based on the concept of inheritance.

. To provide a GUI to enable the user to observe a graphical representation of the

B-tree family’s data structures as they are being built or destroyed.

Since this project is to present a visualization of the trees, Microsoft Windows 95 is

chosen as the environment to develop the program.

I. 2. The organization of the thesis

The thesis provides the related topics and concepts of the research. such as The problem
of accessing secondary storage, A quick review of B-trees and their variants, Object-
oriented programming concepts, Windows 95 overview, and Basic technology of
animation, etc. The thesis also gives the detail discussion of program design and

implementation, and program testing and evaluation.

Associated with a large, randomly accessed file in a computer system is an index. The
fundamental problem with keeping an index on secondary storage is that accessing
secondary storage is slow. Chapter II gives the brief discussion about the problem of

accessing secondary storage and the solutions which intend to solve the problem.

B-trees and B-tree variants have been used for maintaining large index files since their
first presentation by Bayer and McCreight in 1972 [Bayer72]. The versatility of B-trees is
the reason they are applications in database programs from mainframe packages (such as
[BM’s VSAM) to PC products (such as dBase and its competitors. or the database facility
in OS/2 Extended Edition). There have been a number of variations in both data

structures and algorithms ever since the invention of B-trees. They efficiently support the

two types of access to data elements:

. Random access to an arbitrary data record

- Sequential processing of data records in key sequence.

Chapter III presents the literature review of several variations of the original idea of B-

trees. A good survey is given by Douglas Comer [Comer79].

Object-oriented programming i1s a new way of approaching the job of progrumming. and
is based on the concept of an object. Object-oriented programming is a technique that
facilitates code reuse. Inheritance. polymorphism, and encapsulation are examples of it
important features, which are defined in Chapter IV. Windows 95 is a very large.
complex programming environment. It is part of the next generation of operating systems
intended to operate PCs well into the next century. A brief picture of Windows 95 is also
presented in Chapter IV. In the same Chapter, the basic technology of animation is

discussed briefly.

For the rest of the thesis, the design and implementation issues are discussed in detail in
Chapter V. Program testing is included in Chapter VI and Chapter VII contains the

summary and some possible areas of future work.

II. THE PROBLEM OF ACCESSING SECONDARY STORAGE

The secondary storage facilities available on large computer systems allow users lo store.
update, and recall data from large collections of information called file. A computer must
retrieve an item and place it in main memory before it can be processed. In order to make
good use of the computer resources, one must organize files intelligently. making the

retrieval process efficient [Comer79].

Associated with a large, randomly accessed file in a computer system is an index that
speeds retrieval by directing the searcher to the small part of the file containing the

desired item.

The fundamental problem with keeping an index on secondary storage. such as disk or
tape, is that accessing secondary storage 1s slow because of its physical characteristics. If
searching on a tape, the elements can only be accessed sequentially. And if it 1s on a disk.
the delay is still required to spin the disk and move the disk head. Binary scarching
requires too many seeks. Searching for a key on a disk often involves seeking on different
disk tracks. Since seeks are expensive. a search that must look 1n more than three or four
locations before finding the key often requires more time than is desirable. For a
completely balanced tree, the worst-case search to find a key. given N possible keys.
looks at log> (N + 1) keys. So if we are using a binary search, an average of about 9.5
seeks is required to find a key in an index of 1.000 items. Although there is a potential

solution to the searching problem, that is by dividing a binary tree into pages and then

storing each page in a block of contiguous locations on disk. In that way. we should be

able to reduce the number of seeks associated with any search. Figure | illustrates such a

paged tree.

Y)

N\

v \;. /N
?\92{ 9)\ b m A {(? i (\ 9}\@

(AW AT A AW AW A WA AW AW ATAY ESENARON ININEINE N TRININTN NN NPA

M
/

]

Figure |. Paged binary tree.

In this trec we are able to locate any one of the 63 nodes in the tree with no more than two
disk accesses. The number of seeks required for the paged versions of a completely full.
balanced tree is log . (N + 1), where N 1s the number of keys, & is the number of keys
held in a single page. It is the logarithmic effect of the page size that makes the impact of

paging so dramatic:

log 2 (134,217,727 + 1) = 27 seeks

log i1 +1(134,217.727 + 1) = 3 seeks.

From the formulas showing above. we can see that breaking a tree into pages is a strategy

that is well suited to the physical characteristics of secondary storage devices such as

disk. The problem is how to build the tree once we decide to implement a paged tree. If
we have the entire set of keys in hand before the tree is built. the solution is to sort the list
of keys then build the tree from this sorted list. If we plan to start building the tree from
the root. we know where to begin and are assured that this beginning point will divide the
set of keys in a balanced manner. There will be a potential problem if we are receiving
keys in random order and inserting them as soon as we receive them. When we start from
the root, the initial keys must go into the root. For example. suppose we receive the

following sequence of single-letter keys to build a paged tree:

CSDTAMPIBWNGURKEHOLIJYQZFXV

Suppose we will build a paged binary tree that contains a maximum of three keys per
page. As we insert the keys, we rotate them within a page as necessary to keep cach page
as balanced as possible. The resulting tree is illustrated in Figure 2. Since the keys are
received in random order and inserted as soon as they arrive. so the initial keys. C. S and
D will go into the root. But at least two of these keys. C and D. are not keys that we want
in the root page. They are adjacent in sequence and tend toward the beginning of the total
set of keys. Consequently, they force the tree out of balance. This is the problem caused

by the top-down construction of paged trees.

C ~
_Z - \H
il M U
(IE \\B /I::// \\/:P\ T/ \"\”\
g K N R 7, Y
AN L [/
E H L o]l X Z

Figure 2. Paged tree constructed from keys armiving in random input sequence.

Bayer and McCreight's B-tree provides a solution directed precisely toward this problem.
A B-tree 1s built upward from the bottom (leaves) instead of downward from the top
(root). Bayer and McCreight recognized that the decision to work down from the root
was. of itself, the problem. Rather than finding ways to undo a bad situation. they decided
to avoid the difficulty altogether. With B-trees, we allow the root to emerge. rather than

set it up and then find ways to change it [Folk92].

I11. B-TREES AND THEIR VARIANTS

I11. 1. B-trees

B-trees were discovered by Bayer and McCreight in 1972 [Bayer72] and are a natural

evolution of earlier database designs.

A B-tree is a shallow tree structure that allows to store and retrieve a set of data records
based on the keys. The shallow structure minimizes the number of disk seek required to

access data records.

Unlike an arbitrary binary search tree. a B-tree is a balanced tree structure, Every leaf is at
the same distance from the root. In a B-tree. one tree node can be made to correspond to a
page. Because binary nodes are usually not large enough to take up one page. a B-tree
node stores multiple keys and branches. A beneficial side effect of such multi-way nodes
is that the height of the tree can be smaller than that of a binary tree. This property. of

course, will lower the cost of find. insert. and delete operations.

I11. 2. Properties of B-trees

B-trees are classified by their order. which refers to the maximum number of branches in
a node. For example, in a B-tree of order 4. each node can have up to 4 branches.

Corresponding to these branches are 3 keys that help determine which branch to take

during a search. In general. a B-tree of order m has nodes with up to m branches and n-/
keys. The order specifies the maximum number of branches. A node may have fewer
branches than the maximum [Flamig93]. Figure 3 shows a B-tree of order 4. with all

nodes full.

/D
'/

z
E|G

AlB|C| |E

Figure 3. A B-tree of order 4.

Not all multi-way trees are B-trees. A multi-way tree is considered to be a B-tree only it nt
is balanced. In the classical definition of a B-tree of order m. the balance is achieved by
maintaining the following properties:
e Except for the root node, all nodes must have at least [m/2]- Tkeys and
[m/2 | branches. This means all nodes except the root are at least half full.
o All of the leaves of the tree are always on the same level.

e The root node has at least two children (unless it is a leaf).

II1. 3. B*-trees

Knuth [Knuth73] defines a B-tree using a redistribution overflow technique to be a B*-
tree. The insertion of a B*-tree employs a local redistribution scheme to delay splitting
until two sibling nodes are full. Then the two nodes are divided into three, each 2/3 full
(see Figure 6 for such a split) instead of just 1/2 full (see Figure 5). This scheme
guarantees that storage utilization is at least 66%. while requiring only moderate
adjustment of the maintenance algorithms. Note that increasing storage utihzation has the

side effect of speeding up the search since the height of the resulting tree is smaller.

Figure 4. Original tree.

=
S
\\\ \“”"‘_H__

AlB|C FHIK PIR|S|T |V [X

Figure 5. Two-way split: After the insertion of the key B.

Figure 6. A two-to-three split: After the insertion of the key B.

II1. 4. B -Trees

In a B"-tree. all keys reside in the leaves. The upper levels. which are organized as a B-
tree. consist only of an index, a roadmap to enable rapid location of the index and key

parts [Comer79]. Figure 7 shows the logical separation of the index and key parts.

/\\ - index 3 B-tres

random access

sequential access —)l ——r| ['——1‘ = e _)1 - _"|:I \%‘ keys the sequence set

Figure 7. A B+-tree with separate index and key parts. Operattons by key™ begin at the root
as in a B-tree; sequential processing begins at the lefumost leal.

Index nodes and leaf nodes may have different formats or even different sizes. In

particular, leaf nodes usually are linked together left-to-right. The linked list of leaves is

referred to as the sequence set. Sequence set links allow easy sequential processing

[Comer79].

A beneficial side effect of having an independent index and sequence set is that it 1s well

suited to applications that require both random and sequential processing.

I11. 5. Other variants

II1. 5. 1. Concurrent B-tree

Concurrent B-tree algorithms have been proposed for high-performance on-line
transaction applications that allow concurrent accesses to B-trees. By concurrent accesses.
we mean that many inserts/deletes/searches may occur during the same time interval.
Many locking schemes are used in such cases, but all require exclusive locks on all nodes

that are changed.

IIL. 5. 2. B"-tree with partial expansion

A B™-tree with partial expansion is based on the idea of gradually increasing the size of an
overflowing bucket, instead of immediately splitting it. When the bucket reaches some
maximum size, it is split in the normal way. The result showed by Baeza-Yates and
Larson [Baeza-Yates89] research is that the storage utilization of B*-trees with partial

expansion is higher than standard B*-trees.

IV. LITERATURE REVIEW

IV. 1. Object-Oriented Programming (OOP.)

Object-oriented programming is a method of implementation in which programs are
organized as cooperative collections of objects. each of which represents an instance of
some class, and whose classes are all members of a hierarchy of classes united via
inheritance relationships [Booch94]. It is by the interaction of objects that computation

proceeds [Budd9l].

IV. 1.1 Objects

An object is an encapsulation of state (data values) and behavior (operations). An object
1s defined via its class, which determines everything about an object. Objects are
individual instances of a class. All instances of the same class will behave in a similar
fashion in response to a similar request. Terry Montlick gives the following definition for
an object: “An object is a “black box™ which receives and sends messages”[Montlick95].
As the user of an object, one should never need to peek inside the box. All
communication to it is done via messages. An object will exhibit its behavior by invoking
a method in response to a message. The interpretation of the message is decided by the

object, and may differ from one class of objects to another.

