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ABSTRACT

Common large-scale environments associated with the development of derecho- 

producing convective systems from a large number of events are identified using 

statistical clustering of the 500-mb geopotential heights as guidance. The majority of the 

events (72%) fall into three main patterns that include a well-defined upstream trough 

(40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an 

additional warm-season pattern that is not identified in past studies of derecho 

environments. Consequently, forecasters need to be aware that the environmental large- 

scale patterns idealized in past studies only depict a portion of the full spectrum of the 

possibilities associated with the development of derechos.

To further explore derecho environments, statistics of derecho proximity- 

sounding parameters are presented relative to the derecho lifecycle as well as relative to 

the forcing for upward motion for the benefit of forecasters who use ingredients-based 

techniques. It is found that the environments ahead of maturing derechos tend to moisten 

at low-levels while remaining relatively dry aloft. In addition, derechos tend to decay as 

they move into environments with less instability and smaller deep-layer shear. Low- 

level shear (instability) is found to be significantly higher (lower) for the more strongly 

forced events, while the low-level storm relative inflow tends to be much deeper for the 

more weakly forced events. Furthermore, discrepancies are found in both low-level and 

deep-tropospheric shear parameters between observations and the shear profiles 

considered favorable for strong, long-lived convective systems in idealized simulations.

To explore the role of upper-level shear in derecho environments, a set of two- 

dimensional simulations of density currents within a dry, neutrally stable environment are
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used to examine the ability of a cold pool to lift environmental air within a vertically 

sheared flow. The results confirm that the addition of upper-level shear to a wind profile 

with weak to moderate low-level shear increases the vertical displacement of low-level 

parcels despite a decrease in the vertical velocity along the cold pool interface, as 

suggested by previous studies. Parcels that are elevated above the surface (1-2 km) 

overturn and are responsible for the deep lifting in the deep-shear environments. This 

deep overturning caused by the upper-level shear helps to maintain the tilt of the 

convective systems in more complex two-dimensional and three dimensional simulations. 

The overturning also is shown to greatly increase the size of the convective systems in 

the three-dimensional simulations by facilitating the initiation and maintenance of 

convective cells along the cold pool. When combined with estimates of the cold pool 

motion and the storm-relative hodograph, these results may best be used for the 

prediction of the demise of strong, linear mesoscale convective systems (MCSs) and may 

provide a conceptual model for the persistence of strong MCSs above a surface nocturnal 

inversion in situations that are not forced by a low-level jet.
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Chapter 1: Introduction

Convective storms can produce a variety of hazardous weather. While tornadoes 

and flash floods are usually responsible for the majority of casualties, fatalities, and 

economic losses every year, damaging nontomadic wind gusts can also contribute 

significantly to these losses (Kunkel et al. 1999). This study examines a particularly 

important subset of severe convective windstorms known as derechos (pronounced day- 

ray’-chos)', which are thought to account for much of the damage owing to nontomadic 

convective winds (often called "straight-line" winds) (Wakimoto 2001).

According to their definition by Johns and Hirt (1987; hereafter JH87), derechos 

emanate from a variety of convective structures, including those that are classified as 

circular mesoscale convective complexes (MCCs, Maddox 1980), general mesoscale 

convective systems (MCSs, Zipser 1982) or as more elongated linear systems that are 

grouped into the rather broad category of squall lines (Parker and Johnson 2000). 

Although they occur most frequently during the summer months across the Midwestern 

U.S., derechos have been observed during all months of the year and in most locales east 

of the Rocky Mountains (JH87, Bentley and Mote 1998, Coniglio and Stensrud 2004).

1.1. Motivation

The identification of radar-reflectivity patterns associated with severe-wind producing 

convection (Fujita 1959, Nolan 1959, Hamilton 1970, Fujita 1978, Johns and Doswell 

1992, Przybylinski 1995, Miller and Johns 2000) has greatly assisted forecasters in

' The term derecho was originally termed by Hinrichs ( 1888) with the intent of 
distinguishing wind damage produced by ordinary thunderstorm winds from those produced by 
tornadoes.



warning the public on the potential for damaging winds over the last few decades. 

However, at greater lead times (> 3 h), derechos remain a challenging forecast problem.

An important part of the forecast process involves the identification of important 

aspects of the environment that gives birth to and sustains the convective phenomenon in 

question. As detailed in Chapter 2, much of our current knowledge on derecho 

environments stems from the study of JH87, whose work was restricted to warm-season 

events. Illustrations of the large-scale flow patterns associated with derechos are even 

more limited and are related mostly to the severe, long-track variety (Johns et al. 1990 

examine 14 such cases, which are idealized into two patterns in Johns 1993). Evans and 

Doswell (2001) extend the work on derecho environments by examining proximity 

soundings from 67 derechos from all times of the year. However, they focus their 

attention on the cold pool and low-level shear/storm-relative wind characteristics and do 

not present features of the hodographs or of the vertical distribution of moisture in the 

profiles. They also suggest that additional patterns to those discussed in Johns (1993) 

exist, but do not expand upon the structure or frequency of these patterns.

Another important part of the forecast process involves an understanding of the 

physical connection between the observed environments and the resultant behavior of the 

convection; a problem which has led researchers to employ convection-resolving 

numerical models within a horizontally homogeneous environment. Despite the obvious 

restrictions of imposing and maintaining a horizontally uniform base state, studies of this 

nature have had some success in physically understanding how the storm responds to 

changes in the environment, particularly with supercell thunderstorms (Weisman and 

Klemp 1982, Rotunno and Klemp 1985, Brooks et al. 1994, Wicker 1996, Gilmore and



Wicker 1998).

A common characteristic of derecho-producing convective systems (DCSs) is that 

the most intense convection nearly always obtains a linear organization along the leading 

edge of the system, often as a single bow echo (Fujita 1978) or with smaller embedded 

bow echoes, during most of the DCS lifetime (JH87, Przybylinski 1995). In relation to 

linear MCSs in general, a large amount of idealized modeling work focuses on the 

interaction between the cold pool of air generated by the thunderstorm and the 

environmental low-level vertical wind shear (summarized in Chapter 2). The balance 

between the baroclinically-generated vorticity along the cold pool leading edge and the 

ambient low-level shear within the depth of the cold pool is deemed to be a primary 

factor controlling the linear MCSs in these numerical simulations. Weisman and 

Rotunno (2004) (WR hereafter) modify this original theory (Rotunno et al. 1988; RKW 

hereafter) by suggesting that shear above the depth of the cold pool can also be important 

in the same manner through action at a distance (Davies-Jones 2002) and the interaction 

with decaying rain cells, but shear above 5 km is detrimental to the overall strength and 

maintenance of the convective system.

Weisman (1992), Weisman (1993) (W93 hereafter) and WR apply the RKW 

concepts to understanding simulated convective systems that have features often 

observed with DCSs. W93 uses these simulations to identify favorable environmental 

wind shear parameters. It is shown that, for a convectively unstable and relatively moist 

troposphere, at least moderate low-level shear (> 15 m s’' over the lowest 2.5 or 5 km) is 

needed in order for the model to produce structures that resemble observed DCSs. From 

one simulation with the shear layer extended up to 10 km, WR also conclude that these



structures are particularly favored if shear is confined to 2.5 km and is at least 20 m s'  ̂ in 

magnitude, with no shear aloft, a result also supported by the recent simulations 

presented in Weisman and Trapp (2003).

In comparison, the study of observed derecho environments by JH87 suggests a 

mean value of surface-700 h Pa shear of around 15 m s ' for the more weakly forced 

events. Evans and Doswell (2001) show that the majority of the distribution of low-level 

shear falls below the minimum shear required to produce long-lived bow echoes in the 

idealized simulations of W93. Therefore, while the past idealized simulations are able to 

reproduce many observed features of DCSs, the parameter space examined in the 

simulations of strong, long-lived convective systems appears to differ somewhat from the 

parameter space of observed DCSs. WR recently suggest that the 0-5 km shear in 

relation to the cold pool strength better corresponds to the strength and structure of the 

simulated convective systems, but the physical reasons for this modification are only 

briefly hypothesized.

It is recognized that many convective systems may be sustained by processes other 

than those contained in convection/idealized environment interactions (Fritsch and 

Forbes 2001). It is known that DCSs usually initiate in the vicinity of a low-level thermal 

boundary and near a maximum in low-level warm advection, which is often a main 

source of the vertical wind shear. Less is known about how the related background 

forcing for upward motion and/or circulation features affects the overall maintenance of 

the system. Additionally, gravity waves (Schmidt and Cotton 1990) and embedded 

convective-scale circulations (Bemardet and Cotton 1998) that interact with stable layers 

may play a primary role in some cases. A reasonably accurate, yet manageable set of



numerical simulations that represent these type of events would require some type of 

representation of the background forcing superimposed on the homogeneous environment 

(Crook and Moncrieff 1988) or from other designs (Schmidt and Cotton 1990, Coniglio 

and Stensrud 2001). While these types of events justifiably await future study, the 

current study focuses on events that are assumed to be well-represented by idealized 

numerical models; those that occur within relatively benign synoptic-scale forcing for 

upward motion within well-mixed boundary layers.

Motivated by the detailed observational analysis presented in Chapters 3 and 4, this 

study hypothesizes that it is possible to describe characteristics of convective system 

maintenance and structure in a context different than that given by W93 and WR. In 

particular, this study examines the hypotheses based in the work of Shapiro (1992), 

Moncrieff and Liu (1999) and Coniglio and Stensrud (2001) that upper-level shear is an 

important factor in the structure and maintenance of strong, long-lived convective 

systems.

1.2. Objectives

While the above-mentioned studies reveal many aspects of derecho environments, 

there has yet to be a comprehensive study documenting the spectrum of large-scale 

environmental flow patterns associated with derechos. Therefore, the first goal of this 

study is to examine this spectrum and to identify, if  any, the preferred large-scale patterns 

from a large data set of derecho events from all times of the year. Emphasis is placed on 

more clearly defining and expanding on the patterns identified in past literature, primarily 

for the benefit of forecasters who often use pattern recognition techniques.



The second goal of this study is to examine derecho environments with the use of 

proximity soundings. As mentioned by Johns (1993), “there has not been a thorough 

investigation into the nature of hodographs associated with bow echo situations”. This 

problem is only partially examined by Evans and Doswell (2001) since they concentrate 

on the associated low-level shear vector magnitudes and storm-relative wind speeds and 

do not provide any estimation of the observed convective structures. Therefore, the 

examination of DCS environments with the use of proximity soundings in this study will 

benefit ingredients-based forecasting techniques and provide an observational baseline 

for the numerical modeling experiments.

The third goal is to explain the importance of the wind shear above the cold pool 

(identified in the observational portion of this study) by producing a set of both two 

dimensional (2-D) and three-dimensional (3-D) numerical simulations. How these 

simulations compare to the observations and to past idealized simulations also will be 

documented.

This research is important because it is believed that the behavior of convective 

systems can be interpreted differently than what is presented in W93 and WR in light of 

the observational evidence^. Improved forecasting methods and understanding of strong 

convective systems will be accomplished by documenting the environments that favor 

derechos and by identifying physical mechanisms that can maintain convective systems 

within environments that have not been emphasized in these past modeling studies.

 ̂ Favorable wind shear and instability parameters suggested by W93 are currently being taught to 
National Weather Service forecasters as part o f the Cooperative Program for Operational Meteorology 
Education and Training (COMET) modules and were used by forecasters in support o f the Bow Echoes and 
Mesoscale Convective Vortex (BAMEX) field program.



Chapter 2: Background

The analysis and interpretation of derecho environments is a primary focus of this 

study. This chapter begins with a overview of organized convective systems and then 

reviews the observational literature related to severe-wind producting convective 

systems.

Much of the research covered later in this study makes reference to the research of 

W93 and WR. Coniglio and Stensrud (2001) suggest that alternative perspectives on 

squall line behavior from other studies also may be applicable to strong convective 

systems. This Chapter reviews these subsets of squall line research and concludes with a 

synthesis of the past literature that motivates the goals of this study.

2.1. Effects of thunderstorm downdrafts

The factors that influence the strength of downdrafts within thunderstorms can be 

examined in a Lagrangian framework with the anelastic form of the vertical momentum 

equation,

(Zl)dt p  dz 

where the buoyancy, B, is defined as

B = -  - g
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where pm is the density of a moist sample of air, r^ is the water vapor mixing ratio, rm is 

the total hydrometeor mixing ratio, and the other symbols have their usual meteorological 

association. Equation 2.1 says that, to a close approximation, the vertical acceleration of 

air parcels are controlled by vertical perturbation pressure gradients (term 1 on RHS) and



the combined effects of buoyancy (B) from temperature perturbations, pressure 

perturbations, perturbations in water vapor mixing ratio, and the total hydrometeor 

mixing ratio (term 4 on the RHS of eq. 2.2), where the perturbations (represented by 

primes) are in relation to a dry, hydrostatic reference state (represented by the 0 

subscript). One of the many findings of the Thunderstorm Project (Byers and Braham 

1949) is the close association of downdrafts, cold surface temperature anomalies, and 

rainfall. Decades of later research generally conclude that negative buoyancy associated 

with the evaporation and sublimation of precipitation is the dominant mechanism that 

induces downward air parcel accelerations (Wakimoto 2001).

2.1.1. Precipitation ejfects on downdrafts

Many factors continually influence the amount of cooling due to evaporation and 

sublimation of condensate. In general, evaporative cooling is enhanced by larger lapse 

rates, higher rainfall intensity, and small raindrop size distributions (Hookings 1965, 

Kamburova and Ludlum 1966). Lapse rates close to dry-adiabatic are especially 

important to maintaining downdrafts since parcels often do not approximate pseudo- 

moist adiabatic descent, particularly for lighter rainfall rates and larger drop sizes 

(Kamburova and Ludlum 1966, Gilmore and Wicker 1998).

The mixing of condensate with unsaturated air, and the resultant 

evaporation/sublimation, is thought to be an efficient mechanism to initiate downdrafts 

(Heymsfield et al. 1978, Knupp 1988, Carpenter et al. 1998). Consequently, lower 

environmental relative humidity (RH) or equivalent potential temperature (0e) in the 

entrainment region corresponds to the greater potential for initiating downdrafts by 

entrainment (Hookings 1965), usually from an up-down branch that is dynamically forced



upward from low-levels ahead of the storm, or a midlevel branch which enters the 

downdraft from above the boundary layer, either from the rear or front of the storm 

(Knupp 1987, Knupp 1989).

For maintaining downdrafts, Srivastava (1985) and Proctor (1989) find that 

downward parcel acceleration increases with increasing environmental RH along the 

parcel descent. This is because the higher moisture content leads to larger virtual 

temperature differences between the environment and the parcel than there otherwise 

would be in a drier environment. Entrainment of dry air along the parcel descent can be 

detrimental to maintaining downdrafts because the condensate may evaporate too soon 

and allow for dry-adiabatic compressional warming over a substantial depth. This is 

qualitatively supported by observations of environments supporting wet microbursts, in 

which 6e-differences between low and midlevels are usually > 20°C (Atkins and 

Wakimoto 1991). Therefore, it is suggested that entrainment of dry air helps to initiate 

downdrafts while moist low level air helps to maintain the downdrafts, although the 

quantitative contributions of each process remain unanswered.

Despite lower latent cooling for ice particles compared to liquid, Srivastava (1987), 

Proctor (1989), and Straka and Anderson (1993) find that ice particles can be very 

important in the initiation of downdrafts since ice can melt completely in a fall of a few 

kilometers, whereas raindrops of the same sizes can not evaporate completely under 

similar environmental RH values. The addition of frozen condensate has a more 

significant effect under stable lapse rates than a downdraft with only liquid water due to 

the additional cooling from melting and loading of the frozen particles over deeper layers 

(Wakimoto and Bringi 1988, Hjelmfelt et al. 1989, Straka and Anderson 1993).



Multiparameter radar measurements confirm the importance of radar-reflectivity cores of 

higher water contents in more statically stable environments, including the presence of 

hail shafts within descending precipitation cores (Wilson and Wakimoto 2001).

2.2 Observed characteristics of organized convective systems

A result of convection growing in size and becoming collocated with other cells is 

the collection of downdrafts and the horizontal spreading of the cooled air at the surface. 

This air often organizes into the “cold pool” associated with the convective system. The 

leading edge of the cold pool, termed the “gust front” (Goff 1976, Wakimoto 1982) can 

attain the characteristics of simple density currents (Benjamin 1968, Seitter 1986, Xu 

1992), which» can provide a proxy for the motion of cold pools. While cold pool motion 

is governed by many factors, including ambient wind speed and shear (Seitter 1986, Xu 

1992, Chen 1995, Corfidi 2003), vertical momentum transfer (LeMone et al. 1984, Yang 

and Houze 1996, Trier et al. 1998), and terrain characteristics (Bosart and Sanders 1981), 

it is largely a response to the hydrostatically induced horizontal pressure gradient 

between the cooled air and the undisturbed environment. The existence of an organized 

convectively-generated cold pool that attains steady characteristics on timescales of at 

least a few hours and length scales greater than 100 km is central in the definition of 

mesoscale convective systems (MCSs) (Maddox 1980, Zipser 1982) and has been shown 

to be important to their dynamics.

2.2.1 Conceptual models o f MCSs

The descriptions of MCSs given by Maddox (1980), Zipser (1982), and interpreted 

by Parker and Johnson (2000) and Fritsch and Forbes (2001) suggest that MCSs can 

include both circular convective systems (as viewed by satellite) and the more linear and
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elongated systems, or “squall lines". Although the true spectrum of organized convective 

modes is likely continuous (Fritsch and Forbes 2001), a common characteristic of MCSs, 

especially the more robust variety, is the tendency for the strongest convection to become 

quasi-linear along the leading edge of the system. Observed as a distinct mode of 

precipitating convection for many years (Fujita 1955), convective systems of this type 

were originally conceptualized as a steady 2-D cell that allows for an efficient decoupling 

of the ascending updraft from the descending rain-cooled air (Ludlam 1963, Newton 

1966). Upon a synthesis of many later years of detailed observations, Houze et al. (1989) 

conceptualizes the mature stages of a class of squall lines containing a convective zone

Fig. 2.1. Conceptual model o f a squall line viewed in a vertical cross section in 
a plane parallel to its motion (from Houze et al. 1989).

with localized convective updrafts and downdrafts in various stages of their lifetimes (Fig 

2.1) along the gust front and a stratiform precipitation region. They also describe a 

mesoscale descending rear-to-front flow that develops beneath the anvil cloud at the back 

edge of the stratiform rain region and may reach the surface and augment the cold pool. 

Smull and Houze (1987) postulate that the rear-inflow is a response to a midlevel 

mesoscale low perturbation pressure center that develops from the combined effects of 

latent heat release aloft in the saturated ascending air and the latent cooling below.

Similar hydrostatically induced pressure mi mima may be produced within and 

immediately behind the convective cores (LeMone 1983). Smull and Houze (1987) 

demonstrate the association of this rear-inflow-jet (RIJ) with relatively low values of 9e,
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which suggests that importance of the evaporation of rain and/or the sublimation and 

melting of frozen condensate (Stensrud et al. 1991, Yang and Houze 1995) in the 

initiation of RUs. RIJs can attain relative speeds of 15 m s ' as modeled by Weisman 

(1992) and Yang and Houze (1995), and as observed by Smull and Houze (1987) and 

Klimowski (1994), and may persist for several hours after the decay of the convective 

line.

The rear-inflow branch is often tied to a well-defined mesoscale cyclonic vortex 

that can develop within the stratiform rain region on the north end of the line and can 

give the system an asymmetric appearance in radar reflectivity (Houze et al. 1989). This 

vortex is thought to develop from a variety of ways, including the convergence of relative 

vorticity by the mesoscale downdraft air (Brandes and Ziegler, 1993), the mesoscale 

convergence of air acting on the existing absolute vorticity (Skamarock et al. 1994), the 

tilting/twisting of ambient vorticity (Houze et al., 1989), and/or the hydrostatic response 

to the core of latent heating within the system (Davis and Weismain 1994).

Understanding the relative influences of these effects on organized convective systems 

remains a difficult observational problem and is one of the questions addressed by the 

BAMEX field project (Davis et al. 2004).

Parker and Johnson (2000), in a study of 88 linear MCSs, reveals that the classic 

trailing stratiform squall line model presented in Fig. 2.1 only comprises approximately 

60% of the cases, indicating the complexity of line-oriented convection. Other modes 

include a “leading” stratiform one where the hydrometeors from decaying convective 

cells forward  relative to the leading convective line (20%). They also observe the 

flow advecting the anvil along the line in cases they called “parallel” stratiform cases

12



(20%).

2.2.2 Characteristics o f convectively-produced windstorms 

The conceptual models described above represent general features common to a 

variety of MCSs. Many decades of observations have revealed additional features that 

are common among the types of organized convective systems that produce severe 

surface winds. Nolan (1959) and Hamilton (1970) recognized the existence of mesoscale 

wave patterns within linear MCSs, in which portions of the line accelerate in the direction
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Fig. 2.2. The classic conceptual model of the evolution o f a bow echo from a linear echo, to a 
bow echo, into a comma echo with a cyclonically rotating head. This model recognizes the 
possibility for tornadoes along the cyclonic shear side of the downburst (from Fujita 1978).

of the storm movement, producing a “line-echo wave pattern” (LEWP). From many

years of detailed observational work, Fujita (1978) shows that long swaths of damaging

surface winds often are found in the vicinity of the apex of a how echo on radar

reflectivity (Fig. 2.2). The bowing of the convective cell is thought to reflect the forward

advancement of strong, diverging outflow winds at the surface. Weisman (2001) notes

that many of Fujita’s conjectures have been verified with Doppler radar studies, including

his idea that bow echoes often are associated with strong rear-inflow and that tornadoes

associated with bow echoes are usually found north of a cyclonically rotating head (Fig.

