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Abstract

A recent study recognized two distinct morphological types of speckled chub (cf

Macrhybopsis aestivalis) in the Arkansas River drainage. The purpose of this study was

to use protein electrophoresis to examine taxonomic status and genetic refationships of

the two forms. A total of 196 speckled chub were conected from eight sites in Kansas and

Oklahoma, seven in the Arkansas River drainage and one in the Wabash River in Indiana.

The samples were assayed for genetic variation at 24 protein-encoding gene loci. The

data were analyzed for insight into population structure. Phylogenetic relationships were

examined on the basis of allele frequency parsimony and the distance-Wagner procedure.

The results, together with other studies, support recognition of two species in the

Arkansas River drainage, M. tetranema, which is endemic to the drainage, and the more

widespread M. hyostoma, which occurs elsewhere in the Mississippi River basin. The

endemic species probably arose in the Ancestral Plains Stream, which drained much of

western Kansas and Oklahoma and emptied into the Gulf ofMexico independently of the

Mississippi River. Headward erosion of the Ancestral Arkansas River in the Pleistocene

would have captured a portion of the Ancestral Plains Stream, bringing M. tetranema into

contact with M hyostoma. The genetic results, together with morphology, suggest that

M hyostoma in the Arkansas River drainage are intergrades with M tetranema.

The latter species, which has disappeared over approximately 90% of its geographic
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range, now consists of two widely disjunct, geographically restricted populations.

Aspects ofgenetic structure are discussed with respect to management

implications for this declining species.

Introduction

Wen resolved taxonomic infonnation and knowledge of genetic structure is

essential if management plans for declining or endangered species are to succeed (Frankel

1974, Daughertyet aI. 1990, EcbeUe 1991). I use protein electrophoretic data to describe

genetic variation in two currently recognized species of the declining speckled chub

complex (Teleostei: Cyprinidae) in the Arkansas River drainage. Until recently, speckled

chubs were treated as a single, wide ranging species, Macrhybopsis aestivalis, comprising

a number of allopatric subspecies and ranging from the southeastern United States to the

Rio Grande River in New Mexico and north to the 45th parallel (Wallace 1980). Speckled

chubs of the Arkansas River wer,e coUectively r'eferred to as the endemic subspecies

Macrhybopsis aestivalis tetranemus (Miner and Robison 1973). However, a recent

morphological study by David Eisenhour (pers.. comm.) recognizes two species of

speckled chub in the Arkansas River drainage, M. tetranema, which is endemic to the

western portion of the area, and M. hyostoma, which is more widely distributed in the

Mississippi River basin (Fig. 1).

As presently recognized, the endemic species of speckled chub in the Arkansas

River drainage (M.. tetranema) has disappeared from about 90% of its former range

(Luttrell 1997). It persists in only two geographically restricted, widely separated areas,
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the Ninnescah River ofKansas and the South Canadian River between Ute Reservoir in

New Mexico and Merideth Reservoir in the Texas panhandle. The other species, M

hyostoma, has disappeared from about 55% of its fonner range in the Arkansas River

drainage. It persists in the mainstem ofthe Arkansas River and downstream reaches of its

tributaries between Kaw Reservoir and the McCleUan-Kerr Navigation System in Eastern

Oklahoma (LuttreU 1997).

My purposes were to describe geographic variation among populations of the two

species in the Arkansas River drainage and to provide insight into the question of whether

the area supports two species or only a single, morphologically piastic species. The

question of how many species exist in the drainage is ofobvious importance regarding

management decisions (Avise 1994). I present a preliminary approach to this problem by

addressing the question of monophyly for the populations recognized as M tetranema. If

they do not form a monophyletic group exclusive ofother speckled chub populations in

the basin, then the original, single-species taxonomy might be more appropriate.

The results indicate a very low level ofgenetic divergence among samples;

however, it is generaUy unknown how much genetic divergence is reflected by

morphological, behavioral, or ecological differences (Leary 1987). Correspondingly,

phenotypic plasticity in fishes has made it difficult to distinguish between environmental.

and genetic influences on morphology, behavior and life history (Allendorf et al. 1987,

Meffe and Vrijenboek 1988). Several different, syntopically occurring morphotypes of

cichlids from the Cuatro Cienegas basin of Mexico were considered separate species until

genetic studies (Sage and Selander 1975) and breeding experiments demonstrated that
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they were morphotypes of the same population (Komfield et aI. 1982). Similar results

were obtained for two trophicaJly divergent forms of the goodeid fish genus IJyodon

(Turner and Grosse 1980). In contrast, speciation can occur with little or no detectable

genetic differences (Avise 1994). For example shovelnose sturgeon (Scaphirhynchus

platyrhynchus) and pallid sturgeon (S. a/bus) are indistinguishable at 37 allozymic loci

(phelps and Allendorf 1983), although they are morphologically and ecologically

divergent.

