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CHAPTER I

INTRODUCTION

S:patial Variability and Agriculture

Since the advent of mechanized agriculture, the possibility 0f spatially variable

crop management has intrigued both fanners and 'the academic agronomic community.

The presence of within-field differences in crop growth parameters has long been

suspected, but no means have traditionally been available to'quantify that variability and

alter management practices accordingly. Such a variable management paradigm would

emphasize within-field differences in crop production capabilities and seek to capitalize on

those areas of the field which are the most productive and apply crop inputs only where

they are needed.

However, the ability to implement such systems has only recently become a reality,

due to the rapid growth in several complementary technologies. These include the

launching of the NavStar constellation of Global Positioning System (GPS) satellites

which enable practitioners to accurately record positions on the earth's surface, the ability

to acquire and process 'multi-spectral satellite imagery for the assessment of crop

conditions, and the movement of Geographic Information Systems (GIS) software from

the domain of large organizational computer systems to desktop microcomputers. All of

these factors working in tandem have made it possible for agricultural producers to

implement sub-field level management schemes.
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This development opens the door to incorporate the results of geographic (site

specific) and agronomic (context-specific) research to optimize soil perfonnance at every

location-in a farm field. The distinction between the two aforementioned'approaches

arises because of the differences between the holistic approach of geography, which seeks

to incorporate various types of data to create a narrative describing the uniqueness of

specific locations, and the highly controlled. approach of agronomy, which seeks to

understand how crops behave given specific parameters in a particular location.

The discipline of geography provides a good backdrop for the study of the impact

of human land management on the physical surroundings; indeed, the geographer Richard

Chorley noted that "Ecosystem management is therefore primarily associated with the

maximization of existing productivity, the minimization of wastage by the adoption of

suitable harvesting strategy, pest control, or the scientific cropping of native flora and 

fauna" (Chorley, 1973). Peter Gould. a quantitative geographer whose influence on the

development of spatial theory cannot be overstated, pointed to the need for applied

geography in the management of data complexity, reflecting that "With an increased

willingness to tackle complicated systems and structures came the necessity to distance

oneself a bit from aU the complexity, and try to simplify (to model), abstract, and theorize"

(Gould, 1985). Thus, geogmphic inquiry within the context of agronomy. which also

deals intimately with manlland relationships. can provide valuable insight with the

multitude of sub-field level data that are now available.

Understanding how to manage crops given certain conditions and ascertaining

where in a field those conditions exist is precisely why geographic and agronomic

techniques are being married in a burgeoning new sub-discipline which has been referred
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to as "fanning by the foot" or "precision farming" (Reichenberger and Russnogle, 1989~

Sudduth et al., 1991). This integration of two traditional acade.mic studies seeks to enable

agricultural producers to make environmentally responsible decisions while simultaneously

accruing the economic benefits -associated with increased crop productivity and the

reduced application of crop inputs..

One problem that innovative agricultural producers are faced with is that of

assessing the success of a spatially variable management technique. The nature of

precision farming is such that its implementation alters the conditions of crop production

to various extents within the field; thus, any yield which results from such a practice must

be compared to crop .performance on the same p]ot of land managed homogeneously, i.e.,

with no intended spatial variability. Also, if two different methods of implementing spatial

variability are applied, they must be compared not only with traditional methods, but also

with each- other if an objective assessment of the results is to be made.

The fanner comparison is flawed because although it considers a common

geography, the field contains different management practices; the second comparison

pfesents an even further difficulty in that it compares both different management practices

and different geographies. Thus, any assessment of the perfonnance of a spatially variable

management practice must include sufficient data to compare yield differences with such

discrepancies removed from the data. Normalization for the differences between the two

scenarios under scrutiny must be included in the study if an accurate assessment of the

success of one practice over another is to be made.
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The Statement of Purpose

The specific problem this study addresses is the difficulty in comparing different

spatially variable farm management practices with each other. The ultimate goal is to

assess the performance of two management practices based on their respective abilities to

improve crop yield.

The Requirements of the Study

.The specific objective of this study is to construct a database which catalogues two

agricultural fields supporting the same crop. to which different spatially-variable

management techniques are applied. These data. are augmented by control zones within

each field to which traditional aspatial methods have been applied. A geographic

approach is then taken to quantitatively assess the differences both between the two

spatially variable management schemes and between the application of aspatial and

spatially variable management practices. The field of spatial statistics is heavily employed

in an effort to examine the impact of spatially variable management. The foUowing null

hypotheses are investigated: j .' .. ,

I) Ho: There is no difference between crop yield in portions of a field managed

spatially and aspatiaUy

2) Ho: There is no difference between crop yield between two different fields to

which unique spatial management regimes were applied

4



CHAPTER II

LITERATURE REVIEW
1 I

Spatial Variability and Agronomy

Concurrent with technological advances and the emergence of commercially

available variable-rate crop input application equipment, the field of agronomy has

produced studies which have analyzed the amount of within-field variability in crop

growth parameters under a variety of conditions (Forcella, 1993) (Lark and Stafford,

1996). These studies have served to address the gap between the intuitive knowledge of

within-field differences and the actual quantitative application of management strategies.

Many of these studies address how to assess the within-field variability of some specific

criterion for the application of a particular management technique; this has been

demonstrated repeatedly in soil fertilizer applications and soil-specific tillage operations

(Voorhees et aI., 1993;. Ferguson et al., 1996).

Older studies in agronomy are not devoid of acknowledgment of within-fi.eld

differences; rather, variability is simply cast in the light of available management strategies.

For example, in a 1947 study of fertilizer applications for various crops in Oklahoma,

Harper discusses at length the relationship between soil acidity and phosphorus availability

on various soil types. While it is noted in the study that different soil structures will

behave differently under conditions of acidity, fertilizer application recommendations are
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given on a crop-by-crop basis (Harper, 1947a). The underlying assumption is that while a

field may encompass several soil types, it is not feasible to address them individually, and

thus the field should be treated homogeneously and managed according to a specific

crop's requirements.

Soil sampling, which seeks to understand soil conditions within a field.l1as

typically not addressed within-field differences, but has been conducted on a field-by-field

basis for fertilizer recommendations. In a 1978 field guide for the sampling and

description of soils, the author notes that "Soil samples for laboratory analysis often weigh

a few grams, a small portion of the whole profile, and we use such samples to represent

many hectares..." (Hodgson, 1978). The book does not elaborate on the spatial

variability of soils; although many descriptions are given of various ways to determine the

properties of individual soil profiles, no proposal is given of the spatial resolution at which

soil properties may vary.

More recent studies, however, have appeared which highlight within-field

differences in crop growth potential. Brukler et aI. present an analysis of nitrate variability

in both space and time for Mediterranean salad crops (Brukler, 1996). The study noted

that the range of spatial dependence of nitrate leaching potential was very small, and

demonstrated quantitatively bow the percent uncertainty around an estimate could be

significantly decreased by increasing the spatial resolution of sampling. Blackmer et al.

outline a strategy for incorporating aerial photograpby to assess within-field differences in

nitrogen availability based on known relationships between crop response to nitrogen and

crop canopy reflectance of light (Blackmer et ai., 1996).
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Crop Population Density

Corn planting population prior to the development.of hybrids and chemical

fertilizers was restricted to usually about one kernel every 40 inches in a row, w4ich

translated into about 10,000 plants per acre (Aldrich and Leng, 1965). However, densities

in excess of 20,000 plants per acre are common today. The influence of population

densi.ty, on yield depends largely on planting data. and available moisture. Earlier planting

dates typically favor higher population densities because of increas~morlality and greater

moisture availability (Aldrich and Leng, 1965).

The effect of population density duriIg periods of drought has been investigated by

agronomists under several scenarios. Norwood and Currie found over a four year study

of dryland com i.n Kansas that yields in. drier years decreased with higher plant populations

(Norwood and Currie, 1996). Another study at experiment stations in Georgia noted that

maximum yields were experienced for higher population densities during optimal

management, .but when moisture stress OCCUlTed, lower population densities yielded the .

highest. In the current study, moisture stress is expected at the end of the growing season,

so areas of the field which are less susceptible to drought (those with higher moisture

holding capacity) should experience higher yields (Cummins, 1976).

Relationship of Soil Nutrients and Soil Chemistry to Crop Growth

The relationship between crop yield and soil nutrients has been well documented in

the agronomy and s.oil science literature. The database for this research includes several of

these soil parameters, each of which has been established as a determinant of yield.

Typically, there is a positive correlation between the values of each and yield, but this is
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not always the case, as will be demonstrated for phosphorus and soil pH. The degree to

which crop development is influenced differs for each soil parameter, so brief descriptions

of each will be given below. Soil parameters which are typically analyzed include K, P,

OM, CEC, Ca, Mg, and soil pH. Soil nitrogen levels, widely recognized as a major

limiting factor in com development, is excluded from the database because of the difficulty

inherent in describing the spatial distribution of such a highly mobile nutrient (De

Willegen, 1991).

Potassium is a nutrient occurring in the soil medium which does not comprise any

organic compound within plant tissues, but nonetheless plays an important role in crop

development (Sauchelli, 1965). Potassium is essential for the energy conversion process

of photosynthesis; it also helps to decrease the adverse effects of inadequate moisture

levels within the plant. A study in Aberdeen, Scotland, found that plants with adequate

levels of K were not as susceptible to scorching and wilting as were plants with insufficient

K (Cowie, 1951). In the current study, if precipitation events are sparse at the end of the

growing season,iasis expected in southern Illinois, then this could enhance the positive

relationship between yield and K.

Phosphorus is vital to a number of plant physiological processes, including seed

germination, cell division, .and the formation of fat. Although phosphorus occurs in the

soil in the form of phosphate, elemental phosphorus is extracted inside plant cells and is

highly mobile (Sauchelli, 1965). The elemental fonn moves from older tissues to younger,

developing tissues, so one would expect, in general. a positive correlation between P and

yield. However. if it is applied continually, phosphorus reservoirs can build in the subsoil,

which may result in detrimental conditions to crop health if application is continued
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(Swain, 1983). Thus,. a positive or negative correlation may be detected between P .and

yield.

Organic matter and cation exchange capacity (CEC) are soil parameters which

describe the structure of the soil medium. Organic matter is the amount of biodegradable

material in the soil, which is rich in carbon, and CEC is a measure of a soil's ion transfer

gradient. Both parameters are highly corre]ated with each other; higher organic matter

levels ip the soil represent availability of ion exchange sites (USDA, 1993). Since both are

measures of the soil's ability to utilize available nutrients, a positive correlation between

CEC and yield is expected.

Soil pH is measured on a logarithmic scale in which 7.0 is considered neutral,

values < 7 are acidic, and values> 7 are basic, or alkaline. Typically, lime is applied to

ameliorate acidic soils, which can be toxic to plant health, due to the oxidation of metals

such as aluminum and manganese (Ritchie, 1989). However, the optimal growth pH for a

plant is usually some value less than 7; thus, the relationship between pH and yield will be

dependent on the variability of pH within the field and the specific crop being cultivated.

