
OKLAHOM TATE U IVER81" Y

GNA95GP V2: AN ADA 95 GRAPHICS PACKAGE

FOR WINDOWS 95

By

YANG HUANG

Bachelor of Science

Fudan University

Shanghai, China

1989

Submitted to the Faculty of the
Graduate Co lege of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, .1997

GNA95GI) V2: AN ADA 95 GRAPHICS PACKAGE

FOR WINDOWS 95

Thesis Approved:

~/7yC1CYI/(~er y.

-}c£~

-d? :?- ,~~ ,/

Dean of the Graduate College

II

ACKNOWLEDGMENTS

r wish to express my sincere appreciation to my major adviser. Dr. K. M. George

for his intelligent supervision, constructive guidance, inspiration and friendship. My

sincere appreciation extends to my other committee members Dr. John P. Chandler and

Dr. George E. Hedrick. whose guidance, assistance. encouragement. and friendship are

also invaluable. J would like to thank Dr. K. M. George and Department of Computer

Science for providing me with this research opportunity and their generous financial

support.

More over, I wish to express my smcere gratitude to those who provided

suggestions and assistance for this study: Mrs. Lan Li, Mr. Shan Kuang. and Mrs.

Qiuye Wang.

J would also like to give my special appreciation to my wife. Jun Fu. for her

strong encouragement at times of difficulty, love and understanding throughout this

whole process. Thanks also go to my parents for their support and encouragement.

Finally, I would like to thank the Department of Computer Science for supporting

during these two years of study.

This research project is supported by DrSA DCA 100-96-10007.

III

Chapter

TABLE OF CONTENTS

Page

INT·RODUCTION ,.. 1

LITERATURE REVIEW 3

2.1 Review of Standard Graphics Package 3
2.2 Review of Graphics Device Interface (GDI) of MS 32-Bit Windows l0
2.3 Review of Ada 95 and GNAT Ada 95 Free Compiler 22
2.4 Review of RSX Free Windows Develop Kit 24
2.5 Review of Previous GNA95GP Version 25

GNA95GP GRAPHICS PACKAGE FOR WINDOWS 95 27

3.1 Software Dependency in GNA95GP v2 27
3.2 From GNA95GP vi to GNA95GP v2 28
3.3 Enhancement of GNA95GP under Windows 95 .33

SUMMARY 48

BIBLIOGRAPHY ' 50

APPENDIX A. GNA95GP V2 INSTALLATION AND USAGE .54

A-I. Introduction ' 54
A-2. Where to Hod GNA95GP v2 and other software 55
A-3. Installation of GNA95GP v2 55
A-4. Usage of GNA95GP v2 57

APPENDIX B. USER'S GUIDE FOR GNA95GP V2 STORAGE 59

B-1. Introduction 59
B-2. Limitation of GNA95GP v2 Storage Componet 59
B-3 Usage of Storage Structure 61

APPENDIX C DEMO PROGRAM USING GNA95GP V2 66

IV

Table

LIST OF TABLES

Page

Table 1. Mapping Modes of Windows (Adopted from (25]) 14

Table 2. Relation between XFORM and Transformation Operation 15

Table 3. Parameter List for CreatePenO .18

Table 4. Parameter List for ExtCreatePen() 19

Table 5. Functions and Procedures Associated with Storage Structure 36

Table 6. Storage Functions and Procedures in GNA95GP v2 .37

Table 7. GNA95GP's Compiler Tools and Equivalent Commands 58

\i

Figure

LIST OF FIGURES

Page

Figure 1: Layer model of GKS (adopted from (8)) .4

Figure 2. Relations among Four Coordinate Space 13

Figure 3. Overall Structure of GNAT CompilerI281 24

Figure 4. Implementation of Draw Pixel in GNA95GP 32

Figure 5. Definition of node structure ,.."' 41

Figure 6. Definition of element structure .42

Figure 7. Using vectors for hit test (adapted from [6)) .47

Vl

CHAPTER I

Introduction I
}

I
Today, computer graphics is widely used in several different areas. Many

graphics libraries and packages are available in public or proprietary domains. Why do

we still need to develop GNA950P, a 2D graphics package? Several factors such as

programming language binding and implementation platform are related to graphics

packages. GNA95GP provides a program library which is not previously available. It is

based on Ada 95, a new programming language and MS Windows environment.

Based on this author's experience, the graphics packages available in the public

domain are targeted for specific applications. either designed to be used with a single

high-level programming language, or difficult for novices to learn. In order to use

general purpose graphics libraries, such as X-Windows and MS Windows' GDl, one must

learn to do window programming and must know the functions provided in these

libraries. In contrast, GNA95GP is easy to learn. It absorbs the Windows overhead so

that users can focus their attention on doing graphics work.

Most graphics packages available in the public domain are written 111 the C

language or the Pascal language, such as standard graphics package Graphics Kernel

System (OKS) and Programmer's Hierarchical Interactive Graphics System (PI-IIGS).18.21)

Although Ada 95 is used as a primary programming language in many application areas

where graphics application. such as simulation and visualization, can be found. there is no

Ada 95 graphics package available in the public domain. To this author's knowledge,

GNA95GP is the first graphics package using the Ada 95 programming languagey3!

Targeted for undergraduate computer graphics courses, GNA95GP would be a

useful tool. It IS a free graphics package, and it is built on free software. Now

GNA95GP for MS Windows 3.x IS available at the World Wide Web site

http://www.cs.oksIQle.edu/gna95gp l l.1 l .

After Microsoft released Windows 95, many prevIous Windows 3.x users

upgraded their PCs' operating system to Windows 95 to take advantages of the new

system. Now, Microsoft 32-bit Windows systems (Windows 95 and Windows NT) have

become the standard operating systems for new IBM compatible PCs. This thesis is to

upgrade GNA95GP from Windows 3.1 to Windows 95 (also to Windows NT. because

the Windows development kits on which GNA95GP is based is a Win32 applications

develop environment for Windows NT and Window 95. Since Windows NT operating

system is not available for this research. the upgraded software has not been tested in

Windows NT environment.) A secondary objective is to enhance tbis package under the

new operating systems.

2

CHAPTER II

Literature Review

2.1 Review of Standard Graphics Package

Several standard graphics packages have been developed since the first graphics

standard package GKS (the Graphics Kernel System) was released. Two well-known

ones are GKS and its extension GKS-3D. and PHIGS (Programmer's Hierarchical

Interactive Graphics System) and its extension PHIGS+. There are also some unofficial

standard graphics packages. called industry standard packages, such as Adobe's

PostScript. Silicon Graphics' OpenGL and X-Consortium's X Window System.IIO
. II] One

of the advantages of a standard package]s that it allows the application programmer to

concentrate on projects without wasting time on low-level functions related to interactive

graphics programming. Brief reviews of standard graphics packages are presented below:

2.1.1 GKS (Graphics Kernel System)

Graphics Kernel System (GKS) is the first standard graphics package. It is an

ANSI (American National Standards Institute) standard graphics library, and is a

superset of the ISO (International Organization for Standardization) graphics library.

GKS adopts a layered architectures. Figure] presents the layer model of GKS. As we

can find in this model. each layer can call the functions from a lower adjoining layer.

.,
j

The top level of the model is the la.nguage-independent application interface. It is defined

by the OKS standard. The interface between the application layer and the language-

dependent layer is the language-dependent application layer (application oriented layer).

As a language independent standard. OKS has bindings to several programming

languages including FORTRAN. PascaL C and AdaJ21 . An important part of OKS is

graphical resources workstations. They arc graphical output devices and input devices.

Each workstation has a device driver. also called workstation driver. which translates the

device-independent representations of functions within the nucleus to and from the

workstation-specific representations. The main features are summarized below. They are

based on the works of G. Enderle. K. Kansy. G. Pfaff, F. R. David. F. James, J.

Leisy, and F Andriesls. 7.18.
191.

application program

appl ication-oriented layer I
language-dependent layer

I Graphics Kernel System

I operating system

Other resources IGraphical resources workstations

Figure 1: Layer model ofGKS (adopted from rSJ).

Graphics Primitives:

• Output Primitives: OKS provides six output primitives. They are POLYLINE

(straight lines connecting a given set of points). POL YMARKER (a specified symbol

centered on given positions). TEXT (character string starling from given position),

4

FILL AREA (a polygon which can be hollow or filled with the specified uniform

color, pattern. or hatch style). CELL ARRAY (an array of rectangular cells with

individual colors), GENERALIZED DRAWING PRIMITIVE (GDP, special

geometrical output capabilities of a workstation. such as spline curves, circular arcs,

and elliptic arcs).

• Logical Input Devices: GKS has six logical input devices. They are LOCATOR

(specify a positions by world coordinates). STROKE (a sequence of position in world

coordinates), VALUATOR (input a value of type real), CHOICE (a non-negative

integer selected from a set of alternatives). PICK (identify a display o~ject. such as

segment name or pick identifier), and STRING (input a character string).

Coordinate System:

GKS provides three coordinate systems, world coordinates (We, device

independent Cartesian coordinates), normalized device coordinates (NDC, device

independent intermediate coordinate system, normalized into a range which is usually 0

to 1 in GKS). device coordinates (DC device-dependent or workstation-dependent

coordinate system).

GKS Workstations:

Graphics workstations in GKS are an abstraction of physical devices. They are

divided into six categories, output workstation, input workstati.on, outputlinput

workstation, workstation-independent segment storage, metafile output, and metafile

input.

Segment:

5

GKS provides segments to group output primitives together in an appropriate data

structure, which can be addressed and manipulated as a unit. Each segment is identified

by a name specified by the application. Operations applied on a segment are open, close,

turn visible on and oft: IransjiJrm (scale. translate, rOlate) , copy, select, rename. highlight

on and off insertion and delete.

Operating Modes:

All workstations can be used through three interaction modes, REQUEST (device

is read only), SAMPLE (return current workstation input value without waiting for any

action), EVENT (insert user input value into a queue. if a device gets input from user).

Metafile:

A record of calling graphics GKS functions which generate graphics output

primitives. In GKS, a metafile is treated as a workstation which contains a sequence of

items. Each item has three components. item type, item data record length, and item data

record.

2.1.2 PUIGS and SPRIGS

Programmer's Hierarchical Interactive Graphics System (pHIGS) is another ANSI

and ISO standard graphics package. PI-HGS is designed to support highly dynamic and

interactive computer graphics applications. PHIGS provides a hierarchical graphics

database. The significance of this capability is that the elements of the database can be

edited while they are being displayed. Such functionality is highly desirable in several

different areas of applications. such as CAD or CAM (computer aided manufacturing), or

6

command_control system. It supports several platfom1s. It has a variety of programming

language bindings, such as FORTRAN, C and Ada.126. 15.29.16.30.17]

SPHIGS (Simple PHIGS) is a subset of PHIGS. It has most of PHIGS's

capabilities and power, but it simplifies or modifies several features. [I J I SPHIGS uses a

3D floating-point world-coordinate system (so is PI-JIGS), rather than a 2D integer

coordinate system. Therefore, it does not support direct pixel manipulation. This is one

of the three major differences between SPHIGS and integer raster packages, such as

SRGP(I' J. The other two main differences are that SPHIGS implements the 3D viewing

pipeline and maintains a database of structures. which group primitives, attri butes and

other information into a unit. The main features of SPHIGS are listed belowil'. 7. 18.19.
26 1:

CSS (Central Structure Storage)

Central Structure Storage (CSS) is one of the significant features of SPHIGS.

CSS stores a sequence of elements - primitives, appearance attrihutes, transformation

matrices. and invocations of subordinate s~ructures - in order to define a self contained

geometric object. To store elements in CSS. an entry in CSS is created to add a new

structure into CSS using a function call - void SPH_openStructure(int struclureID).

All elements specified between this function call and void SPH_cJoseStructureO

function call are stored under the entry structureID in CSS. Once a structure is closed, it

can be reopened for editing. At any time, only one structure can remain open. There are

two additional properties of a structure. One is that the structure IDs are integers. The

other is that all primitives and attributes appear only as elements of a structure. A

structure either is empty or contains as many elements as required to group into one

object. SPHIGS just records the structure. It does not display the structure, until the

7

application calls void SPHyostRoot(int structurelD, int viewlndex). This function call

causes SPHIGS to perform a depth-first display traversal of the structure's elements in the

CSS, executing each element in order from the first to the last. In addition, void

SPH_unpostRoot (int structureID, int viewlndex) can be used to remove the root from

the list of posted roots without deleting the entry from CSS. The information recorded in

CSS helps SPHIGS to update the screen image in order to match the current status of the

CSS and view table. An application either lets SPHIGS regenerate screen image

automatically or call SPHJegenerateScreenO to ask a screen regeneration explicitly.