2.2). Weisman (2001) also notes that the most severe bow echoes typically range in size

from 40 to 120 km and have lifetimes of several hours, but can occur on a wider range of
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space and time scales. Although Fujita's conceptual model is based on the transition of a 

single cell into a bow echo, this evolution is thought to be present to some extent within 

bow echoes of all sizes and lifetimes (Weisman 2001). Smull and Houze (1987) and 

Jorgensen and Smull (1993) illustrate a common occurrence of rear-inflow branches that 

originate at heights of 4-6 km and can produce significant mesoscale downdrafts and a 

bow-shaped MCS on length scales of 100-200 km.

Przybylinski (1995) stresses that channels of weak echo, often called rear-inflow 

notches (RINs), commonly occur behind the leading edge of the convection at various 

scales and are proposed to be associated with evaporation in the descending RIJ or the 

downbursts. The flow may reach to the lower regions of the convective region where the 

RIJ combines with the convective-scale downdrafts to enhance the strength of the 

outflow winds (Wakimoto 2001). Regions where the RIJ is locally enhanced can distort 

the echo into smaller bows, as observed by Burgess and Smull (1990), Przybylinski 

(1995), Knupp (1996), and Funk et al. (1999).

The typical development of bow echoes is documented by Klimowski et al. (2000) 

and the significance of bow-echo structures is confirmed by Klimowski et al. (2003) who 

find that among a set of 198 organized convective storm types in the northern Plains 

region that occurred in a 4-year period, 86% (56 out of 65) of the bow-echo structures 

produced severe surface winds.

2.2.3. Characteristics o f  derechos

Building on the original description of derechos by Hinrichs (1888), JH87 define 

the derecho to include any family of “downburst clusters” produced by an extratropical 

MCS and use six criteria to identify derechos in terms amenable to the available
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observations (Table 2.1). Fujita and Wakimoto (1981) define a downburst cluster as a 

swath of damage 10-100 km in length with embedded regions of more severe wind 

damage that cascade down in scale to -100 m in length. “Families of downburst 

clusters” are defined as a series of downburst clusters produced by one storm system as it 

travels hundreds of kilometers. Although downbursts are central in this definition, severe

Table 2.1. Criteria used to identify derechos in JH87, Bentley and Mote (1998) and 
Coniglio and Stensrud (2004).

JH87 Bentley and Mote 
(1998)

Coniglio and Stensrud 
(2004)

1) There must be a concentrated 
area o f convectively induced 
wind gusts greater than 26 m 
s ' that has a major axis length 
of 400 km or more.

Same as JH87 Same as JH87

2) The wind reports must have 
chronological progression.

Same as JH87 Same as JH87

3) No more than 3 h can elapse 
between successive wind 
reports.

No more than 2 h can elapse 
between successive wind 
reports.

No more than 2.5 h can elapse 
between successive wind 
reports.

4) There must be at least three 
reports o f either FI damage or 
wind gusts greater than 33 m 
s ' separated by at least 64 km 
during the MCS stage o f the 
event.

Not used Low-end: Not used 
Moderate: Same as JH87 
Hieh-end: There must be at 
least three reports of either 
wind gusts greater than 38 m s ' 
or comparable damage (see 
text), at least two o f which must 
occur during the MCS stage of 
the event.

5) The associated MCS must 
have spatial and temporal 
continuity.

The associated MCS must 
have spatial and temporal 
continuity with no more than 
2 °  o f latitude and longitude 
separating successive wind 
reports.

The associated MCS must have 
spatial and temporal continuity 
and each report must be within 
200 km o f the other reports 
within a wind-gust swath.

6) Multiple swaths of damage 
must be part of the same MCS 
as indicated by the available 
radar data.

Multiple swaths of damage 
must be part o f the same 
MCS as seen by temporally 
mapping the wind reports of 
each event.

Same as JH87

wind gusts often occur with the passage of the gust front, as a result of its fast 

translational speed, the turbulence in the density-current “head” region, downward
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transfer of horizontal momentum, or from the hydrostatically induced surface pressure 

gradient. It is difficult to diagnose the separate contributions of the gust front and the 

individual downbursts to the wind gust swath and a general relationship of these 

contributions to derechos remains unknown (Wakimoto 2001).

Recent studies have used deviations from the criteria listed in Table 2.1 (Bentley 

and Mote 1998, Evans and Doswell 2001). While some of these changes can impact the 

interpretation of the derecho climatology (Bentley and Mote 2000, Coniglio and Stensrud 

2004), the changes used in this study (see Chapter 3) do not change substantially the 

physical interpretation of the DCS as defined by JH87 (Coniglio and Stensrud 2004).

Many types of extratropical MCSs can produce derechos. However, through a 

study of 70 warm season (May-August) cases, JH87 show that most DCSs are composed 

of a quasi-linear, nearly continuous collection of strong convective cells along the leading 

edge of the system and that the downbursts and strong surface winds are usually 

associated with LEWPs and/or bow echoes in the leading convection. Bow echoes are 

often observed on a variety of length scales within a DCS (10-300 km) and several can be 

present simultaneously during a single event (JH87, Johns and Doswell 1992, 

Przybylinski 1995, Weisman 2001). MCSs that contain a small number (1-3) of bow 

echoes oriented at a large angle to the mean wind direction produce progressive derechos, 

which often move faster than the mean troposphere wind speed, suggesting that 

propagation is a significant component to the motion of DCSs (Corfidi 2003), but also 

may suggest gravity waves processes in more stable low-level environments (Schmidt 

and Cotton 1990). Progressive derechos often develop from a gathering of isolated cells 

that grow upscale into multicell clusters and eventually into highly organized MCSs, but
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can sometimes develop from a single isolated supercell (Przybylinski 1995, Klimowski et 

al. 2003). More elongated squall lines, sometimes with several individual bow-shaped 

convective elements that move rapidly along the line in the direction of the mean wind, 

produce serial derechos (JH87). Additionally, embedded supercells and/or convective- 

scale cyclonic vortices often are embedded within the main system and may not be 

associated with identifiable bow-echo circulations. In some cases, these vortices are 

associated directly with the most severe wind damage (Schmidt and Cotton 1989, 

Przybylinski 1995, Bemardet and Cotton 1998, Spoden et al. 1998, Funk et al. 1999, 

Martinelli et al. 2000, Miller and Johns 2000).

2.2.4 Derecho Environments

Much of our current knowledge on DCS environments stems from the study of 

JH87, whose work was restricted to warm-season (and mostly progressive) derechos. 

West to northwesterly mid-level flow usually overlays a low-level quasi-stationary 

thermal boundary that is either tied to synoptic flows or to cold outflows from prior 

convection. The DCSs that occur in association with relatively weak short-wave troughs 

generally move at a small angle to this boundary from the cold side to the warm side.

The strong trough cases tend to initiate north of a quasi-stationary boundary and then 

develop southward along or just ahead of a trailing cold front. In either case, significant 

low-level warm advection usually is present near the initiation of convection. Large 

amounts of conditional and convective instability, related to abnormally moist low-levels 

and relatively dry mid levels, also is found along the derecho track.
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Fig. 2.3. Left panel: An idealized sketch o f the warm season midlatitude 
synoptic scale pattern associated with especially long-lived progressive 
derechos. The line B-M-E represents the beginning, middle, and end points of 
the derecho. The thin lines depict the sea-level pressure field in the vicinity of 
quasi-stationary frontal boundary. Broad arrows denote the low-level jet (LJ) 
and the upper-tropospheric polar Jet (PJ). Right panel: Idealized sketch o f a 
midlatitude synoptic situation favorable for the development o f serial derechos 
(the “dynamic” pattern). The upper-tropospheric subtropical jet is labeled SJ 
(from Johns 1993).

Depictions of the large-scale flow patterns associated with DCSs are mostly limited 

to the severe, long-track variety and are derived from the study of 14 such cases by Johns 

et al. 1990. Upon a synthesis with the results of JH87, this depiction is idealized into a 

“warm season” progressive pattern by Johns (1993) (Fig. 2.3). Johns (1993) also 

idealizes a “dynamic” pattern that is thought to occur primarily in association with serial 

derechos (Fig. 2.3). In general, the dynamic pattern consists of a strong, migrating low 

pressure system and is similar to the more “classic” pattern associated with general 

severe weather outbreaks, in which tornadoes and severe-wind outbreaks often occur 

simultaneously (JH87, Johns and Doswell 1992).

Little research had been published on the vertical profiles of derecho environments 

until the work of Evans and Doswell (2001). Their work illustrates that derechos occur 

under a wide range of environmental low-level shear and instability. Specifically, in a 

comprehensive analysis of the low-level shear distributions using 113 derecho proximity
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soundings from 67 distinct events from all seasons, Evans and Doswell (2001) find that 

three-fourths of all the derechos occur with 0-2 km shear vector magnitudes less than 16 

m s '\ Additionally, the 0-6 km shear vector magnitudes mostly are less than 20 ms'^ for 

all cases examined. They suggest that the strength of the mean flow, and its effect on the 

motion of MCSs, enhances the potential for sustained severe wind gusts. They also 

recognize many cases that display features of both the warm season and dynamic 

patterns, which suggests the existence of a quasi-continuum of flow patterns with the 

strongly forced environment of the dynamic pattern and the benign large-scale forcing of 

the ridge pattern as end points. The frequency and structure of the distribution of these 

“intermediate” flow patterns has yet to be examined.

2.3 Conceptual models

Researchers have used a variety of analytical and numerical modeling frameworks 

to form general insights on the important physical mechanisms of squall lines and MCSs. 

While various contexts for describing squall line behavior have appeared in the literature 

over the last several decades, this section focuses on the class of research devoted to the 

response of the convective system to changes in the environmental wind shear.

2.3.1 Squall line simulations in 2-D 

Many models of squall lines have emphasized the effects of low-level wind shear 

on the strength and structure of squall lines within an idealized numerical modeling 

framework, with the earliest attempts produced in 2-D. RKW notes that the earliest 

simulations failed to replicate a quasi-steady squall line within deep shear that contains a 

single updraft cell as suggested by the conceptual model of Ludlum (1963) and Newton 

(1966). As a potential reconciliation, Monciieff (1978) and Lilly (1979), with the
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significant benefit of computers available for the numerical simulation of squall lines, 

suggest that squall lines in 3-D within deep shear take on “supercell-like” circulations 

that allow for a long-lived, quasi-steady cells to compose the squall line. However, the 

observational evidence seemed to suggest that squall lines in general are not 

supercellular. Kane (1973) was one of the first to suggest that strong low-level shear 

with little or no shear aloft enhances the ability of simulated 2-D squall lines to become 

stronger and broader for longer time periods. He also showed the tendency for squall line 

cells to regenerate and decay rather than remaining at a constant strength over time.

The tendency for strong low-level shear with constant winds aloft to support the 

strongest and steadiest 2-D squall lines also is noted by Thorpe et al. (1982) since in 

environments with deep shear, no steady squall line is produced. In these cases, they 

interpret the steady squall line as being composed of time-dependent cells that are 

“superimposed turbulence” on the time-averaged flow. The smoothness of the time- 

averaged sqoall-line flow suggests several distinct flows, including an overturning 

updraft, a “jump” type updraft (similar to the front-to-rear flow in Fig. 2.2), a shallow 

downdraft, and low-level horizontal vorticity within the cold pool (representing the 

propagating gust front). Analytical models that have application to squall lines produced 

in the previous few decades are able to replicate these basic steady, time-averaged flows, 

the details of which are summarized in Moncrieff (1992).

The most widely referenced conceptual model for the behavior of squall lines 

relates to the work of RKW and Weisman et al. (1988). Using both 2-D and limited 3-D 

frameworks with only warm-rain processes represented in the equations, they find that 

the magnitude of the low-level shear normal to the convective line that balances the cold
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pool circulation controls the strength and structure of long-lived squall lines. Unlike 

Thorpe et al. (1982), RKW emphasize the squall line steadiness as a result of the 

collection of ordinary cells that periodically generate and decay along the gust front, 

rather than the time-averaged circulation of the updrafts and downdrafts. The cold 

pool/shear “balance” is measured by comparing the prescribed wind speed difference 

perpendicular to the squall line (Au) to estimates of the integrated negative buoyancy at 

some distance behind the gust front (C), which is derived from the 2-D horizontal 

vorticity equation using simplifying assumptions. In RKW, the wind speed is differenced 

over the lowest 2.5 km to approximately match the depth of the cold pool, but WR extend 

this depth to the lowest 5 km to account for action at a distance (Davies-Jones 2002) and, 

as proposed by WR, the ability of decaying rain cells above the cold pool to retrigger 

cells in an analogous way to the cold pool/low level shear interactions. Conditions that 

generate the deepest lifting and the most effective convective retriggering occur when C 

= Au (the “optimal” condition). For a given cold pool strength, or similarly, a given 

amount of baroclinically generated vorticity, values of low-level shear too large cause the 

convection to tilt downshear and deposit its rain into the inflow, which effectively cuts 

off the supply of unstable air to the updrafts. In the “suboptimal” phase, values of low- 

level shear too small, the overall system tilts upshear as a direct result of the 

overwhelming influence of the cold pool circulation.

In RKW, the suboptimal phase is proposed to signal the beginning of the squall 

line’s decay, in which the gust front surges ahead of the updrafts. However, Fovell and 

Ogura (1989) find that none of their simulated squall lines demonstrate a decaying phase, 

even for very small wind shear. They view the suboptimal phase as one which causes the
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model storm to be weaker and more clearly multicellular, but also one in which the 

thermodynamics can adapt to the ambient wind shear to continually regenerate 

convection for long periods. They show that the decaying behavior in RKW is a 

numerical problem in which the domain is not extended far enough away from the 

convection to prevent detrimental feedback to the solution, but WR argue that this 

problem does not influence the dependence of the squall line strength and structure 

described by RKW.

The theory of RKW is adopted by Weisman (1992) to explain the development of 

RIJs through the importance of strong low-level shear in the inflow. The optimal balance 

argument of RKW generally requires a significant amount of low-level shear in the 

inflow to counteract the negative vorticity produced by the cold pool. One way to 

interpret physically the optimal configuration of a vertically-oriented updraft is the 

condition which minimizes the dilution of the high-0e air in the updraft from the 

potentially cold air that composes the cold pool. From an analysis of 2-D numerical 

simulations, Weisman (1992) argues that the maintenance of this warm plume is essential 

for setting up the buoyancy gradients that control the strength and orientation of the RIJ. 

Horizontal buoyancy gradients at the back edge of the updraft plume and the cold pool 

create opposing circulations that draw environmental midlevel air into the storm. The 

flow can accelerate as a result of perturbation low pressure associated with vertical 

gradients of buoyancy between the surface cold pool and the convective plume aloft, as 

described by Smull and Houze (1987). If the horizontal buoyancy gradients associated 

with the warm plume aloft are greater than those associated with the cold pool near the 

surface, the RIJ tends to remain elevated to the back edge of the leading convective line.
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Otherwise, the RIJs descend to the surface and spread within the cold pool well behind 

the main convection. Weisman (1992) claims that RUs that remain elevated to the 

leading edge of the system promote strong quasi-steady and long-lived squall lines 

through their import of positive horizontal vorticity to the leading edge of the cold pool. 

In this situation, the main updrafts are “propped up” along the gust front which maintains 

the strength of the system. Although the development of suboptimal conditions are a 

necessary precursor for the development of rear inflow in this conceptual model, if the 

initial low-level shear is too weak relative to the cold pool, the plumes become diluted to 

the point of forcing the RU to descend to the surface well behind the leading edge of the 

cold pool, which leads to a much weaker system.

2.3.2 Squall line simulations in 3-D

As an extension of the 2-D simulations presented in Weisman (1992), W93 uses 3- 

D numerical simulations to examine the genesis of an idealized bow echo that evolves 

from a splitting single cell within a larger squall line system. Due to the generalizations 

made by W93, this is the most widely referenced paper for researchers over the last 

decade that attempt to explain the structures and environments of observed DCSs. He 

shows that the RU development described in Weisman (1992) and the adoption of the 

RKW ideas are evident also within the 3-D structures of bow echoes (Fig. 2.4). In 

addition, cyclonic and anticyclonic vortices develop along the ends of the line from tilting 

of ambient horizontal vorticity (called “bookend” vortices) that can accelerate the rear- 

inflow through rotational dynamic pressure gradients. Overall, deep forced lifting is 

promoted by the convergence of the strong, elevated RU and the low-level storm-relative 

inflow ahead of the system and is crucial for bow echo longevity.
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Fig. 2.4. Four stages in the development of an idealized bow echo developing in a strongly 
sheared, large-CAPE environment. The updraft current is denoted by the thick double 
lines, with the rear-inflow current in (c) and (d) denoted by the thick, dashed vector. The 
shading denotes the surface cold pool. The thin, circular arrows depict the most significant 
sources of horizontal vorticity, which is either baroclinically generated by the cold pool or 
is inherent in the ambient shear. Regions of heavier rainfall are indicated by the more 
sparsely or densely packed vertical lines, respectively. The scalloped line denotes the 
outline of the cloud (from W93).

Weisman and Davis (1998) and Weisman and Trapp (2003) simulate similar 

structures that evolve into larger-scale bow echoes with a dominant cyclonic circulation 

that resemble bow-echo complexes. They claim that much of the cyclonic circulation 

develops from the titling of negative horizontal vorticity that is generated by the system 

and that convergence acting on Coriolis rotation leads to the dominant cyclonic 

circulation. Also, they simulate smaller cyclonic vortices that form along the leading 

edge of the northern end of the bow echo similar to those displayed in Fig. 2.2.
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Sometimes, these vortices merge with the primary cyclonic line-end vortex and can 

produce circulations that extend to midlevels. Trapp and Weisman (2003) suggest that 

these circulations may be a source for tomadic development associated with the comma 

head echo on the north end of the bow echo complex and may be the source of the 

strongest surface winds observed in severe bow echo storms.

Overall, Crook and Moncrieff (1988) and Fritsch and Forbes (2001) argue that the 

RKW conceptual model and its applications likely are to be most applicable to 

convective systems that occur in the absence of external forcing mechanisms and within a 

conditionally unstable lower atmosphere. Indeed, the meteorological literature contains a 

wealth of case studies that highlight the potential role of gravity-wave processes, 

dynamical forcing along frontal zones, intense short-wavelength troughs, or coupled-jet 

stream disturbances, in the development and maintenance of squall lines, which may 

diminish the importance of local-scale conditions on the overall maintenance of the 

system (Uccellini and Johnson 1979, Schmidt and Cotton 1990, Fankhauser et al. 1992, 

Funk et al. 1999, among others). Indeed, WR state that the theory of RKW applies 

primarily to conditions that lead to a solid line of convective cells along a significant cold 

pool that retains 2-D characteristics throughout its lifetime. Deeper shears or very strong 

low-level shears tend to allow the development of highly 3-D structures (RIJs, bow 

echoes, splitting and rotating individual cells) in the simulations that can complicate the 

results. However, using simulations with wind shear elevated above the cold pool, WR 

show that, for similar shear magnitudes, systems that produce the most rainfall, the 

largest rainfall rates, the strongest surface winds, and structures most resembling severe 

squall lines occur when the shear is entirely confined to low-levels, even when 3D
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structures are allowed to develop. This result leads them to reiterate the primary 

importance of an optimal low-level shear/cold-pool balance in controlling the strength, 

structure, and longevity of squall lines, even if the shear is not entirely confined to the 

depth of the cold pool.

2.3.3 Density current models

A crucial element of the definition of an MCS is the development of a common 

outflow on scales of at least 100 km (Zipser 1982). Numerous researchers have shown 

that cold pools often behave like simple two-fluid density currents and have expanded 

upon the classic nonlinear, two-fluid treatment of Benjamin (1968). Application to squall 

lines has been inferred through examining the changes in the propagation speed, depth, 

and shape of an idealized density current (as a proxy for the cold pool) with changes in 

the environmental shear (of any depth). In particular, Xu (1992) and Xu and Moncrieff 

(1994) show that the vorticity-balance ideas of Rotunno et al. (1988) have little bearing 

on the steady propagation of density currents. This does not necessarily exclude the 

importance of a vorticity balance in initiating localized convection along the gust front, 

but it can lead to alternative viewpoints for the maintenance of the system-scale structure 

if the propagating current (cold pool) can initiate and maintain convection by other means 

(Moncrieff 1992, Xu and Moncrieff 1994).

A specific subset of density-current research provides insight as to how the system- 

scale structure might be maintained by the forced lifting of air over the advancing cold 

pool without dependence on vorticity arguments. In a model of sheared flow over a 

density-current impermeable barrier, Shapiro (1992) hypothesizes that increasing the 

shear throughout the depth of the troposphere decreases convergence and the associated
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vertical velocity along the barrier owing to less mass impinging on the barrier. However, 

a decrease in vertical velocity does not translate into a decrease in vertical parcel 

displacements. Instead, air parcels that rise above the barrier may remain in the region of 

upward motion longer owing to weak system-relative winds in mid-levels and an 

overturning branch in upper-levels (depicted schematically in Fig. 2.5). It is 

hypothesized by Shapiro (1992) that increased residence time of air parcels leads to 

larger vertical parcel displacements and that these larger displacements can lead to a 

greater likelihood for initiating and maintaining convection.
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Fig. 2.5. Solutions from the hydrodynamical model of Shapiro (1992). The profiles in the 
upper most panels represent changes in the magnitude o f the wind (m s ') with height in a 
reference frame fixed with the density current barrier (shaded in black in the middle panels). 
Values o f the streamfunction and the direction o f the flow also is shown in the middle panels 
and the lower panels show vertical velocity (every 2 m s ') (adapted from Shapiro 1992).
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Whereas the morphology of the density current is fixed in the work of Shapiro 

(1992), Chen (1995) and Liu and Moncrieff (1996) allow the characteristics of the current 

to respond to changes in the environmental wind profile. The ability to initiate and 

maintain convection is implied through the direct relationship between the depth of the 

density current “head” (the elevated region of the current along its leading edge) and the 

strength and depth of the horizontal convergence (and subsequent forced lifting). In a 

simplified 2-D framework, they show that the head of the downshear-propagating current 

becomes progressively deeper with shear (an approximate linear relationship), but 

becomes shallower when the shear exceeds a critical value. The shear magnitude that 

maximizes the depth of the density-current head decreases for increasing shear depth. 

