NEURAL NETWORK LEARNING ALGORITHMS BASED ON LIMITED MEMORY QUASI-NEWTON METHODS

By
YIJUN HUANG
Bachelor of Science
Shanghai Institute of Education
Shanghai, China
1987
Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE
July, 1997

NEURAL NETWORK LEARNING ALGORITHMS BASED ON LIMITED MEMORY QUASI-NEWTON METHODS

Thesis Approved:

ACKNOWLEDGMENTS

I wish to express my deep appreciation to my thesis advisor Dr. J. P. Chandler, for his guidance in choosing the topic of this thesis, his skillful supervision, constructive suggestions and unceasing encouragement in solving problems that I have encountered throughout my work.

I extend my sincere gratitude to my other committee members Dr. G. E. Hedrick and Dr. H. Lu as well. Their patience and guidance in reviewing this thesis were invaluable.

I am forever indebted to my husband Debao Chen and our daughter Xuejing Chen, whose wholehearted support made this work possible.

Throughout my life, my mother Zhuang Li had given me immeasurable love and encouragement. She and my father were extremely proud of my entrance into graduate school and both hoped to attend my Hooding Convocation. Unfortunately, my mother passed away last November at age eighty-four and consequently was unable to witness the completion of my degree.

To her memory I dedicate this thesis.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1
2. NEURAL NETWORKS 4
2.1 Feed-forward Neural Networks 4
2.2 Problem Formulation 6
3. UNCONSTRAINED OPTIMIZATION 8
3.1 General Optimization 8
3.2 Gradient Methods 9
3.3 Quasi-Newton Methods 12
4. LIMITED MEMORY QUASI-NEWTON METHODS 14
5. COMPARISONS AMONG L-BFGS, PRAXIS AND DFMCG 21
5.1 Comparisons on Various Test Functions 22
5.2 Test Using Osborne Functions 30
5.3 Testing L-BFGS Using Different Numbers of Corrections 33
5.4 Lack of Quadratic Termination Property 34
6. TESTING 36
6.1 Some Aspects of Proben1 36
6.2 Language Implementation 42
6.3 Test Problems 44
6.4 Test Results 45
6.5 Test on XOR Problem 50
7. CONCLUSIONS 52
REFERENCES 53
APPENDIXES 57
APPENDIX A: Program List for DRIVEN.F 57
APPENDIX B: Program List for DRIVEF.F 68
APPENDIX C: Program List for MLBFGS.F 80

LIST OF TABLES

Table Page
TABLE 5.1 RESULT OF PRAXIS PROGRAM 23
TABLE 5.2 RESULTS OF DFMCG PROGRAM 23
TABLE 5.3 RESULTS OF L-BFGS PROGRAM 23
TABLE 5.4 ORIGINAL RESULT OF OSBORNE FUNCTION 1 31
TABLE 5.5 L-BFGS RESULT OF OSBORNE FUNCTION 1 31
TABLE 5.6 PRAXIS RESULT OF OSBORNE FUNCTION 1 31
TABLE 5.7 ORIGINAL RESULT OF OSBORNE FUNCTION 2 32
TABLE 5.8 L-BFGS RESULT OF OSBORNE FUNCTION 2 32
TABLE 5.9 PRAXIS RESULT OF OSBORNE FUNCTION 2 32
TABLE 5.10 RESULTS OF OSBORNE FUNCTION 2 FOR DIFFERENT M. 33
TABLE 5.11 RESULTS OF A QUADRATIC FUNCTION 35
TABLE 6.1 TEST PROBLEMS 44
TABLE 6.2 RESULTS IN PROBEN1 45
TABLE 6.3 RESULTS OF BULLDING2 $(M=5)$ 47
TABLE 6.4 RESULTS OF FLARE1 $(M=5)$ 47
TABLE 6.5 RESULTS OF THYROID1 $(M=5)$ 47
TABLE 6.6 RESULTS OF XOR PROBLEM WITH 2-4-1 NETWORK 50
TABLE 6.7 RESULTS OF XOR PROBLEM WITH 2-2-1 NETWORK 51

LIST OF FIGURES

Figure Page
FIGURE 2.1: ARCHITECTURE OF A THREE-LAYER NEURAL NETWORK.......... 5

1. Introduction

Our brains are huge biological neural networks made up of individual neurons that are extensively interconnected with many synapses. Today's artificial neural networks have arisen from attempts to model this biological structure with computer software.

Generally speaking, an artificial neural networks is an information processing system. It consists of a large number of artificial neurons which are interconnected together in order to solve a desired computational task.

Currently, neural networks are used in many fields, such as aerospace, automotive, electronics, financial, insurance, medical, transportation, and so on. For details of such applications, the readers are referred to [15,21,23,28]. In general, the most important and the most successful applications of neural networks can be classified as function approximation and pattern classification [21].