Knowledge ofgeographic patterns ofgenetic variation is critical for insight into

management needs and priorities for declining species (Vrijenhoek et at 1985, Avise

1994), yet such knowledge is available for only a small proportion of threatened fishes of

western North America (Echelle 1991). Should the two populations of M. tetranema be

managed as a single unit, or are they sufficiently different that management as separate

units is more appropriate? Is there any evidence that one of the two populations is

genetically introgressed by the other species in the drainage? Such questions are

important for a number ofmanagement options, including reintroductions into areas of

past occurrence, as suggested for M tetranema by Luttrell (1997), and artificial transport

among populations to maintain genetic diversity (Meffe and Vrijenhoek 1988).

Methods and Materials

Collections of21-25 specimens of speckled chub were made between October

1995 and September 1996 from each of eight sites (Fig. 2) as follows (parentheses give

abbreviations for the sites): (Nin) Ninnescah River at Kingman city park., Kingman
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County, Kansas; (SF)) Salt Fork of the Arkansas River, N of Salt Fork at the highway 74

bridge, Grant County, Oklahoma; (SF2) Salt Fork ofthe Arkansas River at the mouth of

the Chikaskia River, Kay County, Oklahoma; (Cirn 1) Cimarron River 6.4 Ian W and 3.2

Ion S of Ames, Major County, Oklahoma; (Cim 2) Cimarron River at highway 77 bridge N

ofGuthrie, Log.an County, Oklahoma; (SCI) South Canadian River 8.5 km SE ofLogan,

Quay County, New Mexico; (SC2) South Canadian River at the highway 385 bridge S of

Boy's Ranch, Oldham County, Texas; and (Woo) Wabash River at the old dam 2.2 Ian SE

ofNew Harmony, Posey County, Indiana. The collections included five samples ofM

hyostoma (Cim 1, Cim 2, SFI, SF2, Wab) and three samples ofM tetranema (SCI, SC2,

Nin).

Fish were collected by seining, placed in polypropylene tubes and frozen in liquid

nitrogen for transport to the laboratory. Samples were stored at _600 C until processing.

Epaxial muscle and a mixture of eye and brain tissue were homogenized separately with

deionized water and centrifuged to obtain supernatant. Standard methods of protein

electrophoresis (Murphy et al. 1991) were used to resolve 24 presumptive loci (Table ]) .

Except where otherwise noted, I used BIOSYS-I (Swofford and Selander 1981)

for all analyses. Percent polymorphism (P) and average heterozygosity (H, estimated

from allele frequencies) were calculated for each sample. A locus was considered

polymorphic ifit exhibited more than one allele. Hardy-Weinberg equilibrium was tested

with an exact signifi.cance test and Levene's correction for small sample size.

Electrophoretic divergence among samples was examined in two ways: by computing

Nei's (1975) genetic distance and by performing a principal components analysis,
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(Wilkinson 1990) on the arcsine transformation of the square root ofallele frequencies.

I used FREQPARS (Swofford and Berlocher 1987) to compare different tree

topologies of relationships among the eight samples examined. FREQPARS computes the

minimum amount of allele frequency change required by topologies provided by the user.

Topologies tested included three groups: 1) trees produced by the unweighted pair group

method ofanalysis (upGMA) for Rogers (1972) genetic distance, Cavalli-Sforza and

Edwards (1967) chord distance, and Nei's (1978) genetic distance, 2) distance-Wagner

trees (mid-point rooting, multiple addition criterion, MAXTREE = 30) based on Rogers

(1972) genetic distance and Cavalli-Sforza and Edwards (1967) chord distance, and 3)

additional trees suggested by the geographic distribution of samples. Based on the

distance-Wagner analysis, the sample from the Wabash River was designated the outgroup

for the FREQPARS analysis.

