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PREFACE

A generalized multicomponent ion exchange reaction equilibrium model is

developed in this work. The equilibrium model calculates the interfacial concentrations

of ions on an ion exchange resin and operates independently of the fOffil of the resin. The

model is shown to be numerically stable. A survey of non-ideal generalized

multicomponent equilibrium models available in the literature is also included.

Recommendations about implementing non-ideal reaction equilibria in an ion exchange

column model are presented.
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CHAPTER I

INTRODUCTION

Ultrapure water is defined in this work as water with impurity concentrations less

than 1 part per billion (ppb). The manufacture of mass quantities of ultrapure water

typically requires several units to remove impurities from surface or well waters.

Different units are used to remove different contaminants. For example, particulate

matter is normally removed via filtration, dissolved gases are removed with vacuum

degasification, organic contaminants may be removed with granular activated carbon, or a

combination of ozonation, ultraviolet light and vacuum degasification. The removal of

ionic species from solution is typically performed with reverse osmosis membranes and

ion exchange columns. Reverse osmosis membranes are typically effective in removing

up to 99% of the ionic contaminants but do not produce effluent ionic concentrations less

than 1 ppb. The final polishing of water to ultrapure standards is normally accomplished

with ion exchange columns.

Ion exchange is the branch of science which deals with the partitioning of ionic

species between different phases of an overall system. The phases under consideration

for this study are the aqueous solution phase and a solid resin phase. The ion exchange

reaction is defined as the stoichiometric reaction of exchangeable species between the

resin and liquid phases while maintaining electroneutrality and exchange capacity. The

electroneutraIity assumption is required because otherwise an electric current would be

1
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generated within the solution phase, and the exchange capacity d,efinition recognizes a

fmite number of exchange sites within the exchanging phase.

Ion exchange resins are a vital part of the water purification industry. Applications

of ion exchange resins include microelectronics manufacturing, pharmaceutical

production, paper pulp processing, and condensate polishing for stearn turbine cycles.

Ion exchange resins are typicaHy composed of a polystyrene matrix crosslinked

with divinyl benzene. Functional groups are attached to the divinyl benzene to provide

exchange sites. The typical functional group for strong acid cationic resins is sulfate,

while strong base anionic resins have tert-methyl amine functional groups.

Mixed Bed Ion Exchange

Mixed bed ion exchange (MBIE) is a mixture of cationic and anionic resin within

the same column used to deionize an influent stream. The idea was first conceived by

Kunin (1951). MBrE is often used in ultra pure water manufacture because it combines

the ion exchange reaction in the resin with the neutralization reaction that occurs between

free hydrogen and hydroxyl ions in the bulk solution. This reduces the bulk solution

phase concentrations of hydrogen and hydroxyI ions and promotes the mass transfer and

reaction equilibria of these ions from the resin into the solution phase. MBrE is the

industrial standard of eliminating the final traces of ionic species from ultrapure water.

With sufficient pretreatment from reverse osmosis membranes or electrodeionization

units, MBIE columns can produce effluent water with an effluent ionic concentration

ranging from as low as 50 parts per trillion (ppt) to 30 ppm.
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Cationic resin is in the hydrogen form when all of the exchange sites have

hydrogen ions attached. Similarly anionic resin is in the hydroxyl form when all of the

exchange sites have hydroxyl groups attached. Ion exchange resins are typically in the

hydrogen or hydroxyl forms for ultrapure water applications, where the exchanged

hydrogen and hydroxyl ions combine according to the dissociation of water; however,

different forms of the resin can be used depending upon the application. For example,

cation resin is often used in the sodium form for softening applications. where the

hardness ions, such as calcium or magnesium, are exchanged preferentially for sodium.

This allows the softening resin to be regenerated cheaply with a concentrated brine

solution. The power industry often uses cationic resin in the ammonia or morpholine

form to increase the pH of water for corrosion control.

Ion Exchange Mechanism

The mechanism of ion exchange is divided into five steps (Lou, 1993). These are:

1. Diffusion of the counterions from the bulk solution through a film outside the

resIn.

2. Diffusion of the counterions within the resin phase.

3. Chemical reaction between the counterions and the exchange site.

4. Diffusion of the displaced ion out ofthe resin.

5. Diffusion of the exchanged ion from the resin surface through the film into the

bulk solution.

Steps 1 and 5 have been shown by several authors (Boyd et aI., 1947; Helfferich,

1962) to be the rate limiting steps in the ion exchange reaction. Film diffusion models

3



have been discussed by several authors (Helfferich, 1962; Zecchini, 1991; Bulusu, 1994).

The film diffusion models assume a linear driving force requiring two solu6on

concentrations per ion as boundary conditions, a bulk solution concentration, and the

interfacial conoentration on the surface of the resin (Raub, 1984). Several film diffusion

models have been developed in the literatuie. The Ultra Pure Water Research group at

Oklahoma State University applies a model adapted from the work of Franzreb (1993).

The flux is expressed mathematically as,

(1-1 )

where Jj is the ionic flux of species i in meq/cm2 s. The variables OJ, 0, P, Nj, and Ai are

ion specific variables described in detail in Appendix C and by other authors (Bulusu,

1994;. SunkavaHi 1996). The individual and total solution ionic concentrations, C j and

CT , can be found by from applying bulk neutralization solution chemistry. The

* *individual and total interfacial concentrations, C j and CT , are calculated from

multicomponent reaction equilibrium.

Assuming film diffusion is the rate limiting step allows the assumption of

instantaneous reaction equilibrium. This work develops expressions for multicomponent

chemical reaction equilibrium between arbitrary counterions and the exchange sites. By

modeling the ion exchange equilibrium, we may estimate the interfacial ionic

concentrations on the surface of the resin, and supply the necessary boundary conditions

required to estimate the ionic fluxes into and out of the resin. Figure I-I illustrates

graphically tbe ion exchange reaction for sodium and hydrogen on a cationic resin.

Notice the sodium and hydrogen concentration differences between the bulk solution and
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the interface provides driving forces for diffusion of the sodium ions into the resin phase

and the diffusion of hydrogen ions from the resin into the solution phase.

An analogous figure applies to anionic resin with typical anions such as cr, F,

sol, or N03- exchanging with hydroxyl groups (Off).

Bulk solution

~---. CH

Figure 1-1. Graphical representation of ion exchange resin surface in an aqueous solution.

Objective

The objectives of this work are defined below:

1. Develop a model to predict interfacial concentrations for up to lO ions with arbitrary

valences given the number of ions, resin loading, selectivities, and resin capacity.

2. The model must be suitable for cation and anion exchange equilibrium.

3. A computer subroutine is to be used to implement the model, and the subroutine must

be completely stable.

4. The subroutine must allow for the number of exchanging ions to be varied.

Earlier works by Bulusu (1994) and Sunkavalli (1996) have developed a

multicomponent equilibrium model for use in the mixed bed ion exchange model;

5



however, it is unstable when the reference ion loading in the selectivity expression is

equal to zero, and the model is unable to predict the column perfonnance after the

reference ion is completely exchanged.

6



CHAPTER II

LITERATURE REVIEW

Multicomponent ion exchange equilibrium has been studied by several authors,

each providing different insights in compensating for the non-ideal effects present within

the ion exchange resin and solution phase. The objective of this chapter is to provide an

introduction to multicomponent ion exchange equilibrium methods presented in the

literature.

Multicomponent Ion Exchange Theory

The ion exchange reaction occurring between a resin exchanger and a solution

phase ion is represented by the following binary reaction,

(II -1)

with the overbar denoting the resin phase. De Lucas et al. (1992) classified the methods

for multicomponent ion exchange equilibria into four main groups:

1. Models assuming ideal exchange equilibria with a constant separation factor and

activity coefficients equal to unity in the resin phase

2. Models assuming regular systems with a linear transformation between the separation

factor and the composition in the solid phase

3. Models which emulate the ion exchange reaction as a phase equilibrium

4. Theoretical models which consider non-ideal or real systems

7



Equilibrium Constant and Selectivity

Three different forms of the equilibrium constant are commonly encountered in

the literature. These are the equilibrium constant, k2, the selectivity coefficient, K~ ,

and the equilibrium quotient, K~. Each of these variables are discussed below.

The equilibrium constant, k2, for this reaction is usually defined as (Argersinger

et aI., 1950)

(IJ-2)

where aj is the activity of species i and again the overbar denoting the species is in the

resin phase. The activity is defined in many chemistry and thermodynamics texts as

*a· =y,X.CTI I 1

or for the resin phase

a·=y·y.QI I I

where

(II-3)

(II-4)

Yi = the activity coefficient of species i in either the resin or solution phase.

Xi" = the equivalent ionic fraction of ion i in the solution phase.

Yi = the equivalent ionic fraction of species i in the resin phase.