Also, since lime application neutralizes acidic soils, the relationship between soil pH before

and after harvest can be an indicator of the success of such management practices which

seek to remove soil acidity.

Much like cation exchange capacity, soil pH exerts an influence on a soil's

potential for chemical interactions. Thus, the spatial coincidence of certain levels of

acidity and soil nutrients can influence the degree to which a particular nutrient can be

utilized by the crop. For example, Harper notes that increasing levels of acidity in soils are

responsible for the transformation of phosphates into insoluble fODDs which cannot be
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absorbed by plants (Harper, 1947b)..Also,. the decomposition of organic materials in

acidic soils is slowed, thus resulting in lower levels of available sulfur and nitrogen. These

relationships illustrate the interaction of nutrient levels and a soil's chemical potential.

Spatial Distribution of Soil Properties

Typically, the levels of soil nutrients such as those listed above are measured

within a field in an attempt to determine the amount of fertilizer to spread. However. the

joint spatial distribution of several of these variables may give clues to the structure of a

soil, assuming that there has been no site-specific management of nutrients within a field.

Zones of homogeneous soil characteristics are typically delineated with respect to soil

variables which describe the structure and physical properties of the soiL Khakural et al.

computed a soil productivity index (SPT) which was intended to divide afield in central

Minnesota. into zones of common production capabilities; this index was a function of .

available water-holding capacity, soil pH, soil permeability, and bulik density (Khalrural et

al., 1996). The index was then used in a regression model which attempted to predict

yield; the resulting model explained 90 percent of I:he variation in yield for that particular

field.

Soil structure is an important determinant of crop yield because a soil's structure

governs the interface between available moisture and a plant's root system. In a study of

the relationship between soil structure and com yield over a seven-year period:in Iowa,

Cambardella et al. found a strong relationship between aggregate size distribution of soil

particles for each of the seven years, as well as notable consistent relationships between

such related factors as bulk density and volumetric water content (Carnbardella et al.,
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1994). Thus, spatial variability in within-field crop production can be. a function of

variable moistme-holding capacities throughout the field.

Geostatistics and Soil Fertility Data

Regionalized Variable Theory

Spatial data analysis, especially within the context of geographic information

system~, has experienced a great deal of attention in recent literature. Bailey and Gatrell

offer a synopsis of the role of GIS in analyzing spatial data, and Berry discusses the

differences between classical and spatial statistics within the context of GIS (Bailey and

Gatrell, 1995; Berry, 1995). The treatment of data observations as non-independent

entities marles the major departur:e of spatial statistics from traditional statistics; data

which interact in space are assumed to be, to some extent, non-randomly distributed.

However, it is expected that the distribution of spatial data will assume a pattern which is

neither completely regular nor completely random.

This assumption of "ordered chaos" pervades the study of regionalized variable

theory, from which the technique of kriging was spawned. Journel and Huijbregts

illustrate how functions which describe the disribution of a regionalized variable must

include both a random and a stochastic component (Joumel and Huijbregts, 1968). Oliver

and Webster note that geomorphic features, such as soil fertility parameters, are to some

extent spatially dependent; in other words, there is some degree of spatial autocorrelation

in the data (Oliver and Webster, 1986). The method of kriging, which creates interpolated

surfaces based on the structure of point-level data, wil1 be used in the creati.on of the

database in this research.
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A regionalized variab~e can be defined as, at a simple level, any variable which is

distributed in space. This variable can be described by some function (f(x») which takes

place in either two or three dimensions (since the current study does not attempt to

ascertain levels of soil parameters at various depths, on~y two dimensions will be

considered here). The function [f(x)] assumes some value at every point x within some

region. The peculiar characteristic of this function is that it is both locally erratic,

sometimes even almost random at a large scale, but generally structured, with predictable

patterns emerging (Joumel and Huijbregts, 1968). Thus, at some scale. structure will not

appear in sampled data, but at some other larger scale, relationships between points within

the region of interest can be described by a mathematical function.

A random function describing the data could be computed by taking into account

all realizations of the regionalized variable, e.g., the values of the variable at all discrete

locations within the region of interest. With this in mind, the expression Z(x), which

describes the value of regionalized variable Z at location x, is locally random, but two

points separated -by some distance h are in some way correlated; thus Z(x) and Z(x + h)

are not independent of each other. The nature of this correlation between two points

separated in space is described by the average relationship between other points in the

sampled distribution which are separated by the same distance h. Thus, the key

assumption in regionalized variable theory, which has been termed the hypothesis of

stationarity, states that the difference between any two points Z(x) and Z(x + h) separated

by a lag distance h is dependent not on the locations of the two points, but on the distance

that separates them in space. The function which describes the variance of a single point's

value about the mean is given in the following equation (Journel and Huijbregts, 1968):

12



Spatial Variance = Var{Z(x)} = I: ([Z(x)'- m(x)]2 }

where Z is the regionalized variable, x is some point, Z(x) is the value of the regionaHzed

variable Z at point x, and m(x) is the mean of all points within the study area. The semi-

variance quantifies the relationsbip between two' points separated by some distance, and is

given by the following equation (Journel and Huijbregts,"1968):

Semi-Variance =y(h) =(Var{Z(xl)} - Var{Z(x2)}) /2

where nis the distance between points xl and x2, and Z(x) is the value of variable Z at

location x.

The method of spatial interpolation by kriging seeks to estimate the value that

some variable will assume at various locations within a study area based on the values at

certain sampled locations. Kriging is based on regionalized variable theory, and thus it

needs to quantify the relationships between points separated by various distances in the

study area in order to build a matrix of weights which can be used to estimate values. The

idea here is that when estimating the value of some variable Z at some discrete location x,

to.. "1" .
the values at all known sampled locations within the study area are to be used. The

amount of influence that a point has on the location to be estimated will be given by the

semi-variogram computed for two points separated by that distance.

In order to produce a matrix of weights which describe the amount of spatial

dependence between points in a study area separated by some distance, the semi-variance

must be calculated for every separation distance between points in the sampling scheme.

However, when interpolation with kriging is actually performed, there may be a distance

between the location to be estimated and the available sample points for which no semi-

variogram has been computed, due to the few distances that separated the sample points.
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Thus,. to obtain a continuous function WIDch provides a semi-variance value f@r any

distance between points in the study area,·a graph is created in which the semi-variances at

known separation distances are plotted on the y-axis and the distances are plotted on the

x-axis. The res'ulting graph is known as a semi-variogram (Joumel and Huijbregts, 1968).

A function can be fitted through the pointS displayed in the resulting graph to

obtain an estimate 'of semi-variance at every possible separation distance of discrete points

within ¢e study area. Several models are available which can compute this function; each

model has its own particular assumptions about the shape of the distribution of serni

variances. In order to objectively assess which model is the most appropriate, however,

one can run an interpolation on a set of points for several semi-variogram models and then

perform a cross-validation an.alysis to determine which model is the closest to reality

(Hosseini et a1.., 1994). Cross- validation looks at the sum of squared deviations between

the values of the regionalized variable at actual sampled locations and the values estimated

at those same locations. The formula for performing cross-validation is as follows

(lIosseini et aI., 1994):

RMS = ((L{Z(xl) - Z(x2)}2] I N)ll2

where N =number of sampled points, Z(d) =estimated value at point x, Z(x2) =

actual value at point x, and the summa60n is iterated from 1 to N.

Applications of Kriging to Soil Fertility Data

Although the method of spatial Dterpolation by kriging was developed in the field

of Geology for application in mineral exploration, it has been successfully applied to other

spatial variables which meet the assumptions of a regionalized variable. The current study

utilizes kriging spedfically for the interpolation of soil parameters. Oliver and Webster
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fust applied kriging to geomorphological data, introducing the concepts of regionalized

variable theory to the geographic literature, using small-scale soil properties such as stone

content, sandiness, and percentage mottling in color of soil (Oliver and Webster, 1986a).

Oliver and Webster followed this study with another which investigated model-fitting

procedures for the same types of soil variables (Oliver and Webster, 1986b). These two

studies were focused primarily ORmethodological considerations when applying

regiona).iz,ed variable theory to soils data, thus paving the way for more detailed analyses

in the literature.

Han et al. established the primacy of kriging as a spatial interpolator in the soil

sciences (Han et at, 1992). Noting that data observations in soil parameters were spatially

dependent, this study illustrated the flaws in using interpolation methods based on

regression, also known as trend-surlace analysis, because of the parametric nature of

regression. Kriging assumes nothing about the distribution of the regionalized variable of

interest, but rather seeks to understand the nature of the spatial dependence of

observations within a study area. Han et aI. also point O\lt that this is superior to

interpolation methods which use a simple pre-defined distance decay effect, such as in

inverse distance-weighted interpolation. This method acknowledges the spatial

dependence of data observations, but applies a single constant which describes the spatial

dependence (some root power of the distance between points), as opposed to kriging,

which is sensitive to how the scale of observation influences spatial dependence within the

area of interest.

Recently, studies mve appeared which apply kriging and other spatial interpolation

techniques to a larger scale of soil data, such as that encountered in individual fann-fields.
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Delcourt et al. examined the spati.aJ variability of soil fertility parameters in Belgium using

the semi-variogram (Delcourt et al., 1996). In this study. kriging was perfonned on

carbon, phosphorus, pH, calcium, magnesium, and sodium. Logarithmic transformations

were applied to some of the data to exaggerate their spatial variability at the scale of

measurement, or sampling. A weighted least squares method was used to detennine

which model fit the semi-variograms best; this fonn of quantitative cross-validation was in

contrast to many previous studies, which used visual interpretation to assess the goodness

of-fit of a particular model.

Another interesting approach taken by this study was the elimination of what was

termed zonal drift, or local trends in the data which could not be applied to the field as a

whole. To overcome this, historical management records of the field were used to

delineate zones of homogeneous management within the fields; each sampled value was

subtracted from the mean value of the regionalized variable within its management zone.

In this way, the authors were able to remove the local perturbations in the data. This

method of data de-trending by dividing the sampled locations into blocks was also used

successfully by Tevis et al. in the estimation of soil pH (Tevis et aI., 1991). It is

interesting to note that since this method successfully eliminated the local error in the

estimation, it demonstrated that the spatial distribution of soil parameters can be as much a

function of human land use and management as it can be a function of geomorphological

or pedo-genetic (soil-forming) processes.
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Analysis of Spatial Data

Spatial Application of Analysis of Variance (ANOVA)

One tool which has been used in geographic data analysis is the spatial analysis of

variance (ANOVA). The objective in a spatial ANOVA is to detennine whether or not a

significant difference exists between the means of three or more independent samples of

variables distributed in space. The distinction between sample groups could be based on

some sp.atial blocking pattern, for conditions which exert an influence on the means are

assumed to be homogeneous (McGrew and Monroe, 1993). Wessman et al. used

ANDVA in a study of landuse impact on vegetation of the Konza Prairie to determine

whether or not burning or grazing significantly produced significantly different vegetation

distributions (Wessman et aI., 1995).. Using remotely-sensed multi-spectral imagery, this

study attempted to isolate land management as the culprit in explaining differences in

vegetation given otherwise similar conditions.

