
FILTRAnON EFFICIENCY MEASUREMENTS FOR

PLEATED FILTERS

By

FAKHRODDIN M. JADBABAEI

Bachelor of Science in Mechanical Engineering

Tehran University

Tehran, Iran

1988

Submitted to the faculty of the
Graduate College ofthe

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1997



FILTRAnON EFFICIENCY MEASUREMENTS FOR

PLEATED FILTERS

1 '

Thesis Approved:

Dean of the Graduate College

II



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. R. L. Dougherty for giving me the

opportunity to be part of the OSU research team and for guiding me throughout my

graduate studies. My sincere thanks to the committee members, Dr. A. 1. Ghajar and Dr.

F. Chambers, for their guidance and support. I would like to express my appreciation to

my colleague, Sachin Anand who made this teamwork happen. Also, thanks to my other

colleagues Balu Natarajan, Jeffery Williams, S. H. Yao, Wayne Gimlin and A. Al-Sarkhi

for their continuous help and support.

I would like to thank James Davis and MAE North Lab personnel for their efforts

that have been great help to this work.

My special thanks to my wife, Sheila, for her moral support and to my parents who

have been guiding me throughout my life.

Finally, I extend my gratitude to Dayco-Purolator, a division of Mark IV

Industries, and the Oklahoma Center for the Advancement of Science and Technology

(OCAST) for financially supporting this study.

iii



· '

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 1

1.1 Objectives... ..... .. ..... ...... ...... .... ... .. ....... .. .. ... ... ... ... .... .. ... .. ...... ... 2

II. LITERATURE REVIEW . 4

2.1 Single Fiber Efficiency Theory 4
2.2 Mechanisms ofParticle Collection.............................. ... 6

2.2.1 DiffiIsion............................................................. 6
2.2.2 Inertial Impaction.... .. .. 7
2.2.3 Interception ;... 8
2.2.4 Other Collection Mechanisms 9

2.3 Classical Filtration Theories 10
2.4 Experimental Studies for Flat Filter Media 11

2.4.1 Flat Filter Media Measurements with Aerosol
Particles ... ... .. . ... .. . .. . .. . . .. ... ... ........ . . .. . .. ... .... II

2.4.2 Flat Filter Measurements with Dust Particles........... .. 14
2.5 Pleated Filters.. . . .. ... ... . .. ... 16
2.6 Standard Testing Methods 22

2.6.1 SAE J1669 22
2.6.2 ASTM F1215-89 23
2.6.3 SAE 1726 Code 24

2.7 The OSU Research.. 24
2.7.1 Theoretical Models .. . .. . . .. . ...... .. .... ... .. ... ... .. 24
2.7.2 Experimental Studies 29

2.8 The Present Study................................................................... 36

III. LDV FUNDAMENTALS . 38

3.1 The Doppler Shift 38
3.3 The Optical Beating or Heterodyning...................... 39
3.3 Differential Doppler Beating. .. ... ... .. ... .. ... ... ... .. ... ..... ... ... 41
3.4 Interference and Interpretation ofInterference Fringes .. 42
3.5 Signal Processing. .. . .. .. .... .. ... .. ...... ... ... ... ..... ... .... .. ... ... ... .... . 44
3.6 The Doppler Signal Analyzer................................................... 45

IV



IV. THE EXPERIMENTAL SETUP '" 47

4.1 Description ofthe System Components. .. ... ... .. . . ... 47
4.1.1 Flow System.................... 47
4.1.2 The LDV System...................................... 54
4.1.3 The Traverse....... . .. ... ... ... ... .. . ... . .. .. . .. . .. . .. 58

4.2 The Experimental Setup Description................... 58
4.3 Measurement Procedure..... 61

V. EFFICIENCY AND NU1vfBER DENSITY CALCULATIONS 63

5.1 Calculation ofEfficiencies Using Number Density... 64
5.2 Local Efficiency Calculation and the Swept Volume Technique 64
5.3 SVT for One-Dimensional Flow with Different Velocities 66
5.4 SVT for One-Dimensional Flow with Gaussian Velocity .

Profile 69
5.5 SVT in Recirculation Zones............ 73
5.6 SVT for Flow with Different Velocities in Different

Directions , .. . .. . . .. .. 76

VI. CONSISTENCY ~ASUREMENTS 83

6.1 Factors Affecting Measured Data 84
6.1.1 The Power of the Laser Beams 85
6.1.2 DSA Parameters...... 86

6.1.2.1 High Voltage.......................... 86
6.1.2.2 Threshold........................... .. 86
6.1.2.3 Velocity Range........... 87
6.1.2.4 Coincidence.......................... . 87
6.1.2.5 Other Parameters 88

6.1.3 Polarization Angle of the Beams 88
6.1.4 Flow Rate and Particle Seeding Rate 89
6.1.5 Possible Leaks................... . .. . .. .. . . . . .. 90

6.2 Consistency Measurements...... 91
6.2.1 Consistency Measurements on Air Flow with Water

Droplets ,.. ... 91
6.2.2 Consistency M.easurements in Particle Flow... ... 93
6.2.3 Zero Efficiency Measurements at the Center of the

Housing 95
6.2.4 Zero Efficiency Measurements at All Grid Points....... 96

VIT. RESULTS AND DISCUSSION 98

7.1 Summary ofthe Tests in the Small Angle Diffuser Housing ..... 98
7.2 Results of Measurements in the Small Angle Diffuser Housing 100

v



7.3 Three Point Measurements...... 112
7.4 SAE Housing Measurements . .. ... .. . ... ... .. . .. . .. . .. 114
7.5 Comparison ofResults with Previous Studies............ 118

7.5.1 Comparison with Theoretical Models............ 118
7.5. 1. 1 The Single Fiber Efficiency ... .. .. .. ... ... 118
7.5.1.2 Comparison ofResults with Duran's

Model....... 121
7.5.2 Comparison with Experimental Data. 122

7.6 The Stokes Number Analysis 124

vrn. CONCLUSIONS........................ ... .. .. . .. . . . . . . .. . . .. . . . . . . . . . . .. .... 128

8.1 Summary 128
8.2 Recommendations for Future Work 130

REFERENCES 132

APPENDICES 137

APPENDIX A

APPENDIXB

APPENDIXC

APPENDIXD

APPENDIXE

APPENDIXF

APPENDIXG

APPENDIXH

THE DSA PARAMETERS. 138

TEST RESULTS: SMALL ANGLE DIFFUSER
HOUSING 141

TEST RESULTS: SAE HOUSING 163

TSI FLOWMETER CALIBRATION PLOTS... ..... 166

AN EXAMPLE OF THE STOKES NUMBER
CALCULATION 168

LIST OF EQUIPMENT 169

COMPARISON OF EFFICIENCY
CALCULATION METHODS 171

COMPARISON OF THE AVERAGE
EFFICIENCIES..................................................... 174

vi



LIST OF TABLES

Table Page

4.1 A13192 Pleated Filter Dimensions [Duran, 1995]. 54

7.1 . Summary of the Small Angle Diffuser Housing Tests. 99

7.2 Summary of the Three Point Measurements. 113

C.I Summary of the SAE Housing Tests. 163

vii



LIST OF FIGURES

Figure Page

2.1 Definition of the Single Fiber Efficiency [Lee, 1977]. 5

2.2 Three Main Mechanisms ofParticle Collection [Lee, 1977]. 8

2.3 Schematic Diagram ofthe Collection Efficiencies ofDifferent Particle
Capture Mechanisms [Liu et aI., 1985]. 9

2.4 Comparison ofTheoretical and Experimental Filter Efficiency as a
Function ofParticle Size, Dacron Filter, Dr= 11.3 Microns, a = 0.0493,
U=O.0396 mls [Yeh, 1972]. 12

2.5 Comparison ofExperimental Efficiency Measurements with the Theory of
Harrop and Stenhouse [1969] in the Inertial Impaction Regime
[Lee, 1977]. 13

2.6 SAE Dust Size Distribution [Gidley, 1993]. 14

2.7 Filter Performance Versus Dust Loading [Jaroszczyk, 1987]. 15

2.8 Fractional Efficiency Requirement for Cabin Air Filter
[Person and Cashin, 1994]. 16

2.9 Conflicting Design Requirements for Cabin Air Filter
[Person and Cashin, 1994]. 17

2.10 Dependence ofInitial Efficiency on Flow Rate [Ptak et aI., 1994]. 17

2.11 Fractional Efficiency at Various Dust Loading
[Reinhart and Weisert, 1983]. 18

2.12 Isometric Representation ofEfficiency, Particle Size and Dust Loading
[Reinhart and Weisert, 1983]. 18

viii



2.13 Variation ofPressure Drop with Pleat Count for Rectangular and
Triangular Pleats, HEPA Filter [Chen et al., 1994]. 20

2.14 Pressure Drop Versus Pleat Count [Chen et al., 1994]. 21

2.15 Typical Initial Fractional Efficiencies in Inlet System ofCombustion
Turbines [Gidley, 1993]. 21

2.16 Elemental Efficiencies for A13192 Filter [Sabnis, 1993]. 25

2.17 Elemental Efficiencies for A13192 Filter, Small Angle Diffuser Housing 26
[Newman, 1994].

2.18 Elemental Efficiencies for A13192 Filter, SAE 1726 Housing
[Newman, 1994]. 26

2.19 Comparison of Single Fiber Efficiency Calculated by Sabnis' Model with
Classical Models [Duran, 1995]. 27

2.20 Velocity Distribution Upstream of a Dirty Filter Loaded to 127 nun of
Water [Liu, 1995]. 28

2.21 Overall Efficiency Versus Flow Rate [Natarajan, 1995]. 29

2.22 Overall Filter Efficiencies [Anand, 1997]. 30

2.23 Local Efficiency for Flat Filter [Anand, 1997]. 31

2.24 Axial Velocities Upstream ofthe A13192 Pleated Filter (204 m3/hr, SAE
Housing, 0.966 Micron Particle Diameter) [Liang, 1994]. 31

2.25 Axial Velocities Upstream of the A13192 Pleated Filter (204 m3/hr, Small
Angle Diffuser Housing, 0.966 Micron Particle Diameter)
[Natarajan, 1995]. 32

2.26 Elemental Efficiencies Over A13192 Filter (Smal~ Angle Diffuser
Housing, Duran's Model with Packing Density of 0.49)
[Natarajan, 1995]. 33

2.27 Elemental Efficiencies Over A13192 Filter (Small Angle Diffuser
Housing, Duran's Model with Packing Density of 0.345)
[Natarajan, 1995]. 34

2.28 Measured Local Efficiencies Over A13192 Filter [Natarajan, 1995]. 35

ix



3.1 Illustration of the Doppler Frequency Shift Experienced by a Moving
Observer [Drain, 1980). 39

3.2 The Heterodyning ofTwo Frequencies [Drain, 1980]. The Addition of
Signals (a) and (b) Yields Wave Form (c) Which Is Rectified to Fonn the
Beat Signal (d). 40

3.3 Arrangement ofllluminating Beams in the Differential Doppler Technique
[Drain, 1980]. 41

3.4 Fringe Pattern Produced by Crossing Beams in the Differential Doppler
Technique [Drain, 1980]. 42

3.5 Types of Signals from Particles Crossing a Region of Intersection of
Laser Beams [Drain, 1980]. 43

3.6 PMT Output Signal from Photodetector, Before High-Pass Filter
(Durst and Whitelaw, 1976]. 45

3.7 PMT Output Signal from Photodetector, After High-Pass Filter
[Durst and Whitelaw, 1976]. 46

4.1 Dimensions of the Small Angle Diffuser Housing. 50

4.2 Dimensions of the SAE Housing. 51

4.3 The Bypass System. 53

4.4 Arrangement of the A13192 Pleats. 54

4.5 The A13192 Pleated Filter. 55

4.6 Schematic Diagram ofthe Fiber Drive. 56

4.7 Laser Beams Emitted from Transceiver. 57

4.8 The Experimental Setup. 59

4.9 Top View of the Test Filter Positioning. 60

4.10 Grid Locations (Not to Scale). 60

5.1 The Swept Volume Technique, (a) at T = 0, (b) at T = To. 65

5.2 SVT for One-Dimensional Flow with Two Velocities. 67

x



5.3 Example ofNumber Density Calculation for Two Streams. 68

5.4 Ideal Gaussian Velocity Histogram. 71

5.5 Typical Non-Symmetric Velocity Histogram. 72

5.6 Symmetric and Non-Symmetric Parts of the Velocity Histogram of
Fig. 5.5, (a) Symmetric Part, (b) Non-Symmetric Part. 73

5.7 One-Dimensional Flow Streams, a) Moving in the Same Direction, b)
Moving in the Opposite Direction. 74

5.8 Calculation ofNumber Density for One-Dimensional Flow with Opposite
Streams, a) Total Velocity Histogram, b) Negative Velocity Histogram,
c) Positive Velocity Histogram. 75

5.9 Two Flow Streams in Different Directions. 76

5.10 Typical Example ofMeasurement ofOne Particle Velocity, a) Axial
Velocity, b) Transverse Velocity. 77

5.11 Velocity Streams for the Example ofFour Flows in Different Directions. 79

5.12 Velocity Histograms for the Example ofFour Flows in Four Different
Directions Velocity, a) Axial Velocity, b) Transverse Velocity. 80

6.1 Consistency Measurements in Open Air Flow with Water Droplets, Valid 92
SarnpleslRun =20000, Validity =93%) Laser Power = 0.8 W.

6.2 Summary of the Consistency Measurements for Flow with Water
Droplets (30 Runs per Test). 92

6.3 Consistency Measurements for Flow inside the Housing with PSL
Particles, Valid SarnpleslRun = 1000) Validity =92%) Laser Power = 0.8
W. 94

6.4 Summary of the Consistency Measurements for Flow with Particles inside
the Housing (30 Runs per Test). 94

6.5 Zero Efficiency Measurements at One Location inside the Housing with
Flow Rate = 103.7 m3/hr, Valid SampleslRun = 1000, Validity =92%,
Laser Power = 0.8 W) 3/19/96. 97

7.1 Upstream Velocity Profiles for Test F15, Flow Rate = 5.68 m3/hr. 101

Xl



7.2 Downstream Velocity Profiles for Test F15, Flow Rate = 5.68 m3/hr. 101

7.3 Upstream Number Density Plot for Test F15, Flow Rate = 5.68 m3/hr. 102

7.4 Downstream Number Density Plot for Test F15, Flow Rate = 5.68 m3/hr. 103

7.5 Efficiency Plot for Test F15, Flow Rate = 5.68 m3/hr. 103

7.6 Upstream Velocity for Test F5, Flow Rate = 187.7 m3/hr. 104

7.7 Downstream Velocity for Test F5, Flow Rate = 187.7 m3/hr. 105

7.8 Upstream Number Density Plot for Test F5, Flow Rate = 187.7 m3/hr. 105

7.9 Downstream Number Density Plot for Test F5, Flow Rate = 187.7 m3/hr. 108

7.10 Efficiency for Test F5, Flow Rate = 187.7 m3/hr. 109

7.11 Upstream Velocity for Test F8, Flow Rate = 313.75 m3/hr. 109

7.12 Downstream Velocity for Test F8, Flow Rate = 313.75 m3/hr. 110

7.13 Upstream Number Density Plot for Test F8, Flow Rate = 313.75 m3/hr. 110

7.14 Downstream Number Density Plot for Test F8, Flow Rate = 313.75
m3/hr. 111

7.15 Efficiency for Test F8, Flow Rate = 313.75 m3/hr. 111

7.16 Comparison of the Filter Efficiencies. 114

7.17 Upstream Velocity for Flow Rate = 187.7 m3/hr, SAE Housing. 115

7.18 Downstream Velocity for Flow Rate = 187.7 m3/hr, SAE Housing. 116

7.19 Upstream Number Density Plot for Flow Rate = 187.7 m3/hr, SAE
Housing. 116

7.20 Downstream Number Density for Flow Rate = 187.7 m3/hr, SAE
Housing. 117

7.21 Efficiency for Flow Rate = 187.7 m3/hr, SAE Housing. 117

xii



7.22 Pleated Filter Modeling with Different Thicknesses, a) Filter paper
Thickness, b) Pleat Height Thickness. 120

7.23 Comparison of Single Fiber Efficiencies. 120

7.24 Comparison ofEfficiencies with Duran's Model. 122

7.25 Comparison ofPresent Measurements with Natarajan Measurements. 123

7.26 Efficiency Versus Initial Pressure Drop for Flat and Pleated Filters. 127

B.l Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 5.68 m3/hr Air Flow, Test # FI5, 7/1196. 142

B.2 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 5.68 m3/hr Air Flow, Test # F16, 7/2/96. 143

B.3 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 29.5 m3/hr Air Flow, Test # Fl1, 6/24/96. .144

B.4 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 29.5 m3/hr Air Flow, Test # F12, 6/25/96. 145

B.5 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 53.3 m3/hr Air Flow, Test # F23, 7/16/96. 146

B.6 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 53.3 m3/hr Air Flow, Test # F22, 7/15/96. 147

B.7 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 53.3 m3/hr Air Flow, Test # F24, 7/17/96. 148

B.8 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A 13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 77.1 m3/hr Air Flow, Test # F9, 6/19/96. 149

xiii



B.9 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13l92 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 77.1 m3/hr Air Flow, Test # FlO, 6/20/96. 150

B.I0 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13l92 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 103.7 m3/hr Air Flow, Test # F20, 7/5/96. 151

B.ll Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 103.7 m3/hr Air Flow, Test # F19, 7/5/96. 152

B.12 . Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 145.7 m3/hr Air Flow, Test # FI, 5/8/96. 153

B.13 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 145.7 rn3/hr Air Flow, Test # F4, 5/14/96. 154

B.14 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 145.7 m3/hr Air Flow, Test # F2, 5/13/96. 155

B.15 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 187.7 m3/hr Air Flow, Test # FI8, 7/4/96. 156

B.16 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSLParticles, 187.7 m3/hr AirFlow, Test#F2l, 7/8/96. 157

B.17 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 187.7 m3/hr Air Flow, Test # F5, 5/21/96. 158

B.I8 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 313.8 m3/hr Air Flow, Test # F7, 6/7/96. 159

R19 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 313.8 m3/hr Air Flow, Test # F8, 6/18/96. 160

xiv



B.20 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 481.8 m3/hr Air Flow, Test # F14, 6/28/96. 161

B.21 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing, 0.966 Micron
PSL Particles, 481.8 m3/hr Air Flow, Test #F17, 7/3/96. 162

C.l Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, SAE Housing, A13192 Pleated Filter, 0.966 Micron
PSL Particles, 61.2 m3/hr Air Flow, Test # SAE3, 9/3/96. 164

C.2 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, SAE Housing, A13192 Pleated Filter, 0.966 Micron
PSL Particles, 313.8 m3Jhr Air Flow, Test # SAE4, 9/4/96. 165

D.1 Calibration Plot for TSI Flow Meter for Flow Rates Less Than 50 Scfin
(85.5 Sm3Jhr) [Anand, 1997]. 166

D.2 Calibration Plot for TSI Flow Meter for Flow Rates More Than 50 ScfiD
(85.5 Sm3/hr). 167

G.1 The Swept Volume Technique. 172

H.I Comparison ofthe Average Efficiencies. 175

xv



NOMENCLATURE

Al cross-sectional area of the flow upstream the filter (m2
)

A2 cross-sectional area of the flow downstream the filter (m2
)

Ap projected cross-sectional area of the probe volume (m2
)

ApF area of the pleated filter (m2
)

~ area of the unfolded pleated filter (m2
)

C packing density

Cm Cunningham slip correction factor

Cw wave speed (m/s)

Di particle diffusivity (seconds)

Dr diameter offiber (m)

Dp diameter of particle (m)

e velocity increment (m/s)

E overall collision efficiency for a filter

f wave frequency (Hz)

Hp pleat height (m)

K hydrodynamic factor ofKuwabara flow

xvi



L

N

n

nj

p

Pe

Q

Qflow nozzle

filter thickness (m)

local mass flux upstream the filter (kglm2-s)

local mass flux upstream the filter (kglm2-s)

mass of particles seeded upstream ofthe filter (kg)

mass of particles collected downstream ofthe filter (kg)

mass of particles collected by the filter (kg)

particle count

particle count for stream i

total particle count

particle number density (m-3
)

particle number density for stream i (mo3
)

particle number density for non-symmetric velocity histogram (m
o3

)

particle number density for symmetric velocity histogram (m-3
)

total number density (m
o3

)

pressure (Fa)

D
Peclet number (= V-')

Dp

flow rate (m3/hr)

volumetric flow rate measured by ASME flow nozzle (Scfin)

volumetric flow rate measured by TSI flow meter (Scfin)

fiber radius (m)

particle radius (m)

xvii



Re

S'l, S
/
2

S

St

T

TFF

To

U

PoUDp
Reynolds number ( = )

Po

number densities with error (mo3
)

spacing offiinges (m)

Cm Dp 2 Pp U
Stokes number (= )

18 pa Df

time (seconds)

filter paper thickness (m)

run time (seconds)

velocity (m/s)

velocity ofthe flow approaching (and outside of the pleats of) the filter

(m/s)

Ua velocity of the particles inside the filter (m/s)

V particle velocity (m/s)

Vi velocity of particle for stream i (m/s)

VFF volume ofthe flat filter (m3
)

Vp peak velocity (mls)

VPF volume ofthe pleated filter (m3
)

Y flow stream layer thickness (m)

a. filter solidity or packing density (= volume offibersltotal volume offi1ter)

J3 angle of particle path measured from normal to the plane of two

xviii



intersecting beams

a1 angle of particle path measured from beam A

a2 angle of particle path measured from beam A'

a' J angle of particle path measured from detector

11 local efficiency

11D collection efficiency due to diffusion

11DR collection efficiency due to interaction of interception and diffusion

111 collection efficiency due to inertial impaction

11R collection efficiency due to interception

11s single fiber efficiency

A. wavelength oflight (m)

J..L a dynamic viscosity of air (pa-s)

P a density of air (kglm3
)

Pp density of seeding particles (kglrn3
)

v Doppler frequency shift (Hz)

xix



CHAPTER I

INTRODUCTION

The history of air induction filters for automobiles goes back to the early twentieth

century when a ring filter was made out of many interlocking layers of metal fibers which

provided a filtration efficiency of about 70 to 85 percent [Rodman, 1992].