F-statistics (F(lS)' F(IT), and F(sT» were computed for seven combinations of

samples: 1) aU samples, 2) all samples ofM hyostoma, 3) all samples ofM hyostoma

excluding the Wabash River sample, 4) all samples ofM tetranema, 5) all samples from

the Arkansas River drainage, 6) all samples of M tetranema from the South Canadian

River plus the sample ofM hyostoma from the Wabash River, and 7) all samples of M

tetranema plus the Wabash River sample of M hyostoma. I used contingency Chi-square

analysis to test for allele frequency differences among populations at individual loci.

Results

Tables 2 and 3 show genotypes, average heterozygosity, and polymorphism for
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eacb population ofM tetranema and M. hyostoma, respectively. Average

heterozygosities (0.042-0.083) were similar to the values reported for other species of

freshwater fish (GyUensten 1985, Hartl 1988), while polymorphism (0.333-0.500) was

somewhat greater than the average for fishes in general (Nevo 1978). Seventeen of the 24

loci examined were polymorphic. None of the 192 chi-square tests indicated significant

deviation from Hardy-Weinberg expectations. Thus, there is no evidence for the presence

of two reproductively isolated populations at my sample sites, an observation consistent

with the small, generally negative F(IS) values computed for the various subsets of the

samples (Table 4).

The genetic similarity between M tetranema and M hyostoma (Table 5) is

comparable to values seen in comparisons ofconspecific populations for a diversity of

freshwater fishes (Avise and Aquadro 1982, Echelle et aI. 1989). Correspondingly, there

were no diagnostic differences between M tetranema and M hyostoma, and within

species, no sample was diagnostically different from the others. Thus, my analysis of

relationships is based only on allele frequency differences among samples.

Very little between-sample variation was indicated for the samples from the

Arkansas River drainage (F(ST) = 0.033). Adding the sample from the Wabash River to the

Arkansas River samples resulted in a much higher index of subdivision (FeST) = 0.125).

Maximum subdivision (F(ST) = 0.237) occurred when the data set was reduced to include

only the two samples ofM tetranema from the South Canadian River and the sample of

M hyostoma from the Wabash River. The set of samples consisting ofM hyostoma from

the Arkansas River drainage is the only grouping that did not show significant
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heterogeneity among populations (P = 0.223). The «global" fixation index F(IT) generally

reflected the relative magnitude of Fes]) values for the various subsets of samples (Table

4).

Figure 3 presents a plot ofsample scores on the first two axes resolved by principal

components analysis ofallele frequency variation. The first axis (pC I), which 3CCOWtts for

32.1% of the total variance in allele frequencies, separates M hyostoma from the Wabash

River in Indiana from the remaining samples, all ofwhich are from the Arkansas River

drainage. Among samples from the Arkansas River drainage, those from the South Canadian

River in New Mexico (SCI) and the Texas Panhandle (SC2) are the most divergent fromM

hyostoma from the Wabash River (Wah). The remaining populations from the Arkansas River

drainage are intermediate in PC I score, but shifted toward those for M. tetranema from the

South Canadian River. The second axis (pC ll), which acCOWtted for 17.5 % of total variance,

separated the Ninnescah River sample ofM tetranema from the remainder of the samples.

The distribution ofscores in Figur,e 3 suggests that, in the two-dimensional space represented

by PC I and PC II, samples ofM. tetranema form a cluster that is separate from M. hyostoma.

However, this is not conclusive because of the small number of samples examined.

The distance-Wagner analyses of phylogenetic relationship produced a single tree from

the matrix of Rogers genetic distances and a single tree from the matrix of Cavalli-Sforza

chord distances. In both of these trees, M hyostoma from the Wabash River was sister to a

dade comprising all samples from the Arkansas River drainage. Within the latter clade, the

two trees differed in placements of the samples ofM. hyostoma. However, in both trees, the

samples ofM hyostoma from the Arkansas River drainage formed a paraphyletic group in

which some samples ofM hyostoma clustered more closely with M tetranema than with other
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samples of their own species. Macrhybops.is tetranema was monophyletic in both trees,

forming a clade in which the population from the Ninnescah River was sister to a clade

consisting of the two samples from the South Canadian River.