In an agricultural study, blocking strata based on homogeneous soil conditions

which are known to influence yield (from a Tegression model) can be created, and

ANOVA can be used to detennine whether or not significant yield differences are present

between the strata (Waits and Johnson, 1996). Since there are several soil properties

wrnch can exert an influence on yield, the analyst is faced with two possible solutions;

either perfonn a multiple ANOVA, which seeks to analyze the effect of several blocking

strata, or produce an unmeasured surrogate variable which describes the spatial variability

of a number of variables within an agricultural field. Multivariate methods for quantifying

the joint variability of n variables create new regions of homogeneity which can be used

as blocking strata in an ANOVA.

17



If a significant difference is detected from an ANOVA, then multiple comparisons

can be used to determine which blocks are different, which are similar, and rank: them from

high yielding to low yielding blocks (Hicks, 1964). ANaVA simply tests the null

hypothesis Ho: ~l =~2 =... = Jlx ; however, if this hypothesis is rejected, then the

question arises as to which means are significantly different 'from others. By comparing

differences in observations between blocks with some threshold 'Which represents

statistioal significance, a multiple comparison can group the means of blocllting strata in

such a way that illustrates which blocks are similar (according to the set threshold) and

which blocks are different.

Regression Analysis Using Spatial Data

Regression analysis attempts to describe the relationship between some number of

covariates and a response variable (Clark and Hosking, 1986). A model is constructed in

which the independent variables, which are used to predict the response (dependent)

variable, are included and their relationship with respect to the dependent variable is

described. These variables can interact with each other to vary the dependent variable,

and the regression model can be altered to include these interactions. The goodness-oi-fit

of the resulting model is given by the coefficient of detennination, which is represented by

R2. This value is bounded from 0 to 1, and represents the percentage of variation in the

dependent variable which is accounted for by the model. Further, each component of the

model can be ranked in a stepwise regression such that only those components which exert

a significant influence on the dependent variable are included, and these components are

ranked according to their ability to influence the dependent variable.

18



The regression of spatial data can be used to describe the degree to which soil

characteristics exert an influence on crop yield. The problem with applying regression to

spatial data is the presence of spatial dependence, mentioned <above in the discussion of

regionalized variable theory, which gives rise to autocorrelation of residuals from the

regression model (Clark and Hosking, 1986). Elston et a1 note this problem in their study

of regression of spatial data in a GIS, proposing that independent variables be aggregated

into sur,rogate variables using principle components in an attempt to reduce the mean

squared error of the regression model (Elston et al., 1997). However, although the

presence of autocorrelation violates the assumption of,independent error terms. unbiased

estimates of beta coefficients can.still be obtained (Clark and Hosking, 1986). Since the

purpose of the regression model in this project is to rank soil parameters based on the

degree to which they exert an influence on yie.ld, and not necessarily to obtain a high

coefficient of detennination, the presence of autocorrelation should not present a problem.

Cluster Analysis and the Delineation of Homogeneous Regions

The spatial variability of any onevariable can be used to analyze the spatial

distribution of a response variable; however, there are often many variables within the area

ofinterest which exert an influence· on the response variable, and can be measured. Once

the spatial variability of each variable has been quantified using the aforementioned

process of kriging, these resulting patterns can be analyzed to produce zones of

homogeneity using cluster analysis. Cluster .analysis in many applications seeks to

taxonomically classify a number of observations in a tree diagram, given a certain number

of variables which describe each observation (Hartigan, 1975). Cluster analysis using a k

means algorithm, however, plots a number of variables in n-dimensional space for a
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number of objects, or observations, and computes a matrix of euclidean distances from

each object to all other objects (Hanigan, 19'75). In this way, it is possible to delineate a

number of clusters which seek to maximize between-cluster distances and minimize

within-cluster distances.

To use the k-means algorithm, the analyst must choose the number of clusters (k)

into which the data will be partitioned. This preliminary step arises because of the

iterativ~ nature of cluster analysis~ each iteration attempts to create clusters in which the

within-duster variance is minimized and the between-cluster variance is maximized. As a

result, at each iteration, there must be partitions defined into which outlying observations

can be moved,' The iteration stops when movement of observations into neighboring

clusters no longer increases the between-duster variance.

The application of cluster analysis to produce geographic regions based on a

number of variables has been demonstrated in a study of Alpine treelines by Allen and

Walsh (Allen and Walsh, 1996). This study used a k-means cluster analysis to determine

the spatial.organization within alpine treeline ecotones, or transition zones. Variables

derived from satellite imagery were used as inputs to the cluster analysis; these included

edge density, fractal dimension, contagion, and other metries which describe the pattern of

adjacent image pixels. The interesting aspect of this application was that in order to

detennine the number of clusters (k) to partition the data into, the authors ran the analysis

for several possible k partitions, and recorded the variable means (and distances between

means) for each number of clusters. In this way, the authors were able to determine the

number of clusters at which between-cluster distances begin to diminish (Allen and Walsh,

1996).
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CHAPTERITI

METIIODOLOGY

Data Collection - 1996 Growing Season

.The re~ear~h was conducted over the summer 1996 growing season on a

fannstead ne~Claremont, Illinois, managed by Gray Fanns, Inc. Two fields were under...
examination (~~e Figure 6; GF76 and GF120. Both fields were planted to white food-

grade com. The seed population (planting density) of these crops was varied such that the

crop was more dense in areas with a higher soil moisture holding capacity. The logic

behind this particular variable rate management technique was that rainfall events in .

southern Illinois are such that the distribution of precipitation is not constant throughout

the growing season; thus, areas which can retain moisture better than others are more

likely to promote crop health and vigor during longer periods of little or no precipitation

which can occur during the growing season. Concentrating crops in those areas with a

higher production capacity would then make economic sense to a farmer who wishes to

mitigate the effects of stochastic rainfall events.

However, since a soil's moisture holding capacity within a field cannot be

measured directly, it becomes necessary to develop surrogate variables which characterize

the spatial distribution of this phenomenon. To this end, a knowledge of known

biophysical parameters within the field can be combined with a producer's
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imuitive knowledge and experience in the cultivation of that field to arrive at an

operational solution. Gray Farms, Inc., has identified two parameters as correlates of soil

moisture-holding capacity; the combined depth of the A and E soil horizons, and the

previous year's crop moisture at the time of harvest. To thi.s end, Gray Farms analyzed

grain yield monitor data for the ]995 growing season on field GF76 using an AgLeader

2000™ yield monitor, which measured grain moisture every one second the harvest

combine traveled in the field. For field GF120,. Gray Farms sampled soil depth of the A

and E horizons at 117 discrete points within the field, or about 1.083 points per acre.

Both of these data layers were expressed as points, and thus required interpolation

in order to produce continuous surfaces of the variables of interest throughout the fields.

For the yield monitor points, which were collected at a very high spatial resolution, with

20,689 points in the field (approximately one point every 0.0036 acres), a continuous

surface was created at a lO-meter resolution using a nearest neighbor algorithm, in which

the moisture value of the point falling closest to the centroid of each cell was used to

characterize the moisture within the entire 10 square meter area. The soil depth sample

points in GFl20 were interpolated using a kriging algorithm willi a linear variograrn

model, also at a resolution of 10 square meters. These surfaces produced estimates of

each surrogate variable of soil moisture holding capacity for both fields; the next step was

to transform those estimated values into recommendations for varying the planting

population.

One consideration in this study from the point of view of the producer was the risk

that such an experiment poses during an actual year of production. Too much variation in

the plant population could exaggerate the resulting variation in yield, which could be
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beneficial for analysis, but as a result would produce unacceptably low yields in certain

portions of the fields, both of which were under food-grade production contracts (Gray,

1996). Since this study relies on actual production fields in agriculture, which are large

enough to encompass spatial variability and are managed according to real-world

constraints, some care had to be taken to both produce quantifiable results and satisfy the

producer's contractual and financial obligations. Thus, the producer decided to vary the

planting population between 18,000 and 25,000 plants per acre in.field GF76, and between

18,000 and 26,000 plants per acre in field GF120. Polygonal maps of the variability of the

two surrogate variables were created and used as recommendations for varying the seed

population rate for the summer 1996 corn crop (Figures 2 and 3). The relationship

between the measured criterion for varying population and the plant population in seeds

per acre is outline in Table 1. Each measured variable was classified into discrete

categories based on a quantile classification scheme, which seeks to place an equal number

of observations in each category (McGrew and Monroe, 1993). Note that although the

ranges of the measured variables are very different., the ranges within which the plant

populations were varied is comparable. This reflects the fact that there was no

quantifiable model linking the seed population to either of the surrogate variables~ rather,

an attempt was made to spread the population variability out over the surrogate variable's

variability distribution.
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Figure 2. Seed Planting Population Zones inField GF76
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Figure 3. Seed Planting Population Zones In Field Gf'120
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TABLE I

SURROGAlE VARIABLE STATISTICS WITHIN EACH PLANTING POPULATION
ZONE MEASURED IN PLANTS PER ACRE

Each variable was used on a single field. and in each field control bands of

continuous seeding rate were planted (Figure 4). In field GF76, two zones were planled

at constant rates of 20,000 and 25.000 plants per acre. In field GF120, three zones were

planted at constant rales of 20,000. 25.000,. and 30.000 plants per acre. In both fields.

these zones were interspersed with variable-rate planting zones. such that there is not a

single portion of the field designated for "control". The benefit of this type of intentional

juxtaposition of the two management practices is that placing the spatial and aspatial

management practices in close proximity increases the probability that the growing

conditions which underlie the management practices will be similar, or at least comparable.

This facilitates the types of comparisons in which spatial differences in each management

technique can be analyzed and an assessment can be made as 10 their relative successes.

These polygonal recommendation. maps were used to drive a Midwest

TechnologieS® variable rate planter in the spring of 1996, when planting occurred. This

particular model of planter communicates back to the recommendation computer the
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actual population applied to the field at discrete locations, so that the difference between

the population prescribed and the population actually applied can be determined. In field

GF120, this is not much of a concern, since the large, smooth polygons do not place heavy

demands on the planting controller to constantly change its rate. However, on field 0F76,

which has more of a "salt and pepper" effect, it was questionable as to whether or not the

equipment would perfonn correctly. The application map in figure 5 shows that the

equipm.ent did in fact perfonn close to the recommendation, and also shows where the

control strips were planted. For the analysis of population data, the actual values of

planting were used, rather than the recommended values.