Overall, the largest head heights and vertical motions occur for moderate shear values (4- 

5 m s ' km ') and moderate shear depths (4 km). Shear values too large for a given depth 

cause the head structure to break down into multiple, shallow heads that reduce the 

forced lifting. This gives some support to the idea of an optimal shear profile and the 

importance of the low-level shear, but also suggests that the total shear (the product of the 

shear magnitude and the shear depth) may also be important if there are deeper wind 

shears and the explanation for this “optimal” condition is different physically than the 

RKW ideas, as implied by Gamer and Thorpe (1992). These results generally are 

confirmed by the 2-D numerical simulations of Xue (2000), who suggests that upper- 

level shear plays a similar role to low-level shear in raising the head depth and increasing 

the frontal slope of the gust front, and thus, the convergence.

Moncrieff and Liu (1999) provide a synthesis of the results of Shapiro (1992) and 

Liu and Moncrieff (1996) by examining the effects of ambient wind speed, wind shear
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and convergence on the ability of a density current to lift low-level environmental air. In 

both analytical and simplified numerical frameworks, they state that shear decreases the 

horizontal convergence due to less mass impinging on the downshear-propagating gravity 

current, but the presence of an overturning branch (that results from the positive shear in 

mid and upper levels) lifts boundary layer air to much higher levels. This lifting is 

enhanced when the lower-level wind direction opposes the direction of the mean shear 

vector, increases the convergence and leads to stronger, deeper vertical velocities. An 

overturning branch in a downshear-propagating density current implies the presence of a 

steering level, which anchors the incipient convection to the organized ascent along the 

density-current head.

There has yet to be a comprehensive treatment of how the above analyses can be 

modified by convective processes. It has been hypothesized that when the initial 

convection occurs above the head, the compensating subsidence occurs far enough ahead 

of the cold pool so that the head can adjust to the uninterrupted surface inflow by 

becoming deeper underneath the updrafts than it otherwise would with the subsidence 

occurring above the head (Gamer and Thorpe 1992). Therefore, organized ascent 

associated with an overturning branch that allows convection to develop above the head 

may provide a positive feedback mechanism that maintains the depth of the head and 

promotes further convective development. Additional positive feedbacks may result 

from advection of the perturbation vorticity, generated on the downshear flank of the 

convective plume, into the background positive vorticity of the overturning branch 

(Gamer and Thorpe 1992). Subsequently, it is reasonable to assume that this process is 

easier to realize with increased potential buoyant energy in the inflow layer, which
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effectively reduces the convective time scale and ensures that the mature convective 

plumes do not drift far from their location of initiation (Gamer and Thorpe 1992).

Since the above studies generally use model atmospheres that are neutrally 

stratified, unsaturated, free of heat sources, and constrained by 2-D flows and balance 

assumptions, the applicability of these models to line-type outflows governed by 

buoyancy forces is certainly in question. However, the consistency of the result that the 

forced lifting and the vertical displacement of parcels becomes deeper in the presence of 

deep vertical wind shear among a variety of simplified density-current frameworks 

provides justification to further examine these results in model frameworks similar to 

those used by RKW, W93, and WR.

2.4 Discrepancies in observations and idealized models

As a preliminary examination of the results from density current applications, 

Coniglio and Stensrud (2001) simulate a progressive derecho within a full-physics 3-D 

model initialized with a horizontally nonhomogeneos environment derived from a simple 

composite analysis of observed derecho environments. The model develops an 

asymmetric squall line with complex 3-D rear-inflow and embedded bow echoes along 

the leading line. They find that DCS-like structures can develop and persist within low- 

level shear profiles that have difficulty producing bow echo structures in the work of 

W93 and WR. Weisman and Davis (1998) and Weisman and Trapp (2003) simulate a 

bow-echo complex, but only for shear greater than 20 ms ’ over the lowest 2.5 km, which 

prevents the comparison of the shear required to produce this structure versus the bow 

echo in W93. The mean wind profile in Coniglio and Stensrud (2001) consists of about 

3-4 m s ’ km ’ of shear. However, this shear is distributed over the entire depth of the
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troposphere, unlike the W93 simulations, but similar to the shear profiles considered 

favorable for maintaining deep, forced lifting along the gust front in the models of 

Shapiro (1992) and Moncrieff and Liu (1999). Weisman and Rotunno (2004) extend 

shear layers to 10 km, but find a mixture of supercells and upshear-tilted multicellular 

squall lines isolated along the gust front. They stress that the characteristics of the squall 

lines under these conditions show little sensitivity to changes in the upper-level shear and 

are not as strong or as organized as the squall lines that develop in zero upper-level shear. 

Additionally, bow echo structures only develop in their simulations if the shear is 

confined to the lowest 5 km. In the simulation of Coniglio and Stensrud (2001), most of 

the cells were not supercellular in nature, but were more of a mix of ordinary cells and 

bow echoes embedded within the main convective system.

Further discrepancy comes from the fact that the observational results of Evans and 

Doswell (2001) are somewhat inconsistent with the parameter study of W93 who finds 

that shear of 15 ms'* or less (over the lowest 2.5 or 5 km) support systems that can 

produce strong surface winds, but are described as “upshear-titled systems of rain cells 

tens of kilometers behind the gust front”, in which “the structures described for the 

idealized, long-lived bow echo do not develop”. W93 also finds that structures similar to 

the idealized bow echo require at least 2000 m^ s'^ of convective available potential 

energy (CAPE) and at least 20 m s'* of low-level shear. Using finer resolution and much 

larger domain sizes, very similar conclusions can be made from the recent simulations 

presented in WR, which confirms that organized bow echoes only are produced if the 

shear layer is confined to the lowest 5 km. The requirement of at least 2000 m^ s'^ of 

CAPE is likely tied to the inability of idealized cloud-scale models to represent external
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forcing mechanisms (e.g. from frontal circulations or jet-induced ageostrophic 

circulations). However, the requirement of such large values of low-level shear is not 

clear and is not supported by the observations.

Evans and Doswell (2001) also show little correlation between proxy measures for 

cold pool strength (potential temperature differences between the environment and the 

cold pool and values of downdraft CAPE), and the strength of the low-level shear, which 

further suggests a disparity between the observations and theory of RKW, which is 

modified to allow for deeper shears, yet reaffirmed in WR.

2.5 Summary

The above literature review highlights a disparity between observations of derecho 

environments and those required to simulate derecho-like structures in idealized models. 

This may stem from the lack of detailed knowledge of the 3-D derecho environments. 

Overall, this study intends to document the range and structure of the large-scale flow 

patterns and environmental parameters associated with the development of derechos. It 

will be shown that derecho environments often have substantial upper-level shear and 

substantially more convective instability than represented in the initial profile of W93 and 

WR, particularly for the more weakly-forced events. Using these observational results as 

a guideline, this study intends to test the hypotheses gathered mainly from the work of 

Shapiro (1992), Liu and Moncrieff (1996), and Moncrieff and Liu (1999) that the 

addition of shear above the cold pool to a wind profile with “suboptimal” low-level shear 

can enhance the ability of the cold pool to initiate and maintain convection. The ultimate 

goal is to provide a new conceptual model for the development and maintenance of 

strong convective systems under these conditions.
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Chapter 3: Data Set and Analysis of Large-Scale Environments

Meeting the objectives of this study requires an appropriate blend of observational 

and model data. This chapter covers the methods for identifying and analyzing the 

derecho data set and discusses the results.

3.1 Derecho Criteria

Storm Data provided by the National Climatic Data Center (NCDC) and the Storm 

Prediction Center (SPC) convective wind database are examined from the years of 1980- 

2001 to identify derecho events. A convectively induced windstorm is considered a 

derecho if:

1) There is a concentrated area of wind gust (> 26 ms"’) or wind damage reports 

with a major axis > 400 km in length,

2) the wind reports show a near-continuous progression in a single or series of 

swaths with no more than 2.5 h or 200 km between concentrations of reports,

3) the parent convection is organized into an MCS and exhibits a distinct linear 

radar reflectivity structure, and

4) the wind reports are not associated with tropical storms or hurricanes.

Note the lack of the JH87 criterion of 3 reports of wind gusts > 33 ms"' (or FI damage) 

separated by 64 or more km, which is also lacking from the criteria used by Bentley and 

Mote (1998) (see Table 2.1). This allows the inclusion of severe-wind producing MCSs 

that are somewhat more benign than the severe MCSs considered to be derechos in JH87. 

Additionally, since JH87 only considered wind reports from the bow-echo or linear stage 

of the MCS, systems with somewhat shorter lifetimes than those considered in JH87 are
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included in this study. In addition to the available surface charts, the available Weather 

Surveillance Radar (WSR-88D) level II reflectivity data obtained from the National 

Climatic Data Center (NCDC), the W SR-88D mosaic reflectivity images at 2-km or 4-km 

resolution, or the archived hourly radar summary charts produced by the National Centers 

for Environmental Prediction (NCEP) are used to verify criterion #3. Wind reports that 

compose the derecho path are determined by a combination of a temporal mapping of the 

reports and an inspection of the radar data. Reports from isolated cells are allowed as 

long as those cells eventually develop into or become part of the MCS.

There are 270 derecho events that are identified using the above criteria. It is found 

that determining a dominant radar reflectivity structure from the archived radar summary 

charts is often very difficult. Considering that JH87 identify 70 events in the warm 

season months of 1980-1983, the assessment of the criteria in this study is very 

conservative and reveals the importance of the first-hand experience and logs of severe 

weather events from operations used by JH87. The fact that the standards of severe wind 

gust reporting and damage surveying has been inconsistent over the years (Johns and 

Evans 2000) has led to a dramatic increase in the number of wind reports over the last 

quarter century (Weiss et al. 2002). These factors likely cause the trend in the 

distribution of derecho events toward the later years in this study (Fig. 3.1).

In addition, a bias is introduced due to the highly irregular distribution of populated 

areas east of the Rocky Mountains. This hinders the ability to describe the true 

geographical distribution of events from the raw data (Johns and Evans 2000). However, 

the primary intent is to obtain a large data set of derecho events and not to estimate the 

true geographical distribution [see Coniglio and Stensrud (2004) for a discussion].
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Fig. 3.1. The yearly distribution o f derechos in the data set.

3,2 Analyzing Large-Scale Environments

The goal of identifying typical large-scale flow patterns is met through the 

examination of constant pressure analyses that represent the environment during the 

development of DCSs. This study uses the four-times daily analyses on 2.5° grids (valid 

at 0000, 0600, 1200, and 1800 UTC) from the NCEP-National Centers for Atmospheric 

Research (NCAR) Reanalysis data set (Kistler et al. 2001). The time of the analysis that 

is closest to the time of the first wind report is used to represent each case.

Since there is a wide range of durations observed among the events (5 to 30 h), the 

environments relative to the lifecycle of each event are preserved by defining a 

normalized observation time, tobs (if the derecho begins at 0600 UTC and terminates at 

1800 UTC, then tobs=0.5 for the 1200 UTC analysis). Ufa must be estimated for the cases 

in which the derecho appears to begin (or end) over Canada or over oceanic waters. The 

data set is further restricted to include only those cases with (Ufa| ^  0.25. This restriction
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removes some of the shorter-lived events from the data set, but ensures that environments 

associated with the initiation and early-mature stages of the DCSs are represented. This 

procedure retains 225 out of the 270 cases.

3.2.1 Analysis Method

The first goal of this study is to determine if there are preferred large-scale flow 

patterns associated with the development of DCSs and, if so, the structure of the patterns. 

In this study, the patterns are defined first by the subjective recognition of the primary 

synoptic-scale feature that influences each DCS. To supplement the subjective approach, 

a method based on cluster analysis to the 500-hPa geopotential height field (^) is used as 

guidance. The basic benefit of using a semi-objective technique, such as cluster analysis, 

is to provide an element of objectivity to determining a meaningful stratification of the 

data which might otherwise be overlooked in an entirely subjective technique, especially 

when dealing with a large data set (Wilks 1995).

In this application, grid-point values of (^from the representative analysis are 

interpolated to a Cartesian grid with its origin located at the intersection between the DCS 

leading edge (or initial convective cluster) and the derecho major axis. Each grid has 27 

points in the east-west direction and 25 points in the north-south direction (675 total) 

spaced 100 km apart. h r \ n x p  data matrix, X, is formed with the 225 cases as the n 

columns and the 675 grid point values of ^as the p  rows.

Past DCS literature emphasizes the subjective recognition of flow patterns in terms of 

the shape and orientation of the geopotential heights (JH87, Bentley et al. 2000, Evans 

and Doswell 2001). A reasonable choice to quantitatively relate the 225 cases in this 

manner is the Pearson correlation coefficient (Wolter 1987). Application of this measure
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to X results in an n x n symmetric matrix composed of the correlation coefficient among 

all of the columns of X.

Gong and Richman (1995) showed that non-hierarchical techniques outperformed 

hierarchical techniques in an application to a 40-year data set of 7-day precipitation data. 

However, non-hierarchical methods require the generation of “seed points”, which is 

based on an initial assessment of the likely number of “correct” clusters among the data. 

In the application to 500-hPa height fields in this study, the likely range for the number of 

clusters that best group the data is not known through subjective knowledge and the goal 

is to provide a visualization of the range of flow patterns that emerge from the individual 

cases. Therefore, various hierarchical agglomerative clustering algorithms are then used 

to define groupings (clusters) of the cases based on X. This study uses several algorithms 

that are frequently applied to geophysical data (Gong and Richman 1995), including three 

variations of the “average linkage” technique and the “minimum variance” method 

(Ward’s method) (Degaetano 1996). There are many objective rules that can help the user 

in determining the number of clusters (Degaetano 1996). Despite that, none is accepted 

as foolproof or superior under a range of applications, hence some subjectivity is 

introduced. In this study, the algorithm is stopped before it combines clusters that have 

clear distinctions based upon a visual inspection of the associated members. This is 

justified since the field of <^and its spatial variability tends to be smooth, and thus, it is 

unlikely that any true number of clusters exists (Dagaetano 1996). Accordingly, there are 

a number of potentially meaningful solutions that depend on the level of similarity 

desired in the solution (Fovell and Fovell 1993) that are limited by the scale of the 

analyses.
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Among the set of analyses, clustering is tested first using the correlation measure to 

help identify the distinct patterns. This measure removes the mean and variance of each 

case, which allows cases from different seasons to be classified into the same pattern. 

Hence, the composite maps based on this output represent significantly smoothed patterns 

with an unnecessarily large variance among the members of each composite.

To improve the illustration of the variability within the patterns through composite 

maps, it is desirable to find analyses that are similar in terms of both their mean and 

variance. In order to reduce the variance in 500-hPa height magnitudes within each 

cluster, and thus to create a more meaningful composite, clustering using the Euclidean 

distance measure is applied to the analyses in each pattern. Euclidean distance is 

frequently used as a dissimilarity measure (Gong and Richman 1995), which results in an 

n x n  symmetric matrix composed of the root of the sum of squared differences among all 

of the columns of X. This helps to identify the cases with similar grid-averaged <p and the 

gradient of (^across the grids, which are then separated into clusters within each pattern.

In this application, this two-tiered approach, which groups the analyses into patterns 

based on the shape of the 500-hPa heights fields followed by the generation of clusters 

within each pattern based on both the shape and magnitude and gradient of the 500-hPa 

heights, ultimately improves the ability to visualize the patterns, and the variability within 

them, over what is possible from a single stratification of the data set.

3.3 Results

Results suggest that a wide spectrum of flow patterns is associated with the 

development and early evolution of DCSs. However, the majority of the events (72%) 

fall into three main patterns that include a well-defined upstream trough (40%), a ridge
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(20%), and a zonal, low-amplitude flow (12%). The variability within each pattern is 

visualized through the composite maps generated from averaging the analyses that 

compose the clusters within each of the three main patterns (Figs. 3.2, 3.5 and 3.6). The
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Fig. 3.2. (a) The mean 500-mb geopotential height ((]), contours every 60 m) and wind (flag = 25 
m s ', full barb = 5 m s ') for four clusters within the upstream-trough pattern, (b) As in (a), 
except for the 850-mb temperature (T, solid contours every 2 K) and specific humidity (q, dashed 
contours every 1 g kg ' starting at 8 g kg '), (c) As in (a), except for the 250-mb wind speed (|V|, 
solid contours every 5 m s ', starting at 25 m s ') and divergence of the wind (Div (V), dashed 
contours every 0.25 x 10'  ̂s '). The horizontal and vertical dimension of each grid is 2600 km by 
2400 km, respectively. The X denotes the position of the DCS at the analysis time. The number 
in the upper-right corner of each grid denotes the number of analyses in each composite (cluster).
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remaining cases (28%) exhibit either large-scale hybrid patterns that are combinations of 

the three main patterns or unclassifiable patterns (according to the three main 

classifications). The section below focuses on the characteristics of the three main 

patterns.

3.3.1 Upstream-trough pattern

The upstream-trough pattern is formed from 91 cases (40.4%) that have a well- 

defined mobile upstream trough as the primary influence on the development of the DCS 

(Fig. 3.2). The large-scale estimate of the mean mid-level differential vorticity advection 

is found to be 4 to 6 times larger for the upstream-trough events than for the ridge and 

zonal-flow events (mesoscale shortwave troughs embedded within the larger scale flow 

may provide significant forcing in the zonal and ridge patterns, but this cannot be 

determined from the relatively coarse Reanalysis data). Accordingly, these events best 

match Johns’ (1993) strong large-scale forcing/dynamic pattern and mostly exhibit 

characteristics of serial derechos. The upstream-trough events occur most frequently 

along the Gulf Coast states, with a secondary activity corridor from the mid-Mississippi 

valley region through the lower Ohio valley (Fig. 3.3). The upstream-trough events occur 

throughout the year, with the majority of events residing in the colder months (Fig. 3.4). 

Notice that while many events occur in May, many of these events occur in the first half 

of May under "cold-season"-like conditions. This shows that while the dynamic pattern 

(and the serial derecho) is not rare during the warm season (20% occur in June-August) it 

is typically a cold-season pattern.

Four main clusters are identified that include 70 out of the 91 events (77%) from the 

upstream-trough pattern. The first upstream-trough cluster illustrates a very high-
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amplitude trough west of the DCS location (cluster 1 in Fig. 3.2a). Clusters 2 and 3 in 

Fig. 3.2a illustrate two additional upstream-trough clusters that are distinguished by 

progressively higher mean heights, a lessening of the mean trough amplitude and a

Fig. 3.3. The total number of derecho major axes that occur in 200 km by 200 km squares for (a) 
the 91 cases in the upstream-trough pattern, (b) the 46 cases in the ridge pattern, and (c) the 28 
cases in the zonal pattern. Contours are drawn every 3 events in (a), every 2 events in (b), and 
every 1 event in (c).

decrease in the 500-hPa wind speed. These two clusters illustrate the most common type 

of upstream-trough event (see Duke and Rogash 1992 and Funk et al. 1999 for 

examples). The remaining cluster is formed from 7 warm-season upstream-trough 

events, with a seasonally strong, positively tilted trough propagating through a mean

41



westerly flow. Notice that within each cluster, the mean 500-hPa winds are strongest 

near the DCS location, indicating that the DCS often develops in the vicinity of a mid

level jet propagating around the base of the trough.
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Fig. 3.4. The total number of derechos occurring during each month for each of the three 
main patterns. The counts are given in the table below the figure.

A southerly wind maximum is found ahead of a large-scale thermal boundary at 

850-hPa in the upstream-trough pattern (Fig. 3.2b). Low-level cyclogenesis is well 

underway in many of the colder-season events (mostly clusters 1 and 2), as the warm 

advection is maximized to the north and east of the DCS location. A well-defined 850- 

hPa moisture axis lies along the axis of maximum wind ahead of the thermal boundary, 

which suggests that large-scale moisture transport occurs for many hours prior to 

development in these cases. In addition, the mean low-level jet axis is oriented at a 

relatively small angle to the mean mid- and upper-level jet, which is characteristic of a
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pattern that may discriminate derecho occurrences from tornado outbreaks (Johns 1993). 

A thermal ridge becomes more evident to the southwest of the DCS location as the mean 

trough decreases in amplitude. This is especially apparent in cluster 4 in which the 

thermal boundary appears to now be oriented from west-northwest to east-southeast, with 

the maximum of warm advection returning to the location of DCS development. Cluster 

4 shows a moisture axis extending from the south, as in clusters 1-3, but also shows a 

secondary axis extending east along the thermal boundary.

The left exit region of a strong upper-level jet, and the associated divergence, often 

is located near the DCS location in cluster 1 (Fig. 3.2c). This also is found for cluster 2, 

with a broad region of upper-level divergence near the DCS location that can be 

associated with either the polar jet or the subtropical jet. Combined with the strong 

south-southwesterly flow and the mean frontal position at 850 hPa (Fig. 3.2b), this 

provides a favorable environment for the coupling of upper-level and lower-level jets, 

which has long been identified as a contributor to  severe weather outbreaks (Uccellini 

and Johnson 1979). The increasing influence of the polar jet is seen for cluster 3 as the 

mean jet has shifted to the northeast, although the subtropical jet is still present in a few 

of these cases. The 250-hPa jet is considerably weaker for the cases in cluster 4 and does 

not show a preferred location, although the mean pattern still displays a broad region of 

divergence just upstream of the DCS development region.