Function deleteStructure deletes an entry or sub-entry from CSS.

Advantages and Limitation of CSS

There are three major advantages to CSS. The first is that whenever any change

in CSS is made by the application, SPHIGS automatically regenerates screen image to

match current status of the CS S and view table. The second is automatic pick correlation.

It helps SPHIGS to dctermi.ne the pr.imitive within CSS and its relative position selected

by the user. Once a structure is created in CSS, it can be edited later. The third

advantage of CSS is that is provides the facility for user application to create various

dynamic effects easily.

A storage facility such as CSS is neither necessary nor sufficient under some

cases. Applications can do screen regeneration by themselves. Some times, it is

necessary to keep all appropriate data for each object in another separate data structure.

One of the reasons is that application can not manipulate CSS as it does with structures

defined by itself. There are some limitations for application to query the CSS. Records

in data structures other than CSS and records in CSS must be synchronized properly. It is

8

overhead. For applicatrons with significant structural changes between succeSSIve

images, such as simulation of molecular movement. maintaining CSS is insufficient. So,

many implementations of graphics packages do not have any type of structure storage,

such as Windows GDI (will be discussed later). Some packages provide an option to usc

retained-mode (store the primitives in storage data structure first, then display them), or

immediate mode (not to keep any record, and display the primitives directly). The others

combine these two modes (application can keep some primitives' records in storage data

structure, while display the others directly).l1l1 The new GNA95GP version provides the

last type of storage structure.

Output and input features of SPHIGS are similar to those of GKS-3D. Output

features are POLYUNE. POLYMARKER. TEXT, FILL AREA, FILL AREA SET,

CELL ARRAY, GENERALIZED ORAWING PRIMITIVE (GOP). Input features are

LOCATOR, STROKE. VALUATOR, CHOICE. PICK and STRING. It also uses

REQUEST, SAMPLE and EVENT to handle interaction.

2.1.3 Simple Raster Graphics Package (SRGP)

As a device-independent graphics package, SRGP is designed as a raster graphics

package. Its output features are adopted from Apple's QuickDraw integer raster graphics

package and MIT's X Windows System. Also, the idea of input features come from OKS

and SPHIGS,lIlJ SRGP is implemented for X Windows and PCs, using PASCAL and

C.p IJ

9

The drawing primitives of SRGP, which are simi'ar to QuickOraw and Xlib

package of X Windows, are line. marker, polygon, circle, ellipse, and text. The origin of

its coordinate system is at the left bottom of the screen: x-coordinate increases from the

left to the right. and y-coordinate goes up from the bottom to the top. Drawing attrihutes

of SRGP for hne are width and style. Attributes for area are filling style. filling bitmap

pattern, filling pixmap pattern, and background color. Attributes for marker are style and

size. Attribute for text is font. There are two modes to handle interaction. sampling and

event.

Although SRGP is simple and easy to learn, and powerful for a large class of 2D

graphics applications, it has some limitations. First, SRGP uses integer coordinate

system. Many applications use floating-point world coordinates to store geometrical

information. SRGP does not provide any scheme for mapping world coordinates to

display device. Another important drawback is that SRGP doesn't keep any record of the

drawn primitives. Because of this shortcoming. in some cases, for example, when a

message box is removed, applications must respond to re-specify part or the entire set of

primitives to SRGP.

2,2 Review of Graphics Device Interface (GDI) of MS 32-Bit Windows

Graphics Device Interface (G01) is an integer raster graphics package of MS

Windows. As a subsystem of Windows operating system, GOl provides many functions

to dispby graphics on video displays and printers. User applications use GDI to display

10

visual information. and they also use these to exhi bit user interface, such as menus. scroll

bars, icons. and mouse cursors.

Windows 95 was introduced in August 1995. One of the significant differences

between Windows 95 and its previous version. Windows 3.x, is that Windows 95 is a 32

bit operating system. like Windows NT, another 32-bit window operating system of

Microsoft. Due to this difference, some functions are dropped while others are modified.

Although some new features are added to 32-bit Windows system. the core of GDJ hasn't

been changed since it was released with Windows 1.01251. In some ways, GOI is a high

level graphics interface language, with the capability to directly manipulate graphics

devicesY51 GDI provides communication between application and device driver. It

provides device-independent interface for applications while interacting with devices in a

device-dependent way.

2.2.1 Coordinate System

Windows has three coordinate systems. screen coordinates (refers to the whole

screen), complete windows coordinates (refers to an entire application window, includes

title bar, menu, scroll bar, statue bar. and window frame), and client-area coordinates

(area of application's windows except title bar, menu, scroll bar. statue bar, and window

frame, the one with which we most often work). Unlike a graphics package using

floating-point numbers for virtual coordinates. Windows uses signed 32-bit integer.

Coordinate space of Windows is based on Cartesian coordinate space. There are two

space types. logical space and physical space. One unit in logical space may represent a

11

pixel, 0.1 mm, 0.001 mm, 0.0 I inch etc. in real world. (depending on the mapping mode),

but the coordinate parameters passed into GOoI functions arc integers (number of units).

Applications use coordinate space and transformations to scale. rotate, translate. shear,

and reflect graphics output.

There are four spaces used by Win32 API (Application Programming Interface),

world space, page space. device space. and physical device space. World space and page

space are logic spaces. World space is usually used by applications to rotate, shear, and

reflect graphics output. Page space and device space work together to provide a device

independent view of the graphics hardware for applications. The back-end space of those

four coordinate spaces is physical device space. It usually refers to the client part of

application's window (or complete window). entire desktop. or a page of a printer.

Applications specify output primitives in logic space. Using transformation algorithm,

Windows maps those primitives to next coordinate space one by one until primitives are

finally displayed on physical device. Figure 2 represents the relation of those coordinate

spaces.

12

Logic Space

TransJateScaling

Translation
Scaling

Rotation
Shearing

Reflection

Physical Space
Device Space

maps origin of device spae
to proper point on physica
device

Physical
Device Space

Figure 2. Relations among Four Coordinate Space

The default transformation is page space to device space transformation. It

determines the mapping mode which is used by all graphics output associated with

particular DC (Device Context, a data structure defining the graphics objects. their

associated attributes, and the graphics modes affecting output on a device). A mapping

mode is a scaling transformation that translates logic units into device units. It specifies

the size of the units used for drawing operations. Mapping mode also determines the

orientations of the x-axis and the y-axis. The other attributes of DC, -- the window

origin, the viewport origin. the window extents. and the viewport extents - are

associated with mapping mode. Windows has eight mapping modes CTable I }.f25
1

I3

Applications call SetMapMode (hdc, iMapMod) to set the mappmg mode and call

GetMapMode (hdc) to obtain current mapping mode.

Table 1. Mapping Modes of Windows (Adopted from {251)

Increasing value

Mapping Mode Logical Unit x-axis y-axis

MM TEXT Pixel Right Down

MM LOMETRIC 0.1 mm Right Up

MM HIMETRIC 0.01 mm Right Up

MM LOENGLISH 0.01 in. Right Up

MM HIENGUSH 01001 in. Right Up

MM TWIPS I; . Right Up1440 In.

MM ISOTROPIC Arbitrary (x = y) Selectable Selectable

MM ANISOTROPIC Arbitrary (x != y) Selectable Selectable

Not much work is done by the transformation from device space to physical

device space. It is limited to translation and is controlled by window manager

component. Its only purpose is to ensure that the origin of device space is mapped to

proper position in the physical device.

World space to page space transformation is a new feature of Windows. World

space to page space transformation supports rotation, translation, scaling, shear, and

reflection. This transformation does n01 work until application first calls

SetGraphicsMode to set graphics mode to GM ADVANCED. and then calls

14

eMIl;
eM12;
eM21;
eM22;
eOx;
eOy;

SetWorldTransform to set this transformation. Unfortunately. Windows 95 does not

support GM_ADVANCED (at this time). It means that Windows 95 does not provide

rotation. shear and reflection capability. But Windows NT supports GM_ADVANCEO.

Maybe new versions of Windows 95 will support this feature. SetWorldTransform

receives a pointer to an XFORM structure. which contains appropriate values to deal

with transformation. Following is the definition of XFORM:

typedef stlUct {
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT

} XFORM;
The relation between values of XFORM elements and operations is shown in Table 2.

After sening elements of XFORM to appropriate values. applications use

SetWorldTransform (HOC, XFORM);

to set appropriate world to page transformation. after this. object may be drawn in world

space.

Table 2. Relation between XFORM and Transformation Operation

(Adopted from 131])

Operation eMll eM 12 eM21 eM22 eDx eDy

Scaling Horizontal Vertical
scaling scaling
component component

Rotation Cosine of Sine of Negative sine Cosine
rotation rotation angle of rotation rotation angle
angle angle

Reflection Horizontal Yel1ical
reflection reflection
component component

15

l
},

shear

Translation

Horizontal
proportionally
constant

Vertical
proportionally
constant

Horizontal
translation
component

Vel1ical
translation
component

~ ,
2.2.2 Interaction Handling in Windows i'j

Windows operating system itself is an interactive system, It provides many

means to accept user input. Windows 95 is the first operating system to support plug and

play(2)]. There are two basic modes used to handle interaction. sampling and event. As a

subsystem, GOI does not provide function to handle interaction. but it gets the message

passed from the system, and then outputs graphics primitives on physical device. The 32-

bit Windows, Windows NT and Windows 95, supports both true multitasking and

multithreading. Each 32-bit thread has its own message queue and all 16-bit processes

share one message queue. Every Windows application must have at least one window

procedure where the application actually process the message passed from the system.

The procedure is a call-back type procedure. It means that the procedure is not called hy

the application itself. but called by Windows system to process the messages associated

the application. Most common messages are put into its message queue, and are

processed in the first-come-first-out order. Some functions of API can send message that

bypass the message queue and directly to window procedure, For example,

UpdateWindow sends a WM_PAINT message directly to window procedure. When the

application window is resized or a cover window is removed, system puts a WM_PAINT

message in the application message queue. In window procedure. application can take

16

appropriate action to respond to the message. In the new version of GNA95GP. the

displaying routine is placed in windov,'s procedure to respond to WM_PAINT message.

Whenever application updates its recorded image information, it calls Update Window to

send a WM_PAINT message. The Windows system will put a WM_PAINT message

into the application's message queue whenever the application's window is destroyed.

2.2.3 Graphics Primitives

MS Windows' GDI supports Nne, curve, filled area, bitmap. and text. The

attributes information of these primitives are stored in Device Context (DC). MS

Windows uses DC to control GDI functions' behavior.

Line and curves

GDI provides straight lines, rectangles, polygons. ellipse, arcs, pies, chords, and

Bezier splines. Polyline is used to simulate other more complicated curves. The display

device needs only two functions. SetPixel and GetPixel (which draw pixel), to output

lines and curves. Windows uses pixel to simulate lines and curvesl251 .

Attributes of lines and curves are color. width. and style. They are determined by

Device Context (DC) and logic pen used to draw line and curve. The default logic pen,

selected into device context when Windows system creates a device context for

application program. is BLACK_PEN. This logic pen draws a one pixel wide black solid

line. If an application wants to draw lines using pen other than the default, it should

create a logic pen first using CreatePen (or ExtCreatePen). and then select the pen into

17

DC using SelectObject. After that. Windows uses the pen selected into DC to draw all

lines and curves until application de-selects the pen.

Win32 APr has two types of pens. cosmetic pen and geometric pen. Geometric

pen is new in Win32. Lines' (or curves') width. color, and style are specified by current

pen. The current pen is defined by its attribute. Function CreatePen creates a cosmetic

pen, which is same as the pen in Win 16125J . The parameter list for the function is given in

Table 3. Following is an example usage:

HPEN hPen = CrealePen (iPenStylc, iJiVidth, rgbColor):

Function ExtCreatePen is an extension of CreatePen, which is new in Win32. It can

create cosmetic pen or geometric pen. Table 4 contains the parameter list required for the

function.