Inserting the definitions of activity for both the resin and solution phase yields

(1l-5)
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Assuming isothermal conditions, we see by inspection that in order to calculate

the equilibrium solution concentrations for a binary system we must know the

equilibrium constant, initial loading of the resin, the capacity of the resin, the total

interfacial ooncentration of ions mn the solution phase, and four individually calculated

activity coefficients.

Estimation of the equilibrium constant has been discussed by many authors

(Argersinger et a1., 1950; Hogfeldt, 1990), and the method of calculation is the topic of

considerable debate. In many applications the solution phase concentration is assumed to

be ideal, and the resin phase activity coefficients are lumped with the equilibrium

constant to yield the selectivity coefficient.. Work by Allen et a1. (1989) states the

selectivity coefficient is a function of the solution concentration, with the selectivity

coeffi.cient increasing almost 20 fold when the solution concentration was varied from 0.1

eq/l to 1.0 eq/L Mehablia (1994) applied the method of Gaines and Thomas (1953) which

successfully separated the equilibrium constant [Tom the resin and solution ionic

concentrations, yielding a thermodynamically consistent mass action equilibrium constant

coupled with an activity coefficient model.

Kunin (1960) made several observations about ion exchange equilibria that are

useful in qualitatively predicting the selectivity of an exchanging species:

1. At low concentrations and normal temperatures (between 50-100 OF) , the selectivity

increases with increasing valence of the exchanging species:

Na+ < Ca2+ < Ae+ < Th4+

2. Assuming constant valence with normal temperatures and low concentrations, the

selectivity of an exchanging species increases with increasing atomic number:

9



monovalent: Li < Na < K < Rb < Cs; divalent Mg < Ca < Sr < Ba

3. High molecular weight organic ions and metallic anionic complexes exhibit high

exchange potentials.

4. Ions with high activity have greater exchange potentia1.

5. Increasing the degree of resin crosslinking increases the selectivity, and decreasing

crosslinking reduces the selectivity to a limit of unity.

Several different methods are employed to calculate the equilibrium constant from

isotherm data (Hogfeldt, 1990). Generally these methods calculate the equilibrium

constant by integrating the equilibrium quotient with respect to the resin phase equivalent

ionic fraction of the exchanging ion. The selectivity is estimated by integrating the

equilibrium quotient with respect to the reference ion concentration

(II-6)

The equilibrium quotient, K, is defined by Smith and Woodburn (1978) as the

product of the equilibrium constant and the ratio of the resin phase activity coefficients at

an arbitrary resin loading. The equilibrium quotient is written mathematically as,

(II-7)

Values of the equilibrium quotient are obtained from experimental data and the

integration is perfonned using graphical or numerical methods. The methods differ

primarily in their approach in estimating the ratio of activity coefficients as a function of

the resin phase concentration.

10



Solution Phase Concentration

The bulk solution phase concentration can be measured directly with a variety of

instruments, such as an ion chromatograph, or indirectly by using a conductivity meter.

Mehablia et al. (1994) suggested the possibility of the formation of ion pairs in the

solution phase inhibiting the availability of exchangeable ions in solution. Mehabha

(1994) applied the method of Kester and Pykowicz (1969) to determine the concentration

of exchangeable ions within the solution phase, and have generated equilibrium curves of

the Na+-H+ system with various sodium electrolytes (NaF, NaS04, NaN03, and NaCl)

illustrating the effect of ion pair fonnation.

Resin Capacity

The resin capacity can be measured by several techniques. A simple method for

capacity measurement is perfonned by mixing a known volume of ion exchange resin in

the hydrogen form with a salt solution of known volume and concentration. For cationic

resin, the hydrogen exchanges preferentially for the sodium. The equivalents of sodium

exchanged can be measured by titrating the solution with a standard sodium hydroxide

solution (Mehablia et aI., 1994, 1996).

Solution Phase Activity Coefficients

Several solution phase activity coefficient models have been used to model ion

exchange equilibrium. Smith and Woodburn (1978) applied the extended form ofthe

Debye-Hiickel model to predict the activity coefficients. However, Shallcross (1988)

noted the activities of the Debye-Hiickel equation are influenced only by the ionic

strength of other ions present. Horvath (1985) recommends the activity coefficient model

11



proposed by Pitzer (1973, 1979, 1991). Pitzer's correlations are more accurate for

multicomponent solutions; however, they are substantially more complex than the Debye

Huckel model. There are three species dependent parameters, two parameters which are

derived from binary electrolyte data, and two parameters which are derived from single

electrolyte data leading to a total of seven required parameters.

Resin Phase Activity Coefficients

Resin phase activity coefficients have been modeled with excess Gibbs free

energy models such as the regular solution model, sub-regular solution model, or the

Wilson activity model. Grant et al. (1989) compared these activity coefficient models

with equilibrium data obtained from ion exchange resins and montmorillonite clay. The

study showed all three of the models can accurately predict the resin phase activity

coefficients of binary reactions. The Wilson model provided the most accurate results for

both binary and ternary systems given binary and ternary equilibrium data respectively;

however, accurate ternary predictions were not achieved from binary data. Mehablia et al.

(1994,1996) obtained accurate ternary and quaternary equilibrium concentration

predictions for sodium, calcium, potassium and hydrogen from binary data. Appendix B

discusses both non-ideal solution and resin activity coefficients in greater detail.

Many ion exchange processes are used for multicomponent systems; however,

very little experimental work has been performed for systems with three or more

exchangeable species. Multicomponent equilibrium for many species has been

approximated by Bulusu (1994) and SunkavaIli (1996) by assuming constant selectivity

and ideal solutions and applying mole fraction constraints to solve for the interfacial

12



concentrations in terms ofone variable. The derivation of this model is detailed in

Chapter III.
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CHAPTER III

MODEL DEVELOPMENT

The primary objective of the equilibrium model is to develop a subroutine that

provides reasonably accurate interfacial concentrations for up to lOcations or 10 anions

given the following variables; 1) selectivities referenced to a common ion, 2) ion

valences, 3) total interfacial concentration, 4) resin capacity and 5) arbitrary resin loading.

The selectivities and ion valences are obtained from a selectivity database

collected by the Ultrapure Water Research Group. They are normally referenced to

hydrogen ions (I-f") for cations, and hydroxyl ions (Olf) for anions. Selectivities may

also be referenced to a different ion. The reference ion may be switched to the

appropriate ion by applying the foHowing relation,

(III-I)

where the subscripts and superscripts A, B, and C refer to arbitrary ions, and Zi is the

charge of ion i.

The resin capacity is obtained from a resin database developed by the Ultra Pure

Water Research Group. The capacity units used within the code are meq/m!. The total

interfacial concentration is calculated iteratively within the ionic flux expressions of the

column model (Bulusu 1994).

14



The algorithm for calculating the interfacial concentrations is presented below,

and is coded in another work (SunkavaHi, 1996).

Ideal multicomponent ion exchange equilibrium

The focus of this section is to develop the expressions that are used to calculate

the interfacial ionic concentrations. Ideal multicomponent equilibrium expressions are

developed in terms of binary equilibrium expressions, and then mole fraction constraints

are applied to calculate the interfacial concentrations for each ion.

The ion exchange reaction for a binary reaction is defined in general form as

(1II-2)

where ion A is the reference ion of the exchanger, typically ft or an amine for a cationic

exchanger, or OR for an anionic exchanger, and i is an arbitrary counter ion with valence

Zj. The overbar denotes the ion in the resin phase.

Smith and van Ness (1992) define the ideal equilibrium constant with the law of

mass action, written below as

(III-3 )

where Xi is the mole fraction of species i and Vi is the stoichiometric number of species i.

Writing this expression for the ion exchange reaction yields

(IU-4)

where

qi = the resin phase concentration of species i in meq/ml

15



(HI-12)

the interfacial equivalent ionic fraction for ionic species i is VvTitten as

(III-I 3)

Currently for n ions there are (n-}) equations and (n+}) unknowns, namely the

interfacial equivalent ionic fractions and the total interfacial concentration. By applying

equivalent ionic fraction constraints, another equation is supplied and a polynomial

expression for the solution ofthe interfacial concentrations is written in tenns of X~ .

±x; = ±Ai(X~ )XA =1
i=l i=1

(III-l 4)

This polynomial can be solved using various types of numerical search

algorithms. Bulusu (1994) applied a Newton-Raphson iteration, and the present author

has solved the equations with Ridder's method.

After solution of the polynomial expression for the equivalent ionic fraction X~ ,

the remaining interfacial concentrations are found by substituting the value for X~ into

Eq. (III-14) and solving for each equivalent ionic fraction.

Throughout the development of these equations the total interfacial concentration

C~ is still unknown. This quantity is found by an iterative procedure. The equations are

developed by Franzreb (1993) and summarized below. The derivation of Franzreb's flux

expressions is in Appendix B.