The first pleated filter media was then developed by the British Air Ministry shortly

after World War One. Later in 1951, Frarn developed the pleated paper air filter with a

dust removal efficiency of 98 percent [Rodman, 1992]. In the late 1960s, Japanese

automobile manufacturing companies introduced ring air filters made out of pleated

composite nonwoven materials. Such media provided a better dust removal efficiency (up

to 99%) and increased the dust holding capacity [Rodman, 1992].

In 1978 Frarn introduced a pleated non-woven air filter having a 150% increase in

dust holding capacity and 990,10 dust removal efficiency with less than 60 percent of the

number of pleats compared to standard pleated filter elements available at that time

[Rodman, 1992]. From Frarn's modification up to the present time, after nearly two

decades, several modifications have been made by manufacturers in order to reduce the
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filter size and cost and increase the filtration efficiency as well as filter dust holding

capacity.

This study presents measurements of local efficiency for a pleated filter media

exposed to different flow conditions. Laser Doppler Velocimetry (LDV) is used to

measure the particle counts and velocities above and below the filter.

1.1 Objectives

The present research is a continuation of previous OSU research on local

efficiency measurements of pleated and flat filter media. As a continuation of that

previous work, more emphasis has been placed on reliability and repeatability of the

measurements. For this reason, the variation of the different parameters of the

measurement system has been analyzed in order to evaluate the effect of each on the

measured data. As a result, certain conditions were dictated so that under those

conditions, using the optimum values ofthe system parameters, the data would be reliable

with minimum achievable error. Repeatability ofthe data was also verified.

Consistency measurements were made at a specific location in a unifonn flow

without any filtration in order to achieve the above mentioned goals. These measurements

were also made at two different locations in the uniform flow in order to verify the

behavior of different parameters of the system. Local efficiencies were calculated for

uniform flows without filtration (zero efficiency) so that the local efficiencies and the local

behavior of the flow could be studied.

The main measurements were made on the A13 192 pleated filter manufactured by

Purolator Products, Inc (now Dayco-Purolator, a Division of Mark IV Industries). The
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filter was tested in a small angie diffuser housing as well as the standard SAE 1726

housing, both constructed from plexiglass. Spherical latex polystyrene (PSL) particles of

0.966 micron diameter were used as seeding particles. The particles were seeded into the

flow by a TSI six jet atomizer (see Appendix F for equipment list). A heater was used to

evaporate any water droplets coming out of the atomizer so that only dry PSL particles

were fed into the flow. Measurements of particle counts and velocities were made

upstream and downstream of the filter using an LDV system.

The number densities (or particle concentrations) were calculated based on a

technique called "Swept Volume Technique", and efficiencies were calculated using the

number densities upstream and downstream of the filter. The calculated data was

compared with previous tests performed by Natarajan [1995}. They were also compared

with flat filter media (Anand [1997], Williams [1995]).

The following Chapter of this thesis presents some of the theoretical models for

calculating filtration efficiencies and the literature survey. LDV fundamentals are

discussed in Chapter three. The next Chapter (Chapter four) describes the experimental

setup and system components. The basic assumptions, validity range and different models

of the Swept Volume Technique (SVT), used for number density and local efficiency

calculations, are described in Chapter five. Consistency measurements and optimum

setting of the system parameters are discussed in Chapter six and discussion of results are

presented in Chapter seven. Conclusions and future recommendations are presented in

Chapter eight. Other useful information such as the definition ofLDV system parameters

and examples of Stokes number calculation are presented in the appendices.
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CHAPTER II

LITERATURE REVIEW

Several studies have been made on different aspects of the air filtration theory in

the past. The basic concepts of the air filtration by fibrous filters and previous theoretical

and experimental studies of air filtration are discussed in this chapter.

2.1 Single Fiber Efficiency Theory

The classical theory of the air filtration by fibrous filters is based on the motion of

the particles in a flow stream. approaching a single cylindrical fiber. As air flows around a

fiber, the trajectories of the particles may deviate from the streamlines due to different

mechanisms. As a result, particles may be collected by the fiber and become deposited on

it. The major mechanisms causing particle deposition are diffusion, inertial impaction and

interception. In addition, electrostatic forces and gravitational settling may contribute to

the particle collection. Single fiber efficiency is defined as the ratio of the number of

particles collected by a fiber (due to all collection mechanisms) to the number which

would be collected if the streamlines were not diverted [Lee, 1977]. If a fiber of radius RF

removes all particles contained in a layer of thickness Y, as shown in Fig. 2.1, the single
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fiber efficiency is then defined as Y!RF [Lee, 1977]. Based on its definition, the single

fiber efficiency is independent of the filter thickness. Therefore, the single fiber

efficiencies of two different filters with different thicknesses could be compared while the

total efficiencies of these filters might not be comparable.

y

~-----I

Figure 2.1 Definition of the Single Fiber Efficiency (Lee, 1977].

The single fiber efficiency theory is based on the uniform distribution of cylindrical

fibers having uniform diameters throughout the filter media. Such assumptions might not

be accurate for industrial air filters which have non-uniform distributions of the fibers.

Also, the diameters of the fibers might not be the same. Non-homogeneity of the fibers

usually results in a reduced efficiency [Lee, 1977]. Another disadvantage of the single

fiber theory is that the calculated theoretical efficiency can not be detennined by

experiment since it is difficult to measure the efficiency of a single fiber. Yeh [1972] has
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correlated the total efficiency with the single fiber efficiency for a flat filter. Assuming a

flat filter with thickness L and fiber volume fraction a (the ratio of the volume of the fibers

divided by the total fiber volume in a unit surface area of the filter), he calculated the air

velocity between the fibers (inside the filter paper) as:

u = Do
a I-a

(2-1)

where Do is the undisturbed velocity upstream the filter. Using the air velocity inside the

filter and integrating the particle concentration rate over the filter thickness, he calculated

the efficiency ofthe unit surface area of the filter as:

(2-2)

where E is the filter efficiency, a is the volume fraction of the filter, L is filter thickness,

~ is the fiber radius and 11. is the single fiber efficiency.

2.2 Mechanisms ofParticle Collection

There are a number of known mechanisms which cause the collection of a particle

by the filter fibers. The importance of their effect depends on the particle and fiber

diameters as well as the Stokes number. These mechanisms are described below.

2.2.1 Diffusion

The Brownian motion of the particles will cause their trajectory to deviate from the

streamlines of the flow. Particles may diffuse away from the streamline to the fibers and

be collected. Figure 2.2a presents the path of a particle affected by Brownian motion and
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collected by the fiber. Since Brownian motion increases with decreasing particle size, the

diffusive deposition ofthe particles increases when the particle size is reduced.

2.2.2 Inertial Impaction

Assuming a cylindrical fiber, the streamlines of the air passing around a fiber are

curved. Particles with a finite mass moving with the flow might not follow the streamlines

because oftheir inertia. If the particle mass is sufficiently large and the fiber radius is large

enough (as compared to the particle diameter), the particle may deviate from the

streamline and collide with the fiber (Fig. 2.2c). Unlike diffusion, the probability of the

collision of a particle with the fiber increases with increasing the particle mass. The

mechanism of the inertial impaction can be studied by the dimensionless Stokes number.

Stokes number is defined as [Brown, 1993]:

(2-3)

Where Pp is the particle density, Dp and Dr are particle and fiber diameters respectively.

U is the air stream velocity, Ila is the air viscosity and Cmis the Cunningham slip correction

factor which is unity for particles of one micron diameter and larger. For particles smaller

than one micron, the slip correction factor is less than one. The correction factor is used

in order to consider possible sliding of the fluid flow stream on the particles which may

result in lower particle velocities than the flow stream. In other words, the velocity of the

small sized particles (less than one micron) flowing in a fluid flow with velocity U, is

calculated as Cmu. Liu and Lee [1982] have used a different correlation for the Stokes

number calculation. He used a factor of 9 instead of 18 in Eq. (2-3). Therefore his

calculated Stokes number values are twice those calculated by Eq. (2-3).
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2.2.3 Interception

If a particle follows the fluid streamlines and does not deviate by diffusion and

inertial impaction, it might be collected by interception. The particle will be collected by a

fiber if the streamline brings the particle center closer than one particle radius away from

the fiber surface (Fig. 2.2b). Interception is independent of the flow velocity. The ratio of

the particle diameter to the fiber diameter is an index which quantifies the importance of

the collection by interception as compared with other collection mechanisms (diffusion and

inertial impaction).

~cle .TraJectory

. -\ .. ,
/FIOW

(a) Brownian Diffusion, .

~ FlOti Stre:J.cline

(b) Direct Interception

"

/"" Flew Stro!l.mllne,

(c) Inertial ~action

Figure 2.2 Three Main Mechanisms ofParticle Collection [Lee, 1977].
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2.2.4 Other Collection Mechanisms

In addition to the above mentioned mechanisms, gravitational and electrostatic

forces might also contribute to the collection of the particles by tpe fiber. If the particles

and fibers are electrically charged, the attraction forces might result in the collection of the

particles. Large size particles (particles having diameters of a few microns or larger) may

deviate from the streamlines due to gravitational forces. Molecular forces and rotational

motion o~ a particle in shear flow near the fiber surface are other mechanisms which may

enhance particle collection. However, the main mechanisms of the particle collection are

diffusion, inertial impaction and interception. Several studies have been made in these

areas and there are models and correlations which can describe the effect of each ofthese

mechanisms. Liu et al. [1985] have shown the importance of different collection efficiency

mechanisms for different particle sizes (Fig. 3.3).

>
c.:l
Z
W

c.:l
u.
u.
w

DIFFUSION
REGIME

I
I
I I
IDIFFUSION ANOI INERTIAL
IIHTERCE?TION I II.4PACTION
IREGll.4E I AND

I I
INTE!'lCE?TlON

REGIME

I I
I I

, .... 1
0.0' 0.1 1.0

PARTICLE OIAMETEN.jJm

Figure 2.3 Schematic Diagram of the Collection Efficiencies ofDifferent Particle Capture

Mechanisms [Liu et al., 1985].
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2.3 Classical Filtration Theories

As stated earlier, several theoretical and experimental studies were made on the

subject of air filtration by fibrous filters. Theoretical studies are mainly based on the

models which calculate collection efficiencies of the different major particle capturing

mechanisms (diffusion, inertial impaction and interception). Davies [1973] calculated the

effect of the interception for a filter with a volume fraction ofa. and assumed that both the

inertial impaction and diffusion mechanisms are affected to the same extent by the

neighboring fibers as the interception. He derived the single fiber efficiency as:

TJ =(0.16+ 10.9a- 17a 2 )[R+ (0.5+ R)(St + Pe)- O.l052R(St + Pe)2 ]

(2-4)

In the above equation, a is the volume fraction, R is the fiber radius, St is the Stokes

number and Pe is the Peelet number.

Hoppel (1959] and Kuwabara [1959] modeled a filter as equal sized cylinders

placed in a staggered pattern transverse to the flow. The boundary of the system is a

hexagon around the staggered cylinders. Deriving the Navier Stokes equations for such a

system, Kuwabara came up with a correlation representing stream function as well as the

radial and tangential velocities in terms ofsystem parameters such as face velocity, volume

fraction and particle and fiber diameters.

Harrop and Stenhouse [1969] used the Hoppel flow field and computed the

particle trajectories numerically by computer. The calculation covered only inertial

impaction for finite particle sizes, and the result was presented in a graphical form.
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Stechkina et al. [1969] calculated the filtration efficiency using the Kuwahara Bow

field. They expressed the total single fiber efficiency as a summation of single fiber

efficiencies due to inertial impaction, 111, interception, llR, diffusion, 11D and interaction of

diffusion and interception, 11DR, in other words:

He then calculated the terms on the right hand side as :

TIl = ~ [(29.6- 28a 0.62 )R2
- 27.5R2

.
8

] St
2K

TlR - 2~ [(2(1 + R ) In(l + R ) - (l + R ) + (I + R ) -1 ]

-2/3

TID =2.7Pe

TI DR = 1.24K -1/2 Pe-1/2 R2/3

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)

where

number.

1 1 a 2
K = - -In(a ) - - + a - , Pe is the Peelet number, and St is the Stokes

2 2 4

2.4 Experimental Studies for Flat Filter Media

A number of experimental studies on air filtration by flat filter media are found in

the literature. These studies can be categorized based on particle sizes.

2.4.1 Flat Filter Media Measurements with Aerosol Particles

As defined in ASTM F-1215 [1989], aerosols are particles with diameters less than

one micron. Aerosol particle counts are usually measured by optical counting systems.
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Among different optical counting systems, the Laser Doppler technique is a common

system wh!.ch is widely used for measurements ofaerosol particles.

Yeh [1972] and Lee [1977] have studied filtration of submicron aerosols by

fibrous filters. They used a condensation aerosol generator to seed the particles into the

flow. DOP particles (Triphenil Phosphate Dioctyl Phatalate) were used and Dacron filters

with different packing densities were selected as test filters. They performed the filtration

experiments and compared the data with the results of the classical theories. A typical

efficiency plot presented by Yeh is shown in Fig. 2.4. Lee used Eq. (2-2) in order to

obtain the single fiber efficiency. He compared his results with the theory of Harrop

[1969] in the inertial impaction regime (Fig. 2.5). The Stokes number used by Lee is

twice the value calculated by Eq. (2-3).

I ;-

90 .:.... _ _ Fan Model of Stechkina et al. I
eo -- Present Theory !

>. /u 10 \c
IV \·u 60[E ~ I
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:: I
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i

r I

.: "' ~o- :o-~ : .) ;. )
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Figure 2.4 Comparison ofTheoretical and Experimental Filter Efficiency as a Function of

Particle Size, Dacron Filter, Dr= 11.3 Microns, a. = 0.0493, U= 0.0396 mls

[Yeh, 1972].
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Figure 2.5 Comparison ofExperimental Efficiency Measurements with the Theory of

Harrop and Stenhouse [1969] in the Inertial Impaction Regime [Lee, 1977].
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2.4.2 Flat Filter Measurements with Dust Particles

Other than aerosols, dust particles are often used for filter efficiency

measurements. The Society of Automotive Engineers (SAE) has defined two categories

of dust particles, the fine dust (SAP) and the coarse dust (SAC). The SAF dust, according

to its definition, contains a mixture of different size dust particles, most of them ranging

from 0.5 to 80 microns. The SAC dust contains a mixture of d.ust particles with most of

the particles having sizes between 0.5 to 100 micron. The size distribution of SAP and

SAC are shown in Fig. 2.6 [Gidley, 1993].
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Figure 2.6 SAE Dust Size Distribution [Gidley, 1993].
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Jaroszczyk [1987] has conducted measurements on different filters made of

polyacrylonitrile fibers with an average diameter of 27 microns and different packing

densities ranging from 0.0188 to 0.0612. A typical plot of his measurements is shown in

Fig. 2.7. As can be seen from the figure, the efficiencies are in the range of 95 to 99.5

percent. This implies the fact that efficiency measurements for dust particles give higher

efficiencies than values obtained from aerosol particles with smaller sizes. Filter efficiency

changes with time when dust particles are used. Since the dust particles are collected by

the filter, less area is available for the flow to pass the filter. As a result, the pressure drop

across the filter increases. This is true until the time when the weight of the collected dust

is less than filter dust holding capacity. Efficiency will then drop a little because of the

breakage of the dust cake constructed on the filter. The phenomenon is known as re-
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Figure 2.7 Filter Performance Versus Dust Loading [Jaroszczyk, 1987].
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It is difficult to conduct dust measurements by measuring particle counts with optical

particle counting systems. The high efficiency will cause a low number of samples

downstream of the filter. Increasing the particle seeding rate will increase the filter

loading so that it reaches the filter dust holding capacity sooner.

2.5 Pleated Filters

Person and Cashin [1994] have studied recent developments in pleated cabin air

filters. They have highlighted the fractional efficiency requirement for pleated filters (Fig.

2.8). Also, they have discussed the conflicting design requirements of the cabin air filters

(Fig. 2.9). According to their analysis, filter size and life, pressure drop across the filter

and filter efficiency are items which should be optimized for the best design. The design

goal is to have a filter with low pressure drop, high efficiency, long life and adaptable to

any geometry.

Efficiency
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Figure 2.8 Fractional Efficiency Requirement for Cabin Air Filter

[Person and Cashin, 1994].
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Con.Jli~ing Design. Requirement {or Cabin Air PilCers

Figure 2.9 Conflicting Design Requirement for Cabin Air Filter

[person and Cashin, 1994]'

Ptak et al. [1994] evaluated the effects of the flow rate on the initial efficiency of

two different car interior fitters (Fig. 2.10).
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Figure 2.10 Dependence ofInitial Efficiency on Flow Rate [ptak. et al., 1994].
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Reinhart and Weisert [1983] have studied engine air cleaner efficiencies. They

used SAE fine dust and loaded two similar filters. Measurements were made by an optical

particle counting system. Their measurements show a rapid increase of the filtration

efficiency, especially for particles greater than 3 microns, after loading the filter by 0.0242

grams per unit area. Figure 2.11 shows the fractional efficiencies at various dust loading.

Figure 2.12 is an isometric representation of the efficiency versus dust loading and particle
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Figure 2.11 Fractional Efficiency at Various Dust Loading [Reinhart and Weisert, 1983].
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[Reinhart and Weisert, 1983].
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Chen et al. [1994] have modeled a pleated filter based on the geometry of the

pleat. They studied two different kinds of pleats, rectangular and triangular, and modeled

a pleated filter with a steady laminar air flow. They used the finite element method for

solving the governing equations.

Based on their model, there is an optimum pleat count per unit length which gives

the minimum pressure drop across the filter. The regime for pleat counts lower than that

value is called filter medium dominated domain; and for higher values, it is called the

viscosity dominated domain. Figure 2.13 shows the pressure drop across the pleated filter

with different pleat counts per unit length of the filter. These measurements were

conducted using HEPA filter media and 95% DOP filter media with a flow velocity of 100

feet per minute (0.51 mls).

According to their results for the triangular pleat shape, the viscosity effect is

reduced due to the wide entrance and gradual shape change of the pleats. Consequently,

the number of pleat counts which corresponds to the lowest pressure drop across the filter

is higher for triangular pleats as compared to rectangular pleats.

Chen et al. mentioned that the pressure drop across the pleated filter is lower than

that of the flat media for the same flow rate. They also stated that the air velocity inside

the pleats is higher than the approaching velocity because of the converging shape of the

pleats. Also in the viscous domain, since the viscosity is dominant, there is a velocity

profile at each pleat cross-section, with lower velocity close to the filter paper and higher

velocity at the center of the pleat at each cross-section. The velocity profile at different

cross-sections between the pleats will be different. Chen et al. gave stated the variation,
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but they did not calculate the profile. They also measured the pressure drop across filters

with different pleat counts at different flow rates (Fig. 2.14).
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Figure 2.13 Variation of Pressure Drop with Pleat Count for Rectangular and Triangular

Pleats, HEPA Filter [Chen et aI., 1994].

