
A STUDY OF EFFICIENT PARSING

IN LZ ADAPTIVE DICTIONARY

COMPRESSION

By

LINKE

Bachelor of Science
Zhongshan University

Guangdong, P.R. China
1986

Master of Science
Zhongshan University

Guangdong, P.R. China
1992

Submitted to the Faculty ofthe
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1997

A STUDY OF EFFICIENT PARSING

IN LZ ADAPTIVE DICTIONARY

COJ\.1PRESSION

Thesis Approved:

Dean of the Graduate College

ii

PREFACE

The purpose of this research was to study three commonly known efficient

parsing problems of LZ adaptive dictionary compression schemes. They are the efficiency

of finding the longest match between the look-ahead buffer and the text window, coding

redundancy and parsing strategies. We introduced an A VL tree data structure to the

original LZSS variant and the Knuth-Moore-Pratt string matching algorithm to the LZ77

vari.ant, and compared their performances. We also tried to modifY the one-bit flag fixed

length coding method of LZSS to a two-bit flag variable length coding method and

investigated the effort. Finally, we discussed a newly presented Non-Greedy parsing

strategy.

Acknowledgments and thanks go to my thesis advisor Professor John Chandler

for his great help, guidance, and patience during the entire work. My thanks also go to

Dr. Huizhu Lu and Dr. K.M. George for their helpful suggestions to my research. I also

wish to give thanks to Dr. Kathleen Kaplan who spent a lot of time to answer my

questions on string matching and generously lent me all the related papers and books.

I am very thankful for the love and encouragement fi'om my families, my parents,

my mother-in-law, my younger brother, especial.ly my wife Kaiping Deng. I cannot

imagine, without all the help from these kind people, I could have finished my research on

time.

III

TABLE OF CONTENTS

Chapter

1. INTRODUCTION

1.1 Prohlem Statement

].2 Origination Of The Thesis

II. AN OVERVIEW OF TEXT COMPRESSION

2.1 Computational Theories For Data Compression

2.2 Adaptive DictionalY Compression

2.2.1 Adaptive Dictionary Encoders: Ziv-Lernpel Coding

2.2.2 LZ Variants

2.3 Problems With LZ Families

2.3.1 String Matching Problem

2.3.2 Codi.ng H..edundancy

2.3.3 Parsing Strategies

III. FINDING TfIE LONGEST MATCH

3.1 An Overview Of Different Schemes

3. t. 1 Unsoned List

3.1.2 Sorted List

3.1.3 Binary Tree

3.1.4 Trie

3.1.5 Hash Table

3.2 Case Study I: Applying KMP Algorithm To Data Compression

3.2.1 The Prefix Function For A Pattern Of KMP

3.2.2 An Example Of How KMP Algorithm Works

3.2.3 Adapt KMP For Finding The Longest Match

3.2.4 Applying The KMP To A Data Compression Program

3.3 Case Study 2: An Improvement Approach to the LZSS

3.3.1 Using An Binary Tree To Find The Longest Match

3.3.2 Data Structure Used In The Original LZSS

iv

Page

I

2

3

5

5

8

l)

10

12

13

13

14

15

15

15

16

17

18

19

19

20
21

22

22

24

24

24

3.3.3 Implementation OfLZSS Using Binary Tree Algorithm 25

3.4 The AVL Tree Version For The LZSS-LZAVL 26

3.4.1 Data Structure Used In LZAVL 27

3.4.2 The Algorithm for Rebalancing After Insertion And Deletion 28

3.5 Description OfMethods 31

3.6 Boyer-Moore Algorithm 32

3.6.1 An Example of How BM Algorithm Works 34

3.6.2 Can The BM Algorithm Be Used To Find The Longest Match? 34

IV. PERFORMANCE ANALYSIS AND corvlPARISON 37

4.1 Measure Of Practical Performance 37

4.2 Choosing Test Data 39

4.3 Performance Comparison 39

4.4 Experimental Results Analysis 44

4.5 Memory Usage For Each Scheme 50

V. CODING REDUNDANCY 51

5.1 A Two-Bit Flag Scheme For LZSS 51

5.2 Experimental Results 53

5.3 Performance Analysis 54

VI. PARSING STRATEGIES 57

6.1 A "Non-Greedy" Parsing Scheme 58

6.2 Time Comp]exi.ty Analysis 61

6.3 Comparison And Conclusion 62

VII SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK 63

7.1 Summary And Conclusions 63

7.2 Suggestions For Future Work 64

SELECTIVE BIBLIOGRAPHY

v

66

LIST OF TABLES
Table

2-1 Summary Of Principal LZ Variations

3-1 The Four Cases OfInsertion Of An AVL Tree

4-1 Comparison Of Ratios And Speeds With N= 2 10 And F= 24

4-2 Comparison Of Ratios And Speeds With N = i I And F= 24

4-3 Comparison Of Ratios And Speeds With N = 2 12 And 1,'= 24

4-4 Comparison Of Ratios And Speeds With N = i U And F= 25

4-5 Comparison OfRatios And Speeds With N = 2 1J And F= 25

4-6 Comparison Of Ratios And Speeds With N= 2 12 And F= 25

4-7 Comparison Of Search Length

4-8 Comparison Of Search Length

4-9 Comparison Of Ratios & Speeds

5-1 Compression Ratios Of One-Bit Flag And Two-Bit Flag Schemes

5-2 Compression Ratios Of One-Bit Flag And Two-Bit Flag Schemes

vi

Page

]I

29

40

40

41

41

42

42

43

44

49

53

54

Figure
LIST OF FIGURES

Page

2-1 Data Compression = Modeling + Coding 6

2-2 The LZ78 algorithm 10

3-1 Using Unsorted List To Find The Longest Match 16

3-2 Using Sorted List To Find The Longest Match 16

3-3 Using A Binary Tree To Find The Longest Match 17

3-4 Using A Trie To Find A Longest Match }8

3-5 An Example Of How KMP Algorithm Works 20

3-6 Implement The "Sliding Window" Concept in a data compression program 23

3-7 Two Cases Of Rotations For InseI1ion In An AVL Tree 32

3-8 Three Cases Of Rotations For Deletion In An AVL Tree 33

3-9 An Example OfI-Iow The BM Algorithm Works 36

4- I Compression Speed Comparison Of Different Schemes 4S

4-2 Speed Comparison Of LZAVL And LZSS For Large Dictionary 49

5-] Calculate the possible improvement of the two-bit scheme 55

6-1 An Example To Illustrate Different Parsing Strategies 57

6-2 The Non-Greedy LZW Compression Algorithm 59

vii

CHAPTER I

INTRODUCTION

Data compression seeks to reduce the munber of bits used to store or transmit

information. This field is so interesting that it has been extensively studied for more than

40 years and has grown in the last 25 years to a point where taking a comprehensive look

at every variety of compression scheme is simply not possible. In general, the techniques

can be categorized into two major families: lossy and lossless. The former is usually

applied to image and digitized speech compression where slight degradation of the

information is acceptable, and the latter to text compression where complete accuracy is

important. Approaches to text compression can be divided into ad hoc, statistical and

dictionary techniques [Williams90] [BeIl90] [Storer88], and they can be further

characterized as static, semi-adaptive and adaptive methods, respectively (ad hoc

techniques only use static methods), based on what kind of modeling they llse. Statistical

models generally encode a single symbol at a time; reading it in, calculating a probability,

then outputting a single code. This kind of method can get fairly good compression

(depending on how precisely the probability is calculated) but they are commonly slow. A

dictionary-based scheme, on the other hand, uses a different concept. It reads in input data

and looks for groups of symbols that appear in a dictionary. If a string match is found, a

pointer or index into the dictionary can be output instead of the code for the symbol. The

longer the match, the better the compression ratio. Dictionary-based schemes use

relatively simple coding methods. They usually work fast and are easily implemented in

1

hardware. In addition, it has been proved that every dictionary scheme has an equivalent

statistical scheme which achieves exactly the same compression [BeU90].

Until 1980, most general compression schemes used statistical madding. But in

1977 and 1978, Jacob Ziv and Abraham Lempel described a pair of compression methods

using an adaptive dictionary (Ziv77][Ziv78]. The appearance of these two algorithms

attracted much study that has resulted in many variants. We may call these variants two

families ofLZ algorithms.

The main two factors that differ between variants of LZ coding are whether there

is a limit to how far back a pointer can reach, and which sub-string within this limit may be

the target of a pointer. The reach of a pointer into earlier text may be unrestricted (a

growing window), or it may be restricted to a fixed-size window of the previolls

characters. The choice of sub-strings can be either be unrestricted or limited to a set of

phrases, or limited to a set of phrases chosen according to some heuristic.

] .] PROBLEM STATEMENT

LZ families use adaptive dictionary schemes to compress text data. Because

dictionary coding achieves compression by replacing groups of consecutive characters

(phrases) each time with indexes into the dictionary, instead of encoding one character

each time as a statistical method does, its speed is relatively faster. But one of the most

time-consuming bottle-necks of any LZ77 compression scheme lies in the speed of finding

the longest match (prefix) between two strings. In the thesis, we will first focus on this

efficiency problem.

2

The other research point is the size of each output coding. It is obvious that the

smaller size the heuer, as long as the output coding contains the same (compact)

information.

Another research point to be investigated here is the parsing strategies problem.

Finding a longest match in itself is a greedy parsing strategy. Most variants use this

strategy, but there are still some variants that insist on using "non-greedy" parsing. There

exists some argument between these two parsing strategies.

Intuitively, the larger the dictionary referenced, the better the compression result

that will be achieved, but it needs much more memory and careful maintenance. As the

computer memory becomes more and more inexpensive, higher speed and better

compression ratio have gained more concern.

In this thesis, we are going to probe into the above three problems and try some

new approaches. We will use two well-known variants of LZ families: LZSS and LZW for

the performance comparison.

1.2 ORGANIZATION OF THIS THESIS

The thesis will be organized as follows: Chapter I explains the motivation for the

research and the thesis structure. Chapter II introduces some fundamental concepts and

computational theories for data compression, including an overview on text compression

techniques, especially on LZ families. Chapter III will discuss' the string matching

problems by investigating two effective algorithms in finding the longest match. In Chapter

IV we will do some performance comparisons of different string matching schemes and

3

give a complete analysis on how we improved the original LZSS variant. Chapter V will

emphasize the coding redundancy problem. In this section, we try to employ one extra bit

in the original LZSS to examine the effect on the compression ratio. Chapter VI discusses.

"Greedy" and "Non-Greedy" parsing problems by analyzing the time complexity of one

newly presented LZW version using "Non-Greedy" parsing schemes. The last chapter

summarizes all our work and suggests further study.

4

CHAPTERll

AN OVERVIEW ON TEXT COMPRESSION TECHNIQUES

2.1 COMPUTATIONAL THEORiES FOR DATA COMPRESSION

There are two areas of computational theory that deal with representation of

information: Coding Theury and infurmation Theory. Coding Theory deals with reliability

in transmitting information, and Information Theory deals with efficiency in transmitting

information.

In Information Theory, Entropy is a term used as a measure of the quantity of

information. The word entropy was borrowed from thermodynamics, and it has a similar

meaning. The higher the entropy of a message, the more information it contains. The

entropy of a symbol is defined as the negative logarithm of its probability. To determine

the in£ormation content of a message in bits, we express the entropy using the base 2

logarithm:

Number of bits = - Log2 (probability)

This means that more likely messages, having greater probabilities, contain less

information. In other words, the more surprising the message, the more information it

contains. The entropy of an entire message is simply the sum of the entropy of all

individual symbols.

We should mention here that, unlike the thermodynamic measure of entropy, we

can use no absolute number for the information content of a given message. The

5

probability for a given symbol is actually the probability for a given model, not an absolute

number. Ifwe change the model, the probability will change with it.

Based on the idea that entrop'y can determine how many bits of information are

actually presented in a message, we can use a technique to reduce the information

redundancy. It is data compression. This technique is best described using the following

formula:

Data Compression = Modeling + Coding

That is, a data compression process can he viewed as a combination of two separate

processes: modeling and coding. A mudel is simply a collection of data and rules used to

process input symbols and determine which code(s) to output, so modeling is the process

of applying these rules. Symbols that are to be stored or manipulated by a computer are

converted to codes. This process is referred to as coding.