17



where

~+l

(UI-IS)

N j = the negative of the ratio of the counterion valence to the mean coion valence,

expressed mathematically as

z·
N ·= __l

I .

Zy

where

Zy = n

" z·e.~ I I

i=J

D j = the ionic diffusion coefficient of species i.

(III-I 6)

(III-17)

P = an exponent applied in the ionic flux expressions expressed mathematicaUy as

~N.D.(X* -Xo)
~ I I I I

P = ..:..i=.....:l _

±Di(X~ -X?)
1=1

(III-I 8)

Notice the interfacial concentrations appear in the selectivity expressions and the

total interfacial concentration expression. This requires an iterative solution applying the

following algorithm (Bulusu, 1994).

18
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Table I-I. Algorithm for calculating the total interfacial concentration.

1. I * 0i Assume CT = CT

2. Calculate X;'s by applying Eq. (In-B)

3. Substitute the values for X; into Eqs. (III-I 5) and (III-16) and calculate C~.

4. Substitute C~ into Eq. (III-l3) and repeat steps 2 and 3 until the relative

difference is equal to or below a predetennined tolerance.

Arbitrary resin loading is the primary disadvantage of the current equilibrium

model. As stated previously, the reference ion equivalent ionic fraction is in a

denominator of the selectivity expression solved for the solution equivalent ionic fraction.

When the resin becomes completely loaded with ions other than the reference ion, the

equivalent ionic fraction of the reference ion approaches zero. This possible zero may

cause failure of the comput,er code and is unacceptable in commercial software

applications.

A common situation where the reference ion loading approaches zero is during

column breakthrough with a multicomponent feed. Consider a feed with sodium and

calcium ions exchanging on a cationic resin. As the column operates for an extended

permod of time, almost all of the hydrogen is exchanged for sodium. Eventually, the resin

will be in the sodium fonn and begin exchanging calcium ions for sodium ions. At this

moment, the hydrogen loading is approximately zero, and the column model neglects the

hydrogen from the equilibrium calculations (Sunkavalli, 1996).

19
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Run time is also an. important consideration during the model development. A

typical run of the column model may execute the interfacial concentration subroutine up

to 12 million times, requiring several hours of computer time. This limits significantly

the complexity of the equilibrium model.

Possible solutions and the pseudo-ion concept

The author has considered two possibilities to avoid having a zero loading of the

reference ion. The first alternative is to switch the reference ion when the loading of the

current reference ion approaches zero. There are several problems with this solution.

The first problem is determining at which loading we must switch the reference ion. The

second problem is deciding which ion to use at the new reference. Consider the

hypothetical situation when the resin is equally loaded with five different ions. What

criteria do we apply in choosing the reference ion? Should we choose the ion with the

largest or smallest selectivity? Or should we consider the valence of the ion?

Implementing a decision tree that selects the proper reference would be quite difficult,

and the stability of the code would be in question.

The second alternative is to create a reference ion from the ions that are currently

loaded on the resin. This concept of a pseudo-ion has been applied by Franzreb (1993) in

the calculation of the ionic fluxes, and offers several advantages.

The pseudo-ion has a resin phase equivalent ionic fraction of 1.0 because the

pseudo-ion is defined by the properties of all of the ions loaded on the resin. This

eliminates the potential for a zero within the denominator.
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The pseudo-ion is independent of the reference ion. This is beneficial when

calculating the behavior of resins in another form. Selectivity data are typically

represented in the hydrogen or hydroxyl forms. By using the pseudo-ion algorithm, the

fonn of the resin does not matter, as long as the selectivity data have a common reference

Ion.

Mean selectivity derivation

Consider the thermodynamic definition ofan ideal equilibrium constant for a

reaction,

(III-19)

(de Bokx et aI, 1992) where LiGrxn/RT is the dimensionless fonn of the Gibb's free energy

of reaction for ions A and B with respect to the exchanger ion on the resin. The Gibb's

free energy is a molar property. This allows us to take the arithmatic average of the

Gibb's free energy for several reactions by applying the relationship

n

M="x·M·~ I. I

i=l

(111-20)

(Smith et aI., 1992). Thus the average Gibb's free energy of several reactions is

represented by the following relationship.

(III-21)

Moving the coefficient of the logarithm to the exponent of the selectivity

coefficient and defining the mean Gibb's free energy with Eq. (IIl-21) yields the

following expression.
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(IIl-22)

Applying the property of logarithms

(III-23)

allows us to reduce the expression to the final form.

(lII-24)

By noting the similarity ofEqs. (III-l 9) and (IIl-24), we can substitute the

selectivity coefficient for the equilibrium constant and define the mean selectivity

coefficient (or the selectivity of the pseudo-ion with respect ion A) with the following

relationship.

K~f = rrK~Yi
i=1

where the superscript 'ref refers to the reference ion.

Mean Valence and Reference Switching

(III-25)

We have now developed an expression that gives the mean selectivity coefficient

for several ion exchange reactions given the selectivities and loadings for individual

binary reactions. However, in order to use the pseudo-ion as our reference ion by

applying Eq. (III-I), we need to define a mean ionic valence. Franzreb (1993) applies the

following definition for the mean ionic valence
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where

n

"z~C£... I 1

i=!
Zref = -'-n~-

"z·e·£... I 1

i=l

(III-26)

Zref = the mean ionic valence

Zj = the charge of ion i

C j = the concentration of ion i in molll

Notice the relationship aJlows the possibility of fractional charges. Fractional

charges have been applied by Franzreb (1993) in calculating the ionic mass transfer.

Also note the units of concentration in the mean ionic valence are mol/I.

Selectivity data are nonnally represented in terms of equivalents, thus the units must be

converted to molll by applying the following relation.

(III-27)

These units are only applied within a subroutine that calculates the mean ionic

valence, thereafter they are no longer used.

The system is specified for transfonning the selectivity data to a common pseudo-

Ion. Rewriting Eq. (III-I) in tenns of the pseudo-ion variables referenced to ion A yields

(III-28)

We now have all of the variables required to complete the multicomponent ion

exchange equilibrium expression.
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Calculation of the Interfaciat Concentrations

A polynomial is generated by relating the individual solution phase equivalent

ionic fractions to the pseudo-ion solution phase equivalent ionic fraction and applying the

equivalent ionic fraction constraint.

Recall the value of Y j is known, Yref is equal to 1.0, the total capacity is defined

Franzreb's flux expressions.

(III-30)

(1II-29)

l_Zi/
-1/ -z;/ (Q J /ZrefA, = Y(K i ) jZref (y ) /Zref _

I I ref ref· C.
T

by the resin, and the total interfacial concentration C/ is calculated iteratively with

where Ai is defined by

Eq. (III-31) is written in the fo Howing fonn to facilitate the search for a root with

an appropriate numerical method.

f( X;ef ) =1- ±Ai (X;ef )){ref

1=1

(III-31 )

The resulting polynomial has been shown to have a root between 0,0 and 1.0. The

function is then solved for zero using Ridder's search algorithm described in Appendix B.

This algorithm was chosen because it has guaranteed convergence when the root is

properly bracketed, and the convergence is slightly faster than the bisection method.

The value of Xre/ has no actual physical significance, it is merely used as a

reference to calculate the interfacial equivalent ionic fractions for each ion. This is
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accomplished by first calculating the interfacial equivalent ionic fraction of the ion with

respect to the pseudo-ion using the following relation.

2jj

X• ~ (X· )/Zrefi.ref = I\..j ref (III-32)

These interfacial equivalent ionic fractions are in the correct proportion to each

multiplied by the total interfacial concentration with the following relation,

to yield the interfacial concentration for each ion which can be used in the algorithm

other, but they do not sum to exactly 1.0. Normalizing the fractions to 1.0 by applying

(III-34)

(III-33)
*

X: = Xi,ref
I n

LX~.ref
i=l

C* = X·C*r
I I

yields interfacial equivalent ionic fractions for each ion. The resulting fractions are then

developed by Franzreb (1993).

Model Constraints

The author has found two limitations to the model in its present form:

1. The resin phase equivalent ionic fractions must sum to exactly 1.0

2. All valences and selectivities must be positive real numbers.

The first limitation is a result of the definition of equivalent ionic fractions. If the

numbers do not sum to exactly one, the root will not be within 0.0 and 1.0. This should

not be a problem because the resin loading fractions sum to 1.0 by definition, however, a

flag has been entered into code to ensure the loading fractions sum to 1.0 to prevent

possible failure of the subroutine.
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The second limitation is also a minor problem because only the absolute values of

the charges are considered in both the cationic and anionic interfacial concentration

calculations, and the selectivities are always defined as positive real numbers. A flag has

been inserted into code to insure these constraints have been satisfied.
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CHAPTER IV

RESULTS AND DISCUSSION

The pseudo-ion model was written into code and the following tests were

performed:

1. Equilibrium Y-X isotherms were generated for several binary ion exchange reactions.

2. The new equilibrium model was compared to the version presented in Chapter III and

to experimental data.