Spatial Data Processing

To further aid in the analysis of the success of the planting project, more data were

needed to describe crop parameters within each field. This need often arises because of

the difficulty in comparing one field (or sub-field region) to another if levels of crop

influencing parameters in each are significantly different. Soil fertility data for both fields

prior to the planting date were necessary to assess the relative availability of the following

soil parameters in each: potassium (K), phosphorus (P), organic matter (OM), and soil pH.

Field GF76 was sampled on a 2.5 acre grid for these parameters in 1994; because of

financial constraints, this is aU the sub-field level fertility data available for that field (the

sampling intensity produced 29 points in GF76 and 49 points in GF120). However, field

GF120 was sampled intensively at the beginning of the 1996 growing season, also on a 2.5

acre grid. The sampling grid used was a systematic unaligned grid, which produces locally

erratic points, so that variation in the field can be captured more efficiently than with a
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Figure 5. Planting Rate Penonnance In Field GF76
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systematic aligned sampling scheme, which may place points along lines of homogeneous

past management (such as banded fertiliur application). Soil amendments, in the fonn of

anhydrous ammonia (a source of nitrogen) and poultry manure (a source of both organic

matter and phosphorus) were applied to both fields at the beginning of the 1996 growing

season. Despite the fact that there is a two year difference in the 4ates of sampling for the

two fie~ds, crop consultants typically recommend only sampling fields every four to five

years, because of the temporal stability of most soil properties; thus, it was decided that

the 1994 data for field GF76 would be sufficient to give a comparison of the growing

conditions of the two fields (Nowlin, 1996). However, the soil fertility data which were

sampled at discrete locations within the fields required interpolation, in an attempt to

create a continuous surface of fertility values throughout the fields. By creating a grid 'of

values for each soil parameter, the spatial variation of each parameter can be characterized

in a single G S layer, which contains attributes for each grid cell representing each soil

parameter. The interpolation method used in the creation of this database for each field

was kriging~ however, as mentioned above, the appropriate model for computing a semi

variogram must be chosen if the estimates are to be reliable, given a particular spatial

distribution.

The semi-variogram models available for use in the interpolation were linear,

spherical, Gaussian, quadratic, and exponential. The resolution of the resulting grid, or

the dimensions of each grid cell, could be set by the analyst; prior determination of that

resolution was necessary, because the fit of the semi-variogram models is in part a

function of the scale at which interpolation occurs (Journel and Huijbregts, 1968).
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The eventual goal of the multi-attribute surface was to produce soil production

zones via a k-means cluster analysis algorithm, which produces zones wlrich are

homogeneous with respect to n-dimensional data. in this case K, P, OM, and pH. In the

Statistica1M statistical analysis package, clusters can be produced from less than or equal to

800 observations; thJJS, for the largest field, GF120, this wO,uld constrain the grid cell size
• . '.j, "

to about 33 meters a side, to prevent a surplus of observations. As a result, this was the

grid cell resolution chosen for the study; the same resolution was applied to both field<\.

All semi-variograrn models increase monotonically near the origin of the semi-

variogram; thus, it was initially decided to use a linear model for interpolation. Since the

distances to be interpolated in a fann field are much less than distances in a geological

application, for which, kriging was deveIoped, the commonali~of all models near the

origin pointed to the linear model as the most logical choice (Surfer® User's Guide,

1994). This suspicion was confirmed for field GF76 in the low error of estimation for

kriging with the linear mode], The procedure used to estimate the error, known as cross-

validation, uses the following equation (Tevis et al., 1991):

mean absolute error =(L IXkriged - XactuaJI) I N

where Xkriged is tbe estimated value at a sampled location, X8ctuaJ is the sampled value at

that location, N is the total number of sampled locations, and the summation is iterated

from 1 to N (Tevis et aI., 1991).

Held GF120, however, was not so well behaved in its error of estimation. The

linear model produced a noticeable amount of error in its estimations of soil properties.

Thus, several semi-variograrn models were run in an attempt to produce the best possible

surface; the results of those interpolations are summarized in Table n. The amount of
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variation in the soil parameters in field GF120, compared to the relatively homogeneous

GF76 may help explain why GF76 produced less estimation error (see Table ID).

TABLE IT

MEAN ESTIMATION ERROR OF SOIL PARAMETERS FOR DIFFERENT
SEMI-VARIOGRAM MODELS IN FIELD GF120

TABLE ill

DESCRIPTNE STATISTICS FOR SOIL PARAMETERS IN
FIELDS GF76 AND GF120

In order to choose the appropriate semi-variogram model to use for interpolation

of soil parameters in GF120, the estimation error for each soil parameter was divided by

that parameter's mean, in an attempt to nonnalize the error in each parameter such that

they have no units and can be compared to each other. The resulting standardized error

for each parameter was then summed for each soil parameter and divided by four, which is

the total number of parameters, to obtain the overall goodness-of-fit of each rnodet these

results are given in Table IV. According to these results, the spherical model minimizes

the average estimation error for soil type parameters, and thus it was decided to use the

spherical model in the interpolation of GF120 soil data.
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TABLE IV

AVERAGE STANDARDIZED ESTIMAnON ERROR
FOR SOIL PROPERTIES IN GF120

linear
0.0158

Gaussian
0.0249

uadratic
0.Dl57

Ex onential
0.01799

S herical
0.0156

Yield data were collected at the end of the growing season with an AgLeadefM

2000 grain yield monillor. This device is equipped with a real-time differentially-corrected

GPS receiver, so that yield data are available for discrete points within the field at known

locations. In the case of both fields, one yield point was collected every second. Each

yield point represents the amount of grain mass passing through a sensor on board the

combine at a specific time; this is aggregated for the width of the header on the combine,

which covered 16 planted rows in this case. The resulting yield maps for each field are

shown in Figures 6 and 7.

Since each pass through the field may fill a different width of the combine header

with grain, the pass itself can be considered a source of spatial variation in the yield data;

thus, while points along the direction of harvesting will be spatially dependent, tltis may

not be the case across harvest passes. Also, there is a lag between the point at which the

com stalk is cut and the point at which the grain is measured by the sensor; this lag will be

manifested in different directions for adjacent combine passes, since the vehicle turns

around for every pass, which introduces further discrepancy between adjacent yield values.

Thus, the yield data were not interpolated. because of the lack of spatial dependence of

observations across harvest passes; instead. to facilitate data analysis. point-in-polygon

analyses assigned yield averages to polygonal zones in each field. which may represent
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Figure 6. Yield Data for Field GF76
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Figure 7. Yield Data for Field GFl20
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either a treatment (population), a particular growth potential area (as given by soil

clusters), or some combination of the two.

Methodology for Data Analysis

The goals of data analysis for this study can be broadly grouped into two

categories; 1) data preparation, to create soil production regions and assimilate an data

into a model conducive to further analysis, and 2) actual testing of the hypotheses outlined

above using ANOVA procedures. As mentioned above, a multi-attribute surface was

produced for each field which contained estimates of P, K, pH, and OM for every 33

meter block within the field. These grid cells were aggregated into zones of crop

production potential based on the spatial variability of all significant parameters. To

determine if a given parameter was significant,. and therefore warranted inclusion in the

cluster analysis procedure, a multiple nonlinear regression was run in which P, K, pH, and

OM were independent, or explanatory, variables, and yield (from the 1996 growing

season) was the dependent variable. Any of the soil parameters which were not significant

components were not included in the cluster analysis. In addition to the four raw

variables, transformations of those variables were fitted with a nonlinear regression model

to determine if dley were significant; if so, then those transformed variables were also used

in the calculation of soil production clusters.

Once these clusters were computed, a number of ANDVA procedures were used

to address the hypotheses posed above. For each field, it was necessary to det.ennine

whether there was a significant difference in the performance of the constant rate zones

and variable rate zones; this was accomplished by comparing each constallt rate to all
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variable rate areas in the field which are of the same or similar population as that particular

control zone (in other words, comparing a 20,000 plants per acre constant zone with all

20,000 plants per acre variable rate zones within the rest of the field). If a significant

difference was found, it was then appropriate to run a multiple comparisons procedure to

determine which area (the control or the experimental) had the higher yield.

The next step, assuming a significant difference was found, was to investigate

whether any differences found were attributable to the management technique of varying

the rate of planting based on a surrogate of moisture-holding capacity, or to different

conditions within the fields. This was accomplished by using the crop production areas, as

determined by the k-means cluster analysis described above, in other analyses in which the

control zones were broken down by crop-production polygons. Each zone could then be

analyzed with its variable-rate counterpart (e.g., all 20,000 density control points in

production region 3 will be compared with all 20,000 density experimental points which

are also in production region 3). Finally, the perfonnance of the variable-rate planting was

compared for the two fields, in an attempt to see which criterion for varying the rate of

planting (grain moisture or soil depth) was the most effective. This involved comparing

each management technique's ability to explain variation in yield, as wen as taking into

consideration the growing conditions in each field.
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CHAPTER IV

DATA PREPARATION AND PROCESSING

Modeling Yield Using Regression

Overview

In an attempt to better understand the relationship between the measured soil

parameters in each field and crop yield, regression was used to model the soil parameters

and transformed soil parameters against yield. The objective of this modeling exercise is

to detennine which variables or derived variables are to be included in the duster analysis

which will produce zones of crop-growth potential. Thus, a model which includes only

variables which are known determinants of yield would logically produce zones within

which yield is homogeneous, and between which yield is variable. The variables available

for each field (P, K, OM,. and pH) can be transformed in any number of ways; e.g., X2,

X3, llX, eX, etc.. The raw variables will be regressed against yield initially, and the least

significant of the available variables win be removed from the model before

transfonnation. lbis step is necessary because although there may be more than one non

significant parameter, often non-significant parameters can make contributions to the

model's explanatory power.

In order to produce data for the regression model, the original soil test points were

subjected to a spatial join with 1996 yield points using SSTooibox™ GIS. This procedure

finds the yield point dosest to each soil test point, and assign the attributes of iliat location
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to the soil test point data layer's attribute table. Because of the dense nature of yield data

within the fields, there was not a problem in finding yield points which were extremely

close to each of the original soil test points.

Field GF76

The results of the initial regression, in which dry yield was regressed against P, K,

OM, and pH is summarized in Table V. The coefficient of determination (R2) for this

model 'was 0.36048; the model's parameters are given in the following equation:

Dry Yield =157.776 + O.3259(P) + O.0211(K) -12.6389(pH) - 2.293(OM) + E

TABLE V

REGRESSION OF RAW SOIL PARAMETERS AGAINST
YIELD FOR FIELD GF76

157.7766 44.74063 3.52647 0.001725
0.5278 0.192715 0.3259 0.11901 2.73876 0.011441
0.099776 0.201043 0.0211 0.04245 0.49629 0.624206
-0.319479 0.180359 -12.6389 7.13513 -1.77135 0.089201
-0.171726 0.17938 -2.293 2.39521 -0.95733 0.347947

According to these results, the variable K had the least probability of significance,

at 0.624. The standard beta measure, which indicates the beta if all variables were

standardized to a mean of 0 and a standard deviation of 1, demonstrates that K contributes

less to the model than any of the other parameters. Thus, K was removed from the model,

and the following transformations were applied to the remaining independent variables:

x2, X3, and l/X. A stepwise regression was performed on these variables, and the results

of this are summarized in Table VI.
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TABLE VI

REGRESSION OF RAW AND DERIVED VARIABLES AGAINST
YIELD FOR FIELD GF76

0.55169
-0.368217

0.16529
0.16529

!he stepwise regression, as shown above, only included two parameters in the

model; P and pH3. The R2 for this model was 0.33608, which is less than the previous

model (which included P, pH, OM, and K, regardless of significance). Thus, a final model

was run, in which P, pH, OM, and pH3 were included; this resulted in an R2 of 0.35523,

which is still less explanatory of yield than the original model with only raw variables;

thus, the original model was adhered to. The distribution of residuals resulting from this

fIrst model is given in Figure 8.