Gidley [1993] has studied the initial efficiency of different pleated filters used in

the inlet system of combustion turbines. He has measured the fractional efficiency of

different filters (Fig. 2.15). He used a 24"x 24" (0.61m x 0.61m) filter. The filter was

tested with an air flow of2000 cfm (3418 m3/hr) or velocity of500 [pm (2.545 mls).
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2.6 Standard Testing Methods

There are a few standards for testing of the industrial filters. SAE 11669, ASTM

FI215-89, and SAE 1726 are typical standard codes for these tests. Each of them is

applicable under specific conditions. These procedures are described briefly in this

section.

2.6.1 SAE 11669

This .test code has been established to cover the dry cabin particulate air filters

used in automotive powered ventilation system. The test procedure is used for the

measurement of overall efficiencies, fractional efficiencies and incremental efficiencies. An

aerosol generator or dust feeding system is recommended asa particle seeding system.

According to SAE Jl669, fractional efficiency could be calculated based on number

densities for particles with the same size. The variation of air flow velocity shall be no

more than 10% of the mean velocity. Tests should be also conducted using the air

entering the system with a temperature of 20°C ± SoC and a relative humidity of

6S%±lS%. Two particle counting methods are recommended by SAE J1669 for counting

particles upstream and downstream the filter.

• Sequential Counting System:

Using this method, the upstream particles should be counted~ then the downstream

samples should be counted. For stable aerosol generators, a single upstream-downstream

counting system is sufficient. An aerosol source is considered to be stable if the counts

vary by less than 2% from one sample period to the next. For other aerosol sources, the
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upstream-downstream cycle should be repeated twice more for a total of three upstream

and three downstream samples.

• Simultaneous counting system

The particles for both upstream and downstream measurements should be counted

and recorded simultaneously.

The tests made in accordance with SAE 1669 should demonstrate that, by identical

tests performed on three separate days of no less than three days apart, the filter

efficiencies measured are in agreement within ± 5% of each other. Other restrictions are

also applied for SAE 11669 testing such as limited variation of relative humidity and

calibration ofmeasuring instrumentation.

2.6.2 ASTM F1215-89

This is a standard test procedure for determining the initial efficiency of a flat sheet

filter medium in air flow with latex spherical particles. The standard was published by the

American Society of Testing and Materials (ASTM) in 1989.

The test method covers techniques for measuring the initial particle size efficiency

of a flat sheet filter media with monodisperse aerosols. It utilizes a light scattering particle

counting system using particles ranging from 0.5 to 5 microns and air flow test velocities

of0.01 mls to 0.025 mls with efficiencies less than 99.9 percent.

The aerosol generator must be capable of generating sphere count concentrations

of 107 to 108 particles per cubic meter. The filter medium testing should be conducted in a

relative humidity of 30 to 50 percent. The system should measure average efficiency of

0% ± 1% when the filter element is not placed.
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2.6.3 SAE J726 Code

The SAE 1726 is a standard practice of pressure drop and dust collection capacity

measurements for panel air filters. The efficiency is calculated on a mass basis. The

weight of total dust fed to the system as well as dust collected by the filter is measured in

order to calculate the efficiency. The air flow rate should remain within ± 2% of the

actual value. The entering air temperature should be at 24°C ± g0c. The humidity should

remain within the range of50% ±15%.

2.7 The OSU Research

As mentioned earlier, the present research is a continuation of previous theoretical

and experimental studies. Experimental measurements and theoretical modeling were

made on the A13192 filter (previously AF3192) manufactured by Dayco-Purolator, a

division of Mark IV Industries (previously .Purolator Inc.), and on flat sheet filter paper

which is used for the manufacture of this filter.

2.7.1 Theoretical Models

Sabnis [1993] studied effects of non-uniform air flow through A13192 (previously

AF3192) filters on the filter efficiency. He conducted measurements in the SAE 1726 test

housing and modeled the flow. He predicted the local filter efficiency based on an

average fiber radius of 19 microns, a filter thickness of 700 microns and a packing

density of 0.23. He calculated elemental efficiencies by his model for different particle

sizes. A typical plot of his calculation is shown in Fig. 2.10. According to his model, the

filtration efficiency will be lower than 4 % for one micron diameter particles and a flow
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rate of 197.

7

m'/hr. The maS! dOminant Collection mechanism, according to his model, is
inertial impaction.
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Figure 2. 16 Elemental Efficiencies fur AI3 192 Filter [Sabnis, 1993].
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. Newman [l994] modeled the A13l92 pleated Jilter based on the followingassumptions:

1. No re-entrainment ofthe Particles.

2. Ditfusive filtration is not dOminant.

3. Unifonn Particle concentration Over the filter.

4. Unifonn fiber diameter and packing density throughout the Jilter.

5. Unifonn air velocity Over the filter.
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Using a flow rate of212 m3/hr, he calculated an efficiency of the flow with one micron

particles in the small angle diffuser and SAE 1726 test housings (Figs. 2.17 and 2.18).
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Figure 2.17 E,1emental Efficiencies for A13192 Filter, Small Angle Diffuser Housing

[Newman, 1994].
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Both Newman's and Sabnis' calculated efficiencies for one micron particles are

much less than experimental results (Anand [1997], Williams [1996], Natarajan [1995]).

However, the single fiber efficiency calculated by Sabnis' model conforms with the

theoretical models for Stokes numbers greater than 0.1 (Fig. 2.19).
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Figure 2.19 Comparison of Single Fiber Efficiency Calculated by Sabnis' Model with

Classical Models [Duran, 1995].

Liu [1995] studied and modeled velocity profiles upstream and downstream of the

loaded filters. He loaded the A13192 filter with SAE fine dust to reach desired pressure
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drops across the filter (for the design flow rate of212 m3/hr). Figure 2.20 is a typical plot

of his measurements. He compared his measurements with his CFD model for velocity

calculations.
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Figure 2.20 Velocity Distribution Upstream ofa Dirty Filter Loaded to 127 rom ofWater

[Liu, 1995].

Duran [1995] modeled the A13192 filter elemental efficiencies with SAE coarse

dust particles. Unlike Sabnis, he assumed an average fiber diameter of 51.78 microns and

a packing density of 0.345. His model was based on implementation of three models:

interception model by Liu and Lee [1982], inertial impaction model by Landhal and

Herrmann [1949] and the adhesion model by Ptak and Jaroszczyk [1990]. His calculated

efficiencies for one micron particles was similar to Newman's and Sabnis' calculated

values.
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2.7.2 Experimental Studies

Experimental measurements were made on flat filter media by Anand [1997J and

Williams [1996]. Natarajan [1995] conducted measurements on A13192 pleated filters.

He stated that he had problems regarding the repeatability of the measured data, variation
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of the power of the laser beams and other factors affecting the number density

calculations. His plot of overall efficiencies measured for different flow rates in a small

angle diffuser housing with 0.966 micron PSL particles is shown in Fig. 3.21.
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Figure 2.21 Overall Efficiency Versus Flow Rate [Natarajan, 1995].

Anand [1997] improved the measurement system and verified the repeatability of

his measurements by repeating the identical tests. He measured the flat media efficiencies

and compared his results with data from Lee [1977J (Fig. 2.22). He also showed that in
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the central region ofthe filter, the local efficiencies are within ±l00.lo of the overall average

efficiency. Figure 2.23 shows a typical plot of the local efficiency measurements on the

flat filter media conducted by Anand. He defined the X axis and Y axis as the directions

of the shorter and longer sides of the A13192 filter, respectively.
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Figure 2.22 Overall Filter Efficiencies [Anand, 1997].

Liang [1994] has measured the axial upstream velocity in the SAB 1726 housing

over a pleated filter (Fig 2.24). He defined the X and Y axes as the directions of the

longer and shorter sides of the filter, respectively.
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Figure 2.23 Local Efficiency for Flat Filter [Anand, 1997]
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Figure 2.24 Axial Velocities Upstream of the A13192 Pleated Filter (204 m
3
/hr,

SAE Housing, 0.966 Micron Particle Diameter) [Liang, 1994].
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Similar measurements were conducted by Natarajan [1995] in a different test

housing, the small angle diffuser housing (Fig. 2.25). As can be seen, the velocities are

more uniform in the small angle diffuser housing as compared to the SAE 1726 housing.
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Figure 2.25 Axial Velocities Upstream of the A13192 Pleated Filter (204 m3/hr,

Small Angle Diffuser Housing, 0.966 Micron Particle Diameter)

[Natarajan, 1995].

Natarajan also used Duran's model for efficiency calculation to compare his

results. He calculated the local efficiencies for a flow rate of 204 m3/hr using 0.966
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particles in the small angle diffUser housing. He picked an arbitrary value of 0.49 for the

packing density as well as a value 0[0.345 which was recommended by Duran [1995]. He

calculated local efficiencies for an A13192 filter using Duran's model and the velocity

distribution shown in Fig. 2.25. He used an average fiber diameter of 51.78 microns

which was suggested by Duran. His efficiency calculations are shown in Figs. 2.26 and

2.27.
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Figure 2.26 Elemental Efficiencies Over A13192 Filter (Small Angle Diffuser Housing,

Duran's Model with Packing Density of0.49) [Natarajan, 1995].

33



- 100
~0->- 80(,)
c:
CD
'0

60!E
w
a;

40-c:
CD
E 20-CD
w

o
-25 5- 0v -75

,,~

s (f1Jrnj

50
25 i:'

o ~
.~

-25 tf
-50 -\.

·~,.
I·.
i I
: 1·.·.: i·.
: 1
r:
I', ,

1
I

Figure 2.27 Elemental Efficiencies Over A13192 Filter (Small Angle Diffuser Housing,

Duran's Model with Packing Density of0.345) [Natarajan, 1995].

He also calculated the local efficiencies based on his downstream and upstream

number density measurements over the filter and the actual measurements on the A13192

pleated filter. Results ofhis measurements are shown in Fig. 2.28.

Comparing Figs. 2.26, 2.27 and 2.28, it can be seen that most of the calculated

local efficiencies (using the experimental data, Fig. 2.28) lay between the other two plots
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(Figs. 2.26 and 2.27) which are calculated using Duran's model with different packing

densities (0.49 and 0.345).
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Figure 2.28 Measured Local Efficiencies Over A13192 Filter [Natarajan, 1995].

Natarajan used the actual flow velocity of the air inside the small angle diffuser

housing to calculate the Stokes number for different flow rates. The total filtration area of

the pleated filter is 19.3 times the duct cross-sectional area. Therefore, the velocity

calculated based on the flow rate divided by the total filtration area (area of the unfolded

filter) will give Stokes numbers about 5% of the values calculated by Natarajan for similar

tests.
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Anand [1997] studied the Stokes numbers calculated based on both of the above

mentioned velocities. He concluded that neither of these velocities wiU give the correct

Stokes number. He stated that the proper velocity for Stokes number calculation is about

4 times of the velocity calculated by unfolded filter area which is about 20% of the duct

velocity. Further discussion regarding the Stokes number analysis for the pleated filter is

presented in Chapter seven.

2.8 The Present Study

Using modifications of testing procedures introduced by Anand [1997] (constant

ambient temperature, laser power and optimized DSA .parameters), the current

measurements were made in order to calculate the local efficiency of pleated filters using

the A13192 filter and 0.966 PSL particles. These measurements are compared with

measurements made by previous researchers of the OSU team as well as the theoretical

and experimental literature. The main objectives of the current measurements are:

• Local filter efficiency measurements on pleated filters using optimum system

parameters suggested by Anand [1997].

• Comparison ofthe overall filter efficiencies with flat media.

• Evaluation of single fiber efficiencies and comparison with theoretical studies.

• Stokes number analysis and research for a proper velocity for Stokes number

calculation.
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The current measurements were conducted in order to establish the above

mentioned objectives. In addition to these goals, the fonowing findings are the outcome

of the present research:

• Verification of the reliability of the results by repeating the tests.

• Measurements of the filter efficiencies at flow rates lower than 50 m3/hr using the new

bypass system.

• Modification of the number of density calculations, the Swept Volume Technique and

analysis of the accuracy ofthe calculations.

• Comparison of non-uniformity of the local efficiencies with the overall testing system

errors.

• Investigation of the possible correlation between the efficiencies of the flat and pleated

filter media.

Also, with the help of the present measurements, conceptual models for calculation of the

Stokes number are described.
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CHAPTER ill

LDVFUNDAMENTALS

Laser Doppler Velocimetry (LDV) has been widely used for particle velocity and

count measurements in a fluid flow. The technique ofusing the Doppler shift of laser light

for velocity determination was first demonstrated by Yeh and Cummins [1964]. A brief

review ofbasic concepts ofLDV is presented in this chapter.

3.1 The Doppler Shift

The change in the frequency of wave motion (electromagnetic or other type)

because of relative movement of an object with respect to a wave producing source is

known as the Doppler frequency shift.

Consider a wave generated from a stationary source S. A moving observer P with

velocity V (with respect to stationary source 5) will intercept more waves per unit time

than if the observer had remained stationary (Fig. 3.1). Knowing that the distance traveled

by P in direction 5 is Vcos(8). the increase in wave frequency apparent to the moving

observer (P) will be:

4

(3-1)
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Where v is the wave frequency emitted by S or measured by a stationary observer. Using

the wave speed, the fractional change in frequency will be:

L1v V cos( () )
-=---'---

v e",
(3-2)

where Cw is the wave speed. Now, if by some mechanism the frequency change is

detected, the moving observer's velocity could be calculated. Indeed this is the basic

concept of the LDV system.

Figure 3.1 Illustration of the Doppler Frequency Shift Experienced by a Moving Observer

[Drain, 1980].

3.2 The Optical Beating or Heterodyning

If two sinusoidal signals with a relatively smaIl difference in frequency are added

together (Figs. 3.2 a and b), the resultant wave will be a wave with a frequency off[-f2 due

to the alternating constructive and destructive interference (or "beating") of the two

signals (Fig. 3.2c). When this signal is detected, it yields an output signal in the form of

Fig. 3.2d.
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Exactly the same principle may be applied in optics. The beating will be observed

by illuminating an optical detector simultaneously by two light beams with different

frequencies.
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Figure 3.2 The Heterodyning ofTwo Frequencies [Drain, 1980]. The Addition of Signals

(a) and (b) Yields Wave Form (c) Which Is Rectified to Fonn the Beat Signal

(d).
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3.3 Differential Doppler Beating

As mentioned earlier, optical beating can be detected when two beams with close

frequencies intersect [Drain, 1980]. When a moving particle passes through the

intersection of two focused beams of similar intensities inclined at angle a. (Fig 3.3), and

the scattered light (caused by a particle passing through the beams) is detected in a third

direction, the Doppler frequency shift of each beam, observed by a detector, will be

different. Ifa1and a'l are the angles of a moving particle with velocity of V with respect

to beams A and A', and a2 is the angle of the moving particle with respect to the detector

direction, the Doppler frequency shifts will be [Drain, 1980]:

[COs(B'I) + cos(B 2)] vVL1 VB = =--------'-...........:;,_--':........:c.:...:..._

C

The difference frequency observed by the detector will be [Drain, 1980]:

(3-3)

(3-4)

V sin(a /2) cos(j3 )

A.
(3-5)

Where Ci = 8' 1-81 , the angle between the two beams, and ~ = Ih (8' 1 + 8 1 -1t).

z

Laser
beams

Figure 3.3 Arrangement ofIlluminating Beams in the Differential Doppler Technique

[Drain, 1980].
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3.4 Interference and Interpretation of Interference Fringes

The alternate constructive and destructive interference (or beating) caused by two

light beams will be observed as light and dark bands, interference fringes, which represent

these alternate construction and destruction interferences (Fig. 3.4). If the two beams

have a well defined and consistent phase relation, the spacing of the fringes could be

calculated as:

2s=--
2sin(e ) (3-6)

Therefore a moving particle with velocity V at angle J3 from the normal to the fringe plane

(XZ plane in Fig. 3.3) will observe a modulation of light intensity with a frequency of:

f = v co':fJ3 )
S

(3-7)

or

f = 2 vcos(j3 ) sinea /2)
..1

(3-8)

z

Lx::>ctt~
-- I --P, PI

Figure 3.4 Fringe Pattern Produced by Crossing Beams in the Differential Doppler

Technique [Drain, 1980].
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The difference in frequencies calculated by Eq.(3-8) is called the Doppler differential

frequency [Drain, 1980]. The scattered light from the particle will be modulated at this

frequency.

The region where fringes are fonned by crossing of the beams is called the probe

volume. Usually laser beams have a circular symmetry with a Gaussian intensity

distribution in the cross-sectional area. Using the interference fringe approach, a particle

moving in a. probe volume formed by the intersection of two laser beams with equal

intensities will generate a scattered light signal as shown in Fig. 3.5a. The signal has a

maximum depth of modulation possible corresponding to the high fringe contrast in the

central area which appears because ofhigh intensity in that region.

(a) ( b )

Fig. 3.5 Types of Signals from Particles Crossing a Region of Interseetion ofLaser

Beams [Drain, 1980].

43



An imperfectly modulated signal (Fig. 3.5b) could arise from the beams not being

of equal intensity or from a particle whose size is not small compared to the fringe

spacmg.

3.5 Signal Processing

The back scattered light caused by a moving particle through the probe volume is

an optical signal which should be processed so that the particle velocity is obtained. Durst

and Whitelaw [1976] have described different aspects of signal processing in their book.

According to Durst and Whitelaw, the scattered light signal is first detected by a receiver

module (RCM). The RCM converts the Doppler light signal from the receiver optics into

electronic signals. The RCM contains either photodiodes or photomultiplier tubes (pMfs)

which do the conversion. PMTs are typically used for signal conversion because of their

high gain and low noise level. The PMT output is a voltage signal with a gain determined

by the high voltage applied to it.

The electronic signal has the form shown in Fig. 3.6 [Durst and Whitelaw, 1976].

The low frequency signal variation corresponds to passage of particles through one or

both light beams and the higher frequency signal, contained within various envelopes,

corresponds to the velocity of individual particles passing through the region of the beam

intersection observed by the PMT. In most cases, a high pass filter is used to remove the

low component of the signal (Fig. 3.7). The resulting signal is then transfonned into the

frequency domain where the differential Doppler frequency is obtained. The velocity is

then calculated using the Doppler frequency.
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3.6 The Doppler Signal Analyzer

The Doppler Signal Analyz.er (DSA) is used for signal processing. According to

the DSA manual [1992], the DSA hardware is connected to the PMTs as well as to a

computer in such a way that the system parameters can be adjusted by the DSA software

installed on the computer.

The DSA system uses fast Fourier transformation for transforming the electronic

signal to the frequency domain. The high voltage applied to the PMTs, the high pass

filtration parameter, the frequency shift and several other parameters could be adjusted

using DSA software. The DSA is also connected to an oscilloscope where the envelope

signals as well as Doppler bursts can be seen.

A description of the system parameters is presented in Appendix A. The effect of

each parameter on detected particle velocity and count is discussed by Anand [1997]. A

brief review of optimum values for the system parameters is also presented in Appendix A.

Volts

L- ---:. Time

Figure 3.6 PMT Output Signal from Photodetector, Before High-Pass Filter

[Durst and Whitelaw, 1976].
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Volts

Figure 3.7 PMT Output Signal from Photodetector. After High-Pass Filter

[Durst and Whitelaw, 1976].

Up to this point, the basic principles of an LDV system have been discussed.

However, different LDV systems might be used for different measurment conditions. The

specification of the system used for the present measurements is described in Chapter four.
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CHAPTER IV

THE EXPERIMENTAL SETUP

Details of the components and assembly of each system are presented in this

chapter. The experimental setup and measurement procedures are also explained (refer to

Appendix F for a list of all equipment).

4.1 Description of the System Components

The experimental setup for present measurements can be divided into two main

systems: the flow system, the LDV system and the traverse.

4.1.1 Flow System

Measurements were conducted on A13192 pleated filters manufactured by Dyco-

Purolator. Air flow is generated by a blower. The test housing is installed on the suction

side ofthe blower. Ambient (room) air is sucked into the system and the blower discharge

is extended to the outside of the building. As recommended by Anand [1997], the ambient

room temperature is controlled so that it does not vary more than ± O.SOC. The room

temperature is controlled by the air conditioning system so that the heat generated by the

blower and the air heater does not increase the room temperature.
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The flow system includes the following components:

• Blower

The blower is used to maintain the air flow. As mentioned earlier, the test

housing is installed on the suction side of the blower. The flow rate is controlled

manually from the blower control panel.