3. Interfacial concentrations were plotted as a function of pH for several ions and the

equilibrium leakages were compared to data given by Arizona Public Service.

4. Run-times were determined for two different numerical methods.

Equilibrium isotherms

A separate driver program included in Appendix D was written to receive input

and execute the subroutine. Equilibrium curves were generated by assuming constant

total solution concentrations, selectivities, capacities and valences. The initial loadings of

the binary system were then varied. Table IV-I illustrates the input data used to generate

the equilibrium curves.

Figure IV-1 shows an isotherm generated for the Na+-H+ binary exchange reaction

and a 1: 1 line. The abscissa of the plot is the resin phase equivalent ionic fraction of
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hydrogen, and the ordinate is the solution phase equivalent ionic fraction ofhydrogen.

Mathematically, the equilibrium isotherm of monovalent ions is similar to the separation

factor used in vapor liquid equilibrium calculations. Notice the curve is a monotonic,

concave downward function that yields XH values greater than the YH values. This

indicates the interfacial solution phase equivalent ionic fraction of hydrogen is greater

than the interfacial solution phase equivalent ionic fraction of sodium at equilibrium.

Table IV-I. Input data for interfacial concentration subroutine

Parameter Na+-H+ K+-H+ Ca2+-ft

Selectivity 1.5 2.5 4.4

Valence 2

Capacity (meq/ml) 1.9 1.9 1.9

Solution concentration (meq/rol) 0.001 0.001 0.001

Figure IV-2 is an isotherm for the K+-W system. A comparison of the K+-I-t

isotherm to the Na+-H+ isothenn shows the effect of atomic coefficient on the reaction

equilibria of ions of the same valency. The curve is steeper and yields higher interfacial

equivalent ionic fractions of hydrogen for equivalent hydrogen loadings. Figure IV-3 is

an isotherm for the Ca2
+-H+ reaction. The curve is much steeper than the previous two

cases becaus,e the calcium ion is divalent, leading to a squared concentration term in the

equilibrium expression. Notice the solution fraction of hydrogen is almost 1.0 at

hydrogen loading is higher than 0.15. This implies calcium ions on the surface of the
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resin exchange completely with hydrogen until the resin is almost completely loaded with

calcium.
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~odelconlparison

The input data in Table IV-I were used to generate isotherms with the original

version of the nlulticomponent code included in Appendix D. The results were compared

to the results obtained from the pseudo-ion model. Both models generated identical

Equilibrium isotherms of different resin forms

An additional benefit of the pseudo-ion equilibrium model is the ability to model

the equilibrium of a resin loaded with another ion besides the reference ion in the

selectivity expression. The only requirements for this calculation are the selectivities of

the counterions with respect to a common reference. As stated in Chapter I, water

softeners normally have resin in the sodium form to remove hardness ions such as

magnesium or calcium. Figure IV-4 and Figure IV-5 show the isotherms of the Ca2+-Na+

and Ca2+_Mg2+binary systems. Notice the Ci+-Na+ isotherm strongly resembles the

Ca2+-H+ system. This is attributed to the charge difference of the calcium and sodium

ions. The Ca2+ _Mg2
+ isotherm; however, appears as a monovalent system, indicating the

influence of charge upon the exchange reaction.

Comparison of model with experimental data

Experimental data from the literature (Mehablia et aI., 1994; Smith 1965) were

compared to the equilibrium model for the Na+-H+ and Ba2+-Na+ binary systems. A

statistical analysis was performed with the regression macro in the Data Analysis package

of Microsoft ExceFM.
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Figure IV-6 is a comparison of the experimental data for the Na+-W presented by

Mehablia et aI. (1994). The total solution concentration of the experimental isotherm was

0.7 N, and the selectivity of sodium with respect to hydrogen was 1.5. Good agreement

was obtained between the model and the data. The standard error for the comparison was

0.017, and the R2 was 0.996. Figure IV-7 is a plot of the residuals for the comparison.

The residual plot shows a sufficiently random scatter throughout the range of data.

Figure IV-8 is a comparison of the model to experimental data presented by Smith

(1965). The total solution concentration of the experimental isothenn was 0.01 N, and

the selectivities of barium and sodium with respect to hydrogen were 10.5 and 1.5,

respectively. The equilibrium model deviated significantly from the experimental

interfacial concentrations for most data points. The standard error for this comparison

was 0.046, and the R2 value was 0.76. Figure IV-9 is a plot of the residuals for this

comparison. The residual plot shows a wide range of scatter. The error can be attributed

to an ideal model being applied to a highly non-ideal system and experimental error.

The effect of total interfacial ionic concentration

Isothenns were generated for the K+-H+ and Ca2+-H+ systems with varying total

interfacial concentrations. The equilibrium isothenn for the Na+-H+ system is not

affected by varying the total interfacial concentration. This is expected mathematically

because the ratio of the capacity to the interfacial concentration in Eq. (III-29) is raised to

the difference of the valence of the exchanging ions. Sodium and hydrogen are both

monovalent ions, and the difference ofvaJences is zero.
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Figure IV-10 shows two isotherms of the Ca2+-H+ system with varying total

interfacial ionic concentrations. Calcium is a divalent ion and the difference of the

charges of the exchanging ions is 1.0. The ratio of the capacity to the interfacial

concentration term is no longer unity, and the term changes the coefficients of the

polynomial used to calculate the interfacial concentration. Notice the equilibrium curve

becomes steeper as the total interfacial concentration decreases. This effect has been

observed for all binary systems with ions of different valence.
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The effect of pH on equilibrium leakages.

Arizona Public Service (APS) presented effluent data from a mixed bed ~on

exchange column with high peaks of chloride and sulfate. The equilibrium leakage of

chloride is expected to be between 10-90 ppt from an effluent stream if the resin is loaded

with approximately 0.1 % chloride. Data provided show sulfate and chloride effluent

concentrations ranging from 100-200 ppb. Given freshly regenerated resin (loadings of

approximately 0.1 % of Si04-, BO·, and SOlO), predict,

1. The effluent concentrations ofchloride and sulfate assuming resin that is 99%

hydroxyl form.

2. The cWoride loading required to have an equilibrium leakage of 200 ppb.

Model input parameters

Tables I and II summarize the input parameters used for the two simulations.

Table IV-II. Input parameters for calculating interfacial ionic concentrations of hydroxyI

form anionic resin.

Ion

cr

BO·

Selectivity

2.5

16

0.15

64

43

Loading

0.995

0.001

0.002

0.001

0.001

pH range

7-9 for all



Table IV-III. Input data for calculating the interfacial ionic concentrations of anionic

resin in the cWoride fonn.

Ion Selectivity Loading pH range

OH- 1 0.047 7-9 for all

S( 2.5 0.001

cr ]6 0.95

BO- 0.15 0.00]

sol 64 0.00]

Figure IV-II illustrates the predicted equihbrium leakages for chloride, sulfate,

silicates, and borate given the loadings stated in the data. Notice the equilibrium leakage

for chloride ranges between ]-40 ppt for a pH range between 7-9, and the sulfate leakage

is negligible. Figure IV-] 2 shows the given conditions would have a borate leakage

ranging from 0.1-3.0 ppb. Borate was not present in the data at these concentrations.

Figure IV-13 demonstrates the chloride loading would have to be approximately

95% to achieve the equilibrium leakages described in the given data. It was not possible

to attain both chloride and sulfate leakages in the 200 ppb range.

From these simulations the author concludes the chloride and sulfate peaks cannot

be attributed to equilibrium leakages. APS engineers have determined there was an

external source of chloride and sulfate from a solvent within a polymer liner of a service'

vessel.
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Numerical method run time comparison

Two numerical methods were considered for solving the polynomial in Eq. (III

29), the regula falsi (false position) search method, and Ridder's method. The criteria for

numerical method selection are 1) robustness of the algorithm, 2) convergence behavior,

and 3) run time of.the algorithm.

Both numerical methods converged readily within 5 iterations when the relative

tolerance was set at 1E-8, and program failure occurred only when the root was not

bracketed between 0.0 and 1.0.

1. The interfacial concentration model was compiled with default input values for the

loading, selectivity, and valence.

2. Record the system time with the ITIME subroutine in FORTRAN Power Station.

3. Execute the subroutine one million times without reading or writing data to the hard

drive.

4. Record the system time after execution.

5. Subtract the initial time from the final time and write the difference to an output file.

Programs were written for both numerical methods, and compiled with

FORTRAN Power Station optimized for a Pentium processor. The programs were

executed with a 133 MHz Intel Pentium processor with an Intel motherboard, 48MB

EDO RAM, and 256 KB Pipeline burst cache. The operating system was Windows 95.

