PUBLIC PERCEPTION OF THE NONGAME
 PROGRAM IN OKLAHOMA

By
KIMBERLY ANN KELLY
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for
the Degree of
MASTER OF SCIENCE
December, 1997

PUBLIC PERCEPTION OF THE NONGAME PROGRAM IN OKLAHOMA

Thesis Approved:

ACKNOWLEDGMENTS

I would like to thank Dr. James H . Shaw for his willingness to venture into a different realm of wildlife conservation. He has been extremely patient as I sought out to learn what l can from wildlife managent as well as other disciplines such as sociology and political science. I can be assured that he is just as happy as I as at the completion of this project.

I would also like to thank Dr. Pat Bell. She was willing to help a desperate student who knew little about sociology. I also appreciate her putting up with my many visits to her office to help me with the statistics.

Thanks also go to Dr. David M. Leslie, Jr. I am sure he was starting to think I was a ghost. But his cheerful disposition and positive attitude always helped me along.

I would like to thank ODWC, Jeremy Garrett, Ron Shuttles, and the rest of the Nongame gang for their help and support.

My parents also deserve credit for purting me through college and for being patient while I struggled to write this thesis. I am also very grateful for the support I received from my friends: Angelia Jobe, Lisa (Nirk) Church, Wynetta Brown, Tricia Rath, and Heather Holmes.

TABLE OF CONTENTS

Chapter Page
I. HUMAN DIMENSIONS IN WILDLIFE MANAGEMENT 1
Introduction 1
Public Values and Perceptions 3
Símilar Studies 3
Increase of "Nonbunting" Interest 5
Purpose of This Study 6
Hypotheses of Perception Survey 8
II. METHODOLOGY 9
Survey 9
Sampling Design 9
Mailing Strategy and Data Collection 11
Statistical Analysis 11
III. RESPONSES TO SURVEY 13
Response Rate 13
Overall Response 13
Overall Demographic Response 16
Population Size Responses 17
Population Size Demographic Responses 21
Gender Responses 23
Gender Demographic Responses 26
Knowledge of ONWP Responses 27
Knowledge of ONWP Demographic Responses 32
Donation Responses 33
Donation Demographic Responses 38
Education Level Responses 39
Education Level Demographic Responses 45
Chapter Page
IV. DISCUSSIONS AND RECOMMENDATIONS 47
Population Size Conclusions 48
Gender Conclusions 50
Knowledge of ONWP Conclusions 50
Donating Conclusions 52
Education Level Conclusions 52
Lack of ONWP Information. 53
Funding Opposition and Support 55
Recommendations 57
Targeting Oklahomans 59
LITERATURE CITED 61
APPENDICES 64
APPENDIX A - SURVEY INFORMATION. 65
APPENDIX B - OVERALL SURVEY RESULTS 92
APPENDIX C - SURVEY RESULTS BY POPULATION SIZE 104
APPENDIX D - SURVEY RESULTS BY GENDER 130
APPENDIX E - SURVEY RESULTS BY KNOWLEDGE OF ONWP 152
APPENDIX F - SURVEY RESULTS BY DONATING MONEY TO ONWP 177
APPENDIX G - SURVEY RESULTS BY EDUCATION LEVEL 198
APPENDIX H - INSTITUTIONAL REVIEW BOARD FORM 236

LIST OF TABLES

Table Page
A-1. Survey response rate by city and by mailing. 81
A-2. Other organizations listed by the respondents in regard to their membership in which type of organizations. 82
A-3. Other activities listed by the respondents in regard to which activities they have participated in the past year. Comments are typed as they were written by the respondents. 83
A-4. Other sources listed by the respondents in regard to where they receive their information on wildlife. 84
A-5. Suggestions and comments made by the respondents in regard to which items they would support an increase in the wholesale price to help fund programs for wildlife that are not hunted or fished. Comments are typed as they were written by the respondents and are grouped in regard to similarities. 85
A-6. Suggestions made by the respondents in regard to changing the name of the Nongame Wildlife Program. Comments are typed as they were written by the respondents. 86
A-7. Comments made by the respondents in regard to ever donating money to Oklahoma's Nongame Wildlife Program. Comments are typed as they were written by the respondents and are grouped in regard to similarities of reasons. 87
A-8. Opinions regarding Oklahoma's Nongarne Wildlife Program that were expressed by the respondents. Comments are typed as they were written by the respondents and are grouped in regard to similarities. 89
B-1. Total response to membership in wilddife/outdoor organizations, $\mathrm{n}=376$. 93
Table Page
B-2. Total response to participation in wildlife/outdoor activities within the past year, $n=397$ 93
B-3. Total response to source of wildlife information, $\mathrm{n}=397$ 94
B-4. Total response to which two animal groups more information is needed, $n=357$ 94
B-5. Total response to importance of the following Wildlife Department programs 95
B-6. Total response to having seen the nongame check-off logo before receiving the survey, $n=387$ 96
B-7. Total response to having heard or seen information about ONWP before receiving survey, $\mathrm{n}=396$ 96
B-8. Total response to from where does the Wildlife Department receives most of its funding for wildlife that are not hunted or fished, $\mathrm{n}=393$ 97
B-9. Total response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished, $\mathrm{n}=387$ 97
B-10. Total response to questions 10 thru 13 98
B-11. Total response to which name the Nongame Wildlife' Program should change, $n=371$ 99
B-12. Total response to having donated money to ONWP and why/why not, $\mathrm{n}=386$ 100
B-13. Total response to gender, $n=381$ 101
B-14. Total response to age group, $n=394$ 101
B-15. Total response to race, $n=388$ 101
B-16. Total response to marital status, $n=393$ 102
B-17. Total response to level of education, $n=392$ 102
Table Page
B-18. Total response to living in which type of setting during the past year, $\mathrm{n}=398$ 103
B-19. Total response to household income per year, $n=367$ 103
B-20. Total response to receiving more information (optional), $\mathrm{n}=400$ 103
C-1. Population size response to membership in wildlife/outdoor organizations. 105
C-2. Population size response of individuals to participation in wildlife/outdoor activities within the past year. 106
C-3. Population size response to source of wildlife information 107
C-4. Population size response to which two animal groups more information is needed 108
C-5. Population size response to importance of the following Wildlife Department programs. 109
C-6. Population size response to having seen the nongame check-off logo before receiving the survey 112
C-7. Population size response to having heard or seen information about ONWP before receiving survey 113
C-8. Population size response to from where does the Wildlife Department receives most of its funding for wildlife that are not hunted or fished. 114
C-9. Population size response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished 115
C-10. Population size response to questions 10 thru 13 116
C-11. Population size response to which name the Nongame Wildlife Program should change. 118
C-12. Population size response to having donated money to ONWP and why/why not 119
Table Page
C-13. Population size response to gender 122
C-14. Population size response to age group. 123
C-15. Population size response to race. 124
C-16. Population size response to marital status. 125
C-17. Population size response to level of education. 126
C-18. Population size response to living in which type of setting during the past year. 127
C-19. Population size response to household income per year. 128
C-20. Population size response to receiving more information (optional) 129
D-1. Gender response to membership in wildlife/outdoor organizations 131
D-2. Gender response to participation in wildlife/outdoor activities within the past year 132
D-3. Gender response to source of wildlife information. 133
D-4. Gender response to which two animal groups more information is needed 134
D-5. Gender response to importance of the following Wildlife Deparment programs. 135
D-6. Gender response to having seen the nongame check-off logo before receiving the survey 137
D-7. Gender response to having heard or seen information about ONWP before receiving survey. 138
D-8. Gender response to from where does the Widdlife Department receives most of its funding for wildlife that are not hunted or fished. 139
D-9. Gender response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished. 140
Table Page
D-10. Gender response to questions 10 thru 13 141
D-11. Gender response to which name the Nongame Wildlife Program should change. 142
D-12. Gender response to having donated money to ONWP and why/why not. 143
D-13. Gender response to age group. 145
D-14. Gender response to race. 146
D-15. Population response to marital status. 147
D-16. Population response to level of education. 148
D-17. Population response to living in which type of setting during the past year. 149
D-18. Population response to household income per year 150
D-19. Population response to receiving more information (optional). 151
E-1. Knowledge of ONWP response to membership in wildlife/outdoor organizations. 153
E-2. Knowledge of ONWP response of individuals to participation in wildlife/outdoor activities within the past year. 154
E-3. Knowledge of ONWP response to source of wildlife information 155
E-4. Knowledge of ONWP response to which two animal groups more information is needed 156
E-5. Knowledge of ONWP response to importance of the following Wildlife Department programs. 157
E-6. Knowledge of ONWP response to having seen the nongame check-off logo before receiving the survey. 160
E-7. Knowledge of ONWP response to from where does the Wildife Department receives most of its funding for wildlife that are not hunted or fished. 161
Table Page
E-8. Knowledge of ONWP response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished. 162
E-9. Knowledge of ONWP response to questions 10 thru 13 163
E-10. Knowledge of ONWP response to which name the Nongame Wildife Program should change 164
E-11. Knowledge of ONWP response to having donated money to ONWP and why/why not. 166
E-12. Knowledge of ONWP response to gender. 169
E-13. Knowledge of ONWP response to age group 170
E-14. Knowledge of ONWP response to race. 171
E-15. Knowledge of ONWP response to marital status 172
E-16. Knowledge of ONWP response to level of education. 173
E-17. Knowledge of ONWP response to living in which type of setting during the past year. 174
E-18. Knowledge of ONWP response to household income per year 175
E-19. Knowledge of ONWP response to receiving more information (optional) 176
F-1. Donating response to membership in wildlife/outdoor organizations 178
F-2. Donating response of individuals to participation in wildlife/outdoor activities within the past year. 179
F-3. Donating response to source of wildlife information. 180
F-4. Donating response to which two animal groups more information is needed. 181
F-5. Donating response to importance of the following Wildlife Department programs. 182
Table
F-6. Donating response to having seen the nongame check-off logo before receiving the survey. 184
F-7. Donating response to having heard or seen information about ONWP before receiving survey. 185
F-8. Donating response to from where does the Wildlife
Department receives most of its funding for wildlife that are not hunted or fished 186
F-9. Donating response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished. 187
F-10. Donating response to questions 10 thru 13. 188
F-11. Donating response to which name the Nongame Widdife Program should change. 189
F-12. Donating response to gender. 190
F-13. Donating response to age group 191
F-14. Donating response to race. 192
F-15. Donating response to marital status. 193
F-16. Donating response to level of education. 194
F-17. Donating response to living in which type of setting during the past year. 195
F-18. Donating response to household income per year. 196
F-19. Donating response to recerving more information (optional). 197
G-1. Education level response to membership in wildlife/outdoor organizations. 199
G-2. Education level response of individuals to participation in wildlife/outdoor activities within the past year 201
G-3. Education level response to source of wildlife information. 203
Table Page
G-4. Education level response to which two animal groups more information is needed. 205
G-5. Education level response to importance of the following Wildlife Deparment programs. 206
G-6. Education level response to having seen the nongame check-off logo before receiving the survey. 212
G-7. Education level response to having heard or seen information about ONWP before receiving survey 213
G-8. Education level response to from where does the Wildife Deparment receives most of its funding for wildlife that are not hunted or fished 214
G-9. Education level response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished. 216
G-10. Education level response to questions 10 thru 13 218
G-11. Education level response to which name the Nongame Wildlife Program should change. 221
G-12. Education level response to having donated money to ONWP and why/why not 222
G-13. Education level response to gender 228
G-14. Education level response to age group 229
G-15. Education level response to race 230
G-16. Education level response to marital status. 231
G-17. Education level response to living in which type of setting during the past year 232
G-18. Education level response to household income per year 233
G-19. Education level response to receiving more information (optional). 235

LIST OF FIGURES

Figure Page
A-1. Location of the chosen cities by county and population. 66
A-2. Pre-survey postcard that was mailed to Oklahoma residents 67
A-3. Cover letter that accompanied the first mailing of the survey 68
A-4. Cover letter that accompanied the second and third mailing of the survey 69
A-5. Survey that was mailed to Oklahoma residents. 76
A-6. Population trends of Oklahoma cities selected for survey 77
A-7. Percent of Oklahoma's population by gender from 1950-1990 78
A-8. Percent of Oklahoma's population by edicational attainment from 1960-1990. 79
A-9. Percent of Oklahoma's population be age group from 1950-1990 80

CHAPTER I

HUMAN DIMENSIONS IN WILDLIFE MANAGEMENT

Introduction

Wildlife management consists of two main objectives: to maintain healthy wildlife populations and to provide satisfactory recreational experiences (Johnson et al. 1993). Public cooperation is needed to achieve both of these goals. Public input has traditionally relied on open meetings and workshops conducted by wildlife agencies (Johnson et al. 1993). Wildlife managers depend on at least three major types of information: knowledge of the resource, the regulatory environment, and the needs and demands of society (Kellert 1991). Understanding the resource typically involves information on the biology, ecology, and physical environment of species and their habitats (Kellert 1991). The regulatory context necessitates information regarding law, professional behavior, and organizational and administrative factors (Kellert 1991). Relevant societal information includes knowledge of socioeconomic structures, patterns of authority, and property relations and an understanding of the values and perceptions people attach to wildlife and the natural environment (Kellert 1991).

Human values and perceptions are important for wildlife managers to assess and carry out successful wildlife prograns, particularly in view of widening public interests in wildlife (U.S. Fish and Widdl. Serv. 1988). If wildlife managers make decisions without prior knowledge of public attitudes and opinions, new policies may easily be misunderstood, resented, or strongly opposed (Johnson et al. 1993). Research and public
opinions in management decisions are important for any wildlife agency (Johnson et al. 1993). No matter how biologically sound a wildlife policy seems, it will be effective only if the public accepts and complies with it (Johnson et al. 1993). Many wildlife management problems begin as biological problems but become people problems. Because this is a social-science problem, concepts and procedures developed in the social sciences should be used (Teague 1979). For example, problems encountered during wildife reintroduction programs can be eliminated or reduced if wildlife managers "stay abreast" of the surrounding public issues. Sociological factors must be considered as a means of increasing the likelihood of successful species reintroduction or recovery programs (Dunlap I993, Reading 1993). In fact, any wildlife program can benefit from knowledge of the public's values and perceptions.

Many state widdlife agencies have responded to the demand for increased public input by administering surveys and conducting public meetings (Johnson et al. 1993). Used together, public workshops and surveys can help inform the public about wildife management, identify key concems, and provide valuable information to managers about public attitudes and opinions (Johnson et al. 1993). While an appreciation of the importance of societal information has expanded in recent years, this area still tends to receive relatively little systematic attention in the formulation and implementation of wildlife policy (Kellert 1991). This omission has resuhed in frequent failures to achieve effective, efficient, and equitable wildlife management goals and objectives (Kellert 1991). Kellert and Brown (1985) believe that the public challenge does not rely solely on who uses the natural resources, how often, or why; the challenge is to consider how the public
perceives and relates to the natural world.

Public Values and Perceptions

People's values cannot be measured directly, only inferred from statements of beliefs and expressions of opinion (Purdy and Decker 1989). The United States differs from other Anglo countries in the imporance people attach to wildlife and their devotion to science as a guide (Dunlap 1992). Both are reflections of American culture. American national identity is wrapped up in the conquest of the wilderness, which also was seen as a source of virtue and national strength (Dunlap 1992). However, more people to day are becoming urbanized and are losing their direct contact with nature than in the past. Wildlife views of most Americans appeared to be based on limited factual understanding and awareness (Kellert 1980). Moreover, interest and concens for animals were confined largely to attractive and emotionally appealing species (Kellert 1980). The preservation of a national symbol, the bald eagle (Haliaeetus leucocephalus), is justified easily for most people, but predators, such as, wolves (Canis lupus), or nuisance species, such as, rattlesnakes (Crotalus spp.), are not acceptable as candidates for preservation by all people (Matthews 1986). The same may be true when the species is "cold and slimy" rather than "warm and fuzzy." Although all species might not be highly valued by everyone, an argument can be made that the loss of any species is a national concern (Matthews 1986).

Similar Studies

There have been many knowledge and attitude studies concerning hunters (Hammitt et al. 1990, Decker et al. 1980, Kennedy 1974); however, studies concerning
attitudes of the general public are just starting to gain momentum. Stephen R. Kellert has done the most research in this area. Kellert's (1976) initial investigation-aimed at developing a typology of attitudes toward animals--focused on the views of people specifically interested in animals in some significant way. Studying a select, atypical group (composed only of persons involved with animals) to generate understandings relevant to a broader population was considered the most appropriate method at this stage for revealing fundamental aspects of contemporary human-animal relationships (Kellert 1976), Nine basic attitudes toward animals were identified and labeled as the naturalistic, ecologistic, humanistic, moralistic, scientistic, aesthetic, utilitarian, dominionistic, and negativistic attitudes (Kellert 1976). He then used those typologies to compare hunters and anti-hunters. Kellert (1978) found that two causes for conflict between hunters and anti-hunters are often basic differences in philosophical outlook and socio-cultural background. In another study, he found the American public had a limited knowledge of animals (Kellert 1980). This low level of knowledge suggested that the general public also had a low perception of animals. Kellert and Westervelt (1982) also examined presence and abundance of those typologies in newspapers. Three interrelated objectives guided Kellert and Westervelt's (1982) research including: (1) assessing the extent of change in American animal use and perception during the 20th century; (2) reviewing this change among diverse groups in American society; and (3) determining the rate and progress of this change. Kellert (1991) then branched out to assess public attitudes toward specific programs and animal groups by evaluating public views of wolf restoration in Michigan. Furthermore, another study (Kellert 1993) explored the value of invertebrates to human
society. He examined various ecological, utilitarian, scientific, and cultural benefits provided by invertebrate organisms (Kellert 1.993).

Since Kellert's (1976) initial study, others have looked into aspects of public values and perceptions. Using Keliert's typologies, McCool and Braithwaite (1989) examined four specific beliefs about grizzly bears (Ursus arctos horribilis): ecologistic--viewing the grizzly bears as essential components of a naturally functioning ecosystem; naturalistic-beliefs oriented toward the bear as object of affection or appreciation; moralistic--believing that bears have a right to live; and negativistic--believing bears are dangerous and cruel and should be eliminated. Johnson et al. (1993) examined differences in views between people who attended public wildlife meetings and the statewide hunting public. Schreyer et al. (1989) assessed public support for wildlife resources and programs in Utah. Caro et al. (1994) tested students' attitudes to nature at the start and end of a lecture course in conservation biology to explore hidden dimensions of conservation education. Dunlap (1992) examined knowledge, attitudes, and opinions of ranchers toward black-footed ferrets (Mustela nigripes), prairie dogs (Cymomys spp.), and the proposed ferret reintroduction using informal, unstructured interviews and a mail sample survey (Dunlap 1992).
increase Of "Nonhunting" Interest

Wildlife that are not hunted or fished, such as Eastern bluebirds (Siália sialis) and black-footed ferrets, have been gaining public interest. In the 1970s, the buzz word for those animals was "nongame," in the 1980s it was "nonconsumptive use" and "watchable wildlife," and in the 1990s the term "biodiversity" appears to be in vogue (Kruckenberg
1992). Fish and wildlife organizations and agencies broaden management imterests and responsibilities beyond traditional "game oriented" or "single-species" programs and, in turn, reap the political and fiscal benefits of that nuch larger segment of the populace interested in "wildlife" (Kruckenberg et al. 1992). Some 20 million Americans still hunt, but a variety of other groups have emerged in vigorous opposition to hunting (Kellert 1978). Interest in wildlife-oriented recreation has often been separated into consumptive and nonconsumptive categories. In the context of wildlife management, the former receives far more weight, given revenues generated through sales of hunting licenses. Because of limited resources and no perennial funding base, nonconsumptive interests have been accorded a lesser priority among wildlife agencies (Schreyer et al. 1989).

Purpose of This Study
Public-perception gaps in wildlife conservation practices seriously need to be filled. Designing programs to increase wildlife populations of to improve habitat quality only solves part of the problem. People, their beliefs, and their actions, must be factored into the solution. State and federal agencies need some method of assessing the general public's perception of their agency and of animals in general so that the agencies can translate data into useful information, such as potential involvement with programs. This information can be used to counteract problems before they arise. For example, if an agency plans to implement a program that the public has a low perception of, the agency can plan ahead by providing material to help educate and thus increase the public's perception level. In the same regard, if the public has a low involvement with a program, it could be a result of low perception and can be corrected with educational materials.

The general public bas a limited knowiedge of wild animals. This lack of knowledge steers many individuals in the wrong direction when it comes to deciding which animals deserve more attention and more programs. Most individuals are aware of those animals that are deemed cute and cuddly and would rather save these animals instead of those animals which they may consider ugly, dangerous, or not important.

A person's knowledge of animals has a direct influence on the perception of animals that a person has. Perception is the mental inage or thought a person has when encountering an object or word based on previous encounters or knowledge. This perception can be a benefit or a hindrance to state and federal wildlife agencies. For example, a person with a low perception of wolves (e.g., wolves are predators and kill all livestock) would likely oppose reintroduction of wolves.

A person's perception of wild animals also can be related to a person's involvement with those animals or the agencies and organizations that pertain to the welfare of those animals. If a person has a high perception of wild animals, then that person is more likely to become involved with associated agencies or organizations and to have a higher perception of what those agencies or organizations perform and accomplish.

Oklahoma's state wildlife agency, Oklahoma Department of Wildlife Conservation (ODWC), can benefit greatly from public perception surveys. The primary goal of the nongame program within ODWC is conservation and management of ecologically important species for the benefit of all Oklahomans. Each year, nongame personnel participate in a variety of activities and projects including public information and educational efforts and an annual promotion effort during tax season. The Nongame

Program is primarily funded through four major sources: direct donation, proceeds from educational materials, state check-off program, and proceeds of specialized license plates. Check-off income is the major funding source of the entire program.

This survey looked at public perceptions regarding involvement with wildlife, ODWC prograrns, and alternative funding sources for wildife that are not hunted or fished. The survey assessed just what and how much the Oklahoma general public knew about the Nongame Program. In addition, they learned more about which funding alternatives were acceptable to the Oklahoma public. The ODWC also gained valuable sociological data to aid them in reaching the Oklahoma public through the media, workshops, and projects.

Hypotheses of Perception Survey

This study focused on the following null hypotheses:

1. The respondents do not have extensive knowledge of the nongame program.
2. The respondents do not approve of the alternative funding suggestions.
3. Responses from large metropolitan cities do not differ from small rural or medium sized cities.
4. Male responses do not differ from female responses.
5. Responses of individuals who have knowledge about the nongame program do not differ from the responses of those who have no knowledge of the program.
6. Responses of those who have donated money to the nongame program do not differ from those who have not donated.
7. Responses of individuals with less formal education do not differ from those with more formal education.

CHAPTER 2

METHODOLOGIES

Survey

A mail survey was chosen because it is more cost-effective than a telephone or personal interview (Miller 1991, Fowler 1993). One drawback to a mail survey is nonresponse (Miller 1991, Fowler 1993). To reduce nonresponse, a pre-survey postcard (Fig. A-1) was sent prior to mailing the survey (Fowler 1993). In addition, cover letters (Fig. A-2, Fig. A-3), an incentive (explained in cover letter), and more than one mailing were used to reduce nonresponse (Fowler 1993). The survey (Fig. A-4) and cover letter were typed and arranged to be easy to read and follow.

The basic format of this study consisted of a series of questions designed to measure the public's perception of Oklahoma's Nongame Program. The survey was composed of demographic information and questions pertaining to the perception of Oklahoma's Nongame Program. The majority of the questions involved closed multiple choices. There was at least one open ended question to allow the individual to freely express his/her mind.

Sampling Design

This research was conducted on a statewide basis within Oklahoma. I employed a stratified sampling procedure to gain better control over the representation within the total sample. Any variation should be berween strata, not within the strata. This method also assumed that the strata are mutually exclusive. This method allowed me to determine if
place of residence had an impact on a person's perception of Oklaboma's Nongame Program. The place of residence incorporated the size of the city and the location of the residence to that city, for example, on a farm, in open country but not on a farm, within city limits or in a suburb near a large city. Size (population) of cities was broken into three categories: [1] <10,000, [2] 10,000-40,000 and [3] $>40,000$.

Sixteen cities were chosen based on geographic location and population size. This information was obtained from the census bureau (U.S. Dept. of Cormmerce 1992). The cities for category 1 were Broken Bow, Grove, Guymon, Maysville, Okeene, Pawhuska, and Sayre. Population category 2 included Ardmore, McAlester, Ponca City, Woodward, and Yukon. Cities in category 3 were Enid, Lawton, Oklahoma City, and Tulsa.

Johnson (1995) sent out 5,000 surveys (3,500 to random individuals in Pennsylvania and 1,500 to direct contributors to the Wild Resource Conservation Fund). National Gallup polls are based on 1,500 actual interviews (Gallup 1978). Response rates for mail surveys are typically low, usually not exceeding 50% (Miller 1991). The study conducted in Pennsylvania had an overall rate of 26% (Johnson 1995). I expected the survey to have a return rate near 25%. Adjusting for the estimated 25% response rate, the target sample size would be 2,000 . I rounded this number up to give each population category an equal sample size of 700 . In short, I randomly chose 2,100 individuals from telephone directories of the selected cities.

Because telephone directories are not completely accurate, surveys were sent to the current resident of the addresses chosen (e.g. Resident, 1234 A Street, Anytown, OK Zip code). To ensure a respondent was selected randomly within the household of the
chosen addresses, I asked (in the cover letter) that the adult, 18 years and older, with the most recent birthday to complete and return the survey.

Mailing Strategy and Data Collection

All randomly selected individuals first received a postcard letting them know that a survey would arrive in a few days. All individuals then received the first survey. The surveys were coded to correspond with an address (Fowler 1993). After a survey was returned, the address was taken off the mailing list. About two weeks later, a second survey was mailed to those addresses remaining on the mailing list. Returned "second" surveys were taken off the mailing list. A week later, a third survey was sent to those addresses remaining on the mailing list.

The survey included a cover letter explaining the importance of and the answering procedure of the surveys. Included with the surveys was a business reply envelope to encourage more people to respond.

The mail survey allowed respondents time to answer the questions in the privacy of their own home at their convenience. In addition, respondents had a sense of privacy when answering the survey, and they are not intimidated by the presence or voice of an interviewer or researcher.

Statistical Analysis

Frequencies of answers for each question were calculated. Frequencies were calculated for each of the following:

1. Total (all respondents)
2. Population category (based on precoded infomation)
3. Male / female (based on question \#17)
4. Knowledge of nongame program / no knowledge / don't know (based on question \#7)
5. Have donated to nongame program / have not donated
(based on question \#15)
6. Education level (based on question $\# 21$)

In addition to frequencies, confidence intervals at the 95% level were used. The purpose of placing a confidence interval about the estimate is to indicate the accuracy of that estimate for the population that was sampled (Thorwardson 1977). This means, 95% of the samples drawn would be expected to show percentages within the intervals presented with the data. The sizes of the confidence intervals will be calculated using the formula: $p \pm 1.96 \sqrt{\frac{(p)(q)}{N}}$ (Freund \& Wilson 1993). For tests of significance, a SAS program was used to calculated Chi-square. When a question involved a respondent to choose more than one answer, Chi-square values were calculated for each possible response rather than for the entire question.

CHAPTER 3

RESPONSES TO SURVEY

Response Rate

The postcards, cover leters and surveys were mailed during September, October, and November 1995. There were 128 surveys returned after the first mailing, 160 after the second mailing, and 112 after the third mailing (Table A-1). With a total sample size of 400 , the overall response rate was 19.05%. Possible causes for non-response may be that the selected residents mistook the questions about alternative nongame funding and past donations as a plea for them to donate money and thus failed to return a completed survey.

Overall Response

A majority (69.15\%) of the respondents were not members of a wildlife/outdoor organization [Table B-1]. Fishing (17.82\%) and hunting (16.76\%) organizations were the most popular wildlife/outdoor organizations[Table B-1]. Of those individuals (11.44\%) who chose other conservation or recreation groups, organizations such as Boy/Girl Scouts of America, National Rifleman's Association, National Wildlife Federation, and World Wildife Federation were the most specified [Table A-2].

The top five activities of respondents were, in descending order, fishing (59.95\%), observing wildlife at home (45.09%), bird feeding (41.31%), camping (40.55%), and visiting zoos/aquaria (36.27\%) [Table B-2]. Of those individuals (3.53\%) who wrote in other activities, raising bobwhite quail (Colínus virginiánus), and turkeys (Meleagris
gallopávo), planting trees, mountain biking, and rappelling were listed [Table A-3].
The top five sources of wildlife information were television (68.77\%), magazines (65.74%), newspapers (57.93%), friends/relatives (43.83%), and books (36.27%) [Table B-3]. Of those individuals (3.78\%) who chose other sources, personal observation, nature itself, hunting partners, and Outdoors' Women Workshop were listed [Table A-4]. Respondents wanted more information on birds (58.82%), fish (53.50%), and mammals (51.82\%) [Table B-4].

The respondents were asked to rank the importance of several programs on a scale of $1-4$, with 4 being very important. Those programs ranking between important (3) and very important (4) were reintroducing fish and wildlife (3.389), fish and wildlife research and management (3.218), endangered fish and wildlife research and management (3.133), providing general wildlife information (3.074), creating trails and wildlife observation areas (3.056), and providing information on habitat improvement (3.003) [Table B-5]. The lowest ranking program was creating facilities for outdoor classrooms (2.471) [Table B-5].

A majority (59.69%) of the respondents had not seen the nongame check-off logo before receiving the survey; 29.46% had seen the logo before [Table B-6]. In response to having heard or seen information about Oklahoma's Nongame Wildlife Program (ONWP) before receiving the survey, 59.60% answered no and 29.80% answered yes [Table B-7]. Most (49.87%) respondents did not know from where the ODWC receives most of its funding for wildlife that are not hunted or fished [Table B-8]. Of those respondents that did know, the top two sources were believed to be donations (14.25\%) and
hunting/fishing license fees (9.92%) [Table B-8].
Nature-related books (31.78\%), recreational vehicles (30.49\%) and camping equiprnent (29.20\%) were the most supported items for increases in wholesale price to provide an alternative funding source for wildife that are not humted or fished [Table B9]. However, 30.75% reported that they would not support price increases on any of the listed items [Table B-9]. As for respondents who specified other items on which they would support price increases, weapons, ammunition, mountain bikes, liquor, cigarettes and zoo entrance fees were listed [Table A-5].

The respondents were asked to rank their suppor/opposition to several alternative nongame funding sources on a scale of $1-5$, with 5 being strongly support, 3 being neutral and 1 being strongly oppose. Support for a user fee charged to anyone not possessing a hunting or fishing license who uses ODWC lands averaged 3.56 [Table B-10]. Support for a user fee charged to anyone who uses ODWC lands averaged 2.98 , slightly on the opposition side [Table B-10]. Support for an increase in automobile speeding fines averaged 3.05 [Table B-10]. Support for a voluntary contribution box added to vehicle registration fees averaged 3.78 [Table B-10].

ODWC was considering a name change for its Nongame Wildlife Program. The respondents' top three name choices were Nongame Wildlife Program, no change, (38.54\%), Fish \& Wildlife Conservation Program (23.99\%) and Nongame \& Endangered Wildlife Program (22.91\%) [Table B-11]. Other name possibilities given by the respondents included Wildlife Preservation, Wildife Conservation Program, and Wildlife Enhancement and Perpetuation Program [Table A-6].

A majority (86.01%) of the respondents have never donated to ONWP primarily because they were not aware of the program (45.08\%) or they could not afford to donate (28.50\%) [Table B-12]. Other reasons for not donating that were written in included recently moving into the state, not knowing enough about the programs, not a priority, too many taxes, living on Social Security, and too many charities [Table A-7]. Respondents often indicated that they supported the ONWP through their purchase of hunting and fishing licenses [Table A-7]. Respondents had the opportunity to express any opinions they had regarding Oklahoma's Nongame Wildlife Program. All comments can be found typed as they were written in Table A-8. These comments were grouped according to similarities of content into 10 categories: support for ONWP, negative comments toward funding, do not know about ONWP, inform/educate the public, negative comments toward programs, sources for funding, need more information, no support for ONWP, misinformed comments, and miscellaneous comrnents. Given the option, 44.00% wanted more information about ONWP [Table B-20].