Figure 8. Observed Yield vs. Residuals From Regression in GF76
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Field GF120

The initial model for field GF120, containing only the raw soil parameters,

produced an R2 of only 0.17854. This model, which is summarized in Table VII, yielded

the following equation:

Dry Yield = -20.9781 + 17.2909(OM) + 1O.8868(pH) - 0.0362(P) +O.OO66(K) + £.

TABLE VII

REGRESSION OF RAW SOIL PARAMETERS AGAINST YIELD FOR FIELD
GF120

-20.9781 38.23345 -0.548684 0.585996
0.394228 0.145481 17.2909 6.3808 2.709825 0.009559
0.321053 0.147773 10.8868 5.01094 2.17261 0.035238
-0.159589 0.183017 -0.0362 0.04148 -0.871993 0.387946
0.06564 0.176699 0.0066 0.01785 0.371481 0.712062

Interestingly, this model also placed the lowest contribution on the variable K, with

both the highest p-value and the lowest standard beta. Again, K was removed from the

model, and the follO\YiI!g.!!p.;D:sf.orm~tions we~e applied to the remaining variables: Xf.,

x3, and llX. The results of this regression are summarized in Table Vlli.

TABLE VIII

REGRESSION OF RAW AND DERIVED VARlABLES AGAINST
YIELD FOR FIELD GFl20

0.957316
0.134578

0.954976
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The three parameters which remained in the stepwise regression pmduced an R2

of 0.23674. This slightly improved the previous model, although the exclusion of P and

pH from the stepwise regression may have compromised the predictive potential of the

model. Using a standard regression equation (which includes all selected parameters in

the model) with the specified transformations produced an ill-fitting matrix for which a

solution could not be found. However, by removing the l/X and X3 parameters from the

model ~nd using a standard regression model, the R2 was improved slightly to 0.26057.

This increase was interesting, since the OM3 parameter was significant in the previous

stepwise model, yet its exclusion from the standard model did not decrease its

performance. Figure 9 shows the observed yield values against the residuals for this

model. Based on the performance of this .fmal model, the following parameters were l,lsed

for field GF120: OM, P, pH, OM2, p2, and pH2.

Figure 9. Observed Yield vs. Residuals from Regression in GF120.
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Delineation of Crop Production Zones Using Cluster Analysis

Overview

In an attempt to partition each field into zones in which the crop production

capacity is relatively constant (or zones in which crop-influencing parameters are

homogeneous), multi-dimensional cluster analysis was used. Each dimension in the

analysis was one of the parameters in the regression model computed for each field, as

shown above. The k-means clustering algorithm requires that the analyst specify prior to

the analysis the number of clusters into which to partition the data; thus, exploratory

analyses were necessary to detennine exactly how many, clusters into which the fields were

to be partitioned. Ideally, it would be possible to partition each field into enough clusters

to separate the inherent variability in each field, while producing spatially continuous

fegions within the fields.

However, it became necessary to examine both objective mathematical indices of

the algorithm's performance as well as a more subjective visualization of the results, in an

attempt to assess the appropriate number of clusters to use. The quantitative indicator of

performance was the average euclidean distance between cluster means. In order to

compute a euclidean distance in k-dimensional space, the following equation was used

(Statistica User's Guide, 1995):

distance(x,y) = [Lj(xi - Yi)2] 1/2

where x and y are the means of two clusters. By computing this distance for all possible

cluster mean pairs, it is possible to compute the average distance between any two clusters

produced by the analysis.
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It must be noted that as the number of clusters increases. lLhe average distance

between duster means will also tend to increase. This phenomenon arises because the

means of clusters with just a few partitions represent wider variation in data than cluster

means with many partitions. As a result, with more partitions •. each cluster mean becomes

more representative of its cluster. and thus less influenced by extraneous observations (i.e.,

observations with unique combinations of variable levels). Thus, included in the

quantitative analysis of algorithm performance is. a measure of the change in distance, or

AD, of each successive number of clusters over the previous number of clusters. This

measure indicates the relative amount of information gained by adding additional clusters;

in other words, it helps to reveal the point of diminishing marginal returns of computing

more dusters. \ .
. \

Q~alitative as~ssment o~ algorithm. fitness ~as determined by joining a variable'

representing cluster membership into each original observation from each field's parent

surface in a GIS. The resulting map of clusters for each field reveals the patterns that

these clusters assume. A cluster map which produces large. contiguous zones was

deemed preferable to a map which produces a "salt-and-pepper" effect, since crop

production potential should involve some degree of spatial dependency. A lack of

cohesiveness in the clusters woul~ imply random distribution rather than a spatially

predictable pattern, and would thus undermine the logic of producing zones which

represent homogeneity. The quality of the analysis of yield data, which will follow the

cluster analysis. depends upon the quality of blocking strata, so spatial pattern was an

issue in the selection of a number of clusters.
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Cluster Analysis in Field GF76

The regression model, computed above for field GF76. included only the original

data variables, and none of the transformed variables~ thus, only p. pH, OM, and K were

used in the cluster analysis for field GF76. It was necessary to standardize these variables,

as they are measured on different scales and with different units (pH is logarithmic, OM is

a percent, P and K and in parts per million). Standardization ensures that each variable

will be weighted equally in the analysis. The results of running the k-meansalgorithm for

2,3,4,5,6, and 7 clusters are summarized in Table IX.

TABLE IX

DISTANCES BETWEEN CLUSTER MEANS FOR DIFFERENT
NUMBERS OF CLUSTERS IN GF76

Numher of Cluslel's

II -.Pi! ilIl• III. II•• B ill
• - iii

i!IIlI iii. III
!!I!III

Average Disl<l!lcC Between Cluster l'vkans

1.11122
1.16808
1.21579
1.25429
1.2687
1.3111

Change ill DislilllCC lrom
Previous Numh..:r of C1u~tcrs

N/A
0.05685
0.04771
0.0385]
0.01441
0.0423

The average distance between clusters increases with each additional cluster;

however, after adding the third cluster, the additional infonnalion gained by adding

clusters drops. When mapped, 2 and 3 clusters produce well-defined regions, while each

additional increase produced isolated blocks and fragmented regions within the field.

Thus, although it appears that the change in distance is rebounding at 7 clusters, with a

AD of 0.042.3, compared with the 3 cluster addition of 0.05685, the spatial behavior of

this many clusters becomes almost unmanageable in an analysis context As a result, it
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was decided. to use 3 clusters for field GF76. Figure 10 shows the means for each soil

parameter in each cluster.

Figure 10. Soil Parameter Means Within Each Cluster for GF76
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The euclidean distances and squared. euclidean distances, which were used in the

calculation of the average distance between clusters, are given in Table X, which shows

those distances for each pair of clusters in field GF76, with squared distances above the

diagonal and distances below the diagonal. Figure 11 shows the actual resulting soil

clusters map for field GF76.

TABLE X

CLUSTER DISTANCES FOR FIELD GF76
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Figure 11. Soil Clusters for Field GF76
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Cluster Analysis in Field GF120

Unlike field GF76, the regression model improved with the addition of derived

variables; thus, P, pH, OM, p2, pH2, and OM2 were computed and used in the cluster

analysis. Again, the variables were standardized before the analysis was run; this

procedure was even more critical for this field, since the squared derived variables were

much greater in magnitude than tile original variables. The results of cluster distances for

k =2 clusters through k = 7 clusters are given in Table Xl.

TABLE XI

DISTANCES BETWEEN CLUSTER MEANS FOR
DIFFERENT NUMBERS OF CLUSTERS

N/A
0.5343
- 0.0771
- 0.0718
0.1322
0.1157

This table indicates not a continuous increase in the average distance between

clusters as cluster number increases, as did field GF76; instead, the distance decreases

slightly from both. k =3 and k =4 and from k =4 to k =5. This behavior could he th.e

result of the relationship between a variable and its transformation; clustering variables

with a similar (but not identical) pattern of variation may produce clusters which are dose

relative to clusters which are derived from a completely unrelated set of variables. The

greatest increase in information by adding a cluster number is at k = 3; the average

distance of 1.5218 is only exceeded at k =7; however, as in field GF76, a map of k = 7

clusters reveals spatially fragmented areas within the field, with much more spatially
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separate cluster distances~ thus. it was decided to use a cluster number of 3 in field GF120

as well. Figure 12 shows the means for each soil parameter (and derived parameter) for

each cluster~ Figure 13 shows the resulting soil clusters map for field GF120.

Figure 12. Soil Parameter Means Within Each Cluster for GF120
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The cluster lines for cluster 1 and 2 cross at variable pH and pI¥; this indicates

that locations in the field with high nutrient levels tend to have lower pH values. Also, the

points along any line for a variable and its square are. when transformed, identical~ thus, it

appears that although the squares of the variables improved the fit of the regression model.

they did little to help in the delineation of crop production zones. The distances and

squared distances between each cluster are given in Table XII~ again, squared distances

are above the diagonal. and distances are below.
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Figure 13. Soil Cliusters for Field GF120
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TABLE XII

CLUSTER DISTANCES FOR FIELD GF120

Data Modeling in Fields GF76 and GFl20

The purpose of investigating yield in this study using the analysis of variance is to

determine the extent to which planting population influences yield, based on yield's

response to the various variable population schemes, and to determine whether or not

variable rate planting out-performed the constant rate-planting strips in the field. Again.

soil clusters were used as estimates of crop-production potential within the field, which

facilitates a comparison of different portions of the field with respect to their responses to

variable rate planting. The first step in the analysis involves the representation of the

spatial data. Since planting population, recorded by the planter, and yield monitor data,

recorded by the harvest combine, was recorded at different resolutions and at different

locations, a data structure must be devised which can simultaneously capture the

variability of both entities within the field. Once this has been accomplished, an

investigation of the variable rate planting response is conducted, followed by a comparison

of the variable rate to the constant rate portions of the field.