The results are described below in Table IV-IV.
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Table IV-IV. Run time comparison of Ridder's method and regula falsi algorithms.

Numerical Method

Regula-falsi

Ridder's Method

Run-time

4 minutes, 14 seconds

4 minutes, 9 seconds

Referencing the example in Chapter Ill, where the subroutine is called 8 million

times in a single execution ofthe column model, Ridder's Method reduces the run time

by 40 seconds. The run time reduction from Ridder's method within the co]umn model is

determined by the time and distance step sizes within the column model.

Compiler caveat

Coding of the equilibrium model revealed a compilation error which occurs with

Microsoft™ FORTRAN Power Station. The error occurred when the loading of the

reference ion of the selectivity data had a value of 0.1. The pseudo-ion equihbrium

model, as weB as the previous equilibrium model coded by Sunkavalli, would predict a

high value of the solution phase equivalent ionic fraction. The error was not present if

the loading were 0.099 or 0.101, instead appearing as a discontinuity ill the equihbrium

isotherm. The code was successfully compiled with another compiler, and Microsoft has

been notified of the error. No response was received from Microsoft when this document

was printed
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CHAPTER V

FUTURE MODEL MODIFICATIONS

This section describes future model modifications that may be developed to

incorporate non-ideal multicomponent reaction equilibrium into the model. The

following topics discussed in this chapter:

1) Solution phase activity coefficient models.

2) Resin phase activity coefficient models.

3) Application of non-ideal multicomponent models to solve for interfacial solution

concentrations.

The author has not been able to adapt the pseudo-ion model developed in Chapter III

for non ideal systems. The following approach should be applied to the method

developed by Sunkavalli (1996).

Solution phase activity coefficients

The model developed in Chapter III assumes ideal solution phase activity

coefficients. This is a reasonable assumption for ultrapure water manufacture while the

columns are in service because the impurity concentrations are normally less than 1 ppm.

The ideal solution phase assumption does not apply when the ionic concentrations are

greater than 0.05 N. A situation where high ionic solution concentrations are encountered

in industry is during regeneration of the resin, where typically the solution concentration
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ranges from 4-6 wt% Hel for cationic resin, or6-10 wt% NaOH for anionic resin. For

these situations an electrolyte activity coeffici,ent model must be applied. Early ion

exchange equilibrium models (Smith et aL 1978) applied the extended Debye-HuckeI

equation for calculating the solution activity coefficients. Written mathematically, the

extended Debye-Huckel approximation represents the solution phase activity coefficient

by,

-Az~Jf
Iny. = I +b.I

1 r; I
1+ Baj-vI

(V-I)

According to Horvath (1985), the constant A is a temperature dependent constant

with a value of 0.51 for water at 25°C. The constants aj and bi are species dependent

parameters found in several papers published by Truesdell et aI., (1973).

Horvath (1985) recommends the activity coefficient model developed by Pitzer

(1973, 1979, 1991), which is applicable to monovalent and divalent systems. The model

incorporates three species dependent terms, two tenns that relate to binary interactions,

two terms relating to ternary interactions as weB as a Debye-Huckel electrostatic tem1.

Pitzer's model is very complex, and requires a large database of parameters that are not

practical for a MBIE column model. However, Pitzer's correlations should be applied if

calculating the equilibrium constant or resin phase activity coefficients from binary data.

Resin phase activity coefficients

The resin phase activities have been approximated with an excess Gibbs free

energy model. Smith et a1. (1978) recommended using the Wilson activity coefficient

model to correlate the excess Gibbs free energy because the model is especially suited to
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athennal systems, which is typical in MBIE columns. The Wilson model has been

applied successfully to ion exchange reactions by Smith et a1. (1978) and Mehablia et al.

(1994, 1996), and its application to multicomponent systems is presented below;

however, the model is normally applied to miscible polar-non polar vapor/liquid

equilibrium systems (Reid et aI., 1987), and it is not nonnally applied to electrolyte

systems.

The defining relation of the Wilson mode] is

4&

(V-2)

where,

~~ =the excess Gibb's free energy of the reaction

Differentiating with respect to nj yields the following

lny i = 1-1n{I YjAij ) - I
j=l k=l

(V-3)

Notice that there are two parameters for each binary reaction e.g. 1\12 and 1\21.

These values must be determined experimentally from equilibrium data. The following

section outlines the procedure necessary to calculate the binary interaction parameters

from equilibrium data.
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Estimation of the equilibrium constant and binary interaction parameters

In order to calculate the binary equilibrium constant, we begin by defining the

equilibrium quotient AAB,

-

(V-4)

Combining equations (III-9) and (V-4), we can see that the equilibrium quotient is

related to the equilibrium constant by the following relation

ZA

~B -KB!1L!\.,A- A-
Zs

YA
(V-5)

Notice that the equilibrium quotient equals the equilibrium constant when the

resin phase is ideal.

If binary equilibrium data are available, the equilibrium quotient can be related to

the selectivity coefficient and the resin phase activity coefficients for a binary system.

Gaines and Thomas have introduced a relation to calculate the selectivity coefficient

directly from binary equilibrium data. Expressed mathematically,

1

InK~ = (ZA -ZB)+ Jln(A~ )dYA
o

(V-6)

The equilibrium concentrations are determined experimentally from binary batch

equilibrium data. The Wilson coefficients are then found by applying a nonlinear least

squares regression algorithm such as the Marquardt method.

Substitution ofEq. (V-3) into Eq. (V-5) and rearranging yields the following

equation.
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where

(OK = the stoichiometric coefficient of species k in the exchanger phase.

This equation is then combined with the objective function defined as

N (A~xp _A~t J2F=:L 1 I

i=] A~XP
I

(V-B)

Mehablia et al. suggest using the following form of the objective function in order

to account for the increase of experimental error at lower concentrations.

(V-9)

Inspection of Eqs. (V-8) and (V-9) show as the difference between the

experimental and fitted values of the equilibrium quotient decrease, the value of the

objective function decreases. As shown in Eq. (V-7), the equilibrium quotient is

dependent upon the equivalent fractions, selectivity coefficient, and Wilson parameters.

The equivalent fractions are constant and the selectivity coefficient is determined by the

binary equilibrium experiments. Figure I-I was referenced to Smith et aI., (1978).
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Choose Wilson Parameter

Find Equilbrium Constant

Compute Objective Function

Best Set for Wilson Coefficient

No

Figure V-1. Algorithm for regressing the equilibrium constant and Wilson binary

interaction parameters from experimental data.

The values for the Wilson parameters can then be stored into a database with

binary interaction parameters of other ion systems measured at a common temperature.

These parameters may then be applied in Eq. (V-3) for calculation ofthe individual ion

resin phase activity coefficients.

Interfacial concentrations of non-ideal multicomponent systems

Consider the equilibrium expressions of a ternary system of ions A, B, and C.

Three selectivity expressions and one mole fraction constraint may be written for this

system yielding,
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(V-ll)

(V-12)

(V-13)

Assuming known activities, capacity, and total ionic interfacial concentration, the

*system is overspecified with four equations and three unknowns. The values of X A,

* *X B , and Xc can be solved with two of the three equilibrium expressions and the mole

fraction constraint (Mehablia et 811., 1996).

Extending the system to include four ions, A, B, C, and 0, introduces three more

equilibrium expressions which include ion D, as shown below.

(V-14)

(V-IS)

(V-16)

Maintaining the previous assumptions, the system is now overspecified with seven

equations and four unknowns. The mole fraction constraint must be satisfied and is by

default included in the equation set, leaving six given equations and three equations

required for problem solution. Applying the elementary statistical combination, C~,
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leads to a total of20 possible solution sets. The interfacial solution fractions may be

calculated via non-linear optimization; however, Mehablia et al. (1996) identified the

most sensitive set of equations by recognizing each set of equations from the possible

twenty combinations has a common ion in the expression. A comparison of the model

results to the data obtained showed the best estimations were obtained when the most

highly selective ion was chosen as the common ion.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

An ideal multicomponent ion exchange reaction equilibrium model has been

successfully developed to calculate the interfacial ionic concentrations on the surface of

both cationic and anionic ion exchange resins. The model operates independently of the

fonn of the resin, and the results are in very close agreement with the model previously

developed by Sunkavalli (1996). The model showed good agreement when compared to

a monovalent binary" system; however, the model agreement was only adequate when

compared to a divalent binary system.

The implementation ofa non-ideal rnulticomponent reaction equilibrium model

has been investigated. Incorporating non-ideal multicomponent equilibrium into aMBlE

model will require binary equilibrium data from which resin phase activity coefficient

parameters can be regressed. After the thermodynamic parameters are regressed, the

simultaneous set of equations generated by the mole fraction constraints may be solved in

terms of the ion with the highest selectivity.