One important aspect of such research is focused on standard numerical optimization techniques. In neural network design, one usually uses the sum of squares of other nonlinear functions as the error function, and the objective of a learning algorithm for a neural network is to minimize the error function, or objective function. The minimization of this type of objective function is referred to as nonlinear least squares, which is a very popular category of optimization problem [44,47]. When the form of the objective function is known, it is often possible to design more efficient algorithms. The Gauss-Newton method, modified Gauss-Newton methods, and Marquardt methods are designed specifically for nonlinear least squares problems [47]. All of those methods are very efficient for some problems. Other useful methods of
general numerical optimization applied to neural networks are Newton methods and variations of them [$33,38,48,50$], the conjugate gradient methods [12,18], and the quasiNewton methods [20]. In general, the quasi-Newton methods are among the most efficient known general optimization methods. However, the storage requirements increase as the square of the number of variables of the objective function. Obviously, they are not suitable for very large neural networks. The limited memory quasi-Newton methods have been discussed in $[28,29,35]$, which limits the memory requirements in the process of optimization. Liu and Nocedal proposed an efficient limited memory quasiNewton algorithm [29].

The main purpose of this thesis is to design a supervised learning algorithm based on a limited memory quasi-Newton method to train fully-connected feed-forward neural networks.

To evaluate the efficiency of the limited memory quasi-Newton method, we test this algorithm on various functions from $[5,39]$. We have to mention that the primary purpose of the limited memory quasi-Newton method is to minimize high dimension functions, especially functions with more than one thousand independent variables. The dimensions of the test functions in $[5,39]$ range from two to twenty. We see that the limited memory quasi-Newton method are very fast and robust for low dimension functions.

This thesis is organized into seven chapters.
In Chapter 2, we briefly explain fully-connected feed-forward neural networks and formulate the learning algorithm as an optimization problem. We only consider fully-
connected feed-forward neural networks in this thesis. Chapter 3 gives a brief review of unconstrained optimization. We concentrate our discussion on gradient methods, especially the Newton-like methods. Chapter 4 describes some details of the limited memory quasi-Newton method, and how it can be used in a neural network learning algorithm. In Chapter 5, we test the limited memory quasi-Newton method algorithm on various test functions from [5,39]. Chapter 6 explains how to implement and test our learning algorithm. The conclusions are given in Chapter 7.

In Proben1 [43], Prechelt collected a set of problems for neural network learning in the realm of pattern classification and function approximation. Proben1 contains 15 data sets from 12 different domains, and all of the data sets consist of real world data. We choose some data sets from Proben1 to test our algorithm. The rules and conventions of Probenl are followed strictly in our implementation.

2. Neural Networks

The main purpose of this chapter is to formulate the learning problem within the context of nonlinear optimization.

Artificial neural networks are much simpler than the biological neural networks. However, there are at least two similarities between them. First, both networks are highly-interconnected simple computational devices. Second, the connections between neurons determine the functions of the network. In the remainder of this thesis, "neural network" always refers to an artificial neural network or ANN.

In the literature, neural network architectures are characterized into three basic categories: Feed-forward, Feed-back, and Self-organizing neural networks. Although there are some essential differences among these categories, the common characterization of neural networks is an ability to learn. Learning is the process by which a neural system acquires the ability to carry out certain tasks by adjusting its internal parameters according to some learning scheme [24].

2.1 Feed-forward Neural Networks

In this thesis, we concentrate on one particular neural network category: fullyconnected, feed-forward neural networks.

A feed-forward neural network can be viewed as a system transforming a set of input patterns into a set of output patterns. It consists of an input layer, one or more hidden layers, and an output layer of neurons. Layers are connected by sets of weights. A neuron in any layer, except for the input layer, of the network is connected to all the neurons in the previous layer. A neural network connected in this way is referred to as
fully-connected. The input signal propagates through the network in a forward direction, from left to right, on a layer-by-layer basis. Such neural architectures are called feedforward since the output of each layer feeds the next layer of units. The network can be trained to provide a desired response to a given input. The training of feed-forward neural network often requires the existence of a set of input and output patterns, called the training set. This kind of learning is called supervised learning [24].

Figure 2.1: Architecture of a Three-Layer Neural Network

2.2 Problem Formulation

Figure 2.1 is a multilayer feed-forward neural network consisting of three layers, made of a number of neurons. The network is fully interconnected from one layer to the next layer and the connections are represented by lines which are characterized by their weights. Based on the weights of all the input connections, each neuron computes a weighted sum of all the inputs and evaluates a nonlinear activation function using the sum as the argument of the function. In our algorithm, we choose the following widely used sigmoid function as the activation function:

$$
f(x)=\frac{1}{1+e^{-x}} .
$$

The result of this function evaluation is the output of the neuron. The objective of a learning algorithm is to find the optimum weights, to minimize the discrepancy between the outputs of a neural network at output layer and the desired outputs, corresponding to a set of specific inputs. The input-output patterns used for the learning are termed "examples" or "exemplars".