3.3.2 Ridge pattern

The ridge pattern is formed from 46 events (20.4%) that are influenced by the 

anticyclonic flow around a ridge at 500-hPa (Fig. 3.5). These cases best match Johns' 

(1993) warm-season pattern and all exhibit characteristics of progressive derechos. The
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ridge pattern events occur in three distinguishable regions; one stretching northwest to 

southeast across the southern Great Plains, one stretching west-northwest to east- 

southeast from Iowa to Kentucky, and another stretching west to east from the northern

(a) 500-mb (|)
RIDGE

Utk. UtL 
ZÊtTuiL UUk

-  UL_. [I,. 1111 Mil mi, lUL 

us^ U L  UIL UIL UUi-lllk iû i.  ti

ULL UlL UlL UlL (&L

.liLftlCT’

:L. <, kX'
L / y /

■'■y-y I
\  M

-Clîlfsi’̂ R̂ S^
y ,  . I \ t r r T f

(b) 850-mb T, q

(c) 250-mb IVI, Div (V)

/■'Vt  %% iXIk-̂  lOBi-UIL

v v
/  C L U S T E R<sr<a/.y

& ài ^

;w£,;VV ̂ 4-«L. «L, 
tlL uù'iL’ifccîk «U U_'iU <

,uuuA iL IIL «C

i .  I IL  M l  '■ ' ■

L.LiLUU,_mLL . 
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Fig. 3.5. As in Fig. 3.2, except for the ridge pattern.
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Plains to the western Great Lakes region (Fig. 3.3b). The 46 ridge events all occur during 

the warm-season (Fig. 3.4).

Three main clusters are identified in the ridge pattern that include 31 out of the 46 

cases (67%). The first cluster contains 9 events that develop upstream of the ridge axis. 

The mean pattern displays a short-wave trough in the process of breaking down the 

northern extent of the strong ridge. This produces a mean 20-25 m s ’ 500-hPa jet just to 

the north of the DCS location (Fig. 3.5a). All of the cases in this cluster develop in the 

northern Plains region (not shown) and are long-lived events. An example is the 

particularly destructive derecho event on 4-5 July 1999 that developed in South Dakota 

and decayed many hours later off the coast of Maine (Miller and Johns 2000). The 

second cluster identifies 10 events that develop near the axis of a flat ridge with a weakly 

confluent zonal flow to the north (cluster 2 in Fig. 3.5a) (see Evans and Corfidi 2000 for 

an example). The mean 500-hPa wind speed is weakest for this cluster, with values of 

15-18 m s ’ near the location of DCS development. The third cluster identifies 12 events 

that develop downstream of a high-amplitude ridge within mean 500-hPa northwesterly 

flow of 16-20 m s ’ (see Miller et al. 2002 for an example). Many of these cases display a 

weak, short-wave trough digging southeast downstream of the ridge, which produces 

stronger flow in the vicinity of and the northeast of the DCS location.

The patterns of 850-hPa temperature for the ridge pattern (Fig. 3.5b) qualitatively 

resemble their associated pattern of 500-hPa heights, with a thermal boundary oriented 

parallel to the mean mid-level flow. This is a sign that the mid-level large-scale flow 

often is equivalent barotropic (Bluestein 1993) and suggests that the large-scale forcing 

often is provided through low-level warm advection. As identified by Johns et al. (1990),
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a common thread to these events is that the warm advection becomes progressively 

weaker downstream. An axis of 850-hPa moisture along the thermal boundary near and 

downstream (relative to the mid-level flow) of the DCS location is clearly evident in this 

pattern, which is another important feature originally identified by JH87 and Johns et al. 

(1990).

An interesting finding is that the right-entrance region of a strong polar jet is 

usually located near the DCS for the cases within this pattern. In addition, a comparison 

of Figs. 3.5a and 3.5c shows that the mean wind speed increases by as much as 20-25 m 

s'  ̂ from 500 to 250 hPa near the location of DCS development. Although the mesoscale 

details are beyond the scope of this paper, these two factors produce a favorable scenario 

for the development of ageostrophic, thermally direct circulations related to jet-stream 

disturbances (Bluestein 1993). It is likely that these jet stream circulations augment the 

forcing provided by low-level warm advection in many of the events. The jet is strongest 

for the cases in cluster 1, with 250-hPa wind speeds as high as 40-45 m s’* just-to the 

north of the DCS location. The prevalence of the right-entrance region of the jet also is 

evident in clusters 2 and 3, with the maximum of divergence almost exactly co-located 

with the location of DCS development.

3.3.3 Zonal pattern

The zonal pattern contains 28 events (12.4%), mostly progressive derechos, that 

identify an additional warm-season pattern that has not been emphasized in previous 

literature (Fig. 3.6) (see Spoden et al. 1996 for an example). The zonal flow events tend 

to occur most frequently from the upper Midwest through the lower Great Lakes region, 

but also occur in the eastern Plains and the Gulf Coast states (Fig. 3.3c).
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Fig. 3.6. As in Fig. 3.2, except for the zonal pattern.

The composite maps from a cluster of 13 events show a strong mean midlevel flow 

of 25-30 m s ' just to the north of the DCS location (Fig. 3.6a). Despite the lack of an 

identifiable mid-level trough in the mean flow, a trough axis is evident at 850-hPa in the 

wind field, which extends southwest to northeast upstream of the DCS location (Fig. 

3.6b). A mean southwesterly 850-hPa flow of approximately 10 m s ' extends ahead of
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this trough and lies along a thermal ridge axis to the south and west. A strong east-west 

oriented thermal boundary lies near and to the north of the DCS location, with a zone of 

warm advection and an axis of moisture that stretches near and downstream of the DCS

y y V
oeoaogialaapAstxr

Fig. 3.7. The 500-mb geopotential height and wind (as in Fig. 6) for the 8 cases that 
comprise cluster 1 in the upstream-trough pattern. The X denotes the approximate 
location of the DCS at the analysis time and the arrow depicts the approximate track of 
the derecho major axis. The date and time (UTC) of each analysis (in YYMMDDHH 
format) is displayed in the lower right of each panel.

location. As in many of the ridge cases, an unseasonably strong 250-hPa jet (shown with 

a mean speed > 50 m s ')  lies to the north of the DCS location and places the
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development region in its associated divergence. As in the ridge pattern, this suggests the 

frequent existence of jet streaks propagating through the mean flow and the possibility of 

ageostrophic thermally direct circulations that aid in the development of the systems.

3.4 Discussion

It should be emphasized that the individual cases within each cluster necessarily 

display a degree of variability on scales resolved by the Reanalysis data that is inherent in 

the choice of detail allowed in the clusters. As an example, the individual analyses that 

comprise cluster 1 of the upstream-trough pattern are shown in Fig. 3.7. These analyses 

display similarities in terms of the direction and speed of the mid-level flow, as well as 

the mean pattern and magnitude of the heights, but show some variability in the shape 

and position of the trough. This is in addition to mesoscale details that are often 

superimposed on the main flow (Przybylinski 1995, Bosart et al. 1998, Klimowski et al. 

2000, Miller and Johns 2000), but are not considered in this analysis.

Forecasters should also be made aware that large-scale hybrid patterns and some 

unclassifiable patterns account for the remaining 28% of the events. The hybrids 

combine various characteristics of the three main patterns and mainly occur in the warm 

season (three examples are shown in Fig. 3.8). The variability inherent in the patterns 

and the tendency for the spectrum to show a continuum of flow types is suggested in Fig. 

3.9, which shows histograms of attributes among the three main flow types and the other 

flow patterns. The tendency for the “hybrid” cases to fall between the dynamic and ridge 

patterns is displayed best in the 500-hPa heights (Fig. 3.9a), but is represented to some 

degree in the derecho mean direction of propagation (Fig. 3.9b), and in the 500-hPa wind 

speeds (Fig. 3.9c). The distribution of these attributes among the zonal flow pattern tend
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Fig. 3.8. Examples o f 500-mb geopotential heights and winds from hybrid patterns, (a)
An example of an upstream-trough/zonal pattern hybrid, (b) An example of an 
upstream-trough/ridge pattern hybrid, (c) An example o f an unclassifiable hybrid 
pattern. The approximate track of the derecho major axis is depicted by the arrow. The 
date and time (UTC) of each analysis (in YYMMDDHH format) is displayed in the 
lower right o f each panel.

to be similar to those for the ridge pattern, which is a reflection of their occurrence almost 

entirely in the warm-season. The existence of these other patterns and the variability 

within each pattern shows that the idealized dynamic and warm-season patterns discussed 

by Johns (1993) only depict a portion of the full spectrum of the possibilities of large- 

scale flow patterns associated with the development of DCSs.
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It is believed that the documentation of the continuous nature of the flow patterns 

shown above lessens the importance of pattern recognition techniques in the forecasting 

of derechos. Additionally, it is beyond the scope of this paper to describe how often 

these patterns appear without DCS formation, which is an important ingredient in the use 

of pattern recognition. However, since 72% of the cases tend to show characteristics of 

only three broad, large-scale flow regimes, forecasters should be attuned to the potential 

physical mechanisms and the multiscale features that exist within these baseline large- 

scale patterns (e.g. the location of the right-entrance region of an upper-level jet streak or 

the location of the maximum in 850-hPa). An important supplement to this forecast 

process is the identification of ingredients that are associated with the development of the 

phenomenon in question (Johns and Doswell 1992). Thus, Chapter 4 explores the 

vertical structures of DCS environments using soundings, which seeks to identify 

environmental parameters associated with derechos.
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Chapter 4: Analysis of Proximity Soundings

Chapter 3 builds on the literature that documents the large-scale flow patterns and 

features related to the development of derechos. This chapter describes the development 

of a proximity sounding data set and builds upon the work of Evans and Doswell (2001). 

The results detail the vertical distribution of the sounding parameters related to the large- 

scale patterns described in Chapter 3 and compare the results to past idealized numerical 

simulations. These observational results help fill the gap in our knowledge about derecho 

environments and provide a firm basis for conducting numerical simulations of DCSs.

4.1 Identification of proximity soundings

To build on the work of Evans and Doswell (2001) and to provide guidance for 

defining a representative vertical profile for initializing a numerical model, characteristics 

of derecho environments are determined from the National Weather Service radiosonde 

observations. Despite the problems of assuming that the radiosonde samples the 

pertinent environment (Brooks et al. 1994, Klimowski et al. 2003), the operational 

radiosonde data continues to provide the best source of simultaneous thermodynamic and 

kinematic measurements of the vertical structure of the entire troposphere that span 

several decades. This study focuses on CAPE and the vertical distributions of moisture 

and wind shear over the entire depth of the troposphere, which has not been examined in 

previous studies.

In this study, soundings that are within 300 km of the DCS leading edge in the 

downshear environment., no more than 80 km “north” of the derecho major axis and no 

more than 200 km “south” of the derecho major axis are considered candidates for
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proximity soundings\ To remove soundings that have a significant chance of being 

contaminated, soundings that are too close to the convection ( < 20 km) are not retained 

based on the simulations of Weisman et al. (1998) who shows that the initial condition 

may be significantly modified close to the convection. The wind components in the 

soundings are plotted in a coordinate system relative to the DCS motion such that the u 

and V components correspond to the direction parallel and normal to the derecho 

direction of propagation, respectively. Additionally, soundings that are obviously 

contaminated by convection are removed using hourly radar and surface data as 

guidance. Soundings that show an “onion” profile characteristic of the wake region on an 

MCS (Zipser 1982), that show deep saturated layers with lapse rates close to moist- 

adiabatic, or show rapidly increasing moisture content and potential temperature in upper 

levels (indicating a potential rise through convective cloudiness) are some of the signs 

that the sounding is contaminated. Soundings that sample convective outflows or 

drylines in low levels, but appear uncontaminated otherwise, also are discarded. Finally, 

only soundings that have mandatory and significant level wind data up to at least 10 km 

are retained. Out of the 230 candidates for proximity soundings, this procedure 

eliminates 62 soundings, which leaves 168 proximity soundings that approximate the 

environmental conditions in the DCS inflow environment.

4.1.1 Grouping the soundings by the derecho lifecycle

As in Evans and Doswell (2001), the soundings are first grouped relative to the 

phase of the derecho lifecycle to determine the differences in the initiation, mature, and 

decay environments. Similar to the methodology outlined in chapter 3 for the

' These are arbitrary guidelines that attempt to ensure that inflowing air reaches the convection no more 
than a few hours after it is sampled by the radiosonde.
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normalization of the flow patterns, the sounding times are normalized relative to the 

duration of the event to help preserve consistent beginning, mature, and decay 

environments from case to case. If tobs ^  0, it is defined as a “beginning” sounding, 

signifying the developing stage of the derecho. If 0.0 < tobs ^  0.5, it is defined as 

“mature” sounding, and if tobs > 0.5 it is defined as a “decay” sounding. This method 

identifies 38 beginning, 52 mature and 78 decay soundings.

4.1.2 Grouping the soundings by synoptic-scale forcing

One of the benefits of grouping the soundings by some measure of the large-scale 

forcing for upward motion is to differentiate between serial (typically strong forcing) and 

progressive (typically weak or moderate forcing) derecho environments, which can help 

identify the relative importance of the physical mechanisms between the two types of 

events. In addition, this grouping helps to define the derecho environments that can be 

best represented in idealized numerical models.

The classification of derecho environments in the literature has typically been 

subjective and based on arbitrary criteria. JH87 uses a threshold 12-h, 500-mb height fall 

prior to derecho initiation to discriminate the strong trough from the weak trough events. 

This leads to the definition of the “warm season” and “dynamic” patterns outlined in 

Johns (1993) (Fig. 2.3). In addition to these patterns, Evans and Doswell (2001) 

subjectively define a “hybrid” pattern that displays attributes of both patterns. In this 

study, the soundings are grouped according to large-scale forcing using a semi-objective 

method. Instead of the 500-mb trough amplitude, this study uses the 500-mb Q-vector 

divergence field (V • Q) as identified in the 2.5° grids produced by the NCEP/NCAR 

Reanalysis data set (Kistler et al. 2001). Q-vectors and their divergence provide a
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convenient and accurate method of quickly diagnosing the large-scale forcing for upward 

motion on constant pressure surfaces (Bluestein 1993). There are several events that 

appear to have weak 500-mb troughs based on their amplitudes but have notable forcing 

for upward motion at the same level (possibly resulting from shear-vorticity advection 

that is not easily identifiable by trough amplitude). Likewise, not all 500-mb troughs that 

appear to have significant amplitude produce significant upward motion at 500-mb near 

the derecho initiation (at least on scales resolvable by the Reanalysis data set). The 

events with V • Q minima within 500 km of the derecho initiation point (the origin of the 

grid) < -10 xlO'*^ kPa m'^ s ' are defined as “strong forcing” events. The events with V • 

Q minima > -5 xlO kPa m'^ s ' are defined as “weak forcing” events. Those cases in 

between are defined as “moderate forcing” events. Using this method, the number of 

observations defined as weak, moderate, and strong forcing events is 37, 27, and 27, 

respectively (only the 91 beginning and mature soundings are used in this grouping since 

it will be shown that the decay soundings contain many statistically significant 

differences).

Although the above thresholds for V * Q are entirely arbitrary, it is found that these 

values provide groupings that are consistent with a subjective assessment of the large- 

scale forcing. This is supported by the fact that all of the 37 weak-forcing soundings are 

confined to the months of May-Aug. while only 9 of the 27 strong-forcing soundings 

occur during these months (Fig. 4.1). All but three of the moderate-forcing soundings 

occur in the warm season.
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Fig. 4.1. The distribution of the mean 500-mb Q-vector divergence (scaled by lO'* kPa m^ 
s ') versus day associated with the 91 beginning and mature proximity soundings. The 
thresholds for defining the forcing stratification are shown by the dashed lines.

4.2 Results

4.2.1 lifecycle stratification

The most statistically significant difference^ in the CAPE distributions is between 

the beginning and decay soundings (Fig. 4.2). The mean CAPE drops from 2742 J kg'^ 

for the beginning soundings to 1451 J kg'^ for the decay soundings. Also notice that 90% 

of the beginning soundings have CAPE above 1000 J kg ', whereas 40% of the decay 

soundings have CAPE below 1000 J kg '. Large amounts of instability are frequently 

found in the initial environments as nearly 50% of the beginning soundings have CAPE 

above 2500 J kg '. This suggests that a decrease in instability is potentially a significant 

factor in the demise of DCSs.

 ̂Differences between the various subsets are tested for statistical significance using a two-tailed student’s t- 
test based on the sample means and standard deviations (Wilks 1995). Differences are considered 
significant if  the chance that the two sample means originate from different distributions is > 95%. The 
autocorrelation of the parameters has been tested and is found to be minimal, which gives confidence in 
allowing for the number of degrees of freedom = sample size. When appropriate, the estimate of the 
probability that the true population means are the same (p-value) is given in the text.
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Past studies identify the environmental RH profile as a potentially significant 

factor in the development and maintenance of strong downdrafts within thunderstorms. 

Low environmental RH in midlevels aids the initiation of downdrafts by precipitation 

phase changes (Hookings 1965, Gilmore and Wicker 1998). However, Srivastava (1985) 

and Proctor (1989) suggest that higher environmental RH in the underlying layer of 

parcel descent supports the maintenance of strong downdrafts. Given a sufficiently steep 

lapse rate, the higher moisture content increases the virtual temperature of the 

environment, which leads to larger virtual temperature differences between the 

environment and the parcel.

•BEGINNING MATURE - - - DECAY

60 0 0

XB=2742JkgM584Jkgb 
XM =2394Jkg-H365Jkg'b  
Xd = 1451 Jkg-^ (251 J k g 'b

50 0 0
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1000

0
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Fig. 4.2. The cumulative frequency distribution o f CAPE (J kg ’) for the beginning, mature, and 
decay soundings. The sample means for the beginning ( X  b ) ,  mature ( X  m ), and the decay ( Tp )  
soundings, and their 95% confidence intervals (in parentheses), are shown in the upper left corner. 
X nis significantly different than both X  m and X  b at the 95% confidence level.

The RH varies considerably during all stages of the DCS lifecycle, but insight is

gained by examining the median profiles. The largest differences are between the

beginning and mature soundings and are statistically significant in the 1.0-2.5-km layer.

The vertical difference in median RH is largest for the mature soundings with median
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values near 85% at 1 km that drop to 42% near 3.5 km (Fig. 4.3a). This suggests that 

DCSs tend to mature as they move into moister low-level environments, while still 

maintaining relatively dry conditions above 3 km. This result is in general agreement to 

Srivastava (1985) and Proctor (1989) and suggests that relatively dry midlevels combined 

with low-level moistening ahead of a developing MCS signals the increasing potential for 

downdraft and strong surface wind production.

Results further show that the low-levels (0-2 km) tend to dry somewhat toward 

decay, which reduces the vertical RH gradient and is likely a factor in the reduced CAPE 

for the decay soundings (Fig. 4.2). However, these differences are not large (the smallest 

p-value at any level below 2 km is 0.18 between the mature and decay soundings), which 

implies that a relatively drier low-level environment ahead of a mature DCS often does 

not signal its decay.
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Fig. 4.3. Vertical profiles of (a) median RH and (b) 0e for the beginning, mature, and 
decay sendings. The beginning and mature RH profiles are statistically different at the 
95% confidence level between 0.75 and 3 km. There are no statistically significant 
differences in the Be profiles (p-values are > 0.1).

The beginning and mature soundings both display a vertical decrease in the 

median equivalent potential temperature (0^) of > 20 K (Fig. 4.3b). Overall, the vertical
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decreases in appear to be even larger for DCSs than for those reported for strong 

downdrafts within more isolated convective cells by Atkins and Wakimoto (1991) (the 

next section shows that the more weakly-forced events are largely responsible for this 

large convective instability). Note that the low-level inversion in the median 6e profile 

for the beginning soundings is related primarily to the occurrence of 1200 UTC 

soundings in the data set, but also represents events that develop north of a low-level 

thermal boundary (Fig. 4.3b). The fact that this inversion is not evident for the mature 

soundings indicates that the systems tend to move toward the warm sector as they mature 

(JH87). The low-level Ge decreases toward decay (Fig. 4.3b), but the statistical 

differences are somewhat less than what is typically considered to be significant (p- 

values range from 0.08-0.3 depending on the specific vertical level). This suggests that 

low-level Ge, along with the low-level RH, is not necessarily a useful indicator of DCS 

decay, which appears to be the case for MCSs in general (Gale et al. 2002).

The mean hodographs display a unidirectional shear profile ("straight-line") and 

significantly weaker deeper-layer shear for the decay soundings (Fig. 4.4). In many 

events, this decrease in deep-shear is the result of the propagation away from the mid-to- 

upper-level jet. The mean 0-5-km shear drops from over 20 m s'  ̂ for the beginning and 

mature soundings to 16.6 m s'* for the decay soundings (see Table 4.1). Likewise, the 

mean 5-10-km shear drops from 14.3 m s ' for the beginning soundings to 11.6 m s ' for 

the decay soundings. The mean low-level shear (0-1-km and 0-2.5-km) shows no 

significant differences in the DCS lifecycles. Gale et al. (2002) found similar results for 

general warm-season MCSs. This adds observational support to the conclusions of 

Coniglio and Stensrud (2001) that DCSs can he maintained by system-scale circulations
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that are favored by deep-tropospheric shear and convergence along the gust front 

(Shapiro 1992, Moncrieff and Liu 1999).

•BEGINNING -----0-----MATURE - - X- - - DECAY
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Fig. 4.4. Mean hodographs for the beginning, mature, and decay soundings. Prior 
to averaging, the wind components (u,v) in each sounding are represented in a 
coordinate system with the tip o f  the mean MCS motion vector (Ug,Vs) at the origin. 
The mean winds are calculated every 0.5 km above ground level (AGL), are plotted 
every 1 km AGL, and are labeled every 3 km AGL. Mean shear values related to 
the mean hodographs are given in Table 4.1.

It should be noted that some of the more weakly forced events do show a decrease 

in the low-level shear toward decay, and thus, the persistence of the overall mean low- 

level shear toward decay is ascribed to the strong low-level shear observed for the 

strongly-forced soundings (shown in the next section). Similarly, examination of Fig. 4.4 

suggests that the low-level storm-relative inflow appears to persist toward decay. 

However, the length of the hodograph for the beginning and mature soundings is ascribed 

to the strong low-level winds observed in the strongly forced soundings (also shown in 

the next section). The storm-relative inflow does show a decrease toward decay for the 

more weakly forced events (not shown). However, the sample sizes are insufficient to
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break down each lifecycle classification by forcing regime and thus, the significance of 

these details can not be determined with the current data set.