Data Transformation and Representation

The first step in the ANDYA, as noted above, is to transform both planter and

harvest data such that their variability can be characterized spatially. The discrepancy
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between the two data sources is illustrated in Figure 14; notice that the planter width,

averaging about 40 feet, is roughly twice that of the harvest swath width, which averaged

about 22 feet. This is actually quite advantageous to the analysis; since the harvest width

is half of the planter width (32 rows per planter swath vs. 16 rows per harvest swath), it is

ensured that there will be "pure" harvest data for each of the constant rate planting strips.

In other words, the swath width of the combine will, on at least one pass, fall completely

withip each of the control strips, so that there will be no mixing in that row of constant

and variable rate yield data.

To accommodate botih data sources, square cells were created for each of the

planting population points, with the point being located at the center. The size of the cells

was chosen to be 40 feet, since yield passes would be 20 feet on either side of a given

planter pass. Once these cells were created, the yield data were averaged within each cell,

so that each planter point's polygonal cell also carried a dry yield estimate, measured in

bushels per acre (bulAcre). The cells were then joined spatially to the clusters, in order to

determine which soil cluster each cell feU within. Having accomplished this, the resulting

data structure was comprised of 40ft wide cells, each of which carried planting population,

average yield, and soil cluster as attributes. These cells were used in all subsequent

analyses.
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Figure 14. Planting Rate Application vs. Yield In Field GF76
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CHAPTER V

DATA ANALYSIS

Variable Rate Planting Performance in Field GF76

The performance of variable rate planting in field GF76 was investigated using

analysis of variance to describe how planting population and soil cluster influenced yield,

as well as to discover if soil cluster and populatiQnJnteracted to influence yield. Next the

control strips and their corresponding population in the rest of the field were analyzed

using ANOVA and multiple comparisons to determine if their yields were significantly

different. Finally, the control strips were analyzed together to detennine if they were

significantly different in yield than the rest of the field. Recall that the planting population

in field GF76 was varied based upon the previous year's grain moisture, as recorded by a

yield monitor.

The yield darn by population was characterized spatially using the process outlined

above. A forty-foot neighborhood was defined around each of the planting population

points, as recorded by the planter, and yield points were averaged within each

neighborhood and then assigned to the appropriate population point. Next, the soil

dus~ers were spatially joined to th.e planting population points~ giving a soil cluster ID

number for each population point, which represented the soil conditions at that location.

These data were then exported to Statistica ™ for data analysis. An initial analysis of
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variance was run for planEing population in the field as a whole, ex.cluding control strips;

the null hypothesis in this analysis is that there is no significant difference in crop yield

between planting rates. (NOTE: For all of the ANOVA procedures that follow. a

significance level of 95% wHl be used). The results of this run are given in Table XIII.

TABLEXITI

POPULAnON RATE ANDVA RESULTS IN FIELD GF76

Error DF F Statistic' Po ultition MS Error MS '
.1520.0 31.32393 5174.044 165.1786

P Level
OOסס.0

As this table shows, at the 95% level of confidence, we do in fact detect a

significant difference in the yield between the population rates. Figure 15 shows the

population rates in field GF76 and their average.

Figure 15. Average Yield by Planting Rate in Field GF76
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A post-hoc comparison of seed population rates was then run, using the multiple

comparison technique of least-squares differences, in an attempt to detennine which

populations were significantly different from each other. The results of the LSD are

summarized in Table XIV.

TABLE XIV

MULTIPLE COMPARISON OF SEEDING RATES IN FIELD GF76

0.088175
0.000001 0.000862

0.0
0.000001
0.000862

This table .lists the p-values for a comparison between each population rate and all

other rates. This table shows that there were not significant differences between rates 2

(20,500) and 3 (23,000); however, rate 1 was different from 2 and 3, and rate 4 was

different from rate 1 and rates 2 and 3. Interestingly, the distance in seeding rates between

rates 2 and 3 was 2,500 seeds per acre, and no difference was found between the two,

while the distance between rates 3 and 4 was only 2,000 seeds per acre, and a difference

was detected in yield between those rates. This implies that perhaps the variable seeding

rates chosen were in the critical range in which slight changes can produce noticeable

changes in yield; this fmding lends credence to the assumption that managing seeding rate

variably in a field can produce different crpp responses in a field.

The three soil clusters in field GF76 were analyzed next to detennine if there was a

significant yield response by the derived soil clusters; these yields are given in Figure 1,6

below. The results of the ANOVA run are given in Table XV.
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TABLE XV

ANOVA RESULTS FOR SOIL CLUS1ERS IN FIELD GF76

.Cluster DF
2

ErrorDF
1521

F Statistic
5.413699

Cluster,MS'
942.1804

ErrorMS
174.0363

. ,P Level
0.004541

These results show that there is in fact a significant difference in yield by soil

cluster at the .05 level of significance. This means that, since neither the soil clusters nor

theiI: constituent soil properties were used'as criteria for va.ry.ing the seeding rates in GF76,

there are areas in the field with inherently different crop production potentials.

Figure 16. Average Yield by Soil Cluster in FielB GF76
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Again, a multiple comparison was run to explore the soil clusters and detennine

which clusters were different from each other. The LSD procedure was used, and the

results are listed in Table XVI.
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TABLE XVI

MULTIPLE COMPARISON OF SOIL CLUSTERS IN FIELD GF76

0.010162

These results corroborate what Figure 16 shows; clusters 1 and 2 are not

significantly different from each other, but cluster 3 is different from 1 and 2. Cluster 3

has an average yield that is more than 2 butAcre higher than that of cluster 2; this

difference is not quite as stark as the difference between seeding rates, which was as much

as 3.1 bu/Acre (see Figure 15). However. since a significant difference was found,

clusters 1 and 2 will be treated as a single entity in the remaining analyses for field GF76,

and cluster 3 will be treated as a separate entity. This gives us two clusters to analyze,

which will be referred to as simply cluster 1 and cluster 2.

Before moving on to the comparison of control strips to the rest of the field, it

would b~ illustrative to investigate if there was a significant interaction between seed

population and soil cluster in the field. A multi-factor ANOVA was run, with clusters

(using all three) and p.opulation rates as main effects; this ANOVA also analyzed the

interaction between the main effects. If a significant interaction is found in such a design,

then the level of yield within a soil cluster is dependent upon which population was

planted in it, and vice versa. The results of the multi-factor ANDVA are given in Table

XYll.
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TABLE XVII

MULTI-FACTOR ANOVA IN FIELD GF76

.According to these results, there is a significant interaction between soil cluster

and planting rate. This interaction is shown graphically in Figure 17.

Figure 17. Interaction Between Soil Clusters and Population Rates
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This grap~ shows that, while population$ 20,500, 23,000, and 25,000 do not have

lines that cross by soil cluster, seed population 18,000 does cross the other lines in cluster

3. This means that the performance of seeding rate 18,000 plants per acre (which is

significantly different from the other rates) is dependent upon the soil cluster that it is

planted in.
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Constant Rate vs. Variable Rate Planting in Field GF76

The two constant rate strips planted in field GF76 were at populations' of 20,000

and 25,000 seeds per acre; the 25,000 rate was also planted variably in the field as a

whole. Although the 20,000 constant:rate'has no counterpart in the field as a whole, there

do exist rates of 18,000 and 20,500 in the variable portions of the field, thus facilitating a

comparison of the constant strip with variable rates both higher and lower in the field. In

addition, the s:011 clusters in which different rates were planted can be investigated in order

to detennine if spatial positioning of the management practices was a factor in explaining

yield differences. Each of these comparisons attempts to address the issue of whether or

not varying the seed population is advantageous within a single fann-field.

An initial summary of yield by management practice in the field is given in Table

XVill. Here, each constant rate and each variable rate applied in the field is listed, with its

average yield. Notice that here, each constant rate strip perfonned lower than its

analagous variable rate portion of the field. llis helps illustrate how the management

practices performed overall, before proceeding with the analysis of variance and

comparison of seeding rate practice versus soil production potential.

TABLEXVIIT

AVERAGE YIELD BY MANAGEMENT PRACTICE IN FIELD GF76

I,
"

Variable
Constant #1
Variable
Variable
Conslaillt #2
Variabk

91.40396
89.90929
95.21201
96.76443
87.58258
98.57137



To determine if significant differences exist between each constant zone and its

variable counterpart, analysis of variance was used initially wi,th a code representing the

combination of seed population and management type (e.g., variable 25,000, constant

25,(00) used as the main effect. The results of this analysis are summarized in Table XIX.

TABLE XIX

ANOVA OF MANAGEMENT PRACTICES IN FIELD GF76

2641.0 110.2815
F Statistic
49.09327

P Level
0.0000

As this table shows, we are 95% confident that there is a significant difference in

the yield within GF76's management types; the average yields are shown in Figure 18.

Figure 18. Average Yield by Management Practice in Field GF76
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To determine which management practices were significantly different, the LSD

multiple comparison was used. The results of the multiple comparison are given in Table

xx.

TABLE XX

MULTIPLE COMPARISON OF MANAGEMENT
PRACTICE YIELDS IN FIELD GF76

0.0 0.121999
0.183143 0.0093 0.000713
0.000005 0.0 0.016005 0.0
0.0 0.0 0.0 0.003623 0.003865
0.0 0.0093 0.016005 0.003623 0.0
0.121999 0.000713 0.0 0.003865 0.0

Notice that at the .05 level of significance, constant rate 20,000 is not different

from constant rate 25,000 or variable rate 18,000. Other than those three management

practices, which produce similar yields, all other practices have significantly different

results. The variable rates in field GF76 clearly out-perfonned the constant rate strips of

the field, with the exception of the lowest variable rate, 18,000 seeds per:acre. The next

logical question to ask of the data involves the inherent yield potential of the locations of

the management practices. Recall that soil cluster 3 had a significantly higher yield than

clusters 1 and 2. If any management practice resides predominantly in soil cluster 3, then

perhaps the increased yield performance was explained by the soil conditions rather than

the management practice applied. To investigate this possibility, the average yield for

each unique population/cluster combination was computed and sorted by cluster. These

results are shown in Figure 19.
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Figure 19. Interactions Between Soil Clusters and Management Types
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This graph reveals an interesting relationship; although overall, soiCluster 3

outperformed clusters 1 and 2, which were not significantly different in yield. at the lower

populations, this fmding is supported, but at higher density populations (> 20,5(0) it no

longer holds. This implies that there is an optimal population for different soil clusters as

well as for different soil moisture holding capacities. This fact becomes especially obvious

for population 25,000, in which the average yield for cluster 3 was 96.167, and the

average yield for cluster 1 was 100.889, the highest in the field. However, of all the

locations in the field that were planted at a rate of 25.000 seeds per acre, 22.41% were in

cluster I, while 44.10% were in cluster 3.
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Variable Rate Planting Performance in Field GF120

In a general sense, the same methodology for analysis was used in field GF120 that

was applied to GF76. However, this field differed from GF76 in three major ways; first,

the criterion for varying planting population was measured soil depth, rather than the

previous year's grain moisture level. Secondly, the degree to which population was varied

was much greater in field GF120; whereas the seeding rate in field GF76 ranged from

18,000 to 25,000 plants per acre, the rate for GF120 varied from 15,000 to 30,000 plants

per acre. Finally, instead of two control strips, three strips were planted in field GF120 at

rates of 20,000, 25,000, and 30,000 plants per acre. This facilitates a more rigorous

comparison of the performance of single-rate versus variable rate seeding practices.