We define:
$l \in[1, L]$ where L is the number of layers in the network.
$n_{l} \in\left[1, N_{l}\right]$ where N_{l} is the number of neurons in layer l.
$p \in[1, P]$ where P is the number of examples in the data set.
$w_{n m}^{l}$ as the weight of the m-th input to neuron n in layer l.
$o_{p n}^{l}$ as the output of neuron n in layer l for example p.
$t_{p n}^{L} \quad$ as the desired output of neuron n in layer L for example p.

Based on the above definitions, if we define our objective function as the sum of the squares of output errors in the output layer (layer L) of a neural network over a set of examples, then

$$
E(w)=\sum_{p=1}^{P} \sum_{n_{L}=1}^{N_{L}}\left(o_{P n_{L}}^{L}-t_{P n_{L}}^{L}\right)^{2} .
$$

In the above optimization model, the learning corresponds to minimizing $E(w)$ with regard to the weight vector w. Thus, the training of a feed-forward neural network simply turns into a numerical optimization problem.

In our actual implementation, we use the squared error percentage which differs by a constant factor from the above error function. We explain the reason that we choose the squared error percentage in Chapter 6. However, this slight difference is not essential from the viewpoint of neural network training.

Our training is batch rather than incremental, that is the weights are updated only after the entire training set has been presented

3. Unconstrained Optimization

3.1 General Optimization

The nonlinear optimization problem can be stated as follows:
given a set $D \subseteq \Re^{n}$, and given a real function $f: D \rightarrow \Re$, find

$$
\min \{f(x): x \in D\}
$$

and the vector $x^{*} \in D$ where the minimum is achieved. Here f refers to the objective function, and D is called the feasible region. If $D=\Re^{n}$, the optimization problem is said to be unconstrained. In this case, nothing else needs to be said about how to specify D, since every vector in \Re^{n} is feasible [12,31]. The neural network learning algorithm can be treated within the context of nonlinear unconstrained optimization problems. This chapter gives a brief review of unconstrained optimization. Despite the diversity of both algorithms and problems, all of the algorithms that we discuss in any detail in this chapter and in Chapter 4 are all iterative processes which fit into the same general framework:

General Optimization Algorithm:

Specify some initial guess for the solution vector x_{0}.
For $k=0,1,2, \ldots$
If x_{k} is optimal, stop.
Determine an improved estimate of the solution: $x_{k+1}=x_{k}+\alpha_{k} p_{k}$.
Here the vector p_{k} represents a search direction and the positive scalar α_{k} is a step length that determines the point x_{k+1}. For our purpose, the word "optimize" means finding the value of x that minimizes f. For an unconstrained problem of this form, we require that
the search direction p_{k} be a descent direction for the function f at the point x_{k}. This means that for a small enough step taken along p_{k} the function value is guaranteed to decrease, in other words,

$$
f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right), \quad \text { for } 0<\alpha_{k}<\varepsilon
$$

for some $\varepsilon>0$. With p_{k} is available, we would ideally like to determine the step length α_{k} so as to minimize the function in that direction:

$$
\underset{\alpha_{k}>0}{\operatorname{minimize}} f\left(x_{k}+\alpha_{k} p_{k}\right) .
$$

This is a problem only involving one variable, the parameter α_{k}. The restriction $\alpha_{k}>0$ is imposed because p_{k} is a descent direction. The calculation of α_{k} is called a line search since it corresponds to a search along the line $x_{k}+\alpha_{k} p_{k}$ defined by α_{k}. However, it is not always the best to minimize $f\left(x_{k}+\alpha_{k} p_{k}\right)$ with regard to α_{k}. We discuss the line search in Chapter 4. Here we first discuss how to choose the search direction p_{k}, although in optimization algorithms the choices of p_{k} and α_{k} cannot be separated in general.

3.2 Gradient Methods

There are various methods to determine the direction vector p_{k}. The most popular methods are gradient methods, which use first, and sometimes second, derivatives of the objective function to compute p_{k}. The derivatives may be available analytically or perhaps are approximated in some way. When we discuss their properties in the following, we assume that the objective function has continuous second derivatives, whether or not these are explicitly available. As we mentioned in previous
chapter, we choose the sigmoid function as the activation function, so that the error function chosen in our training algorithms is infinitely differentiable, and the assumption of differentiability is always satisfied. In this thesis we design a learning algorithm based on a limited memory quasi-Newton method, so we concentrate on Newton-like methods in this chapter. For other optimization methods the readers are referred to any good book on nonlinear optimization, for example [12,47].