Overall Demographic Response
Respondents consisted of 64.57% males and 35.43% females [Table B-13]. Most of the age groups were fairly even except for 18-25 years (4.82\%) and 56-65 years (11.42\%) [Table B-14]. A majority of the respondents were white, not of Hispanic origin (83.51%) [Table B-15]. In addition, 10.82% were Native American [Table B-15]. Most respondents were married (67.94%) [Table B-16]. The top three levels of education were some college (27.81%), college graduate $(24.49 \%$) and high school (18.37%) [Table B17]. Most respondents claimed to have lived in a small city or town (38.19\%) or in a
medium-size city (30.90%) [Table B-18]. The top three frequencies of incomes level were $\$ 10,000-\$ 20,000(17.98 \%), \$ 20,000-\$ 30,000(17.71 \%)$ and $\$ 40,000-\$ 50,000(17.17 \%)$ [Table B-19].

Population Size Responses

A majority of respondents from all three population sizes (large 68.94%, medium 70.37%, small 67.89%) were not members of a wildife/outdoor organization [Table C-1]. Hunting and fishing organizations were the top choices within all three population sizes [Table C-1]. However, the small-city group had a greater percentage of fishing (21.1\%) and hunting (21.1%) organization members; the large-city group had the least percentage of both fishing (15.91%) and hunting (14.39%) members [Table C-1]. The medium-city group fell in between with 17.04% fishing and 15.56% hunting members [Table C-1].

The top five activities of the large-city group were, in descending order, fishing (52.78%), observing wildlife at home (45.12%), bird feeding (44.44%), camping (40.55%), visiting zoos/aquaria (43.75%), and carmping (38.89%) [Table C-2]. The top five activities of the medium-city group were fishing (57.75\%), observing wildife at home (47.18%), bird feeding (45.77%), camping (40.85%), and visiting zoos/aquaria (38.03%) \{Table C-2]. The top five activities of the small-city group were fishing (72.07%), hunting (47.75%), observing wildlife at home (42.34%), camping (42.34%), and bird feeding (31.53%) [Table C-2]. The three population sizes differed significantly for several activities: bird feeding ($X^{2}=6.129, d f=2, p=0.047$), hunting ($X^{2}=13.684, d f=2, p=0.001$), fishing ($X^{2}=10.166, d f=2, p=0.006$), trapping (${ }^{2} X^{2}=7.789, d f=2, p=0.020$), nature photography ($X^{2}=9.760, \mathrm{df}=2, \mathrm{p}=0.008$), and visiting zoos/aquaria ($\chi^{2}=10.528, \mathrm{df}=2$,
$\mathrm{p}=0.005$) [Table C-2].
For the large- and medium-city group, the top five sources of wildife information were television ($66.90 \%, 74.47 \%$, respectively), magazines ($66.21 \%, 65.25 \%$), newspapers ($60.69 \%, 58.16 \%$), friends/relatives ($42.07 \%, 44.68 \%$), and books (33.79%, 37.59%) [Table C-3]. For the small-city group, the top five sources of wildlife information were magazines (72.28%), television (70.30%), newspapers (59.41%), friends/relatives (49.50\%), and books (41.58\%) [Table C-3]. Wildlife officials/game wardens were the source of information for many (40.59%) small city respondents; but they were the source for 17.93% of the large city respondents and 17.73% of the medium city respondents [Table C-3]. The three population sizes differed significantly for wildlife officials/game wardens as a source of wildlife information ($X^{2}=16.395, d f=2, p=0.000$, Table C-3).

Large city respondents wanted more information on birds (58.78%), mammals (49.62%), and fish (46.56%) [Table C-4]. Medium city respondents wanted more information on birds (62.90%), fish (55.65%), and mammals (52.42%) [Table C-4]. Small city respondents wanted more information on fish (59.80\%), birds (53.92\%), and mammals (53.92\%) [Table C-4].

Respondents were asked to rank the importance of several programs on a scale of $1-4$, with 4 being very important. For the large-city group, those programs ranking between important and very important were reintroducing fish and wildlife (3.419), fish and wildife research and management (3.267), endangered fish and wildlife research and management (3.174), creating trails and wildlife observation areas (3.148), providing
general wildlife information (3.060), and providing information on habitat improvement (3.023) [Table C-5]. The lowest ranking program was land acquisition in general (2.681) [Table C-5]. For the medium-city group, those programs ranking between important and very important were reintroducing fish and wildlife (3.381), fish and wildlife research and management (3.248), endangered fish and wildlife research and management (3.162), providing general wildiife information (3.139), creating trails and wildlife observation areas (3.115), and providing informative publications (3.074) [Table C-5]. The lowest ranking program was acquiring land for rare fish and wildlife (2.721) [Table C-5]. For the small-city group, those programs ranking between important and very important were reintroducing fish and wildlife (3.361), fish and wildlife research and management (3.119), endangered fish and wildife research and management (3.047), providing information on habitat improvement (3.047), and providing general wildlife information (3.009) [Table C5]. The lowest ranking program was land acquisition in general (2.417) [Table C-5]. There were significant differences among the three populations for some of the programs: creating trails and wildife observation areas $\left(X^{2}=13.440, d f=6, p=0.037\right)$, producing informative publications ($X^{2}=12.619, \mathrm{df}=6, \mathrm{p}=0.050$), and fish and wildlife research and management $\left(X^{2}=16.936, \mathrm{df}=6, \mathrm{p}=0.010\right)$ [Table $\mathrm{C}-5$].

A majority of respondents from all three population sizes (large 59.86%, medium 57.45%, small 59.09%) had not seen the nongame check-off logo before receiving the survey [Table C-6]. A majority of respondents from all three population sizes (large 58.45%, medium 63.12%, small 57.66%) had not heard or seen information about ONWP before receiving the survey, [Table C-7]. Most respondents from all three population sizes
(large 48.61%, medium 50.00%, small 51.38%) did not know from where ODWC receives most of its funding for wildlife that are not hunted or fished [Table C-8]. Of those respondents that did, the top two sources were hunting/fishing license fees (large 18.06%, medium 20.00%, small 13.76%) and donations (large 13.89%, medium 12.14%, small 17.43%) [Table C-8].

Camping equipment (large 31.21%, medium $\mathbf{2 8 . 4 7 \%}$), nature-related books (large 34.75%, medium 32.85%) and recreational vehicles (large 31.91%, medium 33.58%) were the most supported items for increases in wholesale price to provide an altemative funding source for wildlife that are not hunted or fished [Table C-9]. The top three supported items of respondents from a small city were binoculars (27.52%), camping equipment (27.52%) and nature-related books (26.61%) [Table C-9]. All three population sizes had some respondents (large 31.91%, medium 27.74%, small 33.03%) who would not support price increases on any of the listed items [Table C-9].

Respondents were asked to rank their suppor/opposition to several altemarive sources of nongame funding on a scale of $1-5$, with 5 being strongly support, 3 being neutral and 1 being strongly oppose. Support for a user fee charged to anyone not possessing a hunting or fishing license who uses ODWC lands averaged 3.59 for the largecity group, 3.61 for the medium-city group, and 3.45 for the small-city group ($X^{2}=17.098$, $\mathrm{df}=8, \mathrm{p}=0.029$) [Table C-10]. Support for a user fee charged to anyone who uses ODWC lands averaged 3.09 for the large-city group, 2.93 for the medium-city group, and 2.89 for the small-city group [Table C-10]. Support for an increase in automobile speeding fines averaged 3.09 for the large-city group, 3.02 for the medium-city group, and 3.03 for the
small-ciry group $\left(\chi^{2}=19.351, \mathrm{df}=8, \mathrm{p}=0.013\right)$ [Table C -10]. Support for a volumtary contribution box added to vehicle registration fees averaged 3.92 for the large-city group, 3.78 for the medium-city group and 3.61 for the small-city group [Table C-10].

ODWC was considering a name change for its Nongame Wildlife Program. The respondents' top three name choices were Nongame Wildife Program, no change, (large 28.36%, medium 37.78%, small 52.94%), Fish \& Wildlife Conservation Program (large 30.60%, medrum 27.41%, small 10.78%), and Nongame \& Endangered Wildlife Program (large 25.37%, medium 20.74%, small 22.55%) ($X^{2}=24.173$, $\mathrm{df}=10, \mathrm{p}=0.007$) [Table C. 11]. A majority (large 83.69%, medium 84.67%, small 90.74%) of the respondents have never donated to ONWP primarily because they were not aware of the program (large 43.26%, medium 52.55%, small 37.96%) or they could not afford to donate (large 27.66%, medium 25.55%, small 33.33%) [Table C-12]. Given the option, respondents from all three groups (large 48.63%, medium 40.14%, small 57.14%) wanted more information about ONWP [Table C-20].

Population Size Demographic Responses

All three population groups consisted of more males (large 56.74%, medium 69.12%, small 69.23%) than females (large 43.26%, medium 30.88%, small 30.77%) $\left(X^{2}=5.988, d f=2, p=0.050\right)$ [Table $\left.C-13\right]$. The small-city group consisted of more respondents in the older age groups and less in the 18-25 age group [Table C-14]. A majority of the respondents were white, not of Hispanic origin (large 84.72%, medium 82.48%, small 83.18%, Table C-15). In addition, some respondents were Native Americans (large 8.33\%, medium 13.14\%, small 11.21\%) [Table C-15]. Most
respondents were married (large 64.83\%, medium 68.12\%, small 71.82\%) [Table C-16]. There were more divorced/separated respondents in the large-city group (17.93\%), slightly fewer in the medium-city group (14.49%), and fewest in the small-city group (8.18%) [Table C-16]. The small-city group had more widowed respondents (11.82%) than the large-city group (7.59\%) or the medium-city group (5.80\%) [Table C-16].

For the large-city group, the top three levels of education were some college (34.72%), college graduate (22.92%), and high school (16.67%) [Table C-17]. For the medium-city group, the top three levels of education were college graduate (27.54\%), some college (26.81%), and high school (15.94\%) [Table C-17]. For the small-city group, the top three levels of education were high school (23.64%), college graduate (22.73%), and some college (20.00%) [Table C-17]. Most large-city respondents claimed to have lived in a medium-size city (46.90%) during the past year [Table C-18]. Most medium-city respondents claimed to have lived in a medium-size city (35.46\%) or in a small city or town (32.62\%) during the past year [Table C-18]. Most small city respondents claimed to have lived in a small city or town (82.14\%) during the past year [Table C-18]. There was a significant difference among the three population sizes for type of setting lived in during the past year $\left(X^{2}=200.599, \mathrm{df}=10, \mathrm{p}=0.000\right)$ [Table $\mathrm{C}-18$]. For the large city group, the top two income levels were $\$ 30,000-\$ 40,000(19.42 \%)$ and $\$ 40,000-\$ 50,000(19.42 \%)$ [Table C-19]. For the medium city group, the top two income levels were $\$ 50,000-\$ 75,000(18.40 \%)$ and $\$ 40,000-\$ 50,000$ (17.60\%) [Table C-19]. For the small city group, the top two income levels were $\$ 10,000-\$ 20,000(25.24 \%)$ and $\$ 20,000-\$ 30,000(21.36 \%)$ [Table C-19]. There was a significant difference among the
three population sizes for income level $\left(X^{2}=27.434, d f=14, p=0.017\right.$) [Table C-13].

Gender Responses

A majority of both male (63.68%) and female (79.2%) respondents were not members of a wildlife/outdoor organization [Table D-1]. Among males, fishing (23.08\%) and hunting (23.08\%) organizations were the top choices [Table D-1]. Among females, fishing (8%) organizations ranked the highest; hunting (4.8\%) and gardening (4.8\%) organizations tied for second highest choice [Table D-1]. There were significant differences among gender for several types of wildlife/outdoor organizations: fishing ($X^{2}=12.643, d f=1, p<0.001$), hunting ($X^{2}=19.553, d f=1, p<0.001$), and none $\left(X^{2}=9.194\right.$, $d f=1, p=0.002$) [Table $D-1]$.

The top five activities of males were, in descending order, fishing (70.90\%), hunting (46.72%), camping (46.72%), observing wildlife at home (42.21%), and bird feeding (37.70%) [Table D-2]. The top five activities of females were, in descending order, observing wildlife at home (50.75%), bird feeding (47.76%), visiting zoos/aquaria (44.03), fishing (41.04%), and bird watching (35.82\%) [Table D-2]. There were significant differences between gender for several activities: bird watching ($\chi^{3}=4.544$, $d f=1, p=0.033$), camping ($X^{2}=8.439, d f=1, p=0.004$), hunting ($X^{2}=44.245, d f=1$, $\mathrm{p}=0.000$), and fishing ($\mathrm{X}^{2}=32.214, \mathrm{df}=1, \mathrm{p}=0.000$) [Table D-2].

For males, the top five sources of wildlife information were magazines (70.37\%), television (67.08\%), newspapers (60.49%), friends/relatives (44.03\%), and books (36.21%) [Table D-3]. For females, the top five sources of wildlife information were television (68.15%), magazines (56.30%), newspapers (51.85%), friends/relatives
(42.22%), and books (37.78%) [Table D-3]. There was a significant difference between gender for magazines as a source of wildlife information ($X^{2}=7.591, \mathrm{df}=1, \mathrm{p}=0.006$) [Table D-3].

Males wanted more information on fish (62.11%), birds (51.54%) and mammals (51.54\%) [Table D-4]. Females wanted more information on birds (73.28%), mammals (50.86%) and fish (35.34\%) [Table D-4]. There were significant differences between gender for more information on insects $\left(X^{2}=4.657, d f=1, \mathrm{p}=0.031\right)$, fish $\left(X^{2}=22.089\right.$, $\mathrm{df}=1, \mathrm{p}=0.000$), and birds $\left(\mathrm{X}^{2}=14.979, \mathrm{df}=1, \mathrm{p}=0.000\right)$ [Table $\mathrm{D}-4$].

Respondents were asked to rank the importance of several programs on a scale of 1-4, with 4 being very important. For males, those programs that ranked between important (3) and very important (4) were reintroducing fish and wildlife (3.420), fish and wildlife research and management (3.304), endangered fish and wildlife research and management (3.119), and providing general wildlife information (3.042) [Table D-5]. The lowest ranking program was creating facilities for outdoor classrooms (2.551) [Table D5]. For females, those programs that ranked between important and very important were reintroducing fish and wildlife (3.350), creating trails and wildlife observation areas (3.296), endangered fish and wildlife research and management (3.168), providing general wildlife information (3.089), creating wildlife observation opportunities (3.055), fish and wildlife research and management (3.049), conducting educational workshops (3.024), and providing information on habitat improvement (3.016) [Table D-5]. The lowest ranking program was land acquisition in general $(2,642)$ [Table D-5]. There were significant differences between gender for several programs: creating trails and wildkife
observation areas $\left(X^{2}=25.214, d f=3, p<0.001\right)$, producing informative publications ($\chi^{2}=10.019, d f=3, \mathrm{p}=0.018$), creating facilities for outdoor classrooms $\left(X^{2}=24.476, \mathrm{~d} f=3\right.$, $\mathrm{p}<0.001$), fish and wildlife research and management ($X^{2}=7.833, \mathrm{df}=3, \mathrm{p}=0.050$), endangered fish and wildlife research and management ($X^{2}=7.804, \mathrm{df}=3, \mathrm{p}=0.050$), conducting educational workshops ($X^{2}=13.598, \mathrm{~d} f=3, \mathrm{p}=0.004$), acquiring land for rear fish and wildlife ($X^{2}=11.074, d f=3, p=0.011$), and creating wildlife observation opportunities ($X^{2}=18.669, d f=3, p<0.001$) and providing information on habitat improvement $\left(X^{2}=9.387, d f=3, p=0.025\right)$ [Table $D-5$].

A majority of males (59.84%) and females (55.22%) had not seen the nongame check-off logo before receiving the survey [Table D-6]. A majority of males (60.08%) and females (59.40%) had not heard or seen information about ONWP before receiving the survey ($X^{2}=6.686, \mathrm{df}=2, \mathrm{p}=0.035$) [Table D-7]. Most males (41.49%) and females (67.67\%) did not know where the ODWC received most of its funding for wildlife that were not hunted or fished ($X^{2}=34.363, \mathrm{df}=7, \mathrm{p}<0.001$) [Table D-8]. Of those respondents that did know, the top two sources were hunting/fishing license fees (males 21.58%, females 9.77%) and donations (males 14.52%, females 14.29%) [Table D-8].

Camping equipment (male 26.75%, female 33.07%), nature-related books (male 27.98%, female 38.58%) and recreational vehicles (male 28.40%, female 35.43%) were the most supported items for increases in wholesale price to provide an alternative funding source for wildlife that are not hunted or fished [Table D-9]. Both males (33.74\%) and females (24.41%) had some respondents who would not support price increases on any of the listed items [Table D-9]. There was a significant difference among gender for nature-
related books $\left(X^{2}=4.334, \mathrm{df}=1, \mathrm{p}=0.037\right)$ [Table $\mathrm{D}-9$].
Respondents were asked to rank their support/opposition to several atternative nongame funding sources on a scale of $1-5$, with 5 being strongly support, 3 being neutral and 1 being strongly oppose. Support for a user fee charged to anyone not possessing a huming or fishing license who uses ODWC lands averaged 3.67 for males and 3.39 for females [Table D-10]. Support for a user fee charged to anyone who uses ODWC lands averaged 2.95 for males and 3.04 for fermales [Table D-10]. Support for an increase in automobile speeding fines averaged 3.01 for males and 3.20 for fernales [Table D-10]. Support for a voluntary contribution box added to vehicle registration fees averaged 3.74 for males and 3.84 for females [Table D-10].

ODWC was considering a name change for its Nongame Wildlife Program. The respondents' top three name choices were Nongame Wildlife Program, no change, (male 39.66%, female 35.77%), Fish \& Wildlife Conservation Program (male 24.14\%, female 22.76%), and Nongame \& Endangered Wildlife Program (male 21.12\%, female 26.02\%) [Table D-11]. There was a significant difference between gender for this question ($\chi^{2}=14.626, \mathrm{df}=5, \mathrm{p}=0.012$) [Table D-11]. A majority (male 83.75%, female 89.47%) of the respondents have never donated to ONWP primarily because they were not aware of the program (male 45.83%, female 44.36%), or they could not afford to donate (male 24.17%, female 36.09%) [Table D-12]. Given the option, respondents (male 44.72%, female 45.93\%) wanted more information about ONWP [Table D-19].

Gender Demographic Responses

Most of the age groups were evenly divided between males and females [Table D-

13]. A majority of the respondents were white, not of Hispanic origin (males 82.57%, females 85.82) [Table D-14]. In addition, some respondents were Native American (males 10.37%, females 10.45%) [Table D-14]. More males (77.55%) than females (51.85\%) were married [Table D-15]. On the other hand, there were more divorced/separated females (23.70%) than males (8.16%) [Table D-15]. There also were more widowed females (17.04%) than males (2.45%) [Table D-15]. There was a significant difference among gender for marital status ($X^{2}=50.307$, $\mathrm{df}=4, \mathrm{p}<0.001$) [Table D-15]. For males, the top three levels of education were college graduate (27.76\%), some college (24.08\%), and high school (14.69\%) [Table D-16]. For females, the top three levels of education were some college (36.57%), high school (22.39%), and college graduare (19.40\%) [Table D-16]. There was a significant difference between gender for education $\left(X^{2}=22.690, \mathrm{df}=10, \mathrm{p}=0.012\right.$) [Table $\mathrm{D}-16$]. Most respondents claimed to have lived in a small city or town (males 39.34%, females 35.56%) or in a medium-size city (males 29.92%, females 29.63%) during the past year [Table D-17]. For males, the top two income levels were $\$ 40,000-\$ 50,000(20.09 \%)$ and $\$ 20,000-\$ 30,000(17.86 \%)$
[Table D-18]. For females, the top two income levels were $\$ 10,000-\$ 20,000$ (24.41\%) and $\$ 20,000-\$ 30,000(18.11 \%)$ [Table D-18]. There was a significant difference among gender for income level $\left(X^{2}=15.815, \mathrm{df}=7, \mathrm{p}=0.027\right.$) [Table $\mathrm{D}-18$].

Knowledge of ONWP Responses

In this section, the groups were determined by the respondents' answers to question 7: Before you received this survey, had you ever heard or seen information about Oklahoma's 'Nongame Wildlife Program?' I refer to those respondents that had
heard or knew of ONWP as the knowledge group and those that had not heard or knew of ONWP as the no-knowledge group.

A majority in both groups (knowledge 55.05\%, no-knowledge 73.89\%) were not members of a wildlife/outdoor organization [Table E-1]. The knowledge group's top choices for wildlife/outdoor organizations were hunting (26.61%), and fishing (24.77\%) organizations [Table E-1]. In the no-knowledge group, fishing (15.49\%) organizations ranked higher than hunting (14.16\%) organizations [Table E-1]. There were significant differences among knowledge level for several types of wildlife/outdoor organizations: hunting ($X^{2}=11.565, d f=2, p=0.003$), other ($X^{2}=11.039, d f=2, p=0.004$), and none $\left(X^{2}=14.411, d f=2, p=0.001\right)$ [Table $\left.E-1\right]$.

The top five activities of the knowledge group were, in descending order, fishing (70.34%), observing wildlife at home (53.39%), and bird feeding (52.54%) camping (48.31%) and hunting (49.15\%) [Table E-2]. The top five activities of the no-knowledge group were, in descending order, fishing (57.08%), observing wildlife at home (42.49%), bird feeding (39.06\%), camping (37.77\%), and visiting zoos/aquaria (35.62\%) [Table E2]. There were significant differences among knowledge level for several activities: bird watching ($X^{2}=15.789, \mathrm{df}=2, \mathrm{p}<0.001$), bird feeding ($\mathrm{X}^{2}=12.453, \mathrm{df}=2, \mathrm{p}=0.002$), hunting ($X^{2}=15.648, \mathrm{df}=2, \mathrm{p}<0.001$, fishing $\left(X^{2}=7.752, \mathrm{df}=2, \mathrm{p}=0.021\right.$), landscaping for wildlife ($X^{2}=8.309, \mathrm{df}=2, \mathrm{p}=0.016$), visiting an area solely to watch wildife ($X^{2}=9.105, \mathrm{df}=2$, $p=0.011$), and none ($X^{2}=12.011, d f=2, p=0.002$) [Table E-2].

For the knowledge group, the top five sources of wildlife information were magazines (77.97%), television (76.27%), newspapers (64.41%), books (49.15%), and
friends/relatives (48.31%) [Table E-3]. For the no-knowledge group, the top five sources of widlife information were television (68.24%), magazines (60.94%), newspapers (57.08%), friends/relatives (45.06%), and books (31.33%) [Table E-3]. Wildlife officials/ game wardens were the source of information for many (33.90%) knowledge group respondents, but they were the source for 18.45% of the no-knowledge group respondents [Table E-3]. There were significant differences among knowledge level for several sources of wildlife information: television ($X^{2}=8.078, \mathrm{df}=2, \mathrm{p}=0.018$), magazines $\left(X^{2}=10.823, d f=2, p=0.004\right)$, newsletters $\left(X^{2}=17.648, d f=2, p<0.001\right)$ pamphlets $\left(\chi^{2}=19.448, \mathrm{df}=2, \mathrm{p}<0.001\right.$), books ($X^{2}=12.255, \mathrm{df}=2, \mathrm{p}=0.002$), wildife officials/game wardens ($X^{2}=10.729, \mathrm{df}=2, \mathrm{p}=0.005$), and none ($X^{2}=6.958, \mathrm{df}=2, \mathrm{p}=0.031$) [Table E-3].

Knowledge group respondents wanted more information on birds (60.75\%), mammals (60.75%), and fish (49.53\%) [Table E-4]. No-knowledge group respondents wanted more information on birds (59.15%), fish (56.34%), and mammals (48.83%) [Table E-4].

Respondents were asked to rank the importance of several programs on a scale of 1-4, with 4 being very important. For the knowledge group, those programs ranking between important and very important were reintroducing fish and wildlife (3.605), fish and wildlife research and management (3.522), endangered fish and wildife research and management (3.333), providing general wildlife information (3.250), providing information on habitat improvement (3.243), creating trails and wildlife observation areas (3.179), producing informative publications (3.161), and creating wildlife observation opportunities (3.000) [Table E-5]. The lowest ranking program was creating facilities for
outdoor classrooms (2.814) [Table E-5]. For the no-knowledge group, those programs ranking between important and very important were reintroducing fish and wildife (3.232), fish and wildife research and management (3.104), endangered fish and wildlife research and management (3.074), creating trails and wildlife observation areas (3.032) and providing general wildlife information (3.027) [Table E-5]. The lowest ranking program was land acquisition in general (2.551) [Table E-5]. There were significant differences among knowledge level for several programs: producing informative publications ($X^{2}=19.731, \mathrm{df}=6, \mathrm{p}=0.003$), fish and wildlife research and management $\left(X^{2}=24.094, d f=6, p=0.001\right)$, land acquisition in general $\left(X^{2}=15.656, d f=6, p=0.016\right)$, providing information on habitat improvement $\left(X^{2}=24.019, \mathrm{df}=6, \mathrm{p}=0.001\right.$ [Table $\mathrm{E}-5$].

A majority of the knowledge group (55.54%) had seen the nongame check-off logo before receiving the survey [Table E-6]. However, a majority of the no-knowledge group (72.46%) had not seen the nongame check-off logo [Table E-6]. There was a significant difference among knowledge level for having seen the logo ($X^{2}=62.099, \mathrm{df}=4$, $\mathrm{p}<0.001$) [Table E-6]. Most respondents from both groups (knowledge 32.76%, noknowledge 55.13%) did not know where ODWC received most of its funding for wildlife that are not hunted or fished [Table E-7]. Of those respondents that did know, the top two sources were hunting/fishing license fees (knowledge 23.28%, no-knowledge 15.38%) and donations (knowledge 18.10\%, no-knowledge 13.25\%) [Table E-7]. There was a significant difference among knowledge level for source of nongame funding $\left(X^{2}=43.495, \mathrm{df}=14, \mathrm{p}<0.001\right)$ [Table E-7].

Camping equipment (knowledge 27.07\%, no-knowledge 29.31%), nature-related
books (knowledge 34.93\%, no-knowledge 28.45\%) and recreational vehicles (knowledge 27.51%, no-knowledge 33.62%) were the most supported items for increases in wholesale price to provide an alternative funding source for wildlife that are not hunted or fished [Table E-8]. Both groups had some respondents (knowledge 30.17\%, no-knowledge 31.00%) that would not support price increases on any of the listed items [Table E-8]. There was a significant difference among knowledge level for camera/film ($X^{2}=9.070$, $\mathrm{d} f=2, \mathrm{p}=0.011$) [Table E-8]

Respondents were asked to rank their support/opposition to several altemative nongame funding sources on a scale of $1-5$, with 5 being strongly support, 3 being neutral and 1 being strongly oppose. Support for a user fee charged to anyone not possessing a hunting or fishing license who uses ODWC lands averaged 3.44 for the knowledge group and 3.92 for the no-knowledge group ($X^{2}=24.566, \mathrm{df}=8, \mathrm{p}=0.002$) [Table E-9]. Suppor for a user fee charged to anyone who uses ODWC lands averaged 2.95 for the knowledge group and 3.03 for the no-knowledge group [Table E-9]. Support for an increase in automobile speeding fines averaged 2.95 for the knowledge group and 3.33 for the noknowledge group [Table E-9]. Support for a voluntary comtribution box added to vehicle registration fees averaged 3.71 for the knowledge group and 3.87 for the no-knowledge group [Table E-9].

ODWC was considering a name change for its Nongame Wildlife Program. The respondents' top three name choices were Nongame Wildlife Program, no change, (knowledge 39.82\%, no-knowledge 37.73\%), Fish \& Widlife Conservation Program (knowledge 23.89\%, no-knowledge 23.18%) and Nongame \& Endangered Wildlife

Program (knowledge 22.12\%, no-knowledge 23.18\%) [Table E-10]. There was a significant difference among knowledge level for name change ($X^{2}=6.011, \mathrm{df}=10$, $\mathrm{p}=0.035$) [Table $\mathrm{E}-10$]. A majority (knowledge 63.64\%, no-knowledge 94.37%) of the respondents have never donated to ONWP primarily because they were not aware of the program (knowledge 17.27%, no-knowledge 58.01%) or they could not afford to donate (knowledge 25.45%, no-knowledge 29.00\%) [Table E-11]. There was a significant difference among knowledge level for donating ($X^{2}=65.697, \mathrm{df}=2, \mathrm{p}<0.001$) [Table E-6]. Given the option, respondents (knowledge 44.92\%, no-knowledge 43.22%) wanted more information about ONWP [Table E-19].

Knowledge of ONWP Demographic Responses

Respondents consisted of more males (knowledge 70.27\%, no-knowledge 64.89%) than females (knowledge 29.73\%, no-knowledge 35.11\%) ($X^{2}=6.686, \mathrm{df}=2$, $\mathrm{p}=0.035$) [Table $\mathrm{E}-12$]. There were more $36-45$ year olds and $46-55$ year olds in the knowledge group ($34.51 \%, 23.89 \%$, respectively) than in the no-knowledge group ($18.72 \%, 18.72 \%$, respectively) [Table E-13]. There were more no-knowledge respondents in the two younger age groups, $18-25$ years, $26-35$ years $(6.38 \%, 21.70 \%$, respectively) than the knowledge group ($1.77 \%, 13.27 \%$, respectively) [Table E-13]. In addition, there were more no-knowledge (23.40%) respondents 65 years or older than knowledge (12.39%) respondents [Table E-13]. There was a significant difference among knowledge level for age group $\left(X^{2}=26.535, \mathrm{df}=10, \mathrm{p}=0.003\right.$) [Table E -13]. A majority of the respondents were white, not of Hispanic origin (knowledge 82.30\%, no-knowledge 83.84\%) [Table E-14]. In addition, some respondents were Native American (knowledge
8.85%, no-knowledge 10.92%) [Table E-14]. Most respondents were married (knowledge 71.43%, no-knowledge 67.23%) [Table E-15]. For the knowledge group, the top three levels of education were college graduate (30.36%), some college (26.79%) and Master's degree (12.50%) [Table E-16]. For the no-knowledge group, the top three levels of education were some college (29.36\%), college graduate (24.68\%) and high school (20.00%) [Table E-16]. Most respondents claimed to have lived in a stnall-sized city or town (knowledge 37.07%, no-knowledge 37.29%) or in a medium-size city (knowledge 29.31%, no-knowledge 31.78%) during the past year [Table E-17]. For the knowledge group, the top two income levels were $\$ 40,000-\$ 50,000(23.64 \%)$ and $\$ 30,000-\$ 40,000(19.09 \%)$ [Table E-18]. For the no-knowledge group, the top two income levels were $\$ 10,000-\$ 20,000(21.03 \%)$ and $\$ 20,000-\$ 30,000(19.63 \%)$ [Table E18]. There was a significant difference among knowiedge level for income level $\left(X^{2}=26.673, d f=14, p=0.021\right)$ [Table E-6].

Donation Responses

In this section, groups were determined by the respondents' answers to question 15: Have you ever donated money to Oklahoma's "Nongame Widdlife Program?" I will refer to those respondents who had donated money to ONWP as the donators and will refer to those who had not donated money to ONWP as the non-donators.

A majority of both donators (52.94\%) and non-donators (72.12\%) were not members of a wildlife/outdoor organization [Table F-1]. In both groups, fishing and hunting organizations were the top choices [Table F-1]. However, donators had a greater percentage of members in fishing (29.41\%) and hunting (25.49%) organizations than did
the non-donators (fishing 15.71\%, hunting 15.06\%) [Table F-1]. There were significant differences between donators and non-donators for several types of wildlife/outdoor organizations: fishing ($X^{2}=5.671, d f=1, p=0.017$), other $\left(X^{2}=7.757, d f=1, p=0.005\right)$, and none ($X^{2}=7.592, \mathrm{df}=1, \mathrm{p}=0.006$) [Table $\mathrm{F}-1$].

The top five activities of donators were, in descending order, fishing (70.37%), canoeing/rafting (62.96%), observing wildlife at home (61.11%), camping (55.56%) bird feeding (48.15\%), hiking (48.15\%), and visiting zoos/aquaria (48.15\%) [Table F-2]. The top five activities of non-donators were, in descending order, fishing (57.23%), observing wildlife at home (42.17%), bird feeding (39.46%), camping (37.05%), and visiting zoos/aquaria (34.04%) [Table F-2]. There were significant differences between donators and non-donators for several activities: hiking ($X^{2}=5.432, \mathrm{df}=1, \mathrm{p}=0.020$), camping ($X^{2}=6.383, \mathrm{df}=1, \mathrm{p}=0.012$), canoeing/rafting ($X^{2}=8.134, \mathrm{df}=1, \mathrm{p}=0.004$), nature photography ($X^{2}=5.210, \mathrm{df}=1, \mathrm{p}=0.022$), observing wildlife at home $\left(X^{2}=6.450, \mathrm{df}=1\right.$, $\mathrm{p}=0.011$), and visiting an area solely to watch wildlife ($X^{2}=9.262, \mathrm{df}=2, \mathrm{p}=0.002$) [Table F-2].