Table 3. Parameter List for CreatePenO

Parameters

iPenStyle

iWidth

rgbColor

Purpose

Pen's style

Width of pen

Pen's color

Options and Comments

PS_SOLlD, PS_DACH, PS_DOT, PS_DASHDOT,

PS_DASHDOTDOT. PS_NULL, PS_INSlDEFRAME

Cosmetic pen's width is specified in device units

The pen's type includes PS_GEOMETR1C and PS_COSMETrc. Win32 supports

all pen styles of Win16. In addition to the Win 16 pen styles, it also supports

PS ALTERNATE and PS USERSTYLE. Windows 95 does not support

PS ALlERNAIE and PS USERSIYLE styles. There are three end caps (end cap refers

to the appearance of the end point of a line), round. square. and flat. "Bevel", "round'\

and "miter" are attributes used at corners where lines meet. Current pen position, pen,

18

background mode. background color. and drawing mode will affect the appearance of

lines.

Table 4. Parameter List for ExtCreatePenO

dwPenStyle

dwWidth

lplb

dwStyleCoun/

IpStyle

Filled Area

Combination of pen type (PS_GEOMETRJC, and PS_COSMETIC),

style. end cap. and join attribute using bitwise OR

Width of pen. width of geometric pen is specified in logical units

Points to LOGBRUSH structure

length of IpStyle array if PS_USERSTYLE is set, otherwise must be

NULL

Points to an array specifying user defined style

I

to,

Any area enclosed by a series of lines or curves can be filled with current brush

object selected into device contextf25J . The default brush object selected into device

context is WHITE_BRUSH. one of six stock brushes (stock brush - standard colored

pattern of pixels used to fill an area[15 1
). it fills the interior area with white color, which is

the same as the default background color. The other five stock brushes are

LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and

NULL_BRUSH. When Windows draws filled area, such as rectangle, ellipse, chord, pie,

and polygon, it draws the outline of the area using current pen selected into DC, as it

draws any lines and curves. Windows fills the area using the brush currently selected into

DC. To fill the interior area using the brush other than those six stock brushes described

above. application needs to create a logic brush just like creating custom logic pen, and

then select it into DC. There are four functions available to create a custom brush,

]9

CreateSolidBrush, CreateHatchBrush. CreatePatternBrush. and

CreateBrushIndirect. CreateSolidBrush creates a brush filling the area with solid

color, specified by its only argument. CreateHatchBrush uses its first argument to

specify hatch mark style. and uses second argument to specify color of hatch mark. There

are six hatch mark styles, HS_HORIZONTAL, HS_VERTICAL, HS_FDIAGONAL,

HS_BDIAGONAL. HS_CROSS. and HS_DJAGCROSS. Windows uses background

mode and background color to fill the area between the marks. CreatePatternBrush

creates a brush based on bitmaps. Its only argument is handle of bitmap (handle - in

Windows, refers to a special variable that refers to an object, such as a handle of a

window. a handle of device context). The last function CreateBrushlndirect combines

the first three functions together. Its only argument points to a LOGBRUSH (logic

brush) structure, which specifies which brush style will be created, solid, hollow, hatch,

or pattern. SelectObject is used to select a brush into DC.

Similar to drawing polyline, Windows draws polygon using an array of POINT

structure. If the last point is not the same as the first one, Windows adds a straight line

connecting these two points. The filling of interior area of polygon is affected by the

filling mode. The filling modes are ALTERNATE and WINDING. ALTERNATE mode

only fills those interior areas which are accessible from outside the polygon by odd-parity

rule (same as SRGP). WINDING mode, on the other hand, fills all the interior area.

Text

Text attributes supponed by MS Windows are fOllt, color, and align. There are

two font types in MS Widows. GDI fonts and device fonts. GDI fonts come with GDI

package, and are stored in software format. Device fonts are device built-in fonts. GDI

:20

r

fonts include raster fonts. stroke fonts. and TrueType fonts. The default text color is

black. SetTextColor sets the output text color. The default align is TA_LEFT. in which

the position specified is the top left corner of the first character of the string. The other

attributes of device context which affect text appearance are background mode and

background color. These attributes determine how Windows fills the gap of the text.

Bitmap

Bitmap IS a matrix of bits associated with the pixels of a display device.

Generally, bitmaps are used to display image which needs to be drawn quickly. Most

applications of bitmaps in Windows are animation. The icons, mouse cursors, and

buttons are also constructed by bitmaps. There are two bitmap types, device-dependent

bitmap and device-independent bitmap (OIB). OlB was introduced in Windows 3.0,

which can be stored in disk files. The important difference between bitmaps and DIB is

OIB contains color table.

Bitmaps, brushes. fonts, pens, and regions (will be discussed shortly) are objects

of DC. If any of these types of objects is created, it must be deleted eventuaJJy. But the

objects currently selected into device context should not be deleted.

2.2.4 Metafiles

Windows can store bitmaps. But it takes too much storage space to store bitmap.

and bitmaps are device dependent. Metafiles are records of collection of GOT

commands[251. Due to this. graphics stored in metafile can be scaled to any size without

distortion. Metafiles can exist in memory or disk. Usually, several programs can share

21

a picture using metafiles through clipboard. Windows NT and Windows 95 support

enhanced metafile format, which enhanced the old metafile format in the previous

Windows. Enhanced metafile format (EMF, or Windows metafile format WMF)

supports extensive header information which helps an application to redisplay the

metafile image.

2.2.5 Clipping, Region and Path

Clipping. region and path are three most powerful tools in GO]. Drawing can be

restricted in clipping area regardless of the actual shape of the picture. Clipping is

generally generated by a region or a path. A region is an area of any shape. Application

can create a region using the primitives rectangle, polygon, and ellipse. A region can

aiso be a combination of these regions. A more powerful way to generate clipping is

path. Path is new in Win32 APr, which is introduced in Windows NT and supported

under Windows 95. Path can be generated by a collection of straight lines and curves,

including Bezier spline. A path can contain sub-paths. which can be opened or closed,

Path can be fi lJed or be converted to region.

2.3 Review of Ada 95 and GNAT Ada 95 Free Compiler

Ada 95 is the extension of Ada which was developed in the late 1970s. It was

called Ada 9X and now is called Ada 95. Ada 95 is the only object-oriented language

r

recognized by rso i241 . It supports package, generics, exceptions, private type.

22

--------------------------~

encapsulation. inheritance polymorphism and subprogram overloading. Ada 95 also has

well-defined interface to other programming languages. such as e 191.

GNAT (GNU NYU Ada Translator) is a free production-quality Ada 95 compiler,

which was originally developed by New York University. It is developed and distributed

under GNU General Public License published by Free Software Foundation. GNAT

fully supports all features of Ada 95. GNAT is a front-end and runtime system for Ada

95 and uses Gee as its back-end. GeC is the compiler of GNU (GNU is "Not UNIX")

system. which is a UNIX-compatible operating system. Originally designed to compile

C, Gee now is a multi-language compiler. It is used to compile C++. FORTRAN.

Objective-C and Ada. with multiple front-ends and several hardware targets. GCC is

fully written in eY' 28.,' There are several GCe types for different platfonns. such as

DJGPP (for DOS), and EMX (for OS2).

GNAT is ported to several different platforms. such MS DOS, OSlo Windows

NT, Windows 95. etc .. The newest released version (by this time) is GNAT 3.09, which

is validated on several platforms including Window NT (same as Windows 95). The

newest released version for MS DOS is GNAT 3.07 (using DJGPP version 2.0 as its

back-end). There are no significant differences between this version and the prior

version, GNAT 3.05, which also uses OlGPP 2.0 as its back-end[31• Since GNAT is

based on GCe, it uses different extensions of GeC as back-end for different platforms.

For example, GNAT uses OlGPP in its DOS extension (from GNAT 2.06 using DJGPP

1.0 to GNAT 3.07 using OlGPP 2.0). and uses EMX (Gee for OS2) in 052 version.

Figure 3 is the overall structure of GNAT compiler.

')'"--'

,'

~ ,

•
~
)
4
t
»

-

syntax Semantic

.:.)
....•>•
4
,~

I.

analysis

in Ada

in C

analysis

AST

expanslO

Gigi

Decorated AST

Gec

Procedural

I'

Figure 3. Overall Structure of GNAT Compilerl181

2.4 Review of RSX Free Windows Develop Kit

RSX Windows Development Kits are written by Rainer Schnitker[27
I. There are

three packages, RSXWDK. RSXNT. and RSXNTDJ. RSXWDK is an environment for

building 32-bit GNU-C applications for Windows 3.1. It needs DJGPP port of GNU

C/C++ compiler (only supports version 1.0) to compile the application program.

RSXNT and RSXNTDJ are environments for building 32-bit GNU-C application for

Windows NT and Windows 95. RSXNT is the original one. It needs EMX port of

GNU C/C++ compiler to compile the program. RSXNTDJ, which is a modified version

of RSXNT, needs DJGPP port of GNU C/C++ compiler (supports version 2.0) to compile

24

application programs. All these packages are free for non-commercial use. RSXNT and

RSXNTDJ implement most of the features ofWin32 API.

2.5 Review of Previous GNA95GP Version

GNA95GP is a free Ada 95 2D graphics package. The version for Windows 3.1x

is available in public domain. GNA95GP for Windows 3.x (GNA95GP vI for short) is

based on GNAT 2.06. RSXWDK. and DJGPP 1.0. GNA95GP vI borrows features from

SRGP for output and interaction handling, and from PHIGS for storage. The front-end

of GNA95GP is implemented in Ada 95. and its back-end is implemented in C.

Actually, GNA95GP is a Win32 graphics binding for GNAT. The implementation of

GNA95GP vI is influenced by its environment. GNAT is based on GCC which is

implemented in C. Both RSXWDK and DJGPP are implemented in C and use CIC++ as

.....
".)'."'.

their programming language. As a binding. GNA95GP ought to be a bridge (an

interface) connecting Ada 95 applications and the C development environment.

GNA95GP is designed to be used in MS Windows environment whose API is also

implemented in CIC++. Fortunately. GNAT provides "Pragm3 import" to import an

object or an entity wrinen in C and "Pragma export" to imporL Ada entity to C.

Although GNA95GP vI achieved most of the design goals, it has some

limitations. GNA95GP vI only supports GNAT 2.06 which is no longer supported by

GNAT support group. A lot of useful features of Windows is not supported by

GNA95GP vI. such as clipping region. GNA95GP vi has storage feature. But it seems

not efficient and does not provide llse-or-not-use options during programming. In some

cases. it becomes pure overhead. GNA95GP vI does not provide enough methods to

query the storage structure.

26

) ,

i I

..
J
~l

~I

?il
~l

1,

CHAPTER III

GNA95GP Graphics Package for Windows 95

GNA95GP for MS Windows 95 (GNA95GP v2 for short) is an upgraded and

enhanced version based on GNA95GP vI. The major work of this thesis include

upgrading GNA95GP vI from MS Windows 3.lx to MS Windows 95, and enhancing

the upgraded version under MS Windows 95. The enhancement work occurs in storage

part of the package. It includes redesigning storage part of the package. adding storage

option, and adding more powerful and convenient tools (method to query and maintain

storage database) to operate storage structure. Before presenting the work perfonned in

this thesis, a brief overview of software dependency in GNA95GP v2 is necessary.

3.1 Software Dependency in GNA95GP v2

Like GNA95GP vI. GNA95GP v2 has been developed based on three software

systems, OlGPP. GNAT Ada 95, and RSXWDK. In GNA95GP v2, we use DlGPP 200

(basic part of DlGPP version 2, which comes with GNAT 3.05 for DOS installation),

GNAT Ada 95 compiler version 3.05 for DOS (GNA95GP is not tested with GNAT

) ,

~ I

....
G
)!,.
II

'"

3.07), and RSXNTDJ. These software systems can be obtained from Internet.

Currently, these software systems can be found in the following WWW sites:

• GNAT 3.05 for DOS (include basic part of DJGPP) :

27

http://gnat.com or http://wv...w.cs.okstate.edu/gna95gp/gnat305 .

• RSXNTDJ:

ftp://ftp. un i-bielefeld .de/pub/systems/msdos/misc.

The documents about these software systems can also be obtained from the above

addresses.