For convenience of further discussion, we first give some terminology and notations. Let f be a smooth, nonlinear function from \Re^{n} to \Re, the gradient of f is defined as:

$$
g(x)=\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)^{T}
$$

The Hessian matrix of f is defined as:

$$
B(x)=\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2}(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{I}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

By definition, a matrix A is positive definite if

$$
x^{\tau} A x>0
$$

for any vector $x \in \Re^{n}, x \neq 0$. We require that the Hessian matrix B be positive definite at the minimum of f. Then the inverse of the Hessian matrix exists. We denote the inverse matrix of the Hessian matrix of f as H.

One may choose a search direction, in which the objective function decreases fastest. For this purpose we choose $p_{k}=-g_{k}$, which is the opposite direction of the gradient vector. The corresponding method is referred to as the steepest descent method. It seems that steepest descent method is not a very good method in neural network learning since it is too slow in converging. Wang [51] compared his damped learning algorithm and the steepest descent method. Another popular method is Newton's method, in which one chooses the search direction as

$$
\begin{equation*}
p_{k}=-H_{k} g_{k} \tag{3.1}
\end{equation*}
$$

where $H_{k}=H\left(x_{k}\right), g_{k}=g\left(x_{k}\right)$ and H is the inverse Hessian matrix. Newton's method is not always feasible, since the inverse Hessian matrix may not exist. Even if H_{k} is invertible, it may not be positive definite, hence p_{k} may not be a descent direction.

To avoid computing any second derivatives of f, the Gauss-Newton method and Levenberg-Marquardt method $[27,30]$ were introduced. These methods need a particular form of the objective function. That is, the objective function is a sum of squares of some nonlinear functions. As we mentioned before, one often chooses such functions as the error function in neural network training, hence, the Levenberg-Marquardt method is usually considered as a good way to train neural networks [22,51]. However, we do not discuss these methods in detail in this thesis; their storage requirements are too great for very large networks.

3.3 Quasi-Newton Methods

Let us return to the general form of the Newton method with the search vector calculated at each iteration as in (3.1),

$$
p_{k}=-H_{k} g_{k}
$$

Here H_{k} is the precise inverse of the Hessian matrix at x_{k}. As was mentioned previously, H_{k} may not exist or may not be positive definite. To avoid such problems we use a BFGS update formula [47] to replace the precise inverse of Hessian matrix with a positive definite matrix, H_{k}, which is in some way an approximation of the inverse Hessian matrix.

Let

$$
s_{k}=x_{k+1}-x_{k}, \quad y_{k}=g_{k+1}-g_{k} .
$$

We define

$$
\begin{equation*}
H_{k+1}=\left(I-s_{k} y_{k}^{T} / y_{k}^{T} s_{k}\right) H_{k}\left(I-y_{k} s_{k}^{T} / y_{k}^{T} s_{k}\right)+s_{k} s_{k}^{T} / y_{k}^{T} s_{k} . \tag{3.2}
\end{equation*}
$$

Let

$$
\rho_{k}=I / y_{k}^{T} s_{k}, \quad v_{k}=I-\rho_{k} y_{k} s_{k}^{T} .
$$

Then (3.2) can be expressed as

$$
H_{k+1}=v_{k}^{T} H_{k} v_{k}+\rho_{k} s_{k} s_{k}^{T},
$$

where we store each H_{k} explicitly. It is easy to verify that if H_{k} is positive definite and $y_{k}^{T} s_{k}>0$, then H_{k+1} is positive definite also. We assume that $y_{k}^{T} s_{k}>0$ for all k. In
gradient-related methods this can always be done, provided the line search is sufficiently accurate. The search direction p_{k} is obtained from the matrix-vector product:

$$
p_{k}=-H_{k} g_{k}
$$

The quasi-Newton methods use an iterative process to approximate the inverse Hessian matrix, so that no explicit expression for the second derivatives is needed for carrying out a Newton-like search. Although the quasi-Newton algorithms require slightly more operations to calculate an iterate, and they require somewhat more storage than the conjugate gradient algorithms do, but in almost all cases, these additional costs are outweighed by the advantage of superior speed of convergence.

At first glance, quasi-Newton methods may seem unsuitable for large problems because the approximate inverse Hessian matrices are generally dense. In the next chapter, we discuss ways to cut down on storage in order to create limited memory quasiNewton methods for large problems.

4. Limited Memory Quasi-Newton Methods

In Chapter 3 we gave a brief review of unconstrained optimization. In particular, we discussed a quasi-Newton method. When we use a quasi-Newton method, we construct a sequence of matrices which in some way approximate the inverse Hessian matrix instead of storing the precise inverse Hessian matrix in each iteration. In such a way we avoid using the second derivatives of the objective function so that we save a substantial fraction of the computing time. However, it is necessary to have $O\left(n^{2}\right)$ storage locations for each H_{k}. In neural network training, in some cases, for example, one may need to use a large number of weights. Sometimes the network has many thousands of weights. In such a case, storage becomes an issue since it will be impossible to retain the matrix in the high speed storage of a computer.