Table 4.1. Mean 0-1-, 0-2.5-, 0-5-, and 5-10-km shear vector magnitudes (m s ') for 
the lifecycle stratification (beginning, mature, decay) and the forcing stratification 
(strong, moderate, weak). Shaded cells in the lifecycle stratification indicate that the 
sample mean is statistically different than the sample mean for the decay soundings 
at the 95% confidence level. Shaded cells in the forcing stratification indicate that 
the sample mean is statistically different than the sample mean for the weak-forcing 
soundings at the 95% confidence level. *

0-1 km 0-2.5 km 0-5 km 5-10 km
BEGINNING 8.7 14.1 20.4 14.3

MATURE 10.6 15.0 20.3 13.6
DECAY 9.9 13.2 16.6 11.6

STRONG 15.3 18.3 23.8 15.6
MODERATE 8.4 15.1 19.0 11.3

WEAK 6.8 11.4 18.8 14.4

4.2.2 Forcing stratification

The cumulative frequency distributions of CAPE (Fig. 4.5) show a distinct 

separation between the strong-forcing (SF) soundings and the moderate-forcing (ME) and 

weak-forcing (WE) soundings (again, only the soundings with t < 0.5 are included). All 

but two of the WF soundings have CAPE above 1000 J kg"\ while almost 50% of the SF 

soundings have CAPE below this amount. Much larger values of instability is found for 

the WF and MF soundings with almost 50% having CAPE above 2700 J kg ’. Soundings 

with these values of instability are rare under strong forcing, which appears to be largely 

due to their prevalence during the cold season, but also could be due to the tendency for 

high-CAPE/strong-shear environments to support supercell modes (Johns and Doswell 

1992).
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Fig. 4.5. The cumulative frequency distribution o f CAPE (J kg ') for the strong, 
moderate, and weak-forcing soundings. The sample means for the strong ( x  $), 
moderate ( X  md)> and the weak ( X  w) forcing soundings, and their 95% confidence 
intervals (in parentheses), are shown in the upper left comer. X s is significantly 
different than both X  w n  and X  w at the 95% confidence level.

As for the examination of RH among the various DCS lifecycles, significant 

differences are found in the median profiles (Fig. 4.6). For the SF soundings, the median 

RH reaches a maximum near 90% at 0.75 km and drops to a local minimum of 38% at 4 

km. As discussed previously, this large vertical RH gradient translates into a significant 

potential for downdraft production. It also has been recognized that a reduction in the 

environmental lapse rates within the downdraft layer lessens the potential for maintaining 

downdrafts (Hookings 1965, Srivastava 1985, Proctor 1989). Relatively small 

environmental lapse rates are observed for the SF soundings (compared to the MF and 

WF soundings), which is reflected in the smaller CAPE values (Fig. 4.5) and from the 

relatively small vertical decrease in median 0e for the SF soundings (Fig. 4.6b). This 

suggests that the dramatic vertical RH gradient observed for the SF soundings, and the 

associated increased potential for downdraft production (Proctor 1989), perhaps counter a
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decreased potential for downdraft production associated with the smaller lapse rates. A 

dramatic vertical RH gradient is, therefore, a possible reason for why derechos can occur 

with low CAPE.
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Fig. 4.6. As in Fig. 4.3, except for the strong, moderate, and weak forcing soundings. The 
strong and weak forcing profiles are statistically different at the 95% confidence level 
between the surface and 1.25 km. The strong forcing 0̂  profile is significantly different 
from the moderate and weak forcing 6̂  profiles at the 95% confidence level at all vertical 
levels (0-6 km).

While the vertical decrease in median RH becomes progressively smaller for the MF 

and WF soundings (Fig. 4.6a), the vertical decrease in Be becomes progressively larger, 

with the median profile showing a vertical decrease of -24  K from the low to midlevels 

(Fig. 4.6b). This affirms that WF events tend to have large values of convective 

instability in the environment.

Unlike the lifecycle stratification, the most significant differences in shear are found 

in the low-level shear parameters (Fig. 4.7 and Table 4.1). For example, the mean 0-2.5- 

km shear drops from 18.3 m s ’ for the SF soundings to 11.4 m s ’ for the WF soundings 

(Table 4.1). The shear component normal to the DCS motion vector in the lowest 2 km 

(which is generally parallel to the squall line) (Fig. 4.7) contributes a significant amount
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to this large mean low-level shear for the SF soundings (Table 4.1) and likely is tied to 

the strong low-level and upper-level jets that frequently occur in this forcing regime 

(Uccellini 1980) (Fig. 3.2). Mean 5-10-km shear values of 11-16 m s ' with a large range 

of values (3 m s ' - 40 m s ')  show that the shear very often extends throughout the depth 

of the troposphere, regardless of the forcing regime.
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Fig. 4.7. As in Fig. 4.4, except for the strong, moderate, and weak forcing 
soundings. Mean shear values are given in Table 4.1.

Strong near-surface inflow is noted among all three forcing regimes. The mean 0-3 

km storm relative wind speed is largest for the WF soundings with a magnitude of 19.5 m 

s '. This speed decreases to 18.1 m s ' for the MF soundings and 16.6 m s ' for the SF 

soundings. The variations in vertical shear results in differences in the depth and 

orientation of the inflow layer. For the SF soundings, the mean top of the inflow layer 

(us=0) is found near 5 km and the 0-3 km mean storm-relative wind vector is -140°. A 

positive Us above 5 km combined with a strong mean-wind component normal to the DCS
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motion vector likely contributes to the parallel or leading stratiform precipitation (Parker 

and Johnson 2000) that is usually observed among these events.

For the MF and WF soundings, the mean top of the inflow layer increases to 

between 8 and 9 km. The rearward flow in midlevels likely contributes to the frequent 

appearance of these events as asymmetric, trailing-stratiform MCSs (Houze et al. 1989; 

Parker and Johnson 2000). In addition, the relative low-level inflow originates from a 

direction that is at a large angle (-160°) to the mean DCS motion vector. This reveals 

that the system ingests the h igh-^  low-level air in the downshear environment (Fig 4.7). 

The existence of mean 0-5-km shear of 18-20 m s ’ produces considerably weaker 

midlevel (5-7 km) storm relative flow (Fig. 4.7). This supports one of the key findings of 

Evans and Doswell (2001) that DCSs with weak synoptic-scale forcing tend to form in 

such environments that support the fast forward-propagation of the cold pool.

4.2.3 Comparison to simulations

Using a horizontally homogeneous cloud-scale numerical model, W93 produces a 

comprehensive set of simulations of convective systems that include structures 

resembling observed DCSs. One of the goals of W93 was to identify the minimum 

thresholds of CAPE and shear within the idealized simulations that produce these 

structures and to compare them to environmental conditions associated with observed 

severe long-lived bow echoes. The present comprehensive observational data set affords 

a detailed comparison of this type and is presented in light of its relevance to forecasting 

severe, long-lived convective systems.

W93 subjectively defines the structure of the simulated convective systems into three 

main categories. The first category includes systems with weak cells tens of km behind
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the leading edge of the gust front, in which structures resembling strong, long-lived bow 

echoes do not develop (W). The second category includes strong, long-lived bow echo 

structures with a pronounced rear-inflow jet and cyclonic vortices along the ends of the 

bow (B). The third category includes strong, isolated cells, some supercells, scattered 

along the gust front, with no indications of larger-scale rear inflow that comprise the bow 

echo cases (S). A fourth intermediate category is defined (I) that contains attributes of 

both the weak and bow-echo cases. He finds that the well-defined bow echo simulations 

are generally restricted to environments with shear greater than 20 m s'  ̂ and are favored 

if this shear is entirely confined to the lowest 2.5-km (Fig. 4.8).

To compare the present observations to these simulations, WSR-88D mosaics at 2-km 

or 4-km resolution or, when available, the level IIW SR -88D data, are used to define a 

typical convective structure for each event that has a beginning or mature proximity 

sounding. Due to the lack of sufficient radar data for the majority of the events, it is 

possible to define adequately a convective structure for only 53 of these events. DCSs 

that contain well-defined bow echoes for at least a I-h period and resemble the "B" 

simulations in W93 are identified. In addition, DCSs that show either short-lived bow 

echoes, or none at all, and resemble the "W" simulations from W93 also are identified. 

Each case also is defined as having either elongated squall line characteristics with 

parallel or leading stratiform precipitation or as having characteristics more typical of 

trailing-stratiform MCSs.

The results show that the vast majority of the soundings that sample bow-echo squall 

lines or bow-echo MCSs have 0-2.5-km shear outside the range of values that produce 

the B simulations from W93 (Fig. 4.8a). In fact, 14 out of the 20 soundings that sample
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bow-echo MCS environments (70%) have 0-2.5-km shear below 15 m s  ’. Most of the 

values from the observed bow-echo MCSs cluster around the shear environments that 

produce the “W” simulations (Fig. 4.8a), which typically do not represent the DCS 

structures observed in this study. This confirms the implication of Evans and Doswell 

(2001) that long-lived bow echoes can and often do occur in low-level shear less than that 

suggested by the W93 simulations and that the low-level shear may not be useful in 

forecasting long-lived bow echo structures in many situations. The results from section 

4a, that show no significant changes in low-level shear among the three phases of the 

DCS lifecycle, add weight to this conclusion. It should be noted that more of the 

observed soundings have shear values that support at least some bow-echo structures in 

the simulations (the “I” simulations) when the shear layer is extended to 5 km above 

ground (Fig. 4.8b). Only 4 out of the 20 bow-echo MCSs have 0-5 km shear less than 15 

m s ’. Therefore, the presence of moderate to strong unidirectional shear in the 0-5-km 

layer appears to be a better predictor of the potential for severe MCS structures than the 

low-level shear. It should also be noted that the simulations do not represent the several 

observed bow-echo squall lines that occur with strong low-level shear and CAPE <1000 J 

kg ’. These cases appear to be supported more from stronger synoptic-scale forcing that 

is not well represented in the idealized simulations.

4.3 Discussion

WR update their results to include simulations with shear in a layer up to 10 km 

deep (the W93 simulations only included shear in the lowest 5 km). The simulations that 

include shear above 5 km do not develop long-lived bow-echo structures (they are 

described as either upshear-tilted multicellular systems or systems composed of isolated
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cells and/or embedded supercells). However, the mean 5-10 km shear observed among 

the well-defined bow-echo events is approximately 14 m s '\  and is as large as 30 m s'* 

(Fig. 4.8c). This shows that idealized numerical simulations appear to have difficulty 

reproducing DCS events within deep-shear environments and further emphasize some 

disparities between observations and the idealized models. Simulations using the CAPE, 

shear, and moisture values of observed DCSs and the associated non-homogeneous large- 

scale flow patterns identified in this study need to be produced to help reconcile these 

disparities in observations and idealized models and to provide improved information to 

forecasters. The following chapter explores a set of 2-D and 3-D numerical simulations 

that are used to develop alternative ideas for how strong convective systems can be 

maintained in suboptimal low-level shear conditions not discussed in WR.
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Chapter 5: Numerical Simulations

Chapter 4 shows that strong, long-lived convective systems tend to develop and 

persist within environments with significantly drier mid-levels, weaker low-level wind 

shear, and wind shear over deeper layers; an environment that has not been highlighted in 

past idealized numerical simulations of convective systems. This chapter presents a way 

that the unidirectional shear above the cold pool through most of the depth of the 

troposphere can affect the strength and maintenance of the convective systems through a 

set of idealized numerical modeling experiments. A discussion of the results follows a 

description of the model configuration and the design of the experiments.

5.1 Numerical Model

The model of choice is the National Severe Storms Laboratory Collaborative 

Model for Multi scale Atmospheric Simulation (NCOMMAS) (Wicker and Wilhelmson 

1995). NCOMMAS is designed to study convective storms at high space and time 

resolution and is very similar to the model developed by Klemp and Wilhelmson (1978). 

The differential equations describing the evolution of momentum, heat, and moisture 

variables are solved on an Arakawa-C grid with vertical stretching to allow higher 

resolution in low-levels. NCOMMAS retains the time-splitting scheme of Klemp and 

Wilhelmson (1978) to represent sound waves (and retain full compressibility), but 

improves on the combination of accuracy and stability by using a third-order Runga- 

Kutta time differencing scheme in combination with a fourth-order spatial discretization 

for the spatial variables (Wicker and Wilhelmson 2002). Subgrid-scale horizontal and 

vertical mixing is parameterized using a deformation-based formulation for the eddy
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mixing coefficient (Km) in the flux approximations (Wicker and Wilhelmson 1995). The 

only condition on the lower (and upper) boundary is that the normal velocity component 

decrease to zero. Lateral boundaries are open for disturbances to pass through, but a 

Rayleigh damper is used at the upper boundary to control the energy from spurious 

gravity waves. Microphysics options include the Kessler-type warm-rain 

parameterization and 3-class (ice, snow, graupel/hail) ice-scheme in the 3-D version of 

the model (Gilmore et al. 2004), which is based on the Lin et al. (1983) scheme. Coriolis 

forcing acts on the horizontal wind components with a constant parameter of 10 s'* (see 

the appendix for a detailed list of the key parameters used in the simulations).

Similar to the experiments presented in W93 and WR, a horizontally homogeneous 

initial condition is used to represent the environment in all sets of experiments. While 

recent numerical simulations (Bemardet and Cotton 1998, Coniglio and Stensrud 2001, 

Richardson 2002) and recent specialized observations from the BAMEX field program 

(Davis et al. 2004) suggest the importance of substantial mesoscale variability in the 

environment, the goal of this study is to provide alternative simulations and 

interpretations within the context of the model designs presented in W93 and WR. The 

intent is to describe under-emphasized interpretations of MCS behavior from these class 

of simulations, thus the choice of retaining horizontal homogeneity.

5.2 Configuration of the 2-D dry simulations

The primary exploration into the role of mid- to upper-level shear is accomplished 

with the use of a dry, 2-D version of NCOMMAS initialized with neutral stability and the 

potential temperature set to 300 K to simulate idealized density currents in shear flow. 

The goal is to examine the basic dependence of lifting along a propagating density
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current on the vertical wind shear above the density current depth. The domain stretches 

240 km in the horizontal and 16 km the vertical and uses 961 by 65 grid points, such that 

Ax=Az=250 m. A density current is introduced with a cooling function added to the

r  Y
potential temperature tendency of the form A  cos(— ) , where A is a constant

V 2 y

controlling the maximum magnitude of the cooling and r  =
2

+
VI J < y

which controls the radius of influence of the cooling. For the dry simulations, A=-0.015 

K s '\  Xc=120 km, Zc=2 km, Xr=10 km, and Zr=2 km. A is held constant throughout the 

5400 s simulation in order to maintain a source of cold air. As shown later, this function 

produces a quasi-steady propagating density current with surface 0 perturbations of 6-8 

K, which is typical of atmospheric cold pools (Evans and Doswell 2001).

For the entire set of 2-D dry simulations, the shear in the lowest 2.5 km is set at 12 m 

s ’ and the shear in the 2.5-5 km layer is set at 8 m s'’, giving a bulk 0-5 km shear of 20 m 

s ’. As shown in Chapter 4, these values of shear are close to the mean and median 

values among the groupings of derecho proximity soundings. The shear in the 5-10 km 

layer is then systematically varied from 0 to 30 m s ’ in 5 m s ’ increments (Fig. 5.1), 

which represents most of the observed range of upper-level shear (Fig. 4.8). The winds 

are held constant from 10 to 12 km and then decrease to a speed of 5 m s ’ at the top of 

the model (16 km) to represent the decrease in wind speeds that are typically observed 

above the tropopause. These simulations are designed to test the hypotheses of Shapiro 

(1992) that increasing the shear throughout the depth of the troposphere can increase 

vertical parcel displacements despite decreasing the strength of the forced updraft along
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the density current, and that this process can be accomplished entirely by increasing the 

shear above the cold pool.

16

14

12

10

8D>
6

4

2

a
5 10 15 20 25 30 35 40 45 ^  550

U (m s ’)

Fig. 5.1. Initial U profiles for the 2-D dry simulations.

5.2.1 Trajectory calculations

Since the cold air is introduced at a much shallower depth than the balanced depths 

for conservative, bounded density currents, steadiness to the density current structure is 

not guaranteed by the initial condition (Xue et al. 1997). Indeed, transience is shown to 

occur for some of the simulations, but the design ensures that the cold air remains to 

somewhat shallow depths that resemble atmospheric density currents. Although the bulk 

properties for this type of flow can be viewed from the time-averaged flow fields, as in 

Xue et al. (1997), the occurrence of transience leads us to calculate the vertical 

displacements numerically using a series of trajectory calculations rather than using the 

stream function for the time-averaged flow.
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The forward-in-time air parcel trajectories are calculated based on the semi- 

Lagrangian methods outlined in Staniforth and Cote (1991) and Seibert (1993). This 

procedure is based on the numerical integration of the trajectory equation,

^  = V (x ,z ,t)  (5.1)
at

where r is the position vector and V is the time-dependent velocity vector. The 

procedure to solve eq. (5.1) can be demonstrated in one dimension as

 <
dt

which, through the mean value theorem, gives the approximation.

j  — d t=  ^u {x ,t)d t, (5.2)

x{t H- At) = x{t) + Am (5.3)

where w is some averaged value of u in time At. If we let a  = x{t + At) -  x(t) , the 

distance the fluid parcel is displaced in x in time At, then we can define 

ÏÏ = u{x -t- 0 .5a ,t + 0.5A^) to be the value of u halfway along the trajectory. Eq. (5.3) then 

becomes

CK = Af w(x 4- 0.5(Z,f + 0.5Af ). (5.4)

Given an initial guess for a and an approximation forw , eq. (5.4) is solved iteratively at 

each time step, k, until -  a* is arbitrarily small. A third order Lagrange 

interpolating polynomial is used to interpolate in time to find u(x,t+0.5At) at grid points 

needed for the calculation of the trajectory. Once u is interpolated in time, another third 

order Lagrange polynomial is used to find an approximation for u(x+0.5a,t+ At) in space.
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The solution for the displacement in the second dimension is found in an analogous 

manner once the 2-D interpolations are found (Press et al. 1986).

5.3 Configuration of the 2-D and 3-D moist simulations

A set of three 2-D and three 3-D simulations that include stratification and moist 

microphysics are produced in an attempt to show consistency between the behavior of the 

dry simulations and more complex simulations and for longer integration times (6 h). For 

the 2-D runs, Az remains 250 m, but Ax is increased to 500 m. The domain now stretches 

300 km in the x-direction giving 601 grid points. Moist processes are represented with a 

liquid only Kessler-type scheme (Soong and Ogura 1973, Gilmore et al. 2004).

^
. i s

CAPE = 2200 J Kg ' 
LCL = 900 m AGL 
AO. = 30K

Fig. 5.2. Initial sounding used in the 2-D moist simulations.

The initial temperature and moisture profiles are similar to the Weisman and 

Klemp (1982) sounding, except for drier conditions above 3 km (Fig. 5.2). As for the dry 

runs, a cooling function is used to introduce a propagating cold pool. However, in the 2-
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D moist runs the purpose of the cooling function is solely to initiate convection and, 

therefore, the cooling function decreases linearly to zero from 900 s to 1800 s. To test 

the hypotheses garnered from the dry runs, three wind profiles are used that vary the 

magnitudes of wind shear above a layer of 20 m s ’ over the lowest 5 km (Fig. 5.3). The 

profile that contains the values of shear closest to the median shear values in the 

observations contains 20 m s ’ of 0-5 km shear and 10-15 m s ’ of 5-10 km shear.

16

14

12

10

I

I
8

6
0-0.5 km shear = 3 m  s ' 
0-1 km shear = 5 m s ' 
0-2.5 km shear = 12 m s' 
0-5 km shear = 20 m  s '

4
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0
0 10 3020 40 SO 60

U (m s ’)

Fig. 5.3. Initial U  profiles used for the moist simulations. The values of  
bulk shear in all the profiles (listed on the figure) correspond to the median 
values derived from the set of weakly forced soundings. The profiles that 
contains the values o f shear closest to the median shear in the observations 
contains 20 m s ’ o f 0-5 km shear and 10-15 m s ’ o f 5-10 km shear.

For the 3-D runs, a 400 km by 400 km by 16 km grid is used with Ax=Ay=2 km. 

Although Bryan et al. (2003) show that interpretations of the convective system structure 

can be altered significantly with much higher resolution, these simulations are designed 

to be in the class of idealized simulations of W93 and WR, who used a grid with 1 km 

horizontal spacing’. A constant Az of 250 m is used below 1 km and is then stretched to 

about 700 m at the top of the model domain at 16 km (giving 33 vertical grid points). In

’ Weisman (1997) shows little difference in the convective structure and mean vertical flux characteristics 
for idealized simulations that use a horizontal grid resolution in the 1-2 km range.
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an attempt to further increase the model realism, the 3-class ice scheme is used for the 3- 

D runs.

^
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\  /
"See 4:0 X

/ \ /

'A / y
'b“ \  A  A

. \
V X

/  \  A  ) \  \ X

70G

8 0 0

9 0 0

1000
1 0 5 0

X \ y
CAPE = 2850 J Kg ' 
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'x / 5/ ,
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Fig. 5.4. The initial sounding used in the 3-D simulations (thick lines) compared to 
the Weisman and Klemp (1982) sounding (thin lines). The values of CAPE, lifting 
condensation level (LCL) and the maximum difference in 0e between low and mid 
levels (A0e) in the profiles (listed on the figure) correspond approximately to the 
median values derived from the weakly forced soundings (see text for details).