The author recommends investigating the possibility of extending the pseudo-ion

model to non-ideal reaction equilibrium, and the development of a binary reaction

equilibria database for estimating thennodynamic parameters.
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APPENDIX A

NUMERlCAL METHOD SELECTION

*The Xref term in Eq. (IlI-29) may have fractional exponents which prevents an

analytical solution, however, we have the advantage of a bracketed root between 0.0 and

1.0. A numerical search algorithm must be employed to solve for the reference interfacial

equivalent ionic fraction. Three numerical methods were researched; the Newton-

Raphson iteration, regulafalsi (false position) and Ridder's method. Ridder's method

was selected for it's robustness and convergence properties.

The convergence properties of a numerical search algorithm is quantitatively

defined by the foHowing relationship,

(A-I)

where,

Cn+ I = the new interval resulting from an iteration

Cn = the interval used in the current iteration

m = an exponent denoting the order (superlinearity) of a search algorithm.

Simple numerical methods, such as the bisection method, are considered linear

models because the method calculates additional significant figures linearly with each

iteration. More complex numerical algorithms such as the Newton-Raphson iteration

have
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superlinear convergence, however, erratic local behavior in the function may diverge the

solution to infmity.

Newton-Raphson Iteration

The Newton-Raphson iteration was considered for this work because it converges

quadratically (m =2), however, it was discarded because occasional convergence

problems occurred when testing multicomponent systems. The convergence problems

were attributed to the analytical derivatives calculated within a separate function.

Numerical derivatives of the function were considered, but this would add a function call

and iteration to the algorithm and extend the run time of the procedure.

Regula Falsi (False Position) Method

The false position method was found to be adequate for solving Eq. (III-29), and

may be used instead of Ridders' method. Ridders' method is actually an extension of the

false position method, thus the false position method shall be discussed in detail before

discussing Ridders' method. The convergence properties of the false position method are

variable for reasons discussed below.

The false position method converges quickly for any function that is

smooth and continuous near a root (Press et aI., 1992). Consider any arbitrary smooth

function such as below.

The false position method assumes the function is linear in the local area of

interest, and finds the next estimate of the root at the point where the approximating line

crosses the x-axis. One of the boundary points is discarded in favor of the latest estimate

of the root after each iteration. Notice for this example that boundary point 1 may be

active for many steps. It is this property of the algorithm which causes the difficulty in
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predicting the convergence behavior. The false position method is often superlinear (m >

1); however, the exact order is function specific (Press et al., 1992).

f(x)

4
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/ /

/ /
/ /

//
//
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/

2

x

Figure A-I Graphical representation of the false position method. Interpolation lines are

dra\VI1 through the most recent point that brack,ets the root.

Ridders' Method

Ridders' method is a powerful extension of the false position method with

guaranteed solution and superlinear convergence. The algorithm begins the iteration by

evaluating the function at the midpoint of the interval.

(A-2)
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The method then factors out a umque exponential function which turns the

residual function into a straight line. This is accomplished by solving the following

equation for eQ.

(A-3)

Eq. (A-3~ is a quadratic equation in eO, which can be solved to give

(A-4)

where the 'sign' function refers to the sign of the function evaluated at X2.

The method now employs the false position method, but not to the functional

values at Xl, Xl, and X3. Instead the values f(Xl), f(x3)eQ
, and f(x2)e2Q are used. The

following updating formula yields a new guess for the root at )4.

X4~X3+(X3-Xl)~
~f(X3) - f(Xl)f(X2)

The updating fOffi1Ula has several beneficial properties.

(A-5)

• The updated root, X4, is guaranteed to lie in the interval (Xl, Xl), thus the method can

never jump out of the brackets (Press et aI., 1992).

• The convergence of successive applications of the updating formula is quadratic, i.e.

m = 2. However, the method requires two function evaluations, reducing the

convergence of the algorithm to .fi (1.414). This results in doubling the number of

significant digits with each two function evaluations (Press et aI., 1992).

• Linearizing the function with an exponential factor as opposed to curve fitting with a

parabola yields an algorithm of exceptional robustness.
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The author must note the 'sign' function present in Eqs. (A-4) and (A-5) may not

have the same syntax or may not be present in some versions of FORTRAN 77. lfthe

Ridders' method subroutine is incompatible with a specific compiler, the author

recommends applying the faIDse position search algorithm in Appendix C.
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APPENDIXB

TOTAL INTERFACIAL CONCENTRAnON DERIVAnON

The total interfacial concentrations of cations and anions are found as a result of

the derivations of flux expressions for the MBIE model. Flux expressions describing

multicomponent ion exchange process are derived using Nernst-Planck model and basic

principles ofion exchange. Haub and Foutch (1984) and Zecchini and Foutch (1990)

successfully applied Nemst-Planck model to describe film diffusion controlled mixed bed

ion exchange process. The expression for the total interfacial concentration is coded for

arbitrary muIticomponent species by Sunkavalli (1996).

The Nemst-PIanck equation is used to describe the flux of a given species within

the static film that is assumed around the resin bead. Neglecting the curvature of the film,

this expression is:

(B-1)

where is the electric potential and Zj is the ion valence. Assuming pseudo steady state

allows the replacement of partial derivatives by ordinary derivatives. The flux

expressions derived in this model are based on bulk-phase neutralization.

The conditions that must be satisfied within the film surrounding the resin are; 1)

electroneutrality, 2) no coion flux, and 3) no net current flow. Mathematically,
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"z·e- ="z·C·L.ll L.JJ (Electroneutrality) (B-2)

-

where 'i' stands for counterions and 'j' stands for coions

z·J· = 0J' J

"z·]· ="zJ .L.II L.JJ

(No coion flux)

(No net current flow)

(B-3)

(B-4)

From Equations (B-3) and (B-4) we have

"z.j· = 0L. 1 1

The total equivalent ion concentration can be defined as:

(B-S)

11 m
CT = (J) LZjC j = (J) j LZjC j (B-6)

i=l j=l

where 'n' is the number of counterions, 'm' is the number of coions and =+ 1 for cations

and -1 for anions.

Using the no coion flux condition (Eq. B-3), we have

dC·J
RTZj~

F rlc·J J

(B-7)

From the no coion flux condition we have that the sum of the coion fluxes in the film is

also zero. Now the electric potential term in the Nernst-Planck equation can be

eliminated in terms of the total equivalent concentration as:

d~

dr

m dC·
Lz·-J

RT j=l J dr

F m
" rlC·L. J J
j= 1

(B-8)

Introducing a mean coion valence defined as
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m
LztC·. J J
J=1

Zy = m

LZ'C,
. 1 J J
J=

(B-9)

and combining with the definition for total concentration (Eq. B-6), Eq. (B-8) reduces to

d~ = - RT_l dCT

dr zyF CT dr

Now the Nemst-Planck expression for counterions can be written as:

J. = _D.(dC i _ Cizi dCT)
I I dr CTzy dr

Using the no net current flow condition (Eq. B-5) and (Eq. C-ll), we get

n dC- n Co dCT"7·D·-1 + "z·D·N·-1 -=0L..-"-') I dr L..- I I I C d
i=l i=! T r

where

Z·
N·-_-l1-

Zy

(B-I0)

(B-ll )

(B-12)

(B-13)

For monovalent system of ions or equal valence system of ions, the above

equation could be easily integrated to obtain a relation between Ci and CT. This is not

possible in the case of arbitrary valences. At this point the method proposed by Franzreb

(1993) is used to proceed further. In this method, Eg. (8-11) is differentiated to eliminate

the unknown Ji. This leads to a homogeneous second order differential equation:

(B-14)
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This method leads to an exact solution for the case of equal valences and only an

approximation for the case of arbitrary valences. For counterions of equal valences,

summation ofEq. (B-14) for all the ions leads to

n d2C 1 de n dC 1 d2C n 1 (de )2 n__I T N _'_I + T T __L d 2 + C d L ; d C d 2 INjC j C2 dr LNjC j - 0 (8 IS)
,=1 r T r 1=1 r T r 1=1 T .=1

Substituting Eq. (C-6) and its derivatives in the above leads to

(B-16)

From the above equation it can be understood that for the case ofcounterions ofequal

valences, the profile of the total concentration in the film is linear. Zecchini and Foutch

(1990) arrived at the same conclusion in their model for univalent ternary ions. The

above equation combined with Eq. (B-6) can be used to obtain relationships between the

derivatives of Ci and CT Substitution of all these derivatives in Eq. (8-16) leads to

This is the Euler's differential equation the solution of which is

pz·e- = A'CT + B-CT-I [ I I

(B-17)

(B-18)

For the case of equal val:ences, we have P = Ni. Using the boundary conditions

the values of the parameters Ai and Bi can be determined as follows:

(8-19)
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and

(B-20)

Equation (B-18) gives us a relation between the individual ion concentrations, Ci and the

total equivalent concentration, Cr- Substituting for Ci and its derivative in the modified

Nemst-Planck Equation (B-l1), we get the following flux expression:

J. = - OJ dCT[(A' -PB.CT-P-1)+N.(A- +B.CT-
P- 1)]

I z. dr I I I I I
I

(B-21)

For the case of arbitrary valences, Eq. (B-18) is only an approximation. In this case

however, Ni is not the same for all the counterions and hence, P cannot be equal to Ni.