In this chapter, we describe an algorithm which uses a limited amount of storage and where the quasi-Newton matrix is updated continually. At every step the oldest information contained in the matrix is updated and replaced by the newest information.

Recall that the BFGS update of H is:

$$
H_{k+1}=v_{k}^{T} H_{k} v_{k}+\rho_{k} s_{k} s_{k}^{T},
$$

where

$$
\rho_{k}=I / y_{k}^{T} s_{k}, \quad v_{k}=I-\rho_{k} y_{k} s_{k}^{T} .
$$

Let H_{0} be a given positive definite matrix. Then the above BFGS update gives:

$$
\begin{aligned}
H_{1} & =v_{0}^{T} H_{0} v_{0}+\rho_{0} s_{0} s_{0}^{T} \\
H_{2} & =v_{1}^{T} H_{1} v_{1}+\rho_{1} s_{1} s_{1}^{T} \\
& =v_{1}^{T} v_{0}^{T} H_{0} v_{0} v_{1}+v_{1}^{T} \rho_{0} s_{0} s_{0}^{T} v_{1}+\rho_{1} s_{1} s_{1}^{T}
\end{aligned}
$$

$$
\begin{aligned}
& H_{3}= v_{2}^{T} H_{2} v_{2}+\rho_{2} s_{2} s_{2}^{T} \\
&= v_{2}^{T} v_{1}^{T} v_{0}^{T} H_{0} v_{0} v_{1} v_{2}+v_{2}^{T} v_{1}^{T} \rho_{0} s_{0} s_{0}^{T} v_{1} v_{2}+v_{2}^{T} \rho_{1} s_{1} s_{1}^{T} v_{2}+\rho_{2} s_{2} s_{2}^{T} \\
& \cdots \\
& H_{k+1}= v_{k}^{T} v_{k-1}^{T} \cdots v_{0}^{T} H_{0} v_{0} \cdots v_{k-1} v_{k} \\
&+v_{k}^{T} \cdots v_{1}^{T} \rho_{0} s_{0} s_{0}^{T} \cdots v_{k} \\
& \cdots \\
&+v_{k}^{T} v_{k-1}^{T} \rho_{k-2} s_{k-2} s_{k-2}^{T} v_{k-1} v_{k} \\
&+v_{k}^{T} \rho_{k-1} s_{k-1} s_{k-1}^{T} v_{k} \\
&+\rho_{k} s_{k} s_{k}^{T}
\end{aligned}
$$

Instead of forming H_{k} explicitly, now we store previous values of y_{j} and s_{j} separately. Here m is a given integer that represents the maximum number of correction matrices that can be stored. Normally we choose $3 \leq m \leq 7$.

The following algorithm was given by Liu and Nocedal [28].

L-BFGS Algorithm:

Step 1. Choose $x_{0}, m, 0<\beta^{\prime}<1 / 2, \beta^{\prime}<\beta<1$, and a symmetric and positive definite starting matrix H_{0} (normally we choose a scaled diagonal matrix or I as the H_{0}). Set $k=0$.

Step 2. Compute

$$
\begin{aligned}
& p_{k}=-H_{k} g_{k}, \\
& x_{k+1}=x_{k}+\alpha_{k} p_{k},
\end{aligned}
$$

where α_{k} satisfies the Wolfe conditions [52]:

$$
\begin{aligned}
& f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+\beta^{\prime} \alpha_{k} g_{k}^{T} p_{k}, \\
& \left|g\left(x_{k}+\alpha_{k} p_{k}\right)^{T} p_{k}\right| \leq-\beta g_{k}^{T} p_{k}
\end{aligned}
$$

(We always try the steplength $\alpha_{k}=1$ first)
Step 3. Let $\hat{m}=\min (k, m-1)$. Update $H_{0} \hat{m}+1$ times using the pairs $\left(y_{j}, s_{j}\right)_{j=k-\hat{m}}^{k}$, i.e. let

$$
\begin{aligned}
H_{k}= & \left(v_{k}^{T} \cdots v_{k-\hat{m}}^{T}\right) H_{0}\left(v_{k-\hat{m}} \cdots v_{k}\right) \\
& +\rho_{k-\hat{m}}\left(v_{k}^{T} \cdots v_{k-\dot{m}+1}^{T}\right) s_{k-\dot{m}} s_{k-\hat{m}}^{T}\left(v_{k-\hat{m}+1} \cdots v_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\rho_{k-\hat{m}+1}\left(v_{k}^{T} \cdots v_{k-\hat{m}+2}^{T}\right) s_{k-\hat{m}+1} s_{k-\tilde{m}+1}^{T}\left(v_{k-\hat{m}+2} \cdots v_{k}\right) \\
& \vdots \\
& +\rho_{k} s_{k} s_{k}^{T} .
\end{aligned}
$$

(We do not calculate and store the H_{k} in this step, instead, we use the above formulas to calculate the direction vector $p_{k}=-H_{k} g_{k}$, directly).