IV. 1. 2. Classes

A class 1s a user-defined type which is just a collection of variables. often of different
types. combined with a set of related functions. A class declaration specifies the
representation of objects of the class and the set of operations that can be applied to such

objects.

IV. 1. 3. Inheritance

Objects and classes extend the concept of abstract data types by adding the notion of
inheritance. Classes can be organized into a hierarchical inheritance tree. Data and
behavior associated with classes higher in the tree can also be accessed and used by
classes lower in the tree. Such classes are said to inherit their behavior from the parent

classes.

IV. 1. 4. Polymorphism

Another feature of Object-oriented programming is the ability of the objects to behave in
different ways according to the message passed. and the ability to design operators to
carry out object manipulation. This feature is called paolvmorphism and 1t can be either

overriding or overloading.

IV. 1. 5. Encapsulation

Within an object. some of the code, functions. and/or data may be private to the object
and inaccessible directly by anything outside the object. In this way. an object provides a
significant level of protection against some other, unrelated part of the program
accidentally modifying or incorrectly using the private parts of the object. The linkage of

code and data in this way is often referred to as encapsulation [Schildt90].

IV. 2. Windows 95 Overview

Windows 95 was designed specifically to overcome several of the limitations imposed by
its earlier incarnation: Windows 3.1 [Schildt95]. The most important characteristic of
Windows 95 is that it 1s a 32-bit operating system. Unlike Windows 3.1. DOS. and other
8086-family operating systems. which use segmented memory. Windows 95 treats
memory as though it were linear. In this new “Windows™ world. each application has as

much memory as it could possibly need.

Windows 95 was designed to be compatible with the large base of existing PC
applications. Toward this end, Windows 95 can run four types of programs: those written
for DOS, those written for Windows 3.1, those written for Windows NT, and those
written specifically for Windows 95. Windows 95 automatically creates the right

environment for the type of program people run. For example, when the user executes a

DOS program. Windows 95 automatically creates a windowed command prompt in

which the program runs.

IV. 2. 1. The Graphical User Interface (GUI)

Windows is a graphical interface. A graphical interface is not only more attractive in

appearance, but it can also impart a high level of information to the user.

Windows 95 is graphics-oriented, which means that it provides a Graphical User Interface
(GUI). All graphical user interfaces make use of graphics on a bitmapped video display.
Graphics provides better utilization of screen real estate. a visually rich environment for
conveying information. and the possibility of a WYSIWYG (what you see is what you
get) video display of graphics and formatted text prepared for a printed document

[Petzold96].

In a graphical user interface, the video display shows various graphical objects in the
form of icons and input devices such as buttons and scroll bars. Using the keyboard or
mouse, the user can manipulate these objects directly on the screen. Graphics objects can

be dragged, buttons can be pushed, and scroll bars can be scrolled.

With GUISs, the user can directly interact with the objects on the display instead of the

one-way cycle of information from the keyboard to the program to the video display.

IV. 2. 2. The Multitasking Advantage

Under Windows, every program in effect becomes a RAM-resident popup. Several
Windows programs can be displayed and running at the same time. Each program
occupies a rectangular window on the screen. The user can move the windows around on
the screen. change their size, switch among different programs, and transfer data from one

program to another.

Earlier versions of Windows used a system of multitasking called “nonpreemptive™. This
meant that Windows did not use the system timer to allocate processing time among the
various programs running under the system. The programs themselves had to give up
control voluntarily so that other programs could run. Under Windows 95. multitasking is
preemptive, and programs themselves can split into multiple threads of execution that

seem (o run concurrently.

IV. 2. 3. Memory Management

An operating system cannot implement multitasking without doing something about
memory management. As new programs are started up and old ones terminate. memory
can become fragmented. The system must be able to consolidate free memory space. This

requires the system to move blocks of code and data in memory.

B

I

Even Windows 1, running on an 8088 microprocessor. was able to perform this type of '
memory management. Programs running under Windows can overcommit memory: a

program can contain more code than can fit into memory at any one time. Windows can

|

discard code from memory and later reload the code from the program’s .EXE file. A user

can run several copies, called “instances,” of a program; all these instances share the same
code in memory. Programs running in Windows can share routines located in other files
called “dynamic link libraries.” Windows includes a mechanism to link the program with
the routines in the dynamic link libraries at run time. Windows itself is basically a set of

dynamic link libraries.

Thus, even in Windows 1, the 640-kilobyte (KB) memory limit of the PC’s architecture
was effectively stretched without requiring any additional memory. Windows 2 gave the
Windows applications access to expanded memory, and Windows 3 ran in protected
mode to give Windows applications access to up to 16 MB of extended memory. And
now Windows 95 blows these old restrictions away by being a full-fledged 32-bnt

operating system with a flat memory space [Petzold96].

IV. 2. 4. The Device-Independent Graphics Interface

Windows programs can make full use of graphics and formatted text on both the video
display and the printer. Programs written for Windows do not directly access the
hardware of graphics display devices such as the screen and printer. Instead, Windows

includes a graphics programming language. called the Graphics Device Interface. or GDI.

that makes it easy to display graphics and formatted text. Windows virtualizes display
hardware. A program written for Windows will run with any video board or any printer
for which a Windows device driver is available. The program does not need to determine

what type of device is attached to the system.

Putting a device-independent graphics interface on the IBM PC was not an easy job for
the developers of Windows. The PC design was based on the principle of open
architecture. Third-party hardware manufacturers were encouraged to develop peripherals
for the PC. Although several standards have emerged. conventional MS-DOS programs
for the PC must individually support many different hardware configurations. For
example, it is fairly commen for an MS-DOS word-processing program to be sold with
one or two disks of small files, each one supporting a particular printer. Windows 95
programs do not require these drivers because their support is part of Windows

[Petzold96].

IV. 2. 5. Object-Oriented Programming

Windows are rectangular areas on the screen. A window receives user input from the
keyboard or the mouse and displays graphical output on its surface. Windows
programming is a type of object-oriented programming (OOP). In object-oriented
programming, an “‘object” is a combinations of code and data. A window is an object.

The code is the window procedure. The data is information retained by the window

T

e

procedure and information retained by Windows for each window and window class that

exists in the system.

An application window usually contains the program’s title bar. menu, sizing border. and

perhaps some scroll bars. Dialog boxes are additional windows. Moreover, the surface of

a dialog box always contains several additional windows called “child windows.” These

child windows take the form of push buttons, radio buttons, check boxes. text entry

fields, list boxes, and scroll bars.
The user sees these windows as objects on the screen and interacts directly with these

objects by pushing a button or scrolling a scroll bar. Interestingly enough. the
programmer’s perspective is analogous to the user’s perspective. The window receives

this user input in the form of “messages™ to the window. A window also uses messages to
communicate with other windows.

IV. 2. 6. Message-Driven Architecture
In Windows, when a user resizes a window. Windows sends a message to the program

indicating the new window size. The program can then adjust the contents of its window

to reflect the new size. So “Windows sends a message to the program™ means Windows

calls a function within the program. The parameters to this function describe the

particular message. This function Jocated in the Windows program is known as the

“window procedure.” A window procedure processes messages to the window. Very
20
R —————— == aaanpeesssal| |

often these messages inform a window of user input from the keyboard or the mouse.
This is how a push-button window knows that it’s being “pressed,” for example. Other
messages tell a window when it is being resized or when the surface of the window needs

to be redrawn.

When a Windows program begins execution, Windows creates a “message queue” for the
program. This message queue stores messages to all the various windows a program
might create. The program includes a short chunk of code called the “message loop™ to
retrieve these messages from the queue and dispatch them to the appropriate window
procedure. Other messages are sent directly to the window procedure without being

placed in the message queue.

IV. 2. 7. The Window Procedure

Programs written in the traditional way call the operating system. However. Windows 95
generally works in the opposite way — the operating system making calls to the program.

This is fundamental to Windows 95’s object-oriented architecture.

Every window that a program creates has an associated window procedure. This window
procedure is a function that could be either in the program itself or in a dynamic link
library. Windows sends a message to a window by calling the window procedure. The
window procedure does some processing based on the message and then returns control

to Windows.

More precisely, a window is always created based on a “window class.” The window
class identifies the window procedure that processes messages to the window. The use of
a window class allows multiple windows to be based on the same window class and
hence use the same window procedure. For example, all buttons in all Windows programs
are based on the same window class. This window class is associated with a window
procedure (located in a Windows dynamic link library) that processes messages to all the

button windows.

IV. 3. Basic Technology of Animation

Animation is effective way to communicate information. For example, it can illustrate the
operation of a particular tool or reflect a particular state. It also can be used to include an
element of fun in user’s interface. One can use animation effects for objects within a

window and interface elements, such as icons. buttons, and pointers.

Effective animation involves many of the same design considerations as other graphics
elements, particularly with respect to color and sound. Fluid animation requires
presenting images at 16 (or more) frames per second.

There are two basic types of animation on a computer: cast-based animation. which
makes use of sprites, ard frame-based animation, which operates more like a movie.
consisting of a series of fixed images played in sequence. Cast-based animation is more
interesting as a programming topic because it calls for dealing with concepts such as

transparency and may involve interaction with the user. You can convert a cast-based

animation into a frame-based animation by shooting each step in each scene and

connecting the snapshots as a sequence of frames in a single file.

In this project, the image objects that we deal with are many identical rectangular boxes
with different character strings printing inside the boxes. Whenever an animating
operation occurs, the program moves only one node or one rectangular each time. It is not
necessary to repaint the whole screen since it is very time-consuming. In order to make
image displayed more effectively. only the moving node and few related nodes need to be
repainted. Therefore, cast-based animation is selected to demonstrate the motion of

moving B-tree nodes during insertion or deletion operations.

I~
]

V. DESIGN AND IMPLEMENTATION ISSUES

The main focus of this thesis is the implementation of data structure animation. The
project, which is written in Microsoft Visual C++, graphically shows the trees and the
motion of a page’s splitting and concatenating due to insertion and deletion operations. In
this thesis project. a class hierarchy for members of the B-tree family is built by using the
object-oriented approach. These members are B-tree, B*-tree and B™-tree. The project
provides a GUI to enable the user to observe a graphical representation of the B-tree
family’s data structures as they are being built or destroyed. Since this project is 1o
present a visualization of the trees, Microsoft Windows 95 is chosen as the environment

to develop the program.

V. 1. Main Elements of the Project

V. 1. 1. The File-Based Objects — Fmgr Class

Since B-trees and B-tree variants have been used for maintaining large files. this project
is designed to implement data structures that reside in files. At the heart of the file-based
object design in this project is the Fmgr class that manages objects stored in files. 1t has
two functions, Alloc() and Free(). which are analogous to the C functions malloc() and
free(). In addition, the Fmgr class has Fetch() and Store() functions that read and write

objects. The following example creates an Fiugr file and stores a Part object in it:

#hnclude <iostream.h>
#include “fmgr.h”

struct Part (

int 1d;

float price:
Part(int 1=0, f(loat p=0){id=1. price =p:}

¥

maint)

{

Although the Fmgr class is fairly sophisticated, it is a low-level design. The evidence of
the low-level nature of Fmgr can be found in functions like Alloc(). Fetch(). Store(). and
Free(). These functions must be told the size of the objects being used. The detail

information about the other member functions of the Fmgr class can be found in

Part part(17. 42.0). // Memory buffer of part to be stored.
FmgrPu f(new Fmgr); // Should always create dynamically.
f-> Create("test.dat”): // Create and open file.

long addr = f->Alloc(sizeof(Part)); // Allocale room for part.
f->Store(&part. sizeof(Part). addr):

/I Close and reopen file for testing.
[->Open(test.dat™), # Open() closes firsL.