For donators, the top five sources of wildlife information were television (81.48%), magazines (75.93%), newspapers (70.37%), friends/relatives (55.56%), and books (50.00%) [Table F-3]. For non-donators, the top five sources of wildlife information were television (65.65\%), magazines (64.44%), newspapers (55.32%), friends/relatives (41.34%) and books (34.35\%) [Table F-3]. Wildife officials/game wardens were the source of information for many (37.04%) donators, but they were the source for 20.97% of the nondonators [Table F-3]. There were significant differences
between donators and non-donators for several sources of wildlife information: radio ($X^{2}=12.524, \mathrm{df}=1, \mathrm{p}<0.001$), television ($X^{2}=5.330, \mathrm{df}=1, \mathrm{p}=0.021$), newsletters $\left(X^{2}=11.902, \mathrm{df}=1, \mathrm{p}=0.001\right)$, paraphets $\left(X^{2}=7.548, \mathrm{df}=1, \mathrm{p}=0.006\right)$, books $\left(X^{2}=4.901\right.$, $d f=1, p=0.027)$, computers $\left(X^{2}=4.055, d f=1, p=0.044\right)$, and wildlife officials/game wardens ($X^{2}=6.711, \mathrm{df}=1, \mathrm{p}=0.010$) [Table F-3].

Donators wanted more information on fish (54.90%), mammals (54.90%), and birds (52.94%) [Table F-4]. Non-donators wanted more information on birds (59.59%), fish (52.74\%) and mammals (51.03\%) [Table F-4].

Respondents were asked to rank the importance of several programs on a scale of $1-4$, with 4 being very important. For donators, those programs that ranked between important and very important were reintroducing fish and wildlife (3.698), fish and wildife research and management (3.588), endangered fish and wildlife research and management (3.462), providing general wildlife information (3.352), providing information on habitat improvement (3.315), creating trails and wildlife observation areas (3.308), producing informative publications (3.115), conducting educational workshops (3.115), and creating wildlife observation opportunities (3.098) [Table F-5]. The lowest ranking program was creating facilities for outdoor classrooms (2.885) [Table F-5]. For non-donators, those programs that ranked between important and very important were reintroducing fish and wildlife (3.341), fish and wildlife research and managemem (3.156), endangered fish and wildlife research and management (3.075), and providing general wildlife information (3.006) [Table F-5]. The lowest ranking program was land acquisition in general (2.578) [Table F-5]. There were significant differences between donators and non-donators for
several programs: reintroducing fish and wildlife ($X^{2}=9.096, \mathrm{df}=3, \mathrm{p}=0.028$), fish and wildlife research and management ($X^{2}=11.726, d f=3, p=0.008$), endangered fish and wildife research and management ($X^{2}=10.612, d f=3, p=0.014$), land acquisition in general ($X^{2}=8.409, \mathrm{df}=3, \mathrm{p}=0.038$), and providing general wildlife information $\left(X^{2}=10.677, \mathrm{df}=3\right.$, $p=0.014$) [Table F-5].

A majority of donators (51.85\%) had seen the nongame check-off logo before receiving the survey; 38.89% had not seen the logo [Table F-6]. A majority of nondonators (61.70%) had not seen the nongame check-off logo [Table F-6]. There was a significant difference between donators and non-donators for having seen the logo $\left(X^{2}=17.860, \mathrm{df}=2, \mathrm{p}<0.001\right)$ [Table F-6]. In response to having heard or seen information about ONWP before receiving the survey, a majority of donators (75.47%) answered yes, but a majority of non-donators (66.67%) answered no ($X^{2}=65.697, \mathrm{df}=2, \mathrm{p}<0.001$) [Table F-7]. Most donators (33.33\%) and non-donators (53.05%) did not know where ODWC received most of its funding for wildlife that are not hunted or fished [Table F-8]. Of those respondents that did know, the top two sources were hunting/fishing license fees (donators 21.57%, non-donators 16.77%) and donations (donators 15.69%, non-donators 14.63\%) [Table F-8]. In addition, 15.69% of the donators also reported the state tax check-off to be a top source of funding [Table F-8]. There was a significant difference between donators and non-donators for source of nongame funding ($X^{2}=18.433, \mathrm{df}=7$, $\mathrm{p}=0.010$) [Table F-8].

For donators, bird seed (37.74\%), nature-related books (32.08\%), and camping equipment (30.19\%) were the most supported items for increases in wholesale price to
provide an alternative nongame funding source [Table F-9]. Non-donators showed more support for nature-related books (31.37%), recreational vehicles (30.75%) and camping equipment (28.57%) [Table F-9]. Both donators (32.08\%) and non-donators (31.06\%) had some respondents who would not support price increases on any of the listed items [Table F-9]. There were significant differences between donators and non-donators for camera/film $\left(X^{2}=4.875, \mathrm{df}=1, \mathrm{p}=0.027\right)$, and bird seed $\left(\mathrm{X}^{2}=7.652, \mathrm{df}=1, \mathrm{p}=0.006\right)$ [Table F-9].

Respondents were asked to rank their support/opposition to several alternative nongarne funding sources on a scale of $1-5$, with S being strongly support, 3 being neutral and 1 being strongly oppose. Support for a user fee charged to anyone not possessing a hunting or fishing license who uses ODWC lands averaged 4.00 for donators and 3.51 for non-donators $\left(X^{2}=12.262, d f=4, p=0.016\right)$ [Table F-10]. Support for a user fee charged to anyone who uses ODWC lands averaged 3.04 for donators and 2.98 for non-donators [Table F-10]. Support for an increase in automobile speeding fines averaged 3.19 for donators and 3.05 for non-donators [Table F-10]. Support for a voluntary contribution box added to vehicle registration fees averaged 4.09 for donators and 3.75 for nondonators [Table F-10].

ODWC was considering a name change for its Nongame Wildlife Program. The respondents' top three name choices were Nongame Wildlife Program, no change, (donators 21.15%, non-donators 41.61%), Fish \& Wildlife Conservation Program (donators 34.62%, non-donators 21.94%) and Nongame $\&$ Endangered Wildlife Program (donators 28.85%, non-donators 21.94%) [Table F-11]. There was a significant
difference berween donators and non-donators for name change ($X^{2}=11.073, \mathrm{df}=5$, $\mathrm{p}=0.050$) [Table $\mathrm{F}-11$]. Given the option, respondents (donators 55.56%, non-donators 41.87\%) wanted more information about ONWP [Table F-19].

Donation Demographic Responses

Respondents consisted of more males (donators 73.58%, non-donators 62.81%) than females (donators 26.42%, non-donators 37.19%) [Table F -12]. There were more donators (35.85%) in the $36-45$ age group than non-donators (19.34%) [Table F-13]. However, there were more 18-25 year olds, 26-35 year olds and 65 year olds or older non-donators $(5.44 \%, 20.85 \%, 22.05 \%$, respectively) than the donators $(1.89 \%, 16.98 \%$, 9.43%, respectively) [Table F-10]. A majority of the respondents were white, not of Hispanic origin (donators 76.92\%, non-donators 84.40%) [Table F-14]. In addition, some respondents were Native American (donators 9.62%, non-donators 11.01\%) [Table F-14]. The donators also consisted of 9.62% white, of Hispanic origin [Table F-14]. There was a significant difference between donators and non-donators for race ($X^{2}=, 13.600, \mathrm{df}=5$, $\mathrm{p}=0.018$) [Table F-14]. Most respondents were married (donators 75.00%, non-donators 66.47%) [Table F-15]. There were more never married donators (13.46\%) than nondonators (9.67%) [Table F-15]. However, there were more divorced/separated and widowed non-donators $(15.11 \%, 8.76 \%$, respectively) than donators $(7.69 \%, 3.85 \%$, respectively) [Table F-15]. There was a significant difference between donators and nondonators for marital status $\left(X^{2}=10.416, \mathrm{df}=4, \mathrm{p}=0.034\right)$ [Table F-15]. For donators, the top three levels of education were some college (36.54\%), college graduate (23.08%) and Master's degree (13.46\%) [Table F-16]. For non-donators, the top three levels of
education were some college (26.28%), college graduate (25.08%) and high school (20.54\%) [Table F-16]. There was a sigrificamt difference between donators and nondonators for education level ($X^{2}=25.465, \mathrm{df}=10, \mathrm{p}=0.005$) [Table F-16]. Most respondents claimed to have lived in a small-size city or town (donators 28.30%, nondonators $\mathbf{4 0 . 1 8 \%}$) or in a medium-size city (donators 31.12%, non-donators 22.64%) during the past year [Table F-17]. In addition, 22.64% of the donators claimed to have lived in a suburb near a large city [Table F-17]. There was a significant difference for this question $\left(X^{2}=13.994, d f=5, p=0.016\right)$ [Table F-17]. For donators, the most frequent income levels were $\$ 50,000-\$ 75,000(32.00 \%)$ and $\$ 40,000-\$ 50,000(20.00 \%)$ [Table F18]. For non-donators, the top two income levels were $\$ 10,000-\$ 20,000(20.33 \%)$ and $\$ 20,000-\$ 30,000(19.02 \%)$ [Table F-18]. There was a significant difference between donators and non-donators for income level ($X^{2}=22.080, \mathrm{~d} f=7, \mathrm{p}=0.002$) [Table F-18].

Education Level Responses

In this section, the groups were determined by the respondents' answers to question 21: Which of the following best describes your level of education? Several of the choices were combined creating six categories: (1) less than high school, (2) high school, (3) trade schooL, (4) some college, (5) college, and (6) graduate school. Since the less than high school group only contained 12 respondents, I will focus on the other five groups.

A majority of respondents from all five education levels (high school 80.00\%, trade school 56.86%, some college 75.47%, college 60.23%, graduate school 70.83%) were not members of a wildlife/outdoor organization [Table G-1]. Within all education
levels, hunting and fishing organizations were the top choices for wildife/outdoor organizations [Table G-1]. There were significant differences among education levels for several types of wildlife/outdoor organizations: fishing ($\chi^{2}=11.340, d f=5, p=0.045$) and none ($X^{2}=13.151, \mathrm{df}=5, \mathrm{p}=0.022$) [Table $\mathrm{G}-1$].

The top three activities of both the high school and trade school groups were, in descending order, fishing ($73.24 \%, 76.47 \%$, respectively), camping ($39.44 \%, 52.94 \%$), and observing wildlife at home ($36.62 \%, 47.06 \%$) [Table G-2]. The top three activities of the some college group were observing wildlife at home (51.85%), fishing (50.93%), and bird feeding (50.00%) [Table G-2]. The top three activities of the college group were fishing (63.54%), observing wildlife at home (51.85\%), and visiting zoos/aquaria (43.75%) [Table G-2]. The top three activities of the graduate school group were hiking (43.14%), observing wildife at home (43.14%), and visiting zoos/aquaria (41.18%) [Table G-2]. There were significamt differences among education levels for several activities: hiking ($X^{2}=19.348, \mathrm{df}=5, \mathrm{p}=0.002$), and fishing ($X^{2}=24.814, \mathrm{df}=5, \mathrm{p}=0.001$), [Table G-2].

For the high school, college, and graduate school groups, the top three sources of wildlife information were television $(67.61 \%, 65.63 \%, 72.55 \%$ respectively), magazines $(63.38 \%, 68.75 \%, 66.67 \%)$, and newspapers ($59.15 \%, 59.38 \%, 70.59 \%$) [Table G-3]. For the trade school and some college groups, the top three sources of wildlife information were magazines ($74.51 \%, 35.19 \%$, respectively), television (70.59%, 33.33%), and friends/relatives ($54.90 \%, 25.93 \%$) [Table G-3]. There were significant differences among education levels for several sources of wildlife information:
newspapers ($\left.X^{2}=13.584, d f=5, p=0.018\right)$, books $\left(X^{2}=18.093, d f=5, p=0.003\right)$, and computers ($X^{2}=11.574, d f=5, p=0.041$) [Table G-3].

High school level respondents wanted more information on fish (67.74\%), birds (53.23%), and mammals (43.55%) [Table G-4]. Trade school level respondents wanted more information on fish (73.91\%), mammals (56.52\%), and birds (52.17\%) [Table G-4]. Some college level respondents wanted more information on birds (61.46%), manmals (58.33%), and fish (43.75%) [Table G-4]. College level respondents wanted more information on birds (60.92%), fish (50.57%), and mammals (49.43%) [Table G-4]. Graduate school level respondents wanted more information on birds (62.50\%), mammals (52.08\%), and fish (39.58\%) [Table G-4].

Respondents were asked to rank the importance of several programs on a scale of 1-4, with 4 being very important. For the high school group, those programs that ranked between important (3) and very important (4) were reintroducing fish and wildlife (3.313), fish and wildlife research and management (3.221), providing general wildlife information (3.136), endangered fish and wildlife research and management (3.123), providing information on habitat improvement (3.015), and producing informative publications (3.00) [Table G-5]. The lowest ranking program was land acquisition in general (2.492) [Table G-5]. For the trade school group, those programs that ranked between important and very important were reintroducing fish and wildlife (3.560), fish and wildlife research and management (3.479), endangered fish and wildlife research and management (3.396), creating trails and wildlife observation areas (3.271), providing general wildlife information (3.143), providing information on habitat improvement (3.122), and creating
wildlife observation opportunities (3.000) [Table G-5]. The lowest ranking program was producing infornative publications (2.898) [Table G-5]. For the some college group, those programs that ranked between important and very important were reintroducing fish and wildlife (3.444), fish and wildlife research and management (3.162), endangered fish and wildlife research and management (3.153), creating trails and wildlife observation areas (3.101), producing informative publications (3.020), and providing general wildlife information (3.020) [Table G-5]. The lowest ranking program was land acquisition in general (2.610) [Table G-5]. For the college group, those programs that ranked between important and very important were reintroducing fish and wildlife (3.435), fish and wildlife research and management (3.261), and endangered fish and wildlife research and management (3.066) [Table G-5]. The lowest ranking program was acquiring land for rare fish and wildlife (2,637) [Table G-5]. For the graduate school group, those programs that ranked between important and very important were reintroducing fish and wildlife (3.280), fish and wildlife research and management (3.200), creating trails and wildlife observation areas (3.180), endangered fish and wildlife research and management (3.122), providing general wildlife information (3.102), and providing information on habitat improvement (3.020) [Table G-5]. The lowest ranking program was creating facilities for outdoor classrooms (2.660) [Table G-5]. There were significant differences among education levels for several programs: reintroducing fish and wildlife ($X^{2}=27.959, \mathrm{df}=15$. $p=0.022$), and fish and wildlife research and management ($\chi^{2}=29.241, d f=15, p=0.015$) [Table G-5],

A majority of respondents from all education levels (high school 64.29\%, trade
school 60.78%, some college 55.96%, college 53.13%, graduate school 56.86%) had not seen the nongame check-off logo before receiving the survey [Table G-6]. A majority of respondents from all education levels (high school 68.12%, trade school 47.06%, some college 63.89%, college 60.42%, graduate school 58.82%) had not heard or seen information about ONWP before receiving the survey [Table G-7]. There was a significant difference among education level for having seen information on ONWP ($X^{2}=19.202, \mathrm{df}=10, \mathrm{p}=0.038$) [Table $\mathrm{G}-7$]. Most respondents from all education levels (high school 54.29%, trade school 48.00%, some college 46.30%, college 46.32%, graduate school 64.00%) did not know where ODWC received most of its funding for wildlife that are not hunted or fished [Table G-8]. Of those respondents that did, the top two sources were hunting/fishing license fees (high school 22.86%, trade school 20.00%, some college 20.37%, college 14.74%, graduate school 8.00%) and donations (high school 14.29%, trade school 10.00%, some college 17.59%, college 17.89%, graduate school 6.00\%) [Table G-8]. In addition, 12.00\% of the graduate school believes most of the funding comes from donations.

Among the high school and some college groups, nature-related books (34.33\%, 34.29%, respectively), recreational vehicles $(32.84 \%, 31.43 \%)$ and camping equipment $(32.84 \%, 32.84 \%)$ were the top three supported for increases in wholesale price to provide an alternative funding source for wildlife that are not hunted or fished [Table G9]. The top three supported items of trade school respondents were recreational vehicles (32.00\%), bird seed (26.00\%) and camping equipment (24.00\%) [Table G-9]. The top three supported items of college respondents were nature-related books (33.68\%), bird
seed (31.58%), and recreational vehicles (26.32%) [Table G-9]. The top three supported items of graduate school respondents were camping equipment (33.33\%), recreational vehicles (31.37%), and nature-related books (29.41\%) [Table G-9]. All education levels had some respondents (high school 22.39%, trade school 24.00%, some college 28.57%, college 37.89%, graduate school 31.37%) who would not support price increases on any of the listed items [Table G-9]. There were significant differences among education level for several items: binoculars $\left(X^{2}=12.882, d f=5, p=0.025\right)$, bird seed $\left(X^{2}=11.407, d f=5\right.$, $\mathrm{p}=0.044$) [Table G-9].

Respondents were asked to rank their support/opposition to several alternative nongame funding sources on a scale of $1-5$, with 5 being strongly suppor, 3 being neutral and 1 being strongly oppose. Support for a user fee charged to anyone not possessing a hunting or fishing license who uses ODWC lands averaged 3.76 (high school), 3.48 (trade school), 3.38 (some college), 3.68 (college), and 3.54 (graduate school) [Table G-10]. Support for a user fee charged to anyone who uses ODWC lands averaged 3.05 (high school), 2.67 (trade school), 3.14 (some college), 2.71 (college), and 3.39 (graduate school) [Table G-10]. Support for an increase in automobile speeding fines averaged 3.31 (high school), 3.00 (trade school), 2.98 (some college), 3.10 (college), and 2.96 (graduate school) [Table G-10]. Support for a voluntary contribution box added to vehicle registration fees averaged 3.76 (high school), 3.65 (trade school), 3.81 (some college), 4.01 (college), and 3.53 (graduare school)[Table G-10].

ODWC was considering a name change for its Nongame Wildlife Program. The respondents' top three name choices were Nongame Wildlife Program, no change, (high
school 43.75%, trade school 48.98%, some college 31.37%, college 38.20%, graduate school 38.78\%), Fish \& Wildlife Conservation Program (high school 45.45\%, trade school 21.88%, some college 26.47%, college 17.98%, graduate school 30.61%), and Nongame \& Endangered Wildlife Program (high school 25.00%, trade school 28.57%, some college 18.63%, college 29.21%, graduate school 12.24%) [Table G-11]. A majority (bigh school 98.55%, trade school 76.47%, some college 82.08%, college 87.37%, graduate school 84.00%) of the respondents have never donated to ONWP [Table G-12]. Given the option, respondents from all education levels (high school 45.83%, trade school 59.62%, sorme college 48.62%, college $39: 58 \%$, graduate school 29.41%) wanted more information about ONWP [Table G-19].

Education Level Demographic Responses

All education level groups consisted of more males (high school 54.55\%, trade school 78.43%, some college 54.63%, college 72.34%, graduate school 72.00%) than females $\left(X^{2}=15.640, \mathrm{df}=5, \mathrm{p}=0.008\right.$) [Table $\left.\mathrm{G}-13\right]$. The high school group was primarily uniformed throughout the age groups with the largest percentage (33.33\%) in the 65 years or older age group [Table G-14]. The trade school, some college, and college groups were slightly younger [Table G-14]. The graduate school group were primarily middleaged individuals [Table G-14]. There was a significant difference among education level for age group ($X^{2}=40.126, \mathrm{df}=25, \mathrm{p}=0.028$) [Table $\mathrm{G}-13$]. A majority of the respondents were white, not of Hispanic origin (high school 58.33%, trade school 84.29%, some college 85.05%, college 87.37%, graduate school 80.39%) [Table G-15]. In addition, some respondents were Native Americans (high school 15.71\%, trade school 14.00\%,
some college 8.41%, college 7.37%, graduate school 7.84%) [Table G-15]. A majority of respondents from all education levels were married (high school 63.89%, trade school 69.23%, some college 64.22%, college 73.96%, graduate school 76.47%) [Table G-16]. There was a significant difference among education level for marital status ($X^{2}=27.607$, $d f=15, p=0.024$) [Table G-16]. Most education level groups claimed to have lived in a medium-size city (high school 36.11%, trade school 37.25%, some college 28.44%, college $\mathbf{2 7 . 0 8 \%}$, graduate school 35.29%) or in a small-size city or town (high school 45.83%, trade school 37.25%, some college 27.52 college 42.71%, graduate school 35.29%) during the past year [Table G-17]. For the high school group, the most frequent income levels were less than $\$ 10,000(26.09 \%), \$ 10,000-\$ 20,000(21.74 \%)$ and $\$ 20,000$ $\$ 30,000(21.74 \%)$ [Table G-18]. For the trade school group, the most frequent income levels were $\$ 10,000-\$ 20,000(25.00 \%)$ and $\$ 20,000-\$ 30,000$ (22.92\%) [Table G-18]. For the some college group, the most frequent income levels were $\$ 10,000-\$ 20,000$ (20.21\%), $\$ 40,000-\$ 50,000(20.21 \%)$, and $\$ 20,000-\$ 30,000(19.15 \%)$ [Table G-18]. For the college group, the most frequent income levels were $\$ 40,000-\$ 50,000(21.98 \%)$, $\$ 50,000-\$ 75,000(21.98 \%)$ and $\$ 30,000-\$ 40,000(20.88 \%)$ [Table G-18]. For the graduate school group, the most frequent income levels were $\$ 40,000-\$ 50,000(28.26 \%)$ and more than $\$ 100,000(17.39 \%)$ [Table G-18]. There was a significant difference among education level for income level ($X^{2}=136.674, \mathrm{df}=35, \mathrm{p}=0.001$) [Table G -18].

CHAPTER 4

DISCUSSIONS AND RECOMMENDATIONS

Overall, respondents were not members of a wildlife/outdoor organization. They were more likely to participate in wildlife/outdoor activities. Respondents tended to receive information about wildlife from television, magazines and newspapers. They were not asked about the quality of their information; it is possible that their sources of information contained more opinions and experiences of other individuals than science. Respondents believed that wildlife management related programs were the most important. They also considered providing information on wildlife and ODWC programs to be important. They were less likely to consider educational and land acquisition programs to be important. Respondents were not asked if they had school aged children. If they did not have children, they might be less apt to consider educational programs to be importam. Respondents possibly consider land acquisition as a threat to their own property; consequently, they consider those type of programs as less important. Respondents, in general, had not seen the nongame check-off logo and had not heard or seen information regarding Oklahoma's Nongame Wildlife Program (ONWP). Because many respondents did not know about ONWP, they do not know the major source of funding. Donations are a source; however, the tax check-off provides the most money. Hunting and fishing licenses also were considered by the respondents to be a major source, but none of the money from the licenses fees went toward nongame wildlife programs. Respondents are either misinformed on this account or simply guessing. As for support of
an increase in the wholesale price of some items, the decision is too close to call because one third of the respondents suppor a price increase and one-third oppose. Based on the third that did support a price increase, camping equipment, nature-related books and recreational vehicles are more apt to be supported by the public. Other items that the respondents suggested (cigarettes, weapons, ammunition and liquor) were possibly supported because the respondents do not use those items themselves. Respondents support voluntary forms of alternative funding sources. They also support fees charged to non-licensed (hunting or fishing) individuals who want to use ODWC lands. Respondents were not likely to donate money to the ONWP. In conclusion, the respondents do not have an extensive knowledge of the ONWP (hypothesis \#1). The respondents do approve of the altemative funding suggestions (hypothesis \#2).

Population Size Conclusions

Size of towns or cities did not have any affect on membership in a wildlife/outdoor organization. All three population sizes tended to not be members. Of those respondents who were members, the small-city population was more likely to have members in a hunting or fishing organization than the other two population sizes. Respondents from all three population sizes tended to participate in outdoor activities. However, there were differences in the types of activities each population size participated in. The large-city respondents were more likely to photograph nature, visit zoos/aquaria, and visit an area solely to watch wildlife, In other words, the large-city respondents were more likely to engage in an activity that allows them to see wildlife than the other population sizes. The medium-city respondents were more inclined to bird watching and feeding. Small-city
respondents were more apt to fish and hunt than the other population sizes. All three population sizes receive wildlife information from a variety of sources. However, medium-sized populations were more likely to get their information from television than large- or small-sized populations. Small-city populations were more likely to turn to magazines, books, friends/relatives or wildlife officials/game wardens for their information. There were no differences between large cities and medium cities regarding the importance of the various programs. The only difference between small cities and the large/medium cities was that the small cities are more likely to oppose any land acquisition related programs. Population size had no influence on seeing the nongame check-off logo. The medium-sized populations were slightly more likely to have heard or seen information about ONWP than the large- or small-sized populations. The small-city respondents were less apt to believe that ONWP receives most of its funding from hunting and fishing licenses. As for support of an increase in the wholesale price of some items, small-sized populations were more likely to support a price increase on binoculars and least likely to support a price increase on recreational vehicles. The latter is reflective of a greater use of recreational vehicles, such as all terrain vehicles (ATVs), by the small-city respondents for their every day work on farms or fields. As for the other forms of alternative funding, the small-city respondents were less supportive then the other two population respondents. In addition, small-city respondents were less apt to have donated money to ONWP. With regards to demographics, the larger populations tended to have a more unified male: female ratio and had more divorced/separated individuals. The medrum populations were more likely to be college graduates and to have higher incomes. The small populations
tended to be older and less educated and to have less income and more widows. In conclusion, the responses differed among the population sizes (hypothesis \#3).

Gender Conclusions

Both males and females tend not to be members of a wildife/outdoor organization However, males were more likely than females to be members of a hurting or fishing organization. Males participated in more active wildlife activities such as fishing and hunting than did females. On the other hand, females participated in more passive activities such as bird watching/feeding, nature photography, visiting zoos/aquaria and observing wildlife at home than did males. Males were more inclined to get their wildlife information from magazines and game wardens than were fernales. Males were more likely to have heard or seen information about ONWP than were females. Females were less apt to know the major source of funding for ONWP. Males were more likely to believe that the major source of funding was hunting/fishing license fees. Females were more supportive of a increase in wholesale price of various items to help fund nongame programs than were males. Females were also more apt to support alternative funding sources than were males. However, males were more likely to donate money to ONWP. Demographically, males tended to be more educated and higher paid; females tended to be less educated and lower paid. In conclusion, male responses differed from female responses (hypothesis \#4).

Knowledge of ONWP Conclusions
Those respondents who had knowledge of ONWP were more likely to be members of a wildlife/outdoor organization, especially a hunting or fishing organization. They were
also more inclined to participate in more wildlife/outdoor activities. Both groups received their wildlife information from a variety of sources. However, more respondents who had knowledge of ONWP received information than those who did not have knowledge. Respondents with knowledge of ONWP tended to suppor more programs than those without knowledge. Those respondents without knowledge of ONWP were likely to support wildlife management programs than the other types of programs. Those with knowledge of ONWP were more likely to have seen the nongame tax check-off logo than those without knowledge. Respondents with knowledge of ONWP were more apt to say the ONWP receives most of its funding from the tax check-off than those without knowledge. However, those with knowledge were also more inclined to say that hunting/fishing license fees were a major source. Respondents with knowledge were more likely to support an increase in the wholesale price of all the items. However, one third of both groups would not support an increase on any of the items. Those with knowledge of ONWP were more supportive of the alternative forms of funding than were those without knowledge. Respondents with knowledge were also more likely to donate money to ONWP than were those without knowledge. Demographically, those respondents with knowledge of ONWP tended to be middle aged, more educated, and higher paid. Those individuals without knowledge tended to be older and younger, less educated, and lower paid. Responses of individuals who have knowledge about the nongame program do differ from the responses of those who have no knowledge of the program (hypothesis \#5).

Donating Conclusions

Donators were more likely than non-donators to be members of a wildlife/outdoor organization, specifically hunting and fishing organization. Donators also were more inclined to participate in more wildlife/outdoor activities than non-donators. Both groups received wildlife information from a variety of sources. However, more donators received information from the various sources than did non-donators. Donators also were more supportive of the various programs than the non-donators. Donators were more likely to have seen the nongame tax check-of logo and have heard or seen information about ONWP than were non-donators. Donators were more apt to say that the ONWP received most of its funding from the tax check-off than were non-donators. However, donators also were more inclined to say that hunting/fishing license fees were a major source than were non-donators. Donators were more supportive of an increase in the wholesale price of various items than were non-donators. However, one third of both groups would not support a price increase. Donators were more supportive of alternative funding sources than were non-donators. As for demographics, donators tended to be slightly more male, middle aged, more educated, and higher paid. Non-donators tended to be younger and older, less educated, and lower paid. Responses of those who have donated money to the nongame program do differ from those who have not donated (hypothesis \#6).

Education Level Conclusions

Respondents with trade school and college education were more likely to be a member of a wildlife/outdoor organization. Respondents with high school and trade school education were more likely to participate in hunting and fishing activities.

Respondents with a college education were less supportive of ONWP's programs.
Respondents with higher education were more likely to have seen the nongame tax checkoff logo and to have seen or heard information about ONWP. Respondents with higher education were less likely to believe hurting/fishing license fees were the main source of funding for ONWP. Respondents with higher education were slightly less likely to donate money to ONWP. Respondents with trade school, college, and graduate school education were more likely to be male. Respondents 65 years or older were less likely to have a higher education. Respondents with higher education were more likely to have a higher income. Respondents with higher education were less likely to want more information about ONWP (hypothesis \#7).

Lack of ONWP Information

Oklahoma has a lack of information regarding the programs and the functions of the state's nongame wildlife department. This is evident through respondents' written comments, such as "I don't know anything about OK nongame wildlife program" [Table A-8]. Another respondent wrote, "Living in the center of the panhandle it seems to me that we don't always have access to the programs and all the information available to the rest of the state. I think we need more out here" [Table A-8]. Some individuals do get some information, but they want more. The present sources of information are just not enough. A respondent wrote that he "need[s] more public information, what's being done and where" [Table A-8]. He added, "I watch OETA, [there are] good programs on it, but more publication would help" [Table A-8]. Others needed more information before they could adequately evaluate the programs. For example, one respondent wrote, "I do not
really know enough about it to have a valid opinion. I do believe we need a wildlife program--nongame or game--but some programs seem to radical to me. I don't know how Oklahoma's programs rate that way" [Table A-8]. Either way, Oklahomans need more information.

If Oklahoma residents have a hard time getting information about the nongame program, then people who have recently moved to the State have an even harder time. One respondent who recently moved to Oklahoma wrote that ONWP "need[s] to reach newcomers to the state [by providing a] list of various projects--how they heip citizens of Oklahoma directly or indirectly-what people can do for you--what you can do for them-more environmental education for [the] public" [Table A-8].

Lack of information leads to misinformation and opposition. Many of the respondents did not know what ONWP does, or how ONWP programs can be beneficial to Oklahomans. One respondent wrote, "Where I live I can observe wildlife without a fancy program. Highly urbanized areas have the problem" [Table A-8]. Maybe this respondent does not need any programs to observe wildlife, but there are other programs that could help improve what he already observes. The down side to this comment is the respondent could decide that if he does not need "a fancy program" he does not need the ONWP. This simply shows how the lack of information (in this case, information concerning other programs) can lead to misinformation.

In other cases the lack of information combined with "bad" experiences can lead to opposition. One respondent wrote, "I am in support of nongame wildlife conservation that does not interfere with privately owned land" [Table A-8]. This respondent might
have had an incident in the past where officials interfered or, more likely, the respondent heard about someone else having this problem. Even if the interference was justified according to law, the respondent could sympathize with the land owner. The ONWP needs to inform people that their job is not to interfere or to step on the private land owner, but to help or work with the land owner. Today, many private land owners feel threatened by officials and agencies. They fear being told what to do or how to do it, and more importantly they fear that their land will be taken away. Such is the opinion of one respondent, "Work with landowners STOP buying land" [Table A-8]. If the private land owners knew that acquisition of land was a rare occurrence and a last ditch effort, then they might not fear officials or agencies as much. If the ONWP does not provide information, then rumors, false facts, and others' opinions will be the basis of Oklahomans' opinions of ONWP. It is not likely that the public would refuse any information given. This survey proved that even though many respondents did not know about ONWP, almost half of them wanted to receive more information.