Step 4. Set $k:=k+1$, go to Step 2.
The stopping criterion of L-BFGS is:

$$
\left\|g_{k}\right\|<\varepsilon \times \max \left(1,\left\|x_{k}\right\|\right),
$$

where ε is a small positive number supplied by the user.
The L-BFGS algorithm is almost identical in its implementation to the wellknown BFGS method. The only differences that are the amount of storage required by the algorithm (and thus the cost of the iteration) can be controlled by the user and the later approximations H_{k} to the inverse Hessian deviate from the BFGS method. The user specifies the number m of BFGS corrections that are to be kept, and provides a sparse symmetric and positive definite matrix H_{0} which approximates the inverse Hessian of f. During the first m iterations the method is the same as the BFGS method. When the available storage is used up, i.e., $k>m$, since the BFGS corrections are stored separately, we can delete the oldest one to make space for the new one. All subsequent iterations are of this form: one correction is deleted and a new one inserted. Hence, it requires only $O(m n)$ storage locations ($m \ll n$), contrast with usual BFGS algorithm which requires $O\left(n^{2}\right)$ storage locations as we discussed before. If there is no previous information, one can choose the identity matrix I or a scaled diagonal matrix as the H_{0}.

It is also known that simple scaling of the variables can improve the performance of quasi-Newton methods on small problems. For large problems, scaling becomes much more important. Several scaling methods for the matrix H_{0} were introduced in [28]. We use the following strategy.

In Step 3 of the L-BFGS algorithm, instead of using a fixed H_{0}, we use $H_{0}^{(k)}$ which is a scale of the identity matrix I :

$$
H_{0}^{(k)}=\gamma_{k} I
$$

where

$$
\begin{aligned}
& \gamma_{0}=1 /\left\|y_{0}\right\|^{2} \\
& \gamma_{k}=y_{k-1}^{T} s_{k-1} /\left\|y_{k-1}\right\|^{2}, \quad k=1,2,3, \cdots
\end{aligned}
$$

It was showed [28] that this is a simple and effective way of introducing a scale in the algorithm.

Since we do not store H_{k} explicitly, the product $H g$ must be computed. The following recursion performs this computation efficiently [35]. It is essentially the same as the formula for the usual BFGS method.

In the following algorithm, m is the number of corrections stored, and Iter is the iteration number.

Recursive Formula to Compute $\boldsymbol{H g}$:

1) If Iter $\leq m$, Set Incr $=0$; Bound = Iter; else Set Incr $=$ Iter $-m$; Bound $=m$;
2) $q_{\text {Bound }}=g_{\text {iter }}$;
3) For $i=($ Bound -1$), \ldots, 0$
$j=i+$ Incr; $\alpha_{i}=\rho_{j} s_{j}^{T} q_{i+1} ; \quad$ (store α_{i})

$$
q_{i}=q_{i+1}-\alpha_{i} y_{j}
$$

4) $\gamma_{0}=H_{0} q_{0}$;
5) For $i=0,1, \ldots$, (Bound-1)
$j=i+$ Incr;
$\beta_{i}=\rho_{j} y_{j}^{T} r_{i}$;

$$
r_{i+1}=r_{i}+s_{j}\left(\alpha_{i}-\beta_{i}\right) ;
$$

This formula requires at most $4 n m+2 m+n$ multiplications and $4 n m+m$ additions.
At the k-th iteration of the L-BFGS algorithm, we need to find a positive scalar α_{k} as a step length, to determine a new point x_{k+1} that is a minimum in the direction p_{k} or that gives a sufficient reduction in function value. This process is called a line search, which is a univariate problem

$$
\underset{\alpha>0}{\operatorname{minimize}} F(\alpha) \equiv f\left(x_{k}+\alpha p_{k}\right) .
$$

As we mentioned in section 3.1 , it is not always best to minimize $f\left(x_{k}+\alpha_{k} p_{k}\right)$ with regard to α_{k} Instead, we find an α_{k} that satisfies the conditions:

$$
\begin{align*}
& f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+\beta^{\prime} \alpha_{k} g_{k}^{T} p_{k}, \tag{4.1}\\
& \left|g\left(x_{k}+\alpha_{k} p_{k}\right)^{T} p_{k}\right| \leq-\beta g_{k}^{T} p_{k} \tag{4.2}
\end{align*}
$$