3.2 From GNA95GP vI to GNA95GP v2

As we mentioned in the prevIOus chapter- one of the differences between

Windows 3.1x and Windows 95 is that Windows 95 is a 32-bit operating system. That

means every thing in Windows 95 is 32-bit. In Windows 95. it is unnecessary to

distinguish short integer, integer, and long integer. Almost all 16-bit variables of

Windows 3.x are extended to 32-bit now[20
I. There is no difference between pointer and

far pointer. In Windows 3.x, a far pointer is a pointer reference to the address which can

not be represented in 16 bits. In Windows 3.x. holding this kind of value needs a

variable declared as far rointer. for example. char far * mystring. Because of this

change, some Windows 3.x defined date types are dropped by Windows 95, such as. FAR

PASCAL POINT FAR. etc .. Although some data type tags are still used in Windows 95,

the data types they represent are changed. For example, UINT is defined as unsigned

integer in both of Windows 3.1x and Windows 95. It represents an 32-bit integer in

Windows 95 but 16-bit in Windows 3.x. Another example is WPARAM. Every

window program for MS Windows must use this data type. Windows programming

28

') ,

:l i

always deals with message. In Windows, type MSG is the data type for each message

variable (holding message information). The type declaration is given below:

typedef struct tagMSG (
HWND hwnd:
UINT message:
WPARAM wParam:

} MSG;

The third member of MSG has the data type WPARAM. Every Windows application

should have a window procedure (commonly called window proc, usually written as

WndProc)[251, where the real action occurs. The usage of window proc is:

LRESULTCALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

The third parameter of WndProc is also a WPARAM. In Windows 3.x, WPARAM was

defined as a WORD, which was a 16-bit unsigned short integer. In Windows 95,

WPARAM is redefined as a DINT, which is an 32-bit unsigned long integer, while

WORD still represents a 16-bit unsigned short integer. Because WPARAM and WORD

are same in Windows 3.x, there are a lot of applications which used WORD to replace

WPARAM. These include GNA95GP vI. For example, in win_devi.c of GNA95GP

v1, it defined a function to handle mouse button event as

void HandleWinButtonEvent (WORD wParam, LONG IParam) {... }.

In this case, WORD wParam should be replaced with WPARAM wParam. It is safe for

both Windows 3.x and Windows 95. All handles in Windows 95 are 32-bit. For those

applications which used exact type for handle passed or the return handle from Win32

API functions, it is a problem that need to be fixed. For example, the following code in

16-bit application:

29

~)

"r.,
"

:,

/* Create a new brush */
hBKrush = (WORD)CreateSolidBrtlsh(RGB(R.G,B»):

WORD hBKBrush: /* handle of brush, which determine how
Windows fills area inside an object */

II
II
I'
I'
II

Changes to

HBRUSH hBKrush:
/* Create a new brush */
hBKrush = (HBRUSH) CreateSolidBrush(RGB(R,G,B»;

in 32-bit application. This is also a common situation raised in Windows 3.x applications.

As a result of changing from] 6-bit to 32-bit. some new data types are defined to

iI,
1
~ I

~
::zj
......."

replace old data types. For example, FAR PASCAL is replaced by WINAPI and

CALLBACK. Because of this, functions WinMain and WndProc in Win Main.c of

GNA95GP vi need to be redefined. The definition:

INT PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR IpszCmdParam, (NT nCmdShow) {... }

long FAR PASCAL _export WndProc (HWND hwnd, UINT message,

UI TWPaJ'3m, LONG IParam) {... }

in GNA95GP vi are changed to:

int WINAPI WinMain (HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR IpszCmdParam, I T nCmdShow) {... }

LRESULT CALLBACK WndProc (I-1WND hwnd, UINT message,

WPARAM wParam. LPARAM IParam) {... }

in GNA95GP v2. In Windows 3.x, a 32-bi.1 variable returned from functions can pack

two 16-bit values into it. such as coordinate value returned from GOJ functions. But in

30

Windows 95. those functions need larger space than before to return widened values.

Thus, a few functions are no longer implemented in Windows 95, and the old functions

are extended to include a new additional parameter. This additional parameter of GDI

functions makes room to hold or passing widened coordinate values, which is packaged

into the simple variable returned from or passed 10 original function in Windows 3.x,.

For example. in GNA95GP, draw pixel is implemented as drawing a short line (two pixel

length) (see Figure 4). It moves current position to location (x, y) of the pixel, then

draws a line from current position (which is (x, y)), to (x+I, y). In GNA95GP vI, it

uses MoveTo to move current position to (x, y). In Windows 3.x, MoveTo is defined as:

,.,

DWORD MoveTo (HDC hdc,
int x,

int y
);

/* handle of device context */
/* x-coordinate of new position */

/* y-coordinate of new position */

It returns a 32-bit integer. Low-order of returned variable is logical x-coordinate of

previous position. and high-order of it is logical y-coordinate of previous position. In

Windows 95, all coordinate variables are 32-bit.

MoveToEx, which is defined as:

This function is extended 10

BOOL MoveToEx (HOC
int
int
LPPOINT
);

hdc, /* handle of device context */
x, /* x-coord inate of new position */
y, /* y-coordinate of new position */

IpPoint /* address of old position */

The return value is changed to indicate whether the function call succeeds or fails. An

additional parameter is added 10 hold previous position. The new parameter is a pointer

to a POINT variable, which is defined as:

typedef Slruct tagPOINT {
long x;
long y;

31

)

} POINT: f

It has 64 bits, enough to hold two 32-bit value. If an application does not want to keep

the old position, it can specify the fourth parameter as NULL.

There is. however. an exception. Windows still packages mouse location

message in one 32-bit variable. Low-order of the variable is x-coordinate, and high-

order of the variable is y-coordinate.

void Call_DrawPixel (slruct ELEMENT *ptr) {
struet param_DrawPixel *parameter:
parameter = (struet paralll_DrawPixel *)(ptr->pParam);
MoveTo (hde, parameter->x. pararneter->y):
LineTo (hdc. parameter->x+ I. parameter->y):

Implementation of DrawPixel in GNA95GP vI

void Call_DrawPixel (struci ELEMENT *ptr) {
struet param_DrawPixel *parameter;
parameter = (struct param_DrawPixel *)(ptr->pParam);
MoveToEx (hdc, parameter->x, parameter->y, NULL);
LilleTo (hdc, parameter->x+ I, parameter->y);

Implementation of DrawPixel in GNA9SGP v2

CALL_ prefix indicates that this function is called
by storage pan 10 display graphics prim itive.

Figure 4. Implementation of Draw Pixel in GNA95GP

So far, we have discussed only about window programming usmg one

programming language, namely C. There are also some potential problems caused by

the change when an application is written in more than one language. A potential

problem may raise when passing a variable among Windows C functions and functions

written in other languages. such as Ada 95, especially using pass by reference. The

problem is caused by the change of variable length in Windows 95.

32

•
~.

:~
.~ ,: •. I...
:.l3..
"

There is no significant modification in GNA95GP after upgrading the package

from Window 3.x to Windows 95. Although GNA95GP breaks the original Windows

message loop and sets up its own message loop, it still depends on the messages passed

from Windows operating system. GNA95GP deals with Windows' message system, gets

the messages from message queue and passes them to user graphics applications.

GNA95GP is written in Ada 95 and C. There are many information translations between

these two parts. Thus, much of upgrading work is to investigate each line of source code

of GNA9SGP vI, and removing the problems that are mentioned above.

3,3 Enhancement of GNA9SGP under Windows 95

Storage part of GNA9SGP v I is the weakest part of this version. Therefore, most

enhancement work is focused on this part. But storage part is not an isolated part in the

package. The enhancement work also covers graphics primitive part and event handling

part. Actually, all three parts are integrated into one unit after the package is enhanced.

The enhancement work includes redesigning structure of storage, adding z-order

concept, adding an option to allow a user to choose to use storage or not. adding more

convenient, effective tools to query and maintain storage data. The z-ordcr in this thesis

is the virtual z-axis in the direction normal to the screen plane (this plane is x-y plane),

from the screen plane to the user. If two or more o~jects overlap, the object displayed

later will cover the object(s) displayed earlier. The z-order is the order of displaying. A

more detailed description will be presented later. These enhancements change the entire

"":u

storage component of GNA95GP vI. Before we discuss enhancement details. 3

),,
comparison ofGNA95GP vI and GNA95GP v2 is presented in the next section:

3.3.1 New Features of GNA9SGP \'2

The first new feature in GNA95GP v2 is storage option. With this option, user

can decide whether to use retained mode or]mmediate mode during application

development. In GNA95GP vL there is only a retained mode. All graphics primitives

specified in user applications were recorded into storage structure first. and then

displayed. In GNA95GP v2. all graphics primitives and their attributes. which are

specified between a pair of procedure (or function) calls Gna95gp_OpenNode and

Gna95gp_CloseNode are recorded into storage structure as a group of graphics object

called a node. It can be either empty or has a set of graphics primitives. At any time.

only one node can be opened for editing. A node is similar to the structure of the

previous version. The rules about no,de are the same as rules about structure of the

previous version. Primitives recorded in storage structure can he edited later. Any

graphics primitive specified outside the pair of procedure (or function) calls is not

recorded in storage structure and is displayed directly. Because those primitives are not

recorded, there is no way to regenerate them.

The next new feature in GNA95GP v2 is that it will automatically regenerate all

primitives recorded in storage structure whenever the image is updated or damaged. The

previous version supports this function partially. It can regenerate the image when an

application finishes editing a structure. But it can not regenerate the image when the

34

I

I
:~
j I'·l .
~, I
j)
~~l~.,

Image IS damaged by events other than application updating its storage status.

GNA95GP v2 can regenerate image not only when current storage status is changed. but

also when image is damaged by changing window size. and ren10ving cover window of

message box. It is possible to specify primitives' coordinate location outside the original

application window. It won't be lost when application window is enlarged enough to

display full image.

The third significant new feature is that a node can be selected hy a given

location. In GNA95GP vI. it is impossible to query the storage structure in such way.

GNA95GP v2 provides a method to query the storage structure as to whether a location

lies inside a graphics object or 110t (i.e. supp0l1s pick-correlation). In other words, a node

it· '

I

can be selected by a cursor location. It is a new way for interaction handling in

GNA95GP v2. A selected node is the front most node on which the cursor is located.

The cursor can be inside the filled areas of the group or 011 its boundary. The selection

operation returns the node's ID which is selected by cursor.

Unlike the previous version, in which the ways Lo edit a structure or an element

are just inserting a new one and deleting an old one. GNA95GP v2 allows application to

have more ways to manage its image. Rather than inserting and deleting, application can

set a node or an element of current node (current node is the node opened by

Gna95gp_OpenNode cUlTently) visible or invisible, move an element around inside the

current node (change the display order), reset the attributes of the current element or

current node (the current element is the element of current node pointed by current

index), and move current element out of current node (ungroup and re-group). After

opening a node, application can change position and shape of the entire node by rotattng.

35

translating and scaling. Without opening a node. application can set node's visibility,

change display order of nodes (Gna95gp_MoveNode). merge two nodes (grouping), and

select a node by cursor location. Table 5 lists functions or procedures associated with

storage in GNA95GP v2 and their equivalent functions or procedures in the previous

verslOn. Table 6 describes action performed by the functions or procedures associated

with storage structure in GNA95GP v2.

Table 5. Functions and Procedures Associated with Storage Structure

_.

I
I

Storage functions and procedures in

GNA95GP v2

Gna95gp_OpenNode

Gna95gp_RotateNode

Gna95gp_Trans lateNode

Gna95 gp_ScaleNode

Gna95gp_CloseNode

Gna95gp_SetNodeVisible

Gna95gp_MoveNode

Gna95gp_DeleteNode

Gna95 gp_selectNode

Gna95gp_MergeTwoNode

Gna95gp_ SetElernentlndex

Gna95gp_OffsetElementl ndex

Gna95gp_ ShowElement

Gna95gp_UnshowElement

Gna95gp_ShowAIIElement

Gna95gp_ UnshowAII Elernellt

Gna95gp_DeleteElement

Gna95 gp_OffsetElement

Gna95gp_FrontElement

36

Equivalent functions and procedure in

GNA95GP vI

Gna95 gp_openStructure

N/A

N/A

N/A

Gna95gp_closeStructure

N/A

N/A

Gna95 gp_deleteStructure

N/A

N/A

Gna95 gp_ setElernentlndex

Gna95 gp_offsetElernentl ndex

N/A

N/A

N/A

N/A

Gna95gp_deleteElement

N/A

N/A

Gna95gp_BackElement

Gna95 gp_MoeElernentOutTo

Gna95 gp_GetDementNulll

Gna95gp_UpdateScreen

N/A

N/A

N/A

N/A

I,
I
I

.......