// See if we can gel the part back.
f->Fetch(&part. sizeof(Part). addr):

coul << “Part: < << part.id <<, " << part.price << ">\n":

/I Now delete the part.
f->Free(sizeof(Part), addr):

return O: // File automatically closed by destructor.

Appendix B.

V. 1. 2. Entry class

The Entry class contains a pair of key and RRN, Relative Record Number. along with its
associated data which is ignored in this project implementation. Most functions for the
Entry class, which are described in Appendix B, are straightforward. Only two of the

functions, Compare() and Fullcompare(), need some explanation:

int Compare(const Entry &a, const Entry &b)

{
)

return stremp(a.key. b.key):

int FullCompare(const Entry &a. const Enuy &b)
{

int rv = stremp(akey, b.key):

if (rv > 0) return I:

if (rv < 0) rewrn -1:

if (a.data > b.data) rewrn I;

if (a.data < b.data) return -1:

return O:

}

The Compare() functions i1s used when searching for data based on a key. The idea here s
that once an entry is found, the data field can be used to retrieve the data for the entry.
However, when deleting an entry, the data field should already be known, so the
FullCompare() function. which treats the data field as a secondary key. is used to find the
specific entry to delete. Thus. duplicate keys are supported, but each key and data pair

must be unique.

V. 1. 3. The Multi-Way Nodes — Page Class

The main feature of B-trees is the multi-way nodes that make up the trees. Multi-way
nodes are essentially generalizations of binary nodes. Since there is always one more
branch than keys in a multi-way node. the Page class is designed to have a left branch. a
pointer to left most child, that leads to all nodes with keys smaller than the smallest key in
the given node. The other right branches will be paired with a key. A key. along with 1ts

associated data and right branch field, is defined in the Entrv class.

An array of entries is packaged into a multi-way node which is defined as Page class.

In this class, ORDER is the maximum number of branches possible for the node. Since
there is one less key than branch. ORDER - 1 entries are reserved. The c¢nr field indicates
how may entries are actually in use. The extra branch. l¢ft, 1s placed immediately before

the entries. as illustrated in Figure 8.

Entry: 0 1

(38

Branch: -1

Figure 8. Layout of an Page node ol order 4

(The cnt and data [ields are not shown)

This arrangement allows us to index the branches from -1 to ORDER - 2, where the -1st
branch represents the left branch, the Oth branch is the right branch of the first entry, and

S0 on.

27

The Page class has functions to support searching for keys in a node. and for inserting
entries into and deleting entries from a node. The functions of the Page class are also
fairly straightforward. and they are described in Appendix B. Only the Search() function
and FullSearch() function need to give some explanation. The Search() function
sequentially scans the entries of the node, looking for a match. The FullSearch() function
can be defined by simply replacing the call to Compare() with a call to FullCompare().

The code for these two functions are as following:

int Page::Search(const Entry &e. U &posn)

posn=cnt- |:

while (posn >= 0)
{
int rv = Compare(e. entry|posn]),
if(rv > 0) return I
i {rv == 0) return O:
posn--;
|

return -1:

int Page::FullSearch{const Enmry &e. int &posn)
/I like the Search(). except we use FullCompare().

[

posn=cnt- |:

while (posn >= 0)
{
int rv = FullCompare(e, entry[posn]).
if (rv > 0) return |
if (rv == 0) return 0
posn--;
I

return -1

V. 1. 4. The Btree Class

In this project. the Btree class is the base class of the Bstar class and the Bplus class.
Since the Btree class is file based. it has numerous file-management functions. such as
Connect(), Disconnect(), Create(). Open(), Close(). and Flush(), among others. These
functions allow multiple B-trees to be stored in a single file. Each B-tree has a header.
defined in BrreeHeader which is a type of szruct. The BrreeHeader points to the root node
of the tree. and stores some other pertinent data used mostly for testing. The headers are
meant to be stored in the static data area of the file. The information for other member

functions of this class is given in Appendix B.

V. 1. 5. The Bstar Class

The Bstar class is derived from the Brree class. This class inherits all the functions of the
Btree class except Insert() function. The insertion into a B*-tree employs a local
redistribution scheme to delay splitting until two sibling nodes are full. then the two
nodes are divided into three. each 2/3 full. So the Insert() function here is overriding the
Insert() function in the base class. The other two functions. FindParent() and
SetParameters(), in the Bstar class are involved in redistribution of the tree structure. The

Bstar class and its associated data structures are used 1o set up a B -tree.

V. 1. 6. The Bplus Class

The Bplus class is derived from the Brree class too. Because of the nature of a B™-tree. 1t
inherits all the functions of the Brree class except the functions such as Insert(). Search().
FullSearch(), and Remove(). These functions overrides the member functions in the base
class. The Bplus class also overloads the Delete() function of the base class. The Bplus

class and its associated data structures are used to set up a B™-tree.

V. 1.7. The WNode Class

The primary purpose of creating this class is to link the B-tree data structure and the
Windows 95 graphics data structure together. The Wnode class serves as the carner that
carries the data generated by the B-tree classes and gives the image output to the GUI
window. Another purpose of this class is to provide animation mechanism to show the
detail transition of B-trees’ insertion and deletion dynamically. The image objects.
RBoxes and KBoxes, of this class are declared in RECT structure which is defined in
WINDOWS H. These two data members provide coordinate information to Windows 95
for drawing the object image boundary. The other two important data members are
chRRN, which is RRN of the child node. and Keys which are keys in the node. Both data
members receive data from B-tree modules. This class provides Inite WNode() to
initialize all the data members. The functions of MoveLeft(), MoveRight(), MoveUp().
and MoveDown() provide the basic animation mechanism and they are called by

ShowNode() which is the function that animates image objects of this class. The

30

SetKey(), SetchRRN(), and Updated() are the methods to port B-trees” data into the
Wnode class. The Wnode class also furnishs many output methods for program to achieve
animation. They are Print(). EraseNode(), ShowNode(). PrintNode(). MoveParentSh().
and MoveTree(). There are many supporting functions that provide methods to
manipulate private data members. such as GetChild(), DelChild(). FindChildren().
MoveChildren(), InsChild(). SetParent(), GetParent(), Set Position(), GetPosition().
AddSibling(), GetSibling(). CopySiblings(), SetLeftSb().GetLeftSb(), and UpdateLSb().

The detail information on each class and its member functions is given in Appendix B.

V. 2. Object-Oriented Approach

Inheritance, encapsulation. and polymorphism are the important features of object-
oriented programming. The encapsulation is also useful in conventional languages, such
as using structures inside structures. But it is more important in object-oriented languages
because of the natures of objects themselves. It is practical to built new objects from
different simpler objects with different behaviors. The unique behavior of each new

object will be partially based on the result of its components’ behaviors.

As mentioned before, B*-tree and B*-tree are the variants of the B-tree. A B-tree is a B*-
tree if each its node is at least 2/3 full instead of just 1/2 full. This results from the B *-
tree insertion operation. B*-tree insertion employs a local redistribution scheme to delay
splitting until two sibling nodes are full. A B*-tree is derived from B-tree. In a B*-tree,

the upper levels are organized as a B-tree which consists of an index. All the keys reside

31

LI LT

in the leaves. In other words. a B*-tree maintains an independent index and sequence set.
According to these characteristics of B-trees data structure. during the program design
and implementation, we designed a class called Bitree as a base class. And the other two

classes, Bstar and Bplus. are derived from the Btree class. They inherit all the functions of

the Btree class except the Insert(), Delete(), Search(). FullSearch(), and Remove()
functions. These functions either override or overload the functions of the base class with

different behaviors of the objects.

V. 3. Animation Approach

In this project, we are basically dealing with the tree nodes” movement to achieve the
animation. There are only two events. split and merge. in B-trees™ operations that will
cause the tree nodes to rearrange and move to new locations. The analysis of tree nodes’
behavior during the splitting and merging is the key step to see if the animation Is
achieved successfully. According to the behavior analysis, there are four different
categories of the tree nodes in splitting and merging which are shown as following:

e [eaf nodes:

Split: The leaf nodes that have the same parent node are arranged right under the
parent node one by one with a fixed gap along the y - axis. In the other words.
they have the same x coordinate value and it means that the movement of the leaf
nodes will be only along the y - axis during leaf nodes splitting. During the
splitting. the new node needs to be moved down along the y - axis with a fixed

distance which is the node height plus the gap. Before the new node is moved, its

right sibling nodes will be moved down first in the same distance. This is
implemented by the member function, PrintNode(), of Wnode class.

Merge: This is done by reversing the procedure of the split operation.

Other movement: There are two situations that make leaf nodes move. Whenever the
leaf nodes’ parent is moved, leaf nodes have to be moved as well. In this case, we
use the parent’s new x and y coordinate values as references to determine the
movement on both x and y axis direction. In the program design, we always move
the node along the x direction first and then the y direction. This is implemented
by the member function, MoveChildren(), of Wnode class.

e Leaf parent nodes (the nodes’ children are leave):

Split: This kind of nodes will only move along the x - axis and they will affect all the
nodes on their right hand side. During the splitting, the new node will be moved to
the right in the distance of node length plus gap. Before the new node is moved,
all its right sibling tree, its parents’ right sibling tree, its grand parent’s right
sibling tree, its grand grand parent’s right sibling tree, and so on will be moved
first to the right in the same distance. These are done by the member functions,
MoveParentSb() and MoveTree(), of Wnode class. After all the non-leaf nodes are
moved, the MoveChildren() of Wnode class is called to move all the leaf nodes,
whose parent nodes have been moved during this rearrangement, to the proper
locations.

Merge: This is done by reversing the procedure of the split operation.

33

e Normal nodes (the nodes’ children are non-leaf nodes):

Split: This kind of nodes also only moves along the x - axis and they do not affect any
other nodes during the movement. Since all the movements are done when the leaf
parent node 1s being split. When the splitting propagates to the normal node, all
the nodes are in the right positions and the only one that is not in the place is the
new node. This is simply implemented by the member function, PrintNode(), of
Wnode class.

Merge: This is simply done by reversing the procedure of the split operation.

¢ Root node:

Promotion: When the root node is split. a new root is created and it is moved up along
the y - axis in the distance of node height plus gap with the same x coordinate
value as the old root node. This operation will not affect any other nodes.

Demotion: This is done by reversing the procedure of the promotion operation

Split: It is the same as normal node’s split.