Compressor Decompressoi

Figure 2-1 Data Compression = Modeling'" Coding

The task of finding a suitable model for a given text is an extremely important

problem in compression. There are three ways that the encoder and decoder can maintain

6

I?

the same model: static, semi-adaptive, and adaptive. In static modeling, the encoder and

decoder agree on a fixed model (i.e. a code book) regardless of the text to be encoded.

During the process of compression and decompression, the model does not change. This

kind of modeling is simple, easy to implement, but not highly efficient because both sides

must have a large "general purpose code hook." A semi-adaptive scheme is thus

introduced to create an even better suited "code book." Before the encoder encodes a

message, the encoder reads the message, writes down the most frequently used words, and

uses them to make up a code book specifically for that message. In the second pass, it

encodes the message by checking its newly created code book. But this kind of scheme

must manage to pass that code book to its receiver, usually by embedding a code table

into the compressed file. This is generally better than a static method because it uses a

better suited and relatively smaller dictionary. The semi-adaptive method could be

impractical in network communication because of the two-pass nature of parsing. In

adaptive modeling, on the other hand, the modeling is continuously self-modified based on

the "knowledge" it just "learned" from the text transmitted. This kind of method only

needs one pass, which is very useful especially in a network environment where the end of

a message ensemble is not predictable.

We can say that a static technique will always yield better compression than an

adaptive technique on the data for which the static technique has been tuned. This is

because the adaptive technique must spend t[me learning what the static technique already

"knows". But static models may exhibit an unbounded inefficiency if they are fed

unsuitable data. Thus, the only advantage that static models have over dynamic models is a

7

constant-order compression advantage for the particular kind of data for which they were

tuned.

2.2 ADAPTIVE DICTIONARY COMPRESSION

Approaches to text compression can be divided into two classes: statistical and

dictionary. In statistical coding each symbol is assigned a code based on the probability

that it will occm. Highly probable symbols get short codes, and vice versa. For instance,

the statistical Hoffman coding uses this method. In dictionary coding groups of

consecutive characters, or "phrases," are replaced by a shorter code. The phrase

represented by the code can be found by looking it up in a "dictionary." It is only recently

that it has been shown that most practical dictionary coding schemes can be outperformed

by a related statistical coding scheme.

The Dictionary approach became popular for several reasons. First, it is intuitive.

Second, the size of the indexes to the dictionary can be chosen to align with machine

words, expediting an efficient implementation. Third, it can achieve good compression

with higher speed and lower memory requirement.

Like statistical approaches, dictionary approaches also use static, semi-adaptive or

adaptive modeling. But they have to find some way to pass the dictionary from the

transmitter to the receiver if necessary. Static techniques do not need to do this since both

sides already have a "ready-to-use" dictionalY; semi-adaptive techniques need to transmit

the dictionary before transmitting the message; adaptive techniques, like static methods,

do not need to transmit the dictionary. Instead, the transmitter and receiver both build the

8

•

same dictionary incrementally, adding to it as each instance (or group of instances) is

transmitted. At each point during the coding, the current dictionary is used to transmit the

next portion of the message.

2.2, I Adaptive Dictionary Encoders: Zip-Lempel Coding

Almost all practical adaptive dictionary encoders are encompassed by a family of

algorithms derived from Ziv aJld Lempel's work [Ziv77] [Ziv78]. This family is called Ziv-

Lempel coding, abbreviated as LZ coding.

Ziv-Lempel coding re£ers to two distinct but related coding techniques first

presented by Ziv and Lempe1 in two papers published in 1977 and 1978. The fimdamental

idea behind LZ algorithms is that sub-strings of the message are replaced by a reference

(e,g. an <offset, length> tuple) to a sub-string in an earlier part of the message.

The first compression algorithm described by Ziv and Lempel is commonly

referred to as LZ77. It is relatively simple, The dictionary consists of all. the strings in a

window into the previously read input stream. A file-compression program, for example,

could use a 4K-byte window as a dictionary. While new groups of symbols are being read

in, the algorithm looks for matches with strings found in the previous 4K bytes of data

already read in. Any matches are encoded as pointers sent to the output stream.

LZ77 and its variants make attractive compression algorithms. Maintaining the

model is simple; encoding the output is simple; and programs that work very quickly can

be written using LZ77. Programs such as PKZIP and LHarc use variants of the LZ77

algorithm, and they have proven very popular.

9

The LZ78 program takes a different approach to building and maintaining the

dictionary. Instead of having a lim.ited-size window into the preceding text, LZ78 builds its

dictionary out of all the previously seen symbols in the input text. But instead of having

carte blanche access to all the symbol strings in the preceding text, a dictionary of strings

is built, a single character at a time. This incremental procedure works very well at

isolating frequently-used strings and adding them to the table. Unlike LZ77 methods,

strings in LZ78 can be extremely long, which allows for high-compression ratios.

Ziv (no bound on length)

~---I--IO---,--_l...-----'-_l...-----'-_....TO
Message
slides out

0

I w

2 0

3 01

4 00

5 m.

#0

#3 114

Figure 2-2 The LZ78 Algorithm
The LZ78 algorithm builds a dictionary of phrases and repeatedly transmits the number
of the longest dictionary entry matching the Ziv, followed by one instance after that. After
each pluase is transmitted, a new phrase is added to the dictionary. The new phrase is the
phrase transmitted plus the following instance.
The dictionary can be visually described (orginazed) as a multi-way tree (Irie). Al each
step, the algorithm transmits the number of the tip of the longest matching branch. The
new phrase is then added by appending a new leaf to the tip node.
The above diagram depicts the processing of the string wooloomooloo llsing LZ7&
algorithm.

2.2.2 LZ Variants

Bell, Cleary and Witten [BeIl90] identified four LZ77 variants and SJX LZ78

variants. They are listed in Table 2-1.

10

In this chapter, we aloe going to focus our discussion on two typical valiants of

LZ77 and LZ78, respectively. They are LZSS and LZW.

LZSS improved the original LZ77 in two approaches: llsmg a binary tree to

maintain the dictionary, which significantly speeds up the procedure of finding the longest

match; eliminating the third output element in the original output triple to achieve a better

compression rati.o.

Based on the text window size and the look-ahead buffer size it is using during

encoding, LZSS employs a "break-point" to determine whether to output single

character(s) or a pointer tuple. For example, if the longest match is two unencoded

characters, then the output will require 16 bits. But if we use a pointer tuple for the

output, it needs 17 bits, totally, and we should simply output the two characters instead of

outputting the pointer tuple. This break-point changes with the text window size and look-

ahead buffer size defined.

An extra bit is added as a flag to each pointer tuple or character to distinguish

between them. For instance, bit 0 denotes the following encoded content is a character.

When decoding, the decoder will read 8 bits after the bit 0; bit 1 denotes the following

encoded content is a pointer tuple, the decoder will then read a fixed number of bits for

the match location and a fixed number of bits for the match length.

LZ77

LZR

Table 2-1

Ziv and Lempel
(1977)

Rodeh el aL.
(1981)

Summary Of Principal LZ Variations (Bel190]

Pointers and characters alternate
Pointers indicate a substring in the previous N characters

Pointers and characters alternate
Pointers i.ndicate a substring anywhere in the previous characters

11

LZSS

LZB

LZH

LZW

Bell (1986)

Bell(1987)

Brent{l987)

Welch (1984)

Pointers and characters and distinguished by a flag bit
Pointers indicate a substring in the previous N characters

Same as LZSS, except a differenl coding is used for pointers

Same as LZSS, except Huffman coding is used for pointers all a second
pass

The output contains pointers only
Pointers indicate a previously parsed substring
Pointers are of fixed size

LZC Thomas et al.
(1985)

LZT Tischer (1987)

LZMW Miller and
Wegmall (1984)

LZJ jakobsson
(1985)

LZFG Fiala and
Greene (1989)

Th.e output contains pointers only
Pointers indicate a previously parsed substring

Same as LZC but with phrases in a LRU list

Same as LZT but phrases are buill by concatenating the previous two
phrases

The output contains pointers only
Pointers indicate a substring anywhere in the previous characters

Pointers select a node in a trie
Strings in the trie are from a sliding window

The transition from LZ78 to LZW parallels that from LZ77 to LZSS. The output

code of the original LZ78 consists of an index and a character. The index is a pointer to

the dictionary, while the character is the first character that mismatches the dictionary For

example, for a coming character stream "hekkoss", the longest match we find in the

dictionary is "hekk" at index 354, then the output will be <354, "0">.

Like LZSS, LZW mainly improved the original LZ78 in two approaches: The

initialized dictionary is preloaded with 256 characters (the alphabet ,of ASCII) instead of

the original one containing only an empty string, eliminating the last character of each new

phrase in the original output code because it can be encoded as the first character of the

12

j

next phrase These two approaches guarantee that the output code is always a dictionary

entry.

2.3 PROBLEMS WITH LZ FAMILIES

There are three kinds of problems that will be encountered by the original LZ77

and LZ78 algorithms. They are string matching, output code redundancy and parsing

strategies.

2.3.1 String Matching Problem

This is clearly a major performance bottleneck problem in the LZ77 approach.

When encoding, it has to perform string comparison against the took-ahead buffer for

every position in the text window. As we want to improve compression performance by

increasing the text window size and thus the dictionary, this performance bottleneck only

gets worse.

LZ78, on the other hand, uses a different way to find the longest match. It needs to

walk through the dictionary tree, so the traversing efficiency is critical.

2.3.2 Coding Redundancy

To increase the compression rate, we can increase both the size of the text window

and the size of the look-ahead buffer. But at the same time, we nee~ to use more bits to

represent those indexes in the output tuples, which may, on the contrary, decrease the

compression rate. This problem happens both in LZ77 and LZ78.

13

2.3.3 Parsing strategies

Once a dictionary has been chosen, there is more than one way to choose which

phrases in the input text will be replaced by indexes to the dictionary. The task of splitting

the text into phrases for coding is called parsing. The most practical approach is greedy

parsing, where at each step the encoder searches for the longest string (prefix) to encode

them. For example, if a dictionary M={a,b,ba,bb,abb}, and coding C(a)=OO, C(b)=OIO,

C(ba)=OIIO, C(bb)=Olll, and C(abb)=l, then "babb" is coded greedily in 8 bits as

C(ba).C(ab)=OIIO.Olll.

Unfortunately, "greedy" parsing is not necessary optimal. In the above example,

"babb" can also be coded in only 4 bits as C(b).C(abb)=OlO.l. However, determining a

"complete" optimal parsing can be difficult in practice, because there is no limit to how far

ahead the encoder may have to look.

14

'f

1

CHAPTERID

FINDING THE LONGEST MATCH

3.] AN OVERVIEW OF DIFFERENT SCHEMES

Both LZ77 and LZ78 data compression techniques need to find the longest

(prefix) match between the string in the look-ahead buffer and the one in the dictionary,

which is the most time-consuming process during the compression.

Most string matching algorithms deal with finding an exact match. Some of them

have been proved very practical, like the Boyer-Moore algorithm and its variants. But the

algorithms for approximate match can hardly be expected to be as efficient because of two

reasons: first, we do not know the match length in advance; second, we have to keep the

knowledge of each previous (prefix) match and thus guarantee that each shift will not miss

the potential longest match.

Some known data structures that can be used to find the longest match are listed

below [BeIl90] (suppose N is the number of characters in the text window).

3. 1.] Unsorted List

This is a trivial way to find a longest match by performing a linear search of the

text in the window. Since the window is fixed-size, the time this algorithm takes is

independent of the text size; in addition, it requires relatively little memory. However, the

approach is slow since a window of N characters requires at least N character

comparisons. For example, finding the longest match in the following unsorted list (Figure

15

-

3-1) [BeU90] IS actually doing a string pattern searching between "bchacbabab" and

"babe".

already encoded

6 7 8 91001234

,,'- ~A /

Look ahead buffer

Figure 3-1 Using unsorted list 10 find the longest match [Be1190]

3. 1.2 Sorted List

Note: in Figure 3-1, number
serial 5,6, ... 3,4 is a modulo
indexing ofN= II, because
in LZ77 schemes, we need
to shift the characters in the
text window. Tills is used to
simplify the process by
overwriting Ihe characters to
be shifted.