• Six Jet Atomizer

The atomizer (made by TSI) is used for seeding the particles. 0.966 polystyrene

latex spherical particles (PSL) were used as challenge contaminants. Particles are

available in a solution with 10 % concentration by volume. The solution is diluted by the

ratio of 1 to 100 (for example by adding 990 cm3 of distilled water to a 10 cm3 solution,

making 1000 cm3 diluted solution) up to 1150 with distilled water, depending on the

required seeding rate. The diluted solution is poured into the atomizer container. The

container's effective volume is about 700 cm3
• The atomizer is equipped with a level

gage. Compressed air with a pressure of 40 psig is supplied to the atomizer. The

atomizer has a pressure regulator which should be adjusted to a value less than 30 psig as

recommended by TSI. The solution is atomized by passing through the jet nozzles. The

concentration of the atomized solution can be controlled by adjusting the compressed air

flow rate. This can be accomplished by adjusting the air flow valve on the atomizer to

get the desired air flow.

• Air Heater

Since the air coming out of the atomizer contains water droplets as well as PSL

particles, in order to avoid water droplets entering the housing, the main air entering the
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housing is heated by the air heater. Water droplets were vaporized by heat and only PSL

particles will enter the housing. Such heating will change the air temperature. The

temperature of the air entering the housing will be different for different flow rates since

the heater is working with its maximum capacity. At very low flow rates, the temperature

will be higher than for intermediate and high flow rates. The air temperature will affect

the air viscosity which is used for Stokes number calculation. The air temperature will

hardly reach 50 °C when the air entering the housing is heated by the heater. Therefore,

the change in viscosity (due to the change in temperature) is so small that its effect can be

neglected. For Stokes number calculations, the air viscosity at 30 °C is used. An

example of the Stokes number calculation is presented in Appendix E.

• Test Housings

Two different test housings are used for the measurements: the small angle

diffuser housing (Fig. 4.1) and the SAE housing (Fig. 4.2), which is constructed in

accordance with SAE 1726 test housing dimensions. The small angle diffuser housing

will generate more uniform velocity upstream of the filter as compared to the SAE

housing. Both housings were made of plexiglass. A cubic mixing box is installed

upstream of the test housings in order to have a uniform particle concentration inside the

test housing.

• TSI Flow Meter

The TSI flow meter is installed downstream of the test housing. It is used to

measure the standard volumetric flow rate in cfm.. The flow meter is calibrated for flow

rates above 50 scfrn with an ASME 3 inch flow nozzle. The calibration curve is shown in
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Appendix D. Anand [1997] has also calibrated the flow meter for flow rates less than 50

cfm (Appendix D).
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Figure 4.1 Dimensions of the Small Angle Diffuser Housing.
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• Manometer

In order to monitor the variation of the pressure drop across the filter, two

pressure taps were installed at the top and bottom sections of the test housings, upstream

and downstream of the filter. The pressure drop across the filter at the beginning of each

test is measured and its variation throughout the test is monitored. The final pressure drop

at the end of the test is also recorded. The amount of the pressure drop change is an

indication of filter plugging which results higher efficiency values. These changes are

more significant on the flat filters (Anand [1997]) as compared to the pleated filters. An

inclined manometer filled with water is used for the pressure drop measurement.

• Absolute Filter

The absolute filter is the last piece of equipment downstream the filter before the

blower suction flange. It is used to absorb the particles which have passed through the

filter in order to avoid contamination ofthe atmosphere with PSL particles.

• Connecting Piping

PVC piping and rubber connectors and adapters were used for connecting the

equipment to each other and guiding the flow.

• Bypass System

Since the blower is not capable of generating flow rates less than 25 ScfiD, a

bypass connection to the atmosphere with a valve is installed before the absolute filter. By

setting the blower on the minimum flow rate and adjusting the bypass valve, very low flow

rates could be generated to pass through the test housing (Fig. 4.3).
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Figure 4.3 The Bypass System.

"This system is more useful for very low flow rate measmements. The bypass

system can provide a consistent low flow tate inside the housing as long as the pressure

drop across the filter remains constant. If the pressure drop across the filter is changed,

more flow will pass through the bypass and less flow will go through the system, as

compared to the desired flow. Such a phenomenon is more critical on flat filter

measurements.

• Test Filter

A13192 pleated filters were used as test filters. The dimensions of the A13192

filter (manufactured by Dayco-Purolator) are listed in Table 4.1. The values of the

packing density and average fiber diameter were estimated values recommended by

Duran [1995]. The arrangement of the pleats and the schematic view of the filter are

shown in Figs. 4.4 and 4.5, respectively.
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Table 4.1 A13192 Pleated Filter Dimensions [Duran, 1995].

Overall Dimensions

Pleat Pitch

Pleat Height

Estimated Average Fiber Diameter

Estimated Packing Density

193 nun x 121 mm

3.125 mm
30mm

51.78 Mircons

0.345
1.
~..,

Figure 4.4 Arrangement of the A13192 Pleats.

4.1.2 The LDV System

Pleat
height

Counts and the velocities of the particles upstream and downstream the filter were

measured by the LDV system. The LDV system mainly consists of a laser, fiber drive,

transceiver, DSA hardware, monitoring computers, digital oscilloscope and fiber optic

cables. These components are described in this section.

• Laser

The laser is a 5 watt model Innova I 70-A argon-ion laser manufactured by

Coherent. The laser power was set to 0.8 W for the current measurements.
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Bottom View

Top View

Side View

Figure 4.5 The A13192 Pleated Filter.
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• Fiber Drive

The laser beam is guided by two outside mirrors to the fiber drive. The beam

enters the Bragg cell which generates a second beam with a 40 MHz frequency shift.

Both beams are guided to a prism which separates blue and green beam. frequencies. The

four beams, a blue and a green beam from the main beam (unshifted) and a set of blue

and green beams from the shifted beam, win be guided to the couplers which are

connected to the fiber optic cables. The beams pass through the coupler lens and enter

the optic cable. The cable transfers the beams to the transceiver. Figure 4.6 shows a

schematic of the fiber drive.

------~

~ Laser

Prism

•
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I
I
I
I
I I I

~==~~

,.- Bragg cell

Fiber drive

Couplers

ITO Transceiver I

Unshifted beam

Shifted beam

- . --. -. -
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Figure 4.6 Schematic Diagram of the Fiber Drive.
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• Transceiver

The four beams commg out of the fiber drive (green and blue shifted and

unshifted beams) are transferred to the transceiver through fiber optic cables. As

mentioned in Chapter three, the transceiver emits the four beams. The system is set so

that the green beams are emitted in a vertical plane, the YZ plane., and the blue beams are

emitted in a horizontal plane, the XY plane (Fig. 4.7). Also, the transceiver detects the

back scattered light caused by particles passing through the probe volume. The detected

light signal is transmitted to the Photo Multiplier Tubes (PMTs).

Transceiver

Blue beams in
horizontal plane

• PMT

r
Green beams in
vertical plane

y

Figure 4.7 Laser Beams Emitted from Transceiver.

z
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-

The PMT's receive the back scattered light from the transceiver. The light signal

is converted to an electronic signal by the PMT's. The high voltage applied to the PMT's

is adjustable through the DSA software.
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4.1.3 The Traverse

In order to measure local nwnber densities. The transceiver is installed on a board

(traverse) which has three dimensional movement. 1bree DC stepper motors are used for

moving the board in three dimensions. All motors are computer controlled.

4.2 The Experimental Setup Description

The six jet atomizer is filled with desired solution. The solution is made by

diluting the 10 % concentrated PSL particles (by volwne) with distilled water. The

dilution ratio depends on the flow rate which is used.

For most of the tests in the small angle diffuser housing and all of the tests in the

SAE housing, the dilution ratio is one to one hundred. For flow rates of313.8 and 481.8

m3/hr, the dilution ratios are 2/100 and 3/100, respectively. Higher concentrations are

used at high flow rates so that enough particles are detected in a certain period of time

(for example 30 seconds).

A schematic sketch of the experimental setup is shown in Fig. 4.8. The seeded

particles enter the flow system through a bypass close to the housing entrance. The

ambient air is sucked into the system. The heater is placed underneath of the entrance

section so that the air is heated before entering the system. Heated air evaporates the

water droplets which are also added to the flow together with the particles. The air passes

through a mixing box before entering the housing so that the particles are mixed

unifonnly. The housing is connected to the mixing box and the air passes through the

housing were the filter is placed.
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Figure 4.8 The Experimental Setup.
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The housing is connected to the TSI meter. The air exiting the housing passes

through the TSI :flow meter (where the flow rate is measured) and the absolute filter. The

particles which are not collected by the test filter will be collected by the absolute filter.

Finally the air enters the blower and is vented to the atmosphere through the blower

outlet.

Measurements are made at two cross-sections inside the housing: 75 mm above

and 100 rom below the housing flange connections. Measurements are made at 35 grid
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locations in each of these planes. The grid spacing is 16.5 mm and 20.3 mm in the X and

Y directions, respectively. The X direction is the direction of the smaller side of the test

filter and the Y direction is the direction of it's longer side. The filter is placed such that

the longer side is parallel to the transceiver lens (Fig. 4.9).

..
y

Transceiver

-

Figure 4.9 Top View of the Test Filter Positioning.

Of "Typical comer

y=o point (X= 33 mm,
... y = 61.2 mm)

-----:
>- Typical

points close
to the wall

X=O

I"
I 16.5mm

J 20.3 mm
Filter center point X

(0,0)

Figure 4.10 Grid Locations (Not to Scale).
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4.3 Measurement Procedure

Before starting each test, the LDV system is turned on. The power of the laser

beams coming out of the transceiver is checked. If the power is lower than the expected

values, the couplers are aligned such that the desired power values are obtained.

Alignment of the couplers is done at a laser power of 0.2 W.

For the current measurements, values of 8 mW for the green beams and 4 mW for

the blue beams (at laser power of 0.2 W) are considered proper values for conducting the

measurements. However, during the period which the measurements were made (about

six months), the efficiency of the blue beams decreased such that the latest measurements

were conducted with the blue beam powers of about 2 mW (at 0.2 W laser power). Such

a reduction did not affect the quality of the measurements since the axial velocity was

measured by the green beams.

The blue beams measure the transverse velocity which is usually much less than

the axial velocity (more than one order of magnitude in most cases). Moreover, the

nwnber of counts are measured by green beams not the blue beams. The lower blue beam

power will reduce the number of samples detected in the transverse direction but does not

affect the measured velocities of the detected particles in that direction.

After the alignment of the laser beams is completed, the blower is started and is

adjusted to the desired flow rate. The blower is run for at least 15 minutes in order to

stabilize the flow. Then the atomizer is filled with the solution and the air to the atomizer

is turned on. The atomizer pressure regulator is set to a value between 25 to 40 psig as

recommended by the manufacturer.
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The traverse is moved so that the probe volume is set at the center of the housing

cross-section upstream the filter at the plane where measurements are conducted. Three

sample runs are measured at each grid point, and the number densities are calculated.

Sample measurements are continued at that grid point if the number densities are not

consistent (within ± 5% of the average of the three) until the time that three consistent

measurements are obtained.

The next step is the checking of the recirculation zone. Sample runs are measured

at a few grid points (usually two or three) of the two rows closest to the wall (X=33 rom

and X = -33 mm, see Fig. 4.10). If the velocity profiles of the two sides are similar to

each other, the main measurements are started. If not, the reference center point is

relocated such that similar velocity profiles are obtained on the two rows, i.e. the velocity

histograms have the same trend (not necessarily the same values).

The main measurements are conducted in a sequential manner. At each grid

point, for most of the grid points, three measurements are made upstream of the filter

above a grid point and after that, three measurements are conducted downstream of the

filter below the same grid point.

The next chapter discusses the results and methods for efficiency calculation.
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CHAPTER V

EFFICIENCY AND NUMBER DENSITY CALCULATIONS

In filtration studies, filter efficiency is typically calculated on a mass basis. In other

words, if particles with total mass ofM1 are injected into the flow during a specified time,

considering the portion of the total mass which passes through the filter to be M2, the

mass collected by the filter (assuming no losses in the system) should be:

(5-1)

and the efficiency is calculated as:

(5-2)

-

However, the filter efficiency might change when it is plugged by particles. Because of

plugging, less area will be available for particles to pass through the filter, and the pressure

drop across the filter will increase.

The present measurements are made on clean filters using 0.966 micron particles.

The particle seeding rate and run time are selected so that no significant change in the

pressure drop is observed. Therefore, it is assumed that the filtration efficiency does not

change during the time which measurements are made. Values of pressure drop change

are indicated for each measurement, and the above assumption is verified.
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5.1 Calculation ofEfficiencies Using Number Density

Since the seeding particles are of unifonn spherical shape with a 0.996 micron

diameter, the total mass of the seeding particles upstream and downstream of the filter can

be written in tenns of particle numbers as:

4 3M 1 = -7!R pN\p
3

4 3
M2 = -7!R pN2 P

3

Therefore the efficiency will be

(5-3)

(5-4)

(5-5)

where N 1 and N2 are the number of particles corresponding to the masses ofMl and M2

respectively and p is the density of the particles.

5.2 Local Efficiency Calculation and the Swept Volume Technique

Filtration efficiency at a specific filter location is calculated based on the number

densities above and below the filter (at that location). Number density is defined as

number of particles in a specific volume. Since the number densities above and below the

filter should be calculated using the same volume, it is easier to calculate the number

densities on a unit volume basis (see Appendix G for an alternate method-flux based).

Note that since the flow is assumed to be steady-state, it is assumed that the number

density is unifonn throughout the probe volume (where measurements are made).

As mentioned earlier, the LDV system is used for velocity and particle count

measurements. Measurements are made by focusing the probe volume on the specific
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location where velocity and particle concentration are needed. The main outputs of the

LDV system are: velocity histogram, number of counts and run time.

The Swept Volume Technique (SVT) is used for number density calculations. The

SVT is based on the following assumptions (see Appendix G):

• The flow is steady-state, and the velocities of the particles as well as number densities

do not change with time.

• Particles paths are parallel streamlines (all particles move in the same direction).

• All particles have the same velocity.

Considering a probe volume with a cross-sectional area (nonnal to the flow) of Ap, and

assuming that the LDV system detects N particles from time T = 0 to time T = To having a

velocity of V, the very first detected particle (detected at T = 0+) win move the distance L

= V To away from the probe volume cross-section Ap. Similarly the last particle which is

detected at time T = To-should be at the same distance (L) upstream of the probe volume

cross-section at the start time (Fig. 5. 1), so that after the time To, that last particle will just

pass through the probe volume cross-section.

Last Particle

First Particle

T=O

(a)

Swept
L_-----:----~/7Volume

Last Particle

First Particle

T=To

(b)

-

Figure 5.1 The Swept Volume Technique, (a) at T = 0, (b) at T = To.
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Therefore, before time To, all of the N detected particles would have been somewhere

between the probe volume cross-section and a distance L upstream of it. In other words,

all N particles existed in the volume LAp, and the number of particles per unit volume (or

number density) will be:

N
n=---

VApTo

5.3 SVT for One-Dimensional Flow with Different Velocities

(5-6)
.,.
"
'l
"~I

i1,..
"
I

Consider two systems of particle flow. The first set has NI counts detected during

time To with a velocity ofVI in the flow direction, and the second set has N2 counts have a

velocity of V2 in the same direction and during same time, as shown in Fig. 5.2. The

streams are shown separately in the figure (for clear presentation) but it is assumed that

both streams pass through the same probe volume during the same time. Suppose that

each block of stream #1 contains NI particles and each block of stream #2 contains N2

particles, Also, assume that the whole probe volume cross-sectional area (Ap) is available

for both streams and each stream does not have any effect on the other one. Considering

these assumptions, we can say that N 1 particles of stream #1 (one solid block of the #1

stream) and N2 particles of stream #2 (one solid block of the #2 stream) pass through the

probe volume during the same time (To). The length of each block of the #1 and #2

streams (in the flow direction) will be VjTo and V2To, respectively. Using Eq. (5-6), the

number density could be calculated by SVT for each set as:

(5-7)

-
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(5-8)

Stream #1 Stream #2

........ _. _ _- ..· .. .. .. .. .. ..
, .

... .
... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..· .... .. - _ -.

................. ..· ,

........... -... - ...... - .... - ... -· .
... .. .. .. .. .. .. .. ............. __ . _ ..· ,.. .. .. .. .. .. .. .. .. .. ...

\ /'
Ap

.. ~ e ... ~ ..... ~ .. ..... ..,o. ........... _ .... _ ...... ~

~ .. .. .. .. .. ., -- - ':
" ..
:::::::::::::::::::~:::::;

Each solid box
contains N I particles
(N2 in stream #2)
which pass the Ap
during time To

Each dashed line block has unit
volume and contains ill

particles (n2 in stream #2)

Figure 5.2 SVT for One-Dimensional Flow with Two Different Velocities.

In a unit volume upstream of the probe volume cross-section (dashed rectangles in

Fig 5.2), there will be nt particles of stream #1 and n2 particles of stream #2. Therefore,

the total number of particles in a unit volume, the average number density for both

streams, will be.

(5-9)

The following example will explain the above calculation.
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Assume that the first system has 100 particles detected in 1 second with velocity of

2 mls and the second set consists of600 particles detected in the same time with a velocity

of4 mls.

Referring to Fig. 5.2, each block of stream #1 has a length of2 (mls) x 1 (sec) = 2

In, and each block of stream #2 has a length of 4 (m/s) x 1 (sec) = 4 m. If the probe

volume cross-sectional area is 1 m2
, then there will be:

• 100 particles.in each solid block of stream #1 which has a volume of 2 m x 1 m2 = 2

m3 with a velocity of2 mls (50 particles per m3
).

• 600 particles in each block of stream #2 which has a volume of4 m x 1 m2 = 4 m3 with

a velocity of4 mls (150 particles per m3
).

Therefore, in a unit volume (1 m3
) there will be 50 particles of stream #1 and 150 particles

of stream #2. The total particles in a unit volume (with a length of 1 m and cross sectional

area of 1 m2
) will be 50 + 150 = 200 particles (Fig. 5.3). Note that as stated earlier, these

calculations are based on the assumptions that the total probe volume cross-sectional area

is available for both streams, and that the motion of the particles in each stream does not

affect the motion of the particles in the other stream.

1m 1m 1m 1m 1m 1m 1m 1m

150 # 150 # 150 # 150# 150 # 150 # 150 # 150 #
V=4m1s V=4 mls V=4 mls V= 4 mls V=4 mls V= 4 mls V=4 mls V=4 mls

50# 50 # 50# 50 #
V=2 mls V= 2 mls V=2 mls V=2 mls

I·.1
'Ia
·~·."
1 ~

:1:,,.
·~
I

Flow
Probe Volume Cross-Section (l m2

)

-

Figure 5.3 Example ofNumber Density Calculation for Two Streams.
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5.4 svr for One-Dimensional Flow with Gaussian Velocity Profile

The velocity histogram of the DSA usually has a Gaussian shape. The shape

results from the range of velocities with their corresponding counts. For a relatively

uniform flow, the histogram has symmetry with respect to the peak value. This is true

upstream of the filter as well as in the central region downstream where the flow is

relatively uniform.

Considering the peak velocity as Vp, there will be velocity increments, call them e

where the counts are allocated to each velocity range. In other words, all particles having

velocity in the range of Vp - e/2 and V p + e/2 are considered to have a velocity of Vp.

Therefore, there will be different sets of particles having velocities of Vp, Vp - e, Vp - 2e,

Vp - 3e,... , Vp - Ke with corresponding counts ofNo, Nl, N2, N3, ... , NK (Fig. 5.4) as well

as sets of particles with velocities of Vp + e, Vp + 2e, V p + 3e, ..., Vp + Ke with

corresponding counts of Nl, N2, N3, ... , NK (because of symmetry). Using the concept

explained in the previous section, the total number density will be :

+ N j + N( + N 2 + N 2 +
(Vp +e) Ap To (Vp -e) Ap To (Vp +2e) Ap To (Vp -2e) Ap To

+ N 3 + N 4 + N 4 + +
(Vp -3e) Ap 1;, (Vp +4e) Ap ~ (Vp -4e) Ap To

+ NK

(Vp -Ke) Ap 'fa

(5-10)

Simplifying:
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(5-11)

If the lowest and highest velocity are relatively close to the peak velocity, then

As an estimate, KelVp should be at least less than 0.2 for all flow rates.

"
(5-12)

.j....
l~

:1
Then .'I.

",
(5-13)

and the total number density can be simplified as

(5-14)

where the total number of particles, NT , is equal to the sum ofall counts in the different

sets:

(5-15)

The calculated number density is based on a velocity profile. The velocity profile

might not always be symmetric (Fig. 5.5). Using the superposition concept, the non-

symmetric profile could be divided into two different histograms: a symmetric histogram

and a non-symmetric histogram. Therefore, the total number density will be:

n, = ns + nns (5-16)

-

where I1s and fin s are number densities calculated based on symmetric and non-symmetric

velocity histograms, respectively. lfthe calculated symmetric number density is one order

of magnitude larger than the non-symmetric number density, then the non-symmetric part

can be neglected.
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Figure 5.4 Ideal Gaussian Velocity Histogram.