Funding Opposition and Support
Lack of information and misinformation are also present in regards to funding sources and alternative funding for wildlife that are not hunted or fished. One such misinformation concerns how the money from hunting and fishing license fees are used. Many individuals believe that the money is used for all wildlife. One respondent wrote, "A hunting license pays for all types of wildlife management--you should know; don't increase my taxes!" [Table A-8]. Another wrote, "Hunting licenses should not be used to support it [ONWP]" [Table A-8]. They do not know license fees only support game or
sport fish management. Hunters and fishermen would not have it any other way; why should their fees be used on animals they can not hunt or fish. As always, anytime anyone mentions finding new ways to raise revenues, people immediately go on the defensive and shout, "No more taxes!" Such was the case with this survey. Respondents wrote "have congress cut spending and there would be more funds" and "wildlife programs should not be tax funded; private donations only" [Table A-8]. However, for every three respondents who opposed taxes there was one who suggested or supported altemative funding sources. For example, one wrote, "Impose more severe penalties on poachers, and upon those who engage in illegal dumping in rural areas; channel these funds to support the Nongame Wildlife Program" [Table A-8]. Another wrote, "A nominal user fee to use state parks would not deter use and raise necessary funds" [Table A-8]. The most widely supported form of raising revenue suggested by the public has always been voluntary forms, mainly donations. "Funding should come from donations instead of increases in fines of fees," wrote one respondent [Table A-8]. But many Oklahomans do not realize donations, especially from the tax check-off, are currently the main source of the ONWP's funding, and they are just not enough.

The next step the public usually takes is to make the people who use the programs pay for them. It makes sense for those individuals who directly benefit from the program to pay for it. Hunters and fishermen have been doing it for years; why not reach out to the others who enjoy wildlife and nature. Furthermore, a respondent wrote, "If people aren't willing to contribute they should not have a free lunch" [Table A-8]. One point concerning alternative sources of funding was made be a respondent, "If people are forced
to [financially] suppor this program, it will fail" [Table A-8]. No one likes to be forced to do anything, but that does not mean opposition is inevitable. Information could be provided to encourage support.

Recommendations

"Educate the public," wrote one respondent [Table A-8]."I believe that the public needs to be educated on this subject first,' wrote another [Table A-8]. Education is the most important thing to do. Education does not have to be a long drawn out process; it could be just providing information. Information can go a long way in gaining public support and quite possibly funding. The Oklahoma Department of Wildlife Conservation does not have an extensive public outreach program. It does have materials and workshops that public schools and organizations can access. It does have newsletters, a magazine, news releases and a television program (seen on public television). However, there are several problems with these approaches. One problem is that people or organizations frequently have to initiate contact with ODWC. Another is that the newsletters and magazines are seen generally by people who already know about the ODWC and its programs. The news releases tend to appear in newspapers only if it is big news or if there is extra room in the newspaper that needs to be filled. One respondent had this suggestion, "be more aggressive in providing information to the public" [Table A8]. ODWC needs to go to the public with nongame wildife information instead of wating for schools, communities, and organizations to ask ODWC come. This may mean increasing the nongame staff to provide additional help. Another respondent wrote. "I would encourage and support an expanded mass media program for general public
information and education" [Table A-8]. There are some school systems that are working with ODWC, but apparently there are schools in part of the state that do not get help. For example, a respondent wrote, "I think there should be more programs for children in Oklahoma such as fishing camps, in small towns such as Woodward; a lot of people can't afford to travel to a big town far away" [Table A-8]. Another respondent suggested ODWC have a van/truck, "The Wildlife Wagon," that goes to parks with displays and information [Table A-8].

The best direct way for ODWC to accomplish both educating the public about nongame wildlife and making themselves known to the general public is a marketing and advertising strategy. This has proven very successful in other states. The Wyoming "Worth the Watching" program vaulted into public prominence because marketing and advertising were used to create an image (Kruckenberg et al. 1992). The response was immediate and positive. During the early stages, constant enphasis was on coordination and public relations (Kruckenberg et al. 1992). Because Wyoming wildlife officials did not want to alienate the consumptive and nonconsumptive user groups, citizens interested in wildlife and wildlands were referred to as "wildlife enthusiasts" (Kruckenberg et al. 1992). Likewise, the same principle applied to labeling the agency's management responsibility. It extends to "all free-ranging wildife" and avoids the use of terms like "hunted" or "nonhunted," "game" or "nongame" (Kruckenberg et al. 1992). Clearly, much of the success of the "Worth the Watching" program hinges on marketing, "building and maintaining a mutually beneficial relationship with customers or constituents" (Kruckenberg et al. 1992). By using a marketing and advertising strategy, the ODWC
could easily inform and educate the public about its nongarne program as well as the other programs it offers. The strategy needs to include at least the following. First, people need to know what the ODWC is and what it does. Second, people need to know the source of ODWC's funding and how the money is spent. Third, people need to know how the ODWC benefits them, directly and indirectly, and how the public can heip the ODWC. If the ODWC would divert some of its funding to create an image for themselves, they could easily boost public knowledge and quite possibly increase donations. Oklahoma's Department of Tourism has boosted the public's awareness of state parks and historical sites through advertising. Why would the ODWC not be able to do the same through its own adverising?

Targeting Oklahomans

Demographic trends show that the small and medium population sizes are relatively unstable; whereas, the large population sizes tend to increase [Table A-6]. Population trends also show Oklahoma tends to be more female than male [Table A-7]. Demographic trends show higher education is on the rise [Table A-8]. Trends of age groups show the baby boomers will be in their late thirties to early fifties by the year 2000 [Table A-9]. It also shows a decline in the younger age groups [Table A-9]. Therefore, ODWC should target females, children, and middle aged Oklahomans in there advertising and education strategies. As for population size, ODWC should vary their strategy. It would be easier to reach large populations through advertising, especially television. For smaller populations, ODWC should try to reach them directly.

ODWC can coordinate their advertising strategies with the Oklahoma Department
of Tourism to better promote state parks, wildlife viewing areas, ODWC managed lands, and national wildlife refuges. ODWC can also team with the U.S. Fish and Wildlife Service (USFWS), Ecological Branch in Tulsa, OK, to inform the public about programs they have available. The ODWC and USFWS can also boast their management efforts to help save rare and endangered fish and wildilife. The ODWC can join with the educational department of the Oklahoma City and Tulsa zoological parks. The education department of both zoos sponsor a type of "wildlife on wheels" that visit area schools. This would be a great opportunity for the ODWC to reach children. The ODWC can also join with groups such as the Nature Conservancy, Audubon Sociery, and Boy/Girl Scouts of America to coordinate programs or workshops in smaller population sized towns. ODWC has joined the above groups in other projects, but more can be done with even further cooperative efforts.

There is no reason why ODWC would have to solely bear the burden of an advertising and educational strategy for Oklahoma. Cooperation of all parties who would benefit from an increase in public awareness is a must. By working together, wildlife and conservation organizations can break down the barrier between them and a knowledgeable, supporive public.

LITERATURE CITED

Caro, T. M., N. Pelkey, and M. Grigione. 1994. Effects of conservation biology education on attitudes toward nature. Consv. Biol. 8(3): 846-852.

Decker, D. J., T. L. Brown, and R. J. Guttierrez. 1980. Further insights into the multiple satisfactions approach for hunter management. Wildl. Soc. Bull. 8: 323-331.

Dunlap, T. R. 1992. The evolution of American wildlife policy. Trans. N. Amer, Wildl. and Nat. Resour. Conf. 57: 733-737.

Fowler, Jr., F.J. 1993. Survey research methods, 2nd. ed. Sage Publications Inc., Newbury Park, CA. 156 pp.

Freund, R. J. and W. J. Wilson. 1993. Statistical Methods. Academic Press, Inc., San Diego, CA. 644 pp.

Gallup, G. H. 1978. The Gallup poll: public opinion 1972-1977, vol. 1. Scholarly Resources Inc., Wilmington, Delaware. 987 pp.

Johnson, K. N., R. L. Johnson. D. K. Edwards, and C. A. Wheaton. 1993. Public participation in wildlife management: opinions from public meetings and random surveys. Wildl. Soc. Bull. 21: 218-225.

Johnson, P. 1995. Public attitude toward the conservation of wildlife diversity and the wildlife resource conservation fund. Slippery Rock University, Slippery Rock, Penn. 72 pp.

Kellert, S. R. 1976. Perceptions of animals in American society. Trans. N. Amer. Wildl and Nat. Resour. Conf. 41: 533-546.
\qquad . 1978. Attitudes and characteristics of hunters and anti-hunters. Trans. N. Amer. Wildl. and Nat. Resour. Conf. 43: 412-423.
\qquad . 1980. American's attitudes and knowledge of animals. Trans. N. Amer. WildL and Nat. Resour. Conf. 45: 111-124.
\qquad and M. O. Westervelt. 1982. Historical trends in American animal use and perception. Trans. N. Amer. Wildl. and Nat. Resour. Conf. 47: 649-664.
\qquad . 1991. Public views of wolf restoration in Michigan. Trans. N. Amer. Wildl. and Nat. Resous. Conf. 56: 152-161.
\qquad . 1993. Values and perceptions of invertebrates. Consv. Biol 7(4): 845-855.

Kennedy, J.J. 1974. Attitudes and behavior of deer hunters in a Maryland forest. J. Wildl. Manage. 38:1-8.

Kruckenberg, L. L., D. Lockman, and W. Gasson. 1992. Reaching the new constituencyone agency's approach. Trans. N. Amer. Wildl. and Nat. Resour. Conf. 57: 147155.

Hammitt, W. E., C.D. McDonald, and M.E. Patterson. 1990. Determinants of mutiple satisfaction for deer hunting. Wildl. Soc. Bull. 18: 331-337.

Matthews, O. P. 1986. Who owns wildlife? Wildl. Soc. Bull. 14(4): 459-465.
McCool, S. F. and A. M. Braithwaite. 1989. Beliefs and behaviors of backcountry campers in Montana toward grizzly bears. Wildl. Soc. Bull. 17(4): 514-519.

Miller, D. C. 1991. Handbook of research design and social measurement, 5th ed. Sage Publications Inc., Newbury Park, CA. 704 pp.

Purdy, K.G. and D.J. Decker. 1989. Applying wildlife values information in management: the wildlife attitudes and values scale. Wildl. Soc. Bull. 17:494-500.

Reading, R. P. 1993. Attitudes toward a proposed reintroduction of black-footed ferrets (Mustela nigripes). Consv. Biol. 7(3): 569-580.

Schreyer, R, R. S. Krannich, and D. T. Cundy. 1989. Public support for wildlife resources and programs in Utah. Wildl. Soc. Bull. 17: 532-538.

Teague. R.D. 1979. The roles of social sciences in wildlife management. Pages 55-60 in R.D. Teague and E. Decker, eds. Wildlife conservation: principles and practices. The Wildl. Soc., Washington, D.C.

Thorwardson, N. K. 1977. Landowner constraints on Oklahoma hunting opportunities. MS Thesis, Okla. State Univ. 75 pp .
U.S. Department of Commerce, Bureau of the Census. 1963. Census of population: 1960. U.S. Gov. Print. Off., Washington, D.C.
U.S. Department of Commerce, Bureau of the Census. 1973. Census of population: 1970. U.S. Gov. Print, Off., Washington, D.C.
U.S. Department of Commerce, Bureau of the Census. 1982. Census of population: 1980. U.S. Gov. Print. Off., Washington, D.C.
U.S. Department of Commerce, Bureau of the Census. 1992. Census of population: 1990. U.S. Gov. Print. Off., Washington, D.C.
U.S. Fish and Wibdlife Service. 1988. 1985 national survey of hunting, fishing and wildlife-associated recreation. U.S. Gov. Print. Off., Washington, D.C. 167 pp.

APPENDICES

APPENDIX A

SURVEY INFORMATION

Dear Oklahoma Resident,

As director of a state agency, I constantly hear that government is not responsive to the public's needs. I'd like to change that perception, but I need your help. In the next five days you'll be receiving a letter and survey form from Oklahoma State University, which is conducting a survey for our Department.

Please take the time to fill out the survey and return it in our postage-paid envelope. You'll be helping us decide our agency's future directions. You'll also be eligible to win a weekend pass to a state resort (donated by the Department of Tourism) if you rerun the survey by November I, 1995.

I look forward to your participation.

Greg D. Duffy
Director, Oklahoma Department of Wildlife Conservation

Figure A-1. Pre-survey postcard that was mailed to Oklahoma residents.

Oklahoma State University

Drgariment ot Zomlog:
1 Jute stare Vic:
 ns-J』-i3j5

Dear Oklahoma Resident.
A bald eagle soaring through the ar, a white-taled deer browsing in on open field or even o frog jumping along the waler's edge sparks the interest of over two million Oklohomans! Wildlife is ane of our greatest resources, and your input is needed.

You are part of a small group of Oklahoma residents randomly selected to participate in a survey conducted by the Oktahomo Depanment of Wildlife Conservation (ODWC) and Oktahomo Stale Universily. Your opinions will help ODWC in managing our stole's valuable resources.

Oklahoma State University is involved in this survey os pat of research conducted by OSU student Kimberly Kelly. She is a graduate student working on a masters degree in wildlife and lishenes ecology.

You ore assured of complete confidenliatily. The survey has on identification number for moiling purposes only. Your oddress will de checked of the mailing lis! when your survey is completed and ietumed. Please nave the adull (18 years and overt with the most recent birlhaoy complete this survey, which lakes about 10 minutes. Your response is greatly appreciated and persons reluming surveys by November 1. 1995 will be eligible lo win a tree weekend pass to an Oklahoma resin (donated by the Oxionomo Deportment of Tourism).

If you hove questions concerning this survey, you may contact kimbeny Kelly. Oklahoma Slot University. 430 Life Sciences West, Stillwaser, OK 74078: telephone. (405) 744-5555 or Oklahoma State University Research Services. telephone: (405) 744-5700. You ak may contact Jeremy Garell. Oklohoma Department of Willie Conservation, 1801 N , Lincoln. Oklahoma Wily. OK 73105: telephone: (405) 521-4663.

Thank you for your lime and cooperation.
Sincerely.

Margorel Ewing
OSU. Department of Zoology

Figure A-2. Cover letter that accompanied the first mailing of the survey.

Dear Oklahoma Resident,

Please heip our Deparunent in managing our stare's resources by rexurning the enclosed survey. If you have alrady sent a preweus survey. disregard this nouce and thank you for your assistance. If you hatent. please take the fime to fill out the survey and mail it in our postage-pard envelope. The survey akes less than 10 minutes to complete and the rewrn postage is free.

You'll be assisuing our Deparment by leting us know the furure directions our anency should take. This will benefit not only you and your fanily. but also our state's precious natural resources. Remember. if you teturn the surne.g. by Novernber 1, 1995, you'll also be eligible 10 win a free weekend pass to an Oklahoma resort (donated by the Department of Tourism).

So please. have che adult (18 vears or over) wath the moss recent birthday complere and return the survey' today. If you have any questions about it, please call Kimberly Kelly al (405) $744-5555$ or Jeremy Garrett ar (405) 521. 4663.

Thank you for your ume and cooperation

Greg D. Duffy
Director. Oklahoma Deparment of Wildife Conservation:

Figure A-3. Cover letter that accompanied the second and third mailing of the survey.
i. Are you a member of any of the following types of organizations? (Check all that apply)

Birding	Trapping
Gardening	Oher conservalion of recreation groups
Fishing	Please specity
Hunting	None

2. Which of the following activities have you participated in this past year? (Check all that apply)

Bird watching	Trapoing
Bird feeding	Nature ohotography
Hiking	Visiting zoos / aquaria
Camping	Landscaping for wildile
Canoeing / rating	Observing wildite al home
Horseback riding	Visiling an area solely 10 walch wildite
Hunting	Orher
Fishing	None

3. Where do you receive your information on wildlife?
(Check all that apply)

Newspapers	Books
Radio	Computers
Television	Friends / relatives
Magazines	Wildife otticiais / game wardens
Newsletlers	Oiner
Pamphiels	None

Figure A-4. Survey that was mailed to Oklahoma residents.
4. Check the two groups you would most like more information about:
a. Insects
b. Fish
c Amphibians \qquad
d. Aepliles \qquad
e. Girds

1 Mammals \qquad
5. In your opinion, how important are EACH of these Wildilie Depantment programs to you?

| very | nol don'y |
| :---: | :---: | :---: |
| imponani mponani ingonani know | |

a. Ciealing lrails and widlile observation areas
b Produeng informalive publicaltons
a. \qquad
\qquad
\qquad
\qquad
c Reintroducing lish and wildlife
b. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. Creating lacililies for ouldoor classrooms
d. \qquad
\qquad
\qquad
e. Fish and wildlife research and management
e. \qquad
\qquad
\qquad
\qquad

1. Endangered fish and wildtife esesearch and management \qquad
\qquad
\qquad
\qquad
g. Conducling educatıonal workshops

9 \qquad
\qquad
\qquad
\qquad
h Land acquisijion in general
h \qquad
\qquad
\qquad
\qquad
i Acquiring land lor rase lish and wildife
i \qquad
\qquad
\qquad
i Crealing widlife observation opportunities
i \qquad
\qquad
\qquad
k Providing information on habilal improvement
k. \qquad
\qquad
\qquad

1. Providing general widlite informatwon
I. \qquad
\qquad
\qquad

Figure A-4. Survey that was mailed to Oklahoma residents.
6. Before you received this survey, had you ever seen this logo?

7. Before you received this survey, had you ever heard or seen information about Oklahoma's 'Nongame Wildlife Program?'
No Ye_ Yes Donil know
8. Where does the Widlife Depanment receive MOST of its funding for wildlife that are not hunted or fished? (Check oniy one)
\qquad Stale approprialions \qquad Wildile license plate sales
\qquad Donatmens \qquad Hunling / fishing license fees
\qquad Federal sid Sales of Wildilide Depantment merchandise
\qquad Slate lax check-olf __ Don'l know
9. A 10 percent surcharge on hunting and fishing equipment is currently used to manage wildife that ARE hunted and fished. Which of the following items would you support a 3 lo 5 percent increase in the wholesale price to help fund programs for wildlife that ARE NOT hunted or fished? (For example, this wouid add about 15 cents to a 56 roll of film.)
__ Binoculars
___ Other, please specity
\qquad Camera / Film \qquad
\qquad Bird seed
\qquad Camping equipmen
___ Nahure-related books \{liek guides, elc.)
___ Aecrealional vehicles (campers. ATV5. elc)
___ None of the above

Figure A-4. Survey that was mailed to Oklahoma residents.

The Wilditle Deparment is looking for alternative funding sources for its Nongame Wildlife Program. Please refer to the side box when answering the next four questions.

Do you support: (Circle one)

SS = Strongly support
MS = Mildly suppon
$\mathrm{N}=$ Neutral, no opinion
MO = Mildly opoose
SO = Strongly oppose
10. A user fee charged to anyone nol possessing a hunting or fishing license SS MS N MO SO who uses Wildlife Depanment lands.
11. A user lee charged to ANYONE who SS MS N MO SO uses Wildliie Depanment lands.
12. An increase in fines on automobile speeding violations by 25 cents per SS MS N MO SO mile (an average of $\$ 3$ per ticket).
13. A VQLUNTARY Coniribution box added to motor vehicle registration fees to use SS MS N MO SO for wildlife that are not hunted or fished.
14. The Wildlife Department has a statuatory program currently called the "Nongame Wildlife Program" to manage and research wildlife that are not hunted or fished. provide wildlife observation opportunnties and educate the pubsic about wildlife. Which of the following should the Nongame Wildife Program change its name 10?
\qquad Nongame Widlife Program (no change) \qquad Natural Resources Program
\qquad Wildlife Diversity Program Nongame \& Endangered Wildilie Program
\qquad Fish \& Wildile Conservalion Program \qquad Other \qquad

Figure A-4. Survey that was mailed to Okiahoma residents.
15. Have you ever donated money to Oklahoma's Nongame Wildlife Program?
__ NO. WHY? (Check all Ihal apply)
\qquad I was nol awape of the program.
\qquad I am not inierested in nongame of endangered amimal conservalion.
__ I do nol applove of how the Nongame Wildile Program spends the money
\qquad I coukd nol afford lo donale of this lime
__ I did nol feel my donalion would "make a difference -
__ I intended to, but largol.
\qquad Other, please specity
\qquad YES. WHY? (Check all that apply)
\qquad I enjoy witdlíe.
\qquad I support the concept of wildille conservation in general
\qquad I believe conservalion for wildife that are nol hunted or fished has been ovellooked and this is a chance lor direct suppon.
\qquad I supporl endarigered species protection.
\qquad The lax check-off is an easy way to conlribule to the Nongame Program: if the check-oH wasn't on the slale lax form I would nol have donated.
\qquad Other, please specity
16. Piease express any opinions you may have regarding Oklahorra's Nongame Wildife Program?

Figure A-4. Survey that was mailed to Oklahoma residents.
17. Are you: \qquad male \qquad female
18. What is your age group?
\qquad 18. 25 years \qquad 46 - 55 years
__ $26 \cdot 35$ years $56 \cdot 65$ years
\qquad 35.45 years 65 years or older
19. What is your race? (Check only one)
\qquad Alrican-American \qquad While. not of Hispanic origin
\qquad Asran or Pacific Islander \qquad While, of Hispanie origin
\qquad Native American
\qquad Other
\qquad
20. What is your marital status? (Check only one)
\qquad Never married \qquad Divorced / Separaled
\qquad Married \qquad Widowed
21. Which of the tollowing best describes your level of education? (Check only one)
\qquad No iormal education
\qquad Elementary (1-6)
\qquad Some college
\qquad College graduale
___ Middle school (7.9)
___ Masters degree
_ ${ }^{1}$
High school (10.12)
__ Doctoral degree
__ Some trade school \qquad Other \qquad
__ Trade schooi graduale

Figure A-4. Survey that was mailed to Oklahoma residents.

22．What＇ype of setting did you live in during the past year？ （Check only one）
\qquad In open country bu：nol on a farm \qquad In a medium－size cily
\qquad On a farm
\qquad In a smail cily or town
\qquad In a suburb near a large cily

23．In what city and county do you reside？
（City）
（County）

24．Which of the following categories best describes your household income per year？
\qquad Less $\operatorname{Inan} \$ 10.000$ \qquad S $20.000 \cdot \$ 50.000$
\qquad \＄10．000－520．000
＿＿$\$ 50.000 \cdot 575.000$
$\$ 20.000 \cdot \$ 30.000$ $\$ 75.000 \cdot \$ 100,000$
\qquad
530.000 － 540.000
＿＿＿More than 5100.000

If you would like to receive more information about the Wildlife Deparment＇s Nongame Program，including a íree newsletler．please complete tre tollowing．

Name \qquad

Address \qquad

Figure A－4．Survey that was mailed to Oklahoma residents．

Figure A-5. Location of the chosen cities by county and population size.

Figure A-6. Population trends of Oklahoma cities selected for survey (U.S. Department of Commerce 1963, 1973, 1982, 1992).

Demographic Trend of Gender

Figure A-7. Percent of Oklahoma's population by gender from 1950-1990 (U.S. Department of Commerce 1963, 1973, 1982, 1992).

Demographic Trend of Education Attainment

Figure A-8. Percent of Oklahoma's population by educational attainment from 1960-1990. (U.S. Department of Commerce 1963, 1973, 1982, 1992).

Demographic Trend of Age Groups

Figure A-9. Percent of Oklahoma's population by age group from 1950-1990. (U.S. Department of Commerce 1963, 1973, 1982, 1992).

Table A-1. Survey response rate by city and by mailing.

City	County	1st Mailing	2nd Mailing	3rd Mailing	Total
Population Group 1					
Guymon	Texas	5	4	7	16
Grove	Delaware	7	5	4	16
Maysville	Garvin	0	0	10	10
Okeene	Blaine	1	3	7	11
Sayre	Beckham	4	13	6	23
Pawhuska	Osage	7	3	4	14
Broken Bow	McCurtain	7	9	5	21
Population Group 2					
Ardmore	Carter	5	13	8	26
Ponca City	Kay	13	8	11	32
McAlester	Pittsburg	9	13	6	28
Woodward	Woodward	9	12	5	26
Yukon	Canadian	9	13	8	30
Population Group 3					
Enid	Garfield	16	16	5	37
Lawton	Comanche	10	19	8	37
Oklahoma City	Oklahoma	23	9	6	38
Tulsa	Tulsa	3	20	12	35
	Total	128	160	112	400

Table A-2. Other organizations listed by the respondents in regard to their membership in which type of organizations.

Organization	No. of Respondents
Boy Siouts \& Girl Scouts	6
National Riflemans Association	4
Sportsmen/Rod and Gun Club	3
National Wildlife Federation	3
World Wildlife Federation	3
Nature Conservancy	2
National Arbor Day Assoc. Arbor Day Fd.	2
National Wildlife Organizations	1
Project WILD	1
League of Environ. Educators	1
Oklahoma Wildlife Federation	1
Oknlahoma Rilfemans Assocation	1
Oklahoma City Zoo	1
Conservation chair of a couple of organizations	1
Up With Trees	1
People for the Ethical Treatement of Animals	1
Historic Preservation	1
Farming	1
Gold Prospectors	1
American Quarter Horse Association	1
Stillwater Trail Riders	1
Bike club	1
Golf	1
Co-ed softball	1

Table A-3. Other activities listed by the respondents in regard to which activities they have participated in the past year. Comments are typed as they were written by the respondents. Each of the following activities was listed only once.

Activities

Shelterbelt
Foliage
Feeding birds and raccoons for a neigbor
Japanese gardens
Planting trees in my yard
Raising bobwhite quail, turkeys \& ringneck pheasant
Concrete fish pond with several gold fish \& frogs
Enjoy waterfalls, rivers, springs, creeks, etc.
Walking up nature trail
Outdoor's Women Workshop
Elk trip to Colorado
Mountain biking
Watersking--personal water craft
Sailing
Rapelling
Kite flying

Table A-4. Other sources listed by the respondents in regard to where they receive their information on wildlife. Each of the following sources was listed only once.

Source(s)
Personal observation
Nature itself
My yard
College courses
Elementary School
Outdoor's Women Workshop
Seminars/conferences, environ./conservation centers
Friend has degree in conservation land
National Geographic
Library
Hunting partners
Showing properties (real estate association)

Table A-5. Suggestions and comments made by the respondents in regard to which ilems they would support an increase in the wholesale price to help fund programs for wildlife that are not hunted or (ished. Comments are typed as they were written by the respondents and are grouped in regard to similarities. Each of the following comments was listed only once.

Suggested Items and Comments

- Taxes pd. to IRS should contribute precentage
- A percentage of state revenue from taxes
- Increase price of parks/camping/ECT./realistic taxes from state income tax
- Tax hunters and Nature Conservancy people
- You should add it to what the population uses most
- Something where everyone would contribute regardless of thier interests.
- Raise surcharge tos 15%
- A. 10 sercharge for entering all fed \& state wildlife mang. areas
- Fines for illegal hunting and fishing
- Strongly support 10% excise tax on binoculars
- Surcharge on amusement park and zoo entrance fees
- Increase charge at zoo
- Pet food, pet items
- ATV's \& Mountain bikes only
- Hunting \& fishing equipment
- CDs/cassete lapes
- Ammunition, rifles/shotguns
- Weapons
- Firearms
- Guns, ammo, fishing equip., hunting ciothing
- Cigarette \& alcohol tax
- Alcohol \& tobacco
- Alcohol \& liquor sales
- Cigarettes
- Note: items listed are not solely used for wildlife activities, Tax wildlife magazines
- More specific items or other funding needs to be looked al
- Education and motivation to increase donations of both time and money by interested individuals
- No more taxes or surcharges-make do with the money we have coming in now!
- People are so hardened with these exira charges that the pour man-tho he may be an avid hunter cannot go hunting. He has to spend 5 to 10 cents of ever $\$ 1$ he makes for groceries \& clothing for his family. Think about it while you highly paids figure out how to tax the poor.
- Strongly oppose to many taxes on people
- No taves raised!

Table A-6. Suggestions made by the respondents in regard to changing the name of the Nongame Wildlife Program. Comments are typed as they were written by the respondents. Each of the following names was listed only once.

Table A-7. Comments made by the respondents in regard to ever donating money to Oklahoma's Nongame Wildlife Program. Comments are typed as they were written by the respondents and are grouped in regard to similarities of reasons. Each of the following reasons was listed only once.

Donated	Reason(s) why or why not
Yes	Hunting \& fishing license
Yes	My son has Dr,'s degree in wildlife
Yes	I didn't know the name of the program, but we have contributed
Yes	Someone solicited at my door
No	Would like to know how money is spent
No	1 do not know how the NWP spends the money
No	I would, but don't know how to
No	Where do monjes go? how are donations spent?
No	Don't remember how to do it
No	Who \& where to send it
No	Don't know where my money goes.
No	I must pick the charities to which I donate very carefully. Others are more important to me.
No	Just don't want to
No,	Large number of organizations asking for donations, cannot fund them all
No	Not convenjent
No	Not a priority for me
No	Nos interest
No	Just moved to this state 5 months ago
No	Not a resisent, military transient
No	Just moved to Oklahoma
No	Just moved in
No	Just moved to Oklahoma
No	Is there any literature about the program? There is a lot of nongame wildife that I don't care to propagate, black widow spiders, mosquitos, stinging flies, for instance.
No	Is this program responsible for the Beavers Bend trout stream, I would like to know what improvements this program has done, and how it has benefited Oklahoma wildlife
No	Do not know
No	Never heard about it

Table A-7. Continued.
Donated Reason(s) why or why not

No	Jobs in this field are extremely political \& when my friend gets a job with the DWC then I'll donate.
No	Rather support game instead of nongame programs You stop the open acres hunting program
No	Coyotes should be extinct. They killed $1 / 2$ of my goats in one season.
No	I am disabled and on a very limited amount of money. It's hard to live on less than $\$ 500$ a month.
No	Short of money
NoI'm on Sncial Security, I wish I could	
No	I have a hunting lic. that provides for land and wildlife management and I do enjoy all wildlife
No thought hunting and fishing license supported this.	

Table A-8. (ypinions regarding ()klahoma's Nongame Wildlife l'rogram that were expressed by the respondents. Comments are lyped as they were wrillen by the respondents and are grouped in regard to similarities. Each of the fallowing comments was listed only once.

Comments

Suppori for ()NWI

- If the money goes to saving endangered species, I fully suppori it.
- Jam in support of nongame wildife conservation that does not interfere with privately owined land
- I feel that nongame animals are overlooked. I personally watch \& feed birds. I do think you are doing a good job with your wildlife programs, but more needs to be done for the endangered species. Once they are gone, they are gone forever.
- I support means to prevent exterminaion of our widdife-somenne needs to speak for those who can't speak for themselves.
- We enjoy hiking trough the wildlife refuge north of For Sill and would not be opposed to preserving the widdlife present.
- I would like to see this program move forward. I will suport your efforts.
- I support it 100%.
- Keep up the good work
- I believe this program is crucial in regards to facilitating appropriate management of Oklahoma's fish \& wildlife. Our future generations need to be able to have fish \& wildlife in Oklahoma like we have had.
- Gofar so good
- From this survey it sounds like a good idea
- Great-go for it--all wildife deserves a break--keep up the gond work
- It's imporiant to get perople other than hunters or fishermen involved in outdoor \& nature related activities, so the nongame program is a good thing.
- Il sounds like a good idea to me.
- It is very interesting what I have read in this survey
- A must. At the rate of population growth and the destruction of habitat, the wildlife will reach a destructive level. Farmers are becoming uneasy from נamage done to crops because of over population and nut enough cover

Negative comments toward funding

- Good cause-but funding needs to be voluntary or from people it berefits directly
- Wildife programs should nol be tax funded. Private donations only.
- Nice idea--donations only--no fees or taxes
- Funding should come from donations instead of increases in fines of fees.
- Spend the dollars in order to please a majority of the penple
- I fear that thuse who hunt \& fish will again bear the burdens for "saving" species touled(?) by those who oppose spurt hunting and fishing.
- If people are forced to suppori this prograrn, il will fail/ nos more taxes
- One more way to waste tax payers money
- The money should be spent on human needs
- Funds should be raised by volumtary contributions. If people aren't willing to contribute they should not have a free lunch.

Table A-8. Continued.

Commenis

Do nol know aboul ONWP

- I don't know anything about it to give an opinion.
- Nol familiar with the program
- I dident know anything about it, bul I can and will support it
- Nol quite sure what they do
- Never herd of it, but sounds like its on the right track
- I don't know anyiting aboul OK nongame nild life program
- I do not really know enough about it to have a valid opinion. I do believe we need a wildlife program-nongame or game-but some programs seem to radical to me. I don't know how Oklahoma's programs rates that way.