This is a more sophisticated data structure than an unsorted list. Suppose that a

string I is inserted at its correct position in a sorted list, between the strings Xa and Xb-

Then the longest match for I in the list will be a prefix of either X(I or Xb. Figure 3-2

[BeIl90] shows a sorted list that corresponds to the window of Figure 3 -1. Obviously, if 1=

"babe", the longest (prefix) match is "bab", the prefix of X". Finding the point of insertion

can be achieved by a binary search, using about logN substring comparisons, but insertion

and deletion require O(N) operations.

Figure 3-2 Using sorted list 10 find the longest match [BeIl90]

"babe"

String position

aba" abab 0

~
acba 8

1'& baba 10
~

iA' bacb 7

/ bcba 5

cb" cbab <)

cbac 6

16

3.1.3 Binary Tree

A successful variant of LZ77, LZSS, uses a binary search tree to find the longest

match to make the insertion and deletion of sub-strings more efficient than for the sorted

list. Figure 3-3 [Ben90] shows a binary tree containing the strings of the previous

example. When the string "babe" is inserted, the two longest match candidates will be on

the path from the root to the point (node) of insertion.

r I to be

(
~~--i~I inserted

babe ~ here

Figure 3-3 Using a binary Lrec Lo tiod the I.ongest match [Be1l90J.

We need to further explain the rules for finding the longest match in a binary tree

as follows:

"If X a is the parent node of I, then Xb is the node where the insertion path last

turned left; otherwise, Xa is the node where the insertion path last turned right."

For instance, in Figure 3-3 if I is "babe", then x" is "baba" and Xb is "bacb" (the last

turn left node), because both "babe" and "baeb" are the two closest nodes to "babe".

17

I
.1
i

3.1.4 Trie

A trie is a multiway tree with a path from the root to a unique node for each string

represented in the tree. Figure 3-4 [Be1l90] gives an example of a trie indexing a window.

The most important feature of this data structure is that only the unique prefix of each

string is stored, as the suffix can be determined by looking up the string in the window. A

longest match is found by following down the tree until no match is found, or the path

ends at a leaf. And the longest match can be found at the same time as inserting a new

string, as with the binary tree algorithm.

5 6 7 8 9 10 0 1 2 3 4

~
already encod~d Look ahead buffer

c

Figure 3-4 Using a Lrie to find a Jongesl match [Be1I90l

L- . -'

There are many optional ways in designing the nodes' data structure of a trie. For

example, each node may contain 256 possible branches (the total number of ASCII

characters). This is the fastest and simplest way but will waste much memory space

18

because each node uses only a portion of those "possibilities". The other approach is using

a linked-list at each node, with one item for each possible branch. This uses memory

economically, but the approach can be slower due to the time taken to search the list. A

commonly optimal technique used is using a single hash table with an entry for each node.

To determine the location of the child of the node at location n in the table for input

character c, the hash function is supplied with both nand c. This algorithm is used

successfully in the programs "compress" (LZC) and LZW.

3.1.5 Hash Table

Hash tables are normally associated with exact matches. It is possible to use them

to find longest matches if all prefixes of each substring are inserted in the hash table. Then

to find the longest match of the string x, we first test whether x[1] is in the table, then

x[1..2], then x[1..3], and so on. Ifx[l..i+l] is the first such string not found, the longest

match must be x[l..i]. This approach is really equivalent to the implementation of a trie

using a signal hash table, as mentioned above.

3.2 CASE STUDY 1: APPLYING KMP ALGORITHM TO DATA COMPRESSION

Rodeh et a1. [Rodeh8l] pointed out that a straight-forward implementation of the

Ziv-Lempel algorithm takes D(n2
) time to process a string of length n. Hashing was

proposed by Welch [Welch84J to achieve D(n) processing time. The Knuth-Morris-Pratt

algorithm is one of the best linear-time string matching algorithms. The algorithm achieves

19

a 8(n + m) running time. It does the pattern matching using an auxiliary function n[1..m]

(prefix function) precomputed from the pattern in time O(m).

Even though the original algorithm is used to find an exact match, we can modify it

easily to adapt for fmding the longest (prefix) match without pain. For a companson

purposes, we first implement an LZ compression program using the KMP string matching

scheme, named as LZKMP.

3.2.1 The Prefix Function For A Pattern Of KMP Algorithm

T

(a)

T

(b)

(c)

Fi/,'Ure 3-5 An example of how KMP algorithm works [Corman90).

The prefix function 7r. (a) The pallem P = ababaca is aligned with a
lext T so the tilst q=5 characters match. Matching characters, shown shaded,
are cOJUlected by vertical lines (b) Using only our knowledge of the 5
matched characters, we can deduce that a shift of .\-1-] is invalid, but that a
shill of 5'=s+2 is consistent with everything we know about the text and
theret(Jre is potentially valid. (c) The usc1iJi information for such deductions
can be precomputed by comparing the pattern with itself. Here, we see that
the longest prefix of P that is also a suffix of ns is 7(3. This information is

. precomputed and represented in the array 7(, so that n[5J=3. Given that q
characters have matched successfully at shifts, the next potential valid shift is
at s '=s+(q-n(qJ)

20

The prefix fimction of the KMP algorithm for a pattern encapsulates the

knowledge about how the pattern matches against shifts of itself This information can be

used to avoid testing useless shifts in the straight-forward pattern-matching algorithm.

We formalize the pre-computation as follows. Given a pattern P[Lm], the prefix

fimction for the pattern P is the function n: {1,2, ... ,m} -)- {O,I, ... ,m-l} such that n[q] =

max{ k : k < q and Pk :::> Pq }. That is, n[q] is the length of the longest prefix of P that is a

proper suffix of Pq .

3.2.2 An Example On-low KMP Algorithm Warks

Figure 3-5 [Corman90] shows an example of two string matching using the KMP

algorithm.

3.2.3 Adapt KMP for finding the longest match

The original KMP matching algorithm is given in pseudo-code below:

KMP-Matcher(T, P)

1 n <- length[T]

2 m f- [eng/hE P]

3 1C <- Compute-Prefix-Function(P)

4 qf-"O

5 for i f- 1 to n

6 do while q > 0 and P['1+ 1] -:f:- 7[i]

7 do q f- Jl[q]

8 if P[q+1] = I[i]

9 then q f- q+l

10 if q = m

11 then print "Pattern occurs with shift" i-m

12 q f-TC[q]

21

Compute-Prefix-Function(P)

-

1

2

3

4

5

6

7

8

9

10

m ~ length[P]

n[1]~O

k~O

for q ~ 2 to m

do while k > 0 and P[k+]] ;t: P[q]

dok ~ n[q]

ifP[k-l- 1] = P[q]

then k t-- k -I- 1

n[q]t--k

.·eturn Jf

~

i..
From the above algorithm we know that KMP guarantees that each step has q

prefix characters that match. Each shift for the next step is computed by Jr[q] (s' = s + (

q - n[q]). So if we trace the largest q and its position, we can adapt KMP to finding the

longest prefix match.

3.2.4 Applying the KMP To A Data Compression Program

Applying the KMP algorithm to a data compressi.on program is not a very difficult

task. We only need to use a text window (an array containing both the previously encoded

text and the look-ahead buffer) as the data stmcture.

unsigned char window[WINDOW_SIZE]

It is a simple data structure. But how can we implement the "Sliding Window" on

this character array?

A II Sliding Window" is just used, for conceptual convemence, to discuss the

algorithm. We imagine it as though it were truly sliding II across" the text, progressing from

the end of the buffer to the front as the encoding process was executed. But in the

22

~

~ ..,
aI ;

..
(I ,

I

. ,

implementation, we cannot actually "slide" the content of a text window (a very long

string) because moving several thousand bytes of memory will waste mllch more time than

finding the longest match itself

A workable solution could be, as mentioned in Figure 3-1 note part: We employ a

sliding index or pointer into a fixed buffer (text window). Instead of moving the phrases

toward the front of the window, a sliding pointer would keep the text in the same place in

the window and move the start and end pointers along the buffer as text is encoded. This

idea is illustrated as follow.

r Text windows
starts here.

Message
slides out

vi
Look-ahead
buffer starts here

1 MOO ~ Text window
slides in

Text windowsr starls here.
Message
slides out

~ Longest matdl~ To be encoded

~ L<Jok-ahead
tL buffer starts here

~~--'-----'----'---'---'c-"'-~-'-----,----r-,---

~ Text window
slides in

New look-ahead buffer contenl
is "IMOO".

~I
I
I

Figure 3-6 Implement the "Sliding Window" concept in a data
compression program.

The output index will be a module index into the window instead of a normal

index. This solution will make the program more complicated, but it will pay for itself in

savings on calls of memmoveO.

23

I I

-

3.3 CASE STUDY 2: AN IMPROVEMENT APPROACH TO THE LZSS

3.3.1 Using An Binary Tree To Find The Longest Match

Timothy C. Bell introduced a binary tree in the LZ77 variant, LZSS, to sp,eed up

the longest match location process in his paper "Better OPMIL Text Compression"

[Be1l86]. His algorithm also works where a longest string match is required without a

limitation in compression area.

3.3.2 Data Structure Used In The Original LZSS

As mentioned .in 3.1.3, this scheme needs to employ an extra data structure to

maintain the binary tree:

stmct {

int parent;

int smaller_child;

int larger_child;

} tree[WINDOW_SIZE+]];

Notice here that in the array tree[], we declare one more node. This is a special node--the

root node. In the program, the position tree[WINDOW_SIZE] will never be used by any

other nodes except the tree fOOl.

For every phrase in the window, a corresponding structure element defines the

position that the phrase occupies in the tree. Each phrase has a parent and two chHdren

pointers. Since this is a binary search tree, the two child nodes are defined as "smaller" and

"larger" children. Every phrase that resides under the smaller_child node must be smaller

24

than the phrase defined by the current node, and every phrase under the larger_child node

must be larger than the phrase defined by the current node. The terms "larger" and

"smaller" refer to where the phrases fall in the collating sequence used by the compression

program. In this particular program, one phrase is "larger" or "smaller" in the same sense

as that used by the standard library strcmpO function.

The root node does not have a phrase of tts own, as do all other nodes in the tree.

It also does not have smaller and larger children like other nodes. Instead, it has the index

of a larger_child only, and this index points to the root node of the tree.

The other special node is at position zero in the text window. Since the content to

be compared with the look-ahead buffer is one character less than the complete text

window, we actually use (at most) WINDOW_SIZE-l nodes. We thus only use index 1 to

WINDOW__SIZE-I and reserve position zero and WINDOW_SIZE for special uses. If we

want to mark an "unused" node or "deleted" node, we set their parents as zero. Similarly,

we can also mark its children as "unused" by setting their value zero.

3.3.3 Implementation OfLZSS Using Binary Tree Algorithm

During the encoding of the LZSS, the tree is continuously updated as the content

of the window changes. Each time the window moves along a character, the character sCi)

leaves the window. The tree is searched for the associated phrase Xi, and if it is found, it is

deleted. Also, one character s(j) enters the window, and the phrase.in a new look-ahead

buffer Xi-F+I is inserted in the tree. As we already described in 3.] .3, finding a longest

(prefix) match of a string I should first find its two "closest" nodes X a and Xb and do

25

comparison with them. We also know that these two nodes must be on the searching path

for an insertion, so the insertion routine will also take care of the task of finding the

longest match. This makes the program more efficient.

3.4 THE AVL TREE VERSION FOR THE LZSS-LZAVL

In the "Analysis of Running Time" secti,on ofT.C. Bell's paper [BeH86], he wrote:

''Each insertion requires a probe into the tree ofo(LogN) string comparisons for

a reasonably balanced tree, but O(N) in the worst case. If worst case behavior must be

avoided, a balanced tree, such as an AVL tree [Ziv77j, could be used. On the average,

each string comparison requires only a couple ofcharacter comparisons, but in the worst

case F character comparisons could be required.... "

where N is the size of text window, F is the size of look-ahead buffer.

The author suggested that an AVL tree can be used to improve the worst case of

the LZSS. But as far as we know, no one has ever tried this method. So the second step of

our work is to implement thi.s AVL tree LZSS variant and compare their performances.

Definition of an AVL tree: An AVL tree is a binary tree of height-balanced type jf

and only if it consists of a single external node, or the two subtrees Ti and Tr of the root

satisfY

1. Ih(li) - h(7~) I~ 1.

2. ~ and Tr are height-balanced.