In a second appmach to phylogenetic analysis, I first subjected four tree-topologies to

1he F.REQPARS algorithm in a search for the shortest tree on the basis of allele-frequency

parsimony. These four trees included the two described for the distance-Wagner analysis, the

UPGMA tree derived from Nei's genetic distance, and a tree representing the UPGMA results

based on Rogers distance and Cavalli-Sforza chord distance (the last two indexes resulted in

identical UPGMA topologies). Unlike the distance-Wagner topologies, M tetranema was

paraphyletic in the UPGMA trees, with M. tetranema from the South Canadian River depicted

as sister to a clade in which M tetranema from the Ninnescah River was sister to M hyostoma

from the Arkansas River drainage.

The shortest of the resulting FREQPARS trees (Fig. 4) was the one based on the

distance-Wagner topology derived from Rogers genetic distance. The FREQPARS length for

this tree (8.66) was onJy slightly less than that for the next-shortest tree (length = 8.74), which

was the one based on the distance-Wagner topology derived from Cavalli-Sforza chord

distance. The FREQPARS lengths required by the two topologies derived from the UPGMA

analyses were somewhat longer (9.09-9.10).

In a further attempt to find a shorter FREQPARS tree, I examined three additional

topologies, each of which maintained the topology shown in Figure 4 for the samples ofM

tetranema. In these trees, samples ofM hyostoma from the same river were grouped together

in a single clade. TItis resulted in three lineages from the Arkansas River drainage: M

tetranema, M hyostoma from the Salt Fork of the Arkansas River, andM hyostoma from the

9

I'
, I

I

~.



-

Cimarron River. The three possible arrangements ofthese lineages required FREQPARS tree

lengths (8.78 to 8.82) that were slightly longer than the original trees based on tile distance

Wagner topologies (8.66 and 8.74).

A feature seen in both distance-Wagner trees and in the FREQPARS results from those

trees and tile three mOOified versions ofFigure 4is that branch-lengths for samples ofM

hyostoma from the Arkansas River drainage were markedly shorter than those for the three

samples ofM tetranema. Also, among the three samples ofM. tetranema. tile branch length

for the sample from the Ninnescah River was shorter than those for the two samples from the

South Canadian River.

Discussion

My analysis ofpopulation structure in speckled chubs from the Arkansas River

basin provides no evidence for the heterozygote deficiencies expected from the Biological

Species Concept for the co-occurrence of two species at the same site. These results

could be an artifact ofthe small sample sizes (n = 21-25) and the low leve's of genetic

divergence betweenM tetranema andM hyostoma. Based on morphology, however, it

appears that artificial reservoirs separate all extant populations ofM. tetranema from M.

hyostoma (Luttrell, 1997). Thus, there apparently is no opportunity for the <Ltest of

sympatry" regarding the question of whether or not the two forms represent good species

under the Biological Species Concept.

Three lines of evidence support recognition of two species in the Arkansas River

drainage. First, the two forms remain morphologically distinguishable, both historically
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and at present (Eisenhour, pers. comm.; Luttrell, 1997), although M hyostoma in the

Arkansas River drainage shows evidence ofmorphological intergradation (Eisenhour,

pers. comm.). Thus, the two forms qualifY as species under the Evolutionary Species

Concept, in which a species is an entity composed oforganisms that maintains its identity

from other such entities through time and over space and has its own independent

evolutionary fate and historical tendencies (Mayden and Wood 1995). Second, placing

the two forms into a single species would require the inclusion ofa third, morphologically

distinct form. Eisenhour's (pers. comm.) morphological analysis indicates thatM

australis, which is endemic to the Red River drainage, is sister to M tetranema.

Combining these morphotypes under the same species name would effectively mask the

existence of three morphologically recognizable entities that have maintained their identity

through time. Finally, my phylogenetic analysis indicates that the extant populations ofM

tetranema comprise a monophyletic group that excludes M hyostoma, further supporting

recognition ofM tetranema as aspecies separate from M hyostoma. Additional data are

required to address the question ofmonophyly for the wide-ranging M hyostoma.

My analysis is compatible with the evidence from morphology (Eisenhour, pers.

comm.) that, although morphologically distinct from M tetranema, the populations ofM

hyostoma in western reaches of the Arkansas River are intergrades between the two

species. This is supported by the genetic intermediacy of the samples ofM hyostoma

from the Arkansas River drainage (Fig. 3), and by the phylogenetic analysis. Inclusion of

intergrades in a phylogenetic analysis based on either allele frequency parsimony or genetic

distance would have two effects on the resulting phylogenetic tree: I) the appearance of
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paraphyly because of the topological placement of intergrades and 2) short branch lengths

for the intergrades. Both of these features are evident for the Arkansas River samples of

M hyostoma (Fig. 4). The short branch lengths for intergrades are due to their

intennediate genetic makeup, which FREQPARS would treat as the plesiomorphic

condition present in the common ancestor and which would result in small genetic

distances, thus short branch lengths, in results from the distance-Wagner procedure.