We fix x_{k} and p_{k} and let

$$
\Phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right), \quad \alpha \geq 0 .
$$

Then conditions (4.1) and (4.2) can be formulated as finding $\alpha>0$ such that

$$
\begin{equation*}
\Phi(\alpha) \leq \Phi(0)+\beta^{\prime} \Phi^{\prime}(0) \alpha \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\Phi^{\prime}(\alpha)\right| \leq \beta\left|\Phi^{\prime}(0)\right| \tag{4.4}
\end{equation*}
$$

The motivation for requiring conditions (4.3) and (4.4), or (4.1) and (4.2), in a line search method should be clear. If α is not too small, condition (4.3) forces a sufficient decrease in the function. However, this condition is not sufficient to guarantee convergence, because it allows arbitrarily small choices of $\alpha>0$. Condition (4.4) rules out arbitrarily small choices of α and usually guarantees that α is near a local minimizer of Φ. Condition (4.4) is a curvature condition because it implies that

$$
\Phi^{\prime}(\alpha)-\Phi^{\prime}(0)>(1-\beta)\left|\Phi^{\prime}(0)\right|,
$$

and thus the average curvature of Φ on $(0, \alpha)$ is positive. The curvature condition (4.4) is particularly important in a quasi-Newton method or a limited memory quasi-Newton method because it guarantees that a positive definite quasi-Newton update is possible [11,12].

As final motivation for (4.3) and (4.4), we mention that if a step satisfies these conditions, then the line search method is convergent for reasonable choices of direction $[1,6,11,12,16,28,42]$. In particular, in a quasi-Newton method, we choose $p_{k}=-H_{k} g_{k}$, and the line search method is convergent if conditions (4.3) and (4.4) are satisfied.

There are still many choices of α_{k} to satisfy the conditions (4.3) and (4.4). Moré and Thuente [32] designed a very efficient line search algorithm which was used by several authors, for example, Liu and Nocedal [28], O'Leary [38], and Gilbert and Nocedal [16]. It seems that the main idea is to combine quadratic and cubic interpolations to find a suitable α_{k}. For the detail of this search procedure and the associated convergence theory, the readers are referred to [32].

We design and implemented our neural network learning algorithm using Liu and Nocedal's L-BFGS algorithm. Moré and Thuente's line search method is also used. Our program works fine. Later on, we found Nocedal's L-BFGS FORTRAN program in the Internet [36], which works even better than ours. We modified our program. In the current version of our program, we treat Nocedal's L-BFGS as a subroutine and simply call it in our neural network learning process.

5. Comparisons among L-BFGS, PRAXIS and DFMCG

The main purpose of this thesis is to design and implement neural network learning algorithms based on limited memory quasi-Newton methods. In this chapter we compare the limited memory quasi-Newton methods and Brent's optimization method [5]. We also compare the limited memory quasi-Newton methods and one conjugate gradient method [14,31].

We have to mention that the primary purpose of the limited memory quasiNewton method is to minimize the high dimension functions, especially functions with more than one thousand independent variables. The main concern is the storage. The dimensions of the test functions we use in this chapter range from two to twenty. For such low dimension functions, storage is not a problem at all. However, the main difference between the L-BFGS algorithm and the BFGS algorithm is how to store the inverse Hessian matrices in Step 3. The remaining of these two algorithms seems same. In fact, if the correction number m is sufficient large in L-BFGS, then L-BFGS is identical to BFGS. Hence, we still can see how good the algorithms are.

Powell [42] introduced an optimization algorithm without using the derivatives of the objective function. Brent [5] modified Powell's method and overcame some of the difficulties observed in the literature. Numerical tests suggested that Brent's proposed method is faster than Powell's original method and some other previous methods [5]. Brent [5] gave the ALGOL procedure PRAXIS to implement his algorithm. Chandler [7] gave the FORTRAN procedure PRAXIS, a direct translation of Brent's procedure. The conjugate gradient method $[14,31]$ is another method to solve large optimization
problems. The storage complexity of the conjugate gradient method is $O(n)$, where n is the number of the variables of the cost function. We have tested a conjugate gradient FORTRAN procedure DFMCG from the IBM Scientific Subroutine Package [53].

In this chapter we mainly compare L-BFGS and PRAXIS on speed and accuracy. We also roughly compare L-BFGS and DFMCG. In Section 5.1 we compare these three algorithms on various test functions used in [5]. Section 5.2 summarizes the results of LBFGS running on Osborne's functions [39]. In Section 5.3 we run L-BFGS on Osborne function 2 with different numbers of corrections m. Section 5.4 verifies that L-BFGS does not have the quadratic termination property.