A unique aspect of this study is that the observational analyses directly influence the 

choice of environments used for the initial conditions. Rather than use the Weisman and 

Klemp (1982) sounding, which appears to be too moist in mid and upper levels, an initial 

temperature and moisture profile is derived from a set of 28 derecho proximity soundings 

that were taken at either 1800 or 0000 UTC in weakly forced situations to ensure the 

representation of convectively-unstable conditions in low-levels (Fig. 5.4). The initial 

profile approximately preserves the median bulk shear in the 0-0.5, 0-1 and 0-2.5 (but 

distributes this shear unidirectionally). Additionally, the thermodynamic profile
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approximately preserves the median values of CAPE (calculated using the most unstable 

50-mb averaged parcel), lifting condensation level (LCL), and the maximum vertical 

difference in 0e between low and mid levels (Fig. 5.4). The most apparent differences in 

this sounding and that used by Weisman and Klemp (1982) are the higher LCL and the 

drier conditions in mid-levels seen in the soundings based upon observations. The CAPE 

also is somewhat larger, but the drier mid-levels result in a much larger difference in the 

convective instability between the two soundings (see the appendix for a detailed list of 

the key parameters used to construct the initial sounding).

Since the initiation and maintenance of convection in cloud models is sensitive to the 

low-level moisture profile (Bryan and Fritsch 2000), a 1000 m deep layer of constant 

93% RH is used in the 1000 m layer above the LCL in order to ensure the development 

and sustenance of the initial convection. Some researchers justify the saturation of the air 

above the LCL by assuming this profile represents the environment just prior to 

convective development that has been subject to low-level mesoscale lifting (Gilmore 

and Wicker 1998).

Instead of using a cooling function to initiate convection in the 3-D runs, warm 

potential temperature perturbations are used as in W93 and WR. A line of five 

uniformly-spaced elliptical thermal perturbations with a horizontal diameter of 10 km and 

a vertical diameter of about 1.5 km is used. The line is oriented in the y-direction and is 

centered at x=200 km and y=230 km. The perturbation amplitude is 2 K at the center of 

the thermal, with superimposed random perturbations no greater than 0.25 K, and 

decreases to 0 K on its outer edge. The model is integrated for 6 h to facilitate a
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comprehensive comparison to observations in terms of the maintenance and mature 

structure of the convective systems.

The same set of four initial wind profiles used for the 2-D moist runs (Fig. 5.3) are 

used to produce a set of three 3-D runs. The first step in analyzing these simulations 

involves using several measures of system strength, including integrated rainfall and 

rainfall intensity, near-surface wind speeds, and maximum downdraft strength. In 

addition, measures of system structure, including the vertical orientation of the updrafts, 

the orientation of the updrafts relative to the gust front, and the structure of the simulated 

radar reflectivity structures, also are examined. This allows a n analysis of the basic 

shear dependencies of the system structures similar to what is presented in W93 and WR.

It should be noted that a direct comparison to the results of W93 and WR is 

problematic, largely because of the differences in the thermodynamic profile and the 

inclusion of ice-microphysics. The sensitivity of attributes of the simulations, 

particularly the characteristics of the cold outflow and precipitation distribution (Gilmore 

et al. 2004), likely have significant sensitivities to both of these changes and can alter 

substantially the interpretation of the simulated MCS strength and structure (the strength 

sensitivity to changes within the ice-microphysics scheme itself is illustrated briefly at the 

end of section 5.4). It is reiterated that the goal of this study is to provide an alternative 

viewpoint for the structure and maintenance of strong MCSs within the context of cloud- 

model simulations, but within an environment that attempts to increase the realism of past 

idealized simulations. While this framework allows a systematic determination of the 

effects of adding upper-level shear, future work will need to refine the relative
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importance of the mid-level dryness and the ice-phase processes on the comparative 

conclusions to the past idealized simulations.

5.4 Results

5.4.1 2-D dry runs

For each case, the cooling function results in a region of negatively buoyant air 

that descends to the surface and spreads horizontally in both directions. The continuation 

of the cooling allows a density-current structure to develop by 1500 s in all of the 

simulations, that includes a frontal slope of 50°-60°, a reduced head in the turbulent 

region behind the gust front, and surface potential temperature perturbations of 6-8 K 

near the gust front. The convergence of the low-level inflow and the density current head 

produces a region of upward motion that slopes upshear in accordance with the slope of 

the density-current interface.
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Fig. 5.5. The evolution of the gust front speed for the simulations with 0 ,1 0 ,2 0 , 
and 30 m s ' of shear in the 5-10 km layer.
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The down shear edge of the density currents generally move at speed of 17-21 m s' 

’ among all of the simulations (Fig. 5.5). The lowered depth of the density current head 

for the stronger shear cases (Fig. 5.6) results in slower gust front speeds for the larger 

shear cases (Fig. 5.5) (Seitter 1986). The lowered depth of the current head results from 

a positive perturbation pressure in mid-levels; a feature that becomes important in 

controlling the behavior of the 2-D dry simulations as explained later.
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Fig. 5.6. The evolution of the density-current-head height for the 0, 10,20, and 
30 m s ’ shear simulations. The head height is estimated by finding the 
maximum height o f  the -1.0 K isotherm behind the gust front.

The density current head region for the cases with no upper level shear slowly 

increases throughout the simulation to a height of 7000 m at 5400 s (Fig. 5.6). Although 

this is deeper than real atmospheric density currents, this height is significantly less than 

those obtained by Xue (2000) for energy conserving, two-fluid steady-state density 

currents in which the depth can be almost 3/4ths the domain depth. In the simulations in 

this study, energy is lost in the interfacial layer through turbulent mixing and the depth of 

the cold air is specified by the depth and temperature of the cold air source, and not by
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the constraints upon the flow field (Xue et al. 1997). This results in more realistic cold 

pool depths in terms of their relevance to organized thunderstorm outflows (Goff 1976, 

Wakimoto, 1982).
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Fig. 5.7. The evolution of the maximum vertical velocity for the simulations 
with 0, 10,20, and 30 m s ' of shear in the 5-10 km layer.

The turbulent mixing on top of the density current plays a role in the deepening of 

the head region for the cases with 0-10 m s'  ̂ of shear (Fig. 5.6). Upon further inspection, 

the shear in the lowest 5 km is found to have a significant control on the morphology of 

the density current head, as in many previous studies (Xu 1992, Xu and Moncrieff 1994, 

Chen 1995, Xue et al. 1997). In additional simulations in which the 0-5 km shear is 

increased to 25 and 30 m s ' \  the density current quickly breaks down into a complex 

structure. This may reflect the shallowness of the initial cold air relative to the depth of 

the currents required for solutions that conserve energy, vorticity, and a domain-wide 

pressure-momentum balance in positive low-level shear (Xue et al. 1997), but may also 

result from the weak to non-existent relative flow on top of the density current that allows
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for the accumulation of negative horizontal vorticity along the interface, which leads to 

the unsteadiness of the head region (Chen 1995). This effect is related to the transition of 

a supercritical density current with a hydraulic jump (gust-front relative front to rear 

flow) (Benjamin 1968) to a subcritical current (gust-front relative rear-to-front flow) with 

unsteady turbulent motion along its leading edge (Xu 1992). Although the simulation 

with 20 m s ’ of shear over 0-5 km and no shear aloft is terminated at 5400 s, if the 

integration extended for a longer period, the head would eventually break down as in the 

stronger shear cases, but the head remains in a supercritical state throughout the period 

examined here.

TEMP (K) T a v g  = 1 . 0 - 1 . 5  h  5 - 1 0  km s h e a r  = 0 0  m / s

5.0

VERT MOTION ( M / S )

10.0
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Fig. 5.8. Time-mean (1.0-1.5 h) values of perturbation potential temperature 
(contours every 0.5 K starting at -0.25 K), vertical motion ( contours every 2 m s  
' starting at 2 m s ') and perturbation pressure (contours every 0.1 h Pa with 
negative contours dashed) for the case with no upper-level shear. Only a 20 km 
by 12 km portion o f the domain is shown with the gust front centered at 15 km.
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The structure of the simulated density currents is displayed through time-mean 

analyses for the period of 1.0-1.5 h for the 0 ,10  and 20/5-10 km shear cases (hereafter, 

unless otherwise noted, these four cases are referred to by these shear values) (Figs. 5.8- 

5.10). The density current head for the no-shear case grows in depth and expands 

rearward with time in a manner that slightly reduces the slope of the density current 

interface through the 1.5 h simulation time. The perturbation pressure field shows well- 

known features of density currents, including a non-hydrostatic pressure ridge ahead of 

the gust front (between x=15 km and x=18 km in Fig. 5.8) resulting from the converging 

inflow, a broad region of near-surface high pressure resulting from the weight of the 

negatively buoyant air above (at all x values <15 km below z=2 km), and lowered 

pressure in the region of the turbulent mixing associated with the persistent generation of 

negative vorticity (generally between x=3-13 km and z=2-6 km) (Droegemeier and 

Wilhelmson 1987).

.• Similar behavior is found for the case with 10 m s'* of shear (Fig. 5.9), but the 

density current head does not become as deep (Fig. 5.6) and does not expand as far 

rearward with time as in the case with no upper-level shear. The slope of the density 

current interface is more sloped in the upper portion of the head (c.f. Figs. 5.8 and 5.9), 

which was found to occur for conservative, steady-state density currents in weak to 

moderate 3-10 km shear by Xue (2000). The expansion of the head in conjunction with a 

steepened slope results in an expanded region of vertical motion. The perturbation 

pressure field displays the same features as found for the case with no upper-level shear, 

but also displays a new relative high pressure above the head region related to a 

stagnation point in the flow (not shown), as found for fixed density current barriers by
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Shapiro (1992) and for conservative, steady-state density currents by Xue (2000) for the 

stronger upper-level shears. This high pressure region “pushes down” the density current 

head (Fig. 5.6) and restricts the rearward expansion of the head region for the cases with 

positive upper-level shear.
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Fig. 5.9. As in Fig. 5.8, but for the case with 10 m s ' o f upper-level shear with 
regions o f relative high (H) and low (L) pressure noted.

As the 5-10 km shear is increased to 20 m s '\  the perturbation high pressure 

region in upper levels becomes more pronounced (Fig. 5.10). The result is a further 

lowering of the density current head region (Fig. 5.6) and an overall increased steadiness 

to the flow. Also notice that the slope of the upper half of the head becomes lower once 

again, which is due to the head height becoming suppressed below the upper-level shear 

layer. Although the region of vertical motion expands with time, it does not expand as
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much as the head for weaker shear cases and the maximum magnitude is decreased owing 

to decreased convergence along the interface. The lowering of the head and the 

weakening of the upward motion along the interface continues as the shear is increased to 

30 m s ’ (Figs. 5.6 and 5.7).
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Fig. 5.10. As in Fig. 5.8, but for the case with 20 m s' o f upper-level shear.

In the study by Shapiro (1992), the maximum upward motion along the interface 

also was found to decrease with increasing the shear throughout the troposphere. In that 

study, the density current morphology was fixed as a barrier, and therefore, the decrease 

in vertical motion was directly the result of less mass impinging on the barrier with an 

increase in shear. However, since the 0-5 km shear does not change in this study, the 

decrease in vertical motion is the result of the suppression of the density current head 

depth by the introduction of shear above the cold pool and the associated reduction of
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mass convergence along the interface. Despite arising in different ways, this decrease in 

vertical motion along the interface allows a test of the hypotheses of Shapiro (1992) using 

these simulations.

5.4.1.1 Parcel analyses

The goal of the trajectory analyses is to examine the vertical displacement of 

parcels as they encounter the forced updraft along the density current interface. To 

account for the unsteadiness noted in the zero-to-weak upper-level shear cases, the 

vertical displacement of parcels is examined through a series of trajectory calculations 

rather than through the streamfunction for the time-averaged flow. Trajectories are made 

from starting positions in the undisturbed flow ahead of the gust front at each model 

vertical level (every 250 m) between 125 m and 1875 m. The trajectories at each starting 

height are calculated using model output every 30 s and are calculated every 30 s from 

1800 to 2400 s, giving a total of 21 trajectories for each of the eight starting positions for 

each simulation.

Results show that the maximum displacement of low-level (0-2 km) parcels is 

larger for the 5,10, and 15 m s'  ̂ shear cases than it is for the no-shear case (Fig. 5.11). 

The maximum in the distribution (-9000-11000 m) occurs somewhere between 5 and 10 

m s'* and then decreases to displacements of only 4000 m for the 30 m s'* shear case. 

Displacements are roughly the same for 17 m s'* of upper-level shear as they are for no 

upper-level shear and are clearly larger for intermediate shear values. It is interesting that 

much of the range of the observed derecho shear profiles is contained within 5-10 km 

shear values of 5-20 m s'* (Fig. 4.8).
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Fig. 5.11. The distribution o f the maximum displacement of low-level (0-2 km) 
parcels (m) for various values o f 5-10 km shear. Thin solid lines enclose the 
maximum and minimum values among the 21 trajectories, thin dashed lines 
enclose the 25* and 75* percentiles, and the thick solid line is the median.
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Fig. 5.12. The median of the maximum displacements of air parcels among the 
21 trajectory calculations that begin in the 0-1 km layer for various values of 5- 
10 km shear.

Analysis of the displacements at each level reveals interesting behavior. The 

surface parcels (z=125 m) show maximum displacements that are largest for the no-shear
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case (Fig. 5.12). For the parcels that begin at 375 m, 625 m and 875 m, the maximum 

displacements are virtually the same for the no-shear and 5 m s'  ̂ shear cases before 

decreasing for the larger shears. However, the largest parcel displacements occur in the

•1125 m  1375 m -  -  1625 m   1875 m

10000

9000

8000
E

7000

6000

t>

8  5000

1
4000

3000

2000
0 5 10 15 20 25 30

5-10 km shear (m s )

Fig. 5.13. The median of the maximum displacements of air parcels among the 
21 trajectory calculations that begin in the 1-2 km layer for various values of 5- 
10 km shear.

1-2 km layer (the “elevated” parcels) for the profiles with weak to moderate upper-level 

shear (the median values show a maximum at either 5 or 10 m s'* ) (Fig. 5.13). It is 

interesting that for the parcels that begin at 1325 and 1675 m, the parcels are displaced 

the same amount for the 20 m s'* case as for the no shear case, which clearly indicates the 

enhancement of the deep lifting with the addition of upper level shear for the elevated 

parcels.

Further insight into this behavior is gained through an illustration of the trajectory 

paths for the 0,10, and 20 shear cases (Fig. 5.14). For the no shear case, the parcels rise 

as they encounter the upward motion and are swept rearward relative to the gust front 

(Fig. 5.15a) forming a jump-type updraft (Moncrieff 1992). It is interesting that, despite
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the fact that the parcels are lifted to levels with no relative motion in the undisturbed 

environment (the midlevel wind speeds are approximately the same as the gust front 

motion, as shown in Fig. 5.6), the parcels continue to accelerate rearward in response to 

the lowered perturbation pressure in the vicinity of the head region. Although this is a 

dry response to the lowered pressure in the region of turbulence, a similar rearward 

acceleration occurs later in the 2-D and 3-D moist simulations as a response to the 

hydrostatic lowering of pressure within and underneath the buoyant updraft plumes 

(Lafore and Moncrieff 1989).
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Fig. 5.14. Illustration of parcel paths in the lowest 2 km starting at 2100 s (thick solid 
lines) for the (a) 0 m s '\  (b) 10 m s'* and (c) 20 m s'* shear cases. The parcel paths end 
at 4200 s in (a), 4500 s in (b) and at 5400 s in (c). The perturbation potential 
temperature (dashed lines, contoured as in Fig. 5.8) and vertical motion (thick grey 
lines, contoured as in Fig. 5.8) also is shown at these times.
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Fig. 5.15. Vertical motion (m s ') along the parcel paths for parcels starting at (a)
375 m and (b) 1625 m among the 0 ,1 0 ,2 0  and 30 m s ' shear cases. The values 
are only calculated up until the point the parcel leaves the region of forced 
upward motion.

For the 10 m s'  ̂ shear case, the low level parcels are forced over the density 

current as before in a jump-type updraft, to slightly lower levels than for the no-shear 

case. However, the parcels that begin at 1375 m, 1625 m and 1875 m overturn after they 

are forced upward (Fig. 5.14). The overturning results in the much larger vertical parcel 

displacements than for the no shear case. The flow then represents a mixed jump and 

overturning updraft that exists in the idealized frameworks of squall lines as summarized
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by Moncrieff (1992). The overturning exists because of the existence of a critical layer in 

mid levels (5-7 km) for the cold pool speed and shear profiles examined in this study.

As hypothesized by Shapiro (1992), the behavior of the overturning can be 

explained through the time integration of the vertical velocity along the parcel paths. The 

low level parcels experience the strongest upward velocity (Fig. 5.15a), but the elevated 

parcels rise for longer periods (Fig. 5.15b). Focusing solely on the parcels that begin at 

1625 m (Fig. 5.15b), even though the maximum upward velocity experienced by the 

parcel in the 10 m s ’ case is less than that experienced by the parcel in the no shear case, 

the parcel is eventually lifted to higher levels (c.f. Figs. 5.12 and 5.13). Therefore, the 

upper-level shear layer and its interaction with the forced updraft allows the elevated 

parcels to remain in the region of upward motion for much longer periods than both the 

elevated parcels for the no shear case, and for the low-level parcels for all of the shear 

cases (Fig. 5.15b). This shows that the hypothesis developed by Shapiro (1992) for fixed 

density current barriers appears to be a general result for these simulations of stratified .- 

density currents that are allowed to respond to the vertical shear in the flow.

Also notice that the elevated parcels are lifted by the overturning so that they 

remain close to the leading edge of the gust front, whereas, as noted before, the low-level 

parcels for the 10 m s ’ case and all the parcels for the no shear case are swept rearward 

(Fig. 5.14). This has important implications for the structure and maintenance of 

convective systems as suggested by Gamer and Thorpe (1992) and later in this study.

The physical response of the parcels can be interpreted through the perturbation 

pressure field at the stagnation point caused by the upper-level shear. The high pressure 

above the cold pool accelerates the elevated parcels in the direction of the gust front
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motion whereas the parcels in the no shear case continue to be swept rearward relative to 

the cold pool. This can be seen by examining the pressure field in the cross sections 

(Figs. 5.9 and 5.10) and through the calculations of the pressure gradient term along the 

elevated trajectories (not shown). Although this region of high perturbation pressure is 

produced by the upper-level shear, the high pressure also affects the reduction in parcel 

displacements as the upper-level shear is increased, which is not noted in Shapiro (1992) 

and Moncrieff and Liu (1999). This is the reason for the reduction in the displacements 

beyond -1 0  m s'* in Fig. 5.11. While the elevated parcels continue to overturn as the 

shear is increased to 20 and 30 m s'*, the stronger perturbation pressure pushes down the 

cold pool which reduces the depth of convergence along the gust front. This limits the 

overturning to an increasingly shallower layer (Fig. 5.14c) so that only the parcel that 

starts at 1875 m overturns in the 30 m s'* shear case. Therefore, the region of high 

perturbation pressure eventually counteracts the deep overturning of the elevated parcels 

by reducing the vertical scale of the overturning.

The results from Shapiro (1992) were for fixed density-current barriers and were 

designed for shear profiles that increase the shear throughout the depth of the troposphere 

(see Fig. 2.5). Therefore, the relative importance of the low-level versus the upper-level 

shear could not be gauged in that study. Additionally, the conceptual model of RKW 

revisted by WR, by their definition, can not be directly applied to these results since the 

shear is held constant below 5 km in all of the simulations. At least for the low-level 

shear profile and the cold pools examined in this study, the important result from this 

portion of the study is that shear added entirely above the cold pool (as long as it is not
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too strong) can accomplish the increase in lifting within deep tropospheric shear. The 

following sections examine this result in more complex frameworks.

5.4.2 2-D moist simulations

The previous section provides an explanation for how shear elevated above the 

cold pool can enhance the lifting of low-level (1-2 km) parcels in an environment with 

modest shear in low levels. While the model design allowed for the simulation of density 

currents with strengths and depths similar to what is observed in the atmosphere, the 

dynamics are constrained by neutral stability, dry dynamics and two dimensions. This 

subsection qualitatively examines the consistency of the results from section 5.2.1 to 2-D 

simulations that include a stratified environment and moist microphysics.

•0 m/s — 15 m/s — 30 m/s
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Fig. 5.16. The evolution of the maximum vertical velocity for the 0 ,15 , and 30 m s ‘ 
2-D moist simulations.

The behavior of the simulations will first be presented with measures of system 

strength between the 0 ,15 , and 30 m s * shear cases. Guided by these results, time 

averaged fields in cross sections will be presented that explore the evolution of the
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convective systems. In all of the simulations, the cold pool introduced by the cooling 

function develops convection about 20 minutes into the simulation. The initial 

convective cells deposit their rain and develop a cold pool that acts to initiate further 

convection, which allows the cooling function to be removed after this time.
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Fig. 5.17. The evolution o f the domain-integrated rainwater for the 0 ,1 5 , and 30 m s'
2-D moist simulations.

The evolution of the maximum surface wind is similar for all three simulations 

(not shown). However, interesting differences are found when examining the evolution 

of the maximum updraft strength (Fig. 5.16). From 1 -  3 h, the case with no shear aloft 

produces the strongest updrafts. The updrafts generally become weaker in this time 

period as the shear is increased from 15 to 30 m s '\  Additionally, the amplitude of the 

updraft oscillations appears to be largest for the case with no shear aloft. This behavior 

was noted in RKW for the simulated squall lines that appeared to be close to the optimal 

condition and represents the retriggering of cells along the gust front. After about 3 h, a 

transition occurs where the maximum updrafts for the case with no shear aloft lose their

96



amplitude. In contrast, the maximum updrafts for the 15 m s ’ shear case retain the 

amplitude oscillations from the first few hours of the simulation and become stronger 

than the updrafts for the no shear case. This difference is most apparent in the period 

between 4 and 5.5 h and also is apparent for the evolution in the strongest downdrafts. 

The updrafts for the 30 m s ’ simulation, however, remain the weakest of the three cases 

in all time periods and also appear to lose amplitude with time.
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Fig. 5.18. The evolution o f the minimum buoyancy acceleration (m s' )̂ for the 0, 15, 
and 30 m s'* 2-D moist simulations.