Eisenhour's (pers. comm.) phylogenetic analysis of morphology is consistent with

the hypothesis that vicariant biogeography explains the presence of three species of

speckled chub in the area encompassed by the Red and Arkansas River drainages.

According to this hypothesis, the common ancestor ofM tetranema and M australis

would have occupied the Ancestral Plains Stream, which fonned when Kansan glaciation

diverted east-flowing streams southward to the Gulf ofMexico through present-day

Kansas, Oklahoma, and Texas, independently of the Mississippi River (Metcalf 1966;

Cross et al. 1986). Prior to the Sangamonian interglacial period (0.4-0.1 million years

ago), the ancestral Arkansas and Red rivers eroded headward, capturing different portions

of the Ancestral Plains Stream and diverting them separately into the Mississippi River

(Cross et al. 1986). These events would have isolated populations that eventually evolved

into M tetranema and M. australis in, respectively, the Arkansas and Red river drainages,

and would have established contact between both of these species and M hyostoma, a

fonn that would have evolved in the Ancestral Mississippi River Basin.

It is worth noting that, on the principal axis of genetic variation (pC I, Fig. 3), the

Ninnescah River population ofM tetranema is intennediate between M tetranema from
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the South Canadian River in New Mexico and Texas and M hyostoma from the Wabash

River in Indiana. In addition, the historical distributions of the two species suggests

greater opportunity for genetic introgression of the Nmnescah River population ofM

tetranema. Macrhybopsis hyostoma once occurred in the lower Ninnescah River about

100 river-Ian downstream ofmy collection site, whereas the extant South Canadian River

populations ofM tetranema were historically separated from M hyostoma by more than

600 river-Ian (Figs. 1 and 2), most of which was sparsely inhabited by speckled chubs

(Luttrell, 1997).

Further analysis, perhaps with non-recombining genetic markers such as

mitochondrial DNA, would be required for a more conclusive answer to the question of

whether the Ninnescah River population ofM tetranema has been introgressed by M

hyostoma. If the answer is yes, then this raises several controversial questions. How

should the population be treated under the Endangered Species Act? Should it receive the

same investment of resources as non-introgressed populations? Does it matter whether

the introgression is anthropogenic or not? Such questions have generated considerable

debate among conservation biologists (O'Brien and Mayr 1991; Gittleman and Pimm

1991; Phillips and Henry 1992). Because introgressed populations still carry locally

adaptive genetic variation, we should not automatically discount them as valuable

resources worthy of protection (Dowling and Childs 1992). Regarding red wolves, which

are genetically introgressed by coyotes (probably as a result of human activity), O'Brien

and Mayr (1991) argued that they deserve protection under the Endangered Species Act

because they are the only available descendants of a historic wolf species. If introgression
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is natural, as apparently is the case for speckled chubs, then it should not eliminate

populations as candidates for re-introduction into areas ofprevious occurrence. unless

there is evidence that the original population in the area ofre-introduction was not

introgressed. Thus, both of the remaining populations ofM tetranema are worthy of

attention as the last remnants ofaonce more widespread species.

The F(sl) value for M tetranema (0.025) suggests that approximately 97% (l-F(sn)

ofthe existing genetic diversity in the species is contained in a single sample from either of

the two remaining populations. This suggests an unusually high level ofgenetic

cohesiveness compared with most other western species having disjunct populations

(Echelle 1991). Based on collection records (Fig. 1), the two populations were

historically isolated, even before construction of the reservoirs that now preclude gene

flow (Luttrell 1997). From the management standpoint, the low level ofgeographic

heterogeneity suggests that the two populations ofM tetranema might be treated as a

single management unit. However, as previously mentioned, the Ninnescah River

population might have diverged somewhat as a result ofgenetic introgression by M.

hyostoma, a possibility that should be considered in management plans for the species.