26

3.4. 1 Data Structure Used In LZAVL

For an AVL tree, we need to handle the height balance. In order to verify/restore

the tree's height balance condition, we need to be able to test whether the element inserted

or deleted has changed the relationship between the heights of the subtrees of a node so as

to violate the height constraints. For this purpose, we will store a balance scale code in

each node of a height-balanced tree. The balance scale code is one of the following:

>

<

Means the left subtree of this node is taller (by one) than its right subtree.

Means the two subtrees of this node have equal height.

Means the right subtree of this node is taller (by one) than its left subtree.

II

Storing this height scale requires an extra two-bit field per node in the tree. But for

programming convenience, we use a character (8-bit) to store this condition code. This

won't affect the compression rate but uses a little bit more memory.

Stmct {

int parent;

int smaller_child;

int larger_child;

char heigh(._scale;

} tree[WINDOW_SIZE+ 1);

We should mention here that many AVL tree algorithms use a recursive technique

to implement the insertion and deletion routines. But for comparison purposes in this

thesis, we don't use any recursive inseliion or deletion for the AVL tree. Instead, we do

the rebalancing process right after each insertion or deletion. In those cases, we can simply

27

separately calculate or measure the time consumed by these operations. By a careful

selection, we find the following algorithm meets our need.

3.4.2 The Algorithm for Rebalancing After Insertion Or Deletion

Roughly speaking, the rebalancing process consists of retracing the path upward

from the newly inserted node (or from the site of the deletion) to the root. Since we have

"parent" pointer in each node, this can be done most efficiently. As the path is followed

upward, we check for instances of the taller subtree growing taller (on an insertion) or the

shorter subtree becoming shorter (on a deletion). When we find such an occurrence, we

apply a local transformation to the tree at that point. In the case of an insertion it will tum

out that applying the transformation at the first such occurrence will completely rebalance

the tree. In the case of a deletion the transformations may need t.o be applied at many

points along the way up to the root, in the worst cases.

It has been weJl known that single-rotation and double-rotation could be used to

repair the newly created imbalance, which can be illustrated in Figure 3-7 [ReingoJd83]:

The insertion algorithm for the AVL tree version is thus as follows. Use a standard

binary tree insertion algorithm to insert the new element into its proper place, setting its

height scale code to = . Then, retrace the insertion path by pointer "parent" backward up

the tree and correct the height scale codes until either the root is reached and its height

scale code conected, or we reach a point when no more height scale codes need to be

corrected, or we reach a point at which a rotation or double rotation is necessary to

rebalance the tree. More specifically, we follow this path backward, node by node, taking

28

..

actions as defined by the following rules, where current is the current node on the path,

son is the node just before the current node on the path (that is, its son), and grandson is

the node before son on the path (the grandson ofcurrent). Initially, son is the new element

just inserted, current is its father, and grandson is nil:

1. If current has height_scale code =, change it to < if son = larger_child(current) and

to > if son = smaller_child(current). In this case the subtree rooted at son grew taller

by one unit, causing the subtree rooted at current to grow taller by one unit, so we

continue up the path, unless current is the root, in which case we are done. To

continue up the path we set grandson +- son, son +- current, and current +-

parentecurrent).

2. If current has height_scale code> and son = larger_child(current) or current has

height_scale < and son = smaller_child(current), change the height scale code of

current to =, and the procedure terminates. In this case the shorter of the two subtrees

ofcurrent has grown one unit taller, making the tree better balanced.

3. If current has height scale code> and son = smaller_child(current) or current has

height scale code < and son = larger_child(current), then the taller of the two subtrees

of current has become one unit taUer, unbalancing the tree at current. A

transformation is performed according to the following four cases:

grandson =larger_child(son) grandson =smal1er_chiJd(son)

son = larger_child(current) Rotale around current using Double-rotate around current
Figure 3-7 (a) using Figure .3-7 (b)
Double-rotate around current Rotate around current using

son= smaller_child(current) using Ihe mirror image of the mirror image of Figure 3-7
Figure 3-7 (b) (a) ,

Table 3-1 The four cases of mselilon of an AVL tree

29

r

The deletion process is more complex than insertion because it will not always be

sufficient to apply a transfonnation only at the lowest point of imbalance; trans-

formations may need to be applied at many levels between the site of the deletion and the

root. To delete a node from a height-balanced tree, we proceed as for unconstrained trees:

if the node is a leaf, just delete it; if it has one non-nil son, replace it with its son; if it has

two non-nil sons, replace it by its inorder predecessor (successor), which will have a null

larger (smaller) chil.d. So the AVL tree deletion process onJy needs to consider the case of

deleting a node leaf node or a node with only one child. This makes things workable. We

now describe the deletion algorithm as follows:

First, we use a standard binary tree search algorithm to find the node to be deleted.

If the node found is not a leaf node, call a routine to find its replacement node (this node

must be a leaf node or a node with only one child). Delete the targeted node. Set current

to be the parent of node deleted, and son to be the node deleted. Going up the patb, doing

rebalancing operations by following the rules below:

1. If current has height-scale code =, then shortening either subtree does not

affect the height of the tree rooted at currellt. The height-scale code of current

is changed to < if son = smaller_child(current) and to > if son =

larger_child(current). The procedure then terminates.

2. If current has height-scale code < and son = larger_child(current) or current

has height-scale code> and son = smaller_chlld(current), the height-scale code

of current is changed to =. The subtree fOoted at current has become shorter

by one unit, so we continue up the path, unless current is the root, in which

30

-

case we are done. To continue up the path we set son +-- current and current

+-- parent(current).

3. If current has height-scale code < and son = smaller_child(current) , then the

height scale is violated at current. There are three subcases, depending on the

height-scale code at larger_clllld(current), the brother of son. The subcases are

as given in Fi!:,JUre 3-8 [Reingold83].

4. If current has height-scale code> and son = larger_child(current), then the

height-scale is violated at current. There are three subcases, depending on the

height-scale code at smaller child(current) , the brother of son. The subcases

are the mirror images of those given in Figure 3-8.

3.5 DESCRIPTION OF METHODS

In this chapter, for correct comparison purpose, we used straightforwardly an

LZSS program from [Nelson96] and we programmed the LZAVL and LZKMP based on

that program, because to compare the original LZSS and our LZAVL, tbe compression

speed is our main concern. If the structures of two programs are totally different, we

cannot teU whether the speed difference is from the difference of the two schemes or from

the programming techniques. The two programs should be quite similar in structure except

for some necessarily different parts-tree height balance maintenance, for example. So the

LZAVL and the LZKMP programs only changed the related routines for maintaining the

dictionary tree and finding the longest matches, respectively. This has guaranteed that the

performance difference can be correctly measured and compared.

31

.,

.~

,..

becomes

h+2

(a)

bewmes

(b)

B

B

h+2

Figure 3-7 Two cases of rotations for insertion in an AVL tree IReingold86]
The transformations used to rebalance a height-balanced tree after the
insertion of a new element: (a) rotation around A, (b) double rotation
around A. The height cond.ition codes in A and C in the right-hand
drawing of (b) depend on whether the new element is at the bottom of
T2 or T3. Both 1'2 and T3 are empty when B is the new element Notice
that in each transformation the inorder of the tree is unchanged and the
height of the lree after the transformation is the same as the heigllt of
the tree before the insertion. In each case, there are corresponding
mirror-image transformations.

3.6 THE BOYER-MOORE ALGORITHM

The Boyer-Moore algorithm solves the pattern matching problem by repeatedly

positioning the pattern over the text and attempting to match it. For each positioning that

occurs, the algorithm starts matching the pattern against the text from· the right end of the

pattern. If no mismatch occurs, tben the pattern has been found, otherwise the algorithm

32

-

--

computes a shift that is an amount by which the pattern will be moved to the right before a

new matching attempt is undertaken,

A becomes

(a) Apply the rotation of Figure 3-7(a) to current alldthe procedure terminates, since
the height-balance has been restored and the height of the tree after the
transformation j,s the same as it was before the deletion.

A becomes

I
h+2

Ii

(b) Apply the rotation of Figure 3-7(a) to current.]f current is the root, the procedure
terminates: othelwise continue up the path toward the root because the height of the
subtree is now one less than it was before the deletion.

c
becomes

II .. !

(c) Apply the double rotation of Figure 3-7 (b) to current. If current is the root, the
procedure terminates; otherwise continue up the path toward the root because the height
of the subtree is now on less than it was before the deletion. The, height-scale codes of A
and C are both = if that B was =. If B was <, then A is > and C is =. IfB was >, tIlell A
is = and C is <.

Figure 3-8 Three cases of rotations for deletions in an AVL tree [Reingold86]

33

This algorithm works very fast because it incorporates two 'heuristics' that allow it

to avoid much character comparison work. These heuristics are known as the "bad-

character heuristic ll and the "good-suffix heuristic"[Boyer77]. They can be viewed as

operating independently in parallel. When a mismatch occurs, each heuristic proposes an

amount by which the shift can safely be increased without missing a valid shift (i. e.,

missing a match).The algorithm will pick up the larger amount to use as the shift. We use

the fonowing example cited from the original paper [Boyer77] to illustrate how this

algorithm works:

3.6.1 An Example of How the BM Algorithm Works

pattern:
string:

AT-THAT
WH1CH-IINALLY-HALTS.--AT-THAT-POINT ...

1. Because IIF" is known not to occur in the pattern (this can be known by a pre-

computation), "Bad-heuristic ll suggests a shift to the right of 7 characters (the length of

the pattern).

pattern:
string:

AT-THAT
WHICH-FINALLY::HALTS. --AT-THAT-POINT, ..

2. "_II occurs in the pattern. The "bad-character heuristic" suggests a right-shift of

4 characters.

pattern:
string:

AT-THAT
WHICH-FINALLY-HALTS.--AT-THAT-POINT ...

3. "T" matches, but "L" doesn't occur in the pattern, the "Good-suffix heuristic"

suggests a move of 3 character. The "bad-character heuristic" suggests a move of 5

characters. Then right-shift 5 characters.

34

pattern:
string:

AT-THAT
WInCH-fINALLY-HALTS .--AT-THAT-POINT ...

4. The "Good-suffix" "AT" suggests a shift of 5 characters. Mismatch occurs at "_"

so that "bad-character" suggests a move of 3 characters. Then right-shift 5 characters.

pattern:
string:

AT-THAT
WHICH-fINALLY-HALTS .--AT-THAT-POINT ...

5. The match was found after only 14 references to string. A straightforward way

needs to move past the first 22 characters of string.

The average running time is OC n/m) (n = string length, m = pattern length), but

the worst-case mnlling time is somewhat like a straightforward comparison, O(n*m).

Efficient BM variants focus on how to improve the two heuristics to make the comparison

progress faster or how to avoid the worst case.

3.6.2 Can the BM Algorithm Be Applied To Finding The Longest Match?

We have noticed that the Boyer-Moore algorithm has an attractive average

running time of o(nlm), which increases with the window size fI getting larger, and

decreases with the look-ahead buffer size m getting larger. A larger m and a larger n

means we have a greater probability of finding a longer match which will cause better

compression, but will not change the running time much. If the BM algorithm can be

applied to data compression program, we can expect to get a good result.

But unfortunately, the answer is no. The BM algorithm can be used in the case of

finding an exact match. Its two heuristics work together to find a maximum shift. But in

35

-

some cases, either of these heuristics can miss the longest match. An example is shown in

Figure 3-9 [Corman90] as follows:

(a) good-sufl:ix-heuristic = "ce", bad-character-heurislic = 'i'
potenl.iallongest match = "ece" (shadowed)

(b) bad-character heuristic suggests a shift of 4.

(c) good-suffix heurislic suggests a shift of 3.

Figure 3-9 An example ofltow the BM algor.ithm Walks
ICorman901·
In the above cnsc, both BM heuristics suggest a
shift which will miss the potential longest mutch.

36

CHAPTER IV

PERFORMANCE ANALYSIS AND COMPARISON

4.] MEASURE OF PRACTICAL PERFORMANCE

The first practical measure for a text compression scheme is the amollnt of

compression it achieves. However, there are other factors that are important in practice,

namely, the amount of time and memory used by the encoding and decoding algorithms.

Two main experimental measures are to be used in evaluating the performance of our

schemes. They are compression ratio and compression speed (decompression speed will

not be on the comparison list since the three schemes use the same decompression

routine). We also briefly compare the memory used by each scheme.