The domain-integrated rainfall shows behavior similar to that for the updrafts and 

downdrafts, with the no shear case producing the most rainfall in the early periods, and 

the 15 m s ’ shear case producing the most rainfall in the later periods (Fig. 5.17). The 30 

m s ’ case consistently produces the least amount of rainfall among the three cases. 

However, it is interesting that the no shear case produces the largest values of negative 

buoyancy from 2.5 h to the end of the simulation (Fig. 5.18), but this does not necessarily 

translate into a faster cold pool motion (Fig. 5.19). The no shear case appears to show the
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most increase in gust front speed from 1.5 to 5 h, but the 15 and 30 m s ’ cases also show 

a general trend to produce a slightly faster cold pool with time. In the period when the 15 

m s ’ case is producing the strongest updrafts, the strongest downdrafts and the most 

rainfall (after ~ 3.5 h), the 15 m s ’ case shows the fastest cold pool motion, but the 

differences are relatively small.

-0 m/s — 15 m/s — 30 m/s
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Fig. 5.19. The evolution o f the domain-integrated rainwater for the 0 ,1 5 , and 30 m s'
2-D moist simulations.

To understand the significance of these differences between the three simulations, 

fields of buoyancy, upward vertical motion and rainwater mixing ratio are time-averaged 

with the gust front positioned at the center of the domain for two periods. The time- 

averaged fields are first presented for the period from 2-3 h; the period when the no shear 

case appeared to be the strongest case, and then for the period from 4 -5 h; the period 

when the 15 m s ’ shear case appeared to be the strongest case. As in many past 2-D 

simulations of convection, cells periodically generate and decay in the vicinity of the cold 

pool leading edge and are swept rearward in low-levels relative to the gust front leading
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edge. Although these cells can alter characteristics of the forced updraft and low-level 

inflow through buoyancy induced circulations and pressure perturbations (Fovell and Tan 

1998), the time averaged fields are useful for displaying the general circulation features 

contained in the system-scale structure that support the transient development of the 

convection (Xue et al. 1997).

NEGATIVE BUOYANCY Tavg = 2 - 3  h 5 - 1 0  Km she a r  -  00 m/s
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Fig. 5.20. Time-mean (2-3 h) values o f negative buoyancy (contours every 0.03 m s starting 
at -0.02 m s' )̂, upward vertical motion (contours every 1 m s ' starting at 2 m s ') and rainwater 
mixing ratio (contours every 0.5 g kg ' starting at 1 g kg ') for the case with no shear in the 5- 
10 km layer. Only a 50 km by 12 km portion of the domain is shown with the gust front 
centered at 40 km.

For the no shear case, the cells are actively generated within a few km of the gust- 

front leading edge during the 2-3 h period (Fig. 5.20). The cells become loaded with
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precipitation, weaken and deposit their rain generally within 10 km behind the gust front. 

The leading edge of the cold pool is deepest in this region and has a mean depth of about 

2 km. The forced updraft is sloped along the cold pool with a magnitude of about 8 m s '. 

The time-averaged region of upward motion of 3-6 m s’’ in mid levels reflects the 

collection of the convective updrafts in this region.
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Fig. 5.21. As in Fig. 5.20 but averaged for the period of 4-5 h.

For the latter period (4-5 h), convective cells continue to be generated, but do not 

occur with as much frequency and are swept further rearward relative to the gust front 

(Fig. 5.21). There is now a clear separation between the forced updraft (near 40 km in
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Fig. 5.21) and the time-averaged collection of the convective updrafts, which are now 

found 10-30 km behind the gust front leading edge. In response to this rearward shift in
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Fig. 5.22. As in Fig. 5.20 but for the case with 15 m s' of 5-10 km shear.

convective cells and rainfall, the cold pool is deepest about 20 km behind the gust front 

and is over 2.5 km deep in the time-averaged fields. This region is responsible for the 

largest values of negative buoyancy among all three of the simulations (Fig. 5.18). The 

cold pool depth closest to the surface gust front position shows a decrease to about 1 km, 

which is responsible for the weakened forced updraft magnitude. This behavior in the 

latter period resembles the decaying phase of the squall lines as discussed in RKW, in
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which the gust front surges ahead of the updrafts and the convection continues to weaken 

with time. However, as in Fovell and Ogura (1989) and in the updated simulations of 

WR that use larger domains, the state of the convective system shown in Fig. 5.21 

represents an equilibrium state in which the thermodynamics adjust to the wind profile. 

Although in a weakened state, convection continues to develop throughout the 6 h 

simulation time.
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Fig. 5.23. As in Fig. 5.20 but for the case with 15 m s ' of 5-10 km shear averaged 
in the 4-5 h period.

For the 15 m s ’ case, the cells actively develop within a few km of the gust front 

during the 2-3 h period (Fig. 5.22), as for the no shear case. The maximum cold pool
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depth near the leading edge is slightly smaller for the 15 m s ' case (-1.8 km) as 

compared to the no shear case ( - 2.1 km) and is located a few more kilometers behind the 

gust front. These subtle differences in the time averaged fields are more noticeable when 

viewing the model output at 2 min intervals (not shown). The result in the time-averaged 

fields is a weaker forced updraft ( - 6  m s ') and weaker convective cells (Fig. 5.22) as 

compared to the no shear case, although the convective cells generate and decay within 

10 km of the gust front leading edge. The most apparent differences in the time-averaged 

fields between the no shear and 15 m s ' cases are found for the latter period (Fig. 5.23). 

In the 15 m s ' case, the core of the convective cells remains positioned about 10 km 

behind the gust front (Fig. 5.23), as opposed to expanding rearward with time for the no 

shear case (Fig. 5.21). This results in the deepening of the cold pool within 10 km of the 

gust front to over 2 km in depth and the subsequent strengthening of the forced updraft, 

which now has a maximum strength between 7 and S m s ' .  In the 15 m s ' case, there is 

no longer a clear separation between the forced updraft and the convective updrafts and 

the overall slope of the system is more upright (Fig. 5.23). This same evolution is noted 

for the 30 m s ’ case, but the forced and convective updrafts, as well as the cores of 

convective rainfall, are clearly weaker in the time-averaged fields in response to the 

significantly shallower cold pool, especially in the earlier period (not shown).

The above analysis shows that the arguments and physical responses garnered 

from the dry, neutral stability simulations agree qualitatively with the response noted in 

the moist simulations within a thermally stratified environment. The system that 

develops in no upper-level shear is initially stronger than the system that develops in 

moderate upper-level shear due to the deeper convergence and stronger forced lifting
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along the cold pool. However, without the overturning of the elevated parcels in the no 

shear case, the cells continue to be swept rearward by the front-to-rear flow in all levels 

(the gust front moves at 20-23 m s ' seen in Fig. 5.19).

. r-it * A #  I# jc .<

Fig. 5.24. Perturbation pressure (contours every 0.4 h Pa with negative values 
dashed) and gust-front relative winds in a 40 km cross section through the gust front 
averaged from (a) 2-3 h and (b) 4-5 h for the case with no shear aloft.

Cross sections of pressure perturbation and gust front-relative winds show 

evidence of this behavior (Fig. 5.24-5.26). The overturning noted in the earlier period in 

the no shear case (Fig. 5.24a) does not affect the tilt of the subsequent updrafts in the
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later time period (Fig. 5.24b). The lowered pressure created by the buoyant updrafts 

accelerates the flow and the updrafts plumes rearward with time. Without the 

background overturning, the result is a cold pool that progressively deepens further

' ' ---------------------------— » r î  K  r - I  > I  ^
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Fig. 5.25. As in Fig. 5.24 but for the case with 15 m s ' of 5-10 km shear.

behind the gust front and become shallower closer to the cold pool leading edge as noted 

before. This feeds back into a weaker forced updraft and a succession of weakened 

convective updrafts that have a significant rearward slope (Fig. 5.24b). Eventually, the
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system reaches an equilibrium state, as described before, with a substantial upshear tilt 

and weakened updrafts.

For the 15 m s'  ̂ case, the upper-level shear interacts with the cold pool (and the 

vertical motion fields of the convective cells in the moist case) to create the perturbation 

high pressure noted in the 2-D dry simulations that offsets the rearward acceleration of 

the low-midlevel parcels and maintains the overturning of the elevated parcels (Fig. 

5.25). The system maintains itself by keeping the convective cells within 10 km of the 

gust front, which maintains (and deepens) the cold pool in this region and promotes the 

continuation of the deep lifting and the overturning. Overturning still occurs in the 30 m 

s'  ̂ case, but the vertical scale is contracted by the increased pressure perturbations and 

the shallower cold pool (not shown). This results in a shallower and weaker system as a 

whole. Overall, this shows qualitative consistency with the behavior of the 2-D dry 

simulations and supports the claims of Shapiro (1992), Moncrieff and Liu (1999), Xue 

(2000), Coniglio and Stensrud (2001) that the shear throughout the depth of the 

troposphere has potentially important effects on the maintenance of convection that is 

forced by the deep convergence along a cold pool.

5.4.3 3-D simulations

There are many important restrictions that are removed by adding a third 

dimension, which can alter the behavior of the simulations with the addition of upper- 

level shear. As previously noted, model environments with strong low-level wind shear 

tend to allow the development of bow echo circulations and strong asymmetries to the 

flow (W93). The third dimension is especially important within environments of 

significant deep-tropospheric shear that facilitate the development of supercells and the
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associated dynamic pressure perturbations that add complexity to an assessment of the 

physical mechanisms at work and the perceived strength of the system (RKW, Coniglio 

and Stensrud 2001, WR). Therefore, it is especially important to examine the effects of 

the upper-level shear on simulations of linear MCSs that develop within a 3-D 

environment. This study uses these more complex simulations to focus on the qualitative 

consistency of the arguments developed in a 2-D dry, neutral environment. Adding to the 

complexity is the addition of ice microphysics, which can substantially alter the strength 

of the cold outflows and the distribution of convective cells in 3-D simulations of deep, 

moist convection (Gilmore et al. 2004). However, the goal is to provide an increase in 

realism within the class of MCS simulations that are produced within horizontally 

homogeneous environments and not to document the effects of the increased complexity.

5.4.3.1 System maintenance

As in the 2-D moist simulations, the behavior of the simulations is first presented 

with measures of system size and strength. The initial convective cells that are initiated 

by the warm bubbles deposit their rain and develop a cold pool that acts to initiate further 

convection. By approximately 2 h, the cold outflows from the individual cells expand 

and collect to form a cold pool on the scales of MCSs (Zipser 1982). The following 

material focuses on the behavior of the simulations after the development of the MCS and 

the primary role of the upper-level shear.

As in the 2-D moist simulations, the evolution of the maximum surface wind is 

similar for all three simulations (Fig. 5.26). The strongest surge and longest duration of 

surface winds (noted by the amplitude fluctuations in Fig. 5.26) occurs for the case with 

no shear aloft between 3 and 4 h, during which the peak surface winds reach 43.5 m s'*
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near 3.7 h. The peak surface wind for the 15 m s ' case reaches about 41 m s ' about a 

half hour later and has a narrower distribution within the period of the wind surge. A 

similar surge in the maximum surface winds occurs between 4.5 and 5 h for the 15 m s'' 

case. In this later time period, the maximum surface wind speed for the no shear and 15 

m s ' shear cases is similar. The amplitude fluctuations for the 30 m s ' case are smaller 

and mostly weaker than the other two cases.
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Fig. 5.26. Evolution of the maximum surface (125 m) wind for the 3-D simulations.

More pronounced differences are found when examining the evolution of the 

maximum updraft (Fig. 5.27) and downdraft strengths (5.28). The simulation with no 

shear aloft contains stronger cells initially (before 1.25 h), owing to the shearing of the 

updrafts in upper-levels for the cases with positive upper-level shear. As the larger scale 

cold pool develops after 1.5 h, new updrafts develop along the leading edge, all with 

similar peak magnitudes. However, closer examination of the new updrafts that are 

initiated along the cold outflows from the initial cells shows that the updrafts for the 15 m 

s ' and 30 m s ' shear cases are collectively stronger in the period from 1.5 h -  2 h. This
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is evident somewhat in the evolution of the peak downdraft magnitudes (Fig. 5.28) and 

the minimum values of buoyancy (Fig. 5.29).
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Fig. 5.27. Evolution o f the maximum vertical velocity for the 3-D simulations.
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Fig. 5.28. Evolution o f the minimum vertical velocity for the 3-D simulations.
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Fig. 5.29. Evolution of the minimum buoyancy acceleration for the 3-D simulations.

A clear separation in the maximum updraft/downdraft magnitudes occurs after 2 

h, which coincides with the transition of the line of isolated convective cells into an 

organized MCS structure (displayed in Fig. 5.30). As in the 2-D moist simulations, the 

evolution of the maximum updrafts reveal that the case with no upper-level shear enters 

an upshear-tilting phase once the cold pool becomes firmly established. During this 

phase, the convective cells and the precipitation becomes located farther behind the 

surface gust front until about 4.5 h, when the maximum updrafts maintain a constant 

strength of 22-24 m s '\  As in the 2-D simulations, the case with no shear aloft produces 

the largest magnitudes of negative buoyancy as the updrafts expand rearward (Fig. 5.29).
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Fig. 5.30a-c. Evolution o f the surface total précipitation mixing ratio (solid lines 
every 2 g kg ' starting at 2 g kg ') that highlights the heaviest precipitation, the
position o f the gust front at the surface (dashed line) and the ground relative wind 
vectors (every 4 grid points) for a 60 km by 60 km portion o f the domain at (a) 2 h, 
(b) 2.5 h, and (c) 3 h for the case with no upper-level shear (left panels) and the case 
with 15 m s ' o f upper-level shear (right panels).
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Fig. 5.30 d-e (continued). Evolution of the surface total precipitation mixing ratio 
(solid lines every 2 g kg ' starting at 2 g kg ') that highlights the heaviest 
precipitation, the position of the gust front at the surface (dashed line) and the ground 
relative wind vectors (every 4 grid points) for a 60 km by 60 km portion o f the 
domain at (d) 3.5 h and (e) 4 h for the case with no upper-level shear (left panels) and 
the case with 15 m s ' o f upper-level shear (right panels).

In contrast, the maximum updrafts remain strong for the cases with upper-level 

shear throughout the 6 h simulation time (Fig. 5.27). As discussed by WR and as shown 

later especially for the 30 m s * shear case (Fig. 5.37), these strong updrafts are partially 

related to the development of isolated supercell-like structures, but the updrafts along the 

center portion of the domain shown in Fig. 5.30 are non-supercellular and are 

significantly stronger than the updrafts along the same portion of the line for the no shear 

case.
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The behavior of the simulations presented in Fig. 5.30 can be explained through 

an examination of the gust front speeds along with the evolution of the updrafts. As 

noted earlier, the new updrafts initiated along the cold outflow from the initial cells are 

slightly stronger for the case with 15 m s ’ of shear than for the no shear case. This is 

apparent in the surface precipitation at 2 h (Fig. 5.30a) and results in a slightly deeper 

cold pool and a slightly faster gust front motion in the 1.25 h -  2 h period (Fig. 5.31). In 

the ensuing period of convective cell development (2-2.5 h), the updraft strengths are 

similar for the no-shear and 15 m s ’ shear cases, which produces similar surface 

precipitation rates (Fig. 5.30b). However, an important difference in the structure of the 

simulations is seen at 2.5 h. For the no-shear case, the cells form a solid line of heavy 

precipitation about 50 km in length, whereas for the 15 m s ’ shear ease, the regions of 

heavy precipitation are more numerous, but have more separation between them (Fig. 

5.30b). As a result of the concentrated region of precipitation in the no shear case, the 

cold pool becomes deeper and the gust front reaches a speed of 25 m s ’ after 3 h (Fig. 

5.31). This is accompanied by a surge in the surface wind speeds (Fig. 5.30 c). After the 

gust front increases in speed, the heavy surface precipitation weakens and becomes 

located further and further behind the gust front at later times (Fig. 5.30 d-e). In contrast, 

the surface precipitation remains strong for the 15 m s ’ shear case and remains closer 

behind the gust front through 4 h, which is accompanied by the solidification of the 

precipitation and the development of a bow echo and a surge in the surface wind speeds 

(Figs. 5.30 c-e). The gust front reaches a speed of 22.5 m s ’ for the 15 m s ’ shear case 

(Fig. 5.31), but this surge in the gust front is not accompanied by a decrease in the 

surface precipitation and a weakening o f the updrafts.
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Fig. 5.31. Evolution of the gust front speed for the three simulations.
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Fig. 5.32. The storm-relative wind profiles for the three simulations at 3.5 h.

The differences in the behavior of the simulations shown in Fig. 5.30 can be 

understood in the context of the overturning of the updrafts. With the knowledge of the 

gust front motions, the storm-relative wind profiles show that the case with no upper- 

level shear transitions to a flow that is rearward at all levels during the time that the
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Fig. 5.33. Vertical cross sections taken along the center portion of the cold pool that trigger 
convections for the case with no upper level shear (top panel), the case with 1 5 ms *  o f upper-level 
shear (middle panel) and the case with 30 m s ' o f upper-level shear (bottom panel). Instantaneous 
values of negative buoyancy (dashed lines every 0.06 m s'̂  starting at -0.02 m s' )̂ and upward 
motion (grey solid lines every 2 m s ’ starting at 2 m s ') are shown at 4.33 h. The dark solid lines 
denote the 1 h paths of the trajectories starting at 3.33 h at the lowest 8 model levels (0-2 km). 
Trajectories are calculated with model output every 2 min.

updrafts and the surface precipitation weakens (Fig. 5.32). However, for the case with 15 

m s'* of shear, the storm-relative wind profile still contains an overturning flow with a 

critical layer near 6 km. Trajectory calculations along cross sections confirm that 

elevated parcels are overturning in the 15 m s’’ case and are responsible for the strong, 

consolidated updrafts and the subsequent bowing in the heavy precipitation through 4 h 

(Fig. 5.33) and beyond. The overturning helps to maintain the more upright tilt and the
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strength of the convection despite the consolidation of the cells and the surge in the gust 

front. This provides evidence that the deeper lifting provided by the upper-level shear 

contributes to the maintenance o f  the convection and the tilt o f the updrafts in the 3-D 

simulations.

Is it interesting that in the 3-D simulations, the upshear tilting of the updrafts for 

the case with no upper-level shear arises primarily from the increased motion of the cold 

pool, which creates rearward flow at all levels. In the 2-D simulations, the increased 

rearward flow resulted entirely from the development of the lowered perturbation 

pressure underneath the updraft plumes and not from the acceleration of the cold pool. 

The lowered hydrostatic pressure in midlevels due to the updrafts and the enhanced 

rearward acceleration also is found in the 3-D simulations (not shown), hut the faster 

acceleration of the cold pool resulting from the concentration of the precipitation in the 

no-shear case adds to the rearward flow in the 3-D simulations.

*0 m/s — 15 m / s  30 m/s

1.8E+08

0% 1.4E*0a

§ 1.2E*08
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I 8.0E*07
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2 60 3 51 4
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Fig. 5.34. Evolution o f the domain-integrated rainwater for the 3-D simulations for 
the 0, 15 and 30 m s ' simulations..
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5.4.3.2 System size

Another interesting difference in the simulations is found when examining the 

evolution of the integrated rainfall (Fig. 5.34) and presents an additional effect that is 

only possible in 3-D. The total precipitation produced by the simulations shows a much 

more pronounced difference among the three simulations than for the 2-D simulations 

(c.f. Figs. 5.32 and 5.17). Although the convective cells are stronger and produce larger 

convective rainfall rates when shear is included in upper-levels (Fig. 5.27), the primary 

reason for this large difference in total rainfall is the differences in the sizes of the 

systems. Notice that the 15 m s'* case is over twice as large as the case with no upper- 

level shear by 5 h, with an approximate horizontal length scale of 240 km (Figs. 5.35 and 

5.36). The size of the 30 m s'* case is even larger than the 15 m s'* case, with a length 

scale that expands with time from approximately 150 km at 3 h, to nearly 300 km in 

length by 6 h (Fig. 5.37). This shows that another effect of the upper-level shear in the 3- 

D simulations is the enhanced ability of the cold pool to initiate and maintain convection 

on the outer flanks of the cold pool. It is interesting that cells have difficulty triggering 

on the northern and southern flanks of the initial convective line for the no shear case, 

whereas conveetive eells rapidly fill in along the northern and southern flanks of the cold 

pool for the cases with upper-level shear. Vertical cross sections along the southern 

portion of the cold pool reveal that the overturning process appears to be responsible for 

the convective triggering and maintenance as for the main portions of the eonvective line. 

For the no shear case, parcels are lifted as they encounter the rapidly moving ~2 km-deep 

cold pool but are swept rearward and do not convect because dry air above 3 km (Fig.

5.4) becomes entrained and the parcels quickly become negatively buoyant. However,
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Fig. 5.35. Horizontal cross sections of the total precipitation mixing ratio at 4 km 
AGL (solid lines contoured every 1 g kg * starting at 1 g kg ’), the position of the gust 
front at the surface (dashed line), and the gust-front relative wind at 3 km AGL at 
every other grid point at (a) 3 h, (b) 4 h, (c) 5 h and (d) 6 h for the case with no upper- 
level shear. Only a 320 km by 320km portion of the domain is shown.

for the 15 m s'* case the elevated parcels readily convect along the slower moving cold 

pool and form an overturning circulation with the upward branch close to the leading 

edge of the gust front. This also is the case for the 30 m s'* simulation (Fig. 5.37), which 

suggests that the effect of pushing down the cold pool by the perturbation high pressure
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Fig. 5.36. As in Fig. 5.35 but for the case with 15 m s ' o f 5-10 km shear.

in the 2-D simulations is not as much as factor in the 3-D simulations for the range of 

realistic shear magnitudes examined in this study. This is because the leading edge of the 

cold pool develops along-line variability in three dimensions whose depth is more 

contingent upon the location and evolution of the cold downdrafts of the convective cells
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Fig. 5.37. As in Fig. 5.35 but for the case with 30 m s ’ of 5-10 km shear.

than the distribution of the perturbation pressure in three dimensions (which also shows 

along-line variability in 3-D). However, the most important result is the maintenance of 

the updrafts closer to the gust front and the more abundant convective triggering along 

the cold pool in the upper-level shear simulations as a result of the overturning process in 

conjunction with the slower moving cold pool, which suggests that the results of Shapiro
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(1992) and Moncrieff and Liu (1999) appear to be a general result for linear MCSs that 

are forced along propagating cold pools.