3.3.2 Redesign and Implementation of Storage Structure

GNA95GP is a 20 graphics package, All points are represented by x and y

values. But adding a virtual z-axis (z-order) is very useful. Although there is no z-axis

actually existing in the 20 display device, the different primitives' display order will

generate different effect of the image. It is possible that a primitive generated later

overlap the primitive generated earlier. A selection operation only selects the front most

graphics object, if two or more objects overlap. To facilitate this convenience, virtual z-

axis or z-order is used. The z-order is maintained by a linked list. The back end of z-

order is the head of the list, and the front end of z-order is the tail of the linked list.

Storage regenerates graphics primitives one by one from the head to tail of the linked list.

Z-order exists among nodes. and also among elements within a node. Operations

MoveNode, MergeNode, OffsetElemcnt, FrontElement, BackEJement, and

MoveElementOutTo are designed to adjust z-order (see Table 6) .

Table 6. Storage Functions and Procedures in GNA95GP v2

Function or procedure name

Gna95gp_OpenNode

Gna95 gp_RotateN ode

Actions performed
Open an existing node or create a new node; the initial
point to define or redefine a node. The node is set as the
current node.
Rotates a set ofprill1itives in a node after opening the node
(a group ofprill1itives) as the current node,

37

-------.

Gna95gp_Translate ode

Gna95gp_ScaleNode

Gna9Sgp_C10seNode
Gna9Sgp_SetNodeVisible
Gna95gp_MoveNode
Gna9Sgp_DeleteNode
Gna95gp_selectNode
Gna9Sgp_MergeTwoNode

Gna95gp_SetElementl ndex
Gna95gp_OffsetElementlndex
Gna9Sgp_ShowElement
Gna9Sgp_UnshowElement
Gna95gp_ShowAIIElement
Gna95 gp_U nshowAIIElement
Gna95gp_DeleteElement
Gna95gp_OffsetElement
Gna95gp_FrontElement
Gna95gp_ BackElement

Gna95gp_MoveElementOutTo

Gna95gp_ GetElementN um
Gna95gp_ UpdateScreen

Translates a set of prmlltlves grouped in a node after
opening it as the current node.
Scales a seT of primitives group in a node about the origin
after opening it as the current node.
Closes current node.
Changes visible attribute of node specified by 10.
Offsets a node in z-order
Deletes a node
Selects the front most node containing the point (x, y)
Merges first node into second node. Elements of the first
node are placed at the end of the second node
Sets current index
Offsets current index
Sets element visible
Sets element invisible,
Sets all elements visible
Sets all elements invisible
Deletes the current dement
Moves current element inside the current node
Bri ngs current element to the front of all the other nodes
Brings current element to the background of all the other
nodes
Moves current element from the current node, into the
node specifLed by ID
Gets the number of elements of the current node
Sends a signal to update the entire application's screen

Sometimes. setting a node or an element visible or invisible also adjusts z-order.

If an invisible node (or invisible element) is adjacent to a visible node (or visible

element), application can consider them as having the same z-order. Application then

can set them visible and invisible alternately at different time in order to obtain different

visual effects (animation scheme).

In GNA95GP vI, it is impossible to keep a primitive or a group of primitives in

the storage structure and temporally hide them. Visibility setting of nodes (or clements)

makes it possible. Application can edit invisible nodes or elements in the same way as

the others.

38

Graphics primitives are primitives with attributes. They either use default

attribute settings or use their own attribute settings. GNA95GP vI uses an attribute

inheritance ruleY·] This rule is effective in GNA95GP v2 also. In the previous version,

application has to delete and re-define a primitive in order to adjust an element's z-order.

This causes a problem - how to maintain elements' attribute setting coherence. An

attribute-setting is the set of attribute applicable to a drawing primitive. A complete-

attribute-setting of an element is the attributes-setting set by the previous elements

(defined as environment-atlribute-selling) and attributes-setting set by the element itself.

The attribute-setting set by the element has priority over the environment-at1ribute-

setting. That is, for a certain attribute item. if it is set by the previous elements and the

current element. the final attribute state is the state set by the current element, because the

element changes the attribute setting explicitly. When moving an element, the

environment-attribute-setting of the element is changed. According to attribute

inheritance rule, the complete-attribute-setting of the element is also changed. That

means the definition of the element is also changed. This is not the intend of the moving

element operation. If the previous attribute setting scheme is used to maintain attribute

coherence, an application needs to create and insert several new elements when an

element is moved. The new elements are attribute setting elements. So, in GNA95GP

v2. attribute setting is no longer an independent element in the node. Attribute setting is

considered as a part of an element. Assume an application wants to move element A.

Element B is the element that originally follows element A. After moving. element A is

inserted behind element C. To maintain the coherence of attribute-settings of element A,

B, and C for an element moving operation. the application only need to modify the

39

attribute-setting in element A. the attribute-setting in element, and the attribute-setting in

element C. That does not mean that each element has to include a complete-attribute-

setting in its structure. When a node is created, it inherits the system default attributes as

its attribute-setting. No attribute-setting information needs to be kept in the element.

Once an element changes its attribute-setting, the appearance attributes state remains

same until it is changed explicitly or the end of the node is reached. If only the

environment-attribute-setting is used, no attribute information need to be kept in the

element. When moving an element. application only have to do three things. First is to

keep environment-attribute-setting unchanged for the element which immediately

followed the moved element before moving, if there is one. Second is to keep the

complete-attribuTe-setting of moved element unchanged. The last thing is, after inserting

the moved element into its new position, to keep environment-attribute-setting unchanged

for the element which immediately follows the new position of moved element. if there is

one. To achieve all these things, appl ication only needs to modify these three elements'

attribute-setting. If the complete-attribute-setting of anyone of these three elements is

the same as its new environment-attribute-setting, no additional attribute information will

be kept in that element. Thus, less space and time are used. An element can also he a

pure attribute-setting element that is, an element without a primitive definition.

Once elements can be moved, it is possible to group or ungroup the elements.

Gna95gp_MoveElementOutTo and Gna95gp_MergeTwoNode provide these

functions.

In GNA95GP \'2. an application draws all recorded primitives and unrecorded

primitives in the same window. A unrecorded primitive's z-order is undefined. After

40

application updates a recorded primitive. the storage structure will automatically

regenerate all recorded primitives. It is possible that the regeneration will damage the

previously drawn unrecorded primitives. To minimize this damage, the actual

regeneration is limited in the areas where the updated node occupied before and after

updating.

l'0 implement the redesign, a new storage structure is defined. This storage

structure keeps the basic characteristics of the previous version's storage structure. The

architecture of the storage structure is a two level doubly linked list. The main list is the

node list. Each element in this list is a NODE structure. A NODE structure contains the

head of the second level linked list - a Iist of primitives.

New node structure has three additional members (see figure 5).

typedef struct NODE *pNODE;
stmcr NODE
{

} ;

int
int
int
pELEMENT
pELEMENT
HRGN
pNODE
pNODE

VisibleFlag:
NodelD:
Elem entN lim:
pElemCJ1L
pLastElemenL
NodeRgn:
prev:
next:

/* new. O. invisible. I. visible */

/* pointer to nrst element in the node */

/* new, pointer to last element in the node */

/* new. region occupied by node. */

Figure 5. Definition of node structure

Element VisibleFlag is added to indicate whether to display this node or not.

When regenerating the image. display routine checks this flag first.]f the node is

invisible, it is bypassed. A handle of region NodeRgn is added as a member of the node

41

structure. This member holds the identification of an area (region) of client window

which contains the primitives of the node. Every time Gna95gp_CloseNode is called,

this member is updated to hold new client window area occupied by updated node. The

procedure Gna95gp_CloseNode invalidates an area. This area includes the areas

(regions) which are occupied by the node before and after updating. This area is the area

where storage regenerating routine actually draws the primitives. The third new member

points to tail of element list.

typedef struct ELEMENT *pELEMENT:
struct ELEM ENT

\.
(,

int

int
illt
pATTRIBUTE
char
pELEMENT
pELEMENT

AttrFlag;

VisibleFlag:
PrimitivelD;
pAttribute;
*pParam;
prev:
next;

/* new, 1 indicates attributes are changed.
o indicates no change occurs,
pAttribute is set to NULL */
/* new, 0 invisible, I visible */

/* new, pointer to attribute setting, if changed */

Figure 6. Definition of element structure

Figure 6 gives the definition of element structure. Three new members are added

in this structure. The member VisibleFalg indicates whether the element is visible or not.

AttrFlag indicates whether attribute-setting is changed in the element. If attribute-setting

is changed i.n the element, this flag is set to 1, and the third new member pAttribute is set

to point to an attribute-setting structure, which is allocated dynamically to hold attribute-

setting information. When display routine is called to generate the image, it checks the

AttrFlag. If the flag is set to CHANGED, display routine reads the information stored in

42

the attribute-setting structure. and calls appropriate attribute-setting routines to set the

attribute. If the VisibleFlag is set to INVISIBLE. display routine bypasses the rest of the

element. Actual primitive definition information is stored in an appropriate parameter

structure pointed by member pParam. When rotating, transiating, and scaling operations

are applied to the current node. each primitive definition information, which is stored in

its parameter structure pointed by pParam, is recalculated by an appropriate operation

routine. New definition information is restored back to its parameter structure.

Application does not need to track the information by itself. Operations of rotating,

translating. and scaling are designed to be used only after a node is opened. This design

makes it possible for an application to apply a sequence of rotating. translating, and

scaling operations to the node before the node is redisplayed.

A new global flag StorageFlag is added. This flag and old global flag OpenFIag

work together to implement storage option. The StorageFlag indicates whether the

storage structure is updated or not. In GNA95GP v2, an application can update a node

without opening that node. such as Gna95gp_SetNdcvisible and Gna95gp_SelectNode.

The OpenFlag only indicates whether a node is opened or not. When these flags are set

to true, it indicates storage is being used and a node is opened 10 edit. When a primitive

is specified, an appropriate function (one of the functions defined in output.ads} is called.

This function checks these two flags. If these two are set to true, the function creates a

new element, fills the element structure with proper information, and inserts the new

element into the current node. If these two flags are set to be "False". the primitive

specifying function directly outputs the primitive onto the display screen.

43

When changing window size. removing a cover or other events generated by

something other than application itself Windows invalidates the damaged area.

Whenever an area of client window is invalidated by application itself or Windows

system, a WM_PAINT message is sent to window procedure. and then window

appl.ication can respond to the message with appropriate actions. GNA95GP rewrites the

message loop, and responds to the messages inside of WinMain function, unlike common

window applications responding to messages in window procedure (WndProc).

GNA95GP v I version calls displaying routine to display recorded primitives inside the

procedure Gna95gp_doseStructure which closes editing a node. When an application

closes a node, the displaying routine is directly called by the application. When using

GNA95GP, the main procedure written by users is "ada_main". This is the entry of user

application. The procedure "ada_main" is exported to C and called by WinMain function

(the main function of window program). When an event occurs, Windows system

converts the event into a message. and puts it into message queue. WinMain function gets

message through GetMessage function call. WinMain then passes back the message to

Windows system. Windows then sends it to the window procedure of the application.

Window procedure is the place where a window application actually responds to the

message. Window procedure is not called by WinMain directJyi2
5

1. WM PAINT

message is not handled by event handling routines in the previous version. All of these

make it impossible to cover the damaged screen destroyed by the events such as

changing window size, or removing cover window. In GNA95GP v2. the display routine

is placed in window procedure whenever regeneration is needed, the damaged area is set

as an invalid region. and Windows call display routine to update the invalid region.

44

.!I

!
'J, ,

I

When Gna95gp_SelectNodc function is called. it searches the entire recorded

primitives from the front node to the last node one by one according to their z-order

(traverse the linked-list from tail to head). Once a node IS selected,

Gna95gp_SeJectNode stops searching and returns the selected node's ID. To implement

this function. the member NodeRgn of a node structure is used. An area of the

application's wi.ndow identified by NodeRgll contains the object represented by the node.

For a filled graphics primitive (polygon, filled rectangle, and filled arc), the primitive's

region is the same as the area occupied by it. For an unfilled primitive (lines and curves),

such as polyline. rectangle. and elliptic arc. the primitive's region is the area bounded by

the primitive including the boundary. If the primitive is not closed. Windows assumes

that there is a straight line from the ending point to the starting point of the curve drawn

by the primitives. The node's region is the union of all its elements' regions.

First. Gna95gp_SelectNode checks whether the given location is within the

region of a visible node identified by NodeRgn or not. To implement this step, the

Win32 API function PtInRegion i.s called. Given a region identification and a location

(x, y), PtinRegi.on returns a Boolean value which indicates whether the location is inside

the region. If yes, further checking continues as outlined in the next paragraph. If not, it

bypasses the node .. and checks the next node. This scheme shortens the search lime.