There are several ways to measure the amount of compression achieved in an

experiment, and each is widely used. If a text file of 1000 bytes in size is compressed to

250 bytes, this could be expressed as a compression ratio of 25% (or 0.25), or as a

reduction of 75%, or as a factor of 4: 1. In this thesis, we use the reduction rate definition

C.R. = [(input file size - output file size) I input file size] x 100 %

l.e. the compression ratio is the percentage by which the input file size has been reduced.

The larger the compression ratio is, the better the compression. Because this ratio changes

greatly with the type of input tile being compressed, we also need to calculate the average

compression ratio for each scheme.

37

Compression speeds are defined by the number of characters compressed per

second. The time interval can be obtained by recording the two time points before and

after calling the compression routine in the main program.

For further comparison purposes, we will measure the "average search length" of

the LZSS and the LZAVL, respectively. We define the "search length" as the distance

from the tree root to the target node. The distance between two adjacent nodes (parent

and child) is defined as one. We can tell from these values how much the LZAVL has

improved the tree height balance (its average search length in the tree should be shorter

than that ofLZSS).

The programs were not executed .in a UNIX environment because in a multi-user

system, we cannot record the running time correctly even though we only need to measure

the relative speed. Instead, they were run in MS-DOS on a PC (Pentium 60, 8 Meg

memory), which can guarantee that the relative speeds are correctly cOlnpared. All the

programs were compiled using Visual C+-t- 1.52; they are 16-bit MS-DOS executable files.

Obviously, two main factors that greatly affect the performance of an adaptive dictionary

compression scheme are the size of the dictionary (for both Hlmilies) and the size of the

look-ahead buffer (for LZ77 family). The dictionary size is a main parameter. In general,

the larger the text window the better the compression is (but the text window cannot be

bigger than the text itself) .

38

4.2 CHOOSING TEST DATA

A text data compression program can be used to compress almost all kinds of data

because of its lossless nature, but the compression ratio achieved depends on the type of

data being compressed. For example, executable files tend to have little redundancy and

get compression ratios of about 2: 1 or less with any method. Windows 95's help files

(* .hlp) are usually well "compacted" and likely to have very poor compression ratios.

Databases (* .db1) can have large amounts of redundancy, and some methods may get well

over 10: 1 compression ratios.

To evaluate the practical performance of the schemes described in this thesis, we

collected 18 text files of 9 types. Each type has two files of different size. They are (1) C

source codes (* c), (2) VAX assembly source codes (*.vax), (3) Readme text files

(readme 1 and readme2), (4) Some chapters from an electronic books (book 1 and book2,

they are downloaded from internet and saved as text files.) (5) Papers in text format

(paperl, paper2), (6) Visual Basic programs (*.vb), (7) Windows help files (*hlp), (8)

Executable mes (*exe), and (9) WORD 6.0 tIles (*doc).

4.3 PERFORMANCE COMPAIUSON

Table 4-1 to 4-6 give the experimental results for the compression ratio and speed

of three different compression schemes with different sizes of text window and look-ahead

buffer. Because these three different schemes are using the' same coding modeling, the

compression ratios should be the same.

39

TABLE 4-1 COMPARISON OF RATIOS & SPEEDS
(IV= 2"10, F= 2"41)

FileName File Size Compression Ratio (%) Compression Speed (cis)

Cbytes) LZSS LZAVL LZKMP LZSS LZAVL LZKMP

readme1 70802 56.1 56.1 55.9 42910 38065 12757

readme2 21500 47.2 47.2 47.0 39090 32575 10591

progl.vb 25546 53.2 53.2 53.0 41878 38706 10824

prog2.vb 4g480 53.5 53.5 53.4 40399 35386 11327

prog1.c 58303 63.2 63.2 63.0 40771 36668 14760

prog2.c 29207 63.2 63.2 62.9 41136 37931 14387
prog1.vax 6961 59.8 59.8 59.6 40947 40947 12656

prog2.vax 11453 66.4 66.4 66.1 30139 34706 14874

prog1.exe 25361 33.5 33.5 33.4 42268 38425 7708

prog2.exe 66672 42.7 42.7 42.6 39218 38098 8738

paper! 29672 45.4 45.4 45.3 44957 361g5 10559

paper2 59055 47.0 47.0 46.9 41297 37141 10640

book1 93575 47.1 47.1 47.0 43726 36986 10855

book2 188613 45.2 45.2 45.1 42384 37722 10531

winhlpl.JiLp 24099 26.8 26.8 26.7 43g16 36513 6548
!

winhlp2.Jilp 83833 14.1 14.1 14.0 39174 34785 5391

wordl.doc 68642 46.1 46.1 46.0 39223 36904 10416

word2.doc 20DI92 56.9 56.9 56.7 40524 37630 12I9l

AVERAGE 61776 48.2 48.2 4lLO 40770 36965 10875

TABLE 4-2 COMPARISON OF RATIOS & SPEEDS
(N = 2"11, F = 2"4)

FileName File Size Compression Ratio (%) Compression Speed (cis)

(bytes) LZSS LZAVL LZKMP LZSS LZAVL LZKMP

readme1 70802 58.7 58.7 58.4 38065 36876 7814

readme2 21500 52.0 52.0 51.7 39090 39090 6739

progl.vb 25546 53.3 53.3 53.1 35480 35480 6200

prog2.vb 48480 53.4 53.4 53.2 36727 35386 6395

progl.c 58303 68.2 68.2 67.9 38106 36439 10104

prog2.c 29207 66.0 66.0 65.6 37931 35189 9014

progl.vax 6961 61.7 61.7 61.6 40947 40947 7910

prog2.vCl.x 11453 69.3 69.3 68.9 26029 34706 9959 .

prog1.exe 25361 33.8 33.8 33.7 38425 35719 4276 ;

prog2.exe 66672 43.0 43.0 42.9 34724 35653 4916

paper1 29672 48.8 48.8 48.8 38535 33718 6353

paper2 59055 50.2 50.2 50.1 36009 35790 6440

book1 93575 50.7 50.7 50.6 38667 35579 6707

book2 188613 48.9 48.9 48.8 39050 35789 6441

winhlp 1.hlp 24099 26.4 26.4 26.3 36513 33942 3570

winhlp2.h1p 83833 14.6 14.6]4.6 36291 32367 2986

wordl.doc 68642 49.1 49.1 49.0 32843 35751 6314

word2.doc 200192 58.2 58.2 57.9 36464 36464 7134

AVERAGE 61776 50.4 50.4 50.2 36661 35827 6626

40

TABLE 4-3 CO~ilPARISON OF RATIOS & SPEEDS
(N = 2"12, F>= 2""4)

File Name File Size Compression Ratio (%) Compression Speed (cis)

(byLes) LZSS LZAVL LZKIV£P LZSS LZAVL LZKMP

readme! 70802 60.8 60.8 60.5 33876 33085 4621

readme2 21500 54.5 54.5 54.3 32575 32575 3916

progl.vb 25546 53.3 53.3 53.0 33613 33176 3419

prog2.vb 48480 53.4 53.4 53.2 31480 31480 3518
prog1.c 58303 70.4 70.4 70.0 34295 33126 6169 .

prog2.c 29207 67.4 67.4 66.9 33189 33189 5262

progLvax 6961 63.1 63.1 62.9 31640 40947 4549

prog2.vax 1145] 69.8 69.8 69.4 23373 30139 5614

prog1.exe 25361 34.1 34.1 34.0 32936 35719 2379

prog2.exe 66672 42.5 42.5 42.3 29632 33843 2649

paperl 29672 51.5 51.5 51.4 36185 33718 3699

paper2 59055 53.1 53. i 52.9 31580 33553 3827

book I 93575 53.7 53.7 53.5 34027 32718 3970

book2 188613 52.1 52.1 52.0 35058 33032 3815

winhlp1.hlp 24099 26.1 26.1 26.1 31297 31709 1934

winhlp2.hIp 83833 . 15.8 15.8 15.7 31754 30595 1655

wordl.doc 68642 52.5 52.5 52.4 27131 32843 3775

word2.doc 200192 59.2 59.2 58.8 31427 33702 4032

AVERAGE 61776 51.9 51.9 51.6 31948 33286 3822

TABLE 4-4 COMPARISON OF RATIOS & SPEEDS
(N= 21\10, F= 21\5)

File Name File Size Compression Ratio (%) Compression Speed (cis)

(bytes) LZSS LZAVL LZKMP LZSS LZAVL LZKMP

readmel 70802 55.2 55.2 55.2 36876 34039 12896

readme2 21500 44.8 44.8 44.9 39090 35833 10336

progl.vb 25546 52.3 52.3 52.3 38706 35480 11106

prog2.vb 48480 52.6 52.6 52.6 4006h 36727 11300

progl.c 58303 63.1 63.1 63.1 36439 34295 14949

prog2.c 29207 63.6 63.6 63.6 37931 33189 14751

progl.vax 6961 59.4 59.4 59.4 43506 40947 13922

prog2.vax 11453 66.9 66.9 66.9 23373 26029 16130

prog1.exe 25361 31.9 31.9 31.9 38425 32936 7708

prog2.exe 66672 41.8 41.8 41.8 35845 35653 8726

paper1 29672 42.4 42.4 42.5 41791 38535 10374

paper2 59055 44.5 44.5 44.5 39634 34738 10659

bookl 93575 44.6 44.6 44.7 40684 35445 10842

book2 188613 42.4 42.4 42.4 40388 36552 10501

winhlpI.hlp 24099 24.8 24.8 24.8 39506 33942 6548

winhlp2.hJp 83833 12.2 12.2 12.2 39174 33940 5394

wordl.doc 68642 43.7 43.7 43.7 36904 35751 10416

word2.doc 200192 56.7 56.7 56.6 35748 34397 12395

AVERAGE 61776 46.8 46.8 46.8 38005 34913 11053

41

-

TABLE 4-5 COMPARISON OF RATIOS & SPEEDS
(N = 21\ 11, F = 21\5)

File Name File Size Compression Ratio (%)
I

Compression Speed (cIs)
, I

(bytes)
I

LZSS LZAVL LZKMP LZSS LZAVL LZKMP
!

I readmel 70802 58.1 58.1 58.1 33876 32182 7964

readme2 r 21500 50.6 50.6 50.6 32575 35833 6635

prog1.vb 25546 52.5 52.5 52.4 35480 33176 6276

prog2.vb 48480 52.6 52.6 52.5 33902 32756 6438

proglc 58303 69.1 69.1 69.1 34295 33315 I04U

prog2.c 29207 66.7 66.7 66.6 33571 31405 9331

progl.vax 6961 61.7 61.7 61.6 31640 31640 7910

prog2.vax 11453 70.2 70.2 70.2 20823 26029 10411

prog1.exe 25361 32.1 32.1 32.2 35223 32936 4313

prog2.exe 66672 42.2 42.2 42.1 31010 34724 4935

paper1 29672 46.2 46.2 46.2 36185 33718 6353

paper2 59055 48.1 48.1 48.0 34535 34738 6518

bookl 93575 48.7 48.7 48.7 36269 34151 6707

book2 188613 46.5 46.5 46.5 36910 34355 6465

winhlp1.hlp 24099 24.3 24.3 24.3 36513 33470 3596

winhlp2.hlp 83833 12.5 12,5 12.5 34641 31754 2974

wordl.doc 68642 47.2 47,2 47.2 31200 34667 6343

word2,doc 200192 58.3 51D 58.2 31427 32551 7290

AVERAGE 61776 49.3 49.3 49.3 33338 32967 6715

TABLE 4-6 COMPARISON OF RATIOS & SPEEDS
(N=21\]2, F=2"5)

File Name File Size Compression Ratio (%) Compression Speed (cIs)

(bytes) I LZSS LZAVL LZKM:P LZSS LZAVL LZKMP I

I I

read.mel 70802 I 62.1 62.1 62.0 16128 16738 4145

readme2 21500 55.2 55.2 55.2 17768 18695 3434

progl.vlb 25546 54.3 54.3 54.3 17864 17864 3019

prog2,vlb 48480 54.6 54,6 54.6 '11W22 18022 3119

progl.c 58303 72.8 72.8 72.7 16331 J6331 5671

prog2.c 29207 69.3 69.3 69.3 15211]6136 4788

progl.vax 6961 64.4 64.4 64.3 12656]7848 4070

prog2.vax]1453 71.5 71.5 71.5 8359 13967 5205

progl.exe 25361 34.2 34.2 34.2 18377 19212 1990

prog2.exe 66672 42.9 42.9 42.9 15152 17826 2356

paperl 29672 50.9 50.9 50.9 20749 19267 3275

paper2 59055 52.8 52.8 52.8 17628 18570 3382

bookl 93575 53.8 53.8 53.8 18,752 18134 3491

book2 188613 51.8 51.8 51..8 19187 18276 3383

winh1p1.hlp 24099 25.3 25.3 25.3 19916 1693

winhlp2.Wp 83833 14.8 14.8 14.8 20341 19052 1404

wordl.doc 68642 52.7 52.7 52.7 14889 18402 3333

word2.doc 200192 60.7 60.7 60.7 14289 16118 3738

AVERAGE 61776 52.4 52.4 52.4 16508 17799 3417

42

-

To ana]yze the pelformance difference of the LZSS and the LZAVL, we also

measured and compared the "average search length" in those two tree structures. This

value indicates how many nodes, on the average, the scheme needs to search for an

insertion (deletion is the same.) Theoretically, the better the tree is height balanced, the

less the average search length should be, regardless what kind of text file is being

compressed, and the "average search length" should be almost a constant because the

dictionmy tree is a fixed size.