Inform/educate the public

- I believe that the public needs to be educated on this subject first. For example, I don't think that many know that the opossum is the only North American marsupial.
- Be more aggressive in providing information to the public.
- Educate the public
- J think it is an excellent opportunity to support wildife and educate the public on the importance of nongame wildlife.
- I would encourage and support a expanded mass media program for general public information and education. Also, consider introductory programs for public schools to expand younger participation.
- There could be established a program to iniorm the public thru PSA and thru the school system to inform and teach people the imporiance of preserving wildlife.
- Present programs at schcols (very important), fairs. Have a van/truck that goes to parks with displays, info....The Wildlife W'agon
- I think there should be more programs for children in Oklahoma such as a fishing camps, in small towns such as Woodward. A lot of perople can't aford to travel to a big town far away. I as a parent of twins that are 5 y . old would be glad to help in any way I can.

Negative comments loward proyrams

- I dislike the this is our refuge attitude of the personel who operate the Wichita Monntain Refuge. If they restricl much more, I wont be worth guing to.
- Please find out why they open a hunting area in Woodward County \& you have to be drawn to hunt there. I have never seen app. a Walmar!!
- Ithink all trought lines should be done an'ay with.
- Work with landow'ners sTOP buying land
- I am greally concerned about the absence of browhite quails in this area (there are none) I think it is caused by the influx of the cattle egrets there are lois of them.
- We must have more parks/wildlife areas that are free. I even think twice now before 1 promise my family a day at the zoo, etc. Why do poor people, new' familie, and large families do in today's world to be with nature?

Table A-8. Cunlinued.

Comments

Suggesied sources for funding

- Have congress cut spending and there would be more funds.
- Push for a state tax to provide funding.
- Impose more severe penalies on poachers, and upon those who engage in illegal dumping in rural areas. Channel these funds to suppor the Nongame Wildlife l'rogram
- A nominal user fee to use stale parks would not deter use and raise necessary funds
- Have available user permils

Need more information

- Living in the center of the panhandle it seems to me that we don't always have access to the programs and all the information available to the rest of the state. I think we need more oul here. Thank you.
- Need more public information, whal's being done and where. I watch OET \wedge, their is good programs on it, but more publication would helpExcept for Ouldoor Oklahoma there is not any public nowledge of nongame wildife programs to this date in the city in live in Please help
- I would like more information on what this program is involved with before making a donation, are they responsible for introducing rainbow trout to southeasl oklahoma, and are they involved with the wetlands and duck refuges in Oklahoma
- Need to reach newcomers to the state. List of various projects-how' they help citizens of Oklahoma directly or indirectly-what people can do for you-what you can do for them--more environ. ed. for public.

No support for ()NWP

- Where I live I can observe wildlife withoui a fancy program. Highly urbanized areas have the problem.
- I think it's need's some work
- Sonty, but its just not high on my list of priorities
- When rodents infringe on the use of personal propely and impede on mans right as to the use of his property I prolesi.

Misinformed comments

- A hunting lic. pays for all types of wildife manegement-you should know Don't!! increase my taxes!!!
- Hunting licenses should not be used to support it
- If there is so much funding for these different programs, why can't one person who has a degree in this field, find a job. I don't understand, he is willing k) transfer anywhere in Oklahoma and aced all of the tests he's had to take when applying \& they won't even call him back. Why don't they let these kids in college, who are working loward this degree, know that there witl be no jobs available when they get out.

Misc. comments

- Il needs more input to be preserved betler.
- We live in Grove, a very scenic area. We like to observe wild life and the lake in casual ways by going to the local parks when we have free time. Ocassionally go to zoos in the city. an view many birds from our window's al home.

APPENDIX B

OVERALL SURVEY RESULTS

Table B-1. Total response to membership in wildlife/outdoor organizations, $\mathrm{n}=376$.

Organizations	Frequency*	Percent**	Conf. Int.
Birding	6	1.60	1.268
Gardening	18	4.79	2.159
Fishing	67	17.82	3.868
Hunting	63	16.76	3.775
Trapping	2	0.53	0.734
Other	43	11.44	3.217
None	260	69.15	4.669

*The sum of the frequencies will be greater than n.
**The sum of the percentages will be greater than 100%.

Table B-2. Total response to participation in wildife/outdoor activities within the past year, $\mathrm{n}=397$.

Activities	Frequency*	Percent**	Conf.Int.
Bird watching	116	29.22	4.474
Bird feeding	164	41.31	4.844
Hiking	137	34.51	4.676
Camping	161	40.55	4.830
Canoeing/rafting	48	12.09	3.207
Horseback riding	45	11.34	3.119
Hunting	137	34.51	4.676
Fishing	238	59.95	4.820
Trapping	3	0.76	0.852
Nakure photography	69	17.38	3.728
Visiting zoos/aquaria	144	36.27	4.729
Landscaping for wildlife	40	10.08	2.961
Observing wildlife at home	179	45.09	4.895
Visiting an area solely to watch wildlife	98	24.69	4.241
Other	14	3.53	1.814
None	31	7.81	2.639

"The sum of the frequencies will be greater than n.
** The sum of the percentages will be greater than 100%.

Table B-3. Total response to source of wildlife information, $\mathrm{n}=397$.

Information Source	Frequency	Percent	Conf.Int.
Newspapers	230	57.93	4.856
Radio	89	22.42	4.102
Television	273	68.77	4.559
Magazines	261	65.74	4.668
Newsletters	64	16.12	3.617
Pamphlets	78	19.65	3.909
Books	144	36.27	4.729
Computers	16	4.03	1.935
Friends/relatives	174	43.83	4.881
Wildlife officials/game wardens	92	23.17	4.151
Other	15	3.78	1.876
None	18	4.53	2.047

NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%.

Table B-4. Total response to which two animal groups more information is needed, $\mathrm{n}=357$.

Animal Group	Frequency	Percent	Conf.Int.
Insects	43	12.04	3.376
Fish	191	53.50	5.174
Amphibians	19	5.32	2.329
Reptiles	38	10.64	3.199
Birds	210	58.82	5.105
Mammals	185	51.82	5.183

NOTE: The sum of the frequencies will be greater than n.
The sum of the percentages will be greater than 100%.

Table B-5. Total response to importance of the following Wildife Department programs.

Program	Frequency					
	(4) Very Important	(3) Importani	(2) Not Important	$\begin{gathered} \text { (1) } \\ \text { Don't Know } \end{gathered}$	π	Average
- - - - - - - -			- - -			
Creating trails and wildlife observation areas	125	168	58	23	374	3.056
Producing informative publications	89	200	54	28	371	2.943
Reintroducing fish and wildlife	215	119	20	24	378	3.389
Creating trails and witdlife observation areas	49	155	93	77	374	2.471
Fish and wildife research and management	169	152	25	31	377	3.218
Endangered fish and wild life research and management	160	128	49	31	368	3.133
Conducting educational workshops	87	173	67	42	369	2.827
Land acquisition in general	65	156	95	54	370	2.627
Acquiring land for rare fish and wildlife	84	137	102	47	370	2.697
Creating wildilife observation opportunities	84	193	61	34	372	2.879
Providing information on habitat improvement	120	173	43	38	374	3.003
Providing general wildjife information	112	209	32	26	379	3.074

Table B-6. Total response to having seen the nongame check-off logo before receiving the survey, $\mathrm{n}=387$.

Answer	Frequency	Percent	Conf.Int.
No	231	59.69	4.887
Yes	114	29.46	4.542
Don't know	52	13.44	3.398

Table B-7. Total response to having heard or seen information about ONWP before receiving survey, $\mathrm{n}=396$.

Answer	Frequency	Percent	Conf.Int.
No	236	59.60	4.833
Yes	118	29.80	4.505
Don't know	40	10.10	2.968

Table B-8. Total response to from where does the Wildlife Department receives most of its funding for wildlife that are not hunted or fished, $n=393$.

Funding Source	Frequency	Percent	Conf.Int.
State appropriations	30	7.63	2.625
Donations	56	14.25	3.456
Federal aid	16	4.07	1.954
State tax check-off	22	5.60	2.273
Wildife license plate sales	3	0.76	0.861
Hunting/fishing license fees	39	9.92	2.956
Sales of Dept. merchandise	1	0.25	0.498
Don't know	196	49.87	4.943

Table B-9. Total response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished, $\mathrm{n}=387$.

Items	Frequency	Percent	Conf.Int.
Binoculars	83	21.45	4.089
Camera/film	70	18.09	3.835
Bird seed	88	22.74	4.176
Camping equipment	113	29.20	4.530
Nature-related books	123	31.78	4.639
Recreational vehicles	118	30.49	4.587
None of the above	119	30.75	4.598
Other	36	9.30	2.894

NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%.

Table B-10. Total response to questions 10 thru 13.

Question		Strongly Support	Mildly Support	Neutral	Mildly Oppose	Strongly Oppose	n	Average
10	A user fee charged to anyone not possessing a hunting or fishing license who uses Wildlife Department lands.	141	91	53	32	64	381	3.56
11	A user fee charged to ANYONE who uses Wildlife Department lands.	78	87	66	58	97	386	2.98
12	An increase in fines on automobile speeding violations by 25 cents per mile (an average of $\$ 3$ per ticket).	95	79	68	36	107	385	3.05
13	A VOLUNTARY contribution box added to motor vehicle registration fees to use for wildlife that are not hunted or fished.	132	121	86	20	30	389	3.78

Table B-11. Total response to which name the Nongame Wildife Program should change, $n=371$.

Names	Frequency	Percent	Conf.Int.
Nongame Wildlife Program (no change)	143	38.54	4.953
Wildlife Diversity Program	22	5.93	2.403
Fish \& Wildlife Conservation Program	89	23.99	4.345
Natural Resources Program	22	5.93	2.403
Nongame \& Endangered Wildlife Program	85	22.91	4.276
Other	10	2.70	1.648

Table B-12. Total response to having donaled money to ONWT and why/why not, $n=386$.

Answer	Reason(s)	Frequency	Percent	Conf. Int
No		332	86.01	3.461
	I was not aware of the program.	175	45.34	4.966
	I am not interested in nongame or endangered animal conservation.	24	6.22	2.409
	I do nol approve of how the Nongame Wildlife Program spends the money.	11	2.85	1.660
	I could not afford to donate at this time.	110	28.50	4.503
	I did not feel my donation would "make a difference."	20	5.18	2.211
	I intended to, but forgot.	8	2.07	1.421
	Other	35	9.07	2.865
Yes		54	13.99	3.461
	I enjoy wildlife.	43	11.14	3.139
	I support the concept of wildlife conservation in general.	41	10.62	3.074
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direcl support.	20	5.18	2.211
	I support endangered species protection.	28	7.25	2.588
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would rot have donated.	17	4.40	2.047
	Other	1	0.26	0.507

Table B-13. Total response to gender $\mathrm{n}=381$.

Gender	Frequency	Percent	Conf.Int.
Male	246	64.57	4.803
Female	135	35.43	4.803

Table B-14. Total response to age group, $\mathrm{n}=394$.

Age Group	Frequency	Percent	Conf.Int.
$18-25$ years	19	4.82	2.115
$26-35$ years	78	19.80	3.935
$36-45$ years	88	22.34	4.113
$46-55$ years	83	21.07	4.027
$56-65$ years	45	11.42	3.141
65 years or older	81	20.56	3.990

Table B-15. Total response to race, $\mathrm{n}=388$.

Race	Frequency	Percent	Conf.Int.
African-American	7	1.80	1.324
Asian or Pacific Islander	2	0.52	0.713
Native American	42	10.82	3.092
White, not of Hispanic origin	324	83.51	3.693
White, of Hispanic origin	10	2.58	1.577
Other	3	0.77	0.872

Table B-16. Total response to marital status, $n=393$.

Marital Status	Frequency	Percent	Conf.Int.
Never married	39	9.92	2.956
Married	267	67.94	4.614
Divorced/Separated	55	13.99	3.430
Widowed	32	8.14	2.704

Table B-17. Total response to level of education, $几=392$.

Education Level	Frequency	Percent	Conf.Int.
No formal education	0	0.00	0.000
Elementary (1-6)	2	0.51	0.705
Middle school (7-9)	10	2.55	1.561
High school (10-12)	72	18.37	3.833
Some trade school	22	5.61	2.278
Trade school graduate	28	7.14	2.550
Some college	109	27.81	4.435
College graduate	96	24.49	4.257
Master's degree	37	9.44	2.894
Doctoral degree	14	3.57	1.837
Other	2	0.51	0.705

Table B-18. Total response to living in which type of setting during the past year, $\mathrm{n}=398$.

Setting	Frequency	Percent	Conf.Int.
In open country but not on a farm	28	7.04	2.513
On a farm	12	3.02	1.680
In a small city or town	152	38.19	4.773
In a medium-size city	123	30.90	4.540
In a suburb near a large city	40	10.05	2.954
In a large city	43	10.80	3.050

Table B-19. Total response to household income per year, $n=367$.

Income	Frequency	Percent	Conf.Int.
Less than $\$ 10,000$	40	10.90	3.188
$\$ 10,000-\$ 20,000$	66	17.98	3.929
$\$ 20,000-\$ 30,000$	65	17.71	3.906
$\$ 30,000-\$ 40,000$	58	15.80	3.732
$\$ 40,000-\$ 50,000$	63	17.17	3.858
$\$ 50,000-\$ 5,000$	50	13.62	3.510
$\$ 75,000-\$ 100,000$	15	4.09	2.026
More than $\$ 100,000$	10	2.72	1.666

Table B-20. Total response to receiving more information (optional), $\mathrm{n}=400$.

Response	Frequency	Percent	Conf.Int.
Yes	176	44.00	4.865
No	224	56.00	4.865

APPENDIX C

SURVEY RESULTS BY POPULATION SIZE

Table C-1. Population size response to membership in wildlife/oukdoor organizations.

Organizations	Large City *			Medium City **			Small City **			Chi-sq.$d f=2$	Prob.
	Frequency	Percent	Conf.Int.	Frequency	Percent	Cons.İni.	$\overline{\text { Frequency }}$	Percent	Conflnt.		
Birding	2	1.52	2.087	3	2.22	2.485	1	0.92	1.792	0.662	0.718
Gardening	7	5.30	3.822	6	4.44	3.475	5	4.59	3.929	0.121	0.941
Fishing	21	15.91	6.240	23	17.04	6.342	23	21.10	7.660	1.187	0.552
Hunting	19	14.39	5.988	21	15.56	6.115	23	21.10	7.660	2.143	0.343
Trapping	0	0.00	0.000	0	0.60	0.000	2	1.83	2.516	4.925	0.085
Other	16	12.12	5.568	15	11.11	5.301	12	11.01	5.876	0.095	0.954
None	91	68.94	7.894	95	70.37	7.703	74	67.89	8.765	0.178	0.915

N()TE: The sum of the frequencies will he greater than n, and the sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, Chi-square values were calculated for each.
' Chisquare may not be a valid test since 50% of the cells have expected counts less than 5 .

Table C-2. Population Size response of individuals to participation in wildife/outdoor activibes within the past year.

NOTF: The sum of the frequencies will he greater than n. The sum of the percenlages will be greater than 100 . Since respondents could choose more than one anker, chi-square values were alculated for each.

- Chisquare may not be a valid test since 50% of the cells have expected connts less than S.

Table C-3. Population size response to source of wildife information.

Information Source	Large City ${ }^{\text {* }}$			Medium City ${ }^{*}$			Small City **			Chi-Sq. $d \boldsymbol{=}=$	IToh.
	Frequency	Percent	Confint	Frequency	Percent	Contint	Frequency	Percent	Confint.		
Newsprapers	88	60.69	7.950	82	58.16	8.143	60	59.41	9.577	1.140	0.565
Radio	33	22.76	6.824	31	21.99	6.836	25	24.75	8.417	11.026	0.987
Television	97	66.90	7.660	10.5	74.47	7.197	71	70.30	8.912	3.562	0.168
Magazines	96	66.21	7.699	92	65.25	7.860	73	72.28	8.730	0.029	0.986
Newsletters	30	20.69	6.593	16	11.35	5.235	18	17.82	7.464	4.615	0.100
Pamphlets	32	22.07	6.750	27	19.15	6.495	19	18.81	7.622	1.011	0.603
Books	19	33.79	7.699	53	37.59	7.995	42	41.58	9.612	0.609	0.738
Computers	7	4.83	3.489	6	4.26	3.332	3	2.97	3.311	0.763	0.683
Friends/relatives	61	42.07	8035	63	44.68	8.206	50	19.50	9.751	0291	0.865
Wildife officials/game wardens	26	17.93	6.244	25	17.73	6.304	41	40.59	9.577	16.395	0.008
Other	6	4.14	3242	1	0.71	1.385	8	7.92	5267	7294	0.026
None	7	4.83	3.489	4	2.84	2.740	7	6.93	4.953	1.773	0412

NOFF: The sum of the frequencies will be greaterthann. The sum of the percentages will be greaterthan 100 象
Sincerespondents could chonse more than one antwer.chi-square values were cakulated loreach.

Table C-4. Population size response to which two animal groups more information is needed.

NOTE: The sum of the frequencies will be greater than n, and the sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, chi-square values were calculated for each.

Table C-5. Population size response to importance of the following Wildlife Department programs.

Program	Large City - Frequency					
	(4) Very Important	(3) Important	(2) Not Important	(1) Dan't Know	π	Average
Creating trails and wildlife observation areas	51	60	17	7	135	3.148
Producing informative publications	28	79	17	9	133	2.947
Reintroducing fish and wildlife	77	45	8	6	136	3.419
Creating trails and wildlife observation areas	33	52	34	17	136	2.743
Fish and wildlife research and management	60	58	10	7	135	3.267
Endangered fish and wildlife research and management	59	48	14	11	132	3.174
Conducting educational workshops	29	69	22	14	134	2.843
Land acquisition in general	30	52	33	20	135	2.681
Accuiring land for rare fish and wildlife	32	55	31	15	133	2.782
Creating wildlife observation opportunities	35	67	20	13	135	2.919
Providing information on habitat improvement	45	60	14	14	133	3.023
Providing general wildlife information	38	74	12	9	133	3.060

Table C-5. (Continued).

Program	Medium City - Frequency				n	Average
	(4) Very Imporiant	(3)	(2)	(1)		
		Important	Not Important	Don't Know		
- ----- ------ .- --						
Creating trails and wildlife observation areas	42	65	23	3	131	3.115
l'roducing informative publications	35	71	20	4	130	3.054
Reintroducing fish and wildife	73	47	6	8	134	3.381
Creating facilities for outdoor classrooms	29	54	33	15	131	2.740
Fish and wildlife reserrch and management	55	63	8	7	1.33	3.248
Endangered fish and wildlife research and management	54	50	19	7	130	3.162
Conducting educational workshops	35	53	32	11	131	2.855
Land acquisition in general	24	63	31	14	132	2.735
Acquiring land for rare fish and wildlife	26	55	34	14	129	2.721
Creating wildlife observation opportunities	31	97	2.3	10	161	2.925
Providing information on habitat improvement	39	62	20	13	134	2.948
froviding general wildlife information	45	73	12	7	137	3.139

Table C-5. (Continued).

Program	Small City - Frequency							
	(4) Very Important	(3) Important	(2) Not Important	(1) Don't Know	π	Average	$\begin{gathered} \text { Chi-sq } \\ \text { df }=6 \end{gathered}$	Prob.
Creating trails and wuldife observation areas	32^{-}	43	20^{-}	- 13	108	2.870	13440	0.037
Producing informative publicabons	26	50	17	15	108	2.806	12.619	0.050
Reintroducing fish and wildife	65	27	6	10	108	3.361	4.994	0.545
Creatng facilites for outdoor classrooms	15	49	26	17	107	2.579	5.081	0.533
Fish and wildlife research and management	54	31	7	17	109	3119	16.936	0.010
Endangered fish and wildlite research and management	47	30	16	13	106	3.047	6483	0.371
Conducting educational workshops	23	51	13	17	104	2.769	10.992	0.089
Land acquisition in general	11	41	31	20	103	2.417	10.201	0.116
Acquiring land for rare fish and widdlife	26	27	37	17	107	2.579	10.466	0.106
Creating widdlife observation opportunities	18	59	18	11	106	2.792	3.520	0.741
Providing tnformation on habital improvement	36	51	9	11	107	3.047	3.074	0.799
Providing general wildlife information	29	62	8	10	109	3.009	2.709	0.844

Table C-6. Population size response to having seen the nongame check-off logo before receiving the survey.

Answer	Large City *			Medium City **			Small City ***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
No	85	59.86	8.063	81	57.45	8.161	65	59.09	9.188
Yes	42	29.58	7.507	43	30.50	7.599	29	26.36	8.234
Don't know	18	12.68	5.472	18	12.77	5.508	16	14.55	6.589

Note: Chi-square $=0.636, d=4$, probability $=0.959$

Table C-7. Population size response to having heard or seen information about ONWP before receiving the survey.

Note: Chi-square $=1.198, \mathrm{df}=4$, probability $=0.878$

Table C-8. Population size response to from where does the Wildlife Department receives most of its funding for wildife that are not hunted or flshed.

Note: Chi-square $=19.284, \mathrm{df}=14$, probability $=0.154$
Chi-square may not be a valid lest since 29% of the cells have expected counts less than 5 .

Table C-9. Population size response to which items a 3 to 5 percent increase in the wholesale price would he supported to help fund programs for wildlife that are not hunted or fished.

Items	Large City *			Medium City **			Small City ***			Chi-s4. तf $=2$	Prob.
	Frequency	Percent	Cont.lnt.	Frequency	Percent	Conflint	Frequency	Percent	Conf.lnt.		
Binoculars	27	19.15	6.495	26	18.98	6.566	30	27.52	8.385	3.326	0.190
Camera/film	25	17.73	6.304	21	15.33	6.033	24	22.02	7.779	1.853	0.396
Bird seed	39	27.66	7.383	27	10.71	6.661	22	20.18	7.535	3.065	0.216
Camping equipment	4	31.21	7.648	39	28.47	7.556	30	27.52	8.385	0.458	0.795
Nature-related hooks	49	34.75	7.860	45	32.85	7.865	29	26.61	8.296	1.992	0.369
Recreational vehicles	45	31.91	7.694	46	33.58	7.908	27	24.77	8.104	2.433	0.296
None of the above	45	31.97	7.694	38	27.74	7.497	36	33.03	8.829	0.939	0.625
Other	12	8.51	4.606	13	9.49	4.907	11	10.09	5.655	0.191	0.909

NOTF: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%.
Since respondents could choose more than one answer, chi-syuare values were malculated for each.

Table C.-10. Population slze response to questions 10 chru 13

Qrestion		Sirgoigy Suppar	Mōdly Suppart	Large Clty Responses			π	Average	Sirongly support	$\begin{aligned} & \mathbf{M}_{\text {Mildy }}^{-1} \\ & \text { Support } \end{aligned}$	Medium City Responses			n	Average
				Neutal	$\begin{aligned} & \text { Mildly } \\ & \text { Oppase } \end{aligned}$	Sirongy Opprse					Neutral	$\begin{aligned} & \text { Milily } \\ & \text { Oppaxe } \end{aligned}$	$\begin{aligned} & \text { Sirongly } \\ & \text { Opprat } \end{aligned}$		
10	A user fre charged to anyone not possessing a hunting or fishing license who uses WUdifa Department Lands.	47	40	18	11	19	138	3.59	48	35	24	12	18	137	361
11	A user charged to ANYONE who uses Wildble Deparment lands	28	35	27	20	29	139	3.09	25	30	28	24	33	110	2.93
12	An increase in fines on attomubile speeding violations hy 25 cenos per mile (an average of $\$ 3$ per ticket)	33	28	32	13	34	140	3.00	30	37	15	18	38	138	3.02
13	A VOL.UNTARY contribution box added to motor vehicle registration fees to use for widilue that are not hunted or lished.	55	46	27	3	11	112	3.92	49	30	31	11	9	139	378

Table C-10. (Corinued).

Question		Slongly Suppert	Mildy Suppal	Small City Responses			n	Average	$\begin{gathered} \text { Chi-5q. } \\ d f=8 \end{gathered}$	Prob.
				Neural	Mildy Oppose	Stundy Oppose				
10	A user fee charged to anyone not possessing a hunting or fishing license who uses Widlife Department lands.	46	16	11	6	27	10%	3.45	17.098	0.029
11	A user fee charged to ANYONR who uses Wildllie Department lands.	25	22	11	11	35	107	2.89	9.954	0.268
12	An incease in fines on automobile speeding violations ty 25 cents per mile (an average of 57 per bicket).	32	14	21	5	35	107	3.03	19.351	0.013
13	A VOLUNTARY contribution bor added 10 motor vehide registration fees to use for widlife that are nol humted or fished	28	36	28	6	10	108	3.61	11.098	0.350

Table C-11. Population size response to which name the Nongame Wildlife Program should change.

Note: Chi-square $=24.173, d f=10$, protability $=0.007$

Table C-12. Population size response to having donated money to ONWP and why/why not.

Answer	Reason(s)	Large City ${ }^{\text {* }}$		
		Frequency	Percent	Conf. Int.
No		118	83.69	6.099
	(was not aware of the program.	61	43.26	8.178
	I am not interested in nongame or endangered animal conservation.	10	7.09	4.237
	I do not approve of how the Nongame Wildlife Program spends the money.	1	0.71	1.385
	I could not afford to donate at this time.	39	27.66	7.383
	I did not feel my donation would "make a difference."	9	6.38	4.035
	I intended to, but forgot.	2	1.42	1.952
	Other	15	10.64	5.089
Yes		23	16.31	6.099
	1 enjoy wildlife.	20	14.18	5.759
	I support the concept of wildlife conservation in general.	20	14.18	5.759
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	9	6.38	4.035 5.089
	I support endangered species protection.	15	10.64	5.089
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, 1 would not have donated.	9	6.38	4.035
	Other	2	1.42	1.952

Note: Chí-square $=2845, \mathrm{df}=2$, probability $=0.241$

Table C-12. (Continued).

Answer	Reason(s)	Medium City **		
		Frequency	Percent	Cons. Int.
No		116	84.67	6.033
	I was not aware of the program.	72	52.55	8.362
	I am not interested in nongame or endangered animal conservation.	7	5.11	3.687
	I do not approve of how the Nongame Wildlife Program spends the money.	5	3.65	3.140
	I could not afford to donate at this time.	35	25.55	7.303
	I did not feel my donation would "make a difference."	6	4.38	3.427
	I intended to, but forgot.	2	1.46	2.008
	Other	11	8.03	4.550
Yes		21	15.33	6.033
	1 enjoy wildlife.	17	12.41	5.521
	1 support the concept of wildife conservation in general.	14	10.22	5.072
	I believe conservation for wildife that are not hunted or fished has been overlooked and this is a chance for direct support	7	5.11	3.687
	\ support endangered species protection.	9	6.57	4.149
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	6	4.38	3.427
	Other	1	0.73	1.425

Note: Chi-square $=2.845, d f=2$, probability $=0.241$

Table C-12. (Continued).

Answer	Reason(s)	Small City ***		
		Frequency	Percent	Conf. Int.
No		98	90.74	5.467
	I was not aware of the program.	41	37.96	9.153
	I am not interested in nongame or endangered animal conservation.	7	6.48	4.643
	I do not approve of how the Nongame Wildlife Program spends the money.	5	4.63	3.963
	1 could not afford to donate at this time.	36	33.33	8.891
	I did not feel my donation would "make a difference."	5	4.63	3.963
	I intended to, but forgot.	4	3.70	3.562
	Other	9	8.33	5.213
Yes		10	9.26	5.467
	I enjoy wídlife.	6	5.56	4.320
	I support the concept of wildlife conservation in general.	7	6.48	4.643
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	4	3.70	3.562
	i support endangered species protection.	4	3.70	3.562
	The tax check-off is an easy way to contribute to the Nongarne Program; if the check-off wasn't on the state tax form, I would nol have donated.	2	1.85	2.543
	Other	4	3.70	3.562

Note: Chi-square $=2.845, \mathrm{df}=2$, probability $=0.241$

Table C-13. Population size response to gender.

Gender	Large City *			Medium City **			Small City ***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Male	80	56.74	8.178	94	69.12	7.765	72	69.23	8.870
Female	61	43.26	8.178	42	30.88	7.765	32	30.77	8.870
* $\mathrm{n}=141$				** $n=136$			*** $\mathrm{n}=104$		

Note: Chi-square $=5.998, \mathrm{df}=2$, probability $=0.050$

Table C-14. Population size response to age group.

Age Group	Large City *			Medium City **			Small City ***		
	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conflnt.
18-25 years	9	6.16	3.901	8	5.80	3.899	2	1.82	2.497
26-35 years	32	21.92	6.710	26	18.84	6.524	20	18.18	7.208
36-45 years	32	21.92	6.710	33	23.91	7.117	23	20.91	7.600
46-55 years	27	18.49	6.298	36	26.09	7.326	20	18.18	7.208
56-65 years	17	11.64	5.203	11	7.97	4.519	17	15.45	6.755
65 years or older	29	19.86	6.472	24	17.39	6.324	28	25.45	8.141
* $\mathrm{n}=146$				** $n=138$			${ }^{* * *} n=110$		

Note: Chi-square $=11.228, \mathrm{df}=10$, probability $=0.340$

Table C-15. Population size response to race.

	Large City*			Medium City **			Small City ***		
Race	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	$\overline{\text { Percent }}$	Conf.Ini.
African-American	6	4.17	3.264	1	0.73	1.425	0	0.00	0.000
Asian or Pacific Islander	1	0.69	1.356	1	0.73	1.425	0	0.00	0.000
Native American	12	8.33	4.514	18	13.14	5.657	12	11.21	5.979
White, nol of Hispanic origin	122	84.72	5.876	113	82.48	6.365	89	83.28	7.088
White, of Hispanic origin	3	2.08	2.333	3	2.19	2.451	4	3.74	3.594
Other	0	0.00	0.000	1	0.73	1.425	2	1.87	2.566

Note: Chi-square $=13.142, \mathrm{~d} f=10$, probability $=0.216$
Chi-square may not be a valid test since 67% of the cells have expected counts less than 5 .

Table C-16. Population size response to marital status.

Marital Status	Large City *			Medium City **			Small City ***		
	Frequency	Percent	Confilint.	Frequency	Percent	Confint	F̈requency	Percent	Conif.Int.
Never married	14	9.66	4.807	16	11.59	5.342	9	8.18	5.122
Married	94	64.83	7.772	94	68.12	7.775	79	71.82	8.407
Divorced/Separated	26	17.93	6.244	20	14.49	5.873	9	8.18	5.122
Widowed	11	7.59	4.310	8	5.80	3.899	13	11.82	6.033

Note: Chi-square $=9.995, \mathrm{df}=8$, probability $=0.265$

Table C-17. Population size response to level of education.

Education Level	Large City*			Medium City **			Small City ***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
No formal education	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000
Elernentary (1-6)	0	0.00	0.000	1	0.72	1.415	1	0.91	1.774
Midule school (7-9)	4	2.78	2.684	3	2.17	2.433	3	2.73	3.044
High school (10-12)	24	16.67	6.087	22	15.94	6.108	26	23.64	7.940
Some trade school	5	3.47	2.990	7	5.07	3.661	10	9.09	5.372
Trade school graduate	8	5.56	3.741	10	7.25	4.326	10	9.09	5.372
Sume college	50	34.72	7.776	37	26.81	7.391	22	20.00	7.475
College graduate	33	22.92	6.865	38	27.54	7.453	25	22.73	7.832
Master's degree	16	11.11	5.133	13	9.42	4.874	8	7.27	4.853
Doctoral degree	4	2.78	2.684	6	4.35	3.403	4	3.64	3.498
Other	0	0.00	0.000	1	0.72	1.415	1	0.91	1.774

Note: Chi-square $=18.485, \mathrm{~d} f=20$, probability $=0.555$
Chi-Square may not be a valid test since 42% of the cells have expected counts less than 5 .

Table C-18. Population size response to living in which type of setting during the past year.