Usually, most nodes are excluded from further checking.

If the location is inside the node's region, Gna95gp_SelectNode continues to

check whether the location is reaHy on the primitives of the node or not. If

Gna95gp_SelectNode determines that the location is on one of the elements of the node,

it returns the node's ID and terminates. If not. Gna95gp_SelectNode goes back to the

45

previous step. In this step, there are two cases, filled primitive. and unfilled primitive.

For filled primitive. Gna95gp_SelectNode checks whether the location is in the region of

the primitive. Under this case, two Win32 API functions are called. CreatePolygonRgn

or CreateEllipticRgn is called to calculate the region of the element. PtlnRegion is

called to check whether the location is on the element. For unfilled primitive, vectors are

being used. A curve is treated as a sequence of li.nc segments. Each line segment can be

considered as a straight line. The following method is used to determine if a location is

on a straight line:

Let a be a vector from one end point of the line segment to the location. Let b be

a vector in the direction of the line segment (see figure 7). Letp be the projection of a on

b, and e be normal to p such that a = p + e. Cursor location is presented by (x, y). Line

segment is represented by (xO, yO) and (xl, yl). lfthe length of e is less than half the

width of the line, direction ofp is the same as the direction of b. Then if the length ofp is

less than the length of b. location (x, y) is on the line segment (Figure 7(3»), That means

the line segment is selected by the cursor. In figures 7(b) and 7(c), even though the

length of e is less than half of the line width, location (x, y) is not on the line segment. In

figure 7(b), the length of p is longer than the length of b. In figure 7(c), the direction of

vector p and vector b are opposite.

46

e

(xO.yO)
(a)

(x. yl

p

(:-; I. y I) c

(xO. yO)

(C)

(b)

(x I. Y I}

\ (x. y)
\

\

\
\

I x 1, y I)

Figure 7. Using vectors for hit test (adapted from (6])

47

CHAPTER IV

Summary

As a free Ada 95 2D graphics package, GNA95GP is updated to be used under

Windows 95 and enhanced. Z-order concept is introduced into this package. Several

new features are added. More convenient tools to manage storage are provided.

GNA95GP now supports storage as an option. With this feature, an application

can decide whether to record a graphics primitive at the time it specifies the primitive.

Several new functions and procedures are added to support inter-node and intra-node

movement of primitives. Applications can use these functions to adjust primitives'

display order inside a node or among the nodes. In the new version, there are two

, ,
.Ii •

':i
,·:a

functions to support groupmg and ungrouping graphics primitives. They are

Gna95gp_MoveElementOutTo. and Gna95gp_MergeTwoNode. The procedures,

Gna95gp_RotateElement Gna95gp_TranslateElement, and Gna95gp_ScaleElement

provide convenient methods to edit a group of primitives. They can also be combined to

implement a complicated operation. and free the application to track actual change of

primitives' definition infomlation. Gna95gp_SeJectNode, which selects a node by given

location, gives a new way to query the storage structure. Setting the visibility of an

element or a node gives more efficient ways to change the appearance of an image.

Windows' region concept is used in the storage structure to minimize unrecorded

primitives' damage caused by updating recorded primitives. A convenient tool,

48

Gna95gp_UpdateScreen, gives application a new way to clear the entire screen and

regenerate all recorded primitives. Gna95gp_GetElementNum allows applications to get

the number or element in the current node.

Storage structure only records the information specified by functions and

procedures listed in the attribute package (attri but.ads, attribut.adb) and output package

(outpuLads, outpuLadb). A guide for installation of the package is provided in appendix

A. An users' guide is provided in appendix B. A demo program is given in appendix C.

49

Bibliography

1. Ada 9X Reference Manual, lntermetrics. Inc .. Cambridge, Mass, 1994.

2. Ada Information Clearinghouse. Ada/C's A vailable Ada Bindings Repor'- WWW

site: hnp:!/sw-eng.falls-church.va.us/Ada!C/tools/bi ndings/bindings95/htmlltac.html.

3. Ada Information Clearinghouse. Accessing tire Free GNA T Compiler for Ada 95,

Web site http://sw-eng.falls-church.va.us/AdaIC/docs/flyers/gnat.htm

4. Ada Quality and Style: Guidelines for Professional Programmers, Software

Productivity Consortium, Inc .. Herndon. Virginia, December. 1992.

5. Boach. G.. Software Engineering wittz Ada. The Benjamin/Cummings Publishing

Company, Inc .. Menlo Park, CA, 1987.

6. Crain, Dennis. Win32: Hit Testing Lines alUl Curves, Microsoft Developer Network

Technology Group, Microsoft Developer Network. April 1996, Microsoft Inc.,

Redmond. Wash.

7. David. F. R.. Computer Graphics Techniques: Theory amI Practice. Springer-

Verlag New York Inc., 1990,

8. Enderle, G., Kansy, K., Pfaff, G., Computer Graphics Programming: GKS - The

Graphics Standard. Springer-Verlag Berlin Heidelberg New York. 1987

9. Feldman, Michael B., Koffman, Elliot B., Ada 95 Problem solving and Program

Design, Addison-Wesley Publishing Company, 1996.

10. Foley.], D.. van Dam. Andries. Hughes. John r.o Computer Graphics: PrincipLes

and Practice, Second Edition. Addison-Wesley Publishing Company. 1987.

50

!.
\ !'., .. .
'~l

-I
,I,

11. Foley, J. D., van Dam, Andries, Feiner, Steven K.. Hughes.. John F., Phillips, Richard

L., Introduction to Computer Graphics, Addison-Wesley Publishing Company.

1994.

12. Gart, M. Illterfacing Ada to C - Solutions to FOllr Problems, TRl-Ada '95

Conference Proceedings. 28-34. November. 1995.

13. George. K. M., Li, Lan: Kuang. Shang, Huang, Yang, Gna95gp: Free Ada 952D

Graphics Package, WWW site: http://www.cs.okstate.edu/gna95gp

14. Gery, Ron, GDI Overview, Microsoft Developer Networ, Technology Group,

Microsoft Developer Network. April 1996. Microsoft Inc .. Redmond, Wash.

15. Information Processing Systems - Computer Graphics - Programmer's

Hierarchical Interactive Graphics System (PHIGS), Language Bindings,

FORTRAN, American National Standards Institute (ANSI)/Internationa1

Organization for Standards (1S0) 9593.1 1990.

16. Information Processing Systems - Computer Graphics - Programmer's

Hierarchical Interactive Graphics System (PHIGS), Language Bindings, Ada.

ANSI/ISO 9593.3: 1990.

17. Information Processing Systems - Computer Graphics - Programmer~\"

Hierarchical Interactive Graphics System (PHIGS), Language Binding.\", C,

ANSI/ISO 9593.4:1991.

18. James, F., Leisy, J., Computer Graphics: the principles behind the art and science,

Franklin, Beedle & Associates, Irvine, CA. 1989.

19. James, F., Andries, D.. Computer Graphics: Principle and Practice. Addison-

Wesley Publishing Company, Inc.. 1990.

51

l I'", I

~I
!

20. Kath, Randy, Porting 16-Bit Windows-Based Applications to Win32 , Microsoft

Developer Network Technology Group, Microsoft Developer Network, April 1996,

Microsoft Inc., Redmond, Wash.

21. Kosko, L.. PRIGS Reference Manual, O'Reilly & Associates, Inc., Sebastopol, CA,

1989.

22. Kuang. Shan, Event Handling in GNA95GP Graphics Package, M. S. thesis.

Department of Computer Science. Oklahoma State University, May 1997.

23. Li, Lan, Kuang, Shang. and George. K. M., A 2D Graphics Package in Ada 95,

10th Annual Ada Software Engineer, Education & Training (ASEET) Symposium,

Prescott, Arizona. June. 1996.

24. Li, Lan, Design and Implementation of A 2D Graphics Package in Ada 95, M. S.

thesis, Department of Computer Science, Oklahoma State University, Dec. 1996.

15. Petzold, Charles; Yao. Paul. Programming Windows 95, Microsoft Press. 1996.

26. Programmer's Hierarchical Interactive Graphics System (PlUGS), Federal

Information Processing Standards Publication (FlPS PUB) 153-1.

27. Schnitker. Rainer RSXNTDJ FTP: ftp:l/ftp.uni-bielefeld.de/pub/systems/msdos/misc.

28. Schonberg, Edmond, Banner. Bernard, The GNAT Project: A fiNU-Ada 9X

Compiler, Web site: http://www.gnat.com

29. Tech, Corrigendum, Programmer's Hierarchical Interactive Graphics System

(PRIGS), Language Bindings, FORTRAN, ISO/lEC (International Electrotechnical

Commission) 9593.1: 1990.

30. Tech. Corrigendum, Programmer's Hierarchical Interactil'e Graphics System

(PHIGS), Language Bindings, Alia, ISOI1EC 9593.3: 1990.

52

31. Win32 Programming's Reference. Microsoft Developer Network Library. April

1996. Microsoft Inc .. Redmond. Wash..

32. Young. Michael J.. Introduction To Graphics Programming For Windows 95:

Vector Graphics Using C++, AP Professional, Academic Press, Inc. 1996.

53

Appendix A. GNA95GP v2 Installation and Usage

A-I. Introduction

GNA95GP v2 is an upgraded version of GNA95GP v I. It is a 2D Ada 95

graphics package for MS Windows 95. GNA95GP v2 and its previous version

GNA95GP vI are all free software according to the definition of the Free Software

Foundation. The primary motivation for the development of GNA95GP is support for

undergraduate graphics education. GNA95GP is distributed with the expectation that it

will be useful, bu t WrTH OUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR PURPOSE.

GNA95GP v2 is developed using three software systems, GNAT 3.05 for DOS,

DJGPP version 2.0, and RSXNTDJ. GNAT is a free Ada 95 compiler, which was

originally developed by New York University. It is now maintained by Ada Core

Technologies Inc.. DJGPP is a free environment for developing 32-bits protected mode

software in C/C++ under MS-DOS, which was developed by OJ Delorie. RSXNTDJ is a

free environment for creating Win32 applications for Windows 95 and Windows NT,

which was developed by Rainer Schnitker. In order to use GNA95GP v2 correctly, these

three software have to be installed first. It is the user's responsibility to use these

software. Please read copyrights and licenses of these software before installing them.

54

A-2. Wh,ere to find GNA95GP v2 and other software

GNA95GP v2 is provided at WWW site: GNA95GP: Free Ada 95 20 Graphics

Package For PC (URL: http://www.cs.okstate.edu/gna95gp).

GNAT 3.05 for DOS is provided by Ada Core Technologies Inc .. Presently. this

software system through their WWW site: http://\vww.gnat.com. The basic part of

GNA95GP only needs basic part of DJGPP version 2.0. called OJGPP 200. The

hnp://www.cs.okstate.edu/gna95gp/gnat305.

GNAT 3.05 for DOS IS also available at WWW site: :~;

~"l
I
I

!,

installation of GNAT 3.05 for DOS includes the OJGPP 200. Presently, the DJGPP

version 2.0 is available at WWW site: http://www.delorie.com.

Currently, RSXNTDJ is available at FTP site:

ftp://ftp.uni-bielefeld.de/pub/systems/msdos/misc.

A-J. Installation of GNA95GJ> v2

Before installing GNA95GP v2. a user needs \0 install and setup GNAT 3.05 for

DOS (includes basic part of DJGPP) and RSXNTDJ correctly. These two software

systems come with the instructions for installation and setup. The recommend steps to

setup GNA95GP v2 are presented below:

• GNAT 3.05 for DOS installation and setup

The author recommends installation GNAT 3.0 for DOS before installing

RSXNTDJ. After downloading GNAT 3.05 from Internet, one will find that GNAT 3,05

comes with two installation executables (gi nstall.exe and dinstalJ.exe), and installation

55

instructions (readme.txt). Read the instruc60ns first. Then choose one executable to

instaU GNAT 3.05. The ginstall.exe installs GNAT 3.05 from hard disk, and the

dinstaH.exe installs it from floppy disk. Then follow the instructions of installation

executable to install GNAT 3.05. Installation program will put a GNAT 3.05 's document

named "gantinfo.txt" under the sub-directory "Gnat305s" of GNAT 3.05 home directory.

Read that document. and follow the instructions to test GNAT 3.05.