Combining the above equation with the condition of no net current flow (Eq. B-5) results

10

(~D.A +~NO.AJ +(~NOB. -P~D.B.JCT-p-, =0L-JII L-J111 L-Jill L-J.l
;=1 ;=1 ;=1 ;=1

(B-22)

The only way the above equation can hold true is when both the terms are equal to zero.

That leads to

n

I(1+ NJDjA i = 0
;=1

(B-23)

Substitution of Ai (Eq. B-19) in to above and some mathematical manipulations gives the

desired expression for total interfacial concentration, CT*:

(B-24)
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Equating the second parentheses tenn to zero and substitution of Bi would give us the

expression for the exponent Pas:

n

~N.D.(X~ _xo ),L.J I 1 I I

P = -,-,i~,-,-) _

!D;(X~ -X~)
;:)

(B-25)

In an equal valance case, P is equal to Ni and in an arbitrary case, it would be in the

neighborhood ofNi. The concentrations involved in this work are very low and lead to

lot of numerical errors and instability. Because of numerical discrepancies, sometimes

the value of P computed in the code is unusually high and leads to problems in further

computations. Hence the expression for P (Eq. B-26) is modified as follows:

~N.D.(X· - Xo)L.. I 1 I I

P = -".:;=:;.>.1 _

n

IDi(X~ -X?)
1=1

(B-26)

Once again substitution of the above equations into (B-11) and integrating between the

boundary conditions given earlier, We would get the final desired form of the ionic flux

expreSSIOn:

D j ( N i * 0 1 * 0 ')
J. =-l(l--)(C. -c. )+N.A.(l+-)(CT-CT»)

1 8 PI 1 11 P
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APPENDIXC

COMPUTER CODE

Note: This code is the intellectual property of Oklahoma State University. Any use
in whole or in part without the expressed written consent of the Oklahoma State
University School of Chemical Engineering is prohibited.

*-------------------------------------------------------------------*
* Driver for SUBROUTINE intercon
*-------------------------------------------------------------------*

*

PROGRAM Intdrive
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 K(]5),z(15),Y(]5),X(15),Q,Cto
INTEGER flag,n
READ(*,*) m
DO 50 j=l,m
READ(*,*) n, Q, Cto
READ(* ,*) (K(i),i=1,n)
READ(*, *) (z(i),i= 1,n)
READ(*,*) (y(i),i=l ,n)
CALL Intercon(Y,X,K,z,Cto,Q,n,flag)
IF (flag.eg.1 )THEN
WRITE(*,*)'Program failure: Check output for cause'
ENDIF

DO 15,i= l,n
WRITE(*,105) Y(l),X(l)

15 CONTINUE
50 CONTINUE
100 FORMAT(lx,a3,5x,a12,5x.,a7,5x,a8)
105 FORMAT(lX,e13.6,5x,e13.6)

STOP
END
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Pseudo-ion Equilibrium Model

*---------------------------------------------------------------------------------------*
* This subroutine calculates the interfacial liquid phase
* equivalent ionic fractions for a multicomponent ion exchange
* system for either a cationic or anionic resin. The given variables
* are Y(i), K(i), z(i), Q, Cto, n, and flag, where the dimensioned
* variables are input in the main program.
* The required input variables are:
* K(i) = the sdectivity of ion i with respect to a common
* reference, i.e. hydrogen, hydroxyl, amines etc.
• z(i) = the absolute value of the charge of ion i, i.e. 1
* for either hydrogen or hydroxyl ions.
* Y(i) = the mole fraction of ion i loaded within the resin
* at the time of calculation. *
* Q = the capacity of the resin (mol/liter)
* Cto = the total interfacial concentration of the ions.
* n = the number of counterions
* flag = a sentinel variable, default = 0, 1 if code in error

*---------------------------------------------------------------------------------------*

SUBROUTINE Intercon(Y,X,K,z,Cto,Q,n,flag)
IMPLICIT REAL*8(A-H,O-Z)
EXTERNAL pol
REAL*8 Y(15),X(15),K(l5),Kt(l5),z(l5),Cto,Q,Kref,lam( 15),ord(l5),
1 xsum
INTEGER flag,n

*---------------------------------------------------------------------------------------*
* Ensure the input data are suitable for execution.
*----------,-----------------------------------------------------------------------------*

Ytest = 0.0
flag = 0
DO 5 i=l,n

Ytest = Ytest + Y(i)
5 CONTINUE

IF (ABS(Ytest-l.O).gt.l.0e-5) THEN
WRITE(*,*) 'Initial loadings must sum to 1.0'
flag = I
RETURN

ELSEIF (CtoJe.O.O) THEN
WRITE(*,*) Total interfacia~ concentration equals zero'
RETURN
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ENDIF

*---------------------------------------------------------------------------------------*
* Calculate the mean selectivity, mean valence, and switch the reference
* reference ion to the pseudo-ion
*---------------------------------------------------------------------------------------*

CALL Selmean(K,Kref,Y,Yref,n,flag)
CALL Chargemean(z,zref,Y ,Q,n,flag)
CALL Selref(K,Kt,z,n,Kref,zref,flag)
IF (zref.eq.O.O) THEN

WRlfTE(*,*)'zref equals zero'
flag = 1

ENDIF

*---------------------------------------------------------------------------------------*
* Calculate coefficients and exponents of the mole fraction constraint
* polynomial.

*---------------------------------------------------------------------------------------*

DO 10 i = l,n
larn(i) = Y(i)*(Kt(i)**(-l/zref)*(Yref**(-z(i)/zref) *(Q/Cto )

1 **(I-(z(i)/zref))
ord(i) = z(i)/zref

10 CONTINUE
xl=O.O
xacc=le-9
x2=1.0
xroot = zriddr(pol,x 1,x2,xacc,lam,ord,n,flag)
DO 22 i = l,n

X(i)=larn(i)*xroot* *(ord(i»
22 CONTINUE

xsum = 0.0
DO 23 i = l,n

xsum = xsum + XCi)
23 CONTINUE

DO 24 i=l,n
Xci) = X(i)/xsum

24 CONTINUE
RETURN
END

*----------------------------------------------------------,-----------------------------*

*
*

*
*

* Function pol *
* Uses the coefficients and exponents generated in t,he main program to *
* calculate the functional value of the mole fraction constraint equation *
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*--------------------------------------------------------------------------------------*

FUNCTION pol(X,lam,ord,n)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8X,lam(15),ord(15)
INTEGERn
pol=-l.
D025 i= I,ll

pol =pol + lam(])*X**(ord(i»
25 CONTINUE·

RETURN
END

*---------------------------------------------------------------------------------------*
* Subroutine Sehef *
* This subroutine changes the reference ion in the selectivity *
* coefficient array for either cations or anions of arbitrary valence *
* The variables used are: *
* K = Selectivity array with common reference ion *
* Kref = Selectivity of new reference with respect to the old reference *
* n = number of cations or anions in system *
* z = ion charge array *
* zref = reference ion charge *
*---------------------------------------------------------------------------------------*

SUBROUTINE Selref(K,Kt,z,n,Kref,zref,flag)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8K( 15),Kt(15),Kref,z(15),zref
INTEGER n,flag
DO 10 i = I,n

if (Kref.eq.O.O) then
write (*,*)'Reference Selectivity equals zero'
flag = 1
return

endif
Kt(i)=(K(i)**zref)/(Kref**z(i»

10 CONTINUE
RETURN
END

*--------------------------------------------------------------------------------------*
* Subroutine Se1mean
* This subroutine calculates the mean selectivity coefficient
* given the current resin loading. See the docmuentation
* enclosed with this code for the derivation of the mean selectivity
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* coefficient
* Variables used:
* K(i)= Selectivity array with respect to reference ion
* Y(i)= Current resin loading (meq/ml)
* Yref = Equivalent ionic fraction of new reference ion,
* by definition it has a value of 1.0
* n = number of cations or anions (includes dissociative species
* Kref = the selectivity of the new reference ion with
* respect to the old one.
*------------------------------------------------------,---------------------------------*

SUBROUTINE Selmean(K,Kref,Y,Yref,n,flag)
IMPLICIT REAL*8(A-H.o-Z)
REAL*8 K(15),Kref,Y(15),Yref
INTEGER n,flag
Kref= 1.
Yref= 1.
DO 10 i = l,n

if (K(i).le.O.O) then
write(*,*) 'Negative selectivity'
flag = 1
return

endif
Kref= Kref*(K(i)**Y(i))