5.43.3 System structure

It is interesting to discuss some of the differences in the overall structure of the 

MCSs as compared to past idealized simulations. The case with no upper-level shear at 3 

h displays a line of convective cells about 100 km in length located about 10-30 km 

behind the surface gust front (Fig. 5.35a) that evolves into a broad, bowing MCS on a 

scale of about 100 km at later times (Figs. 5.35b-d). At 3 h, the midlevel winds reveal 

relative inflow into the line with anticyclonic and cyclonic vortices at the ends of the line. 

The cyclonic circulation is in the process of becoming stronger than its anticyclonic 

counterpart due to the presence of Coriolis forcing (Skamarock et al. 1994). The 

significant upshear slope to the system is consistent with the development of an 

expansive stratiform rain region (not shown) and the organized rear inflow into the 

system, which maintains the strong surface winds, despite the weakening of the updrafts 

and the precipitation (Fig. 5.26). This type of structure is similar to the type that is 

presented in W93 and Weisman and Trapp (2003) that develops in the environment with 

moderate shear confined to low-levels.

In comparison, the case with 15 m s'  ̂of shear displays a line of convective cells 

about 150 km in length located about 10-15 km behind the surface gust front (Fig. 5.36a). 

More isolated cells are found on the ends of the line, especially on the southern end 

where a supercell becomes separated from the main convective line, which is consistent 

with the simulations in deeper shears presented by W93 and WR. Cyclonic and 

anticyclonic vortices also are found toward the ends of the line. The cyclonic circulation
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becomes stronger with time, as for the case with no shear, but is confined to a smaller 

horizontal scale. The smaller-scale rear-inflow contributes to the development of the 

smaller-scale bow echo shown earlier (Fig. 5.32) and is responsible for the surge in 

surface winds in the 3.5-4 h time period (Fig. 5.26). In the southern portion of the line, 

another bow echo feature develops from an individual cell at 3 h and surges to the south 

and east (Fig. 5.36b-c). This bow echo is responsible for the surge in surface winds in the 

4.5-5 h time period (Fig. 5.26) and is accompanied by a surge in the gust front (Figs.

5.37c and 5.37d) toward the southeast.

The MCS-scale structure for the 30 m s ' case is similar to the 15 m s ' case in 

terms of its size and the location of the cells behind the gust front. Consistent with past 

simulations in very strong deep layer shear (Weisman et al. 1988, WR), the individual 

convective cells retain their identity for longer periods than for weaker deep layer shear. 

However, a portion of the line toward the southern half of the system contains a solid line 

of convective cells that accelerates to the south and east ahead of a region of rear inflow 

with a significant northerly component that is most apparent at 6 h (Fig. 5.37d).

As mentioned in the background, none of the simulations presented in WR that 

have shear above 5 km are reported as having organized bow echoes within the main 

convective line. Therefore, this study presents simulations of MCSs different than what 

has been reported in the context of idealized numerical simulations in the past within 

deep shear environments. The simulations presented herein with deep troposphereic 

shear combine several modes of convective evolution, including bow echoes, over the 6 h 

simulation time not unlike what is observed with strong MCSs (Pzybylinski 1995, 

Klimowski et al. 2000, Miller and Johns 2000). It is emphasized the convective
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overturning process highlighted in the 2-D simulations appears to have a significant 

control over the structure and maintenance of the overall MCS in these simulations.

5.5 Discussion

It should be noted that, by examining the effects of upper-level shear on the 

simulations of strong MCSs, we do not to intend to discount the importance of low-level 

shear in the environment. Indeed, the observations presented in Chapters 3 and 4 and 

past numerical modeling work agree that some amount of environmental low-level shear 

is usually observed in the environment and is needed to simulate convective systems 

(Thorpe et al. 1982, RKW88). It also is recognized that the character of the lifting and 

the overall strength and structure of simulated MCSs is clearly sensitive to the magnitude 

of the low-level shear in past simulations and that we have not examined this sensitivity 

in the present study. However, the point that we want to emphasize is that the structure 

and maintenance of strong MCSs also is sensitive to the magnitude of the upper-level 

shear.- While we can not compare the relative sensitivities between the addition of shear 

in low-levels versus upper-levels, it is shown that even a modest amount of upper-level 

shear, added to an environment with moderate low-level shear, can have a significant 

impact on the structure of the systems through the variations in the depth of the 

overturning updraft. Relatively small changes in the motion of the cold pool of 3-4 m s ' 

that results from the differing amount of shear, as shown in the previous section, add to 

these sensitivities by altering the storm-relative wind profiles and the location of the 

critical level.

It also should be noted that not much has been said about the perceived strength 

of the systems among the simulations. Overall, the strength of the surface winds showed
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less sensitivity to the changes in the upper-level shear than the updraft strength and the 

overall structure of the systems among the simulations presented here. However, it is 

found that the perceived strength of the systems is the most sensitive aspect of the 

simulations to changes in the experimental design, including the horizontal resolution, the 

initiating mechanism, and the details in the initial profiles and, especially, the parameters 

in the ice-microphysics scheme. The last point is illustrated in Fig. 5.38, which compares 

the evolution of the maximum surface winds among simulations, in which the slope- 

intercept parameter for hail (nxo.) is decreased from 4 x 10^ m"  ̂to a value of 4 x 10"̂  m'"* 

and the density of hail (Ào) is increased from 400 kg m'^ to 900 kg m'^. These changes in 

parameters increase the size of the particles but lower their number concentration (Lin et 

al. 1983). The surface winds are significantly weaker with these changes for the 

simulation with no upper-level shear, especially in the 3-4 h time period (Fig. 5.38a). In 

contrast, the surface winds are significantly stronger at all times after 3 h for a case with 

20 m s ’ of upper-level shear (Fig. 5.38b); as much as 10 m s ' in the 3-4 h time period 

and around 5 h. As in the simulations with upper-level shear shown earlier, the surges in 

strong surface winds are produced by smaller-scale bow echoes that develop along the 

center portion of the line. These large sensitivities to the perceived strength of the system 

to details in the model design prevent a general assessment of how the upper-level shear 

physically affects the strength of the systems. However, the size and structure of the 

simulations and the tendency for the updrafts to be maintained for environments with 

positive upper-level shear is not as sensitive to these changes and provides confidence 

that the behavior of the simulations presented herein is robust.
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Fig. 5.38. Evolution of the maximum surface winds for specialized simulations that 
vary the density o f hail (rh) from 400 kg m^ to 900 kg m' and the slope-intercept 
parameter for hail (n,o) from 4 x 10* m'"* to 4 x 10‘'m  ‘‘ for (a) an environment with no 
upper-level shear and (b) an environment with 20 m s ’ o f upper-level shear.

5.6 Application of Results

The previous section emphasizes that the convective overturning process 

highlighted in the 2-D simulations appears to have a significant control over the 

development and maintenance of the overall MCS in the 3-D simulations. This result 

satisfies one of the goals of this study, which is to refine the physical connection between 

the observed environments and the mechanisms that support strong convective systems,
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especially within weakly-forced large scale environments. While the goal of improving 

the forecasting of strong convective systems is met through the presentation of the 

environments presented in Chapters 3 and 4, the numerical modeling results also can be 

used to improving the short-term (< 6 h) forecasting of strong convective systems.

For the application of these concepts to short-term forecasting, an important factor 

to consider is the motion of the cold pool relative to the deep-tropospheric wind profile.

In real world situations, the propagation of the cold pool can be affected by more than the 

forces responsible for the motion of density currents, including the distribution of 

conditional instability along the gust front and variations in the low-to mid-level flow 

relative to the cold pool (Corfidi 2003). Knowledge of all these factors makes the 

prediction of the cold pool motion difficult prior to MCS initiation. Therefore, the most 

applicable aspect of the overturning concept may be the prediction of the overall demise 

of the MCS, which is examined in Gale et al. (2002). Indeed, the mean storm-relative 

hodographs (Fig. 4.4) show that the critical layer rises from 7 km for the beginning 

soundings to over 11 km for the decay soundings, which supports the concept of 

maintaining a deep overturning layer in upper levels to maintain the strength of the 

overall MCS. Preliminary tests of this concept to predicting the decay of strong 

convective systems are promising. Even prior to the development of the MCS, a likely 

range of cold pool speeds can be produced and evaluated. Thus one could develop 

probabilities for strong, long-lived systems as a function of the predicted cold pool speed 

and the predicted wind profile.

A point that is emphasized in this study is that the overturning process provides 

deep lifting for parcels that are elevated above the surface (1-2 km). The overturning of
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elevated parcels may provide a concept for how strong convective systems may be 

maintained after sunset and the development of a nocturnal inversion. The conditional 

instability present in the residual of the convective boundary layer can persist for several 

hours after sunset, if not for the duration of the nighttime hours. If the development of 

the nocturnal inversion is not as strong as to prevent the replenishment and the 

propagation of the cold pool, the elevated parcels can continue to be lifted and overturn 

well after dark. It is well known that organized MCSs in the central United States often 

persist well into the nighttime hours (Fritsch and Forbes 2001). The persistence is often 

related to the favorable convergence pattern and the advection of heat and moisture by 

the nocturnal low-level jet and has been related to the presence of dynamically forced 

lifting by embedded storm-scale circulations (Bemardet and Cotton 1998) and the 

interaction of a deep stable layer with gravity waves that are favored within deep- 

tropospheric shear (Schmidt and Cotton 1990) in strong-wind MCS events. The 

overturning process may provide another conceptual model for the persistence of strong 

MCSs that have well developed cold pools in situations when it is not obvious that the 

system is being forced by the nocturnal low-level jet or by other means. To examine this 

hypothesis, future studies should design numerical simulations that incorporate a 

nonhomogeneous environment (e.g. Richardson et al. 2000) that includes the 

development of a nocturnal inversion in the downshear environment.
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Chapter 6: Summary and Discussion

This study examines an important subset of strong windstorms produced by 

mesoscale convective systems known as derechos. Derechos are important because much 

of the damage caused by non-tomadic wind gusts has been attributed to them. While 

technological advances in radar observing systems and knowledge of the radar-derived 

storm-scale characteristics has improved the ability to warn for the potential for 

damaging winds, derechos remain a difficult forecasting problem at longer lead times (>

3 h). This is related to incomplete knowledge of derecho environments and an 

incomplete understanding of the physical mechanisms responsible for their development 

and maintenance.

With the ultimate goal of improving the forecasting of derechos, this study is 

motivated by past research that suggests a discrepancy between observed derecho 

environments and the environments that support strong convective systems in idealized 

numerical simulations. In addition, this study is motivated by past research that suggests 

upper-level shear is detrimental to the types of convective systems that produce derechos. 

The goals of this study are to, 1) document the range and structure of large-scale flow 

patterns associated with derechos from a large data set of events, 2) examine derecho 

environments in detail using an analysis of proximity soundings, paying particular 

attention to the vertical distribution of moisture and wind shear and 3) examine the role 

of upper-level wind shear, which is shown to be present in derecho environments, on the 

evolution of strong convective systems within 2-D and 3-D idealized numerical 

simulations. The results from the first portion of this study provide an observational
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basis for the initial condition to be used in the numerical modeling experiments. The 

analysis of the numerical simulations emphasizes how upper-level wind shear (or wind 

shear above the cold pool) can affect the size and maintenance of the simulated 

convective systems.

6.1 Summary and discussion o f observational analysis

This study finds that there are many types of flow patterns associated with derechos. 

However, from a semi-objective statistical analysis of a subset of 225 analyses of 500-mb 

geopotential heights associated with the development and early evolution of DCSs, the 

majority (72%) of the events can be categorized into three main patterns. The most 

prominent pattern consists of an upstream trough of varying amplitude (40% of the cases) 

that contains events from all times of the year and shows a qualitative resemblance to the 

dynamic pattern defined by Johns (1993). A ridge is defined as the primary large-scale 

feature in 20% of the cases, all of which are confined to the months of May-August. A 

zonal-flow pattern is defined in 12% of the cases, which defines an additional warm- 

season pattern than has not been defined in past literature. The remaining 28% of the 

cases form large-scale hybrid or unclassifiable patterns that contain various 

characteristics of the three main patterns. These results should make forecasters aware 

that derechos can develop under a variety of large-scale flow patterns during all months 

of the year and that the idealized dynamic and warm-season patterns discussed by Johns 

(1993) only depict a portion of the full spectrum of the possibilities of large-scale flow 

patterns associated with the development of DCSs.

An analysis of a large set of proximity soundings shows that DCSs tend to mature as 

they move into an increasingly moist low-level environment while maintaining relatively

129



dry conditions at midlevels. In addition, the DCSs tend to decay as they move into an 

environment with less CAPE and decreasing 0-5-km and 5-10 km shear, but no 

significant differences in the 0-1 and 0-2.5-km shear (although some of the more weakly- 

forced events show weaker low-level shear toward decay). Overall, this suggests that 

mature DCSs can be maintained by the larger-scale circulations that depend on the shear 

throughout the depth of the troposphere.

The strong-forcing events that typify the upstream-trough pattern show the largest 

vertical decrease in RH, despite only a modest CAPE and convective instability. The 

enhancement of downdraft production from this strong vertical RH gradient perhaps 

explains why derechos can persist within environments of relatively low instability.

A mean, nearly "straight-line" hodograph with shear throughout the depth of the 

troposphere is common to DCSs that form within all large-scale forcing regimes. The 

low-level shear is found to be significantly larger for the strong-forcing events (tied to 

strong low-level jets) than for the more weakly forced events that typify the ridge and 

zonal-flow patterns. Accordingly, storm-relative hodographs show relative inflow up to 

about 5 km for the strong-forcing soundings and relative inflow up to almost 9 km for the 

weak-forcing soundings. These findings add support to Evans and Doswell (2001) who 

suggest that strong low-level storm-relative inflow may largely impact the strength, 

mode, and duration of the more weakly forced DCSs.

A comparison of the results to past idealized simulations suggests a discrepancy 

between observations of severe, long-lived convective systems and the environments 

required to simulate them in some idealized numerical models. This information is 

pertinent to forecasters who have real-time proximity sounding information and use
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results from the idealized numerical simulations as guidance. Even for the well-defined 

bow-echo MCSs, the observed low-level shear is usually weaker than what is required to 

simulate them in idealized models. These results suggest that minimum low-level shear 

thresholds are not useful for forecasting severe MCS-type structures, including well- 

defined bow echoes. The observations are more in agreement with the simulations of 

Weisman (1993) when the 0-5-km shear is considered, suggesting that the deep-layer 

shear parameters have more utility in forecasting DCSs. This is supported by the fact that 

substantial shear is often observed in the 5-10-km layer. Overall, this highlights the need 

to examine DCS simulations within deep shear environments to help reconcile these 

disparities in observations and idealized models and to provide improved information to 

forecasters.

6.2 Summary and discussion o f the numerical simulations

The overturning of parcels in deep-tropospheric shear described in this study has 

been identified as a potential contributor to the development of linear MCSs for many 

years (Thorpe et al. 1982, Shapiro 1992, Moncrieff 1992, Moncrieff and Liu 1999) but 

has not been detailed within a context of a full set of 2-D and 3-D simulations. For cold 

pools within an environment of 20 m s'* of bulk shear in the lowest 5 km (matching the 

median observed low-level shear profile) that move at speeds of 18-20 m s'*, it is found 

that the addition of weak to moderate shear in the 5-10 km layer allows for the 

development of an overturning circulation that lifts parcels from the 1-2 km layer to 

higher levels than any parcels in the lowest 2 km without upper-level shear in the 

environment. The higher lifting occurs despite the reduction of vertical velocity resulting 

from the decrease in the head depth of the density current. For 5-10 km bulk shear values
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of approximately 3-10 m s ', the overturning parcels remain close to the leading edge of 

the gust front, whereas all of the parcels in the low-level inflow for the no shear case are 

swept rearward as they are forced over the cold pool. In the 2-D simulations, as the 

upper-level shear becomes stronger (> 10 m s ’), the high perturbation pressure that 

results from the stagnation region in the flow pushes down the density current head 

region enough so that the depth of the convergence along the cold pool is small enough to 

begin a decreasing trend in the vertical displacement of the overturning parcels.

This mechanism maintains the more vertical tilt of squall line simulations in a 

moist, stratified 2-D environment and translates into higher rainfall production and larger 

maximum vertical velocities for longer periods than an environment with no upper-level 

shear. As in the dry 2-D simulations, when the 5-10 km shear is increased to 30 m s ’, the 

cold pool is shallow and the vertical scale of the overturning is reduced enough to 

decrease the overall strength of the squall line. In the 3-D simulations, little is mentioned 

on the relative strengths of the systems because it is found that the surface wind speeds 

realized in the simulations are particularly sensitive to the details in the numerical design 

and parameters in the ice-microphysics scheme. However, a robust result is that the 

overturning process maintains the overall tilt of the system and the updraft strengths and 

ensures that the main convective cells are maintained closer to the leading edge of the 

gust front. An additional effect of the overturning in 3-D is to greatly increase the size of 

the MCS through the combination of the slower cold pool and the overturning that 

increases the likelihood of convective initiation along the flanks of the cold pool. The 

systems that develop in upper-level shear are composed of several modes of convection, 

including organized bow echoes and supercells that occur throughout the 6 h simulation
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time, unlike what has been presented in past simulations. Vertical cross sections reveal 

that the overturning of elevated parcels is responsible for the development of the 

convection, which qualitatively agrees with the 2-D results.

This concept at work within the 3-D simulations is summarized schematically in 

Fig. 6.1. In the 1-2 h period, the cells for the 15 m s * case are collectively stronger and 

produce slightly more rainfall than the cells for the no-shear case, which leads to a 

slightly faster cold pool motion for the 15 m s'  ̂ case (C15) than for the no-shear case (Co). 

From 2-2.5 h, the updrafts strengths and the surface precipitation rates are similar, but the 

cells for the no-shear case consolidate earlier than for the case with 15 m s '. This leads 

to a faster cold pool motion for the no shear case than for the 15 m s ' case at 3-4 h. This 

leads to a storm-relative wind profile with rearward flow at all levels in the case with no 

upper-level shear, which results in weaker updrafts and weaker precipitation rates. 

However, the somewhat slower gust front motion for the case with upper-level shear 

(C15) helps to maintain a critical layer in mid-upper levels, which maintains the strength 

of the updrafts and the surface precipitation rates through the overturning of the elevated 

parcels throughout the 6 h simulation time. The overturning of elevated parcels may 

provide a concept for how strong convective systems may be maintained after sunset and 

the development of a nocturnal inversion in situations that are not forced by a nocturnal 

low-level jet. Additionally, this concept can be applied to the prediction the demise of 

strong, linear MCSs that have well-developed cold pools, which is supported by the 

observed storm-relative hodographs presented in Chapter 4.
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Co <  Cl5

Co =  Cl5

Co >  Cl5

Fig. 6.1. Schematic diagram depicting the relative airflow and the evolution o f the convective systems 
for the case with no upper-level shear (left column) and the case for 15 m s ’ o f  upper-level shear (right 
column) for the 1-2 h period (top row), the 2-3 h period (middle row), and the 3-4 h period (bottom 
row). The dashed line represents the cold pool and Q  and C,, represent the cold pool motion for the no 
shear and 15 m s ' shear cases, respectively. The darkness of the shading represents heavier 
precipitation rates.
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APPENDIX

Parameters used to construct the idealized sounding:
V at all levels ..............................................................  0 m s  ’
u at lowest model le v e l............................................. 0 m s ’
u at 0.5 k m .................................................................  3 m s ’
u at 1 k m ..................................................................... 5 m s ’
u at 2.5 k m .................................................................  12 m s’’
u at 5 k m ....................................................................  20 m s ’
u at the highest model le v e l.....................................  10 m s ’
Initial lifting condensation level (LCL)..................  1530 m
0 at the surface.......................................................... 303.16 K
p at the surface.......................................................... 1000 h Pa
surface to LCL temperature lapse r a te ................... -8.8 K km ’
LCL to 6 km temperature lapse ra te ........................ -6.5 K km ’
6 km to 12 km temperature lapse r a te ..................... -7.0 K km ’
relative humidity at the L C L ................................... 93%
relative humidity between LCL and 2500 m   93%
relative humidity at 3000 m .....................................  40%
relative humidity at 7 km ..........................................  50%
relative humidity at 12 km and above...................... 40%

Kev parameters used in the 3-D simulations:
Horizontal domain leng th .........................................  400000 m
Vertical domain heigh t.............................................. 16000 m
Horizontal grid point spacing................................... 2000 m
Vertical grid point spacing below 1250 m   250 m
Large time s te p ........................................................... 6 s
Small time s te p ............................................................ I s
u grid m otion .............................................................  18 m s ’
Maximum 0' in warm bubbles................................. 2 K
Number of warm bubbles........................................  5
x-radius of each warm bubb le .................................  10000 m
y-radius of each warm bubb le .................................. 10000 m
z-radius of each warm bubble .................................. 1500 m
x-center of warm bubbles........................................  200000 m
y-center of warm bubbles........................................  230000 m
z-center of warm bubbles........................................  1500 m
Coriolis parameter................................................  10 '’ s ’
Height to begin vertical Rayleigh dam per  13500 m
Vertical Rayleigh damper m agnitude..................  0.001
Slope intercept parameter for ra in ........................  8.0 x 10^ m '’
Slope intercept parameter for snow ...................... 3.0 x 10^ m '’
Slope intercept parameter for hail/graupel  4.0 x 10^ m"^
Density of sn o w .......................................................  100 kg m ^
Density of hail/graupel..........................................  400 kg m'^
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