34

CANJANA O w2, a 4% LILHAY iAWkl A 3

V1. PROGRAM TESTING

VI. 1. Objective

There are five phases in the software life cycle. The first phase is the analysis which 1s 10
develop specifications describing the project and its requirements. The second phase 1s
software design which is to construct a relatively detailed design plan according to the
specifications. The third phase is coding that includes the writing of programs and the
insertion of explanatory remarks into programs. The fourth phase is testing to ensure that
programs are functional working well. The fifth phase is program maintenance that 1s to
continue implementing the features that users request later or fixing problems. The
purpose of this section is to map out the test plan and its strategy of the fourth phase,
testing and design verification. The strategy can be divided into two parts, design

verification and functional testing.

e Design Verification Objective
The objective of design verification is 1o ensure that this program is implemented

according to the specification that is defined in the phase II -- top_down design.

e Functional Testing Objective
The objective of functional testing is to ensure that all the features of this software are

working as intended.

‘o
Lh

S AU FIVASCE RIA SR A A LJLANAY

AuiWhoi A 3

VI. 2. Test Methodology

The test methodology for this software has two parts: part I relates to the design
verification that is to go through each module and each class which are defined in the
design phase; and part II is primarily concerned with functionality of each program

feature and ease of use of the user interface.

VI. 2. 1. Part 1 : Design Verification

e Program Modules Verification
In this stage, each program module is revisited and the job is to remove any unused
variables. functions, and statements as well as add more comments to wherever 18
needed. This ensures that the module does not contain redundant codes and variables

and also improves the readability of the program.

e C(Classes Verification
This stage reviews the relationship among classes along with their inheritance

hierarchy. The intention is to confirm the design with original definition.

36

% 3

iR

S

ALk EA: wil

ANSANAL A W

VI. 2. 2. Part II : Functional Testing

GUI User Interface Testing

(So]

File Menu

The file menu provides an interface for users to specify a file name to open the file
and contains the data generated by the program. This test verifies if the file open
dialog box is popping up when the user click the menu item “File”. The test also

checks if there any unusual data appears in the dialog box.

. Option Menu

The option menu gives users a list of three choices to specify a type of B-tree
variant. The testing of option menu includes menu selection and image output
verification. When the user selects one of three tree types. a check mark (V) should
appear in its left hand side. This can be confirmed visually by popping up the
option menu again. The image output generated by the selected tree can be
inspected by checking its splitting position for the choice of B-tree or B -tree to sec
if it splits in the correct position. For the choice of B*-tree. the image output
verification can be done by checking its separators (o see if the separators appear in

the expected position of the index set.

RV ANESRIA N X

adatha k w Al R AL WL

S A

3. Quit Menu

The quit menu lets user to exit the program. This step examines if the program

ends when the user click this menu item.

4. Help Menu
This menu item instructs WINHELP.EXE to open WBTREE.HLP when the user

selects it. The testing focuses on the readability and organization of the help file.

5. Re-sizing and Moving
Since there may be some other programs coexisting with this program.so the
window of this program can be minimized, maximized. moved. or re-sized. These
operations potentially may result in the image lost in the client area. This test is to
ensure that the client area is properly repainted whenever the above situations

occur.

6. Animation
This step examines the moving of each object image to assure that the path is

within the expectation.

Data Handling Testing
In this stage. random number and size of data are input to the index file by using the

selected tree type data structure. The insertion and deletion are also randomly

38

performed to inspect the dynamic stability of this program. The verification of data

handling is based on the specifications of three tree types.

1. B-Tree

Insertion:

Deletion:

Splitting:

2. B -tree

Insertion:

The testing verifies if the key inserted by the user goes to the proper
object image as well as data integrity. This test also applies to the other
Lwo tree types.

Redistribution and concatenation are key operations to evaluate deletion
procedure. The testing examines these two operations to see if they
perform the way as expected.

This tests if the B-tree splits from the middle position.

The testing verifies if the key inserted by the user goes to the proper
object image as well as data integrity. The result should be defferent
from the one of B-tree insertion, due to the property of B -tree that it
does not split until its siblings are also full. In this case. the

redistribution occurs during the operation of insertion.

Deletion: This test is same as the test performed on the B-tree.

Splitting: This tests if the B -tree splits from the two third position.

39

1L P ALkt d

AP athi s B L L2 A

3. B -tree
Insertion: One important property of B™-tree is that it maintains an index set
containing separators. The index set 1s in B-tree format. All the keys are
inserted into the sequence set (or leaf). The test inspects if the separators
are created properly.
Deletion: Since the key to be deleted must always reside in a leaf. As long as the
leaf remains at least half full, the index need not be changed. even if a

copy of the key (separator) had been propagated up into it. This testis to

¥ Ak EnSE A 2

ensure that the B -tree’s deletion preserves the separators.

Splitting: This test is same as the test performed on the B-tree.

A -

S e e A

40

VII. SUMMARY AND SUGGESTED FUTURE WORK

VII. 1. Summary

B-trees were invented by Bayer and McCreight in 1972. B-trees. or variations of them.
have become the data structures of choice for database applications. B-trees allow fast
database searching, due to the ability to optimally size the nodes to the paging
requirements of a file system, and due to the relative flatness that results by using multi-
way nodes [Flamig93]. Object-oriented programming is a new way of approaching the
job of programming, and is based on the concept of an object. Object-oriented
programming is a technique that facilitates code reuse. Inheritance, polymorphism. and
encapsulation are examples of its important features. Animation is one effective way to
communicate information. Effective animation involves many of the same design

considerations as other graphics elements. There are two basic types of animation on a

computer: cast-based animation. which makes use of sprites, and frame-based animation.

which operates more like a movie, consisting of a series of fixed images played in
sequence. Cast-based animation is more interesting as a programming topic because it

uses concepts such as transparency and may involve interaction with the user.

This thesis project is implemented by using Microsoft Visual C++. In this project. an

animator of B-trees is created by employing the cast-based animation technique to

demonstrate the motion of moving B-trees’ nodes during insertion or deletion operations.

A class hierarchy for members of the B-tree family is built. These members are B-tree,

+1

L # AAANASE A &

ey e Mt =1

AT Bt & e

B*-tree and B™-tree. The trees and the dynamic movements as they are being built or
destroyed are shown graphically. The thesis project is designed by using object-oriented
approach to make effective use of classes organized into a hierarchical structure based on
the concept of inheritance. Since B-trees and B-tree variants have been used for
maintaining large files, this project is designed to implement data structures that reside in
files. At the heart of the file-based object design in this project is the Fmgr class that
manages objects stored in files. The Btree class is a base class of the Bszar class and the
Bplus class. Because the Brree class is also file based, it has numerous file-management
functions. The main feature of B-trees is the multi-way nodes that make up the (rees.
Since there 1s always one more branch than keys in a multi-way node. the Page class is
designed to have a left branch that leads to all nodes with keys smaller than the smallest
key in the given node. The other right branches will be paired with a key. So a key. along
with its associated data and right branch field, is defined in the Entrv class. The Bsrar
class is derived from the Brree class. This class inherits all the member functions of the
Btree class except Insert() function. The Bplus class ts derived from the Brree class (oo.
Because of the nature of B™-tree, it inherits al! the member functions of the Brree class
except the functions such as Insert(). Delete(), Search() and FullSearch(). Since the
project also provides a GUI to enable the user Lo observe a graphical representation ol the
B-tree family’s data structures as they are being built or destroyed. the Wnode class 1s
created to link the B-tree data structures and the Windows 95 graphics data structures
together. The Wnode class serves as the carrier that carries the data generated by the B-
tree classes and gives the image output to the GUI window. Another purpose of this class

is to provide animation mechanism to dynamically show the detail transition of B-trees’

- b — e e -y o it e A W

insertion and deletion. The program is designed to present a visualization of the trees and
is, therefore, developed under Microsoft Windows 95 which is a very large. complex

programming environment.

VII. 2. Future Work

The design that this project has presented for B-trees is a simple graphical demonstration
with animation effects. There is ample space to extend this design to give more flexibility

to the data structure, add more graphical technique, and improve the performance.

e Flexibility

There are several in the data structure are hard coded. In this design. the type of kevs in
the B-tree nodes is character string. This can be designed to accept various data type with
flexible size. B-trees in this program has fixed order of five. And it can also be able to
make it flexible to handle any order of the tree. All these can be implemented by utilizing

template. function overloading, dynamically memory allocating techniques.

Another area that can be addressed for the future work is the key length. The key length in
this design is fixed, and therefore, it could result in a lot of wasted space in the nodes
when the keys are not in the maximum size. The approach is to allow variable-length keys
in B-trees, where each key occupies only as much space as needed 1n a node. By using
this strategy we can pack as many keys as possible into each node. This means the nodes

can have a variable number of keys and branches. The result is a variable order of B-tree.

43

In such a tree, the size of the node is used as the criteria for minimum node size. rather

than using the number of keys.

e Graphics

In this implementation, a node is formed in a set of two dimension rectangular boxes
for which the program only draws the boundary. It will really impress users to create
high-quality 3-D color images completed with shading. lighting. and other effects. 4
Windows provides OpenGL API functions to deal with graphics primitives. matrix ‘
transformations. lighting, shading, coloring. texture mapping. and more. OpenGL 15
based on an industry standard that is maintained by an independent group called the
Architectural Review Board (ARB) and is supported by a variety of platforms. The
OpenGL API functions can be used to perform 3-D drawing and rendering for the

future graphical implementation.

¢ Performance

Since a B-tree is a file-based data structure, it involves heavy file operations such as
reading from and writing to a file. Furthermore, the file is usually stored on the disk or
backup storage device which 1s always much slower than main storage in terms of the
access time. To solve this problem, a cache mechanism can be added to the design to
enhance performance. Rather than fetching pages from the file every time they are

needed, the copies kept in main storage are accessed instead.

14

The animated images shown in this application rely solely on Windows graphical device
interface (GDI) functions which could be too slow. To make the animated picture more

smoothly, it is necessary to create its own set of bitmaps to improve performance and

mMemory use.

45

BIBLIOGRAPHY

Baeza-Yates, R. A. & Larson, P. (1989). Performance of B™-trees with Partial
Expansions. IEEE Transactions on Knowledge and Data Engineering. Vol. 1.
No.2, 248-257.

Baeza-Yates, R. A. (1987). The Expected Behavior of B”-trees. Technical Report
CS-86-68. Dept. of Computer Science. University of Waterloo. Ontario.
Canada.

Bayer, R. & McCreight, E. M. (1972). Organization and Maintenance of Large
Ordered Indices. Acta Informatica. 1 (3), 173-189.

Budd. T. (1991). An Introduction to Object-Oriented Proerammine. Addison-
Wesley. '

Chu, J. H. & Knot, G. D. (1989). An Analysis of B-trees and Their Variants. |
Information systems, Vol. 14, No.5, 359-370. |

Comer. D. (1979). The Ubiquitous B-tree. Computing. Surveys. Vol. 11. No.2. 12]-
137.

Crotzer, A. D. (1975). Efficacy of B-trees in An Information Storage and Retrieval
Environment. Unpublished Master's Thesis. OSU.