10 CONTINUE
RETURN
END

*---------------------------------------------------------------------------------------*
* Subroutine Chargemean *
* This subroutine calculates the mean ionic valence as described by
* Franzreb's flux expressions
* The variables used are:
* Q = the total capacity of the resin (meq/ml)
* z(i) = the charge array of either cations or anions
* zn = the summation term in the numerator of Fnmzreb's

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*

expreSSIOn
zd = the summation tenn in the denominator of Franzreb's

expreSSion
zref =:: the mean ionic valence
Y(i) =:: the equivalent fraction array of cations or

anions (meq/ml)
Yt(i) = mole fraction resin loading array (mol/l)
n = the number of either cations or anions
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*-------------------------------------------------------------------------------------*

SUBROUTINE Chargemean(z,zref,Y,Q,n,flag)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 z( 15),Y( 15),Qt(15),Q,zn,zd,zref
INTEGER n,flag
zn=O.
zd=O.
zref= O.

c Convert equivalent ionic capacities to molar capacities

DO 5 i = I,n
Qt(i) = Q*Y(i)/ABS(z(i»

5 CONTINUE

C Apply mean valence relationship

DO 10 i = I,n
zn = zn + (z(i)**2)*Qt(i)
zd = zd + z(i)*Qt(i)

10 CONTINUE
IF (zd.eq.O.O) THEN
flag = 1
WRITE(*,*) 'mean valence denominator equals zero'
RETURN

ELSE
ENDIF
zref= znIzd

RETURN
END

c Apply Ridder's method to search for polynomial root.

FUNCTION zriddr(pol,x 1,x2,xacc,lam,ord,n,tlag)
IMPLICIT REAL*8(A-H,O-Z)
INTEGER MAXIT
REAL*8 zriddr,xl,x2,xacc,pol,lam(15),ord(15)
PARAMETER (MAXIT=60,UNUSED=-1.11 E30)

INTEGER n,flag
EXTERNAL pol
INTEGERj
REAL*8 fh,tl,frn,fnew,s,xh,xl,xm,xnew
tl=pol(xl,larn,ord,n)
th=pol(x2,lam,ord,n)
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IF«fl.gt. O..and.fhJt.O.).or.(fIJt.0....and.fh.gt.0.))THEN
xl=xl
xh=x2
zriddr=UNUSED
DO 11 j=I,MAXIT

xm=O.5*(xl+xh)
fm=pol(xm,lam,ord,n)
s=sqrt(fm**2-fl*fh)
if(s.eq.O.)retum
xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fmJs)

IF (abs(~ew-zriddr).le.xacc) RETURN
zriddr=xnew
fnew=pol(zriddr,lam,ord,n)

IF (fnew.eq.O.) RETURN
IF (sign(fm,fnew).ne.fm) THEN

xl=xm
fl=fm
xh=zriddr
fh=fnew

ELSEIF(sign(fl,fnew).ne.fl) THEN
xh=zriddr
fh=fnew

ELSEIF(sign(fh,fnew).ne.fh) THEN
xl=zriddr
fl=fnew

ELSE
pause 'Ridders' method ineffective'

ENDIF
IF (abs(xh-xl).Ie.xacc) RETURN

11 CONTINUE
WRITE (*,*)'Ridders' method exceeded maximum iterations'

flag = 1
ELSEIF (fl.eq.O.) THEN
zriddr=xl

ELSEIF (fh.eq.O.) THEN
zriddr=x2

ELSE
WRlTE(*,*)'root must be bracketed in zriddr'
flag = 1

RETURN
ENDIF
RETURN
END
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Previous Ideal Multicomponent Equilibrium Model

Notes:
Subroutine requires same driver as 'SUBROUTINE Intercon'

SUBROUTINE multc(Y,X,K,z,Cto,Q,n,flag)
EXTERNAL pol
REAL*8 Y(15),X(I 5),K(15),z(l5),lam(15),Q,Cto,ord(15),Ytest,Xl ,X2

1 ,Xacc,pol,zriddr
INTEGER n,flag

*---------------------------------------------------------------------------------------*
* Calculate the values oflam for each component, and calculate
* the order of the concentration as detennined by the ratio of
* the ion valence to the reference ion valence.* >I<

DO I ii=l,n
IF (K(ii).1e.O.O)THEN

WRITE(*,*) 'Negative or zero selectivity value'
flag = I
RETURN

ENDIF
1 CONTINUE

Ytest = 0.0
DO 2 ii=l,n

YtesJ=Y(ii)+Ytest
2 CONTINUE

IF(ABS(l.O-Ytest).gt.l.0e-8)THEN
WRITE(*,*)'Initialloadings do not sum to 1.0'
flag = I
RETURN

ENDIF
IF (z(1).eq.O.O) then

write(* ,*)'Reference ion valence in muItc equals zero'
flag = 1
RETURN

ELSEIF(Cto.eq.O.O) THEN
WRITE(*,*)'Interfacial concentration equals zero'
flag = 1

RETURN
ENDIF
DO 10 i = l,n

lam(i) = Y(i)*(K(i)**(-1/z(1 )))*(Y(l )**(-z(i)/z(1 )))*(Q/Cto)
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1 **(1-(z(i)/z(l)))
ord(i) = int(z(i)/z(l»

10 CONTINUE

*---------------------------------------------------------------------------------------*
* Construct the polynomial and solve for the correct root using
* the Ridder false position method. The polynomial is found in
* FUNCTION pol

*---------------------------------------------------------------------------------------*

Xl = 0.0
X2 = 1.0
xacc = le-8
flag=O
Xr = zriddr(pol,x I ,x2,xacc,lam,ord,n,flag)
X(l)=Xr
DO 22 i = 2,n

X(i)=lam(i)*X( I)* *(ord(i»
22 CONTINUE

xsum =0.0
D023i=1,n

xsum = xsum + xCi)
23 CONTINUE

IF (ABS(1.0-xsum).GE.le-4)THEN
WRITE(*,*)'Interfacial concentrations do not sum to 1.0'
flag =]

RETURN
ENDIF
RETURN
END

*---------------------------------------------------------------------------------------*
* FUNCTION pol
* Calculates functional value of the polynomial derived from the mole
* fraction constraint.
*--------------------------------------------------------------------------------------*

FUNCTION pol(X,lam,ord,n)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 X,lam(l5),ord(15)
INTEGERn
pol=-l.
DO 25 i = l,n

pol = pol + lam(i)*X**(ord(i)
25 CONTINUE
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RETURN
END

FUNCTION zriddr(pol,xl ,x2,xacc,lam,ord,n,flag)
IMPLICIT REAL*8(A-H,O-Z)
INTEGER MAXIT
REAL*8 zriddr,x1,x2,.xacc,pol,lam(15),ord(15)

PARAMETER (MAXIT=60,UNUSED=-I.11 E30)
INTEGER n,flag
EXTERNAL pol
INTEGERj
REAL*8 fh,fl,fm,fnew,s,xh,xl,xm,xnew
fl=pol(xl,lam,ord,n)
fh=pol(x2,lam,ord,n)
IF«fl.gt.O..and.fh.lt.O.).OR.(fl.lt.O..and.fh.gt.O.»THEN

xl=xl
xh=x2
zriddr=UNUSED
DO 11 j=I,MAXIT

xm=O.5*(xl+xh)
fm=pol(xm,lam,ord,n)
s=sqrt(fm**2-fl*fh)
IF(s.eq.O.)RETURN

xnew=xm+(xm-xl)*(sign(I.,fl-fh)*fm/s)
IF (abs(xnew-zriddr).le.xacc) RETURN

zriddr=xnew
fnew=pol(zriddr,lam,ord,n)

IF(fnew.eq.O.) RETURN
IF(sign(fm,fnew).ne.fm) THEN

xl=x.m
fl=fm
xh=zriddr
fh=fnew

ELSEIF(sign(fl,fnew).ne.fl) THEN
xh=zriddr
fh=fnew

ELSEIF(sign(fh,fnew).ne.fh) THEN
xl=zriddr
fl=fnew

ELSE
WRITE(* ,*) 'Ridder's method ineffective'
flag = 1

RETURN
ENDIF
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IF(abs(xh-xl).le.xacc) RETURN
11 CONTINUE

WRITE(* ,*)'Ridders' method exceed maximum number of iterations.'
flag = I
RETURN

ELSEIF(fl.eq.O.) THEN
zriddr=xl

ELSEIF(fh.eq.O.) THEN
zriddr=x2

ELSE
WRITE (*,*)'root must be bracketed in zriddr'
flag=1
RETURN

ENDIF
RETURN
END
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