Setting	Large Cily *			Medium City**			Small City ${ }^{\text {**** }}$		
	Frequency	Percent	Conf.lnl	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
In open country but not on a farm	8	5.52	3.716	10	7.09	4.237	10	8.93	5.281
On a farm	2	1.38	1.898	5	3.55	3.053	5	4.46	3.825
In a small city or town	14	9.66	4.807	46	32.62	7.739	92	82.14	7.093
In a medium-size cily	68	46.90	8.123	50	35.46	7.896	5	4.46	3.825
In a suburb near a large city	15	10.34	4.957	25	17.73	6.304	0	0.00	0.0000
In a large city	38	26.21	7.158	5	3.55	3.053	0	0.00	0.000

Note: Chi-square $=200.599$, $d f=10$, probability $=0.000$

Table C-19. Population size response to household income per year.

Income	Large City *			Medium City **			Small City ${ }^{\text {.** }}$		
	Frequency	Percent	Conflıt.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Less than \$10,000	12	8.63	4.669	9	7.20	4.531	19	18.45	7.491
\$10,000-\$20,000	19	13.67	5.711	21	16.80	6.554	26	25.24	8.389
\$20,000-\$30,000	22	15.83	6.068	21	16.80	6.554	22	21.36	7.915
\$30,000-\$40,000	27	19.42	6.577	20	16.00	6.427	11	10.68	5.965
\$40,000-\$50,000	27	19.42	6.577	22	17.60	6.676	14	13.59	6.618
\$50,000-\$75,000	22	15.83	6.068	23	18.40	6.793	5	4.85	4.150
\$75,000-\$100,000	7	5.04	3.636	4	3.20	3.085	4	3.88	3.731
More than \$100,000	3	2.16	2.416	5	4.00	3.435	2	1.94	2.665

Note: Chi-square $=27.434, \mathrm{df}=14$, probability $=0.017$

Table C-20. Population size response to receiving more information (optional).

Note: Chi-square $=2.188, \mathrm{df}=2$, probability $=0.335$

APPENDIX D

SURVEY RESULTS BY GENDER

Table D-1. Gender response to membership in wildlife/outdoor organizations.

Organizations	Male *			Female**			$\begin{gathered} \text { Chi.Sq. } \\ \begin{array}{c} \mathrm{df}=1 \end{array} \end{gathered}$	Prob.
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.lnt.		
Birding	3	1.28	1.440	2	1.60	2.200	0.600	0.807
Gardening	9	3.85	2.465	6	4.80	3.747	0.185	0.667
Fishing	54	23.08	5.399	10	8.00	4.756	12.643	0.000
Hunting	54	23.08	5.399	6	4.80	3.747	19.553	0.000
Trapping	0	0.00	0.000	1	0.80	1.562	1.877	0.171
Other	27	11.54	4.094	16	12.80	5.857	0.123	0.726
None	149	63.68	6.162	99	79.20	7.115	9.194	0.002

${ }^{*} n=2,34$
** $n=125$
NOTE: The sum of the frequencies will be greater than n, and the sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, Chi-square values were calculated for each.
' Chi-Square may not be a valid test since 50% of the cells have expected counts less than 5 .

Table [2-2. Gender response to participation in wildlife/outdoor activities within the past year.

Activities	Male *			Fernale **			$\begin{gathered} \text { Chi-Sq. } \\ d i=1 \end{gathered}$	Prob.
	Frequency	Percent	Confilnt.	Frequency	Percent	Conf.Int.		
Bird watching	62	25.41	5.463	48	35.82	8.118	4.544	0.033
Bird feedlng	92	37.70	6.081	64	47.76	8.457	3.609	0.057
Hiking	85	34.84	5.978	47	35.07	8.080	0.002	0.963
Camping	114	46.72	6.260	42	31.34	7.854	8.439	0.004
Canceing/safling	31	12.70	4.179	15	11.19	5.338	0.185	0.667
Horseback riding	26	10.66	3.872	18	13.43	5.774	0.649	0.421
Hunting	114	46.72	6.260	17	12.69	5.635	44.245	0.000
Ftshing	173	70.90	5.699	55	41.04	8.329	32.214	0.000
Trapping	2	0.82	1.131	0	0.00	0.000	1.104	0.293
Nature photography	36	14.75	4.450	30	22.39	7.058	3.498	0.061
Visiling zoos/aquaria	81	33.20	5.909	59	44.03	8.405	4,353	0.370
Landscaping for wildilife	24	9.84	3.737	15	11.19	5.338	0.172	0.678
Observing wildlife at home	103	42.21	6.197	68	50.75	8.465	2.542	0.111
Visiting an area solely to watch wildife	61	25.00	5.433	34	25.37	7.368	0.006	0.936
()ther	8	328	2.234	5	3.73	3.209	0.053	0.817
None	16	6.56	3.106	14	10.45	5.179	1.792	0.181

* $n=244$
** $n=134$
NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%.
Since respondents could choose more than one anwer, chi-square values were calculated for each.
${ }^{1}$ Chi-Square may not be a valid test since 50% of the cells have expected counts less than 5 .
${ }^{2}$ Chi-Square may not be a valid test since 25% of the celts have expected counts less than 5 .

Table D-3. Gender response to source of wildlife information.

Information Source	Male *			Female **		Conf.Int.	$\begin{gathered} \text { Chi- } \mathrm{s} \mathrm{f} . \\ \mathrm{df}=1 \end{gathered}$	Prob.
	Frequency	Percent	Conf.Int.	Frequency	Percent			
Newspapers	147	60.49	6.147	70	51.85	8.429	2.651	0.103
Radio	57	23.46	5.328	28	20.74	6.840	0.367	0.544
Television	163	67.08	5.909	92	68.15	7.859	0.045	0.832
Magazines	171	70.37	5.741	76	56.30	8.367	7.591	0.006
Newsletters	39	16.05	4.615	20	14.81	5.993	0.100	0.751
Pamphlets	48	19.75	5.006	26	19.26	6.652	0.013	0.908
Books	88	36.21	6.043	51	37.78	8.179	0.091	0.763
Computers	11	4.53	2.614	5	3.70	3.186	0.145	0.703
Friends/relatives	107	44.03	6.242	57	42.22	8.332	0.116	0.734
Wildlife officials/game wardens	65	26.75	5.566	24	17.78	6.449	3.880	0.049
Other	7	2.88	2.103	8	5.93	3.983	2.112	0.146
None	8	3.29	2.243	10	7.41	4.418	3.241	0.072

NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will he greater than 100%. Since respondents coukd choose more than one anmer,chisquare values were cakubted for each.

Table D-4. Gender response to which two animal groups more information is needed.

Animal Group	Male *			Female **			$\begin{gathered} \text { Chi-sq. } \\ \mathrm{df}=1 \end{gathered}$	Prob.
	Frequency	Percent	Coonf.Int.	Frequency	Percent	Conf.Int.		
Insects	21	9.25	3.769	20	17.24	6.874	4.657	0.031
Fish	141	62.11	6.311	41	35.34	8.699	22.089	0.000
Amphibians	12	5.29	2.911	5	4.31	3.696	0.155	0.694
Reptiles	23	10.13	3.926	12	10.34	5.542	0.004	0.951
Birds	117	51.54	6.501	85	73.28	8.053	14.979	0.000
Mammals	117	51.54	6.501	59	50.86	9.098	0.014	0.905

NOTE: The sum of the frequencies will be greater than n, and the sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, chi-square values were calculated for each.

Table D-5. Gender response to importance of the following Wildlife Department programs.

Program	Male - Frequency					
	(4) Very Important	(3) Important	(2) Not Important	(1) Don't Know	n	Average
Cresting trails and wildlife observation areas	55	121	42	15	233	2.927
Producing informative publications	50	125	43	14	232	2.909
Reintroducing fish and wildlife	136	79	10	13	238	3.420
Creating facilities for outdoor classrooms	34	94	73	33	234	2.551
Fish and wildlife research and management	117	90	15	15	237	3.304
Endangered fish and wildlife research and management	95	80	36	16	227	3.119
Conducting educational workshops	41	110	50	29	230	2.709
Land acquisition in general	39	96	67	29	231	2.628
Acquiring land for rare fish and wildilife	45	82	75	28	230	2.626
Creating wildlife observation opportunities	36	124	46	22	228	2.763
Providing information on habitat improvement	68	112	33	19	232	2.987
Providing general wildlife information	64	134	24	15	237	3.042

Table D-5. (Continued).

I'rogram	Female - Frequency							
	(4) Very Important	(3) Important	(2) Not Important	(1) Don'l Know	n	Average	$\begin{aligned} & \text { Chi-sq. } \\ & d f=3 \end{aligned}$	Prob.
Creating tralls and wuldife observation areas	62	44	13	6	125	3.296	25.214	0.000
Praducing informative publications	34	65	10	14	123	2.967	10019	0.018
Relntroduding fish and wildife	71	34	8	10	123	3.250	2.571	0463
Creatng facilities for outdoor classrooms	40	56	16	13	125	2.984	24.476	0.000
Fish and wildlife research and management	44	56	8	15	123	3.049	7.833	0.050
Endangered fish and wildlife research and management	60	41	9	15	125	3.168	7.804	0.050
Condurting educational workshops	41	57	14	12	124	3.024	13.598	0.004
Lnnd acquisition in general	24	53	24	22	123	2642	4.754	0.191
Acquiring land for rare fish and widlife	36	50	21	17	124	2.847	11.074	0.011
Creating wildile observation opportunites	44	59	13	12	128	3.055	18.669	0.000
Providing information on habttat improvement	46	53	8	18	125	3.016	9.387	0.025
Providing general widdlife information	40	66	7	11	124	3.089	3.576	0.311

Table D-6. Gender response to having seen the nongane check-off logo before receiving the survey.

Answer	Male *			Female **		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
No	146	59.84	6.151	74	55.22	8.420
Yes	68	27.87	5.626	42	31.34	7.854
Don't know	30	12.30	4.120	18	13.43	5.774

Note: Chi-square $=0.763, \mathrm{~d}=2$, probability $=0.383$

Table D-7. Gender response to having heard or seen information about ONWI' before receiving survey.

Answer	Male			Female		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
No	146	60.08	6.158	79	59.40	8.346
Yes	78	32.10	5.870	33	24.81	7.341
Don't know	19	7.82	3.376	21	15.79	6.197

Note: Chi-square $=6.686, \mathrm{df}=2$, probability $=0.035$

Table D-8. Gender response to from where does the Wildlife Department receives most of its funding for wildlife that are not hunted or fished.

Funding Source	Male *			Female**		
	Frequency	Percent	Conf.ínt.	Frequency	Percent	Conf.Int.
State appropriations	27	11.20	3.982	2	1.50	2.068
Donations	35	14.52	4.448	19	14.29	5.947
Federal aid	10	4.15	2.518	4	3.01	2.903
State tax check-off	16	6.64	3.143	3	2.26	2.524
Wildlife license plate sales	1	0.41	0.812	1	0.75	1.468
Hunting/fishing license fees	52	21.58	5.194	13	9.77	5.047
Sales of Dept. merchandise	0	0.00	0.000	1	0.75	1.468
Don't know	100	41.49	6.221	90	67.67	7.949

Note: Chi-square $=34.363, \mathrm{df}=7$, probability $=0.000$
Chi-Square may not be a valid test since 31% of the cells have expected counts less than 5 .

Table D-9. Gender response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or
fished.

Items	Male *			Female **			Chisq.$\mathrm{df}=1$	「rob.
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.		
Binoculars	46	18.93	4.926	31	24.41	7.471	1.520	0.218
Camera/film	42	17.28	4.754	23	18.11	6.698	0.039	0.843
Bird seed	50	20.58	5.083	35	27.56	7.771	2.298	0.130
Camping equipment	65	26.75	5.566	42	33.07	8.182	1.622	0.203
Nature-related books	68	27.98	5.644	49	38.58	8.466	4.334	0.037
Recreational vehicles	69	28.40	5.670	45	35.43	8.319	1.938	0.164
None of the above	82	33.74	5.945	31	24.41	7.471	3.427	0.064
Other	22	9.05	3.608	13	10.24	5.272	0.136	0.712

NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%.
Since respondents could choose more than one answer, chi-square values were calculated for each.

Table D-10. Conder rexpunse to questions 10 ihru 13.

Question		STrongly Suppon	MLCly support	Male Resprases			n	Average	Stangly suapror	Mody Support	Fentale Responses			n	Average	$\begin{aligned} & C H \cdot S_{q} . \\ & d r=1 \end{aligned}$	Pris
				Neutal	Midaly Oprome	Slrangly Cprom					Neutas	Mialy	Strongly Oppose				
10	A user fee chagged to anyone not pursersing a huning or Ashing license who uses Widlife Departorend lands.	97	54	32	21	4	208	3.67	38	36	20	11	26	130	3.39	5.424	0.247
11	\wedge user lee charged io ANYONE who uses Widilife Deprartmenl lands.	52	49	40	37	64	242	2.05	20	36	24	21	27	130	3.04	4.255	0370
12	An inctease in Anma an sutornculle speeding vilations by 25 cenis per cule (an avalage of 50 prot tidet).	54	54	40	27	68	20	3.01	30	24	25	12	32	132	320	3117	0.517
13	A VOLITNTARY coniriturion bex added to motor vehtele registation lees to isse fire wildife thal are nex hunied or fished.	81	74	0	17	10	244	3.78	45	41	30	3	10	129	3.84	7337	0.197

Table D-11. Gender response to which name the Nongame Wildlife Program should change.

Note: Chi-square $=14.626, \mathrm{df}=5$, probability $=0.012$

Table D-12. Gender response to having donated money to ONWP and why/why not.

Answer	Reason(s)	Male*		
		Frequency	Percent	Conf. Int
No		201	83.75	4.667
	1 was not aware of the program.	110	45.83	6.304
	1 am not interested in nongame or endangered animal conservation.	17	7.08	3.246
	I do not approve of how the Nongarne Wildlife Program spends the money.	8	3.33	2.271
	I could not afford to donate at this time.	58	24.17	5.416
	I did not feel my donation would "make a difference."	12	5.00	2.757
	I intended to, but forgot.	6	2.50	1.975
	Other	23	9.58	3.724
Yea		39	16.25	4.667
	I enjoy wildlife.	29	12.08	4.124
	I support the concept of wildlife conservation in general.	29	12.08	4.124
	I believe conservation for wildlife that are not hurted or fished has been overlooked and this is a chance for direct support.	18	7.50	3.332
	1 support endangered species protection.	19	7.92	3.416
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-of! wasn't on the state tax form, I would not have donated.	14	5.83	2.965
	Other	0	0.00	0.000

Note: Chi-square $=2.300, \mathrm{df}=1$, probability $=0.129$

Table D-12. (Continued).

Answer	Reason(s)	Female *		
		Frequency	Percent	Cons. Int.
No		119	89.47	5.216
	I was not aware of the program.	59	44.36	8.443
	I am not interested in nongame or endangered animal conservation.	7	5.26	3.795
	I do not approve of how the Nongame Wildlife Program spends the money.	2	1.50	2.068
	I could not afford to donate at this time.	48	36.09	8.162
	I did not feel my donation would "make a difference."	7	5.26	3.795
	I intended to, but forgot.	2	1.50	2.068
	Other	10	7.52	4.482
Yes		14	10.53	5.216
	I enjoy wildlife.	13	9.77	5.047
	I support the concept of wildife conservation in general.	11	8.27	4.681
	I helieve conservation for wildife that are not hunted or fished has been overlooked and this is a chance for direct support.	2	1.50	2.068
	1 support endangered species protection.	9	6.77	4.269
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-ofi wasn't on the state tax form, I would not have donated.	3	2.26	2.524
	Other	1	0.75	1.468

Note: Chi-square $\mathbf{= 2 . 3 0 0}, \mathrm{df}=1$, probability $=0.129$

Table D-13. Gender response to age group.

Age Group	Male *			Female **		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
18-25 years	10	4.07	2.468	9	6.67	4.208
26-35 years	47	19.11	4.913	31	22.96	7.095
36-45 years	56	22.76	5.240	31	22.96	7.095
46-55 years	56	22.76	5.240	27	20.00	6.748
56-65 years	29	11.79	4.030	15	11.11	5.301
65 years or older	48	19.51	4.952	22	16.30	6.230

Note: Chi-square $=2.649, \mathrm{df}=5$, probability $=0.754$

Table D-14. Gender response to race.

Race	Male *			Female**		
	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.
African-American	6	2.49	1.967	1	0.75	1.457
Asian or Pacific lslander	1	0.41	0.812	1	0.75	1.457
Native American	25	10.37	3.850	14	10.45	5.179
White, not of 1 -ispanic origin	199	82.57	4.789	115	85.82	5.906
White, of Hispanic origin	7	2.90	2.120	3	2.24	2.505
Other	3	1.24	1.400	0	0.00	0.000

Note: Chi-square $=3.5000, \mathrm{df}=5$, probability $=0.623$
Chi-Square may not be a valid test since 58% of the cells have expected counts less than 5 .

Table D-15. Gender response to marital status.

	Male*			Female**		
Marital Status	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Never married	29	11.84	4.045	10	7.41	4.418
Married	190	77.55	5.225	70	51.85	8.429
Divorced/Separated	20	8.16	3.429	32	23.70	7.174
Widnwed	6	2.45	1.935	23	17.04	6.342

Note: Chi-square $=50.307, \mathrm{df}=4$, probability $=0.000$

Table D-16. Gender response to level of education.

Education Level	Male *			Female**		
	Frequency	Percent	Conf.Jnt.	Frequency	Percent	Confint.
No formal education	0	0.00	0.000	0	0.00	0.000
Elementary (1-6)	2	0.82	1.127	0	0.00	0.000
Middle school (7-9)	4	1.63	1.587	4	2.99	2.881
High school (10-12)	36	14.69	4.433	30	22.39	7.058
Sorme trade school	15	6.12	3.002	6	4.48	3.502
Trade school graduate	23	9.39	3.652	5	3.73	3.209
Some college	59	24.08	5.354	49	36.57	8.155
College graduate	68	27.76	5.607	26	19.40	6.696
Master's degree	23	9.39	3.652	13	9.70	5.011
Doctoral degree	13	5.31	2.807	1	0.75	1.457
Other	2	0.82	1.127	1	0.75	1.457

Note: Chi-square $=22.690, \mathrm{df}=10$, probability $=0.012$
Chi-Square may not be a valid test since 36% of the cells have expected counts less than 5 .

Table D-17. Gender response to living in which type of setting during the past year.

Setting	Male*			Female **		
	Frequency	Percent	Confint.	Frequency	Percent	Conf.lnt.
In open country but not on a farm	19	7.79	3.362	8	5.93	3.983
On a farm	9	3.69	2.365	3	2.22	2.487
In a small city or town	96	39.34	6.130	48	35.56	8.075
In a medium-size city	73	29.92	5.746	40	29.63	7.703
In a suburb near a large city	21	8.61	3.519	19	14.07	5.866
In a large city	26	10.66	3.872	17	12.59	5.597

Note: Chi-square $=4.093, \mathrm{df}=5$, probability $=0.536$

Table D-18. Gender response to household income per year.

Income	Male *			Female **		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
-	- - - -	--	- -	-. . -. --	-	
Less than \$10,000	17	7.59	3.468	20	15.75	6.335
\$10,000-\$20,000	32	14.29	4.583	31	24.41	7.471
\$20,000-\$30,000	40	17.86	5.016	23	18.11	6.698
\$30,000-\$40,000	35	15.63	4.755	17	13.39	5.922
\$40,000-\$50,000	45	20.09	5.247	17	13.39	5.922
\$50,000-\$75,000	37	16.52	4.863	13	10.24	5.272
\$75,000-\$100,000	10	4.46	2.705	4	3.15	3.038
More than $\$ 100,000$	8	3.57	2.430	2	1.57	2.165

* $\mathrm{n}=224$
** $n=127$
Note: Chi-square $=15.815, \mathrm{df}=7$, probability $=0.027$

Table D-19. Gender response to receiving more information (optional).

Response	Male *			Female**		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Yes	110	44.72	6.213	62	45.93	8.406
No	136	55.28	6.213	73	54.07	8.406

Note: Chi-square $=0.052, \mathrm{df}=1$, probability $=0.820$

APPENDIX E

SURVEY RESULTS BY KNOWLEDGE OF ONWP

Table E-1. Knowledge of ONWP response to membership in wildlife/outdoor organizations.

	No Knowledge of ONWP			Knowledge of ONWP**			Don't Know **			$\begin{aligned} & \text { Chi. } x_{1} \text {. } \\ & d f=2 \end{aligned}$	Prob.
Otganizations	Frequency	Percent	Conf.Lri.	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.mbt		
Birding	3	1.33	1.494	3	2.75	3.070	0	0.00	0.000	1.573	0.455
Gardening	8	3.54	2.409	7	6.42	4.602	2	5.71	7.687	1.504	0.471
Fishing	15	15.49	4.717	27	24.77	8.104	4	11.43	10.541	5.408	0.067
Hunting	32	14.16	4.545	29	26.61	8.296	2	5.71	7.687	11.565	0.003
Trapping	1	0.44	0.863	1	0.92	1.792	0	0.00	0.000	0.519	0.772
Oher	18	7.96	3.529	22	20.18	7.535	3	8.57	9.274	11.039	0.004
None	167	73.89	5.727	60	55.05	9.339	28	80.00	13.252	14.411	0.001
${ }^{*} \mathrm{n}=226$				** $\mathrm{n}=109$			** $n=35$				

NOTE: The sum of the frequencies will be greater than n, and the sum of the percenlages will be greater than 100%. Since respondents could choose more than one answer, Chi-square values were talculated for each.

- Chi-Square may not be a valid test since 50% of the cells have expected counts less than 5

Table E-2. Knowledge or ONWP response of individuals to participation in windlife/ouldoor activities within the past year.

NOTE The nitm of the frequencies will be greater tian n. The sum of the percenlages will be greater than 100\%. Since respondents could chocse more than one anwer, chi-square values were calculaterl for each.
' Chi-Square may nat be a valid test since 50% of the cells have expected counts less than 5 .
: Chi-Square may not be a valid rest since 3.3% of the cells have exprectod counts less than 5 .

Table E-3. Knowledge of ONWP response to source of wildlife information

Information Source	No Knowledge or ONWP •			Knowledge of ONWP **			Don't Know ${ }^{\text {a** }}$			$\begin{gathered} \text { Chi-5 } \\ d f=2 \end{gathered}$	Prab.
	Frequency	Percent	Conílnt	Frequency	Percent	Cond.lnL	Frequency	Percent	Conf.int.		
- ${ }^{\text {Newspapers }}$	133	57.08	6.355	76	64.41	8.639	19	47.50	15.476	3.872	
Radio	48	20.60	5.193	34	28.81	8.172	6	15.00	11066	4.469	0107
Television	159	68.24	5.978	90	76.27	7.676	21	52.50	15.476	8.078	0.018
Magazines	142	6094	6.265	92	7797	7.478	24	60.00	15182	10.823	0.004
Newstelters	25	10.73	3.974	33	27.97	8.098	5	12.50	10.249	17.648	0.000
Pamphlets	31	13.30	4.361	39	33.05	8.487	7	17.50	11.775	19.448	0.000
Books	73	31.23	5.956	58	49.15	9.020	11	27.50	13.838	12.255	0.002
Computers	7	3.00	2.192	8	6.78	4.536	1	2.50	4.838	3.133	0.209
Friends/relatives	105	45.06	6.389	57	48.31	9.016	12	30.00	14.202	4.127	0.127
Wildllie officials/game wardens	43	1845	4.981	40	33.90	8.541	8	20.00	12.396	10.729	0.005
Other	11	4.72	2.723	4	339	3.265	0	000	0.000	2.154	0.341
None	11	4.72	2723	1	0.85	1.654	4	10.00	9.297	6.958	0031

N() re : The sum of the frequencies will be geater than n. The sumt of the percentages will be greaterthan 100%. Since respondents coubd chnose more than one anmer, chisquare vahtes were caleulafed foreach.

- Chi-Square may not tee a valid lese since: 33\% of the oclis have expered counts less than 3 .

Table E-4. Knowledge of ONWP response to which two animal groups more information is needed.

Animal Group	No Knowledge of ONWP*			Knowledge of ONWP**			Don't Know ***			Chi-sq.$d f=2$	Prob.
	Frequency	Percent	Conf.lnt.	Prequency	Percent	Conf.Lnt.	Frequency	Jercent	Confint.		
Insects	26	12.21	4.396	14	13.08	6.390	3	9.38	10.099	0.316	0.854
Fish	120	56.34	6.661	53	49.53	9.474	15	46.88	17.290	1.929	0.381
Amphibians	9	4.23	2.702	6	5.61	4.359	3	9.38	10.099	1.598	0.450
Reptiles	25	11.74	4.323	13	12.15	6.190	0	0.00	0.000	4.272	0.118
Birds	126	59.15	6.601	65	60.75	9.253	17	53.13	17.290	0.593	0.743
Mammals	104	48.83	6.713	65	60.75	9.253	13	40.63	17.017	5.784	0.055

NOTF:: The sum of the frequencies will be greater than n, and the sum of the percentages will be greater than 100%.
since respondents could choxse more than one answer, chi-square values were calculated for each.

Table E-5. Knowledge of ONWP response to importance of the following Wildife Department programs.

| | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table E-5. (Continued).

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table E-5. (Continued)

Program	Don't Know - Erequency				n	Average	$\begin{aligned} & \text { Chi-sq. } \\ & d f=6 \end{aligned}$	Prob.
	(4) Very Important	(3) Important	Q) Not Important	(1) Don's krow				
-- -- ---- -- --- ---								
Creating tralls and wildilife observation areas	10	17	8	3	38	2.895	7775	0.255
Producing informative publications	9	12	8	6	35	2.688	19.731	0.003
Reintoducing fish and wildile	18	13	3	4	38	3.184	11.193	0.683
Creating farilities for outdoor classrooms	6	15	9	6	36	2.583	3.599	0.731
Fish and wildlife research and management	12	20	1	5	38	3.026	24.094	0.001
Endangered fish and wildule research and management	13	14	5	5	37	2.946	8.675	0.193
Conducting educational workshops	6	15	8	7	36	2.556	7.267	0.297
Land acquistion in general	6	12	8	9	35	2.429	15.656	0.016
Acquiring land for rase fish and wildlife	8	12	8	8	36	2.556	8.330	0.215
Creating wildule observation opportunities	7	18	6	5	36	2750	6.060	0.417
Providing information on habitat improvement	10	9	8		35	2.600	24.019	0.001
Providing general wildilife information	8	19	6		37	2.878	12.290	0.056

Table E-6. Knowledge of ONWP response to having seen the nongame check-off logo before recieving the survey.

Note: Chi-square $=62.099, \mathrm{~d}=4$, probability $=0.000$

Table E-7. Knowledge of ONWI response in from where does the Willife Department receives most of its funding for wildife that are not hunted or fished.

	Funding source	No Knowledge of ONWP *			Knowledge or ONWP**			Don't Know ***		
		Frequency	Percent	Conilint.	Frequency	Percent	Confint.	Frequency	Percent	Conf.lnt.
	State appropriations	20	8.55	3.582	8	6.90	4.611	2	5.00	6.754
	Donations	31	13.25	4.344	21	18.10	7.007	3	7.50	8.163
믄	Federal aid	11	4.70	2.712	4	3.45	3.321	1	2.50	4.838
	State lax check-off	4	1.71	1.661	17	14.66	6.436	1	2.50	4.838
	Wildlife license plate sales	2	0.85	1.179	1	0.86	1.682	0	0.00	0.000
	Hunting / frishing license fees	36	15.38	4.623	27	23.28	7.690	5	12.50	10.249
	Sales of Dept. merchandise	1	0.43	0.836	0	0.00	0.000	0	0.00	0.000
	Don't know	129	55.13	6.373	38	32.76	8.541	28	70.00	14.202

Note: Chi-square $=43.495, \mathrm{~d}=14$, probability $=0.000$
Chi-iquare may not be a valid test since 42% of the cells have expected counts less than 5 .

Table E-8. Knowledge of ONWP response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are nol hunted or fished.

NCITF: The sum of the frequencies will be grealer than n. The sum of the percentages will be greater than 100%. Since respondents couid choose more than one answer, chi-square values were calculated for each.

Table E-9. Knowiedge of UNWT response to questions 10 thru 13.

Question	No Knowledge of ONWP Responses									Knowledge of CNWT Responses					
		Sirongy Suppori	Mildly Sugpar	Neutral	Mildy Oppose	Surandy Opproxe	n	Average	5urangly Supporl	Mildly Suppert	Neutral	Mildy Orimse	Siraigy Ospos	n	Average
10	A user lee charged to anyone not possessing a hunting or fishing license who uses Wildlije Department lands.	$-_{77}$	52	30	20	44	223	3.44	57	28	10	7	11	116	3.92
11	A user lee charged lo ANYONE who uses WiUdlile Department lands.	43	54	38	35	58	228	2.95	27	27	15	16	31	116	303
12	An increase in finer on automobile speeding violations by 25 cents per mile (an average of $\$ 3$ per ticket).	52	47	34	21	71	22.5	2.95	37	24	22	11	24	118	3.33
13	A VOLUNTARY contribution box added to motor vehicle registralion fees to use for wildlife that are not hunted or flshed.	76	70	. 19	14	22	231	3.71	41	37	28	5	6	117	3.87

rable E-9 (Continued).

Question		Strongy Suppart	Mildly Suppar	Don't Know Responses			n	Average	Chi-sq.$d t=8$	Prob.
				Neutut	Mildly Oppore	Strondy Oppose				
10	A user fee charged to anyone not possessing a hunting or fishing license who uses Wildlife Department Lands.	5	11	11	5	6	38	3.11	24.566	0.002
11	A user fee charged to ANYONE who uses Widdlije Department lands.	7	7	11	7	7	39	300	6.615	0.579
12	An increase in fines on automobile speding violations by 25 cents pet nide (an averrage of $\$ 3$ per tickel).	6	7	10	4	11	38	2.82	9.724	0.285
13	A VOLUNTARY contribubion box added to molor vehkle registration fees to use for wildile that are not hunted or !ished.	12	14	9	1	2	38	3.87	4.848	$0.90{ }^{*}$

[^0]Table E-10. Knowledge of ONWP response lo which name the Nongame Wildlife Program should change.

Note: Chi-square $=6.011, \mathrm{df}=10$, probability $=0.814$
Chi-Square may not be a valid test since 22% of the cells have expected tounts less than 5 .

Table E-11. Knowledge of ONWP response to having donaled money to ONWP and why/why not.

Answer	Reason(s)	No Knowledge of ONWP *		
		Frequency	Percent	Conf. Int.
No		218	94.37	2972
	I was not aware of the program.	134	58.01	6.365
	I am not interested in nongame or endangered animal conservation.	18	7.79	3.457
	I do not approve of how the Nongame Wildlise Program spends the money.	9	3.90	2.495
	I could not afford to donate at this time.	67	29.00	5.852
	I did not feel my donation would "make a difference."	9	3.90	2.495
	1 intended to, but forgot.	3	1.30	1.460
	Other	24	10.39	3.935
Yes		13	5.63	2972
	I enjoy wildite.	9	3.90	2.495
	I support the concept of wildlife conservation in general.	10	4.33	2.624
	I believe conservation for wildife that are not hunted or lished has been overlooked and this is a chance for direct support.	5	2.16	1.877
	J support endangered species protection.	4	1.73	1.682
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	2	0.87	2.195
	Other	0	0.00	0.000

Note: Chi-square $=65.697, \mathrm{df}=2$, probability $=0.000$

Tahle E.11. (Continued).

Answer	Reason(s)	Knowledge of ONWP *		
		Frequency	Perent	Conf. Ini.
No		70	63.64	8.990
	I was not aware of the program.	19	17.27	7.064
	1 am not interested in nongame or endangered animal conservation.	4	3.64	3.498
	I do not approve of how the Nongame Wildife Program spends the money.	2	1.82	2.497
	I could not afford to donate at this time.	28	25.45	8.341
	I did not feel my donation would "make a difference."	10	9.09	5.372
	J intended to, but forgot.	5	4.55	3.893
	Other	8	7.27	4.853
Yes		40	36.36	8.990
	1 enjoy wildlife.	33	30.00	8.564
	I support the concept of wildlife conservation in general.	30	27.27	8.323
	I believe conservation for wildlife that are not hurted or fished has been overlooked and this is a chance for direct support.	15	33.64	6.413
	1 support endangered species protection.	24	21.82	7.718
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	15	13.64	6.413
	Other	1	0.91	1.774

Note: Chi-square $=65.697, d f=2$, probability $=0.000$

Table E-11. (Continued).