The methodology for analyzing field GF120 nevertheless follows closely that of

GF76; the seeding population was analyzed using ANOVA, as were the soil clusters. The

interaction between soil cluster and population was then investigated, followed by a

comparison of the three control strips to the variable rate portions of the field. This step

was modified somewhat to accomodate the wealth of control strip data available in field

GF120. The next and final step in the analysis is a comparison of the perfonnance of

variable rate planting between field 76 and 120.

The seeding populations in the variable portions of field GF120 were planted at

rates of 15,000, 18,000,20,000, 22,000,24,000,25,000, and 26,000. However, these

population rates were not applied to even proportions of the field; some were only applied

to very small areas within field GF120. This could potentially skew the results; if only a

few observations were logged for a certain population, then comparing its yield to that of

another population with many points gives the smaller population's yield data an over-

65



representation. Table XXI shows the number of observations· logged from the planter for

each planting rate applied variably to field GF120.

TABLE XXI

NUMEER OF OBSERVED PLANTING SI1ES FOR
DIFFERENT RATES IN GF120

Plantin Po ulation (seeds/Acre
15000
18000
ooסס2

22000
24000
25000
26000

Number 0 Observations
14
239
1884
1090
1312
3
1063

Notice that for rates 15,000, 18,000, and 25,000. less than 1,000 observations

were logged. As a result of this discrepancy, it was decided to only use rates 20.000,

22,000, 24,000, and 26,000 in the analysis. Another advantage of using these particular

rates is that they are all 2,000 seeds apart; thus, the problem of comparing classes of

unequal increases in seeding rate is also circumvented. An ANOVA procedure was run

on these population rates to determine whether or not populations yielded differently; the

results of this analysis are summarized in Table XXII.

TABLE XXII

POPULATION RATE ANOVA RESULTS IN GF120

ErrorDF
5345.0

ErrorMS
139.2804 .

F-Statistic
. 51.30359

P Level
OOסס.0

At the .05 level of significance, these results indicate that there is a significant

difference in yield between some of the population rates. Figure 20 shows average yield

within populations. Notice that there is a decrease in yield at a population of 26,000.
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which was the highest population included in the analysis; this indicates that perhaps

within the distance between 24,000 and 26,000 plants per acre is the critical point beyond

which increasing the population will exceed the field's growing capacity for com.

Figure 20. Average Yield by Planting Rate in Field GF120
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To delineate which populations differed significantly in yield from each

other, a multiple comparison was run subsequent to the ANOVA. Again, LSD was the

chosen method for comparing yield differences. Table XXIn summarizes the results of

the multiple comparison.

TABLE XXIII

MULTIPLE COMPARISON OF SEEDING RATES IN GF120

0.0
0.430371 0.0
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According to these results, there was no significant difference between populations

26,000 and 22,000; however, all other populations were different from each oilier. The

highest yielding population, 24,000, produced a yield of 90.2 bulAcre; increasing the

population to 26,000 drops the yield to 87.2 bulAcre, which is at the same level as 22,000

seeds per acre. Thus, even though rates 22,000 and 26,000 are not significantly different

in their ability to produce yield, there are obvious economic benefits to operating at a

lower seeding rate.

The next step in the analysis was to investigate the possible effect of soil cluster on

yield. Again, three soil clusters were used in field GF120; an ANOVA was run to test the

null hypothesis that there was not significant differences in yield between the three

clusters. The results of this analysis are presented in Table XXIV.

TABLE XXIV

ANOVA RESULTS FOR SOIL CLUSTERS IN FIELD GF120

E eet DF
2.0

Error DF
5602.0

ErrorMS
140.2723

F Statistic P Level
56.5159 0.000

According to these results, there was in fact a significant difference in yield

between soil clusters at the .05 level of significance. Again, this suggests that there is

yield variability in the field explained by factors other than the variable rate seeding

management practice. The average yield in each soil cluster is presented in Figure 21. To

investigate which clusters were significantly different, the LSD procedure was run on soil

clusters; these results are given in Table XXV.
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Figure 21. Average Yield by Soil Cluster in Field GF120.
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TABLE XXV

MULTIPLE COMPARISON OF SOIL CLUSTERS IN FIELD GF120

According to this table, there was a significant difference in yield between all three

soil clusters. This means that, unlike field GF76, field GFl20 encompassed three distinct

types of crop-growth potential. Recall that the clusters in field GFl20 did not fonn large

contiguous regions, as they did in field GF76, but rather produced smaller, more

fragmented zones~ this indicates that there was more inherent variability in the soil fertility

Ievels in Held GF120 than in field GF76.
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The variability in soil parameters for field GFl20 may manifest itself in complex

interactions between the soil clusters and the population rates within the field. The

possibility of such interactions, in which the perfonnance of a particular population rate is

dependent upon which soil cluster it fell within, was investigated by perfonning a multi-

factor ANOYA on population rate, soil cluster, and the interaction between population

rate and soil cluster. The results of this ANOYA are given in Table XXVI.

TABLE XXVI

MULTI-FACTOR ANOYA IN FIELD GFl20

The results of the multi-factor ANOYA indicate that there are, in fact, significant

interactions occurring between soil cluster and seeding population in field GF120. This

implies that, since soil clusters by themselves contained significantly different yields from

each other, and since they interact with population density in their ability to produce yield,

perhaps soil clusters should be taken into account when determining how to vary the

seeding population for highly variable fields. Since the populations planted by soil depth

produced significantly different yields, it would even be possible to recompute soil

clusters, using soil depth as an additional variable in the cluster analysis. A visualization of

the interactions between soil cluster and population is given in Figure 22.
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Figure 22. Interaction Between Soil Clusters and Population Rates
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Constant Rate VS. Variable Rate Planting in Field GF120

The next step in the analysis of field GF120 is to investigate how the three

constant rate strips performed compared with the variable portions of the field. T.he

constant rate strips were planted at seed densities of 20,000, 25,000, and 30,000 seeds per

acre; 20,000 was aJso planted at a number of sites within the variable portion of the field.

The 25,000 rate was also planted in both a control strip and in the variable portions of the

field, although only a few observations were available in the field as a whole. The under-

represented rates of 15,000, 18,000, and 25,000 variable rate were removed from the

above analysis, they will also be removed from Ilhe comparison of constant rate to variable

rate that follows. Table XXVU shows the average yield in all population/management

combinations within field GF120.
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TABLE XXVII

AVERAGE YIELD BY MANAGEMENT PRACTICE IN FIELD GF120

Plantin Po ulation
ooסס2

ooסס2

22000
24000
25000
26000
ooסס3

Mana ement Zone
Variable
Conttol #3
Variable
Variable
Control1t2
Variable
Conttol #1

Yield (buiAcre
85.03324
91.07641
87.68045
90.27324
80.93014
87.27926
85.10889

The 20.000 control strip seems to out-perfonn the 20,000 variable observations,

while the other two control strips at 25,000 and 30,000 performed at the lower end of

field GF120's range of yield. An ANOVA was run to determine if there were significant

differences between yield in different population/management combinations. The results

of this analysis are presented in Table xxvm.

TABLEXXVrn

ANOVA OF MANAGEMENT PRACTICES IN FIELD GF120

Error DF
5529.0

ErrorMS F Statistic
31.11517

P Level
0.0

The results of the ANOVA indicate that at the .05 level of significance, there is a

significant difference in the yield of different management schemes. A graph of the

average yield within each population/management combination is shown in Figure 23.

Notice that while the 20,000 constant rate performed well, the other two control strips

yielded low compared to other population/management combinations.
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Figure 23. Average Yield by Management Practice in Field GF76
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The fact that the perfonnance of 25,000 plants per acre at a constant rate

performed lower than the higher populations of 26,000 and 30,000 indicates that the the

yield in that strip was not low because the population carrying capacity of the field was

exceeded, but rather because 'the varying conditions within that strip were not being

addressed. Although this differs from the situation presented by GF76, in which there was

a direct relationship between the seed population density and yield, it does indicate that for

different locations within a field, there is an carying capacity which will support a

maximum yield given a certain seeding population. A multiple comparison was run to

determine which population/management combinations were significantly different from

each other. The results of this analysis are presented in Table XXIX.
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TABLE XXIX

MULTIPLE COMPARISON OF MANAGEMENT
PRACTICE YIELDS IN FIELD OF120

0.004116 0.962519
0.0 0.0 0.001435
0.000001 0.0 OO12סס.0 0.182239
0.0 0.0 0.424891 oo3סס0.0 0.113796
0.000046 0.590619 0.011446 0.023616 oo1סס0.0 0.005639
O.()04116 0.0 OO12סס.0 0,()OOO03 oo1סס0.0 0.048653
0.962519 0.001435 0.182239 0.113796 0.005639 0.048653

In general, this table reveals three categories of yield mfield OF120; the highest

category included the 24,000 variable rate and 20,000 constant rate~ the middle category

included the 20,000 variable, the 22,000 variable, 26,000 variable, and 30,000 constant;

the lowest category included only the 25,000 constant. Thus, there was no clear

distinction between variable/constant in field GF120, but rather a distinction between low

versus high population densities, with the lower densities out-performing the high. The

only pair of management practices that were constant/variable with the same population

was with population 20,000, and here the constant rate out-performed the variable rate;

however, the constant rate of 25,000 was the lowest in the field, and the constant rate of

30,000 performed in the median yield category.

A possible explanati9n of yield differences other than population or

constant/variable management may be the soil conditions within the field; recall that each

of the three soil clusters for field GF120 was found to have a significantly different yield.

One interesting point to note is that the constant rate strip of 25,000 seeds per acre was

planted exclusively in clusters 2 and 3, and not in cluster 1, which had the highest yield;
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this may explain the poor performance of that particular management regime. This fact

precludes the use of a multi-factor ANOVA to attempt the determine which soil

cluster/management type practices were higher than others, since all combinations of soil

cluster and management type were not accounted for in the dataset. However. Table

xxx displays the average yield within each cluster/management type combination.

TABLE XXX

AVERAGE YIELD WITInN SOlL CLUSTER AND
MANAGEMENT COMBINATIONS

Mana ement T e
ooסס2 Control #3
ooסס2 Control #3
ooסס2 Control #3
ooסס2 VariabJe
ooסס2 Variable
ooVariableסס2
22000 Variable
22000 Variable
22000 Variable
24000 Variable
24000 Variable
24000 Variable
25000 Control #2
25000 Control #2
26000 Variable
26000 Variable
26000 Variable
ooControlסס3 #1
ooסס3 Control #1
ooסס3 Control #1

Soil Cluster
1
2
3
1
2
3
1
2
3
1
2
3
2
3
1
2
3
1
2
3

Avera e Yield (bu/Acre)
93.315
90.38812
90.63611
86.31525
86.87141
81.07164
87.41022
89.69357
85.42297
92.6773
90.84704
86.85122
80.57325
81.42241
90.41235
85.1124
86.89298
79.717
83.18889
87.14314

This table reveals that, in general, the 20,000 constant rate produced better than

other management types regardless of soil cluster. The 24,000 variable rate did slightly

better than 20,000 constant rate in soil cluster 2, and was nearly as productive in cluster 1.