This is true for the cases where both symmetric and non-symmetric histograms

have average velocities on the same order, but the number of counts of the non-symmetric

profile is at least one order of magnitude less than number of counts of the symmetric

profile. In other words if Ns »Nns then ns » nns and

(5-17)

As an example, the histogram shown in Figure 5.5 could be divided into the

symmetric and the non-symmetric histograms shown in Figure 5.6. As it can be seen, both

-
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histograms have the same order of velocity averages but the number of counts of the non-

symmetric histogram is less than that of the symmetric one. Since, for most of the central

region of the filter, the velocity histogram has a narrow band, the error caused by such an

approximation is much less than the system error (some of the system errors, such as the

variation of the number density at a specific location, are discussed in Section 6.2). The

quantitative evaluation of the error caused by approximation of a non-symmetric velocity

profile with a symmetric one is complicated since the non-symmetric part of the histogram

r
I
J.

is not consistent at different locations and for different tests. During the current

measurements, the effect of the non-symmetric portion of the velocity histogram is

neglected based on visual observation of the profile on the computer screen and without

any documented proof. Note that with the current version of the DSA software, it is not

easy to separate the non-symmetric part of the velocity histogram from the symmetric part

(in order to compare the orders of magnitude of the counts).
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Figure 5.5 Typical Non-Symmetric Velocity Histogram.
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Figure 5.6 Symmetric and Non-Symmetric Parts of the Velocity Histogram ofFig. 5.5,

(a) Symmetric Part, (b) Non-Symmetric Part.

5.5 svr in Recirculation Zones

Flow visualization experiments have shown that recirculation zones exist at the

edges of the filter [Natarajan, 1995], mainly downstream of the filter; and because of that

recirculation, a uniform velocity profile might not be obtained. The axial velocities will be

lower than in the central region, and in some cases, negative velocities will appear. These

negative velocities will bring the average velocity to a value very close to zero which

results in the calculation of very large calculated number densities. Using the SVT for a

Gaussian velocity profile (Eq. (5-14» will give unrealistic results (very large number

densities in some cases). Therefore a modification is suggested to the technique so that

more realistic results are achievable.
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Figure 5.7 One Dimensional Flow Streams, a) Moving in the Same Direction, b) Moving

in the Opposite Direction.

When two different streams are moving in the same direction, as shown in Fig. 5.7

(a), the total number density will be equal to the sum of the number densities calculated

for each stream. Now, if the two sets are moving in opposite directions (relative to each

other), the total number density will again be the sum of the number densities calculated

for each of the streams. If the second stream shown in Fig. 5.3 (the flow stream of 100
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particles detected in one second with a velocity of 2 mls) moves in the opposite direction,

the number of particles existing on each side of the probe volume will be the same as Fig.

5.3, since the flow is steady-state. This is true if the flow is one-dimensional. Therefore,

for a one-dimensional flow with flow streams in the positive and negative directions, the

total number density is equal to a one-dimensional flow with the two streams moving in

the same direction. For each stream, Eq. (5-14) can be used for the number density

calculation. A typical example is shown in Fig. 5.8. Number density for a flow with

velocity histogram (a) is equal to the summation of the number densities calculated for

velocity histograms (b) and (c).

I

o 1 234

6 - - ~'H:~--l

'.. r- ""
4 -+--I~':;Iii'iI.. " ~1:9"--1

. :~

2 --' .;. ~;:-'. "
.~ ; ~ ;:Im* ::: .. ~IE:":: r~o

10 -+--m~-----t

12 -,------,

rnm~ "

I

12

10

o 0

·3 -2·1 0 1 2 3 4 -2 ·1 0 1

2 2

4 4

10 -+---~----i

12 -,---r-----,

~ 8 8

g 6 ;;::~ = 6 +
()

Velocity

(a) (b) (c)

Figure 5.8 Calculation ofNumber Density for One-Dimensional Flow with Opposite

Streams, a) Total Velocity Histogram, b) Negative Velocity Histogram,

c) Positive Velocity Histogram.
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5.6 SVT for Flows with Different Velocities in Different Directions

Perhaps the most general case is multi-dimensional flow which all of the particles

are moving in different directions because of high turbulence intensity. This phenomena

might occur at the filter corners or very close to the filter edges, especially at low flow

rates. Since the particles are moving in several directions, the axial and transverse velocity

histograms will have both negative and positive values, and both components are

comparable to each other, so that the flow cannot be treated as a one-dimensional flow.

The methods described in Sections 5.3, 5.4 and 5.5 of this chapter are applicable to one

dimensional flows. Thus, the concept of superposition of different flow streams is still

valid. According to Fig. 5.9, if two flow streams are moving in two different directions,

since the cross-sectional area of the probe volume is the same for particles whose entire

path lays in the YZ plane (normal to the filter plane and parallel to the transceiver lens),

the number densities can be calculated for each stream and then added together in order to

get the total number density. The major difficulty is how to distinguish the average

velocity of the different streams and calculate the needed velocity.

z

Stream #2Stream #1

Probe Volume

--------......-+-+------------.. Y

Figure 5.9 Two Flow Streams in Different Directions.
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5.6 SVT for Flows with Different Velocities in Different Directions

Perhaps the most general case is multi-dimensional flow which all of the particles

are moving in different directions because of high. turbulence intensity. This phenomena

might occur at the filter comers or very close to the filter edges, especially at low flow

rates. Since the particles are moving in several directions, the axial and transverse velocity

histograms will have both negative and positive values, and both components are

comparable to each other, so that the flow cannot be treated as a one-dimensional flow.

The methods described in Sections 5.3, 5.4 and 5.5 of this chapter are applicable to one

dimensional flows. Thus, the concept of superposition of different flow streams is still

valid. According to Fig. 5.9, if two flow streams are moving in two different directions,

since the cross-sectional area of the probe volume is the same for particles whose entire

path lays in the YZ plane (normal to the filter plane and parallel to the transceiver lens),

the number densities can be calculated for each stream and then added together in order to

get the total number density. The major difficulty is how to distinguish the average

velocity ofthe different streams and calculate the needed velocity.
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Figure 5.9 Two Flow Streams in Different Directions.
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The LDV system measures the axial and transverse velocities of all counted

particles, and it is not easy to verify what are the corresponding transverse velocities of

particles having a specific axial velocity. Moreover, since the power of the laser beams

measuring axial velocities and counts (green beams) are different than those measuring

transverse velocities (blue beams), the number of particles detected by the two channels

will not be the same. The only way to measure the particles' axial and transverse

velocities together is to set the system for detection of one particle only. Also,

coincidence should be on, so that the transverse and axial velocities correspond to the

same particle (Figure 5.10).
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Figure 5.10 Typical Example ofMeasurement of One Particle Velocity,

a) Axial Velocity, b) Transverse Velocity.
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From a statistical point of view, in order to obtain the complete histogram, a

sufficient number of particles should be detected. As an example, using 1000 samples will

be suitable for statistical calculations. This means that data should be acquired 1000 times

at each individual location; but this is not practical because of the limited test time.

Number densities were measured at a few locations using this method with 200

samples. Results show that, in most cases, the axial and transverse velocities are such that

the average velocity of 30 samples at a specific point does not change more than 10%

when the number of samples are increased to 200. In other words, the average for the

total velocities of 30 samples taken from one point is within 10% of the average of 200

samples. The following example explains this method in greater detail.

Consider four flow streams as follows:

• Stream A with an axial velocity of 1 mls and transverse velocity of 0.1 mls;

• Stream B with an axial velocity of -1 mls and transverse velocity of -0.1 mls;

• Stream C with an axial velocity 0[0.1 mls and transverse velocity of -1 mls;

• Stream D with an axial velocity of -0.1 mls and transverse velocity of 1 mls.

If all four streams are such that 1 particle is detected in one second to cross a unit

cross-sectional area of 1 m2
, all four streams will have the same number densities since the

number ofcounts, run time and the total velocities are the same. The total velocities are:

'I

(5-18)

and the individual number densities will be:

(5-19)
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then the total number density wiU be the sum ofall four number densities, 4 particles per

cubic meter. Figure 5.11 shows the velocity streams. Velocity histograms are shown in

Fig. 5.12.

Axial Velocity

B
...
'1

c
---.

A
D

Transverse Velocity

-

Figure 5.11 Velocity Streams for the Example of Four Flows in Different Directions.

The number densities cannot be calculated based on the average velocities since

the average velocities are zero. Using the method mentioned in Section 5.4 for a one-

dimensional velocity profile and considering the axial velocity only, an errant number

density can be calculated as:

1 1 1 1
11 =/1 + II + 11 + 11 = + + + = 22

T ..l BCD (1) (1) (0.1) (1) (1) (1) (1) (1) (0.1) (1) (1) (1)

(5-20)
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Figure 5.12 Velocity Histograms for the Example ofFour Flows in Four Different

Directions, a) Axial Velocity, b) Transverse Velocity

which is greater than 4, the actual number density. Considering the histograms, there are

four counts with two different axial and transverse velocities 0.1 m1s and 1 mls. So it is

possible to have two particles with total axial and transverse velocities of 0.1 rn/s which
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gives a total velocity of 0.141 mls and two particles with transverse and axial velocities of

1 mls (which gives a total velocity of 1.41 mls). The number densities calculated based on

these values are quite different than the actual numbers. Therefore, if the total velocity of

each particle is measured first (which will be approximately one for all particles in my

example), the calculated number density will be the same as the actual number density.

Thus the methods described in Sections 5.4 and 5.5 cannot be used at grid locations in

recirculation zones.

In summary, for number density calculations in recirculation zones, it is

recommended to measure velocities of individual particles (at least 30 runs at each grid

point with measuring one sample per run) and use the average of the measured total

velocities for number density calculation.

The third component of the velocity is not measured because the present LDV

system is equipped only for two-dimensional measurements: If the third velocity

component values are of the same order of the other two, there will be additional errors in

the measurements.

The grid points of the present measurements are selected such that most of the

points fall outside of the recirculation zones where velocities could be considered one

dimensional (since the transverse velocities are at least one order of magnitude lower than

the axial velocities). However, since the thickness of the rubber edgings of the filters are

not consistent and vary from filter to filter, in a few tests there have been a few grid

locations which fall into (or too close to) recirculation zones. This happens downstream

of the filter only.
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The present measurements were conducted based on the following procedure in

order to calculate number densities at different grid locations more accurately.

Before starting each test, the velocity profiles at the grid locations close to the

housing walls were measured and recorded. These profiles were reviewed. For grid

points at which the axial velocities were at least one order of magnitude greater than the

transverse velocities, number densities were calculated based on the following:

• SVT method described in Section 5.4 was used if the velocities were all positive or all

negative (the histogram didnot intersect with zero velocity line).

• SVT method described in Section 5.5 was used for velocity if some of the samples had

positive velocities and some negative velocities.

For particles whose axial and transverse velocity profiles were on the same order,

the SVT method described in Section 5.6 was used. 30 runs (with one sample per run)

were measured for velocity calculation.

Number densities for all grid locations other than the ones close to the housing

wall were calculated based on the one-dimensional SVT (Section 5.4).
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CHAPTER VI

CONSISTENCY MEASUREMENTS

One of the most important goals of the present measurements is to prove the

repeatability of the data. If the measurement conditions are the same for two different

tests, the results should be comparable to each other within a reasonable range. In the

past, the major problem was repeatability of the measurements. As stated by Williams

[1996} and Natarajan [1995}, the results obtained from two different tests for the same

conditions have relative errors ranging from 20% up to 300%. Consistency measurements

are made on unifonn flows so that the factors affecting the data and causing the errors

could be investigated. Also system parameters have been varied so that their effects on

the calculated number density could be verified.

Anand [1997] conducted consistency measurements at a specific location in two

different flows:

• A uniform flow coming out of the atomizer exposed to the atmosphere (water droplets

were used as seeding particles).

• A uniform flow inside the small angle diffuser housing (without the filter) using 0.966

micron particles.
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He also made measurements at two different locations inside the small angle

diffuser housing without the filter. One location was at the center of a plane located 40

mm above the filter, and the other location was at the center of a plane 50 mm below the

filter. These measurements are called zero efficiency measurements since a zero value for

efficiency is expected. Measurements are then extended to all of the grid points by

measunng number densities at 35 grid points upstream and downstream of the filter

placement cross-section. Detailed discussion of the consistency measurements IS

presented by Anand [1997]. A brief review of the test procedures and the results as well

as the effect of system parameters on the measurements is presented in this chapter.

6.1 Factors Affecting Measured Data

When number density at a specific location in a unifonn flow is measured, it might

be affected by a variation in one of the following factors:

• the power of the laser beams,

• DSA parameters,

• polarization angle of the beams,

• flow rate and particle seeding rate, and

• possible leaks.

The effect of each of these items on the measurements and the calculated number density

was investigated by Anand [1997]. Most of the material presented in this section is based

on his work.
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6.1.1 The Power of the Laser Beams

The number of counts per unit time changes when the power of the beams corning

out of the transceiver is varied. The power is adjusted to its maximum value for a given

laser power, i.e., maximum efficiency of the fiber drive, by aligning the fiber drive. Anand

[1997] has shown that a slight change in the room temperature will reduce the power of

the beams which results in a reduction of the detected sample rate (number of counts per

unit time). He examined the effect of the temperature change on the power of the beams.

He found out that the laser power is reduced when the room air temperature is raised by

Temperature change is believed to cause flexing of the breadboard which holds the

fiber drive and affects the alignment of the couplers on the fiber drive (giving lower fiber

drive efficiency). Since the beams have a Gaussian cross-sectional intensity distribution

(low intensity on the periphery), when the power is reduced, the particles which are not

passing through the central region of the probe volume might not generate back-scattered

light strong enough for detection. Such a signal is considered to be noise and the particle

is not detected. This problem is solved by maintaining the room temperature at a specific

value. Measurements show that a variation of temperature more than 0.5 0 C might cause

power reduction.

Vibration could also affect the power. Vibration caused by the blower is believed

to be transferred to the board and fiber drive either from the ground or by air (acoustics).

No measurements were conducted for determination of the amount of the vibrational
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nOIse. However, it was tested by isolating the system using pneumatic vibration isolators

and installing them under the breadboard, the effect of the ground vibration was reduced.

6.1.2 DSA Parameters

As described in Chapter three and Appendix A, the DSA parameters should be

adjusted to appropriate values in order to achieve the optimum conditions for

measurements. Variation of any of these parameters might change either the velocity

profile or the sampling rate. Variation of number density due to each of them is examined

by Anand [1997]. The effects of a few important parameters are described below.

6.1.2.1 High Voltage

High voltage controls the gain of the PMT output signal. Below a certain HV

level, many signals will not be detected, and above a certain limit, noise in the signal might

become dominant. We found these low and high levels to be 350 and 400 volts,

respectively. The optimum value of high voltage was found to be a value which

corresponds to a validation in the range of90 to 95% of the maximum achievable validity.

For example, if a validity of 100% is obtained by setting the HV to a specific value, it

should be changed so that a validity of 90 to 95% is achieved. The validity decreases

when the HV is increased, so according to the above discussion, the HV should be

increased to a new value corresponding to 90 - 95% validity.

6.1.2.2 Threshold

The threshold determines the minimum signal amplitude required to cause a burst

detection. Variation of threshold will also change the validity as well as the sample rate

and velocity profile. Low threshold may cause additional noise to be added to the signal,
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so that one Doppler burst might be detected as several individual bursts. High threshold

will eliminate valid signals which are valid but have low gains. By starting with a very low

value of the threshold and increasing the value up to the point where the burst signal does

not have a break and where the validity reaches 90 to 95% of its maximum achievable

value, the optimum threshold can be obtained.

6.1.2.3 Velocity Range

Velocity range should be selected in such a way that no count is invalid because of

having a velocity out of the selected range. The velocity range should be set to the

maximum value (-14.2 mls to 14.2 mls) in the beginning. Once data for a few points is

acquired, the velocity range could be adjusted so that velocities of all detected particles

fall within the selected range. As an example, if the velocity profile is in the range of I to

3 mis, the maximum and minimum velocities could be set to 5 and -5 mis, respectively.

Usually the maximum and minimum are set to the same absolute values, but with opposite

signs so that the location of the velocity histogram with respect to the origin can be easily

seen on the screen.

6.1.2.4 Coincidence

The LDV system is setup in such a way that the number of particles and their

corresponding velocities could be measured in each direction (normal to a filter or

transverse to a filter) independent of the other direction. The power of the green laser

beams (which detect the particle count and velocity in the normal direction) is different

than that of the blue laser beams (which detect particle count and velocity in the transverse

direction). Since the number of counts is dependent on the laser beam power, the sample
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rates measured in the two different directions will not be the same. In order to measure

the same number counts in both directions and obtain their corresponding velocity

components in each direction, the coincidence of the LDY must be turned on. With

coincidence turned on, the same particles will be detected (in both the normal and traverse

directions) for each run. If the number of samples is set to one, for each run, only one

particle will be detected in both directions. The particle's velocity components will be

measured by the system if the coincidence is turned on.

6.1.2.5 Other Parameters

Some of DSA parameters were set to fixed values independent of the flow

conditions. The frequency shift, burst filter, sample frequency and number of samples are

examples of these parameters. The definitions of these items as well as their values are

presented in Appendix A.

6.1.3 Polarization Angle of the Beams

As discussed in Chapter two, in order to get a Doppler burst or beat signal, the

two crossing beams (i.e., both green beams or blue beams) should have the same phase

relation and the same polarization angle. The polarization angle of the beam can be

measured by a simple polarizing filter. By locating the polarizer in front of the beam and

measuring the power of the beam coming out of the polarizer, we could set the polarizer

to a maximum power position. The polarization angle will be the position which

corresponds to the maximum measured power. Once the angle is determined on one

beam, the other beam should be checked to have maximum power at the same angle. If it

does not have the same angle, the optic fiber connected to the couplers should be rotated
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In a way such that by redoing the above procedure, the same angle IS obtained for

maximum power as for the first beam.

When the polarizer is placed in front of a specific beam and rotated, different

power values will be obtained. The maximum power coming out of the polarizer

corresponds to a angular position 90 degrees away from the minimum power location.

The optimum polarization condition is a situation were the ratio of the maximum

achievable power of the polarized beam to the minimum achievable power of the same

beam (obtained by rotating the polarizer 90 degrees from the maximum power position) is

more than 100. Further details regarding the optimization of the polarization angle are

presented by Anand [1997].

6.1.4 Flow Rate and Particle Seeding Rate

As described in Chapter three, the air flow rate is maintained by a blower, and the

test section is located on the blower's suction side. Ambient (room) air is sucked into the

housing while being heated by the heater, The flow rate is measured by a ISI flow meter

which measures the standard flow rate corresponding to a temperature of 70°F and 29.2

mm Hg absolute pressure. Since the air is heated before entering the system, it is possible

that the temperature of the air flowing in changes throughout the test, thus resulting in a

change in the flow rate. Experiments show that the flow rate decays during a period of

time after the blower is turned on, and it is recommended that the blower be run for at

least 30 minutes before starting the test. Present measurements were made with a flow

rate variation of ±2 to 3% during the test.
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The amount of particles fed to the flow per unit time (particle seeding rate) should

also be constant. The six-jet atomizer seeds particles at a unifonn rate (with a maximum

error of ± 5%) into the flow. This has been verified by consistency measurements

conducted by Anand (1997]. It has been seen that when the volume of the solution in the

atomizer container goes below a certain level (about 300 011) during the test, the rate of

particles fed to the flow is increased. This has caused termination of a few tests.

Measurements show that the maximum solution consumption rate does not exceed 100

mVhr. Knowing the maximum effective capacity of the atomizer to be 900 011, a test

should not take longer than 6 hours. Note that it is more difficult to control all of the

parameters in a test for a very long time. If a test is going to take longer than six hours, it

is recommended to connect the atomizer solution container to an additional container so

that more solution can be available.

Before starting an actual test, a short test should be conducted with the atomizer

filled with water only. If water droplets are detected by the LDV system, the heater

should be rearranged so that all water droplets coming out of the atomizer are vaporized

before reaching the filter. In that case, no particles will be detected.

6.1.5 Possible Leaks

The system should be checked for possible leaks. There could be possible leaks

causing air flow into the system from a leaking point. The system should be tested for

leaks by pressurizing the housing and checking joints by applying a soap bubble solution

and looking for evidence of growing bubbles due to leakage. The small angle diffuser

housing is pressurized by a small blower when the main blower is turned off. The whole
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system is pressurized when the small blower is turned on. Leak tests were performed on

the system with a differential pressure of 6 inches of water. Maximum differential

pressure of the current tests does not exceed 5.0 inches water in most of the tests.