Answer	Reason(s)	Don't Krow mos		
		Frequency	Percent	Conf. Int.
No		39	100.00	0.000
	I was not aware of the program.	20	51.28	15.687
	1 am not interested in nongame or endangered animal conservation.	2	5.13	6.923
	1 do not approve of how the Nongame Wildlife Program spends the money.	0	0.00	0.000
	I could not afford to donate at this time.	13	33.33	14.795
	I did not feel my donation would "make a difference."	1	2.56	4.961
	1 intended to, but forgot.	0	0.00	0.000
	Other	2	5.13	6.923
Yes		0	0.00	0.000
	I enjoy wildlife	0	0.00	0.000
	I support the concept of wildife conservation in general.	0	0.00	0.000
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	0	0.00	0.000
	I support endangered species protection.	0	0.00	0.000
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	0	0.00	0.000
	Other	0	0.00	0.000

Note: Chisquare $=65.697, d f=2$, probability $=0.000$

Table E-12. Knowledge of ONWP response to gender.

Gender	No Knowledge of ONWP *			Knowledge of ONWP **			Don't Know ***		
	Frequency	Percent	ContInt.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Male	146	64.89	6.237	78	70.27	8.503	19	47.50	15.476
Female	79	35.11	6.237	33	29.73	8.503	21	52.50	15.476

Note: Chi-square $=6.686, \mathrm{df}=2$, probability $=0.035$

TableE-13. Knowledge of ONWP response to age group.

Note: Chi-square $=26.535, \mathrm{df}=10$, probability $=0.003$

Table E-14. Knowledge of ONWl’ response to race.

	No Knowledge of ONWI *			Knowledge of ONWP **			Don't Know ***		
Race	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.lnt.	Frequency	Percent	Confilnt.
African-American	4	1.75	1.697	3	2.65	2.964	0	0.00	0.000
Asian or P'acific Islander	2	0.87	1.205	0	0.00	0.000	0	0.00	$0.000)$
Native American	25	10.92	4.039	10	8.85	5.237	5	12.50	10.249
White, not of Hispanic origin	192	83.84	4.767	93	82.30	7.037	35	87.50	10.249
White, of Hispanic origin	3	1.31	1.473	7	6.19	4.445	0	0.00	0.000
Other	3	1.31	1.473	0	0.00	0.000	0	0.00	0.000

Note: Chi-square $=13.146, \mathrm{df}=10$, probability $=0.216$
Chi-Sxpuare may not be a valid test since 67% of the cells have expected counts less than 5 .

Table E-15. Knowledge of ONWP response to marital status.

Marital Starus	No Knowledge of ONWT *			Knowledge of ONWP**			Don't Know **		
	Frequency	Percent	Confint.	Frequency	Percent	Confilnt.	F'requency	Percent	$\overline{C o n f . I n t .}$
Never married	23	9.79	3.799	12	10.71	5.728	4	10.00	9.297
Married	158	67.23	6.001	80	71.43	8.367	24	61.00	15.182
Divorced/Separated	32	13.62	4.385	17	15.18	6.645	6	15.00	11.066
Widowed	22	9.36	3.724	3	2.68	2.990	6	15.00	11.066
* $\mathrm{n}=235$				** $n=112$			${ }^{n *} n=40$		

Note: Chi-square $=10.174, d f=8$. probability $=0.253$
Chi-Square may not be a valid test since 33% of the cells have expected counts less than 5 .

Table E-16. Knowledge of ONWI response to level of education.

Education Level	No Knowledge of ONWP *			Knowledge of ONWP **			Don't Know ***		
	Frequency	Percent	Confilnt.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf. Int.
No formal education	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000
Flementary (1-6)	1	0.43	0.832	0	0.00	0.000	1	2.56	4.961
Middle school (7-9)	6	2.55	2.017	2	1.79	2.453	1	2.56	4.961
High school (10-12)	47	20.00	5.114	11	9.82	5.512	11	28.21	14.123
Some trade school	11	4.68	2.701	8	7.14	4.770	3	7.69	8.363
Trade school graduate	12	5.11	2.814	9	8.04	5.035	6	15.38	11.324
Some college	69	29.36	5.823	30	26.79	8.202	9	23.08	13.223
College graduate	58	24.68	5.513	34	30.36	8.516	4	10.26	9.522
Master's degree	21	8.94	3.647	14	12.50	6.125	2	5.13	6.923
Iroctoral degree	9	3.83	2.454	3	2.68	2.990	2	5.13	6.923
Other	1	0.43	0.832	1	0.89	1.742	0	0.00	0.000

Note: Chi-square $=28.042, \mathrm{df}=20$, probability $=0.108$
Chi-Square may not be a valid test since 48% of the cells have expected counts less than 5 .

Table E-17. Knowledge of ONWP response to living in which type of setting during the past year.

Note: Chi-square $=4.960, \mathrm{df}=10$, probability $=0.894$
Chi-Square may not be a valid test since 28% of the cells have expected counts less than 5 .

Table E-18. Knowledge of ONWP response to household income per year.

	No Knowledge of ONWP *			Knowledge of ONWP **			Don't Know ***		
Income	Frequency ${ }^{-}$	Percent	Consint.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.int.
Less than \$10,000	24	11.21	4.228	7	6.36	4.562	7	18.42	12.326
\$10,000-\$20,000	45	21.03	5.460	11	10.00	5.606	10	26.32	14.001
\$20,000-\$30,000	42	19.63	5.321	17	15.45	6.755	4	10.53	9.758
\$30,000-\$40,000	30	14.02	4.652	21	19.09	7.345	7	18.42	12.326
\$40,000-\$50,000	31	14.49	4.716	26	23.64	7.940	5	13.16	10.748
\$50,000-\$75,000	28	13.08	4.518	19	17.27	7.064	3	7.89	8.574
\$75,000-\$100,000	7	3.27	2.383	8	7.27	4.853	0	0.00	0.000
More than \$100,000	7	3.27	2.383	1	0.91	1.774	2	5.26	7.100

[^1]Table E-19. Knowledge of ONWP response to receiving more information (optional).

	No Knowledge of ONWP *			Knowledge of ONWP **			Don't Know ***		
Response	Frequency	- Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.lnt.
Yes - -	102	43.22	6.320	53	44.92	8.975	21	52.50	15.476
No	134	56.78	6.320	65	55.08	8.975	19	47.50	15.476

Note: Chi-square $=0.293, \mathrm{df}=2$, probability $=0.864$

APPENDIX F

SURVEY RESULTS BY DONATING MONEY TO ONWP

Table F-1. Donating response to membership in wildlife/outdoor organizations.

Organizations	Non-donators *			Donators **			$\begin{gathered} \text { Chi-S } \mathbf{S}_{\mathbf{y}} . \\ \mathrm{df}=1 \end{gathered}$	['rob.
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.		
Birding	5	1.60	1.392	1	1.96	3.805	0.035	0.852
Gardening	12	3.85	2.135	4	7.84	7.377	1.662	0.197
Fishing	49	15.71	4.038	15	29.41	12.505	5.671	0.017
Hunting	47	15.06	3.969	13	25.49	11.961	3.454	0.063
Trapping	1	0.32	0.627	0	0.00	0.000	0.164	0.686
Other	31	9.94	3.320	12	23.53	11.642	7.757	0.005
None	225	72.12	4.976	27	52.94	13.699	7.592	0.006

NOTE: The sum of the frequencies will be greater than n, and the sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, Chi-square values were calculated for each.
' Chi-Square nay not be a valid test since 25% of the cells have expected counts less than 5 .
${ }^{2}$ Chi-Square may not be a valid test since 50% of the cells have expected counts less than 5 .

Table F-2. Donating response to participation in wildlife/outdoor activities within the past year.

	Non-donators *			Donators **			$\begin{aligned} & \text { Chi-Sq. } \\ & d f=1 \end{aligned}$	Prob.
Activities	Frecpuency	Percent	Confint.	Frequency	Percent	Cond.Int.		
Bird watching Bird feeding	90 131	27.11 39.46	4.782 5.258	20	37.04 48.15	12.880 13.327	2.124 1.331	0.145 0.249
liking	105	31.63	5.002	26	48.15	13.327	5.432	0.020
Camping	123	37.05	5.195	30	55.56	13.254	6.383	0.012
Canoeing/rafting	34	10.24	3.261	34	62.96	12.880	8.134	0.004
Horseback riding	36	10.84	3.345	8	14.81	9.475	0.684	0.408
Hunting	107	32.23	5.027	24	44.44	13.254	2.929	0.087
Fishing	190	57.23	5.322	38	70.37	12.179	3.066	0.080
Trapping	2	0.60	0.832	0	0.00	0.000	0.330	0.566
Nature photography	50	15.06	3.847	15	27.78	11.947	5.210	0.022
Visiting zoos/aquaria	113	34.04	5.097	26	48.15	13.327	3.822	0.051
Landscaping for wildlife	30	9.04	3.084	8	14.81	9.475	1.684	0.194
Observing wildlife at home	140	42.17	5.312	33	61.11	13.003	6.450	0.011
Visiting an area solely to watch wildlife	71	21.39	4.411	22	40.74	13.105	9.262	0.002
Other	12	3.61	2.008	1	1.85	3.596	0.456	0.499
None	29	8.73	3.037	1	1.85	3.596	3.115	0.078

N()TE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%. Since respondents could choose more than one anwer, chi-square values were calculated for each.
' Cli-Square may not be a valid test since 50% of the cetls have expected counts less than 5 .
${ }^{2}$ Chi-Square may not be a valid test since 25% of the cells have expected counts less than 5 .

Table F-3. Donating response to source of wild life information.

[^2]** $n=54$
NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%.
Since respondents coukd choose more than one anwer, chi-sųuare values were calculated for each.
${ }^{1}$ Chi-Square may not be a valid test since 25% of the cells have expected counts less than 5 .

Table F-4. Donating response to which two animal groups more information is needed.

Animal Group	Non-donators*			Donators**			$\begin{gathered} \text { Chi-sq. } \\ d f=1 \end{gathered}$	Prob.
	Frequency	['ercent	Conf.Int.	Frequency	Percent	Conf.Int.		
Insects	33	11.30	3.632	8	15.69	9.981	0.793	0.373
Fish	154	52.74	5.726	28	54.90	13.657	0.081	0.775
Amphibians	16	5.48	2.610	3	5.88	6.458	(). 013	0.908
Reptiles	27	9.25	3.323	9	17.65	10.463	3.261	(0.071
Birds	174	59.59	5.629	27	52.94	13.699	0.791	0.374
Mammals	149	51.03	5.734	28	54.90	13.657	0.261	0.609

NOTE: The sum of the frequencies will be greater than n, and the sum of the percentages will be greater than 100%. Since respondents could chonse more than one answer, chi-square values were calculated for each.
' Chi-Square may not be a valid test since 25% of the cells have expected counts less than 5 .

Table F-5. Donating response to importance of the following Wildlife Department programs.

Program	Non-donators - 「requency					
	(4) Very Important	(3) Important	(2) Not Important	(1) Don't Know	π	Average
Creating trails and wildlife observation areas	96	139	53	22	310	2.997
Producing informative publications	69	162	49	27	307	2.889
Reintroducing fish and wildlife	170	103	19	22	314	3.341
Creating facilities for outdoor classrooms	60	125	85	42	312	2.651
Fish and wildlife research and management	128	135	23	28	314	3.156
Fndangered fish and wildlife research and management	121	115	42	28	306	3.075
Conducting educational workshops	66	143	59	38	306	2.775
Land acquisition in general	48	126	87	45	306	2.578
Acquiring land for rare fish and wildlife	66	110	88	43	307	2.648
Creating wildlife observation opportunities	65	158	55	31	309	2.832
Providing information on habitat improvement	88	148	38	36	310	2.929
Providing general wildlife information	80	178	30	24	312	3.006

Table F-5. (Continued).

Donators - Frequercy								
Program	(4) Very Important	(3) Important	(2) Not Important	(1) Don'l Know	n	Average	Chisso. $d f=3$	Prob
Creating trails and wildlife observation areas	20	28	1	0	52	3.308	7755	0.051
Producing informative publications	13	33	5	1	52	3.115	4.943	0.176
Reintroducing fish and widdile	39	13	0	1	53	3.698	9.096	0.028
Creating facilities for outdoor classrooms	13	26	7	6	52	2.885	5.275	0.153
Fish and wildife research and management	33	16	1	1	51	3.588	11.726	0.008
Endangered fish and wildlite research and management	33	12	5	2	52	3.162	10.612	0014
Conducling educational workshops	17	26	7	2	52	3.115	6.212	0.102
Land acquisilion in general	13	28	7	5	53	2.925	8.409	0.038
Acquining land for rare fish and wildile	14	25	11	2	52	2.981	6933	0.071
Creating wildile observation opportunities	14	30	5	2	51	3.098	4.779	0.189
Providing information on habital improvement	$\underline{16}$	21	5	2	54	3.315	9.616	0.027
Providing general wildile information	25	25	2	2	54	3.352	10.677	0.011

[^3]Table F-6. Donating response to having seen the nongame check-off logo before receiving the survey.

Note: Chi-square $=17.860, \mathrm{~d}=2$, probability $=0.000$

Table F-7. Donating response to having heard or seen information about ONWT before receiving survey.

Answer	Non-donators			Donators		
	Frequency	Percent	Confint.	Frequency	Percent	Conf.Int.
No	218	66.67	5.109	13	24.53	11.584
Yes	70	21.41	4.446	40	75.47	11.584
Don't knc	39	11.93	3.513	0	0.00	0.000

Note: Chi-square $=65.697, \mathrm{df}=2$, probability $=0.000$

Table F-8. Donating response to from where does the Wildlife Department receives most of its funding for witdlife that are not hunted or fished.

	Non-donators *			Donators **		
	Frequency	Percent	Conf.Int.	Frequency	Percent Conf.Int.	
Funding Source	-					
State appropriations	25	7.62	2.872	4	7.84	7.379
Donations	48	14.63	3.825	8	15.69	9.981
Federal aid	12	3.66	2.032	3	5.88	6.458
State tax check-off	11	3.35	1.948	8	15.69	9.981
Wildlife license plate sales	2	0.61	0.842	0	0.00	0.000
Hunting / fishing license feas	55	16.77	4.043	11	21.57	11.288
Sales of Dept. merchandise	1	0.30	0.597	0	0.00	0.000
Don't know	174	53.05	5.401		17	33.33

Note: Chi-square $=18.433, \mathrm{df}=7$, probability $=0.010$
Chi-Square may not be a valid test since 44% of the cells have expected counts less than 5 .

Table F-9. Donating response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wild life that are not hunted or fished.

Items	Nun-donators*			Donators**			Chi-sq.$\mathrm{df}=1$	Prob.
	Frequency	J'ercent	Conf.Int.	Frequency	Гercent	Confint.		
Binoculars	65	20.19	4.384	15	28.30	12.128	1.786	0.181
Camera/film	51	15.84	3.988	15	28.30	12.128	4.875	0.027
Bird seed	66	20.50	4.409	20	37.74	13.050	7.652	0.006
Camping equipment	92	28.57	4.934	16	30.19	12.360	0.058	0.810
Nature-related books	101	31.37	5.068	17	32.08	12.567	0.011	0.918
Recreational vehicles	99	30.75	5.040	14	26.42	11.870	0.405	0.524
None of the above	100	31.06	5.054	17	32.08	12.567	0.022	0.882
Other	31	9.63	3.222	3	5.66	6.221	0.869	0.351

N()TE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, chi-square values were calculated for each.
${ }^{1}$ Chi-Square may not be a valid test since 25% of the cells have expected counts less than S.
atic F-10. Beytating response to questions 10 thris 13.

Question		Strongly suppor	mildy support	Non-donaters Respenses							Denators Resfonses					Chisy.	
				Neutral	$\begin{aligned} & \text { Midaly } \\ & \text { cprone } \end{aligned}$	Stronely орposi	π	Averege	Strongly Support	MILdy supporl	Neums	$\begin{aligned} & \text { Mudyy } \\ & \text { Cpjose } \end{aligned}$	Srongly Orpose	ก	Avergeg?	$d /=A$	Prote
---	-																
10	A usen fee charged ic anyme nol possessing a hurling or fishing lisense who uss Wildise Deparment lands.	109	75	51	3)	50	315	351	28	15	2	1	8	54	4.00	12367	$0 . \mathrm{OLO}$
11	A uner fee charged to ANYONE whe uscs Wildilfe Department lands.	62	7	¢	40	7	320	2.98	13	13	5	9	14	54	3.04	3.074	0.545
12	An increase in fines on aulomebile speeding vtolations by 25 cenis par mile (an ayrrage of ${ }^{3}$? pat ticket).	76	07	5	31	85	310	3.05	18	10	7	2	17	54	3.10	5.097	0.200
13	A VOLUNTARY coniribulion box added is mener vehicle registration fees to use for wildilie that are net lunted or fishat.	10%	100	73	19	25	223	3.75	24	16	11	1	2	54	4.09	4.768	0.445

[^4]Table F-11. Donating response to which name the Nongame Wildlife Program should change.

Note: Chi-square $=11.073, \mathrm{df}=5$, probability $=0.050$
Chi-Square may not be a valid test since 25% of the cells have expected counts less than 5 .

Table F-12. Donating response to gender.

Note: Chi-square $=2.300, \mathrm{df}=1$, probability $=() .129$

Table F-13. Donating response to age group.

Age Sroup	Non-donators*			Donators**		
	Frequency	Percent	Confjornt.	Frequency	Percent	Conf.Int.
	--	-	2.443 ${ }^{\text {-- }}$	- -		
18-25 years	18	5.44	2.443	1	1.89	3.663
26-35 years	69	20.85	4.376	9	16.98	10.109
36-45 years	64	19.34	4.255	19	35.85	12.911
46-55 years	69	20.85	4.376	12	22.64	11.267
56-65 years	38	11.48	3.434	7	13.21	9.115
65 years or older	73	22.05	4.467	5	9.43	7.870
* $\mathrm{n}=331$				${ }^{* *} n=53$		

Note: Chi-square $=11.033, \mathrm{df}=5$, probability $=0.051$

Table F-14. Donating response to race.

Race	Non-donators*			Donators**		
	Frequency	Percent	Confint.	Frequency	Percent	Conf.Int.
African-American	5	1.53	1.330	2	3.85	5.227
Asian or Pacific Islander	2	0.61	0.845	0	0.00	0.000
Native American	36	11.01	3.393	5	9.62	8.013
White, not of Hispanic origin	276	84.40	3.933	40	76.92	11.452
White, of Hispanic origin	5	1.53	1.330	5	9.62	8.013
Other	3	0.92	1.033	0	0.00	0.000

Note: Chi-square $=13.600, \mathrm{df}=5$, probability $=0.018$
Chi-Square may not be a valid test since 50% of the cells have expected counts less than 5 .

Table F-15. Donating response to marital status.

Marital Status	Non-donators *			Uonators **		
	Frequency	Percent	Conflnt.	Frequency	Percent	Conf.Int.
- . . .-	--				\cdots	-
Never married	32	9.67	3.184	7	13.46	9.277
Married	220	66.47	5.086	39	75.00	11.769
Divorced/Separated	50	15.11	3.858	4	7.69	7.243
Widowed	29	8.76	3.046	2	3.85	5.227

Note: Chi-square $=10.416, \mathrm{df}=4$, probability $=(0.034$
Chi-Square may not be a valid test since 30% of the cells have expected counts less than 5 .

Table F-16. Donating response to level of education.

Education Level	Non-donators *			Donators**		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
No formal education	0	0.00	0.000	0	0.00	0.000
Elementary (1-6)	2	0.60	0.835	0	0.00	0.000
Middle school (7-9)	10	3.02	1.844	0	0.00	0.000
High school (10-12)	68	20.54	4.353	1	1.92	3.73 .3
Some trade school	16	4.83	2.311	5	9.62	8.013
Trade school graduate	22	6.65	2.684	6	11.54	8.684
Some college	87	26.28	4.742	19	36.54	13.088
College graduate	83	25.08	4.670	12	23.08	11.452
Master's degree	29	8.76	3.046	7	13.46	9.277
Doctoral degree	13	3.93	2.093	1	1.92	3.733
Other	1	0.30	0.591	1	1.92	3.733

Note: Chi-square $=25.465, \mathrm{df}=10$, probability $=0.005$
Chi-Square may not be a valid test since 50% of the cells have expected counts less than 5 .

Table F-17. Donating response to living in which type of setting during the past year.

Selting	Non-donators*			Donators**		
	$\overline{\text { Frequency }}$	Percent	Conf.Int.	Frequency	Percent	Conf.lnt.
- -- ---				-		
In open country but not on a farm	20	6.04	2.567	6	11.32	8.530
On a farm	11	3.32	1.931	1	1.89	3.663
In a small city or town	133	40.18	5.282	15	28.30	12.128
In a medium-size city	103	31.12	4.988	12	22.64	11.267
In a suburb near a large city	28	8.46	2.998	12	22.64	11.267
In a large city	36	10.88	3.354	7	13.21	9.115

Note: Chi-square $=13.994, \mathrm{df}=5$, probability $=0.016$

Table F-18. Donating response to household income per year.

Income	Non-donators*			Donators**		
	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.
Less than \$10,000	35	11.48	3.577	3	6.00	6.583
\$10,000-\$20,000	62	20.33	4.517	3	6.00	6.583
\$20,000-\$30,000	58	19.02	4.404	6	12.00	9.007
\$30,000-\$40,000	46	15.08	4.016	8	16.00	10.162
\$40,000-\$50,000	50	16.39	4.155	10	20.00	11.087
\$50,000 - \$75,000	33	10.82	3.486	16	32.00	12.930
\$75,000-\$100,000	12	3.93	2.182	3	6.00	6.583
More than \$100,000	9	2.95	1.899	1	2.00	3.881

Note: Chi-square $=22.080, \mathrm{df}=7$, probability $=0.002$

Table F-19. Donating response to receiving more information (optional).

Response	Non-donators *			Donators **		
	Frequency	Percent	Conf.Jnt.	Frequency	Percent	Conf.Int.
Yes	139	41.87	5.307	30	55.56	13.254
No	193	58.13	5.307	24	44.44	13.254

Note: Chi-square $=3.536, \mathrm{df}=1$, probability $=0.060$

APPENDIX G

SURVEY RESULTS BY EDUCATION LEVEL

Table $G 1$. Education level response to membership in wildlife/outdoor organizations.

Organivations	Less than High School*			High School **			Trade School ${ }^{\text {Pr* }}$		
	$\overline{\text { Frequency }}$	Percent	Conf. n t.	Frequency	Percent	Confint.	Frequency	Percent	Conf.lnt.
Birding	0	0.00	0.000	1	1.54	2.994	0	0.00	0.000
Gardening	1	10.00	18.594	2	3.08	4.200	3	5.88	6.457
Fishing	1	10.00	18.594	10	15.38	8.770	16	31.37	12.735
Hunting	1	10.00	18.594	5	7.69	6.477	13	25.49	11.961
Trapping	0	0.00	0.000	1	1.54	2.994	0	0.00	0.000
Other	0	0.00	0.000	4	6.15	5.841	8	15.69	9.982
None	8	80.00	24.792	52	80.00	9.724	29	56.86	13.593

NOTE: The sum of the frequencies will ke greater than n, and the sum of the percentages will be greater than 100%. Since respondents could choose more than one answer, Chi-syuare values were calculated for each.

Table G1. (Continued).

Ofganizations	Some College *			College**			Graduate School ***			$\begin{gathered} \text { Chi-Sty. } \\ \text { df-5 } \end{gathered}$	I'rob.
	Frequency	Percent	Confint.	Frequenry ${ }^{-}$	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.		
	1	0.94	1837	1	114	2218	2	4.17	5655	38.49	
Birding Gardening	5	0.94 4.72	1.837 4.037	3	3.41	3.792	1	4.17 2.108	5.655 4.037	3.849 2.188	0.581
Fishing	14	13.21	6.446	19	21.59	8.597	5	10.42	8.643	11.340	0.045
Hunting	14	13.21	6.446	20	22.73	8.756	8	16.67	10.544	10.231	0.069
Trapping	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000	4.674	0.457
Other	8	7.55	5.030	16	18.18	8.058	7	14.58	9.984	9.790	0.081
None	80	75.47	8.191	53	60.23	10.226	34	70.83	12.859	13.151	0.022

NOTE: The sum of the írequencies will be greater than n, and the sum of the percentages will te greater than 100%.
Since respondents could choose more than one answer, Chi-square values were calculated for each.
' Chi-Square may not be a valid test since 50% of the cells bave expected counts less than 5 .

Table G-2. Education level response of individuals to participation in wildisie/outdoor activities within the past year.

	Less than ligh Sthool*			High School*			Trade School***		
Aclivities	$\overline{\text { Frequency }}$	Percent	Contint.	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.lnt.
Bird watching	2	16.67	21.086	12	16.90	8.717	16	31.37	12.735
Bird feeding	6	50.00	28.290	23	32.39	10.886	17	33.33	12.938
Hiking	0	0.00	0.000	13	18.31	8.996	23	45.10	13.657
Camping	2	16.67	21.086	28	39.44	11.368	27	52.94	13.699
Canoeing/rating	0	0.00	0.000	5	7.04	5.951	5	9.80	8. 161
Horseback riding	0	0.00	0.000	6	8.45	6.470	7	13.73	9.114
Hurting	4	33.33	26.672	23	32.39	10.886	21	41.18	13.507
Fishing	6	50.00	28.290	52	73.24	10.298	39	76.47	11.642
Trapping	0	0.00	0.000	0	0.00	0.000	1	1.96	3.805
Nature photography	1	8.33	15.638	8	11.27	7.355	9	17.65	10.463
Visiling zoos/aquaria	1	8.33	15.638	20	28.17	10.463	16	31.37	12.735
Landscaping for wildlite	0	0.00	0.000	2	2.82	3.849	6	11.76	8.843
Observing wildlife at home	3	25.00	24.500	26	36.62	11.206	24	47.06	13.699
Visiting an area solely to watch wildife	0	0.00	0.000	15	21.13	9.495	15	29.41	12.505
Other	0	000	0.000	2	2.82	3.849	4	7.84	7.379
None	3	25.00	24.500	8	11.27	7.355	2	3.92	5327

NOTE: The sum of the frequencies will be greater than n. The sum of the percentages will be greater than 100%. Since respondents could choose more than one anwer, chi-square values were calculated for eack.

Table G-2. (Conlinued).

NOYE: The sum of the frequencies will he greater than n. The sum of the percentages will be greater than 100%.
Since respondents could choose more than one anwer, chi-square values were calculaled for each.
' Chi-Square may not be a valid ted $\sin 050 \%$ of the cells have expoded counts loses than 5
: Chi-Square may not he a valid las since 29\% of the cells have expected counts lass than 5

Table G-3. Education level respense to source of wildjife informabion.

Information Source	I ess than High School*			High School**			Trade School***		
	Frequency	Percent	Cont. $\ln t$	Frequency	Percent	Conlinnt.	Frequency	Percent	Conf.lnt
Newspapers - - -	2	16.67	21.086		5915	11.434		4902	13720
Newspapers Radio	2 0	16.67 0.00	21.086 0.000	42 17	59.15 23.94	11.434 9.926	25	49.02 27.45	13.720 12.248
Television	6	50.00	28290	48	67.61	10.886	36	70.59	12.505
Magrzines	6	50.00	28.290	15	63.38	11206	. 38	74.51	11.961
Newslellers	0	0.00	0.000	10	1408	8092	14	27.45	12.218
Pamphlels	1	8.33	15.638	18	25.35	10.119	14	27.45	12.248
Books	2	16.67	21.086	18	25.35	10.119	27	5294	13.699
Computers	0	0.00	0000	1	1.41	2.741	1	1.96	3.805
Friends/relatives	2	16.67	21.086	30	42.25	11.490	28	54.90	13.657
Wildife officials/game wardens	3	25.00	24500	16	22.54	9.719	17	33.33	12.938
Other	0	0.00	0.000	1	1.41	2.741	3	5.88	6.458
None	2	16.67	21.086	4	5.63	5363	2	3.92	5.327

NOIT: The sum of the frequencies will be greater than n.
The sum of the percentages will be greater than 100\%

Information Source	Some College*			College**			Graduate School***			$\begin{gathered} \left(h i-S_{7}\right] \\ d[=5 \end{gathered}$	I'roh.
	Frequency	Percent	Conf.Int.	「requency	Percent	Confint	Frequency	Percent	Conf.Int		
Newşspers	60	23.15	7955	57	59.38	9825	36	70.59	12.505	13.58.4	0.018
Radio	22	12.96	6.335	22	23.92	8408	11	21.57	11.288	4.625	0.463
Television	76	33.33	8.891	63	65.63	9.501	37	72.55	12.248	2954	0.707
Magazines	66	35.19	9.007	66	68.75	9272	34	66.67	12.938	4.652	0.460
Newsletters	13	12.96	6.335	17	17.71	7.636	7	13.73	9.444	9.242	0.100
Pamphlets	17	12.96	6.335	14	14.58	7.060	11	21.57	11288	7.196	0.260
Borks	33	25.00	8.167	36	37.50	9684	26	50.98	13.720	18.093	0.003
Computers	6	093	1.806	2	2.08	2.857	6	11.76	8.843	11.574	00.41^{1}
Friends/relatives	46	2593	8.265	14	45.83	9967	16	31.37	12.735	9.495	0.091
Wildije officiats/game wardens	16	15.74	6.869	24	25.00	8662	13	25.19	11.961	7.617	0.179
Other	5	278	3.099	3	3.13	3.181	3	5.88	6.458	3.071	0.689^{\prime}
None	6	1.85	2.543	2	2.08	2.857	2	3.92	5.327	5.838	0.322 '

NOTE: The sum of the trequencies will he greater than n.
The sum of the percentages ivill he greater than 100
' Chi Square may not be a valid tas sinoce 50% of the calls have expoatod counts less than 3 .

Table $\mathrm{C}-4$. Education level response to which lwo animal groups more information is needed.

Animal Group	Less than High S'hool *			High School **			Trade School \cdots		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.lnt
Insects	2	1.67	7.935	5	8.06	6.778	5	10.87	8.995
Fish	6	5.00	13.508	42	67.74	11.636	34	73.93	12.690
Amphibians	1	0.83	5.634	6	9.68	7.359	2	4.35	5.893
Reptiles	1	0.83	5.634	7	11.29	7.878	3	6.52	7.135
Birds	4	3.33	11.126	33	53.23	12.420	24	52.17	14.4 .36
Mammals	3	2.50	9.677	27	43.55	12.342	26	56.52	14.326

Table G-4. (Continued).

Animal Group	Some Coliege ${ }^{\text {T. }}$			College ${ }^{\text {a** }}$			Graduate Scheol ${ }^{\text {onow }}$			Chi-sq. df=s	Prob.
	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.int.	Frequency	Percent	Conf.int.		
Insects	6	6.25	4.842	15	17.24	7.938	7.000	14.58	9.985	7.334	0.197
Fish	42	43.75	9.924	44	50.57	10.506	19	39.58	13.835	20.638	0.001
Amphibians	2	2.08	2.857	5	5.75	4.891	2	4.17	5.683	5.143	0.399
Reptiles	10	10.42	6.111	10	11.49	6.702	6	12.50	9.356	1.102	0.954
Birds	59	61.46	9.736	53	60.92	10.253	30	62.50	13.696	3.726	0.589
Mammals	56	58.33	9.862	43	49.43	10.506	25	52.08	14.133	5.835	0.323

NOTE: The sum of the frequencies will be greater than n.
The sum of the percentages will be greater than 100%.
' Chi-Square may not be a valid test sinee 50% of the cells have expectod counts less than 5 .

Table G-5. Education level response to importance of the following Wildlife Department programs.

| | | Less than High School- Frequency | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table G-5. (Continued).

| | | | High School - Frequency | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table G-5. (Continued).

Program	Trade School - Frequency				n	A verage
	(4) Very Important	(3) Important	(2) Not Important	(1) Don't Know		
Creating trails and wildlife observation areas	20	22	5	1	48	3.271
Producing informative publications	13	24	6	6	49	2.898
Reintroducing fish and wildlife	33	14	1	2	50	3.560
Creating facilities for outdoor classnooms	12	24	8	4	48	2.917
Fish and wildlife research and management	27	19	0	2	48	3.479
Endangered fish and wildlife research and management	27	15	4	2	48	3.396
Conducting educational workshops	11	27	5	4	47	2.957
Land acquisition in general	11	25	7	4	47	2.915
Arquiring land for rare fish and wildlife	16	18	10	5	49	2.918
Creating wildlife observation opportunities	12	28	4	4	48	3.000
Providing information on habitat improvement	19	22	3	5	49	3.122
Providing general wildlife information	17	27	0	5	49	3.143

Table G-5. (Continued).