The results from the above experiments are compared in Tables 4-7 and 4-8 as

follows:

TABLE 4-7 COrvrPARISON OF SEARCH LENGTH

File Name File Size (N=1O, F=4) (N=11, F=4) (N=12, F=4)

(bytes) LZSS LZAVL LZSS LZAVL LZSS LZAVL

readmel 70802 11 9 13 10 14 11
readme2 21500 13 9 15 10 17 II
progl.vb ! 25546 13 10 14 11 16 12
prog2.vb 48480 12 10 14 11 16 12
prog1.c 58303 11 9 12 10 14 11
prog2.c 29207 11 9 12 10 14 II
progl.vax 6961 14 9 16 10 21 11

prog2.vax 11453 II) 9 22 JO 25 11
progl.exe 25361 12 10 15 11 17 12

prog2.exe 66672 14 9 17 IO 21 l)

paper1 29672 12 10 13 II IS 12

paper2 5')055 12 10 15 II 19 12
book] 93575 11 9 13 11 14 11

book2 188613 12 10 13 1J J4 12

winhJpl.hlp 24099 12 10 14 n 16 12

winhlp2.hlp 83833 12 10 13 11 15 12

wordl-doc 68642 14 10 20 11 26 12,
word2.doc 200] 92 12 9 14 10 18 11

AVERAGE 61776 12.6 9.5 14.7 10.6 17.3 11.5

43

TABLE 4-8 C01V1PARlSON OF SEARCH LENGTH

File Name Fil.e Size (N=1O, F=5) I (N=ll, F=5) (N=12, F=5)

(bytes) LZSS LZAVL LZSS LZAVL LZSS LZAVL

readmeI 70802 J2 10 J4 II 16 J2
readme2 21500 13 10 16 10 18 II
progl.vb 25546 lJ 10 14 II 16 12
prog2.vb 48480 12 10 15 11 16 12
progl.c 58303

,
12 9 13 10 15 11

prog2.c 29207 lli2 10 13 11 15 11
progl.vax 6961 15 9 19 10 27 11 I
prog2.vax 11453 22 10 28 10 34 II I
prog1.exe 25361 12 10 15 11 17 12

,

prog2.exe 66672 15 9 18 10 24 11
paper I 29672 12 10 13 11 15 12
paper2 59055 12 10 15 II 19 12
book I 93575 12 9 13 II 15 12
book2 188613 12 10 13 11 14 12
winhlp 1. hlp 24099 12 10 14 II 16 12
winhIp2.hlp 83833 12 10 13 11 15 12
wordl.doc 68642 14 10 21 II 26 12
word2.doc 200192 B 9 15 II]9 12

:' AVERAGE 61776 13.2 9.7 15.7 10.7 18.7 11.7

4.4 EXPERIMENT RESULTS ANALYSIS

Compression Ratio: These values increase as the text window size increases, but

they do not necessarily increase as the look-ahead buffer size increases. The possible

reasons are:

(1) When the text window (dictionary) size increases (the look-ahead buffer size

remains the same), the probability of finding a longer match increases, and the

compression rate thus increases. Even though we have to use more bits to represent the

match position, which will decrease the compression, we still gain more than we lose.

(2) When the look-ahead buffer size increases, even longer matches can be found

to increase the compression. But if the dictionary size is small, the probability of finding

44

longer matches is stin smaU, In those cases, we don't make full use of the larger look-

ahead buffer, and we gain less than we lose. In the next Chapter, we will discuss this

problem further.

So, if both the dictionary size and the look-ahead buffer size are carefully selected

to increase, we can expect to gain a better compression.

Compression Speed: In the following chart (Figure 4-8), we give an overall speed

comparison of different schemes with different dictionary size and look-ahead buffer size.

Speed Comparison Of Different Schemes

'0 45000
Q)

~ 40000

~ 35000
u
:; 30000

~ 25000

~ 20000

.~ 15000

~ 10000

E 5000 .:.:'
<3 0·:::'"

(10,4) (11,4) (12,4) (10,5) (11,5) (1::',5)

~
LZSS

IiJLZAVL

OLZKMP

Different Text Window and Look-ahead Buffer Size

Figure 4-8 Cornpresslon Speed Comparison of Different Schemes

Among them, the LZKMP has the poorest performance. This is quite reasonable

because its time complexity in finding the longest match is O(n+m), a linear relation with

the dictionary size n. When n becomes much larger, the speed of this scheme will become

very slow. The only advantage of thjs scheme is that it uses much smaller amount of

45

-

memory than that of the LZSS or the LZAVL. It can be ,applied to a special case where

memory is very limited and compression speed is not important.

The original LZS S variant outperforms the LZAVL when the text window size is

smaH (IK and 2K). But when the dictionary gets larger and larger (e.g., 4K), the LZAVL

outperforms the original LZSS. This is our expected result, because in the world of data

compression, a better scheme means it has a better compression and a higher speed as

well. Memory usage is another consideration, but for LZ77 variants, which use only a

fixed size text window as the dictionary, the memory requirement is relatively low.

Now we will explain how and why the LZAVL can outperform tbe LZSS.

The original LZSS scheme uses a binary search tree to store all the phrases (the

tree size is equal to the text window size). During the compression, insertion and deletion

are very frequently necessary because data stream is sliding in and out very frequently, so

the time used for searching the dictionary tree will be a bottleneck factor that affects the

speed. If the binary tree is height unbalanced, the overall time used for tree searching is

most likely more than that used for a height balanced tree because so many "worst cases"

are met. To judge the balance condition of a tree, we use the "average search length" for a

heuristic measure.

Tables 4-7 and 4-8 show the average search length for different dictionary size and

look-ahead buffer size of the LZSS and the LZAVL algorithms. We notice that the

average search lengths for the two schemes obey the following rules:

(1) For the same Nand F, the LZSS always has a longer average search length,

and the difference becomes larger as N becomes larger. This means the difference in the

46

time used for tree searching by LZSS and LZAVL becomes larger as the dictionary tree is

getting larger. The average tree searching time for LZAVL does not change greatly wbi~e

it changes greatly for LZSS.

(2) The average search length for LZAVL almost remains the same for a given

dictionary and a given look-ahead buffer, no matter what type of file is being compressed.

But for LZSS, this value changes a lot for different input files. For example, when

N=2/\ 12, F=2/\5, for LZAVL, the average search length is 11 or 12 for any input file; but

for LZSS, the file "book2" has a shortest average search length of only]4 while the file

"prog2.vax" has a largest value of34!

This can be explained by the nature of the AVL tree. LZAVL uses an AVL tree to

maintain the dictionary, no matter what kind of file it is compressing, and the tree is

always "height balanced" so the average search length is almost the same, as long as the

dictionary size is fixed. LZSS, on the other hand, uses an ordinary binary search tree to

maintain the dictionary, which in most cases is unbalanced (the balance condition depends

on the file.) When the dictionary is large, this unbalance is more serious.

So, why in aU those smaller dictionary cases, does LZSS compress faster than

LZAVL? The possible answer is: in a relatively small dictionary tree, no matter whether it

is balanced or not, the time used for tree searching is short. The difference in search time

for the two schemes is less than the time used by LZAVL for maintaining the tree height

balance after node insertions and deletions. This causes the original LZSS to run faster

than LZAVL.

47

If the tree is sufficiently large, things are different. The time saved from tree

searching becomes longer than that spent on maintaining the tree balance, so the overall

speed of the LZAVL finally outperforms that of the original LZSS.

Take the results in Tabjes 4-3 and 4-6 for example. Among the 18 test files, for

N=21\ 12 and F=2/\4, the compression speed of LZAVL for all total 12 files is greater than

or equal to that ofLZSS~ for N=2/\12 and F=2/\5, things are even better, the number is 14.

Fortunately, some of the selected test files can represent the "worst cases".

"prog2.vax" is such a file because it has the longest average search length. This "worst

case" file can have a better compressing speed by llsing LZAVL.

We should point out here that the binmy tree used by LZSS is a dynamically

changed binary tree. The data stream to be compressed slides in and out on the fly such

that when the tree is small, the overall "shape" of that tree is closed to height balanced.

This prediction can be confirmed by comparing the average search lengths of LZSS and

LZAVL for N=2/\ 10 (this value only changed slightly for different input files). But when

the tree is very large, the overall shape of the height unbalanced tree will remain for a

relatively longer time, which eventually decreases the compression speed.

We further tested two cases with even larger dictionary sizes (8K and 16K) and list

the effects in Table 4-9. Comparing the compression ratios with the previous ones, we see

that when the dictionaly size increased from 8K to 16K, the compression ratio only

increased a little bit (+0.7%) but f:rom 4K to 8K the increment was larger (+ 1.7%), and

that is why the dictionary size of LZ77 variations is usually selected as 8K (or 4K).

48

TABLE 4-9 CO:MPARISON OF RATIOS & SPEEDS

,

File Size C. R(%) C. S (char/sec) C. R. (%) C. S (char/sec)
,

File Name (N=13,F=5) (N=13,F=5) (N=14,F=5) (N=14,F=5)

(bytes)
i

LZSS LZAVL , LZSS LZAVL LZSSLZAVL LZSS LZAVL
readmeI 70802 63.9 63.9 i 14332 15733 65.7 65.7 12757 15000

readme2 21500 57.1 57.1 16287 17916 57.7 57.7 16287 17768

progl.vb 25546 54.3 54.3 16066 17864 535 53.5 14939 17260

prog2.vb 48480 54.9 54.9 16323 16951 55.3 55.3 14690 16323

progl.c 58303 76.3 76.3 14325 15143 78.2 78.2 12927 14360

prog2.c 29207 71.8 71.8 12643 15133 71.9 71.9 11824 14387

progl.vax 6961 633 63.3 ll601 18318 62.1 62.1 11601 18318

prog2.vClx 11453 71.5 71.5 7437 14874 70.7 70.7 7203 14l:!74

progl.exe 25361 35.1 35.1 17135 18511 34.7 34.7 16468 19359

prog2.exe 66672 42.8 42.8 17591 15988 42.3 42.3 16421 15187

paperl 29672 53.2 53.2 18661 18092 54.4 54.4 17454 17983

paper2 59055 55.6 55.6 15378 17628 57.2 57.2 13607 16542

bookl 93575 59.8 59.8 16532 16709 61.2 61.2 14948 15621

book2 188613 56.6 56.6 16915 16840 59.3 59.3 15334 15823

winhlpl.hlp 24099 25.0 25.0 18256 19126 25.0 25.0 18396 19126

winhlp2.hlp 83833 15.6 15.6 18145 17761 16.1 16.1 16215 17143

wordl.doc 68642 56.1 56.1 13149 17117 58.1 58.1 11459 16265

wordl.doc 200192 61.4 6] .4 12783 14939 62.1 62.1 11639 13960

AVERAGE 61776 54.1 541 15198 J6925 54.8 54.8 14121 16406

,.-------------------------_._-------

Figure 4-2 Speed Comparison Of LZAVL And LZSS
With Large Dictionary

125001300013500 1400014500 15000155001600a1650017000

Compression Speed (char/sec)

49

4.4 MEMORY USAGE FOR EACH SCHEME

Apparently, among the three schemes, LZKMP uses the smallest amount of

memory during the compression because it does not need a sophisticated data structure to

maintain the dictionary tree, but the tradeoff is that its speed is too slow.