6.2 Consistency r..-leasurements

The items listed in Section 6.1 affect the calculated number density. By controlling

all of these parameters and optimizing them, one should get a consistent number density at

a specific loca~ion. The intention of consistency measurements is to veritY this conce?t

and calculate the overall system errors. Anand [1997] has made a series of consistency

measurements with different values of the DSA parameters as well as efficiency

measurements without a filter present. A few of his measurements are described below.

6.2.1 Consistency Measurements on Air Flow with Water Droplets

Using water droplets as seeding particles, Anand measured the sampling rate and

velocity profile at the center of the flow coming out the atomizer (vertical flow) exposed

to the atmosphere. He acquired data in different sets of 30 or 50 consecutive

measurements. A typical plot of calculated sample rates is shown in Fig. 6.1. In order to

examine variation in the sample rates measured by Anand, the normalized sample rates

(sample rate for each run divided by the average sample rates of all fU:1S) for each test ::l~e

plotted using box and whiskers (Fig. 6.2). The lower and higl-.er end of each bo:< pres,;nts

the 25 percentile and 75 percentile of each test, respecti·/eiy. The high and low end

whiskers present 90 and 10 percentiles respectively. The median of each test is specified

by a line in each box. Points outside of the 10 to 90 percentile range are plotted as circles.
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These points are called out-lyers and in most cases represent the maximum deviation from

the average. It is the author's opinion that the 10-90 percentile range should be taken into

account for error calculations. Figure 6.2 shows that for all tests, at least 90 percent of

the measured samples fall within ±5% of the average. Each test consists of 30 runs.
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Figure 6.1 Consistency Measurements in Open Air Flow with Water Droplets, Valid

SampleslRun = 20000, Validity =93%, Laser Power =0.8 W.
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Figure 6.2 Summary of the Consistency Measurements for Flow with Water Droplets

(30 Runs per Test).
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6.2.2. Consistency Measurements in Particle Flow

The same method was applied to measure sampling rate at the center point of two

different cross-sections, upstream and downstream of the filter placement inside the

housing. 0.966 micron PSL particles were used for these measurements. This type of

measurement was also repeated with different DSA parameter settings. A typical plot of

the measured data is presented in Fig. 6.3.

Measurements were made at upstream and downstream locations for each run

using 1000 valid samples. The box plots presenting normalized sample rates for different

tests with particles are shown in Fig. 6.4.

Comparing the box plots for flow coming out of the atomizer (with water droplets

only) with flow inside the housing (with PSL particles), it can be concluded that the

deviation of the sample rates from the average for both flows are in the same range

(maximum ±6% to ±8%). Therefore, it can be concluded that the error presents the

system error and is independent of particle concentration, flow velocity and measurement

location.

The sample rates of the two flows are different than each other since the number of

samples are different. For open flow with water droplets, because of the high

concentration of water droplets, the number of valid counts are set to 20000 while for the

flow inside the housing with PSL particles, this number is set to 1000. However, since the

error values are relative to the average, they are comparable to each other.

The consistency measurements were extended to two points: one in the center of

a plane upstream of the filter placement and the other at the center of a plane downstream
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of the filter placement, without the filter. These measurements are called "zero efficiency"

measurements since the efficiency should be zero if the flow is uniform.
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Figure 6.3 Consistency Measurements for Flow inside the Housing with PSL Particles,

Valid Samples/Run = 1000, Validity = 92%, Laser Power = 0.8 W .
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Figure 6.4 Summary of the Consistency Measurements for Flow with Particles inside the

Housing (30 Runs per Test)
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6.2.3 Zero Efficiency Measurements at the Center of the Housing

Anand [1997] has conducted the zero efficiency measurements. A typical plot of

his measurements is shown in Fig. 6.5. Sample rates are measured at two locations, one at

the center of a plane 40 mm above the filter placement plane and the other at the center of

a plane 50 mm below the filter placement plane (exactly below the first point). The

efficiency was then calculated by Eq. (5-2), but instead of number densities, the sample

rates were used. Measurements showed that the velocity of the particles at the above

mentioned locations are the same since there is no filter to affect the velocity. Therefore

sample rates were used for efficiency calculation (instead of number density).

During the tests, all of the parameters mentioned in the previous section (Section

6. 1) were controlled and optimized Anand [1997]. The ambient temperature was

maintained constant within ± 0.5 0c. The power of the laser beams was checked several

times in order to make sure that the measurements were not affected. The measured

sample rates have maximum errors of ± 6%, which conforms to the previous results of

consistency measurements. Measured sample rates have random fluctuations within the

error band. Since there is no filtration, a zero value for efficiency is expected. Therefore

the two sample rates (upstream and downstream the filter placement) should be equal.

Applying the fluctuation error to each of the measured sample rates in order to get

the error in the efficiency, there will be two worst cases for which the efficiency has its

highest error value. If 5. and 52 are the number densities corresponding to locations above

and below the filter, then for zero efficiency

(6-1)
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Introducing SI' and s/ as measured number densities with error, the worst cases will be:

1. The case where Sl' = 0.95 Sl (an error of -5%) and s/= 1.05 S2 (an error of+5%)

1]=1- ~'=1- O.95~~9.5%
s.; 1. 05S:!

(6-2)

2. The case where St' = 1.05 Sl (an error of+ 5%) and 52' =0.95 S2 (an error of -5%)

77=1- Sl' =1- 1.05~ ~-10.5%
&,' 0.9 5S:!

(6-3)

In other words, if zero efficiency is expected and the sampling error is ± 5%, the

worst fluctuation from zero will be 9.5 % to -10.5 %. These values will be obtained if a

peak of the measurement at one point matches with a valley when measuring at its

corresponding point above or below the filter. The probability of measurement with these

errors is low. However, within several samples, there could be a few with either of the

above stated conditions.

6.2.4 Zero Efficiency Measurements at All Grid Points

Using a rectangular grid spacing of 19.05 mm x 19,05 mm, Anand [1997]

conducted zero efficiency measurements for all grid points. The grid consisted of 5 rows

in the X direction and 7 rows in the Y direction ( a total of 35 points). At each point,

three sample sets were taken and the average of the three calculated number densities was

used for the efficiency calculation. The overall efficiency was -0.22%. He repeated the

zero efficiency measurements with the same grid spacing. The overall efficiency obtained

was -0.36%, which demonstrates the repeatability of the tests.
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Power = 0.8 W, 3/19/96.

97



CHAPTER VII

RESULTS AND DISCUSSION

The experiments on the A13192 filter were conducted using 0.966 micron PSL

particles as the challenge contaminant. Measurements were mainly made in the small

angle diffuser housing described in Chapter four. A few tests were conducted in the SAE

housing (Chapter four) in order to compare the two diffusers. The DSA parameters were

set to their optimum values as recommended by Anand [1997]. The detailed discussion

of the results and comparison with previous theoretical models and experimental

measurements is presented in this chapter.

7.1 Summary of the Tests in the Small Angle Diffuser Housing

At least two complete tests were conducted for each selected set ofmeasurements.

Values of initial pressure drop as well as the pressure drop change were recorded for each

test. Table 7.1 summarizes the measurements. At least three runs were recorded at each

location if the run time did not exceed 30 seconds. For longer time runs, one or two

measurements were made (instead of three) because of the limited test time. The number

densities were calculated based on the average velocities (discussed in Section 5.4) for

most cases. The modified SVT discussed in Section 5.5 was used for measurements in
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recirculation zones. The two-dimensional SVT (described in Section 5.6) was used at a

few points only because of the test time limitations.

Table 7.1 Summary of the Small Angle Diffuser Housing Tests.

TEST TEST FLOW AVERAGE AVERAGE INITIAL FINAL

DATE RATE EFFICIENCY EFFICIENCY PRESSURE PRESSURE

(Sm3/hr)" WHOLE CENTRAL DROP DROP
FILTER (%) REGION (%) (mm water) (mm water)

F15 711/96 5.68 37.63 36.58 2.54 3.81

F16 712196 5.68 42.63 36.86 3.81 3.81

F11 6/24/96 29.48 37.53 35.6 3.3 4.57

F12 6/25/96 29.48 39.7 38.3 3.05 3.81

F23 7/16/96 53.27 30.98 27.7 3.81 5.08

F22 7/15/96 53.27 39.03 35.8 5.08 5.34

F24 7/17/96 53.27 39.26 35.33 3.81 5.08

F9 6/19/96 77.06 33.26 30.84 N/A- N/A-

F10 6/20/96 77.06 36.01 35.2 6.35 8.89

F20 7/5/96 103.69 33.86 32.9 10.16 11.43

F19 7/5/96 103.69 37.34 37.56 19.05 21.59

F1 5/8/96 145.7 44.1 47.02 N/A- N/A-

F4 5/14/96 145.7 46.2 44.7 N/A*" N/A-
I

F2 5/13/96 145.7 50.02 48.27 N/A*" N/A....

F18 7/4/96 187.72 51.59 57.1 N/A- N/A....

F21 7/8/96 187.72 60.95 62.05 21.59 24.13

F5 5/21/96 187.72 72.56 72.99 N/A- N/A-

F7 6nl96 313.75 74.48 79.16 N/A- N/A"·

F8 6/18/96 313.75 82.17 84.1 N/A- N/A-

F14 6/28/96 481.8 89.41 95.34 119.4 127

F17 7/3/96 481.8 90.45 95.22 129.54 134.62

*Flow rate at standard conditions; 101 kpa and 27°C at sea level.
**Data was not measured.
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7.2 Results of Measurements in the Small Angle Diffuser Housing

As listed in Table 7.1, measurements were conducted using 9 different flow rates

ranging from 5.68 to 461.8 standard m3/hr. The initial and final pressure drops across the

filter are also listed in the table. As can be seen from the values, the pressure drop does

not change more than 7.5 nun of water which is at the highest flow rate with an initial

pressure drop of 120 rom of water. The velocity and number density plots for the tests as

well as efficiency plots are presented in Appendix B. However, in order to discuss the

general trend of the measurements, plots of three sets of measurements (at low,

intermediate and high flow rates) are presented in this chapter.

The velocity profiles upstream of the filter are relatively unifonn (within the filter

area where the velocities were measured). The velocity was lower along the edge rows,

grid locations closer to the housing wall. Figures 7.1 and 7.2 present the velocity profiles

upstream and downstream of the filter for test F15. The test was conducted on Purolator

filter A13192 using 0.966 micron PSL particles. The flow rate was 5.68 m3/hr. This was

the lowest flow rate among the present tests. The average upstream and downstream

velocities for this test were 0.203 and 0.328 mis, respectively. The maximum and

minimwn velocities downstream the filter were 0.523 and 0.088 mis, respectively. The

minimum velocity was at the comer grid point which is one of the closest points to the

housing walls. The maximum and minimum velocities upstream the filter were 0.24 and

0.17 mis, respectively. The variation in the downstream velocity significantly affected

the number densities, because of the velocities were closer to zero as compared to those

for the higher flow rates.
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Figure 7.2 Downstream Velocity Profiles for Test F15, Flow Rate = 5.68 m3/hr.
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Number density plots upstream and downstream of the filter are shown in Figs.

7.3 and 7.4. Number densities for upstream grid locations as well as downstream grid

points, except grid points at X= -33.02 mm downstream the filter, were calculated based

on the average axial velocity. The number densities for grid points at X=-33.02 mm were

calculated based on the average of the absolute values of the velocities (the modified SVT

method described in Section 5.5).

The upstream number density plots show that the variation in number density was

within ±20% of the average number density upstream of the filter. The downstream

variation was also about the same. The number density upstream the filter had its greatest

value at this flow rate (5.68 m3/hr) as compared to the other flow rates. This was mainly

due to the fact that with velocities as low as 0.2 mls upstream of the filter, a slight change

in velocity, like 0.05 mis, will change the number density by 25 % since the velocity was

changed 25 %.
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Figure 7.3 Upstream Number Density Plot for Test F15, Flow Rate = 5.68 m3/hr.
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For most of the points, the local efficiencies varied from 30% to 50% for this test.

Results of testing with intermediate and higher flow rates show that the local

velocities and number densities upstream of the filter were more uniform (relative to the

averages at each flow rate). The next series of plots, Figs. 7.5 to 7.10 present the

velocities, number densities and efficiency plots for the test conducted at an intermediate

flow rate of 187.7 m3/hr (Test F5). The test conditions were the same, 0.966 micron

particles with the A13192 filter, and only the flow rate was changed. Results show that

the upstream velocity was relatively uniform. with a maximum deviation of ± 6% from

the average. However, the variation of the downstream velocities was more than that of

the upstream. As can be seen from Fig. 7.7, the downstream velocities at X=33.02 mID

were lower than at the other grid points.
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Figure 7.6 Upstream Velocity for Test F5, Flow Rate = 187.7 m3/hr.
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These lower velocities for the X= 33.02 mID grid points were mainly due to the

fact that those grid points were inside the recirculation zone. This symptom is not

observed on X= -33.02 rom since these points are not in the recirculation zone. Although

the grid points are arranged symmetrically with respect to the filter center, the rubber

edging on the bottom periphery of the filter is not symmetric with respect to the center of

the filter. The edging is also not in a straight lin.e. So it is possible that a single grid

point falls into the recirculation zone while the neighboring grid points do not.

The trend in the number densities upstream and downstream of the filter mainly

follow the velocity trends. As shown in Figs. 7.8 and 7.9, number densities are more

uniform upstream of the filter than downstream. The efficiency plot (Fig. 7.10) shows

that the efficiencies remain within a band of 70% to 80 % with the average of 72.56 %.

Since the efficiency is defmed as a fimction of upstream and downstream number density

ratio, three factors will determine the variation in the local efficiency. These factors are:

• Order of magnitude of the ratio of the downstream number density to the upstream

number density compared to one.

• Range of variation ofthe upstream number density.

• Range of variation of downstream number density.

If the ratio of the number densities (downstream to upstream) is much less than

one, say on the order of 0.01, the efficiency will be on the order of 99%. Now if the

downstream number density varies by a factor of five from one point to the other and the

upstream number density remains on the same order, the ratio will be on the order of 0.05

(versus 0.01) and the efficiency will change from 99% to 95%. It can be concluded that,
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m such cases, the variation m the downstream number density will not affect the

efficiencies significantly.

Now consider a case for which the number densities upstream and downstream of

the filter are close to each other, say the downstream number density is 0.9 that of

upstream. The ratio is 0.9 and efficiency is 10%. Using the same reasoning, as for the

previous case, a 25% decrease in the downstream number density from one point to

another will change the ratio to 0.675. The efficiency will change from 10% to 32.5%. A

25% increase in the downstream number density in this example will result negative

efficiencies.

Concluding the above discussion, a larger variation in the local efficiencies is

expected for flow rates for which the number densities upstream and downstream of the

filter are close together as compared to the case wherein the flow rates are far apart.

Measurements show that higher flow rates have higher average efficiencies, which is an

outcome of lower number density ratios (downstream to upstream). Therefore, the

efficiency variation is less for higher flow rates.

The number densities calculated by the various Swept Volume Techniques

(described in Sections 5.4,5.5 and 5.6) might be quite different. For lower flow rates, the

transverse velocities will be closer to the axial velocities, and the one-dimensional Swept

Volume Technique for downstream number density calculations might not be as accurate

as for higher flow rates. Even calculating the total velocity outside of the recirculation

zones could be less accurate. This is due to the fact that the transverse velocities will

have positive and negative values (although the axial velocities are not negative). So the

best way to calculate the number density accurately is to use the multidimensional SVT,
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and measure the total velocity as discussed in Section 5.6. Such measurements are not

practical for all grid points because of limited test time. Increasing the test time might

allow variation of test conditions such as temperature, flow rate, and most important, the

pressure drop across the filter due to plugging, which changes the efficiency.

Figures 11 through 15 present the velocity and number density profiles and

efficiencies for test F8. This test was conducted at the same conditions: the A13192

filter, 0.966 micron PSL particles, and a flow rate of 313.75 m3/hr. As can be seen from

the figures, number densities upstream and downstream of the filter have more unifonn

profiles as compared to the 5.68 m3/hr test results.
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7.3 Three Point Measurements

In order to eliminate the effect of recirculation zones, non-unifonnity of the

different filters use~ and other variable parameters which might increase the

measurement error, a series of three point measurements were conducted. These

measurements were made to achieve the following goals:

• verify the consistency of the whole filter measurements;

• see how accurately a small number of local measurements represent the "whole filter"

measurements;

• investigate the effect of the recirculation zones on the overall efficiency;

• have a better picture of the efficiencies in a uniform flow in the central region of the

housing;

• compare the results with the theoretical models.

These measurements were made on one filter, at three grid locations, the filter

center and the two neighboring points in V-direction (the long axis of the filter).

Measurements were made at different flow rates ranging from 5.68 m3/hr to 649.9 m3/hr.

The initial and final pressure drops were also recorded (Table 7.2). The test was

conducted in a short period of time. Three measurements were made at each location.

The same particles (0.966 PSL) and the same housing (small angle diffuser) were used.

The comparison of these results with the whole filter measurements is presented in Fig.

7.16.

As can be seen from the figure, the three point measurements efficiency plot

versus the flow rate is a smooth S shaped curve while the total filter measurements
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slightly deviate from them. The major difference between the three point measurements

and the total filter measurements is due to the fact that the whole filter measurements

include some points inside or close to the recirculation zones where the efficiencies are

different than in the central region of the filter.

Comparing the efficiency curves of the three point measurements with whole

filter measurements, the author believes that the three point measurements efficiencies

present the behavior of a clean filter (in a uniform flow) with less error as compared to

whole filter measurements. Therefore, the author suggests that the results of three point

measurements be used for Stokes number analysis instead of those from whole filter

measurements.

Table 7.2 Summary of the Three Point Measurements.

Flow rate Efficiency Initial pressure drop Final Pressure drop
(m3/hr) (%) (mm Water) (mm Water)

2.5 29 0.5 0.5

5.7 29.2 1 1

29.5 27.8 1.9 1.9

53.3 28.3 4.1 4.1

77.1 30.1 6.1 6.1

103.7 33.3 10.4 10.7

145.7 40.9 14.2 14.2

187.7 49.6 21.1 21.1

229.7 62.2 30.5 30.5

280.1 79.6 42.9 43.4

313.8 83.4 50.0 51.3

397.8 92.1 76.2 76.7

481.8 92.1 105.9 107.2

649.9 95.1 180 186.7
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The author believes that the difference between the overall efficiencies of the

whole filter tests and three point measurements at low flow rates (or low Stokes

numbers), is mainly due to the errors in the calculation of downstream number density at

grid locations other than central region. The error is introduced by choosing an average

velocity (calculated based on one-dimensional SVT) which is different than the actual

average at grid points other than central region. The overall efficiencies averaged over 15

grid locations at the central region of the filter are listed in Table 7.1. These efficiencies

are compared with the whole filter average efficiencies in Appendix: H. Note that the error

could be also due to the effect of the diffusion mechanism which was neglected. As stated

earlier, it is not possible to use multi-dimensional SVT at all grid points (due to limited

test time).
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7.4 SAE Housing Measurements

Local efficiency measurements were also conducted in the SAE 1726 test housing.

These measurements were conducted at three different flow rates, low flow rate (61.2

m3fhr), intermediate flow rate (187.7 m3/hr) and high flow rate (313.8 m31br). Typical

plots of the upstream and downstream velocity profiles as well as the efficiency plot are

shown in Figs. 7.17 to 7.21 (for a flow rate of 187.7 m3/hr). Plots for two other flow rates

(61.2 and 313.75 m3/hr) as well as summary of the SAE housing tests are presented in

Appendix C.
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7.5 Comparison of Results with Previous Studies

The current measurements are compared with previous theoretical and

experimental data in this section.

7.5.1 Comparison with Theoretical Models

Results of the present measurements and calculations are compared with the

theoretical studies in this section.

7.5.1.1 The Single Fiber Efficiency

The single fiber efficiencies were calculated using Eq. (2-2) with different

packing densities and the filter thickness of 700 microns (thickness suggested by Duran

[1995]). Two different packing densities were used: a value of 0.345 which was

suggested by Duran and a value of 0.153 which was calculated based on the following

modeling.