Davis, W. S. (1974). Empirical Behavior of B-trees. Unpublished Master’s Thesis.
OSU.

Eckel, G., Houlette, F., Stoddard, J. and Wagner, R. (1993). Inside Windows NT.
New Riders Publishing.

Eisenbarth, B. Siviani. N. , Gonnet, G. H., Mehlhom. K. & Wood, D. (1982) The
Theory of Fringe Analysis and Its Application to 2-3 Trees and B-trees.
Inform. and Control 55 (1-3), 125-174.

Flaming, B. (1993). Practical Data Structures in C++. John Wiley & Sons. Inc.

Folk, M. J. & Soellick, B. (1992). File Structures. Second edition. Addison-Wesley.

Johnson, T. & Shasha, D. (1992). Reexamining B-trees. Dr. Dobb’s Journal. Vol.
17. No. 1, 44-46.

Johnson. T. & Shasha. D. (1993). The Performance of Current B-tree Algorithms.
ACM Transactions on Database Svystems, Vol. 18, No. 1. 51-101.

46

Knuth, D. (1973). The Art of Computer Programming Vol. 3. Searching and
Sorting. Reading, Mass.: Addison-Wesley.

Kuspert, K. (1983). Storage Utilization in B*"-trees With a Generalized Overflow
Technique. Acta Informatica 19 (1), 35-55.

Leung, C. (1984). Approximate Storage Utilization of B-trees. A Simple Derivation
and Generalizations. Inform. Process. Lett. 19, 199-201.

Lippman, S. (1991) C++ Primer. Second Edition. Addison-Wesley

Montlick, T. (1995). What Is Object-Oriented Software? Web site: hitp:/www soft-
design.com/softinfo/objects.html.

Petzold, C. (1996). Programming Windows 95. Microsoft Press.

Quitzow, K. H. & Kloprogge, M. R. (1980). Space Utilization and Access Path
Length in B-trees. Inform. Systems 5. 7-16.

Rodent. H. (1994). Animation in Win32. 1995 (January) - Microsoft Developer
Network Library.

Rogerson, D. (1994). OpenGL I: Quick Start. Microsoft Developer Network
Technology Group.

Schildt, H. (1995). Schildt’s Windows 95 Programmine in C and C++. McGraw-
Hill, Inc.

Schildt, H. (1995). Using Turbo C++. McGraw-Hill, Inc.

Shasha, D., Lanin, V. & Schmidt, J. (1987). An Analytical Model for the
Performance of Concurrent B-tree Algorithms. Ultracomputer Note 3[1, Dept.
of Computer Science, New York Univ., New York.

Srinivasan.V. & Carey, M.(1991). Performance of B-tree Concurrency Control
Algorithms. In proceedings of the 1991 ACM-SIGMoD International
Conference on Management of Data, ACM. New York.425-461.

Stroustrup, B. (1995). The C++ Programming Language. Second Edition. Addison-
Wesley.

Tamura, R., Belew, P., Blakely. J.. Grantham. E., Griswold. R., Hall. W.. Hipson,
P., Kenner, B., Montemer. B.. Parker. T.. Thayer. J.. Toth. V.. Kottler. J..
Woelfer, T., Harris. L., Laeremans. R.. Lujan. P.. Trujillo. S, Pietrocarlo. D.,
and Eman, O. (1995). Programming Windows 95. Sams Publishing.

47

Tello, E. (1991). Object-Oriented Programming for Windows. John Wiley & Sons.
Inc.

Thompson, N. (1995). Animation Techniques in Win32. Microsoft Press

Wagner. W. (1992). The Windows Cartoon Engine Supplies High-Quality
Animation to Any Application. 1995 (January) - Microsoft Developer
Network Library.

Wright, W. E. (1985). Some Average Performance Measures for the B-tree. Acta
Informatica 21 (1), 541-557.

48

APPENDIXES

49

Appendix A - Glossary

API API (Application Programming Interface) is a library of routines and services. each
built from low-level operating system commands, which accomplish common
tasks.

Cast-Based Animation Cast-based (or sprite-based) animation involves drawing an
image on top of a background image. Sprites are generally used for game
animation. To produce motion using sprites. one changes the location where the
sprite 1s drawn.

DOS DOS is an acronym for Disk Operating System. It is a text-based. keyboard-
oriented operating system. DOS was originally released in 1981 with the IBM PC,
and it is still the de facto operating system for all IBM and compatible personal
computers.

Frame-Based Animation Frame-based animation involves drawing a image on top of a
background. Frame-based animation operates more like a movie. it is always used
for cartoons. To produce motion using frame animation, one changes the
foreground image.

GDI GDI (Graphic Device Interface) is the subsystem of Windows 95. It is responsible
for displaying graphics (including text) on video displays and printers. The
Windows GDI allows graphics output to be created by bitmaps. brushes. and pens.
The GDI predetines three pens: Black. Null. and White. These can be used by
calling the GetStockObject function. Seven brushes are predefined: Black, Dark-
Gray. Gray, Hollow, Light-Gray. Null. and White. There are six hatched brush
patterns. The GDI also supplies twelve text formatting stvles,

GUI GUI (Graphical User Interface) is a metaphor representing the interaction between
end user and computers. In particular. GUIs enable users to begin to think in terms
of colors, icons, and graphics. With GUI, the system 18 more user-friendly. easier to
learn and easier to use.

MS-DOS MS-DOS is the Microsoft implementation. IBM and Microsoft make efforts
together to ensure that MS-DOS is functionally equivalent with PC-DOS which 15
the IBM implementation.

OpenGL The Microsoft implementation of OpenGL in Windows NT and Windows 95 is
an implementation of the industry-standard OpenGL three-dimensional (3D)
graphics software interface with which programmers create high-quality still and
animated 3D color images.

50

0OS/2 0S§/2 is an operating system. In the mid - 1980s. Microsoft and IBM developed an
operating system so superior to DOS that it was to become the dominant operating
system of the 1980s and 1990s. They called it Operating System 2. or OS/2.

RAM-Resident Popup RAM-resident programs are designed to reside in memory while
other programs run. Users can activate their services by clicking those programs’
icons.

Sprite A sprite 1s an irregularly shaped picture that can be moved anywhere on the
screen. A sprite can be in front of or behind another sprite. A character in an
animation could be a sprite. To make the character move around in a scene. one
moves the sprite for that character and change its image to simulate changes in the
appearance of the character as it moves.

Transparency The simplest way to define transparency 1s 1o select a color not used
elsewhere in the image and paint all the transparent areas with that color. When the
sprite image is drawn, the transparent-colored pixels won’t be copied (o the screen.

VSAM VSAM (Virtual Sequential Access Method) is IBM's general purpose B-tree
based access method. VSAM is designed to support sequential searching as well as
logarithmic cost inser:ion, deletion, and find operations. VSAM supports two
forms of sequential searching. one is key-sequenced, the other one is entry-
sequenced. The entry-sequenced VSAM files allow efficient sequential processing
when no key accompanies a record. Since entry-sequenced VSAM files require no
index, they are less expensive 10 maintain.

Appendix B - User’s Menu

Whtree: A Windows Version of B-Trees Application

WBTree is an animator of B-tree and its variants (B-tree. B*-tree and B+-tree). This
program illustrates the dynamic movements of B-trees while they are being built or

destroyed.

The follows are the detail descriptions for each menu items and controls supported by this

program.

Deletion

Each word can be deleted from an order five B-tree's family. The rearrangement of the
tree structure will be animated to illustrate node redistribution and concatenation ol the
B-tree’s fumily data structure. The leaf nodes are arranged vertically under the parent
node. Initially click on the box beside "Delete”. Then enter one to three letter words one

at a time, clicking "Delete” to delete the word.

Insertion

Each word entered will be inserted into an order five B-tree's family. The tree expansion
will be animated to illustrate node division and root promotion of the B-tree’s family data

structure. The leaf nodes are arranged vertically under the parent node. Initially click on

the box beside "Insert”. Then enter one to three letter words one at a time. clicking
“Insert” to enter the word. The program is limited to 156 nodes. which is sufficient to
illustrate the structure of a B-tree or its variants. Don't enter so many words as to exceed

this limait.

Open File

"File" menu pops up a command dialog box to allow users to specify a file to be

contained the B-tree index data.

Options

WBtree supports three types of B-tree variants, B_tree. B*_tree, and B+_tree. The tree
type is selected by clicking the "Options” from the menu bar and marking one of three

lree types.

Quit

Quit: To quit this application simply click the "Quit” from the menu bar.

Appendix C - Class Overview

Entry Class

Entry class contains a pair of key and RRN (Relative Record Number) along with datu

which is ignored in this project implementation. This class is the foundation of Page class

which is the base class of Pobj class.

Data Member:
char key[] Character string serves as key
long data Long integer

long right

RRN of right child

Construction:

Entry();

Entry(const char *c):

Entry(const char *c. long d);

Entry(const Entry &e):

~Entry()

Methods:

void operator=(const Entry &e)

Assigns all data members

void operator=(const char *c)

Assigns key only

friend int Compare(const Entry &a

const Entry &b)

Compares the Key string only. Returns -1

ifa<b,Oifa=b.and 1 ifa>b.

friend int FullCompare(const Entry &a.

const Entry &b)

Compares the key string as well as the
data. Returns -1 ifa<b,Oifa=b.and 1 if

a>b.

Page Class

Page class forms the basic data model of an individual B-tree node which includes an

Entry class array (it has order-1 cells). a key counter, and the RRN of the left most child.

This class is the base class of Pobj class which combines the Fmgr class and Page class

together and constructs a file based data structure.

Data Member:

int cnt

Number of entries or keys

long left

RRN of the left most child.

Entry entry[ORDER- 1]

Construction:

Page()

Set up an empty node

~Page()

Methods

int Search(const Entry &e, int &n)

Tries to match e's key with the keys in the
entries of this node. Returns -1 if ¢'s key is
less than all keys in the node. returns O i
there was a match, return 1 if ¢'s key is
greater than all keys in the node. Passes
back n of matching entry if any. or the n of
the entry containing the appropriate branch

to keep searching down.

int FullSearch(const Entry &e, int &n)

Like the first Search(). except we use

FullCompare().

void Split(Page &b. int n):

Moves right half of this node at n into

empty b. Assumes n is in range.

5

h

void InsEntry(Entry &e. int n); Inserts entry e into node at position n.

Assumes there is room and assumes n <=

cnt
void Concatenate(Entry &e): Adds entry e to the end of the node
void Concatenate(Page &p); Adds all entries of node n to the end of

this node. Assumes there is room.

void DelEntry(int n): Deletes the entry at position posn.

Assumes n is in range.

long &Branch(int n); Returns the branch for the given position.
Due to the layout of the node. we'll get the

left branch if n = -1.

int LastPosn(): Returns the position of the last entry in the
node

int IsEmpty(); Returns 1 if cnt = 0.

int IsFull(); Returns | if cnt = ORDER - 1.

int IsPoor(); Returns | if node has fewer than the

minimum entries.

int IsPlentiful(): Retwurns | if node has more than the

minimum number ol entries.