It might be argued under the concept of the evolutionarily significant unit (ESU)

that the two populations ofM tetranema be managed as separate units. An ESU is

defined as "a population (or group ofpopulations) that is 1) significantly reproductively

isolated from other conspecific population units, and 2) represents an important

component in the evolutionary legacy of the species" (Waples 1995). Thus, on the basis

of the wide geographic separation of the two populations, the small but statistically
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significant differences in allele frequencies, and the potential for local adaptations (through

genetic introgression or other means), both South Canadian and Ninnescah populations

qualify as ESUs. In other words the loss ofone or the other ofthe two populations would

represent asignificant loss ofthe ecological-genetic diversity ofthe species. As

emphasized by Waples, this is akey consideration in recognizing ESUs.
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Table 1. Proteins, presumptive loci, and buffer systems used. Enzyme nomenclature follows the
International Union of Biochemistry (1992). Locus designations follow Buth's 1984 reccommendations.

Enzyme or protein Enzyme number Locus Tissue scored Analytical system l

N
~

Adenylate kinase
Aspartate transaminase
Calcium binding protein-l
Calcium binding protein-2
Creatine kinase
Creatine kinase
Glyceraldehyde-phosphate dehydrogenase
Glyceraldehyde-phosphate dehydrogenase
Glucosephosphate isomerase
Glucosephosphate isomerase
Isocitrate dehydrogenase
Isocitrate dehydrogenase
Isocitrate dehydrogenase
Lactate dehydrogenase
Lactate dehydrogenase
Malate dehydrogenase
Malate dehydrogenase
Malate dehydrogenase
Malate dehydrogenase
Manose-6-phosphate isomerase
Peptidase-A

2.7.4.3
2.6.1.1
nonspecific
nonspecific
2.7.3.2
2.7.3.2
1.2.1.9
1.2.1.9
5.3.1.9
5.3.1.9
1.1.1.42
1.1.1.42
1.1.1.42
1.1.1.27
1.1.1.27
1.1.1.37
1.1.1.37
1.1.1.37
1.1.1.40
5.3.1.8
3.4.-.-.

Ak-A
s-Aat-A
Cbp-l
Cbp-2
CK-A
CK-B
Gapdh-A
Gapdh-C
Gpi-A
Gpi-B
m-Idh-Al
m-Idh-A2
s-Idh-A
Ldh-A
Ldh-B
s-Mdh-A
s-Mdh-B
m-Mdh-A
m-Mdhp-A
Mpi-A
Pep-A

muscle
eye-brain
muscle
muscle
eye-brain
eye-brain
eye
muscle
muscle
muscle
eye-brain
eye-brain
eye-brain
eye-brain
eye-brain
muscle
muscle
muscle
eye-brain
eye-brain
muscle

3

I
1

1

3

3

3
3

4
4
1

1

1
2

2
1
1
1

1
2
1



Table 1., continued

Enzyme or protein Enzyme number Locus Tissue scored Analytical systeml

Peptidase-B
Phosphogluconate dehydrogenase
Phosphoglucomutase

3.4.-.-.
1.1.1.44
2.7.5.1

Pep-B
Pgd-A
Pgm-A

eye-brain
muscle
muscle

2
3
1

1Analytical systems are as follows:
1) Electrode buffer and stock solution: 0.69 M Tris-Hydroxymethlaminomethane (= "Tris"), 0.16 M .016 M citric acid,

pH 8.0; gel buffer: 1 volume stock., 28 volumes H20 pH 8.0.

~ 2) Stock solution: 0.90 M Tris, 0.50 M boric acid, 0.1 M disodium EDTA adjusted to pH 8.6; electrode solution:
1 volume stock, 6.9 volumes H20; gel buffer: 1 volume stock., 24 volumes H20.

3) Stock solution: 0.75 M Tris, 0.25 M citric acid, pH 7.0; anodal electrode buffer: 1 volume stock, 6 volumes
H20; cathodal electrode buffer solution: 1 volume stock, 4 volumes H20; gel buffer: 1 volume stock,
19 volumes H20.

4) Electrode buffer and stock solutions: 0.223 M Tris, 0.86 M citric acid pH 6.0; gel buffer: 1 volume stock, 28
volumes H20.

All pH adjustments made with ION NaOH.



Table 2. Genotypes for polymorphic loci, average heterozygosity, and
polymorphism for three populations ofMacrhybopsis tetranema .
Symbols for populations correspond with those in Figure 2.