• RSXNTDJ insulation

Download the file "rsxntdj l.zip" from its FTP site. After decompressing the file,

read the file "rsxntdj .hlp". which is under the "doc" sub-directory of RSXNTDJ home

direct.ory. Follow the instructions to setup RSXNTDJ. Make sure that the path of

RSXNTDJ library precedes the library of GNAT 3.05, for example:

SET LIBRARY_PATH=D:\RSXNTDJ\L1B:D:\GNAT305\LlB;\GNAT305\LIB\ADALIB

If you run the command 'gce -v' you should get the message:

Reading specs from d:\rsxlltdj\1 ib\spees
gee version 2.7.2

If you install RSXNTDJ in a directory other than "D:\RSXNTDJ", read the instructions in

"rsxlltdj.hlp" to modify the "SPECS" tile in "\RSXNTDJ\LIB" directory.

• GNA95GP v2 insulation

1. Download GNA95GP v2 from "GNA95GP: Free Ada 95 2D Graphics Package" web

site.

2. Decompress the "gna95gp2.zip" file.

3. Read the "readme.txt" file.

56

4. Run the executable "setup.exe". and follow the instructions. Executable "setup.exe"

wiu setup GNA95GP correctly on you machine and create a batch file "gna95gp.bat"

under GNA95GP home directory.

• Uninstall GNA95GP

Delete entire GNA95GP directory.

A-4. Usage of GNA95GP v2

To build an executable of an Ada program usmg GNA95GP. the initial

environment memory must be least 2048. This can be set by the user using Windows 95

tools. Then. open a DOS box under Windows. Run batch file "gna95gp.bat". which is

created by GNA95GP installation. to set environment variables. Now, a user will be able

to build an executable from Ada source program. GNA95GP provides three convenient

tools to build executable from Ada programs. They are ca.bat, gplink.exe, and

gpmake.exe. Assume there is an Ada program nanlled "myprog.adb". The following

commands issued from the DOS prompt will build an executable file.

1. co myprog.adb

This command compiles the "myprog.adb", and generates an o~ject file "myprog.o".

2. gplink myprog.o

This command links the object file "myprog.o" with GNA95GP library, and generates an

executable file, whose default name is the first input file's name (excluding extension)

with the extension ".exe". In this example. the default name of output executable is

"myprog.exe". The "_0 " option ofgplink.exe is used to specify user speci.fied name. For

57

c

example, the executable name of "myprog.o" will change to "myexec.exe" if the

command used is "gplink -0 myexec myprog.o".

3. gpmake.exe

gpmake.exe is a tool which combines functions of etl.bat and gplink.exe into one. It has

two options, "_C" and "-0". They can not be used together. The option "-c" means

compiling the Ada program only. The option "-0" is the same as the option "-0" of

gplink.exe. Table 7 is the usage of GNA95GP's compilation tools and their equivalent

commands.

Table 7. GNA95GP's Compiler Tools and Equivalent Commands

•

Usage ofGNA95GP Compiler Tools

co myprog.adb

gp/illk myprog.o

gp/ink -0 myexec myprog.o

gpmake -c myprog.adh

gpmake myprog.o

gpmake -0 myexec myprog.o

gpmake myprog.adb

gpmake -0 myexec myprog.adb

I. See "gnatinfo.txt" of GNAT 3.05 for detail
2. See "rsxntdj.h Ip" of RSXNTDJ for detai I.

Equivalent Command

gee -c -0 myprog.adbl1]

gee -Zwin32 -0 myproglmp myprog.o/2}

gee -Zwin32 -() myexee.tmp myprogo[2}

ea myprogadh

gplink myprog ()

gplink -0 myexee myprog.o

ea myprogadb

gplink mvprog.o

ca myprog.adb

gplink -0 myexee mvprogo

The executable can be run from DOS prompt. After the file "rsxnt.dll" is copied

from "bin" sub-directory of RSXNTDJ into "Windows\system" directory, the executable

can be run directly from Windows.

58

L

Appendix B. User's Guide for GNA95GP v2 Storage

This user's guide is targeted for storage section of GNA95GP v2. The complete

document is included in the GNA95GP \'2 installation.

B-1. Introduction

Storage component of GNA95GP is a set of functions and procedures

implemented in Ada 95 and C that SUpp011 graphics applications to store graphics

primitives, maintain recorded information, and display recorded primitives. Retained

mode or immediate mode can be chosen during the programming. Compared to the

previous version, storage section of GNA95GP v2 provides several more powerful,

efficient, and convenient tools. With this storage section, G A95GP now supports

several new features. Applications can adjust displaying order of nodes or that of

elements in a node. temporarily hide nodes or elements from displaying, groups and

ungroup primitives, edit a node by rotating. translating, and scaling. All of the features

provided by the storage section of the previous version are also supported in this storage

section.

B-2. Limitation of GNA95GP v2 Storage Componet

Not all information specified by GNA95GP functions and procedures can be

recorded in storage strllcture. Only the primitives and attributes specified by the

functions and procedures defined in the attribute and output packages can be recorded in

59

..

storage structure when these functions or procedures appear between the pair of function

calls, Gna95gp_OpenNode and Gna95gp_CloseNode. These functions and procedures

are listed below:

Functions and procedures defined in attribute package:

• gna95gp_setLineStyle(lineStyle: gna95gp-'ineStyle);

• gna95gp_setLineWidth(lineWidth: integer);

• gna95gp_setColor(color: integer);

• gna95gp_setBackgroundCoJor(color: integer);

• gna95gp_setFillStyle(fillStyle: gna95gp_drawStyle):

• gna95gp_setFillBitmapPattern(patternIndex: integer);

• gna95gp_setWriteMode(mode: gna95gp_writeMode);

Functions and procedures defined in output package:

• Gna95gp_DrawPixel(x: in XCoord; y: in YCoord);

• Gna95gp_DrawMarker(x:XCoord; y: YCoord: MarkerSize: integer;

MarkerStyle: Gna95gp_MarkerStylc);

• Gna95gp_line (pi: in tagPoint; p2: in tagPoint);

• Gna95gp_RectanglePoint(leftbottomPoint: in tagPoint; rightupPoint: in tagPoint);

• Gna95gp_Rectangle(rect: in tagRectangle);

• Gna95gp_polyUneCoord(vertexCount: in PosIne X_Array: in VErtexXCoordList;

Y_Array: in VErtexYCoordList);

• Gna95gp_PoIyLine(vertexCount: in PosInt; vertics: in VErtexList);

• Gna95gp_Polygon(vertexCount: in PosInt: vertics: in VErtexList);

60

L

• Gna95 gp_FiliedRectanglePoint(1eftbottomPoint: in tagPoint;

rightupPoint: in tagPoint);

• Gna95gp_FilledRectangle{recl: in tagRectangle):

• Gna95gp_ellipseArc(Px: integer: Py: integer: RI: integer: Rs: integer;

Ang: float; StartAng: float; EndAng: float);

• Gna95gp_FilledEllipse(Px: integer; Py: integer: Rl: integer;

Rs: integer; Ang: float; StartAng: float: EndAng: float);

• Gna95gp_text(point: in tagPoint: text: String).

B-3 Usage of Storage Structure

To record primitives and attributes in storage structure, application needs to call

Gna95gp_OpenNode to define starting point explicitly. Any primitive or attribute

specified by function or procedure listed in the previous section after this point and before

the end point will be recorded in storage structure, and will be displayed by storage

displaying routines. Gna95gp_C1oseNode defines the end point and closes the

recording. At any time, only one node can be open for editing. Any primitive or attribute

specified outside the definition block will be displayed immediately on the screen, and no

infonnation about that is recorded.

In GNA95GP v2, when storage section record the primitives, attribute is no

longer an independent element in a node. It becomes a part of primitive element in the

storage structure. The attribute-settings specified immediately after a primitive definition

is considered as a pan of the primitive. Like the previous version, the appearance

61

•

sx. scale ratio along with x axi s: sy, scale ratio along with
none.

attributes state remams the same until it is changed explicitly or end of the node is

reached. The first element of a node can be a pure attribute-setting element. That means

an element only contains attribute setting. The visibility of the element is set as invisible

and the pointer to primitive definition is set as NULL. Attribute settings of unrecorded

primitives in this version are the same as in the previous version.

The usage of storage functions and procedures are presented below.

Function Gna95gp_ OpenNode(ID: integer) return integer:
Open a existing node or create a new node: The beginning point to define or redefine a
node. The node is set as cun-ent node.
Parameters: Node ID, if found in storage structure, an existing node is opened,
otherwise, a new node is created.
Return: integer. indicate whether the function succeeded or not. I, if succeeds;
otherwise O.

procedure Gna95gp_RotateNode(flag: integer; ang/e:float):
Rotate a set of primitives group in current node after open this node as cun-ent node.
Parameters: flag, if 1, rotate about x axis~ if 2, rotate about y axis, otherwise, rotate
about z axis; angle, rotate angle in degree.
Return: none.

procedure Gna95gp_Trans/ateNode(dx, dy: integer):
Translate a set of primitives group in cunent node after opening this node as current
node.
Parameter: dx, offset along x axis: dy. offset along y axis.
Return: none.

procedure Gna95gp_Sca/eNode(sx, sy: float);
Scale a set primitives group in current node about origin point after opening this node as
current node.
Parameter:
Return:

procedure Gna95gp_ C/oseNode:
Close current node.
Parameters: none.
Return: none.

62

•

procedure Gna95gp:-SetNodeVisible(ID, flag: integer):
Change visible attribute of node specified by ID.
Parameters: ID, node ID; Hag. if L set the node visible; if O. set it invisible.
Return: none.

procedure Gna95gp_Mm'eNode(lD, offset: integer):
Offset the node speci fied by ID;
Parameters: ID. node ID; if offs,et > O. move forward. if offset < O. move backward.
Return: none.

procedure Gna95gp_DeleteNode(ID: integer):
Delete the node specified by ID.
Parameters: node ID;
Return: none.

function Gna95gp_SelectNode(x, y: integer) retUrJ1 integer;
Select the front most node by location (x, y).
Parameters: location of cursor.
Return: selected node ID: 0, if no node is selected.

function Gna95gp_MergeTwoNode(nodeA, nodeB: intege.r) return integer:
Merge nodeA into nodeB. Elements of node A are placed at end of node B's elements
hst.
Parameters: ID of nodeA and ID of nodeB.
Return: 1. if succeeds: otherwise. O.

procedure Gna95gp:-SetElementIlldex(ilUl: integer):
Set current element index to indo
Parameters: index application wants to set
Return: none.

procedure Gna95gp_OffsetElementIndex(offset: integer):
Offset current element index.
Parameters: offset current index; if offset < 0, move backward; if offset> 0, move
forward.
Return: none.

procedure Gna95gp:-ShowElement(index: integer):
Set the element specified by index visible.
Parameters: element index.
Return: none.

procedure Gna95gp_ UnshowElement(index: integer):
Set the element specified by index invisible.

63

Parameters: element index.
Return: none.

procedure Glw95gp_SlwwAIIElement:
Set all elements of current node visible.
Parameters: none.
Return: none.

procedure Gila95gp_ UnsitowAIIElement:
Set all elements of current node invisible.
Parameters: none.
Return: none.

junction Gna95gp_DeJeteElemellt return integer:
Delete current element.
Parameters: none.
Return: 1. if succeeds: otherwise 0.

procedure Gna95gp_OffsetElement(ojjset: integer):
Move current element around inside the current node.
Paramders: offset, distance from current position. if offset> 0, move forward; if offset
< 0, move backward.
Return: none.

procedure Gila95gp_ FrontElement:
Move current element to the front of node.
Parameters: none.
Return: none.

procedure Gna95gp_BackEJement:
Move current element to the background of node.
Parameters: none.
Return: none.

junction Gna95gp_MoveElementOutTo(ID: integer) return integer:
Move current element from the current node, into the node specified by ID.

Parameters: node ID, if found in node list, the element is moved to the end of
the node; otherwise, a new node is created and the element is moved into the new node
Return: I, if succeeds, otherwise. O.

junction Gna95gp_GetElementNum return integer:
Get number of the elements in current node:
Parameter: none;
Return: integer, number of elements in current node.

64

pr.ocedure Gno95gp_ VpdateScreen:
Send signal to update entire screen
Parameters: none.
Return: none.