Pobj Class

Since B-tree is a file based data structure, Pobj is the class which is designed to meet this
requirement. Pobj inherits Page class and includes a file object in its data member that

makes file accessing more convenient.

n
o

Data Members:

long addr File address of Page data

FmgrPur fp File object pointer
Construction:

Pobj()

Pobj(Page &c. long p)

Pobj(FmgrPtr)

Pobj(const Pobj &c) Copy constructor.

~Pobj()

Methods:

void Copy(const Pobj &c) Copies one Pobj into another

Pobj branch(int ps) Loads the child page at position ps into
memory.

void NewPage() Calls fmgr to reserve a new page in the
file.

void Updated() Writes Page data to file

operator long() const Returns RRN

void operator=(const Pobj &c)

void operator=(long p)

Fmgr Class
Fmgr is designed for file based data structure to fulfill the file operations such as opening
files. closing files. reading bytes, writing bytes, and seeking. The Fmgr pointer is the data

member of Pobj and Btree classes.

57

Data Members:

enum lo_op

fetch. store, seek

enum AccessMode

read_write. read_only

enum CheckWord

char name[]

Name of the file

long fs Address to first block of "heap™ free space
long fe Address of byte after end of file

long hs Address of the start of the "heap”

FILE *fp Stream file handle

Io_op lastop Last I/O operation

char status

Construction:

Fmgr()

virtual ~Fmgr()

Methods:

void FetchFBIkHdr(FBlkHeader &bh,

long p):

Reads 1n free block header. and tests check

word to make sure the file is still in sync.

void StoreFBlkHdr(const FBlkHeader
&h, long p):

Writes out free block header.

long Reclaim(unsigned nbytes):

Finds the first block on the free space list
that is big enough for nbytes of data. Puts
back on the free list all those bytes that
aren't needed. Note that the amount put
back must be at least the size of the free
block header, otherwise, the entire block is
considered not an appropriate size and
rejected. Returns address of the newly
reclaimed data. or 0 if there wasn't a free

space block that was appropriate.

virtual int Create(char *fname. long

static_sz)

Creates and opens a new file named
fname, truncating it if it already exists.
The area at the front of the file of length
static_sz + sizeof(FmgrHeader) 1s
reserved. Returns 1 if the file was

successfully created and opened. else 0.

virtual int Open(char *fname,

AccessMode mode)

Opens the fname file. File must exist file
or error occurs. First closes the current file
if open. Returns 1 if file opened

successfully, else 0.

virtual void Close(int flush)

Closes the file if not already closed. Does

nothing if in the error state.

long Alloc(unsigned nbytes)

Allocates a block of at least nbytes of data.
either from the free space list. or from the
end of the file. The number of bytes
allocated is adjusted to be large enough 1o
hold a FBIkHeader. Nothing is written to
the newly allocated space. Returns
location of space allocated. or returns a 0

if some error occurred.

void Free(unsigned nbytes. long p)

Frees the block at location p assumed to
be nbytes in size. Block is placed on the
front of the free space list. Il nbytes is <
sizeof(FBlkHeader). it i1s forced to that
size, since that's the minimum size

allocated.

void Fetch(void *d, unsigned n. long p)

Fetches n bytes from address p into bufter
d. The address is always interpreted to be
from the beginning of the file. unless it's

CURRADDR. which means from the

59

current position.

void Store(const void *d. unsigned n, Stores n bytes from buffer d to addr p. The
long p) addr is always interpreted to be from the
beginning of the file. unless it's
CURRADDR. which means from the

current position.

void Seek(long ofs, int seek_mode) Moves the file pointer to the byte offset
ofs, using seek_mode, (which should be

either SEEK_SET. SEEK_CUR. or

SEEK_END).

int [sOpen() const Returns true open status bit is |

int ReadOnly() const

int ReadyForWriting() const File is ready for writing if it is ok and not
read-only

void ClearErr()

int OK() const

int operator!() const

operator const int () const

Btree Class

Btree class is the base class of Bstar and Bplus classes. This class defines all the
operations and data structure used to set up a B-tree. [ts data members include a file
object pointer which points to a file to store B-tree index data. a Pobj to the root of the
tree to ease access. a BtreeHeader data structure which contains B-tree’s tree information
such as address of root page. order of tree. height of tree. number of total entries. and

number of total nodes.

60

Data Members:

FmgrPir f File the Biree is connected to
long bh_addr Address of the Btree header
BtreeHeader bh Btree header
Pobj root Root node

Construction:
Btree()
~Btree()

Mothods:

void ReadHdr()

void WriteHdr()

virtual int Insert(Entry &e, Pobj &t)

Recursive function that tries to insert entry
e into subtree t. Returns SUCCESS.
DUPLKEY. ALLOCERR. or
NODE_OVERFLOW. If
NODE_OVERFLOW, then e becomes the

median_entry to pass back to t's parent.

int Delete(Entry &e, Pobj &t)

Recursive function that deletes entry ¢
from the subtree with root p. Returns
SUCCESS, or FAIL if we couldn't find the

entry.

void RestoreBalance(Pobj &p. int posn)

Node down branch at position posn in
node p has one too few entries. Give it an
entry from either its left or right sibling, or

perhaps just merge the node with a sibling.

void RotateRight(Pobj &p. int posn)

Does a "right rotation” using the entry at
node p. position posn as the pivot poinl.

Assumes p is not a leaf and that there is a

61

left and right child. Also assumes right
child isn't full, and that p and left child

aren't empty.

void RotateLeft(Pobj &p, int posn)

Does a "left rotation™ using the entry at
node p, position posn as the pivot point.
Assumes p is not a leaf and that there is a
left and right child. Also assumes left
child isn't full, and that p and right child

aren't empty.

void Merge(Pobj &p. int posn)

Merges the node on the branch left of the
entry at position posn of node p. with the
entry of p and the node on the branch to

the right of the entry of p. Assumes posn

in range.

static void PrintNode(Pobj &n)

Prints only node n.

static void PrintTree(Pobj &t. int sp)

void SetParameters()

Sets the split position.

int Connect(FmgrPtr &Iptr. int create.

long bh_addr)

Connect to an already open file. I create 1s
1, we're creating a new btree (but not
necessarily a new file.) Returns SUCCESS

or FAIL.

void Disconnect()

Disconnects the btree from the file.

int Create(char *fname, long bh_addr)

Creates a new file to hold the btree.
Disconnects from any file that we may be
connected to first. Returns SUCCESS or

FAIL.

int Open(char *fname,
Fmgr::AccessMode mode, long

bh_addr)

Opens an existing file to hold the buree.
Disconnect from any file that we may be
connected to first. Returns SUCCESS or
FAIL.

void Close()

virtual int Search(Entry &e)

Search the tree for the first node having a
matching entry (ie: keys must match). If
found, the data field of e 1s filled in.

Returns SUCCESS or FAIL.

virtual int FullSearch(const Entry &e)

Like Search()., except both keys and data

must match. Returns SUCCESS or FAIL.

int Add(char *k, long d)

Creates a new entry with key Kk and data d.
and attempts to add the entry (o the tree.
Returns SUCCESS. DUPLKEY. or
ALLOCERR.

virtual int Remove(char *k, long d)

Deletes entry having key k and data d from
the tree. Returns SUCCESS. or FAIL if

we couldn't find the entry.

int IsEmpty() const

int IsOpen() const

int OK() const

int operator!() const

operator int() const

void ClearErr()

void Statistics(int full)

Display tree status

void PrintTree()

Bstar Class
Bstar class inherits Btree class and overrides the Insert() function which makes the B*-
tree different from the B-tree in terms of splitting. This class also defines additional data

members and methods to support the changes in Insert().

63

Data Members:
int path[20]; Records the search path top->down
int index
Construction
Bstar()
~Bstar()
Methods:
int Insert(Entry &e, Pobj &t); B*-tree version of Insert function.
Pobj FindParent(int in); This function uses path[] to find the (in-
1)th level of node which 1s the (in)th
level's parent in a particular search.
void SetParameters(); Set the split position.

Bplus Class

Bplus class inherits Btree class and overrides the Insert(), Search(). FullSearch(). and
Remove() functions from the base class. The Bplus class also overloades the Delete()
function which is a member function of the base class. The changes of B*-tree are used 1o

maintain an index set as well as a sequence set.

Data Members:

None

Construction:

Bplus()

~Bplus()

64

Methods:

int Insert{Entry &e. Pobj &t); B™-tree version of Insert function.

int Delete(Entry &e. Pobj &t. Pobj This Delete() overloading Btree's Delete().

&Parent);

int Search(Entry &e); B™-tree version of Search function.

mt FullSearch(const Entry &e); B’-tree version of FullSearch function.

int Remove(char *k, long d): B™-tree version of Remove function.
Wnode Class

Whnode class is created as an interface for B-trees to call Windows 95 API to display B-
trees as graphical images to the screen. It creates several methods to accomplish the

animation which occurs during tree splitting and merging. This class also defines many
associated methods to assist an individual node to locate its relative nodes which would

help to achieve animating the output image.

Data Members

RECT *RBoxes Provides data structures to draw boxces 1o
hold chRRN.

long *chRRN Child nodes” RRN

RECT *KBoxes Provides data structures to draw boxes to

hold key strings.

char Keys[][] Key strings

int Parent Index of parent block

int *RSibling Index of the right siblings

int LSibling Index of the left sibling
65

int *Children

Index of children

int Entrys Number of entries

long x x is the coordinate of up left corner of
wnode.

long y y is the coordinate of up left corner of
wnode.

long RRN RRN of itself

int id Index of itself

int Order Order of the tree

BYTE direct Move direction

int dist Move distance

Construction:

WNode()

WNode(int n)

~WNode()

Methods:

void InitWNode(int n.unt 1ID)

All the data members are imtahized 1n this

function.

void ResetWNode()

When the node is deleted. this tunction is
called to reset all the data members back

to initial state except the id.

void MoveLeft(long dx)

Moves the whole object image left in dx

units.

void MoveRight(long dx)

Moves the whole object image right in dx

units.

void MoveUp(long dy)

Moves the whole object image up in dy

units.

void MoveDown(long dy)

Moves the whole object image down in dy

units.