Assuming that th.e pleated filter behaves like a flat filter with an area equal to its

unfolded area, the volume of the filter paper is:

where

ApF =19.3ApF

The total volume occupied by the filter is:

VpF = ApFHp

(7-1)

(7-2)

(7-3)

In the above equations, TFF is the filter paper thickness, 14 is the pleat height, VFF

and VPF are the volume of the filter paper (flat filter) and the pleated filter, respectively,
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and ApF and AFF are the pleated filter area and the area of the unfolded filter. The volume

fraction of the filter paper will be VFF N PF' and the packing density will be the ratio

multiplied by the packing density of the flat filter. Calculating the final packing density:

VpF TFF (19.3A pF ) (0.7)(19.3)
C =0.345 -v· =0.345 A H =0.345 30 =0.153 (7-4)

PP PF P

This packing density is calculated based on the concept that the pleated filter

could be replaced by a flat filter (with the above packing density) and have the same total

efficiency as the pleated one at different flow rates. The thickness of the imaginary flat

filter is not considered as the pleat height since the flow passes through the filter paper

once.

As shown in Fig. 7.22, the pleated filter is modeled with a low packing density

flat filter at each pleat cross-section (the dashed line in Fig. 7.22a) with a thickness equal

to the filter paper thickness. It is not modeled as in Fig. 7.22b. in which the filter

thickness is equal to the pleat height since the flow is not filtered through such thick

media. Figure 7.23 presents the single fiber efficiencies based on two different packing

densities. The single fiber efficiencies were calculated by Eq. (2-2), using total

efficiencies obtained from three point measurements in the small angle diffuser housing.

The calculated values are plotted versus Stokes number. The Stokes number is calculated

based on Eq. (2-3) and the average velocity inside the housing (duct velocity) since the

pleated filter is modeled as a flat filter, with the same area as if a flat filter was placed

inside the housing, but with reduced packing density. Results are compared with Sabnis'

single fiber efficiency model. As can be seen from the model, the single fiber efficiency

of the current three point measurements match better with the Sabnis prediction for
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packing density of C =0.153, where the Stokes nmnber calculations are based on duct

velocity.
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Filters with different packing densities will have different efficiencies at a specific

flow rate. However. the single fiber efficiency should be the same if all other conditions

except the packing density (such as approach velocity. etc.) should be the same.

Therefore. as suggested by Lee [1977]. the total efficiencies of the two different filters

(even with the same fiber diameter) could not be compared. Also, the analysis of the

variation of the efficiency with Stokes number is not meaningful if the single fiber

efficiency is not calculated. Anand [1997] has plotted the measured efficiencies over a

flat filter versus the Stokes number. His results show that the S shaped efficiency curves

appears at very low Stokes numbers. His results are shown in Fig. 7.16. As can be seen

from the figure, the flat filter efficiencies at most of the grid points have the same trend

as the present measurements but they are shifted by an approximate factor of4 to the left.

7.5.1.2 Comparison ofResults with Duran's Model

Duran [1995] has predicted the overall efficiency of an A13l92 pleated filter. His

model gives an average efficiency of 0.25% for a flow rate of 204 m3/hr using a packing

density of 0.235 and 0.966 micron PSL particles. However, efficiencies calculated based

on his model for 2.5 micron particles, a packing density of 0.345, and a fiber diameter of

51.75 are close to the current measurements. Figure 7.24 presents the average

efficiencies versus upstream velocity. Since the fiber diameter, air viscosity and particle

density are constant, the Stokes number will be a function of the velocity only. As can be

seen from the figure, the efficiencies of the current measurements have the same trend as

predicted by Duran's model. However, since Duran's model is based on 2.5 micron

particles, the Stokes numbers for the current measurements will be 6.25 times smaller
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than the corresponding values of Duran's model (considering tb.e same fiber diameter).

In other words, plotting the efficiency curve versus the Stokes number. the present

measurements should be shifted to the left by factor of 6 as compared to Duran's

efficiencies. The local efficiencies calculated by Duran's model using one micron

particles were less than 5% for intermediate flow rates (204 mJIhr) [Duran, 1995]. The

author was not able to explain the significant difference between the present

measurements and the local efficiencies which were calculated by Duran's model.
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Figure 7.24 Comparison of Efficiencies with Duran's Model.

7.5.2 Comparison with Experimental Data

Anand [1997] has conducted similar measurements on flat filter media. His

results are compared with the three point measurement efficiencies in Fig. 7.16. As can
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be seen, the current measurements show the same trend provided that the pleated filter

curve is shifted to the right by a factor of4 approximately.

Natarajan [1996] has conducted similar tests on the pleated filters. However,

because of variation in the system parameters and small efficiencies in the recirculation

zones (calculated based on one-dimensional SVT), his results show a variation in

efficiency between 25% and 79%. The upstream velocity profiles and nwnber densities

were not as uniform as for the current measurements. Figure 7.25 presents the present

whole filter measurements as well as Natarajan's results.
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By comparing the present pleated filter measurements in two different housing, it

can be concluded that the average efficiencies obtained from measurements in the two

different housings at the same flow rates are close to each other. However, the upstream

velocity profile in the SAE housing is not as unifonn as for the small angle diffuser

upstream velocities. In the SAE housing, the peak upstream velocity is at the center and

velocity reduces substantially at the edges. The number density profile is inverted as

compared to the velocity pattern in the SAE housing. The downstream velocity profiles

are different as well. In the SAE housing, because the flow is exiting at the side of the

housing, there is a relatively large recirculation zone on the opposite side of the exit duct

(downstream) where the velocities are lower. This situation does not exist in the small

angle diffuser housing where the flow is exiting at the center of the lower part of the

housing.

7.6 The Stokes Number Analysis

As stated earlier, it is common to plot the single fiber efficiencies based on the

Stokes numbers. Stokes numbers are calculated based on Eq. (2-3). Uu and Lee [1982]

suggested that the velocity used for the Stokes number calculation should be the

'undisturbed velocity". For flat filter media, this velocity is equal to the duct velocity. For

pleated filter, two different velocities may be used:

• the duct velocity or the velocity obtained by dividing the flow rate by the duct area; or

• the face velocity, which is the velocity calculated by dividing the flow rate by the total

unfolded filter area.
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Knowing that the pleats of the A13192 filter are such that the total unfolded filter

area is 19.3 times larger than the duct area, the calculated face velocity will be 19.3 times

lower than the duct velocity. Such velocities will give smaller Stokes numbers.

As stated earlier, comparing the efficiency curves of the flat and pleated filter, it

was concluded that the curves will match if the pleated efficiency curves are shifted by a

factor ofabout four (i.e., the flow rates should be multiplied by 4). In other words, if the

filtration mechanisms are identical on pleated and the flat media for a given efficiency

value:

• the available filtration area is 19.3 times greater than that of the pleated filter, but this

area is not normal to the flow;

• considering the same efficiencies, the calculated Stokes number for the pleated filter

is about four times larger than that of the flat media (based on duct velocity).

The following conceptual models are introduced to justify these observations.

These models were not proven, are discussed in a qualitative manner, and need to be

explored in the future. They are based on the observations and findings of the current

measurements as well as Anand's results on flat media. However, they might be used as

a guide for future study and investigation.

These models are based on the fact that there is a velocity profile distribution

along the pleats which is neither the duct velocity nor the face velocity.
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1) The Velocity Profile Concept

According to Chen et al. [1994], there is a velocity distribution profile along the

pleats and the velocity of the air approaching the filter paper is different at different cross

sections, but they did not discuss the trend of the distribution (increasing or decreasing

along the pleat) in their paper. It is the authors belief that the effective velocity for

comparison with flat filter media shall be the integrated average of the Donnal velocities

along the pleats. This velocity (the effective velocity) is neither the duct velocity nor the

face velocity. Based on the current measurements, the order of the effective velocity is

four times less than the duct velocity, or five times more than the face velocity.

2) The Flat Filter Model with Variable Packing Density Concept

According to Liu and Lee [1982], the velocity of the air flow before entering the

pleats should be used for Stokes number calculation. Therefore the pleated filter may be

modeled as a flat filter, with a thickness equal to the filter paper. In this case, the duct

velocity will be the proper velocity for the Stokes number calculation. This model was

described in Section 7.3. 1 of this chapter. As can be seen from Fig. 7.23, the single fiber

efficiencies calculated based on this model fairly matches with the exact solution

calculated by Sabnis [1993].

3) The Pressure Drop Concept

Perhaps this is the most practical concept as compared to the preVIous ones.

Anand's results [1997] and present measurements indicate that the same initial pressure

drop across the pleated and flat filters win result in the same efficiencies. Note that, in

order to get the same initial pressure drop across the pleated and the flat media, different

flow rates should be used. Since the filter material is the same for both the flat and
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pleated filters, and the efficiency is a function of the pressure drop across the filter (which

depends on the flow rate), the pleated filter in a specific air flow rate could be modeled as

if it were a flat media in a different flow rate which has the same pressure drop as the

pleated filter. In other words, the effective velocity for Stokes number calculation for a

pleated filter is the duct velocity over the flat media which gives the same initial pressure

drop as that of the pleated filter. Figure 7.26 presents the current measured efficiencies as

well as efficiencies measured by Anand [1997] for the flat media as a function of the

initial pressure drop. It should be noted that the local efficiency values obtained by

Anand are lower at the central region and higher at the areas further away from the center.

Anand has suggested that such a difference is mainly due to filter plugging, since he

started his measurements from the center of the filter and worked toward the outer edges.

Therefore, the flat filter efficiencies shown in Fig. 7.26 might be slightly higher than the

actual values of the clean filter efficiencies.
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Figure 7.26 Efficiency Versus Initial Pressure Drop for Flat and Pleated Filters.
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CHAPTER VIII

CONCLUSIONS

8.1 Summary

The results of the present measurements and the comparisons are summarized in

this section:

• The local efficiency of the pleated filters is relatively uniform across the filter except

in the recirculation zones (Section 7.1).

• Different Swept Volwne Techniques should be used for calculation of the

downstream nwnber densities at different areas. Methods described in Section 5.4

(one-dimensional SVT with velocities in the same direction) should be used at the

central regions and SVT methods described in Sections 5.5 and 5.6 should be used

along the edge rows where the axial and transverse velocities are on the same order

(Section 5.6) or the axial velocities of the detected particles have both positive and

negative values (Section 5.5).

• Overall efficiency plots versus the Stokes nwnber for pleated filters may not be

conclusive since the velocities of the particles approaching the filter paper (between

the pleats) are not precisely known (Section 7.4).
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• Only single fiber efficiencies of flat and pleated filters can be compared to each other

(not the overall efficiencies), when they are plotted versus the Stokes number. Filters

with different packing densities will behave differently under similar test conditions

and will have different efficiency curves. The differences can be seen when the

overall efficiencies are plotted versus the Stokes numbers. However, the single fiber

efficiencies should be the same if the fiber diameter and the testing conditions are

identical (Section 7.3.1).

• In the reviewed literature (such as Harrop and Stenhouse [1969]), variation of the

single fiber efficiency versus the Stokes number is with constant particle Reynolds

number (by maintaining the multiplication of the particle diameter and its velocity

constant, the particle Reynolds number will remain constant, see Fig. 2.5).

• The present measurements suggest that the integrated average velocity of the flow

approaching the filter pleats is on the order of20 % of the duct velocity.

• The same initial pressure drop across the pleated and flat media will result in very

similar efficiencies. In order to have the same pressure drop across the A13192

pleated filter and the flat filter media, the flow rate for the pleated filter has to be

approximately four times that of the flat filter flow rate.

• By choosing the optimum system parameters, the errors lD calculated number

densities can become on the order of ±5% or less (for grid points in the central region

of the filter).
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8.2 Recommendations for Future Work

The following recommendations may unprove the quality of the future

measurements:

• Improvement of the test setup equipment. The SAE and the small angle diffuser

housings should be rebuilt and tested for leaks. The present housings have some

cracks on the connecting flanges. Although these cracks were repaired and sealed,

new housings will be more reliable for future measurements. Flow and pressure

measurements should be automatically taken from the computer. The pressure drop

measurements should have a better accuracy, with a maximum error of one millimeter

of water, in order to investigate the variation of the pressure drop across the filter

more accurately (both the present measurements and Anand's [1997] results indicate

that the pressure drops across the clean filter for flow rates less than 30 m3Jhr are on

the order of 1 mm ofwater or less).

• More research may be needed in order to find the actual velocity profile of the flow

approaching the pleats. Velocity measurements inside the pleats for filters with

different pleat counts, height and/or material are needed.

• Efficiency measurements for different particle sizes are needed in order to vary the

Stokes number (over a greater range) by changing the particle size and compare the

elemental efficiencies with available data in the literature. Also efficiency

measurements with combinations ofdifferent particle sizes should be conducted.

• More research is needed for improvement of the Swept Volume Technique. If

possible, a computer code should be written in order to extract velocities of a large
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number of samples individually (from DSA output files), in order to calculate the

average velocity more accurately.

• The temperature of the flow approaching the flow meter should be measured in order

to avoid errors in flow rate measurements. The thermometer should be installed close

to the TSI flow meter so that the temperature of the air flow (whose volumetric flow

rate is being measured by TSI) can be recorded.

• Constant ambient temperatures should be used during each test in order to keep the

power ofthe laser beams coming out of the transceiver constant.

• Dust measurements should be conducted. The Wright dust feeder should be used for

seeding the dust particles. SAE fine dust is recommended for starting the dust

measurements. The downstream number densities should be measured first in order to

minimize the effect of filter plugging and time dependent variation of the filter

efficiency. The author was not successful in conducting measurements with dust

particles because the filters plugged early after starting the test.

• Complete measurements in the SAE housing at more flow rates with one micron

particles as well as larger size particles (such as 5 micron) are needed. Measurements

should be repeated so that the reliability of the measurements can be verified.

• Investigation of the velocity profile along the pleats using CFD models IS

recommended. Also, experiments should be conducted in order to measure the

velocity along the pleats (at different cross-sections). A pleated filter from flat sheet

filter paper should be constructed (with a pleat angle larger than that of the A13 192

pleated filter), so that the velocity can be measured along the pleats.

131



£3

REFERENCES

Aerometrics (1992), Doppler Signal Analyzer for Phase Doppler Particle Applications
User's Manual, Sunnyvale, CA, draft 2.

American Society for Testing and Materials (1989), "ASTM F 1215-89, Standard Test
Method for Determining the Initial Efficiency of a Flatsheet Filter Medium in an Airflow
Using Latex Spheres," Annual Book of ASTM Standards, Vol. 14.02, Philadelphia, PA.

Anand, S. (1997) "Filtration Efficiency Measurements on Flat Sheet Filters," M.S. Thesis,
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater,
Oklahoma.

Anand, S., Jadbabaei, F. M. and Dougherty, R. L. (1997), "Comparison of Filtration
Efficiency Measurements for Pleated and Flat Sheet Filters," presented at the 1997 SAE
International Congress and Exposition, SAE Technical Paper #970671, (SP-1252), SAE,
Inc., Warrendale, PA.

Benedict, R. P. (1984), Fundamentals of Temperature, Pressure. and Flow Measurements,
Third Edition, Wiley-Interscience, New York.

Brown, R. C. (1993), Air Filtration: An Integrated Approach to the Theory and
Applications ofFibrous Filters, Pergamon Press, Oxford.

Chen, Da-Ren., Pui, D. Y. H. and Liu B. Y. H. (1994), "Optimization of Pleated Filter
Design," American Filtration Society Conference, Minneapolis S1. Paul, Minnesota.

Chen., Da-Ren., Pui, D. Y. H. and Tang Y. M. (1996), "Filter Pleating Design for Cabin
Air Filtration.," SAE Technical Paper #960941, Aspects of Automotive Filtration (SP
1165), SAE, Inc., Warrendale, PA.

Davies, C. N. (1973), Air Filtration., Academic Press, New York.

Drain, L. E. (1980), The Laser Doppler Technique, John Wiley and Sons, London, U. K..

Duran., R. (1995), "Improvement of Flow Uniformity and Modeling of Filtration
Efficiencies for Automotive Air Filter Test Housings," M. S. Thesis, School ofMechanical
and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma.

132



Durst, F., Melling A. and Whitelaw 1. H. (1976), Principles and Practice ofLaser Doppler
Anemometry, Academic Press, London.

Ensor, D. S., Krafthefer, B. C. and Otteney, T. C. (1994), "Changing Requirements for
Air Filtration Test Standards," ASHRAE Journal, June, pp. 52-60.

Gidley, D. (1993), "The Selection Process and Comparative Air Filter Performance
Testing for Combustion Turbine Inlet Air Filters," International Gas Turbine and
Aeroengine Congress and Exposition, Cincinnati, Ohio.

Gustavsson, 1. (1996), "Cabin Air Filters: Performances and Requirements," SAE
Technical Paper #960941, Aspects of Automotive Filtration (SP-1l65), SAE, Inc.,
Warrendale, PA.

Hoppel, 1. (1959), "Viscous Flow Relative to Arrays of Cylinders," AlCHE Journal, Vol.
5, pp. 174-177.

Harrop, J. A. and Stenhouse, 1. I. T. (1969), "The Theoretical Prediction of Inertial
Impaction Efficiencies in Fibrous Filters," Chemical Engineering Science, Vol. 242.

Hseih, Ker-Ching, Wu, T., Connors, P. and Tang, Y. M. (1996), "Performance Enhanced
Electret Media," SAE Technical Paper #960534, Aspects of Automotive Filtration (SP
1165), SAE, Inc., Warrendale, PA.

Jaroszczyk, T. (1987), "Experimental Study of Nonwoven Filter Performance Using
Second Order Orthogonal Design," Particulate Science and Technology, Vol. 5,
Hemisphere Publishing Corporation, pp. 271-287.

Jaroszczyk, T., Wake, 1. and Connor, M. 1. (1993), "Factors Affecting the Performance of
Engine Air Filters," American Society of Mechanical Engineers, Energy Sources
Technology Conference and Exhibition, Houston, Texas.

Kline, S. 1. and McClintock, F. A. (1953), "Describing Uncertainities in Single-Sample
Experiments," Mechanical Engineering, January, pp. 3-8.

Kuwabara, S. (1959), "The Forces Experienced by Randomly Distributed Parallel Circular
Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers, " Journal of the
Physical Society ofJapan, Vol. 14, pp. 527-532.

Landahl, H. D. and Hermann, R. G. (1949), "Sampling of Liquid Aerosols by Wires,
Cylinders, and Slides, and the Efficiency of Impaction of the Droplets," Journal of
Colloidal Science, Vol. 4, pp. 103-136.

Lee, K. W. (1977), "Filtration of Submicron Aerosols by Fibrous Filters," Ph.D. Thesis,
University ofMinnesota, Twin Cities, Minnesota.

133



Lee, K. W. and Liu, B. Y. H. (1982), "Experimental Study of Aerosol Filtration by
Fibrous Filters," Aerosol Science and Technology, Vol. 1, Elsevier Science Publishing
Co., Amsterdam., pp. 25-76.

Liang, F. (1994), "Particle Counting and Sizing with LDV for Automotive Air Filters,"
Ph.D. Qualifying Exam Report, School of Mechanical and Aerospace Engineering,
Oklahoma State University, Stillwater, Oklahoma.

Liang, F. (1997), "Particle Counting and Sizing with LDV for Automotive Air Filters,"
Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Oklahoma State
University, Stillwater, Oklahoma.

Liang, F., Natarajan, B., Tian, Y. and Dougherty, R. L. (1995), "Local Efficiency
Measurements Applicable to Both Automotive Engine and Cabin Filtration," Particulate
Science and Technology, Taylor and Francis Publishers, Vol. 12, No.4, April, pp. 333
350.

Liu, B. Y. H. and Lee, K. W. (1982), "Experimental Study of Aerosol Filtration by
Fibrous Filters," Aerosol Sience and Technology, Vol. 1, Elsevier Science Publishing Co.,
Amesterdam, pp. 25-76.

Liu, B. Y. R., Rubow, K. L. and Pui, D. Y. (1985), "Performance of HEPA and ULPA
Filters," Proceedings of the 31st Annual Technical Meeting of the Institute of
Environmental Sciences, Kingwood, Texas, pp. 537-542.

Liu, G. (1995), "Velocity Measurements and CFD prediction of Flow Redistribution
Through Air Filter," M. S. Thesis, School of Mechanical and Aerospace Engineering,
Oklahoma State University, Stillwater, Oklahoma.

Lomer, I. F. (1970), "Separation Efficiency and Pressure Loss of Filter Materials of
Different Structure, at Differing Conditions," Staub-Reinhalt. Luft, Vol. 30, No. 12,
December, pp. 27-31.

McLaughlin, c., McComber, P. and Gakwaya, A. (1986), "Numerical Calculation of
Particle Collection by a Row of Cylinders in a Viscous Fluid," Canadian Journal of
Chemical Engineering, Vol. 64, April, pp. 205-210.