Interestingly. this table also shows that for the constant rates in the field, 30.000 had its

highest yield within soil cluster 3. which was the lowest yielding soil cluster in the field, as
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did the 25,000 constant rate. Most of the variable rate portions of the field yielded higher

in soil cluster 1. This tends to strengthen the notion that perhaps soil clusters should be

accounted for when creating an application map for variable rate seeding practices.

Comparison of Variable rate Seeding Between GF76 and GF120

The two fields included in this experiment each had a unique criterion by which
I

seeding rate was varied; this raises the question as to which method perfonned the best.

The problem with comparing the yield performance in two different fields such as these is

that each field has its own production capacity and expected performance; therefore, it

becomes difficult to relate the yield observations from different fields, because it is

impossible to distinguish between a yield difference that is attributable to the field's

inherent production capabilities or the management practice applied to that field. In an

at-tempt to alleviate this problem, a technique was used on yield data that is traditionally

used to compare yield from different crops; a "nonnalized" yield was computed for each

yield observation in each field.· Nonnalin this context refers not to a standard data

distribution, but rather to an index of yield computed by dividing each yield observation by

its field's maximum yield value. This results in a number between 0 and 1 that describes

that observation's position within the entire range of yield values for a particular field.

Thus, by computing this normalized yield, a numeric index was obtained that

facilitates cross-field comparison. For each seeding rate and management type (control or

variable) in both fields, an average nonnalized yield was computed which describes that

seeding rate/management combination's perfonnance. The results of this calculation are

presented in Table XXXI.
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TABLE XXXI

AVERAGE NORMALIZED YIELD BY SEEDING RATE. FIELD.
AND MANAGEMENT PRACTICE

Mana ement Seed Po ulazion Field Averae Normalized Yield
Variable 20000 GF120 0.507
Variable 22000 GF120 0.524
Variable 24000 GF120 0.537
Variable 25000 GF120 0.516
Variable 26000 GF120 0.506
Constant #1 30000 GF120 0.511
Constant #2 25000 GF120 0.486
Constant #3 20000 GF120 0.547

Constant #1 20000 GF76 0.596
Constant #2 25000 GF76 0.586
Variable 15000 GF76 0.640
Variable 18000 GF76 0.593
Variable 20000 GF76 0.678
Variable 20500 GF76 0.621
Variable 23000 GF76 0.647
Variable 25000 GF76 0.648

One thing that becomes immediately apparent upon studying this table is that in

field GF76. the normalized values are not as low as those in GF120; this reflects the lower

amount of yield variability in field GF76. However, for field GF76, it is also striking how,

with:t.he e~'ception' of variable rate 18,000, aU of the variable rates had normalized yields

above 0.6, while the constant rates were below 0.6, making them the lowest producing

areas in the field. In contrast, field GF120 had several variable rate areas that produced

lower yields than constant rate areas; indeed, from the above analysis, the highest yielding

areas of the field in OF120 were variable rate 24,000 and constant rate 20,000 seeds per

acre. This tends to imply that using soil depth as the variable rate criterion was not as

accurate in portraying crop production potential in the field as the grain moisture in GF76.

This finding is supported by looking at how well the criterion layer for varying

seed population is associated with yield variation in each field. This was accomplished by
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computing a correlation in which yield was correlated with dIe population variability

criterion for each field; this was previous year's grain moisture for field GF76, and topsoil

depth in field GF120. The ~esuh of these correlations was that GF76 had a .22 correlation

between yield and grain moisture, and field, GF120 had a .09 correlation between yield and

soil depth. These results show while neither field displayed a very high correlation

between the variable rate criterion and yield, GF76 did have a better response than GF120.

The low correlations presented here also demonstrate that the complexity of yield

variability in production fields such as these cannot be modeled with a single variable; a

number of variables of different types interact to produce yield variability.

Obviously, we cannot include sod clusters in this comparison of fields to attempt to

normalize crop production potential between the two fields. Different variables and

variable transformations were used to compute the clusters in each field, and the variability

of each was different, such that soil cluster 1 in field GF76 does not have the same

characteristics as soil cluster 1 in field GF120.

• " I'"~

78



CHAPTER VI

SUMMARY AND DISCUSSION

Summary

The comparison of yield within management zones between different portions of a

field and between different fields is confounded in production agriculture by within-field

variability of crop-growth parameters other than the management zones themselves. In

the current study, these inherent locational differences within fields were intensified due to

the fact that the management practice under investigation was performed differently in

each field under consideration. However, by utilizing the information stored in a spatial

database, it becomes possible to attempt to normalize crop-growth conditions within a

field in an attempt to 'adequately compare the yield results from different locations. '.'.'

The calculation ofsoil clusters was performed to accomplish this task; their

validity in explaining yield variation was confirmed by the rejection of the null hypothesis

in both fields that there was no yield difference between at least some of the derived

clusters. The benefit of these clusters for this study was that they facilitated within-field

comparisons of variable rate versus constant rate seeding practices by describing crop

growth conditions in the field; thus, if a difference was found between constant and

variable seeding practices within the same soil cluster, then that difference could be

attributed to the management practice itself and not external conditions that may have
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been either beneficial or detrimental to yield. In the case of field GF76. where clusters I

and 2 did not have significantly different yields from each other, they were combined and

treated as a single entity. Since the clusters were derived from different variables in each

field, and since they represented different soil conditions, they could not be used in

nonnalizing conditions between the two fields. .

The practice of varying seed population based on previous year's grain moisture

percentage protluced significantly different yields, with higher yields associated with more

dense popula.tions. They also significantly out-perfonned their constant rate counterparts,

although there were not constant rate zones available at every variable seeding rate in the

field for comparison. Varying. seed population based on depth of A and E soil horizons

did not prove to be clearly superior to constant rate seeding; however, the lack of a clear

direct relationship between seeding population and yield indicates that different areas of a

fleldcan support different densities of crop growth. These two fmdings suggest that if a

different variable rate seeding recommendation criterion were used in field GF120.

perhaps there would have been a clear advantage over constant rate seeding practices.

The comparison of the performance of variable rate seeding practces between the

two fields suggests that in field GF76, there was a muoh higher response in yield to the

population rate than in GF120; however, GF76 also clearly encompassed less yield

variability than field GF120. The lack of ability to nonnalize within-field conditions

between the fields compromised the ability to compare their respective yields, but by

examining the relationship between yield and the variable rate criterion, it was

demonstrated that the relationship between yield and variable criterion in GF76 was much
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stronger than that of field GF120, suggesting that p.revious year's grain moisture is a

better measure of soil moisture-holding capacity than top soil depth.

,. Discussion

The current study required not only a very large dataset in order to describe

conditions within each field, but also a good deal of data processing in order to convert

raw data into data models which are conducive to analysis. Spatial data layers were

necessary to record raw data describing soil moisture-holding capacity. derived themes

which represent variable rate seeding recommendations, soil fertility points and

interpolated soil fertility surfaces to describe soil characteristics, and yield data from a

grain yield monitor :were the inputs to the study. Other derived spatial layers such as soil

clusters and observation polygons which include soil cluster, population, and average yield

were also necessary. This point highlights the difference in methodology and experimental

design between traditional agronomic studies, which are conducted on small,

homogeneous plots with variability and external factors kept under control, and

geograpbical studies which occur in real-world production scenarios, in which external

variability exists and must be accounted for, and the producer faces economic constraints

and risk factors which may compromise the quality of the dataset. Without a powerful

geographic information system and a host of data transformation and representation

techniques, the implementation of concept research conducted on an actual production

fann would not be practical.

Even armed with the wealth of data available in this study, there were limitations in

the dataset. The ability to compare yield between constant rate and variable rate portions
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of the field could have been improved by a one-to-one correspondance between control

rates and population rates; e.g., for each variable rate in a field, one conuol strip of the'

same rate should have been included. In addition, crop influencing factors could have

been included in the soil clusters; variables such as slope, aspect, and drainage quality of

the soil would have been beneficial in accounting for yield variability. Also, with GF76,

the soil fertility data was collected two years previous to the study. Further research is

needed to detennine the degree to which soil fertility variables vary as a function of time,

as well as how landscape factors interact with a soWs chemical and physical properties to

influence crop yield. The ability to compute a single index of crop-growth potential that

would have been applicable to both fields would have also been beneficial to this study, in

that it would have allowed a more direct comparison of the performance of the two

variable rate criteria.

The methodological progression of this research provides a model for integrating

disparate data types into an analyti,cal context. Data stored at different scales representing

varioQs entities must be normahzed spatially such that their distributions can be ac~ounted

for at a similar scale of observation. A comprehensive field-level dataset in production

agriculture may ~nclude such objects as coarse-resolution points (such as fertility samples),

fine resolution points (such as yield monitor data), and polygons (such as soil types or soil

clusters). These data must be characterized such that their spatial distributions can be

compared. The data model developed for this study provides an example of how to

integrate such seemingly incompatible data types by normalizing the scale of observation

(through interpolation or aggregation) and by joining different data into a single data

structure by querying spatially to create a multi-attribute surface. The research presented
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here incorporates the work of various projects of a more specific scope (e.g., interpolation

of soil parameters, calculation of a fertility index. etc.) and provides an example of how a

multitude of data can be integrated for spatial decision support (see Chapter II, Literature

Review for specific studies).

This study also presents a methodology for analyzing the performance of a spatial

management strategy by attempting to explain variability in the response parameter (in this

case, crop yield) caused by the mangement technique itself. This requires that extraneous

variability, which could be location-dependent, be accounted for. This research addressed

variable crop production capacities of the fields involved through the creation of soil

clusters, wh~ch defined regions of similar soil characteristics. By using these clusters and

analyzing the potential interaction between soil conditions and seeding rate, it was possible

to explain differences in yield according to field conditions and according to the

management technique of interest.

Despite the limitations of the dataset, insight was gained into how well these

variable rate management techniques performed. The ability to, s,tor~ management data

spatially and to subsequently analyze the data set for spatial relationships makes it feasible

for a large-scale producer to design experimental trials in which a proposed spatial

management technique is applied and assess the success of that techinque. As the scale of

management of agricultural lands continues to grow, producers and farm managers are

faced with the challenge of knowing what conditions exist at different locations, and how

to best deal with those conditions. The storage of spatial and temporal data in a

geographic information system will increasingly prove to be a useful decision-making tool

in production agriculture.
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