66

void SetID(int 1)

Assigns i to the data member id.

void SetKey(char *k.int 1)

Copys k to Keys|i].

void SetchRRN(long cr. int 1)

Assigns cr to chRRN[i].

void InsChild(int id. int posn)

Assigns id to Children[posn] and shift out
all the children after the (posnith children

one position right.

int GetChild(int n)

Returns the index of the nth child

void DelChildren(int posn)

Resets the content of Children(] into -1

starting from the nth child (n=posn).

void FindChildren(WNode *wn)

This function locates several WNodes that
have the RRNs match chRRN. Tt also sets

up the sibling relation among children.

void MoveChildren(HDC hdc.WNode

*wn)

If the children nodes are the leat. this
function moves them accroding to this

wnode’s position.

void SetParent(int p)

Assigns p to Parent.

int GetParent()

Returns Parent to caller.

void SetPosition(long X.long Y)

Sets the new location on all the RECT
data members to make them relerence 1o

(X.Y).

void GetPosition(long &dX, long &dY)

Returns x and y into dX and dY.

void AddSibling(int s)

Assigns s to RSibling[0] and pushes the

rest of right siblings accordingly.

int* GetSiblings()

Returns an integer array containing right

sibling index

void CopySiblings(int *S)

Copys S[] to RSibling[].

void SetLeftSb(int Is)

Assigns Is to LSibling.

int GetLeftSb()

Returns Lsibling.

void UpdateLSb(WNode *wn)

Recursive function. It updates each child’s

67

right sibling information. The call starts
from the rightmost child and stop at the

left most child.

void Print(HDC hdc)

Simply prints to Windows

void EraseNode(HDC hdc)

This function prints wnode using
background color. The effect is same as

the eraser

void ShowNode(HDC hdc, WNode

*wn)

void PrintNode(HDC hdc, WNode *wn)

The function determines the move
algorithm and calls ShowNode() to display

the animation of nodes.

void MoveParentSb(HDC hdc, WNode
*wn,BYTE dirt,int dst)

This is recursive function to move parent’s

siblings.

void MoveTree(HDC hdc, WNode
*wn.BYTE dirt.int dst)

Recursive function to move nodes under
it. This function also call ShowNode to

display nodes.

int GetEntrys()

Returns data member of Entrys

void Updated(Page p)

Gets Page structure to update certain data

members

void Updated(Pobj P)

Passes Pobj structure 1o update certain

data members

void SetDirect(int d)

Sets the move direction. 0 - up. | - down.

2 - right, 3 - left. and 4 - not move.

int GetDirect()

Returns the move direction.

void SetDist(int d)

Sets the move distance.

int GetDist()

Returns the move distance.

BOOL IsLeaf()

void operator=(long r)

68

void operator=(int I)

operator long() const

69

Appendix D - Makefile

Microsoft Developer Studio Generated NMAKE File. Format Version 4.00
** DO NOT EDIT **

TARGTYPE "Win32 (x86) Application” 0x0101

'F "$(CFG)" == ""

CFG=wbtree - Win32 Debug

'MESSAGE No configuration specilied. Defaulting to wbtree - Win32 Debug.
'ENDIF

'TF "$(CFG)" !="wbtree - Win32 Release” && "$(CFG)" '= "wbtree - Win32 Debug”
'MESSAGE Invalid configuration "$(CFG)" specified.

'MESSAGE You can specify a configuration when running NMAKE on this makefile
'MESSAGE by defining the macro CFG on the command line. For example:
'MESSAGE

'MESSAGE NMAKE /f "wbtree.mak"” CFG="whtree - Win32 De¢bug”

'MESSAGE

'MESSAGE Possible choices for configuration are;

'MESSAGE

'MESSAGE "wbtree - Win32 Release” (based on "Win32 (x86) Application™)
'MESSAGE "whtree - Win32 Debug” (based on "Win32 (x86) Application™)
'MESSAGE

'TERROR An invalid configuration 1s specified.

'ENDIF

'"F "$(0S)" == "Windows_NT"

NULL=

'ELSE

NULL=nul

'ENDIF

R R R R AR R R
Begin Project

PROP Target_Last_Scanned "wbtree - Win32 Debug”
MTL=mkuyplib.cxe

CPP=cl.exe

RSC=rc.exe

'IF "$(CFG)" == "wbtree - Win32 Release”

PROP BASE Use_MFC 0

PROP BASE Use_Debug_Libraries 0

PROP BASE Output_Dir "Release”

PROP BASE Intermediate_Dir "Release”
PROP BASE Target_Dir "

PROP Use_MFC 0

PROP Use_Debug_Libraries 0

PROP QOutput_Dir "Release”

70

PROP Intermediate_Dir "Release"
PROP Target_Dir "
OUTDIR=.\Release
INTDIR=.\Release

ALL : "S(OUTDIR \wbtree.exe"

CLEAN :
-@ecrase ".\Release\wbtree.exe"
-@erase ".\Release\page.obj”
-@erase "\Release\wmain.obj"
-@erase "\Release\WBT.ob;"
-@erase "\Release\Bslar.obj"
- @erase ".\Release\wnode.obj"
- @erase "\Release\Exchdlr.obj"
-@erase ".\Release\Fmgr.obj"
-@erase ".\Release\Btree.obj"
-@erase "\Release\pobj.obj"
-@erase ".\Release\bplus.obj"
-@erase ".\Release\wbt.res”

"$(OUTDIR)" :
if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"

ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /¢
ADD CPP /nologo /W3 /GX /02 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /¢
CPP_PROIJ=/nologo ML /W3 /GX /02 /D "WIN32" /D "NDEBUG" /D "_WINDOWS"\
/Fp"S(INTDIR)/wbtree.pch” /'YX /Fo"$S(INTDIR /" /¢
CPP_OBIJS=\Release/
CPP_SBRS=
ADD BASE MTL /nologo /D "NDEBUG" /win32
ADD MTL /nologo /D "NDEBUG" /win32
MTL_PROIJ=/nologo /D "NDEBUG" /win32
ADD BASE RSC /I 0x409 /d "NDEBUG"
ADD RSC /1 0x409 /d "NDEBUG"
RSC_PROIJ=/I 0x409 /fo"$(INTDIR y/wbLres” /d "NDEBUG™
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
BSC32_FLAGS=/nologo /o"$(OUTDIR Vwbtree. bsc”
BSC32_SBRS=
LINK32=link.exe
ADD BASE LINK32 kernel32.1ib user32.1ib gdi32.lib winspool.Jib comdlg32.1ib advapi32.1ib shell32.1ib
ole32.1ib oleaut32.lib uuid.lib odbc32.1ib odbeep32.1ib /nologo /subsystem:windows /machine: [3%6
ADD LINK32 kernel32.1ib user32.1ib gdi32.1ib winspool.lib comdlg32.lib advapi32.1ib shell32 1ib
ole32.1ib oleaut32.1ib uuid.lib odbe32.1ib odbeep32.1ib fnologo fsubsystem: windows /machine: 1386
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comd|g32.lib\
advapi32.1ib shell32.1ib ole32.1ib oleaut32.1ib uuid.lib odbc32.1ib\
odbcep32.lib /nologo /subsystem:windows /incremental:no\
/pdb:"$(OUTDIR)/wbtree.pdb” /machine:1386 /out:"$(OUTDIR y/whirce.cxe”
LINK32_OBIS=\
"$(INTDIR)/page.obj” \
"$(INTDIR)/wmain.obj" \
"$(INTDIR)WBT.obj" \
"$(INTDIR)/Bstar.obj" \

71

"$(INTDIR)/wnode.obj" \
"$(INTDIR }/Exchdlr.obj" \
"$(INTDIR)/Fmgr.obj" \
"$(INTDIR)/Btree.obj" \
"$(INTDIR)/pobj.obj" \
"$(INTDIR)/bplus.obj” \
"$(INTDIR)/wbLres"

"$(OUTDIR \wbtree.exe” : "$S(OUTDIR)" S(DEF_FILE) $(LINK32_OBJS)
$(LINK32) @<<
$(LINK32_FLAGS) $(LINK32_OBIS)
<<

IELSEIF "$(CFG)" == "wbtree - Win32 Debug”

PROP BASE Use_MFC 0

PROP BASE Use_Debug_Libraries 1
PROP BASE Output_Dir "Debug"

PROP BASE Intermediate_Dir "Debug”
PROP BASE Target_Dir ""

PROP Use_MFC 0

PROP Use_Debug_Libraries |

PROP Output_Dir "Debug”

PROP Intermediate_Dir "Debug”

PROP Targel_Dir ™"
OUTDIR=\Debug

INTDIR=\Debug

ALL : "$S(OUTDIR \wbtree.exe”

CLEAN:
-@erase "\Debug\vc40.pdb”
-@erase "\Debug\vc40.idb"
-@ecrase "\Debug\wbiree exc”
-@erase "\Debug\WBT.ob)"
-@erase " \Debug\Fmgr.obj"
-@erase "\Debug\bplus.obj”
-@erase ".\Debug\wnode.obj"
-@erase "\Debug\pobj.obj”
-@erase " \Debug\Bstar.obj"
-@erase " \Debug\page.obj”
-@erase " \Dcbug\wmain.abj"
-@erase " \Debug\Btree.obj"
-@erase " \Debug\ExchdIr.ohj"
-@erase "\Debug\wbt.res”
-@erase "\Debug\wbtree.ilk"
-@erase " \Debug\wbtree.pdb”

"$(OUTDIR)" :
if not exist "$(OUTDIRY/$(NULL)" mkdir "S(OUTDIR)"

ADD BASE CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D *_DEBUG" /D "_WINDOWS" /'YX /¢
ADD CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /¢

CPP_PROJ=/nologo /MLd /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS™\
/Fp"$(INTDIR)/wbtree.pch” /YX /Fo"$(INTDIR /" /Fd"S(INTDIR /" /¢

72

—— e |

CPP_OBIS=\Debug/
CPP_SBRS=
ADD BASE MTL /nologo /D "_DEBUG" /win32
ADD MTL /nologo /D "_DEBUG" /win32
MTL_PROIJ=/nologo /D "_DEBUG" /win32
ADD BASE RSC /1 0x409 /d *_DEBUG"
ADD RSC /10x409 /d "_DEBUG"
RSC_PROI=/1 0x409 /fo"S(INTDIR }/wbt.res" /d "_DEBUG"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
BSC32_FLAGS=/nologo /0"$(OUTDIR)/wbtree.bsc"
BSC32_SBRS=
LINK32=link.exe
ADD BASE LINK32 kernel32.1ib user32.lib gdi32.lib winspool.lib comdlg32.1lib advapi32.1ib shell32.hb
ole32.1ib oleaut32.1ib uuid.lib odbe32.1ib odbeep32.1ib /nologo /subsystem:windows /debug /machine: 1386
ADD LINK32 kernel32.1ib user32.1ib gdi32.1ib winspool.lib comdlg32.lib advap132.lib shell32.1ib
ole32.1ib oleaut32.hb uuid.lib odbc32.1ib odbcep32.1ib /nologo /subsystem:windows /debug /machine: 1386
LINK32_FLAGS=kernel32.1ib user32.lib gdi32.1ib winspool.lib comdlg32.1ib\
advapi32.1ib shell32.1ib ole32.lib oleaut32.1ib uuid.lib odbe32.1ib\
odbcep32.1ib /nologo /subsystem:windows /incremental:yes\
/pdb:"$(OUTDIR }/wbtree.pdb” /debug /machine:1386 /out:"$(OQUTDIR Vwbtree.exce”
LINK32_0OBJS=\
"S(INTDIRYWBT.obj" \
"$(INTDIR)/Fmgr.obj" \
"$(INTDIR Vbplus.obj" \
"$(INTDIR Y/wnode.obj" \
"$(INTDIR)/pobj.obj" \
"S(INTDIR)/Bstar.obj" \
"$(INTDIR ¥page.obj" \
"$(INTDIR y/wmain.obj" \
"$S(INTDIR)/Btree.obj" \
"S(INTDIR Y/Exchdlr.obj" \
"$(INTDIR)/wbL.res”