Locus Nin SCI SC2
s-Aat-A 100:100(21) 100: 100(24) 100: 100(25)

100:81(1)

Ak-A 100: 100(21) 100: 100(24) 100:100(23)
121 :100(1) 12l: 100(1)

Ck-b 100: 100(19) 100: 100(25) 100: 100(24)
100:92(2)

Gpi-A 100: 100(19) 100: I 00(22) 100: 100(22)
100:87(2) 100:80(1) 100:80(2)

110:100(1) 100:87(1)

Gpi-B 100: 100(13) 100: 100(20) 100: 100(25)
1100: 100(3) 700:100(1)
700: 100(1) -400:-400(1)

1100:-200(1) 100:-400(2)
100:-400(1) 100:-100(1)
100:-100(2)

m-Idh-Al 100:100(20) 100: 100(25) 100: 100(25)
lOO:95(1)

m-Idh-A2 100: 100(20) 100: I 00(25) 100: 100(25)

106:1000)

Ldh-B 100: 100(15) 100: 100(20) 100: 100(24)

350: 100(6) 350:100(5) 350:100(1)

s-Mdh-A lOO: 100(21) 100: 100(25) 100:100(25)

s-Mdh-B 100: 100(2I) lOO: 100(24) 100: 100(25)

115: 100(1)
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Table 2.) continued
Locus Nin SCI SC2

m-Mdh-A 100:100(19) 100:100(25) 100: 100(24)
100:73(1) 126:100(1)
100:60(1)

m-Mdhp-A 100:100(21) 100: 100(24) 100: 100(25)
116: 100(1)

Mpi-A 100: 100(19) 100: 100(20) 100: 100(21)
107:100(2) 107:107(1) 107:100(3)

107:100(4)

Pep-A 100: lOO(12) 100: 100(15) 100:lO0(15)
100:88(5) 88:88(1) 113: 100(1)
113: 113(1) lOO:88(5) 100:72(2)
113:88(1) 100:72(2) 100:88(7)
113: 100(2) 113:100(2)

Pep-B 100: 100(21 ) 100: 100(25) 100: 100(24)
121: 100(1)

Pgd-A 100: 100(16) lOO: 100(25) 100 100(25)
100:43(1)
100:75(3)
75:75(1)

Pgm-A 100: 100(16) 100: 100(16) 100: 100(20)
100:85(1) 118:100(5) 118: 100(2)
lOO:88(4) JOO:88(1) ]18:88(1)

100:85(3) 100:88(2)

H 0.083 0.065 0.042
P 0.458 0.417 0.333

H = average heterozygosity per sample.
P = polymorphism per sample.
Alleles are designated by the proportional migration of the product
relative to that of the most common allele.
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Table 3. Genotypes for polymorphic loci, average heterozygosity, and polymorphism for five

populations ofMacrhybopsis hyostoma. Symbols for populations correspond with those in Figure 2.

Locus Ciml Cim2 SFI SF2 Wab
s-Aat-A 100: 100(25) 100: 100(24) 100: 100(24) 100:100(25) 100:100(23)

100:89(1) 100:89(1)

Ak-A 100:100(23) 100: 100(24) 100: 100(24) 100: 100(23) 100:100(25)

121: 100(1) 121: 100(1) 100:64(1) 121: 100(1)
100:64(1) 100:64(1)

Ck-b 100: 100(25) 100: 100(25) 100: 100(25) 100:100(24) 100: 100(25)

tv Gpi-A 100: 100(22) 100: 100(20) 100: 100(23) 100:100(20) 100: 100(24)00

100:87(2) 110:100(5) 110: 100(1) 110:87(1) 110:100(1)

100:80(1) 100:80(1) 110:80(1)

100:80(1)

100:87(1)

110: 100(1)

Gpi-B 100: 1OO(19) 100: 100(20) 100: 100(12) 100:100(18) 100: 100(19)

1100:100(3) 1100: 100(3) 1100: 100(8) 1100:1100(2) 100:-200(2)

11 00: 11OO( 1) 100:-100(2) 1100:-600(1) 1100: 100(5) 100:-600( 1)

700:-100(1) 700:100(1) 700: 100(2)

700:100(1) 900: 100(1) 1100: 1OO( 1)
1100:-1 OO( 1)

100:-200(1)



Table 3., continued

Locus Cim1 Cim2 SF1 SF2 Wab

m-Idh-Al 100:100(25) 100: 100(25) 100: 100(25) 100:100(24) 100: 100(24)