Program	Some College - Frequency					
	(4)	(3)	(2)	(1)		
	Very Important	Important	Not Important	Don't Know	π	Average
Creating trails and wildlife observation areas	37	40	17	5	9)	3.101
Producing informative publications	25	56	13	5	99	3.020
Reintroducing fish and wildlife	57	32	7	3	99	3.444
Creating facilities for outdcor classrooms	18	46	23	13	100	2.690
Fish and wildlife research and management	43	37	11	8	99	3.162
Endangered fish and wildlife research and management	44	32	15	7	98	3.153
Conducling educational workshops	22	48	22	7	99	2.859
Land acquisition in general	16	41	31	12	100	2.610
Arcuiring land for rare fish and wildlife	23	35	26	13	97	2.701
Crealing wildlife observation opportunities	24	52	18	8	102	2.902
Providing information on habitat improvement	31	45	14	9	99	2.990
Providing general wildlife information	28	54	12	7	101	3.020

Table G-5. (Continued).

| | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Tathe G-s (Continued).

Graduate School-Frequency

Program	(4) Very Important	(3) Important	(2) Not Imporitant	(1) Donit Know	π	Average	Chi-sq df -15	Prob.
Creating trails and widdife observation areas	17	27	4	2	50	3.180	21.339	0126
Produring informative publications	8	32	5	4	49	2.898	16.909	0.324
Reintroducing fish and wildlife	21	25	1	3	50	3.280	27.959	0.022
Creating fadiltes for outdoor dassrooms	10	20	13	7	50	2.660	14.045	0522
Fish and wildlife research and management	17	29	1	3	50	3.200	29.241	0015
Endengered fish and wildife research and management	21	17	7	4	49	3.122	14.114	0.517
Conducting educational workshops	16	21	8	6	51	2.922	15.114	0.443
Land acquisition in general	11	21	13	6	51	2.725	23.113	0082
Acquiring land for rare fish and wildlife	11	20	15	5	51	2.725	11.748	0.698
Creating widdife ohservalion opportunities	11	31	6	3	51	2.980	12.938	0.607
Providing information on hablat improvement	13	28	6	3	. 50	3.020	7.851	0930
Providing general wildlife information	12	33	1	3	49	3.102	18.079	0.259

- Chi-Squarc may not be a valid lest since 25% of the cells have expected counts less than 5 .
${ }^{2}$ Chi-Squars may not be a valid test since 42% of the cells have expected counts less than 5 .
' Chi-Square may not be a valid iest since 33% of the cells have expected counts hise then 5 .

Table G-6. Education level response to having seen the nongame check-off logo before receiving the survey.

Answer	Less than High School*			High School**			Trade School***		
	Frequency	Percent	Conf.Int.	Frequency	Tercent	Conf.int.	Frequency	Percent	Conf.Int.
No	9	75.00	24.500	45	64.29	11.225	31	60.78	13.400
Yes	0	0.00	0.000	14	20.00	9.371	12	23.53	11.642
Don't know	3	25.00	24.500	11	15.71	8.526	8	15.69	9.981
* $\mathrm{n}=12$				** $n=70$			*** $n=51$		

Table G-6. (Continued).

Answer	Some College***			College****			Graduate School******		
	Frequency	rercent	Conf.Int.	Frequency	P'ercent	Conf.Int.	Frequency	Percent	Conf.Int.
No	61	55.96	9.320	51	53.13	9.983	29	56.86	13.593
Yes	36	33.03	8.829	33	34.38	9.501	17	33.33	12.938
Don't know	12	11.01	5.876	12	12.50	6.616	5	9.80	8.161

Note: Chi-square $=12.265, \mathrm{~d}=10$, probability $=0.268$

Table G-7. Education level response to having heard or seen information about ONWP before receiving the survey.

Answer	Less than High School*			High School**			Trade School***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.
No	7	63.64	28.428	47	68.12	10.996	24	47.06	13.699
Yes	2	18.18	22.793	11	15.94	8.638	18	35.29	13.116
Don't know	2	18.18	22.793	11	15.94	8.638	9	17.65	10.463

Table G-7. (Continued).

Answer	Some College****			College****			Graduate School*****		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
No	69	63.89	9.059	58	60.42	9.783	30	58.82	13.507
Yes	30	27.78	8.448	34	35.42	9.567	17	33.33	12.938
Don't know	9	8.33	5.213	4	4.17	3.997	4	7.84	7.379
**** $\mathrm{n}=108$				***** $n=96$			***** $n=51$		

Note: Chi-square $=19.202, \mathrm{df}=10$, probability $=0.038$

Table G-8. Education level response to from where does the Wildlife Department receives most of its funding for wildlife that are not hunted or fished.

	Less than High School*			High School**			Trade Schnol**********)		
Funding Source	Frequency	Percent	Comínt.	Frequency	Percent	Confint.	Frequency	Percent	Confint.
State appropriations	1	8.33	15.638	2	2.86	3.903	3	6.09	6.583
Donations	2	16.67	21.086	10	14.29	8.198	5	10.00	8.316
Federal aid	1	8.33	15.638	2	2.86	3.903	2	4.00	5.432
State tax check-off	1	8.33	15.698	1	1.43	2.780	4	8.00	7.520
Wildive license plate sales	0	0.00	0.000	1	1.43	2.780	1	2.00	3.881
Hunting/fishing license fees	2	16.67	21.086	16	22.86	9.837	10	20.00	11.087
Sales of Dept. merchandise	2	16.67	21.086	0	0.00	0.000	1	2.00	3.881
Don't know	5	41.67	27.894	38	54.29	11.670	24	48.00	13.848
		* $\mathrm{n}=12$			** $n=70$			*** $n=50$	

Nole: Chi-square $=32.800, \mathrm{df}=35$, probability $=0.575$
Chi-Square may not be a valid test since 56% of the cells have expected counts less than 5 .

Table (č8. (Continued).

Funding Source	Some Coflege*			College**			Graduate School***		
	Frequency	Percent	Conf. ln .	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
State appropriations	8	7.41	4.939	10	10.53	6.171	6	12.00	9.007
Donations	19	17.59	7.181	17	17.89	7.708	3	6.00	6.583
Federal aid	4	3.70	3.562	3	3.16	3.517	2	4.00	5.432
Slate tax check-off	5	4.63	3.963	7	7.37	5.254	3	6.00	6.583
Wildlife license plate sales	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000
Hunting/fishing license fees	22	20.37	7.596	14	14.74	7.128	4	8.00	7.520
Sales of Dept. merchandise	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000
Don't know	50	46.30	9.404	44	46.32	10.027	32	64.00	13.305
* $\mathrm{n}=108$				** $n=95$			$\cdots{ }^{\prime \prime} n=50$		

Note: Chi-square $=32.800, \mathrm{df}=35$, probability $=0.575$
Chi-Square may not be a valid test since 56% of the cells have expected counts less than 5 .

Table G-9. Education level response to which items a 3 to 5 percent increase in the wholesale price would be supported to help fund programs for wildlife that are not hunted or fished.

Items	Less than High School*			High School**			Trade School ${ }^{\text {+** }}$		
	Frequency	Percent	Conflnt.	Frequency	Percent	Conf.InL	Frequency	Percent	Conf.Int.
Вinoculars	7	58.33	27.894	18	26.87	10.614	9	18.00	10.649
Camera/film	4	33.33	26.672	11	16.42	8.870	10	20.00	11.087
Bird sed	4	33.33	26.672	7	10.45	7.324	12	24.00	11.838
Camping equipment	5	41.67	27.894	22	32.84	11.245	13	26.00	12.158
Nature-related books	4	33.33	26.672	23	34.33	11.369	11	22.00	11.482
Recreational vehicles	4	33.33	26.672	22	32.84	11.245	16	32.00	12.930
None of the above	1	8.33	15.638	15	22.39	9.981	17	34.00	13.131
Other	0	0.00	0.000	9	13.43	8.165	4	8.00	7.520
		* $n=12$			* $n=67$			** $n=50$	

N(TE: The sum of the frequencies will be greater than n.
The sum of the percentages will be greater than 100%.

Table (G9. (Continued).

Items	Some College*			College**			Graduate Schooltat			Chi-sq. $d f=5$	Prob.
	Frequency	Percent	Conf.lnt	Frequency	Percent	Conf.lnt.	Frequency	Percent	Confint.		
Binoculars	17	16.19	7.046	20	21.05	8.198	11	21.57	11.288	12.882	0.025
Camera/film	20	19.05	7.511	15	15.79	7,333	9	17.65	10.463	2.534	0.771
Bird seed	21	20.00	7.651	30	31.58	9.347	13	25.49	11.961	11.407	0.044
Camping equipment	31	29.52	8.725	22	23.16	8.483	17	33.33	12.938	3.69	0.595
Nature-related books	36	34.29	9.079	32	33.68	9.504	15	29.41	12.505	3.011	0.698
Recreational vehicles	33	31.43	8.880	25	26.32	8.855	16	31.37	12.735	1.116	0.953
None of the above	30	28.57	8.641	36	37.89	9.755	16	31.37	12.735	7.828	0.166
Other	11	10.48	5.858	9	9.47	5.889	3	5.88	6.458	3.497	0.624

$N() T F$:. The sum of the frequencies will be greater than n.
The sum of the percenlages wifl he greater than 100%.

- Chi-Square may not be a valid fest since 25% of the cells have expected counts less than 5 .

Table G-10. Education level response to questons 10 thru 13.

Question		Less Than High Sxhool Responses							High School Responses						
		Strongy Suppar	Mildly Suppori	Neutal	Mildy Oppose	$\operatorname{stan} 2)^{4}$ Oppose	n	Average	stangy Surpori	Mildy Support	Neurrol	Mildly Oppos	strondy Oppose	π	Average
10	A user fee charged to anyone not possessing a funting or fishing license who uses Wildilie Department lands.	6	2	2	2	0	12	4.00	28	12	11	4	8	63	3.76
11	A uset lee charged to ANYONE who uses Wildife Department lands.	3	0	4	4	1	12	3.00	14	16	10	9	16	65	3.05
12	An increase in lines on autamobile eppeeding violations by 25 cents per mile (an average of $\$ 3$ per ticker).	6	1	1	1	3	12	3.50	20	14	9	8	13	64	331
13	A VOLUNTARY contribution bux added to motor vehicle registrabion lees to use tor widdiue that are not hunted or fished	2	4	4	1	1	12	3.42	24	15	17	7	3	66	3.76

Question		Trade School Responses									Some College Responsex				
		Strangy Suppar	Mildy Suppar	Nesteral	Mildly Oppose	Sirandy Opposer	n	Avernge	stuandy Support	Mildly Support	Neulral	Mildly Opprese	Strongly Opprar	ก	Average
10	A user fee charged to anyone not powsescing a hunting or fishing license who uses Wildisie Deparment lands.	22	7	9	2	12	52	3.48	31	30	16	9	21	107	3.38
II	A uset lee charged to ANYONE who uses Widlife Departmert lands.	8	7	11	10	15	51	2.67	20	34	19	9	2.5	107	3.14
12	An increase in fines on aulomobile speeding violations by 25 cents per mile (an average of 53 pro bicket).	11	11	12	5	14	52	300	24	23	19	9	32	107	2.98
13	A VOLUNTARY contrimution bor adder to motor vehide registration fees to use for widdlife that are not hunted or fished.	18	13	10	4	6	51	3.65	31	37	26	2	8	107	3.81

Table G-10. (Conilinired).

Questiev		Cullege Responses								Graduate schent Reypromes						
		Strongly surppori	Mituy suproul	Newtud	Mildly CrFom	Smerogly Opporn	π	Aviragi	stronely Surport	midī suprort	Neatral	Mildy Opross	Strongly Crfore	n	Average	dfld Proh
$--$	A user fee charged in anymen not possersing a hunting or fishing license who uses Wirdilie Deparment lands.	35	25	10	0	12	01	$3.69{ }^{-}$	16	14	5	6	7	18	7 T	20.0600 .454
11	A uscr le charged in ANYONE who use Wildilir Depusment lands.	1s	18	13	17	30	09	271	15	10	0	\bigcirc	6	40	380	30.5610 .061
12	An lincease in ines on autanoble speeding vielations by 25 rents per mule (an average of f per licket).	27	18	19	1	22	03	3.10	11	11	9	1	17	40	20_{6}	14.00x 0.700°
13	A VOLUNIARY comintullon bex addedto metor vehicle megstation fies to use for wildice that are nox hunted or instred.	34	37	17	2	1	\mathcal{M}	4.01	17	11	12	4	7	5)	3.53	28.20000000

- Chisquare may not be a valid lest sime 50\% of the cells have experted counls less than 5.

Table G-11. Education level response to which name the Nongame Wildlife Program should change.

	Less than High School*			High School**			Trade School***		
Names	Frequency	Percent	Conf.Int.	Frequency	Percent	Conl.lnt.	Frequency	Percent	Conf.lnt.
Nongame Wildlife I'rogram (no change)	4	36.36	28.428	28	43.75	12.154	24	48.98	13.997
Wildlife Diversity Program	0	0.00	0.000	3	4.69	5.179	0	0.00	0,000
Fish \& Wildlife Conservation Program	5	45.45	29.426	14	21.88	10.128	9	18.37	10.842
Natural Resources Program	0	0.00	0.000	3	4.69	5.179	1	2.04	3.959
Nongame \& Endangered Wildlife Program	2	18.18	22.793	16	25.00	10.609	14	28.57	12.649
Other	0	0.00	0.000	0	0.00	0.000		2.04	3.959
		* $n=11$			${ }^{* *} n=64$			$* * * * 9$	

Table Cr11. (Continued).

Names	Some College***			College ${ }^{\text {***** }}$			Gradurle School*****		
	Frequency	Percent	Conllnt.	Frequeñcy	Percent	Cons.lnt.	Frequency	Percent	Confint.
Nongame Wildlife Program (no change)	32	31.37	9.005	34	38.20	10.095	19	38.78	13.643
Wildlife Diversity Program	10	9.80	$5.7 / 1$	3	3.37	3.750	6	12.24	9.179
Fish \& Wildlife Conservation Program	27	26.47	8.562	16	17.98	7.978	15	30.61	12.905
Natural Resources l'rogram	8	7.84	5.218	8	8.99	5.942	2	4.08	5.540
Nongame \& Endangered Wildlife Program	19	18.63	7.556	26	29.11	9.448	6	12.24	9.179
Other	6	5.88	4.566	2	2.25	3.079	1	2.04	3.959

Note: Chi-5juare $=\mathbf{3 5}, 004, \mathrm{dt}=25$, probability $=0.088$
Chi-Square may not be a valid test since $4 ? \%$ of the cells have expected counts less than 5 .

Table G-12. Education level response to having donated money to ONWP and why/why not.

Answer	Reason(s)	Less than High School *		
		Frequency	Percent	Conl. Int.
No		12	100,00	0.000
	I was not aware of the program.	4	33.33	26.672
	I am not interested in nongame or endangered animal conservation.	2	16.67	21.086
	I do not approve of how the Nongame Wildife Program spends the money.	0	0.00	0.000
	I could not afford to donate at this time.	10	83.33	21.086
	1 did not feel my donation would "make a difference."	0	0.00	0.000
	1 intended to. but forgot.	0	0.00	0.000
	Other	1	8.33	15.638
Yes		0	0.00	0.000
	I enjoy wildlife.	0	0.00	0.000
	I support the concept of wildlife conservation in general.	0	0.00	0.000
	1 believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	0	0.00	0.000
	I support endangered species protection.	0	0.00	0.000
	The tax check-off is an easy way to contribute to the Nongame Program: if the check-off wasn't on the state tax form, I would not have donated.	0	0.00	0.000
	Other	0	0.00	0.000

Note: Chi-square $=16.870, \mathrm{~d} f=5$, probability $=0.005$

Table G-12. (Continued).

Answer	Reason(s)	High School **		
		Frequency	Percent	Conf, Int
No		68	98.55	2820
	I was not aware of the program.	30	43.48	11.697
	1 arn not interested in nongame or endangered animal conservation.	4	5.80	5.514
	I do not approve of how the Nongame Wildlife Program spends the money.	5	7.25	6.117
	1 could not afford to dorate at this time.	35	50.72	11.797
	I did not feel my donation would "make a difference."	2	290	3.959
	I intended to, bul forgot.	1	1.45	2820
	Other	3	4.35	4812
Yes		1	1.45	2820
	1 enjoy wildlire.	1	1.45	2.820
	I support the concept of wildlife conservation in general.	1	1.45	2.820
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	1	1.45	2.820
	1 support endangered species protection.	1	1.45	2.820
	The tax check-off is an easy way to contribute to the Nongame Programr; if the check-off wasn't on the state tax forn, I would not have donated.	0	0.00	0.000
	Other	0	0.00	0.000

Note: Chi-square $=16.870, \mathrm{~d} f=5$, probability $=0.005$

Table G-12. (Continued).

Answer	Reason(s)	Trade School		
		Frequency	Percent	Cond. Int.
No		39	76.47	11.642
	I was not aware of the program.	22	43.14	13.593
	I am not interested in nongame or endangered animal conservation.	2	3.92	5.327
	I do not approve of how the Nongame Wildlife Program spends the money.	1	1.96	3.805
	I could not afford to donate al this time.	16	31.37	12.735
	I did not feel my donation would "make a difference."	3	5.88	6.458
	I intended to, but forgot.	0	0.00	0.000
	Other	3	5.88	6.458
Yes		12	23.53	11.642
	I enjoy wildife.	10	19.61	10.897
	I support the concept of wildlife conservation in general.	12	23.53	11.642
	I believe conservation for wildjife that are not hunted or fished has been overlooked and this is a chance for direct suppor.	7	13.73	98444
	I supprort endangered species protection.	6	11.76	8843
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	5	9.80	8.161
	Othet	0	0.00	0.000

Note: Chi-square $=16.870, d f=5$, probability $=0.005$

Table C-12. (Continued).

Answer	Reason(s)	Some College ${ }^{\text {an* }}$		
		Erequency	Percent	Conf. Int.
No		87	8208	7.302
	I was not aware of the program.	53	50.00	9.519
	J am not interested in nongame or endangered anional conservation.	9	8.49	5.306
	I do not approve of how the Nongame Wildlife Program spends the money.	0	0.00	0.000
	I could not afford to donate at this time.	21	19.81	7.588
	I did not feel my donation would "makea difference."	2	1.89	2.590
	I intended to, but forgot.	2	1.89	2.590
	Other	7	6.60	4.728
Yes		19	17.92	7.302
	I enjoy wildlife.	12	11.32	6.032
	I support the concept of wildlife conservation in general.	13	1226	6245
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direcl support.	4	3.77	3.628
	I support endangered species protection.	8	7.55	5.029
	The tax check-off is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	4	3.77	3.628
	Other	1	0.94	1.840

Note: Chi-square $=16.870, d f=5$. probability $=0.005$

Table G-12. (Continued).

Answer	Reason(s)	College ${ }^{\text {-ma }}$		
		Frequency	Percent	Conf. Int.
No		83	87.37	6.680
	I was not aware of the program.	40	42.11	9.928
	I am not interested in nongame or endangered animal conservation.	4	4.21	4.039
	Ido not approve of how the Nongacoe Wildlite Program spends the money.	4	4.21	4.039
	I could not afford to donate at this time.	21	22.11	8.344
	1 did not feel my doration would "make a difference. ${ }^{\text {" }}$	9	9.47	5.889
	1 intended to, but forgot.	4	4.21	4.039
	Other	13	13.68	6.911
Yes		12	1263	6.680
	1 enjoy wildife.	10	10.53	6.171
	1 support the concept of wildlife conservation in general.	8	8.42	5.584
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	6	6.32	4.891
	I support endangered species protection.	6	6.32	4.891
	The tax check-off is an easy way to contribule to the Nongame Program; if the check-ofs wasn't on the state tax form, I wowld not have donated.	4	4.21	4.039
	Other	0	0.00	0.000

Note: Chi-square $=16.870, d f=5$, probability $=0.005$

Table G-12. (Continued).

Answer	Reason(s)	Graduate School *enen		
		Frequency	Percent	Coni. Int.
No		42	84.00	10.162
	I was not aware of the program.	25	50.00	13.859
	I am nol interested in nongame or endangened animal conservation.	3	6.00	6.583
	Ido not approve of how the Nongame Widdlife Program spends the money.	1	200	3.881
	I could not afford to donate at this time.	7	14.00	9.618
	I did not feel my donation would "make a difference."	4	8.00	7.520
	I intended to, but forgot.	1	2.00	3.881
	Other	7	14.00	9.618
Yes		8	16.00	10.162
	I enjoy wildlife.	8	16.00	10.162
	I support the concept of wildife conservation in general.	5	10.00	8.316
	I believe conservation for wildlife that are not hunted or fished has been overlooked and this is a chance for direct support.	2	4.00	5.432
	1 support endangered species protection.	6	12.00	9.007
	The tax check-oft is an easy way to contribute to the Nongame Program; if the check-off wasn't on the state tax form, I would not have donated.	4	8.00	7.520
	Other	0	0.00	0.000

Note: Chisquare $=16870$, di $=5$, probability $=0.005$

Table G-13. Education level response to gender.

Ciender	Less than High School*			High School**			Trade School***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Confint.
Male	6	60.00	30.364	36	54.55	12.013	40	78.43	11.288
Female	4	40.00	30.364	30	45.45	12.013	11	21.57	11.288

Table G-13. (Continued).

Gender	Some College***			College*****			Graduate School******		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Confint.
Male	59	54.63	9.390	68	72.34	9.043	36	72.00	12.446
Female	49	45.37	9.390	26	27.66	9.043	14	28.00	12.446
**** $n=108$				***** $n=94$			****** $n=50$		

Note: Chi-square $=15.640, \mathrm{df}=5$, probability $=0.008$

Table G14. Education levelresponse to age group.

Age Group	Less than ligh School*			High School**			Trade School***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Confint.
18-25 years	0	0.00	0.000	4	5.56	5.291	4	7.69	7.243
26-35 years	0	0.00	0.000	12	16.67	8.608	11	21.15	11.100
36-45 years	1	8.33	15.638	11	15.28	8.310	13	25.00	11.769
46-55 years	2	16.67	21.086	13	18.0¢	8.885	10	19.23	10.712
56-65 years	2	16.67	21.086	8	11.11	7259	4	7.69	7.24 .3
65 years or olcier	7	58.33	27.894	24	33.33	10.889	10	19.23	10.712
		* $\mathrm{n}=12$			** $n=72$			*** $n=52$	

Table G-14. (Continued).

	Some College****			College****			Graduate School******		
Age Group	$\overline{\text { Frequency }}$	Percent	Conf.InL	Frequency	Percent	Conf.lnt	Frequency	Percent	Conf.Int.
--									-- .
18-25 years	4	3.67	3.530	7	7.29	5.201	0	0.00	0.000
26-35 years	22	20.18	7.535	24	25.00	8.662	9	17.65	10.463
36-45 years	22	20.18	7.535	27	28.13	8.994	13	25.49	\$1.961
46-55 years	24	22.02	7.779	16	16.67	7.455	17	33.33	12.938
56-65 years	16	14.68	6.644	9	9.38	5.831	6	11.76	8.843
65 years or older	21	19.27	7.404	13	13.54	6.845	6	11.76	8.843
**** $\mathrm{n}=109$				***** $n=96$			$\cdots * * * * \sim 51$		

Note: Chi-square $=40.126, \mathrm{df}=25$, probability $=0.028$
Chi-Square may not be a valid test since 28% of the cells have expected counts less than 5 .

Table G-15. Education level response to race.

Race	Less than High School*			High Schoos**			Trade School***		
	Freguency	Percent	Conf.Int.	Frequency	Percent	Confilnt.	Frequency	Percent	Conf.lnt.
African-American	0	0.00	0.000	0	0.00	0.000	1	2.00	3.881
Asian or Pacific Islander	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000
Native American	4	33.33	26.672	11	15.71	8.526	7	14.00	9.618
White, not of Hispanic origin	7	58.33	27.894	59	84.29	8.526	40	80.00	11.087
White, of Hispanic origin	1	8.33	15.638	0	0.00	0.000	1	2.00	3.881
Other	0	0.00	0.000	0	0.00	0.000	1	2.00	3.881

Table G-15. (Continued).

	Some College****			College*****			Graduate School*****		
Race	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int	Frequency	Percent	Conf.Int.
African-American	2	1.87	2.566	1	1.05	2.052	3	5.88	6.522
Asian or Pacific Islander	0	0.00	0.000	1	1.05	2.052	1	1.96	3.843
Native American	9	8.41	5.259	7	7.37	5.254	4	7.84	7.452
White, not of Hispanic origin	91	85.05	6.757	83	87.37	6.680	41	80.39	11.005
White, of Hispanic origin	4	3.74	3.594	3	3.16	3.517	1	1.96	3.843
Other	1	0.93	1.823	0	0.00	0.000	1	1.96	3.843

Note: Chi-square $=28.505, \mathrm{df}=25$, probability $=0.285$
Chi-Spuare may not be a valid test since $69{ }^{2}$ of the cells have expected countr less than 5.

Table G-16. Education level response to marital status.

Marital Status	Less than High School*			High School**			Trade School***		
	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Never married	2	16.67	21.086	7	9.72	6.843	9	17.31	10.283
Married	4	33.33	26.672	46	63.89	11.095	36	69.23	12.545
Divorced/Separated	3	25.00	24.500	8	11.11	7.259	6	11.54	8.684
Widowed	3	25.00	24.500	11	15.28	8.310	1	1.92	3.733

Table G-16. (Continued).

Marital Status	Some College****			College****			Graduate School*****		
	Frequency	Percent	Conf.lnt.	Frequency	Percent	Conf.Int.	Frequency	Percent	Confint.
	- . . .		-- -	-	- .-	- -			
Never married	7	6.42	4.602	5	5.21	4.445	5	9.80	8.161
Married	70	64.22	8.999	71	73.96	8.779	39	76.47	11.642
Divorced / Separated	21	19.27	7.404	12	12.50	6.616	5	9.80	8.161
Widowed	11	10.09	5.655	4	4.17	3.997	2	3.92	$5 . .327$

Note: Chi-square $=27.607, \mathrm{df}=15$, probability $=0.024$
Chi-Square may not be a valid test since 21% of the cells have expected counts less than 5 .

Table G-17. Education level response to living in which type of setting during the past year.

Table G-17. (Continued).

	Some College****			College****			Graduate Schonl**m**		
Setting	Frequency	Percent	Cond.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
In open coundry but not on a farm	11	10.09	5.655	5	5.21	4.445	2	3.92	5.327
On a farm	3	2.75	3.071	3	3.13	3.481	1	1.96	3.805
In a small city or town	30	27.52	8.385	41	42.71	9.895	18	35.29	13.116
In a medium-size cily	31	28.44	8.469	26	27.08	8.890	18	35.29	13.116
In a suburh near a large cily	17	15.60	6.811	12	12.50	6.616	5	9.80	8.161
In a large city	17	15.60	6.811	9	9.38	5.831	7	13.73	9.444
*** $n=109$				***** $n=96$			$\operatorname{stancs} n=51$		

Note: Chi-square $=30.698, \mathrm{~J}=25$, prohability $=0.199$
Chi-Square may not be a valid test since 36% of the cells have expected counts less than 5 .

Table G-18. Education level response to household income per year.

	Less than I Iigh School*			High School**			Trade School***		
Income	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.lnt.
Less than \$10,000	5	41.67	27.894	18	26.09	10.361	7	14.58	9.985
\$10,000-\$20,000	6	50.00	28.290	15	21.74	9.733	12	25.00	12.250
\$20,000-\$30,000	1	8.33	15.638	15	21.74	9.733	11	22.92	11.890
\$30,000-\$40,000	0	0.00	0.000	12	17.39	8.944	7	14.58	9.985
\$40,000-\$50,000	0	0.00	0.000	7	10.14	7.124	4	8.33	7.819
\$50,000-\$75,000	0	0.00	0.000	2	2.90	3.959	6	12.50	9.356
\$75,000-\$100,000	0	0.00	0.000	0	0.00	0.000	1	2.08	4.041
More than \$100,000	0	0.00	0.000	0	0.00	0.000	0	0.00	0.000
* $\mathrm{n}=12$				** $n=69$			*** $n=48$		

Note: Chi-square $=136.674, \mathrm{df}=35$, probability $=0.001$
Chi-Square may not be a valid test since 38% of the cells have expected counts less than 5 .

Table G-18. (Continued).

Note: Chi-square $=136.674, d f=35$, probability $=0.001$
Chi-Square may not be a valid test since 38% of the cells have expected counts less than 5 .

Table G-19. Education level response to receiving more information (optional).

Response	Less than High Schnol*			High School**			Trade School***		
	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Yes	3	25.00	24.500	33	45.83	11.509	31	59.62	13.336
No	9	75.00	24.500	39	54.17	11.509	21	40.38	13.336

Table G19. (Continued).

	Some College***			College*****			Graduate School******		
Response	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.	Frequency	Percent	Conf.Int.
Yes	53	48.62	9.383	38	39.58	9.783	15	29.41	12.505
No	56	51.38	9.383	58	60.42	9.783	36	70.59	12.505

Note: Chi-square $=13.102, \mathrm{df}=5$, probability $=0.022$

APPENDIX H

INSTITUTIONAL REVIEW BOARD FORM

OKLAHOMA STATE UNIVERSITY INSTITUTIONAL REVIEW BOARD HUMAN SUBJECTS REVIEW

Date: 08-24-95
IRB\#: AG-96-009

Proposal Title: PUBLIC PERCEPTIONS OF THE NONGAME WLLDLIFE PROGRAM IN OKLAHOMA

Principal Investigator(s): James H. Shaw, Kimberly A. Kelly

Reviewed and Processed as: Exempt

Approval Status Recommended by Reviewer(s): Approved
ALL APPROVALS MAY BE SUBSECT TO REVIEW BY FULL INSTITUTIONAL REVIEW BOARD AT NEXT MEETING.
APPROVAL STATUS PERIOD VALID FOR ONE CALENDAR YEAR AFTER WHICH A CONITNUATION OR RENEWAL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD APPROVAL.
ANY MODIFCATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITTED FOR APPROVAL.

Comments, Modifications/Conditions for Approval or Reasons for Deferral or Disapproval are as follows:

Provisions received and approved.

Signature:

Date: September 6. 1995

VITA

Kimberly Ann Kelly
Candidate for the Degree of
Master of Science

Thesis: PUBLIC PERCEPTION OF THE NONGAME PROGRAM IN OKLAHOMA

Major Field: Wildlife and Fisheries Ecology
Biographical:

Personal Data: Born in Ponca City, Oklahoma, On January 1, 1971, the daughter of Gerald and Marityn Kelly

Education: Graduated from Ponca City High School, Ponca City, Oklahoma in May 1989; received a Bachelor of Science degree in Wildlife and Fisheries Ecology from Oklahoma State University, Stillwater, Oklahoma in May 1993. Completed the requirements for the Master of Science degree with a major in Wildlife and Fisheries Ecology at Oklahoma State University in December 1997.

Experience: Held several offices (president, corresponding-secretary, secretary, and executive board member) in the Oklahoma Student Chapter of the Wildife Sociery; co-coordinated Watchable Wildlife Weekend 1993 with Erich Langer of the Oklahoma Deparment of Wildlife Conservation; designed newsletter "Oklahoma Partners in Wildlife, spring 1993" for USFWS Ecological Branch in Tulsa, OK; presented paper "The Importance of Understanding Hunters and Antihunters in Wildlife Management; completed Project WILD workshop; co-designed "Oklahoma's Nongame Notebook" press releases with Jeremy Garrett of the Oklahoma Department of Wildlife Conservation; completed Project Learning Tree Workshop; employed by Oklahoma State University, Department of Zoology as a graduate teaching assistant from fall 1993 to spring 1996, employed by USFS as fire base carmp store clerk during July 1996; employed by Oklahoma State University, USFWS Cooperative Unit, Ouachita Region Herpefauna Diversity Project during May-June 1996 and June 1997.

Professional Memberships: Wildlife Management Institute, The Wildlife Society, Southeast Section of The Wildlife Society, Oklahoma Chapter of The Wildlife Society.

[^0]: - Chi-Square may not the a valid text since 28% of the cells have expected counts less than 5 .

[^1]: Note: Chi-square $=26.673, \mathrm{df}=14$, probability $=0.021$
 Chi-Square may not be a valid test since 21% of the cells have expected counts less than 5 .

[^2]: * $n=329$

[^3]: ' Chi-Square may not be a valid tea since $25 \%^{\circ}$ of the cells have expodod oounts less than 5

[^4]: - Chespuare may nut be a valid lest sime 33% of the cella have expecled counls less than 5.