“$(OUTDIR \Wwbtree.exe” : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBIS)
S(LINK32) @<<
S(LINK32_FLAGS) 5 LINK32_0OBIS)
<<

'ENDIF

.c{$(CPP_OBIS)}.obj:
S$(CPP) $(CPP_PROJ) $<

.cpp{$(CPP_OBIS)}.obj:
$(CPP) $(CPP_PROJ) $<

cxx{$(CPP_OBIS)}.obj:
$(CPP) $(CPP_PROJ) $<

c{$(CPP_SBRS)}.sbr:
$(CPP) $(CPP_PRO]J) $<

cppl$(CPP_SBRS)}.sbr:

73

$(CPP) $(CPP_PROJ) $<

.cxx|$(CPP_SBRS)}.sbr:
$(CPP) $(CPP_PROJ) $<

Begin Target

Name "wbtree - Win32 Release”
Name "wbtree - Win32 Debug”

'IF "$(CFG)" == "wbltree - Win32 Release”
'ELSEIF "$(CFG)" == "wbiree - Win32 Debug”

'ENDIF

Begin Source File

SOURCE=.\wnode.cpp
'TF "S(CFG)" == "whtrece - Win32 Release

DEP_CPP_WNODE=\
"Awnode.h"\
"Awbt.h™\
"Apobj.h™\
"\page.h™\

" \Fmgr.h"\
" \Exchdlr.h"\

"$(INTDIR \wnode.obj" : $(SOURCE) $(DEP_CPP_WNODE) "S(INTDIR)"

IELSEIF "$(CFG)" == "wbiree - Win32 Debug”

DEP_CPP_WNODE=\
"Awnode.h"\
" Awbt.h™
"\pobj.h"\
"\page.h™\
"\Fmgr.h"\
"\Exchdlr.h™\

NODEP_CPP_WNODE=\
"Awn™\
"N

"S(INTDIR \wnode.obj” : S(SOURCE) $(DEP_CPP_WNODE) "$(INTDIR)"
'ENDIF

74

End Source File

Begm Source File

SOURCE=\ExchdIr.cpp
DEP_CPP_EXCHD=\
" \ExchdIr.h"\

"S(INTDIR)\Exchdlr.obj" : $(SOURCE) $(DEP_CPP_EXCHD) "S(INTDIR}"

End Source File

Begm Source File

SOURCE=.\Fmgr.cpp

DEP_CPP_FMGR_=\
" \Fmgr.h"\
“AExchdlr.h"\

"$(INTDIR \Fmgr.obj" : $(SOURCE) $(DEP_CPP_FMGR_) "$(INTDIR}"

End Source File

ARdREdd B HE R RS

Begin Source File

SOURCE=.\page.CPP
DEP_CPP_PAGE_=\
"\page.h"\

"$(INTDIR)\page.oby” : $(SOURCE) $(DEP_CPP_PAGE_) "$S(INTDIR)"

End Source File
HHHREHH R R R R R R R R A A R SR R R B R
Begin Source File

SOURCE=.\pobj.CPP
DEP_CPP_POBJ_=\
"Apobj.h™\
"\page.h"\
" \Fmgr.h"\
"AExchdlr.h™

"$(INTDIR)\pobj.obj” : $(SOURCE) $(DEP_CPP_POBIJ_) "S(INTDIR)"

End Source File

R R AR SR R R R R R

75

Begin Source File

SOURCE=\WBT.cpp
DEP_CPP_WBRBT_C=\
“Awbt.h"\
" \Btree.h"\
“\Bstar.h"\
" \bplus.h"\
" A\wnode.h"\
“\Fmgr.h™\
"\pobj.h™
"\Exchdlr.h"\
"\page.h"\

"S(IINTDIR\WBT.obj" : $(SOURCE) $(DEP_CPP_WBT_C) "$({INTDIR)"

End Source File

Begin Source File

SOURCE=\wbt.rc
DEP_RSC_WBT_R=\
“Awbt.h"\

"S(INTDIR \wht.res" : 3(SOURCE) $(DEP_RSC_WBT_R) "S(INTDIR)"
$(RSC) $S(RSC_PROJ) $(SOURCE)

End Source File
HH SRR HEHRHEREHEHRHAR R R S R R H R R R R R H R R
Begin Source File

SOURCE=\wmain.cpp
DEP_CPP_WMAIN=\
* Awbt.h"\

"S(INTDIR \wmain.obj" : $(SOURCE) $(DEP_CPP_WMAIN) "$(INTDIR}"

End Source File

BRI AR R R RRRR R R R R R R
Begin Source File

SOURCE=\Btree.cpp
DEP_CPP_BTREE=\
" \Btree.h"\
" \Fmgr.h"\

76

"Apobj.h"\
“Awnode.h"\
" \Exchdlr.h"\
" \page.h"\
"Awbt.h"\

"$(INTDIR\Btree.obj" : $(SOURCE) $(DEP_CPP_BTREE) "$(INTDIR)"

End Source File
Begin Source File

SOURCE=\Bstar.cpp
DEP_CPP_BSTAR=\
" \Bstar.h"\
"\Btree.h"\
"AFmgr.h™\
" \pobj.h"\
“Awnode.h"\
"\Exchdlr.h"\
"\page.h™
" Awbth™

"$(INTDIR \Bstar.obj" : $(SOURCE) $(DEP_CPP_BSTAR) "$(INTDIR)"

End Source File
SRR AR RE R R R R R R R R R R R Rt R a R R raa R e n A e
Begin Source File

SOURCE=\bplus.cpp
DEP_CPP_BPLUS=\
"Abplus.h™
" \Btree.h"\
" AFmgr.h™\
“Apobj.h"\
" Awnode.h™
"AExchdlr.h"\
"\page.h™
"Awbt.h™\

"$(INTDIR \bplus.obj” : §(SOURCE) $(DEP_CPP_BPLUS) "$(INTDIR)"

End Source File

End Target

End Project

HE A S R e S R R R e R I R R R T

77

Appendix E - Sample Qutput Screens

= The WBTree Program -[0]x]
‘Fle Qotions Quit Hebp

ﬂ——] insert | Delete] ﬂ

sip) o

Figure 9 This is the initial screen of this program.

78

|
Fle Optons Qut Hep

] “isen’| peewr] y

Open e —_ 53
b [Sos —_dolslEm

™ bplus.oty ™ page.ob =] whtiee ik
3 Bstar.oby ™ pobi oby [y whtree. mdp
E] BTl.idx ™ ved b ™ wbhee pch
E] BTindexidx ™ vedlpdo D whiies pcb
™ Buee.ob) 3 WaT obj ™ wmain obj
3 Exchdy oby ™ whlies D wnode oby
™ Fmgr.obj Fwhtres exe

Fio pone: (IR i
Files of ppe: |4l Files (<) 45 Concel |

AL o1

Figure 10 This screen shows a open file dialog box which is popped up by chicking the “File™ in the menu
bar

79

™ The WBTiee Program e
Fie Gk fiok -

Insert” | Deiete | ﬂ

A of

Figure 11 This screen shows the options menu.

80

m The WBTree Program BEIE

Fie "Opons Qut Help R RN &

I Insert | Delete | __:|
Help Topics: WBTree RE|
Contents | indes | Fod |

Mamﬁy;?'dd‘dpmuuactmmwmm

2} Intioduction
Desetian
Insertion
Open File
Options
Quet

98 5L Lo

Ll e

Figure 12 This is the help screen when it 1s initially popped up by users.

81

= The WBTree Program BEH
Fie Opbions Quit Hep . ' ¥

] Insert | D.eicl'e:. [o | ﬂL

P pmeeed 1L]

|24lcc.: ‘nz' FFF 82| GH:}Inaa‘ '[] Iais[UL [se-aLom Eazl] ‘ l ' (] vuu po»| RXX |s-ec|] |
|OO|MA |oo' BER IDGL J_] [] |OOIJ._U [00] KKK]DDI]] T | [oa[sss }?}o] ™]aal Ty :(,-:JJ J| |
[oo] pov [oo] EEE Joo| EFG oo| | | 100LMMME’01 NN POI NOP]ao] | Ioo| wy _[oc[mw{or.-l | | I
-Oo]mr—c llouiaso]ao[| []_] ’ﬁ’m‘aa|an|oo[f] I Eﬂ|m'iw| T [ou!f f I_ T]
|5’0LHHH!OO| HU Loo] 1 1]]

L i

Figure 13 This screen shows the program is building a B-tree.

= The WBTree Progiam BES I

Fle Qptions Qut Help

[) Gl rooes 4

|312|ml’l‘ﬂ"-!wp:ml .] |]

J

[G8] occ 0¥ ag e[bbb BR8] | | P2 5 PO o Pl | [| | B[=R T [[|

|oo| a0a 100! 2bb laol abe !_ﬂalm]oo" lao! ﬁ"ioalm ".ODL“"' laol—..—[oo: [oo] e !ool w loo] - [m:l |]
on_m |oc-' ace]oo' off |oo1 _ —‘ [00{ tttm [IE'O|MMHJC'OL"| loo! |ool Yy |oo! 121 00[[| r [
abk m 'Ioo| PPP]oo_ﬁLoo] rer Ioo[P !ooi

Ioo|c.—_c|oo Ma"oo! | | I'

oy o

|oo| ahk]oo[a ‘ool ay |oo

Figure 14. Screen of a B*-tree while it is being built

= The WBTiee Program BEO
Fle Dptions Qut Help

] insert | De-lete_'_l. - | ﬂ

i R 5 T I I

Heerald |l S IPwRE T[] F=mar T _]]

100! 200 |0{.-! abe |o?fm [oo{ bed |ool_ ‘oo| 449 ioo| ahi [oo] Kih !oo]]] |ootmmm[oo| ann |n<“1 |] []
pelz=ipleeie) [] 1] @Elfal] [] [] Zi=iefwie] §] 1]
lool o |oa|w |00| af |oo| I | [oo] W ’oo' W foo| ' | JJ loo] "m]00| v [oo| 222 [00] tae if:";']

!oo1 s |ao| ofy |oa # |oo| n |oo|
Al of7

Figure 15. Screen of a B*-tree while 1t 1s being built

&4

VITA
Betty H.Lin
Candidate for the Degree of

Master of Science

Thesis: AN OBJECT-ORIENTED GRAPHIC USER INTERFACE FOR
VISUALIZATION OF B-TREES’ ANIMATOR

Major Field: Computer Science

Biographical:

Education: Graduated from Harbin #35 High School, Harbin, P. R. China;
received Bachelor of Science degree in Public Health from Harbin Medical
University in July 1984. Completed the requirements for the Master of
Science degree with a major in Computer Science at Oklahoma State
University in May 1997.

Professional Experience: Employed as a newspaper reporter by Shanghai Public
Health Newspaper, Shanghai, P. R. China from 1984 to 1987: attended an
English and Communication Skill Training Program at World Health
Organization (WHO) of United Nations, Manila, Philippines from 1987 o
1988; employed as a health education coordinator by WHO - Shanghai
Collaborating Center for Health Education, Shanghai, P. R. China from
1988 to 1989.