65

Appendix C Demo Program Using GNA95GP v2

The program presented below is a demo program using GNA95GP v2. It displays

Celsius and Fahrenheit measures as thermographs. Mouse click inside a thermographs,

will display appropriate degree in both thermographs and the appropriate values in boxes

above the thermographs. Mouse click "EXIT" box will exit the program. Mouse click

the locations outside those areas, application will display warning message.

with io;
use 10;
with in it;
use init;
with devices;
use devices;
with WinType;
use WinType;
with head;
use head;
with Output;
use Output;
with objtype;
use objtype;
with attrtype;
use attrtype;
with attribute;
use attribute;
with structure;
use structure;

procedure ada_main is

pragma suppress(AII_Checks);

C_Meter: tagRectangle;
F_Meter: tagRectangle;
C_txtBox: tagRectangle;
F_txtBox: tagRectangle;
Exit_Box: tagRectangle;
C_Text: String(1..3);
F_Text: String(I ..3);

66

-

begin

C_Value: integer:
co: integer:
fD: integer:
F_Value: integer;
x: integer;
y: integer;
text_point: tagPoint:
ctext :tagPoint;
ftext: tagPoint:
warn_text: String := "Sorry! Try again";
timeout: integer;
measure: deluxe_locator_measure;
device: inputDevice:
dtext: ta.gPoint;
cy 1: integer;
cy2: integer;
fy I: integer;
fy2: integer:
ID: integer:
flag: integer;

Gna.t95gp_ in it;

-- create window and set device. mode

Gna95gp_CreatWindow("ADA WINDOWS--Celsius Fahrenheit Translator". 639, 479);
Gna95gp_setlnputMode(LOCATOR,EVENT):
Gna95gp_setlnputMode(KEYBOARD,INACTIVE);

-- make set rectangles' position

-- rectangle for Celsius thermometer
C_Meter := make Rect_Coord(200, 340, 250, 140);
cyl := 340;
cO := 10;
-- for Fahrenheit thermometer
F_Meter := makeRect_Coord(400, 340, 450, 140);
fyi := 340;
fD := 50:
-- for Celsius value display
C_txtBox := makeRect_Caard(200, 80. 250, 50);

-- for Fahrenheit value display

67

-

F_txtBox := makeRect_Coord(400. 80. 450, 50);

-- make rectangle box for "exit"
Exit_Box := makeRect_Coord(I00.360. 160,330):

-- make text point
text_point := makePoint{20, 100):
ctext := makePoint(200. 360):
ftext := makePoint{400. 360):

if Gna95gp_OpenNode(9) = I then

--draw rectangle

attribute.gna95gp_setColor{4);
Gna95gp_Filled Rectangle(C_Meter):
Gna95gp_CloseNode;

end if;

ifGna95gp_OpenNode(JO)= 1 then
Gna95gp_FilledRectangle(F_Meter);
attribute.gna95gp_setColor(4);
Gna95gp_CloseNode;

end if;

--write text

ifGna95gp_OpenNode(3)=1 then
Gna95gp_text(ctext, "Celsi us");
Gna95gp_text(ftext, "Fahrenheit");
Gna95gp_CloseNode;

end if:

--draw lines for Celsius thermometer degree

if Gna95gp_OpenNode(4) = I then
Gna95 gp-'ineCoord(250. 340, 260, 340);
Gna95gp-'illeCoord(250. 320, 255, 320);
Gna95gp_lilleCoord(250, 300, 260, 300);
Gna95gp-'ineCoord(250. 280, 255,280);
Gna95gp-'ineCoord(250. 260, 260. 260):
Gna95gp-'illeCoord(250, 240, 255, 240);
Gna95 gp_I illeCoord(250. 220, 260, 220);
Gna95gp-'ineCoord(250, 200, 255, 200);
Gna95gp_lineCoord(250, 180,260, 180);
Gna95gp_lineCoord(250. 160,255, 160);
Gna95gp_lineCoord(250. 140.260. 140);

68

-

-- display degree

dtext :=makePoint(265, 330);
Gna95gp_lext(dtex\. "-20");
dtext :=makePoint(265, 290);
Gna95gp_text(dtext, "0");
dtext :=makePoint(265. 250):
Gna95gp_text(dtext. "20");
dtext :=makePoillt(265, 210);
Gna95gp_text(dtext. "40");
dtext :=makePoint(265, 170);
Gna95gp_ t,ext(dtext, "60");
dtext :=makePoint(265, 130);
Gna95gp_text(dtext. "80"):

--degree for Fahrenheit

Gna95gp_lineCoord(450, 340, 455, 340);
Glla95gp_lineCoord(450. 330, 455, 330);
Glla95gp_lineCoord(450, 320, 460, 320);
Gna95gpjineCoord(450, 310, 455,310);
Gna95gp_IineCoord(450, 300, 455. 300);
Gna95gp_Iil1eCoord(450, 290, 455, 290):
Gna95gp_lineCoord(450, 280, 460,280):
Gna95gp_IineCoord(450, 270, 455, 270);
Gna95gp_lineCoord(450, 260, 455, 260);
Gna95gp_lineCoord(450, 250. 455, 250);
Gna95gp_lineCoord(450, 240. 460, 240);
Gna95gp_lineCoord(450. 230, 455, 230):
Gna95gp_lineCoord(450, 220, 455, 220):
Gna95gp_lineCoord(450, 210, 455. 210):
Gna95gpjineCoord(450, 200, 460, 200);
Gna95gpjilleCoord(450, 190, 455, 190);
Gna95gp_lineCoord(450, 180,455, 180);
Gna95gp_lilleCoord(450, 170,455, 170);
Gna95gpjineCoord(450, 160,460,160);
Gna95gpjineCoord(450, l50, 455. 150);
Gna95gp_lilleCoord(450, 140,455,140):

--display degree value

dtext :=makePoint(465, 310);
Gna95gp_text(dtext. "Oil);
dtext :=makePoillt(465. 270);
Gna95gp_text(dtexl, "40");
dtext :=makePoint(465. 230);
Gna95gp_text(dtext, "80");

69

L

dtext :=makePoint(465. 190);
Gna95 gp_text(dtext, "120")'
dtext :=makePoil1t(465, 150):
Gna95 gp_text(dtext, "160");
Gna95 gp_CloseNode;

end if;

if Gna95 gp_OpenNode(5) = I then
Gna95gp_ FilledRectangIe(Exit_Box);
gna95gp_setColor(3);
dtext := makePoint(115,335);
Gna95gp_text(dtext, "EXIT");
gna95gp_setColor(4);
gna95gp_setBackgroundColor(3);
GIla95 gp_CloseNode;

end if;

ifGna95gp_Open ode(6) = I then
Gna95gp_lineCoord(200. 340. 250, 340);
Gna95gp_setColor(6):
Gna95gp_CloseNode;

end if;

if Gna95gp_OpenNode(7) = I then
Gna95gpJineCoord(400, 340, 450, 340);
Gna95 gp_setColor(6);
Gna95gp_CloseNode;

end if:

if Gna95gp_OpenNode(8) = I then
Gna95gp_text(text_point, "Sorry. Try again!");
attribute.gna95gp_setColor(2);
Gna95gp_CloseNode;
Gna95gp_SetNodeVisible(8,0);

end if;

timeout := -1 ;
flag := 0;

loop
--get events
device := Gna95gp_waitEvent(timeout);

if(device = LOCATOR) then

--get mouse position
measure := Gna95gp_getDeluxeLocator;
if measure. button_chord(l) = DOWN then

70

-

x := measure.position.x;
y := measure.position.y;

-- if click mouse inside Celsius or Fahrenheit box
-- display degree and value in graphics box and text box

10':= Gna95gp_SelectNode(x, y):
end if;

ifID = 9 OR ID = 6 then
flag := 0;
Gna95gp_SetNodeVisible(8,0);
cy2 := y;

ifGlla95gp_OpenNode(6) = I then
Gna95gp_TranslateNode(O, cy2-cy I);
Gna95gp_CloseNode;
cyl := cy2;

end if:

Gna95 gp_ Fi IledRectangJe(C_txt Box);
Gna95gp_FilledRectangle(F_txtBox);
C_Value := (340-y)I2-20:
if(C_Value> 38) and (cO < 38) then

cO := C_Value;
if Gna95gp_OpenNode(9) = 1 then

Gna95 gp_SetElementlndex(1);
Gna95gp_setColor(2):
Gna95gp_CloseNode;

end if;
end if;
if(C_Value < 38) and (cO> 38) then

cO := C_Value;
ifGna95gp_OpenNode(9) = 1 then

Gna95gp_SetElernentlndex(l);
Gna95gp_setColor(4);
Gna95 gp_CloseNode;

end if:
end if;
Gna95gp_l1ufll_lo_string(C_Text, C_Value);
dtext:= rnakePoilnt(201, 55);
Gna95gp_setColor(4);
Gna95gp_text(dtext, C_Text):

F Value:= 9 * C Value / 5 + 32;- -
if(F_Value> IOO)and(fO< JOO)then

fO := F_Value;
if Gna95gp_OpenNode(l0) = 1 then

71

Gna95gp_setColor(2);
Gna95gp_CloseNode:

end if;
end if;
if(F_Value< 100) and(fO > 100) then

1'0 := F_Value;
if Gna95gp_OpenNode(10) = 1 then

Gna95gp_setColor(4):
Gna95gp_CloseNode:

end if;
end if:
Gna95gp_nulTI_to_string(F_Text, F_Value);
dtext := makePoint(40 I, 55);
Gna95gp_setColor(4);
Gna95gp_text(dtext, F_Text);
fy2 :=340- (F_Value + 20);

if Gna95gp_OpenNode(7) = I then
Gna95gp_TranslatcNode(O. fy2-fy I);
Gna95gp_CloseNode:
fyl := fy2:

end if:

elsif ID = 10 OR ID = 7 then
flag := 0:
Gna95gp_SetNodeVisible(8,0);
fy2 := y:

ifGna95gp_OpenNode(7) = 1 then
Gna95gp_TranslateNode(O, fy2-fy I);
Gna95gp_CloseNode:
fy 1 := fy2;

end if:

Gna95gp_FilJedRectangle(C_txtBox);
Gna95gp_FilledRectangle(F_txtBox):
F_Value := 340-y-20;
if(F_Value> IOO)and(fO< 100) then

fO := F_Value;
ifGna95gp_OpenNode(10) = I then

Gna95gp_setColor(2);
Gna95gp_CloseNode;

end if:
end if:
if(F_ Value < 100) and (fO > 100) then

fO := r Value:
if Gna95gp_OpenNode(l0) = I then

(jna9 5gp_setColor(4):

72

-

end if;

end loop;

Gna95gp_CloseNode;
end if;

end if;
Gna95gp_l1ulll_to_string(F_Text. F_Value):
dtext := makePoint(40 l. 55):
Gna95gp_setColor(4):
Gna95gp_text(dtexl, F_Text);

C_Value := (F_Value-32)*5/9;
if(C_Value> 38) and (cO < 38) then

cO := C Value:
ifGna95gp_OpenNode(9) = I then

Gna95gp_ SetElementl ndex(1);
Gna95gp_setColor(2);
Gna95gp_CloseNode;

end if;
end if:
if(C_Value < 38) and (cO> 38) then

cO := C_Value:
if Gna95gp_OpenNode(9) = I then

Gna95 gp_ SetElementlndex(1);
Gna95gp_setColor(4);
Gna95gp_Close ode;

end if:
end if:
Gna95gp_num_lo_string(C_Text. C_Value);
dtext := makePoint(20 1. 55):
Gna95 gp_setColor(4);
Gna95 gp_text(dtext, C_Text);
cy2 :=340-(C_Value + 20) * 2;

ifGna95gp_OpenNode(6) = I then
Gna95gp_'rranslateNode{O, cy2-cy I);
Gna95gp_CloseNode;
cyl := cy2;

end if;

elsi f JD = 5 then
exit;

else
ifflag = 0 then

Gna95gp_SetNodeVisible(8. 1):
flag := 1;

end if:
end if;

73

end ada_mam;

pragmaexport (C, ada_main, "ada_mailn"l

74

-

VITA

Yang Huang

Candidate for the Degree of

Master of Science

Thesis: GNA95GP V2: AN ADA 95 GRAPHICS PACKAGE FOR WINDOWS 95

Major Field: Computer Science

Biographical:

Education:
Received Bachelor of Science degree in Polymer Chemistry from Fudan
University, Shanghai, China in July 1989. Completed the requirements for
the Master of Science degree with a major in Computer Science at Oklahoma
State University in July 1997.

-