In our programming of the LZAVL variant, we use an extra component, the

balance scale code, in each node in the tree, which consumes a bit more memory than that

of the original LZSS. But actually, we can make it use the same memory as the LZSS for

the following reasons

(1) By comparing the performances of a given scheme with different dictionary

sizes, we know that the appropriate size for the dictionary is no more than 16K; thus all

the pointers in a node of the tree never contain a number larger than 16K (2/\ 14). In other

words,]4 bits is already enough to represent the pointers.

(2) Because of the size of the dictionary, all pointers in a node need to use an

integer to keep the index information. An integer, no matter what type it is, usually is at

least 16 bits in length. We can make full use of the other two bits by embedding the

balance scale code (it happens to need on]y two bits) into a pointer in each node, for

example, the parent pointer.

50

CHAPTER V

CODING REDUNDANCY

As we already knew, LZ77, LZ78, LZSS and LZW all used fixed-size pointers

regardless of the length of the phrase they represent. For instance, a pointer to position 40

and a pointer to position 4000 will each use 12 bits to represent the indexes. This is

obviously wasting output space. Moreover , in practice some phrase lengths are much

more likely to occur than others, and better compression can be achieved by reducing the

redundancy in the output codes themselves. This can be achieved by allowing variable

sized pointers by using multiple flags.

LZB [Be1l87] is one of the best of the LZ77 compressors, and it uses a variable

length encoding method to achieve a compact representation. But that scheme is

somewhat complicated In this chapter, we are going to try a simple scheme for

compacting the pointer representation.

5.] A TWO-BIT FLAG SCHEME FOR LZSS

Each encoding of the original LZSS statis with a one-bit flag which tells the

decoder its succeeding content is a literal or a phrase. By adding one more flag bi t, we

can specifY more detailed information about the length of the pointers.

Suppose k = Log(l\I), where N is the text window size (we usually select a power

of 2 as N for a full use of the pointer length.) There are two choices to use for the these

two flags shown below:

51

Flag 1 Hag 2 Meaning

o

o

1

o

o

succeeding a character

succeeding a pointer tuple in which the "offset" length is k bits

succeeding a pointer tuple in which the "offset" length is k' bits

succeeding a pointer tuple in which the "offset" length is k' I bits

Flag 1 Flag 2 Meaning

o1

o succeeding a character

succeeding a pointer tuple in which the "offset" length is k bits

succeeding a pointer tuple in which the "offset" length is k' bits

In the above schemes, the total number of bits reserved for the match length will

not be changed because it is relatively a small number and contains few "redundant" bits.

Choice one fully uses two bits for the flag. But we will have to use 10 bits (more

than 10 percent of the original 8 bits) to encode a single character; choice two is expected

to gain a better result than choice one. In the work of this chapter, we only try the second

scheme.

The scheme selected is based on the following investigation:

In LZSS, the occurrence of the longest match that can be found in the text window

is not necessarily the only one. From the view of the decoder, it doesn't care which

position is to be picked up because the decoding process is only a copy process from the

previous decoded text as long as it can find the content needed. But a possible optimal

way to pick up the position in the above two schemes is that we choose the one with the

52

smaller index, by which means the index may be represented usang a smaller number of

bits.

5.2 EXPERIMENTAL RESULTS

The results for one-bit flag LZSS and the two-bit flag scheme are compared in

Tables 5-1 and 5-2.

In the two tables, N (or N') and F are numbers of the power of 2 of the text

window size and look-ahead buffer. i.e. window size = 2N and buffer size = 2F
. N' is the

"break-point" for the second bit flag. e.g. if offset < 2N
') set the second flag to 1;

otherwise, set it to 0 for 2N
' ~ offset < 2N

TABLE 5-] COMPRESSION RATIOS OF ONE-BIT FLAG
AND TWO-BIT FLAG SCHEMES

File Name File Size (N=12,F=4) (N'=8) (N'=9) (N'=1O)

I
[(bytes) LZSS LZSS2 LZSS2 LZSS2

: readmel 70802 60.8 59.7 60.1 60.3
readme2 21500 54.5 5].7 54.3 54.4
prog1.vb 25546 53.3 52.1 52.5 52.7
prog2.vb 48480 53.4 52.3 52.7 52.8
progl.c 58303 70.4 69.6 69.8 70.0
prog2.c 29207 67.4 66.6 66.8 66.9
prog1.vax 6961 63.1 62.9 63.0 63.2
prog2.vax 11453 69.8 69.2 69.4 69.5
prog1.exe 25361 34.1 32.5 32.9 33.2
prog2.exe 66672 42.5 41.4 41.8 42.0
paperl 29672 51.5

i
50.7 51.2 51.3

paper2 59055 53.1 51.8 52.3 52.6
book I 93575 53.7 52.4 52.9 53.2
book2 188613 52.1 50.7 51.2 51.6
winhlp 1. hlp 24099 26.1 24.9 25.4 25.6
winhlp2. hlp 83lB3 15.8 14.4 14.7 15.0
wordl.doc 68642 52.5 51.4 51.8 52.0
word2.doc 200192 59.2 58.1 58.4 58.6 I

AVERAGE 61776 51.9 50.8 51.2 51.4

53

TABLE 5-2 COtvfPRESSION RAnos OF ONE-BIT FLAG
AND TWO-BIT FLAG SCHEMES

HIe Name File Size (N=12,F=5) (N'=8) (N'=9) II (N'=1O)

(bytes) LZSS LZSS2 LZSS2 LZSS2

readme! 70802 62.1 61.2 61.4 61.6
readme2 21500 55.2 54.5 54.8 54.9
progl.vb 25546 54.3 53.4 53.6 53.8
prog2.vb 48480 54.6 53.8

,
54.1 54.1

progl.c 58303 72.8 72.2 72.3 72.4
prog2.c 29207 69.3 68.7 68.9 69.0
progl.vax 6961 64.4 63.8 64.0 64.3
prog2.vax IJ453 71.5 71.0 71.2 71.2
prog1.exe 25361 34.2 33.3 33.4 33.6
prog2.exe 66672 42.9 42.2 42.4 42.6
paperl 29672 50.9 50.0 50.4 50.5
paper2 59055 52.8 51.6 51.9 52.2
book 1 93575 53.8 I 52.7 53.0 53.2
book2 188613 51.8 50.6 51.0 51.3
winhlpJ .hlp 24099 253 24.5 24.8 24.9
winh1p2.hlp 83833 14.8 14.2 14.3 14.5
word1.doc 68642 52.7 51.7 51.9 52.2
word2.doc 200192 60.7 59.9 60.1 60.2
AVERAGE 61776 52.4 51.6 51.9 52.0

5.3 PERFORMANCE ANALYSIS

The experimental results show that the two-bit flag scheme did not successfully

improve on the original one-bit scheme. In its best case, it only outperformed the other

scheme by a very little bit. eg., "progl.vax" with N'=10.

In the following, we try to explain why this new scheme does not work better than

the old scheme based on probability theory and two reasonable assumptions

Assumption 1: The longest match between the text.window and the look-ahead

buffer can occur at any position in the text window with equal probability (except inside

the look-ahead buffer, where it cannot occur).

54

Assumption 2: The longest match can occur Inore than once in the text window.

The maximum match length is limited by the buffer size. The smaller the buffer, the larger

the probability of more longest matches.

I~ -----+111..----{' --I
rnr---~I I

Bitl 1} 8
Bi12

Bitl: The original bit as a flag in LZSS
Bjt2: The addition bit as a second flag in the two-biL flag scheme.

According to its va~ue, the total number of bits used to represent the
offset can be I or I-x. The total number of bits used for the match
length /' won't change in both schemes.

Figure 5-1 Calculate the possible improvment of the two-bit scheme.

We assume the full length of the original "offset" pointer is 1. Using the above two-bit

scheme, the "break-paint" is set at position I-x. Thus the probability ratio of using pointers

of length I-x bits over that of using pointers of length with Ibits is 2J\(l-x)/Y\1 = 1/2l\x.

In ollr experiment, we LIse 1= 12, I-x = 8, 9, 10; so x = 4, 3, 2.

If x = 3, the probability ratio is lI8. This means that if the longest match occurs in

the text window at eight places, we can at least pick up the one with the smallest offset to

represent it in I-x bits.

Because this two-bit flag scheme needs one extra bit for evelY phrase output code,

in each successful applying of this two-bit scheme for one output, we can save 2 bits (x-I),

otherwise, we will waste one more bit. If the longest match occurs eight times for each

55

parsing, we will absolutely save output space. If it occurs four times, we still absolutely

save output space since the probabilities of saving 2 bits and wasting I bit are both 50%.

By further calculation, we know that for x = 3, only if the longest match occurs more than

2.7 times in each parsing can we save output space.

Similarly, we calculate the probability and find ifx = 4, we need an average of four

occurrences in each parsing to guarantee the output saving. x = 2 is the best case which

needs the smallest number of longest match occurrences for this two-bit flag scheme, but

it still needs at least 1.25 times to guarantee the compression. This means that for every

four parsings, at least one of them has Lo find two longest matches.

As the matter stands, the experimental results have shown that on the average the

probability of finding more than one longest match in each parsing was very low. That is

why the compression increased when the x value decreased. If we decrease the size of the

look-ahead buffer (the maximum length of the longest match is limited to this size), we

can expect to find more occurrences but at the same time it may also degrade the

compression. The experiment showed that the smaller look-ahead bulTer only gave worse

performance

56

CHAPTER VI

PARSING STRATEGIES

As mentioned before, once a dictionary has been chosen, there is more than one

way to choose which phrases in the input text will be replaced by indexes to the

dictionary. The task of splitting the text into phrases for coding is called parsing. We can

simply classify parsing strategies into two: greedy and non-greedy. "Greedy" algorithms

don't look ahead into the input stream to analyze it for the best combination of indexes

and characters, while "non-greedy" algorithms need to look ahead into the input stream t.o

do this kind of analysis.

The following diagram is used to illustrate these ideas:

(a) [abcdef Ilghijkl J
(b) [a bed e) f g h i j k)-.-.. '.-..-'1

Figure 6-1 An example Lo illustrate different
parsing strategies [HorspooI95J.

Case a: Assume that the longest match between look-ahead buffer and text

window is "abcdef'. If the "greedy" parsing strategy is used, the encoder will output a

pointer tuple and then slide the window to position' g'. If the next longest match is "gh",

it will output another pointer tuple for that match. The total len6"1:h in two passes will be

"abcdefgh".

57

Case b: If the encoder uses a "non-greedy" parsmg strategy to determine the

break-point, it finds that if the current output is "abcde" instead of "abcdef', the next

longest match can be (much) longer, for instance, "fghijk". In this case we can say, by

looking ahead one pass, the output becomes somewhat "optimized" because "abcde" +

"fghijk" > "abcdef' + "gh",

Case c: Iif the encoder can manage to look ahead into the entire coming input

stream, and it can determine each "break-point" so that the average match length is the

longest, and it can thus guarantee to generate the best compression. But obviously, this

scheme is unpracticed.

6.1 A "NON-GREEDY" PARSING SCHEME

For the LZ class of methods, a greedy parsing approach is commonly used because

it is an easily implemented approach that achieves excellent results [Be1l94]. Some authors

even claimed that it is the only realistic approach for practical text compression

applications [Gonzalez85] [Schuegraf74].

In the following, we are going to analyze a newly presented "Non-Greedy" parsing

scheme [HorspooI95]. The author modified the original LZW and LZSS variants using a

"Non-Greedy" parsing strategy. In this chapter, we are not going to implement the

program. Instead, we do some theoretica,J analysis on it.

The paper gave both its compression and decompression algorithms. We mainly

discuss its compression because the decompression procedllfe for LZ schemes is always

fast. The compression algorithm is listed in Figure 6-2.

58

As the original paper said, in the above figure, a ++b represents the new string

formed by appending one character b to the string a, the length of a is obtained by the

fimction length(a), the function head(a.) returns the first symbol of string a, and the

function prefix(a.,i) returns a substring composed of tbe first i symbols of the string a. K is

a parameter that limits the number of non-greedy parsing possibilities considered at each

step.