Natarajan, B. (1995), "Local Efficiency Measurements of Automotive Air Filters Using
Laser Doppler Velocimetry," M. S. Thesis, School of Mechanical and Aerospace
Engineering, Oklahoma State University, Stillwater, Oklahoma.

Natarajan, B., Liang, F., Williams, 1. C. and Dougherty, R. L. (1995), "Local Efficiency
Measurements Flat Filter Media: Application to Automotive Cabin and Engine Air
Filters," presented at the American Filtration and Separation Society Meeting, April 24
36, Nashville, Tennessee.

134



Nicholson, R. M. and Weisert, L. E. (1986), "A Review of the Use ofSAE Standard 1726
in Heavy Duty Engine Air Cleaner Testing," Fluid Filtration: Gas, Vol. I, ASTM STP
975, American Society for Testing and Materials, Philadelphia, pp. 266-274.

Newman, R. A. (1994), "Uniformity ofAir Flow in an Automotive Air Filter Test Housing
and Its Effect on the Efficiency of Fibrous Filters," M. S. Thesis, School of Mechanical
and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma.

Person, 1. F. and Cashin, A. H. (I 994), "Recent Developments in Cabin Air Filtration,"
American Filtration Society Conference, Chelmsford, MA.

Ptak, T. 1. and Jaroszczyk, T. (1990), "Theoretical-Experimental Aerosol Filtration ModeJ
for Fibrous Filters at Intermediate Reynolds Numbers," Proceedings of the Fifth World
Filtration Congress, Nice, France, pp. 566-572.

Ptak, T. 1., Wake, 1. and Jaroszczyk, T. (1994), "An Experimental Evaluation of the
Factors Influencing the Performance of Car Interior Air Filters," SAE Technical Paper
#930014, SAE, Inc., Warrendale, PA.

Reinhart, C. O. and Weisert, L. E. (1983), "Measurement ofEngine Air Cleaner Efficiency
Using Airborne Particle Size Analysis," SAE Technical Paper 831262, International Off
Highway Meeting and Exposition, Milwaukee, Wisconsin, Sept.

Rodman, C. A. (1992), "Historical Perspective of Automobile Air Filters," Fluid Particle
Separation Journal, Vol. 5, pp. 27-30.

Rodman, C. A. and Lessmann, R. C. (1988), "Automotive Nonwoven Filter Media: Their
Constructions and Filter Mechanisms," Tappi Journal, Apr., pp. 161-168.

Sabnis, R. D. (1993), "Effects of Non-Uniform Air Flow Through Filters on Filtration
Efficiency," M. S. Thesis, School of Mechanical and Aerospace Engineering, Oklahoma
State University, StiUwater, Oklahoma.

Sabnis, R. D., eai, Q. and Chambers, F. W. (1994), "Diagnosis of the Flow Fields in a
Housing for Automotive Air Filter Performance Testing," presented at the AIAA 32Dd

Aerospace Sciences Meeting, Paper #94-0117, Jan. 10-13, Reno, Nevada.

Society of Automotive Engineers (I987), "SAE J726 Air Cleaner Test Code - SAE
Recommended Practice," SAE, Inc., Warrendale, PA.

Society of Automotive Engineers (1993), "SAE J1669 Passenger Compartment Air Filter
Test Code - SAE Recommended Practice," Proposed Draft, SAE, Inc., Warrendale, PA.

Stechkina, I. B., Kirsh, A. H. and Fuchs, N. A. (1969), "Investigation of Fibrous Filters
For Aerosols," Colloid Journal, USSR, Vol. 31, pp. 97-10 1.

135



· ,

Stenhouse, J. 1. T. (1975), "Filtration of Air by Fibrous Filters," Filtration and
Separation,~ay/June,pp.268-274.

Stinson, J. A., Meyers, M. N., Jaroszczyk., T. and Verdegan, B. M. (1989), "Temporal
Changes in Oil and Air Filter Performance Due to Dust Deposition," Filtration and
Separation, Sept/Oct., pp. 368-371.

Tebbutt, C. B. (1995), "CFD Model of Flow Through Air Filter Pleats," M. S. Thesis,
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater,
Oklahoma.

Tian, Y. (1995), "TSTEP - Three Dimensional Traverse Software," performed as part of
the OCAST Applied Research Project on Automotive Air Filtration, Oklahoma State
University, Stillwater, Oklahoma.

Wake, J. and Jaroszczyk., T. (1991), "Experimental Study of Dust Filtration in Surface
Type Nonwovens," Particulate Science and Technology, Vol. 9, Hemisphere Publishing
Corporation, pp. 31-44.

Walker, M. and Ptak, T. J. (1996), "Particulate Filter Performance in the North American
Environment," SAB Technical Paper #960940, Aspects of Automotive Filtration (SP
1165), SAE, Inc., Warrendale, PA.

Williams, J. C. (1996), "In-Situ Measurements ofLocal Efficiency for Flat Automotive Air
Filter Media,"~. S. Report, School ofMechanical and Aerospace Engineering, Oklahoma
State University, Stillwater, Oklahoma.

Yeh, H. C. (1972), "A Fundamental Study of Aerosol Filtration by Fibrous Filters," Ph.D.
Thesis, University ofMinnesota, Twin Cities, Minnesota.

Yeh, Y. and Cummins H. Z. (1964), AppliedPhysics Letters, Vol. 4, pp. 176-178.

Yeh, H. C. and Liu, B. Y. H. (1974), "Aerosol Filtration by Fibrous Filters - I.
Theoretical," Aerosol Science, Vol. 5, Pergamon Press, Great Britain, pp. 191-204.

136



APPENDICES

137



APPENDIX A

THE DSA PARAMETERS

The major parameters ofthe DSA parameters are defined in this appendix.

• High Voltage. The voltage supplied to the PMT which controls the amplification of

the detected signals. It has a range of200 to 800 volts. HV values of370 to 400 are

recommended.

• Frequency Shift. The frequency shift given to the Bragg cell so that the main beam is

shifted in order to generate the second beam (shifted beam) for each color. The

frequency shift is +40 MHz and is constant for all of the tests.

• DC Offset. This parameter adjusts the ground signal to a common ground level. It is

adjusted so that the raw signal is just above the zero line on the oscilloscope. A value

in the range of 10 to 20 mV is recommended.

• Burst Filter. This parameter sets the frequency band for detection ofthe burst signals.

The burst signals falling out the specified frequency range won't be detected. The

burst filter on the DSA software can be set to values of 40 MHz BP (band pass), 50

MHz LP (low pass). According to the DSA manual (1992), the 40 MHz band pass

activates an acceptable range of ±5 MHz from 40 MHz. The 10 MHz low pass
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activates the frequency range of 5 to 10 MHz and the 50 MHz low pass activates the

frequency range of20 to 50 MHz. The burst filter can be set to "All Pass" so that the

burst signal is not filtered. 40 MHz BP is recommended for velocities in the range of

14.2 to 14.2 mls. For velocities outside this range, 10 MHz LP is recommended.

• Threshold. The threshold determines the minimum signal amplitude required to detect

a burst. Anand 1997] has investigated the effect of threshold on the measured data.

He used a value'of 60 mV for his measurements. He concluded that the accuracy of

the measurements is dependent on the value of the threshold and high voltage. The

threshold should be set to a value so that with an optimum value of high voltage (370

to 400 V), a validity of90 to 95% could be obtained.

• Envelope Filter. This parameter is used for filtration of high frequency noise. A

detailed procedure for finding the optimum value of this parameter is described by

Anand [1997]. The optimum value depends on the measurement conditions such as

particle concentration, flow rate, etc.

• Number of Samples and Sample Rate. Proper values for these parameters determine

the resolution of the velocity histogram. These parameters should be selected such

that aliasing is avoided (appearance of two or more histograms). Anand [1997]

recommended sampling rates of 5 and 2.5 MHz for low velocities (less than 0.25 mls)

and 80 MHz for higher velocities (greater than 0.5 mls). The author used 5 MHz for

tests in which the average velocity was less than 0.2 mls and 80 MHz for flow rates

with average velocities of 0.5 mls and higher (up to 14.2 mls). Between these two

velocities, 20 MHz was chosen.
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• Signal to Noise Ratio. These parameter provides a criteria for acceptance of the burst

signal based on it's quality. A value of 0.3 as recommended by the DSA manual and

Anand [1997] was used.

• Total Number of Samples. This is the number of detected particles in each run. It

depends on the validity and the total valid samples.

• Valid Samples. The number of particles which are detected as a true signal (and not

noise) are called valid samples. This value was set to 1000 for most of the tests.

Lower numbers were used (such as 200 samples) at locations where the sample rate

was relatively low and the run time exceeded 30 seconds for detection of 1000 valid

samples.

• Validity. Validity is the ratio ofthe valid samples to total samples. It is dependent on

other parameters, mainly high voltage and threshold (see Anand [1997]).

• Coincidence. When coincidence is turned on, only particles are detected as valid

samples for which both their axial and transverse velocities are detected (i.e., the

particles are detected as valid samples in both directions). Coincidence is useful for

total velocity measurements in recirculation zones (see Section 5.6).
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APPENDIXB

TEST RESULTS: SMALL ANGLE DIFFUSER HOUSING

The results of measurements in the small angle diffuser housing are presented in

this appendix. They are presented in five curves for each test. All curves have the same

legend. Figures are sorted based on the flow rates, i.e., Fig. B.l corresponds to the plots

for the lowest flow rate (5.68 m3/hr), and Fig. 5.21 presents the results of the test made at

the highest flow rate (481.8 m3/hr) among all of the tests.
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Figure B.l Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 5.68 m3Jhr Air Flow, Test # F15, 7/1/96.
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Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 5.68 m3/br Air Flow, Test # F16, 7/2/96.
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Figure B.3 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 29.5 m3/hr Air Flow, Test # Fll, 6/24/96.
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Figure B.4 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A 13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 29.5 m3/hr Air Flow, Test # F12, 6/25/96.
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Figure B.5 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 53.3 m3Jhr Air Flow, Test # F23, 7/16/96.
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Figure B.6 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A 13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 53.3 m3/hr Air Flow, Test # F22, 7/15/96.
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Figure B.7 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 53.3 m3/hr Air Flow, Test # F24, 7/17/96.
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Figure 8.8 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 77.1 m3/hr Air Flow, Test # F9, 6/19/96.
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Figure B.9 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 77.1 m3/hr Air Flow, Test # FlO, 6/20/96.
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Figure B.l 0 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A 13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 103.7 m3/hr Air Flow, Test # F20, 7/5/96.
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Figure B.l1 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 103.7 m3/hr Air Flow, Test # F19, 7/5/96.
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Figure B.12 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 145.7 m3/hr Air Flow, Test # F1, 5/8/96.
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Figure B.13 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A 13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 145.7 m3/hr Air Flow, Test # F4, 5/14/96.
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Figure B.14 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 145.7 m3/hr Air Flow, Test # F2, 5/13/96.

155



r"!-- 1000 -- 1000<"'l
E

900 5 900'it --"-' ~
-.c 800 -.c 800 Average =207 x 10' m-3,

0 ::'!: '0

::'!: - 700 700
lo< -< --< 600 ~

lo<
600

I;;l ;;.. a: ;;..
a: !- 500 !- !- 500- -!- t/) t/)ta, , , ........ z t/)
t/) Z 400 Z 400c.. I;;l ~ [0;;1;:> Q 300 Average 429 x 10' m-3 0 Q 300 ..--- • • • ~a: Q a:

~ 200 I,.;j 200
a=:t:=.~= =::'!: 100 ::'!: 100

;:, ::l
Z 0 Z 0

-80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80

Y(mm) Y(mm)

(a) (b)

10 10
9 ;;.. 9 Average = 5.41 m/s;;.. !-

!- Average =3.44 mls -8 U 8

~- 0U 7 70 "J

~~
....:l [0;;1

~--
6 ~ 6

>~ 5 ~~ 5
::'!:-S <5
< 4

~
[0;;1'-' 4'

~ ".a: 3 !- 3
!- t/)

t/) 2 Z 2 ~c.. ~ "-;:,
1 0 1 • • •

Q
0 0
-80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80

Y(mm) Y(mm)
(C) (d)

80
.... 70U

~~
......... X= -33.02mmz: 60 -4- X= -16.51mm~-U 50 --..- X= 0.00 mm

t:~ 40 -.- X= 16.51 mm~~w"-' 30 ......... X=33.02mm
...:l
< 20
U Average =51.59%0 10
...:l I0

-80 -60 -40 -20 0 20 40 60 80
Y(mm) LEGEND

(e)

a) Upstream Number Density, b) Downstream Number Density,
c) Upstream Velocity, d) Downstream Velocity, e) Local Efficiency

Figure B.15 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 187.7 m3/hr Air Flow, Test # FI8, 7/4/96.
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Figure B.16 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 187.7 m3/hr Air Flow, Test # F2l, 7/8/96.
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Figure B.17 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 187.7 m3/hr Air Flow, Test # F5, 5/21/96.
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Figure B.18 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 313.8 m3/hr Air Flow, Test # F7, 617/96.
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Figure B.19 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 313.8 m3/hr Air Flow, Test # F8, 6/18/96.
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Figure B.20 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 481.8 m3/hr Air Flow, Test # F14, 6/28/96.
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Figure B.21 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, A13192 Pleated Filter, Diffuser Housing,
0.966 Micron PSL Particles, 481.8 m3/hr Air Flow, Test # F17, 7/3/96.
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APPENDIXC

TEST RESULTS: SAE HOUSING

The results of the tests measured in the SAE housing are presented in this

appendix. Summary of the SAE housing tests are listed in the following table.

Table C.l Summary of the SAE Housing Tests.

Flow Rate Efficiency Initial Pressure Drop Final Pressure Drop
(m3/hr) (%) (mm ofWater) (mm ofWater)
187.7 55.15 34.3 37.1

61.2 32.4 5.0 5.0

313.8 78.35 68.6 72.4
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Figure C.l Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, SAE Housing, A13192 Pleated Filter, 0.966 Micron
PSL Particles, 61.2 m3/hr Air Flow, Test # SAE3, 9/3/96.
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Figure C.2 Local Efficiency, Upstream and Downstream Number Densities and
Velocity Profiles, SAE Housing, A13192 Pleated Filter, 0.966 Micron
PSL Particles, 313.8 m3/hr Air Flow, Test # SAE4, 9/4/96.
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APPENDIXD

TSI FLOW METER CALffiRATION PLOTS

Anand [1997] calibrated the TSI flow meter with a one inch (25.4 mm) diameter

ASME flow nozzle for flow rates less than 50 Scfm (85.5 Sm3/hr) shown in Fig. D.I. For

the current measurements, the TSI flow meter was calibrated by a 3 inch (76.2 mm)

ASME flow nozzle. Both calibration curves are linear but their slope is different. The

curve fitting was done so that both plots show the same value at 50 scfin (85.5 Sm3/hr).

The calibration curve for flow rates higher than 50 Sefm is presented in Fig. D.2.
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Figure D.1 Calibration Plot for TSI Flow Meter for Flow Rates Less Than 50 Scfm

(85.5 Sm3/hr) [Anand, 1997].
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APPENDIXE

AN EXAMPLE OF THE STOKES NUMBER CALCULAnON

An example of the Stokes nwnber calculation using Eq.(2-3) is presented in this

appendix. The variables in Eq. (2-3) are:

• Density of the PSL particles (pp) which is within the range of 1000 to 1050 kg/m3
•

• Cunningham Slip correction factor (Cm) which is considered to be one.

• Air viscosity (JlJ which is 18.6 x 10 -6 Pa-s at 30° Centigrade.

• Air velocity (U). As an example the overall average velocity upstream the filter for

test F8 (flow rate of 187.7 m31hr, Fig. 7.6) was used (3.8 mls).

• Fiber diameter. The exact value of the average fiber diameter is not known, but a

value of 38 microns was used.

From Eq. (2-3) the Stokes number is calculated as:

Substituting the above listed values the Stokes number will be:

(1)[(0.966)(10-6 )]2 (1 000)(3.8)
St = 18(18.6)(10-6 )(38)(10-6) = 0.278
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APPENDIXF

LIST OF EQUIPMENT

1. 5 Watt Argon Ion laser: Coherent, Model Innova 70-A, Serial No. PIS 92K-1758

2. Remote control for the laser: Coherent, Model 1-70, Serial No. 92411171

3. Fiber drive: Aerometrics, Inc., Model FBD1240, Serial No. 026

4. Bragg cell: IntraAction, Inc., Model ME-40H, Serial No. 3247

5. Photomultiplier Tubes: Aerometrics, Inc., Model RCM2200L, Serial No. 029

6. Doppler Signal Analyzer: Aerometrics, Inc., Model DSA3220, Serial No. 044

7. Computer and Monitor: Impression 3, IBM compatible 80486 DX2, 66.MHz

8. Computer for Traverse System and MS-Excel Data Acquisition Files: Gateway

2000, ffiM compatible, 80486 DX2, 33 MHz

9. Laser Transceiver: Aerometrics, Inc., Model XR.V1212, Serial No. 001

10. Three Stepper Motors (Sanyo Denki, Type: 103-850-11)

11. Oscilloscope: Hewlett Packard, Model 54501A

12. Plexiglas Test Housings: SAE J1669 Small Angle Diffuser Housing

13. Pleated Test Filter: Purolator, Inc., A13192 (formerly AF3192)

14. TSI Mass Flow Sensor: TSI, Model 2018, Serial No. 30644
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15. Atomizer: TSI Model 9306, six-jet atomizer

16. SAE 1726 Air Stand, Purolator Products, Inc.

17. Rival Compact Heater, Model T114

18. Stepper Motor Drives, Model CMD-40

19. 24 V DC - 6 A Power Supply (Acme Electronics)

20. Connector 3 for Digital Output, Model PCLD-780

21. illtrasonic Humidifier: Pollenex, Model SH55R
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APPENDIXG

COMPARlSON OF EFFICIENCY CALCULATION MEmODS

The Swept Volume Technique (SVT), described in Chapter five (see also Liang,

1997), was used to calculate the number densities upstream and downstream of the filter.

The SVT is based on calculating the volume which is "swept" during time To. In other

words, the number density or the number of particles per unit volume is calculated based

on measuring the number of particles in the swept volume and calculating the number of

particles in a unit volume. Assuming N particles to be detected during time To, having a

velocity ofV, the length of the swept volume is VTo and the total volume is VToAp. The

number density or the counts per unit volume will be (Fig. G.1):

N
n=--

VTcAp

and the efficiency can be calculated as:

(G-1)

(G-2)

Another approach for calculating the local efficiencies is the "Mass Flux

Technique" (MFT). The mass flux technique is based on the assumption that the

efficiency for each flow stream can be calculated based on the ratio of the mass flux of
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particles upstream and downstream ofthe filter.

Laser beams -'-'---'-'-~'r'""~

Flow mean velocity

VTo

wept volume

Cross-sectional area, A p

of probe volume

Figure G.l The Swept Volume Technique

The mass flow rate of the air upstream of the filter (between two streamlines) has

to be equal to the mass flow rate downstream of the filter (there is no flow crossing the

streamlines) in order to conserve mass between two streamlines. Since the air velocity (or

particle velocity) is not the same upstream and downstream of the filter, in order to

conserve the mass, the cross-sectional area of the flow upstream and downstream of the

filter is not the same. Current measurements show that the air velocity downstream of the

filter is higher than on the upstream side. Therefore the cross-sectional area downstream

ofthe filter has to be smaller.

The mass flux in terms ofnumber density can be calculated as:
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(G-3)

(G-4)

Where ml and m2 are the particle mass fluxes upstream and downstream of the filter,

respectively, and Ai and A2 are the effective areas for the flows upstream and downstream

of the filter. Substituting Eqs. (G-3) and (G-4) into Eq. (G-2) and simplifying, the

efficiency is calculated as:

(G-S)

Therefore in MFT as compared to SVT, instead of number densities, the ratio of

mass fluxes times the inverse ratio ofthe velocities should be used.
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APPENDIXH

COMPARISON OF TIlE AVERAGE EFFICIENCIES

As discussed in Chapter five, calculated efficiencies at grid locations close to the

housing wall may not be as accurate as those at central region of the filter. In order to

investigate the effect of the grid points close to the housing wall, the overall average

efficiencies of the whole filter measurements were calculated without considering the grid

points close to the wall (reducing the number ofgrid points used in the average from 35 to

15). These averages are compared with the previous overall averages (on the whole filter)

and the three point averages as shown in Fig. H.l (and tabulated in Table 7.1).

As can be seen from the figure, the central region averages are closer to the three

point averages, supporting the idea that the calculated velocities at the grid points near the

housing walls might be unreliable. As mentioned earlier, most of these velocities were

calculated based on the one-dimensional SVT (due to the limited test time).
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