100:89(1) 100:89(1)

m-Idh-A2 100: 100(25) 100:100(25) 100:100(24) 100: 100(25) 100: 100(22)

100:94(1) 106:100(3)

Ldh-B 100:100(16) 100: 100(14) 100: 100(17) 100: 100(18) 350:100(10)

350:100(8) 350:100(10) 350: 100(7) 350: 100(7) 350:350(15)

350:350(1) 100:50(1) 350:350(1)

tv s-Mdh-A 100:100(25) 100: 100(24) 100: 100(25) 100: 100(25) 100: 100(17)\0

100:87(1) 100:87(8)

s~Mdh-B 100: 100(23) 100:100(25) 100: 100(25) 100: 100(25) 100:100(25)

115:100(2)

m-Mdh-A 100: 100(25) 100: 100(24) 100: 100(25) 100: 100(23) 100: 100(25)

126:100(1) 126:100(2)

m-Mdhp-A 100:100(25) 100: 100(24) 100: 100(25) 100:100(24) 100:100(25)

116: 100(1)



Table 3., continued

Locus Ciml Cim2 SFI SF2 Wab

Mpi-A 100:100(18) 100: 100(25) 100: 100(25) 100:100(21) 100: 100(24)

104:100(1) 107: 107(1) 100:90(1)
107: 100(3) 112:107(1)

Pep-A 100: 100(14) 100:100(16) 100: 100(13) 100: 100(13) 113:113(11)

113:100(8) 113:113(2) 113:100(8) 113:113(1) 120: 113(1)

113:113(1) 113: 100(6) 113:88(1) 113: 100(8) 113:100(13)

100:88(1) 113:72(1) 100:88(2) 113:88(1)

113:88(1) 113 :72(1) 88:88(1)

100:88(1)
w
<:>

Pep~B 100: 100(25) 100: 100(25) 100: 100(25) 100: 100(24) 100: 100(24)

121: 100(1) 100:90(1)

Pgd-A 100: 100(22) 100:100(21) 100: 100(22) 100:100(22) 100: 100(19)

125:100(1) 100:43(2) 100:90(2) 100:90(1) 140: 100(2)

100:43(1 ) 100:90(2) 100:43(1) 100:75(1)

125: 100(2)

Pgm-A 100: 100 (24) 100: 100(21) 100: 100(23) 100: 100(23) 100: 100(22)

118: 100(1) 100:85(4) 118: 100(1) 100:88(1) 100:88(1)

100:85(1) 100:85(1) 100:85(1)

118:100(1)
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Table 3., continued

Ciml Cim2 SFl SF2 Wab
H 0.066 0.067 0.064 0.065 0.078
P 0.375 0.458 0.333 0.417 0.500

H = average heterozygosity per sample.
P = polymorphism per sample.
Alleles are designated by the proportional migration of the product relative to that of the most

common allele.
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Table 4. F-statistics for various combinations of samples ofMacrhybopsis hyostoma

and M. tetranema. Asterisks signify statistically significant among-sample

heterogeneity in allele frequencies: *, p<0.025; **, p<O.OOOl.

Sample grouping FQs) FQT) F(sT)

M. tetranema and M hyostoma

All samples -0.026 0.096 0.119**

Arkansas River basin 0.001 0.033 0.033**

WabashM. hyostoma plus allM tetranema -0.054 0.147 0.191 **

WabashM hyostoma plus S. CanadianM tetranema -0.079 0.177 0.237**
w
tv

M. hyostoma only

All samples of the species -0.038 0.091 0.125**

Arkansas River basin 0.003 0.016 0.013

M tetranema only ·0.003 0.022 0.025*



Table 5. Nei's genetic identity among samples ofM tetranema and
M hyostoma. Sample abbreviations correspond to those given in Figure 2.

M. tetranema M hyostoma

Sample Nin SCI SC2 Ciml Cim2 SFI SF2 Wab

Nin
SCI 0.999
SC2 0.998 1.000
Ciml 1.000 0.998 0.997
Cim2 0.999 0.998 0.997 1.000
SF] 1.000 0.997 0.996 1.000 1.000
SF2 1.000 0.998 0.997 1.000 1.000 1.000
Wab 0.966 0.960 0.954 0.972 0.973 0.971 0.969
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