Line] does dictionary initialization. For the LZW algorithm, the dictionary is pre-

loaded with 256 characters so that any ASCII symbol in the input file can find a match in

the dictionary

8.

9.

6.

7

1. Initialize the dictionary D with aU strmgs of length 1~

2. set a. == the string in D that matches the first symbol of the input;

3, set L == length(a.)~

4. while more than L symbols of input remain do

5. begin

forj:= 0 to rnax* (L-I, K) do

find ~J.' the longest string in D that matches the input starting L-j

symbols ahead~

add the new string a-l-l head(~o) to D;

set j == value of j in range 0 to max*(L-I ,K) slich that

L-j + length(pj) is maximllm~

output the index in D of the string prefix(a.,j)~

advance j symbols through the inpllt~

set a == (1..IJJ'

set L == lcngth(ex);

10,

11.

12,

n.
14, end;

15. output the index in D of string a;

Figure 6-2 The Non-Greedy LZW Compression Algorithm [Horspoo195].

*: this shonld be "min" instead of "max"

59

-

Line 2 finds the first longest match a. in the dictionary. This is a start-up step.

Line 3 indicates that this algorithm employs a variable length of buffer to keep the

next longest match string) the length of which is the length of 0., L. Whenever there exist

L symbols in the buffer, the loop continues.

Line 5 tries to find the "break-point" for the next longest match Pj where j ranges

from 0 to min(L-l, K). But this step takes too much ti me. It needs at least rnin(L-1, K)+1

times of searching the dictionary to find f3j) the next longest match string. The algorithm

uses a parameter K to avoid an unbounded number of operations in this searching because

when the dictionary gets larger and larger, the probability of finding a longer match (the

length ofL) becomes larger and larger.

Lines 6 and 7 add the longest match plus the first new symbol into the dictionary

as the original LZW algorithm does (in a greedy way).

Line 8 is actually in the loop arline 6 and 7.

Line 9 outputs the left part of the break-point.

Lines 10,11 reset a to be Pj and calculate the length of the new a..

Line 12 continues the loop beginning from line 4

Line 13 outputs the last string.

This "Non-Greedy" parsing algorithm is actually inefficient based on the following

two reasons:

(l) For each parsing, it needs to look up the dictionary min(L-l, K) times. As L

can become larger and larger, the look-up times will be limited to K but this is

an artificially set parameter, which has no theory support.

60

(2) To avoid an unbounded time required for the parsing, the algorithm employs a

variable length buffer and only look ahead by one parsed string when choosing

its course of action. But this seems somewhat unreasonable. Because the next

longest match Pj , even though waits much effort to be allocated, still cannot

guarantee its achievement. In the third pass, pj becomes a and this will be

shortened by its second optimal process. Intuitively, the smaller the look ahead

buffer used, the smaller the number of break-points we have to decide, the

larger the probability we will lose the optimizing effort.

This algorithm can be viewed as a two-pass greedy parsing scheme. But unlike the

original greedy scheme, it cannot guarantee jts effort. That is a big problem of this "Non

Greedy" parsing algorithm.

6.2 TIME COMPLEXITY ANALYSIS

The main ineffIcient step of this "Non-greedy" algorithm lies in line 6 and 7. The

author must have noticed this loop wastes too mudl parsing time so he has used a

parameter K to limit the "optimal possibilities", even for a two pass optimization.

Otherwise, if the program tried to find the best "break-point" each step in a, as the

dictionary getting larger and larger, L (the longest match) can be a very large number, and

the parsing process will be slower and slower. In the worst case, each time it needs to do

K searches in the dictionary, and each dictionary search needs K+L searching length. The

upper bound for each step will be O(K*(K+L) . As L increases, this can be a very large

number.

61

6.3 COMPARISON AND CONCLUSION

If compared with a greedy parsing strategy, this "Non-greedy" parsing scheme has

the foHowing potential problems:

First, it would be velY slow, especially when the file is more "compressible". That

is, when the longest match L becomes larger, the time used for the "optimizing step" may

be quite long.

Second, even though the "look-ahead butfer" size could be as large as the length

of ex, this size is still too small. The optimal effort cannot be guaranteed for the next step.

62

CHAPTER VII

SU!vlMAR.Y, CONCLUSIONS, .AND SUGGESTIONS

FOR FUTURE WORK

7.1 SUMMARY AND CONCLUSIONS

The efficiency problems for LZ adaptive dictionary compression schemes can be

basically classified into three categories: The efficiency of finding the longest match

between the dictionary and the to be encoded data stream; the redundancy of codjng~ and

the optimal parsing for the output. This thesis has focused on these three problems by

trying new ways to improve the performance and analyzing an existing approach.

The Knuth-Marris-Pratt algorithm can be modified for finding the longest match.

TIlls algorithm can be applied in a data compression program in the case that modest

memory is available but the compression speed is not important If the ratio is also not

very important, this scheme can also gain an acceptable compression speed. But the

overall performance is worse than LZSS and LZAVL, as predicted.

LZSS uses a special data structure, a binary search tree, to maintain the dictionary,

and gains significant improvement in performance in finding the longest match. Its speed is

much faster than that of the LZKMP, especially in the case where we increase the text

window size to increase the compression ratio.

LZAVL employs a new approach, the AVL tree, to' maintain the dictionary of

LZSS. As the experiment results show, when the dictionary tree is not so large, LZSS

outperforms LZAVL, but whenever a larger dictionary tree size is used to achieve better

63

compression, LZAVL outperforms LZSS. In LZAVL, even though extra time is spent to

maintain the tree balance, it still improves the overall performance by avoiding the worst

cases of searching.

The two-bit flag schemes for LZSS do not outperform the original one-bit flag

schemes. The main reason is a probability problem. There exists a contradiction in finding

a longer match and expecting it to occur at more than one place as well.

"Greedy" Parsing is stilI a good parsing strategy in practice. Any complete

"Optimal" parsing wastes too much time while the newly presented sub-optimal scheme,

namely "Non-greedy" parsing, cannot guarantee its performance and is still low speed.

The effort i.s not worthwhile.

72 SUGGESTIONS FOR FUTURE WORK

We suggest that the following three points can be included in further research:

(1) There may exist some BM algorithm variant that can be modified and applied

to finding the longest match and yet has an attractive running time of O(II/m). If such a

variant can be found, we should use it in a data compression program and an expected

good performance may be achieved.

(2) We need to further optimize and simp.lify the rebalancing for insertion and

deletion routines of the AVL version and try to minimize the memOlY usage by embedding

the "balance scale" in another pointer in the node structure of an AVL tree. The expected

result is that LZAVL can replace the original LZSS in any cases.

(3) For the LZW variant, the encoder and decoder build their own dictionary. The

two dictionaries are almost the same except in some special cases (the KcoKcoK problem,

64

for instance.) during compression and decompression. If we manage to find a way to

guarantee that these two dictionaries are exactly the same, we will be able to reduce the

output file size by limiting each output code length to log(d) bits (d is the current

dictionary size).

65

rBeJl94)

[BeU90]

[BeU86]

[Boyer77]

[BrentS7)

SELECTED BmLIOGRAPHV

Bell T.C, and Witten, I.E. "The Relationship between Greedy Parsing and
Symbolwise Text Compression Journal of ACM 41, 4 (July 1994), pp.
708-724.

Bell T.C., Cleary J.G., Witten I.I-I., "Text Compression", Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

Bell T.C., "Better OPMlL Text Compression", IEEE Transactions on
Communications, VOL COM-34, No. 12, December 1996, pp.1176-1182.

Boyer R.S., Moore IS, "A Fast String Searching Algorithm",
Communications ~f the ACM, Vol. 20, No. 10, 1977, pp.762-772.

Brent RP., "A Linear Algorithm for Data Compression", The Australian
Computer Journal, Vol 19, No.2, May 1987, pp.64-68.

[CoJ"man90J Corman T.H, "Introduction to Algorithms", McGraw-Hill, NewYork,
869-883,1990, pp.869-883.

lDebra87j

lFiala89J

Debra A. Lelewer and Daniel S. Hirschberg, "Data Compression", ACM
Computing Surveys, Vol. 19, No.3, September 1987, PI1261-269.

Fiala E.R., Greene D.H., "Data Compression with Finite Windows",
Communications of the ACM, Vol. 32, 1989, pp.490-503.

lGonzalez85] Gonzalez-Smith M.E., and Storer, lA. "Parallel Algorithms for Data
Compression." Journal of ACM 32, 2 (April 1985), pp. 344-373.

rKuuth77] Knuth D.E., Morris JH, Jr and Pratt V.B., "Fast pattern matching in
st.rings", SIAJv!] Computing, 6, 1977, pp.323-350.

IHorspool95j Horspool R.N., liThe Effect of Non-Greedy Parsing in Ziv-Lempel
Compression Methods", Data Compression Conference, L995, pp.303
311.

IHume91J Burne A., "Fast String Searching", Softll'are-fJractice and Experience,
Vo1.21(l1), 1221-1248 (November 1991).

lJakobsson85]Jakobsson M., "Compression of Character Strings by An Adaptive
DictionalY", BIT25(l985), pp.593-603.

66

[Nelson96] Nelson M., "Data Compression Book", 2nd Edition, Jean-Loup GaiUy,
1996.

[Rodeh81] Rodeh M., Pratt Y.R., and Even S., "Linear Algorithm for Data
Compression Via String Matching", J. AeM 28, 1 (Jan, 1981), pp. 16-24.

[Reingold86] Reingold E. M, Hansen W. 1., "Data Structure", Little, Brown and
Company, 1983, pp.302-313.

ISchegraf74) SchuegrafE1., and Heaps, H.S. "A Comparison of Algorithms for
Database Compression by use of Fragments as Language Elements." Inf
Star. Ret. 10(1974), pp.309-319.

[Semba85] Semba 1., "An Efficient String Searching Algorithm", Journal of
Information Processing, Vol. 8, No.2, 1985, pp.101-109.

[Smith91j Smith P.D., "Experiments with a Very Fast Substring Search Algorithm",
Software-Practice and Experience, Vol. 21 (10), 1065-1074 (October,
1991).

[Storer88] Storer lA, "Data Compression: Methods and Theory", Computer Science
Press, 1803 Research Boulevard, Rockville, Maryland 20850, 1988.

IWelch84] Welch, TA, " A Technique for High-Pelformance Data Compression",
Computer 17, 6 (June, 1984), pp.8-] 9.

[WiHiams901 Williams R.N., "Adaptive Data Compression", Kluwer Academic
Publishers, 1990, pp 8-10

[Williams91] Williams R.N., "An Extremely Fast ZIV-Lempel Data Compression
Algorithm", Data Compression Conference, 1991, pp.363-371.

[Zhu87]

[Ziv77]

[Ziv78]

Zhu R.F., Takaoka T., "On Improving the Average Case of the Boyer
Moore String Matching Algorithm", Journal of lnformation Processing,
Vol. lO, No.3, 1987, pp.173-1. 77.

Ziv 1., Lempel A, "A Universal Algorithm for Sequential Data
Compression'" IEEE Transactions on Ir?!ormation 7hemy, Vol. 23, No.3,
pp.337-343.

Ziv 1., Lempel A, "Compression ofInclividual Sequences via Variable Rate
Coding", IEEE Transactions on Information Theory, Vol.24, No.5,
pp.530-536.

67

VITA

LINKE

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF EFFICIENT PARSING fN LZ ADAPTIVE DICTIONARY
COMPRESSION

Major Field: Computer Science

Biographical:

Personal Data Born in Zhanjiang, Guangdong, P.R. China, January 12, 1965,
the son of Mr. Zhenwei Ke and Mrs. Qiongzhen Lin

Education: Graduated from Zhanjiang No.2 High School, Zhanjiang, Guangdong,
P.R.China, in July, 1982; received Bachelor of Science degree in
Chemistry from Zhongshan University, Guangzhou, Guangdong, P.R.
China in July, 1986; received Master of Science degree in Physical
Chemistry from Zhongshan University, Guangzhou, Guangdong, P.R.
China in July, 1992; completed requirements for Master of Science at
Oklahoma State University in May, 1997.

Professional Experience: Information Engineer, Information Center of
Petrochemical Industry Bureau, Guangz!Jou, Guangdong, P.R. China,
1992-1994; Computer Professor Assistant, Guangdong Medical College,
Zhanjian, Guangdong, P.R. China, 1986-1989.

...