Recall that the stopping criterion of L-BFGS is

$$
\left\|g_{k}\right\|<\varepsilon \times \max \left(1,\left\|x_{k}\right\|\right) .
$$

Throughout this chapter, we choose $\varepsilon=10^{-7}$, unless we mention otherwise.

5.1 Comparisons on Various Test Functions

Most of the functions tested in [5] are actually differentiable. We run Chandler's PRAXIS FORTRAN program [7], the DFMCG program [53], and Nocedal's L-BFGS program [36] on the UNIX System of the Oklahoma State University Computer Science Department, using the same test functions in [5], and compare the results. The results of the PRAXIS program are listed in Table 5.1, the results of DFMCG program are listed in Table 5.2, and the results of L-BFGS program are listed in Table 5.3.

Table 5.1 Result of PRAXIS Program

Function	n	x_{0}^{T}	n_{f}	$f(x)$
Rosenbrock	2	$(-1.2,1)$	155	$2.012 \mathrm{E}-24$
Singular	4	$(3,-1,0,1)$	421	$5.476 \mathrm{E}-19$
Helix	3	$(0.01,0.01,0)$	201	$2.998 \mathrm{E}-24$
Helix	3	$(-1,0,0)$	200	$8.886 \mathrm{E}-25$
Cube	2	$(-1.2,-1)$	234	$1.599 \mathrm{E}-25$
Beale	2	$(0.1,0.1)$	80	$1.595 \mathrm{E}-25$
Watson	9	0^{T}	1869	$1.400 \mathrm{E}-06$
Powell	3	$(0,1,2)$	86	0.00 E 00
Wood	4	$-(3,1,3,1)$	487	$2.846 \mathrm{E}-21$
Hilbert	10	$(1, \ldots, 1)$	2417	$7.602 \mathrm{E}-17$
Tridiag	20	0^{T}	941	$-2.00 \mathrm{E}+1$
Box	3	$(0,10,20)$	154	$4.173 \mathrm{E}-25$

Table 5.2 Results of DFMCG Program

Function	n	x_{0}^{T}	n_{f}	$f(x)$
Rosenbrock	2	$(-1.2,1)$	73	$4.123 \mathrm{E}-27$
Singular	4	$(3,-1,0,1)$	305	$2.198 \mathrm{E}-18$
Helix	3	$(0.01,0.01,0)$	47	$5.518 \mathrm{E}-29$
Cube	2	$(-1.2,-1)$	80	$6.024 \mathrm{E}-27$
Beale	2	$(0.1,0.1)$	62	$5.493 \mathrm{E}-1$
Watson	9	0^{T}	713	$3.479 \mathrm{E}+0$
Powell	3	$(0,1,2)$	59	0.0 E 0
Wood	4	$-(3,1,3,1)$	67	$7.68 \mathrm{E}-26$
Hilbert	10	$(1, \ldots, 1)$	2688	$5.715 \mathrm{E}-2$
Tridiag	20	0^{T}	111	$-2.0 \mathrm{E}+1$
Box	3	$(0,10,20)$	121	$3.579 \mathrm{E}+0$

Table 5.3 Results of L-BFGS Program

Function	n	x_{0}^{τ}	n_{f}	$(n+1) n_{f}$	$f(x)$
Rosenbrock	2	$(-1.2,1)$	49	147	$1.947 \mathrm{E}-25$
Singular	4	$(3,-1,0,1)$	76	380	$7.614 \mathrm{E}-16$
Helix	3	$(0.01,0.01,0)$	23	92	$3.276 \mathrm{E}-19$
Cubic	2	$(-1.2,-1)$	64	192	$9.917 \mathrm{E}-16$
Beale	2	$(0.1,0.1)$	16	48	$9.953 \mathrm{E}-17$
Watson	9	0^{T}	1991	19910	$6.527 \mathrm{E}-6$
Powell	3	$(0,1,2)$	20	80	$1.110 \mathrm{E}-15$
Wood	4	$-(3,1,3,1)$	122	610	$2.053 \mathrm{E}-20$
Hilbert	10	$(1, \ldots, 1)$	109	1199	$1.236 \mathrm{E}-12$
Tridiag	20	0^{T}	98	2058	$-2.00 \mathrm{E}+1$
Box	3	$(0,10,20)$	41	164	$4.508 \mathrm{E}-14$

In the above tables we use the following conventions:
n is the number of variables.
x_{0}^{T} is the starting point.
n_{f} is the number of function evaluations.
$f(x)$ is the approximated minimum.
In the PRAXIS program, we do not need to calculate the derivatives, while in L BFGS the gradient must be calculated. In order to compare L-BFGS and PRAXIS, a proper weighting factor [5] must be used for the number of function evaluations in the LBFGS program. As in [5], we define: the weighted number of function evaluations $=(n+1) n_{f}$,

Note that the convergence criteria for PRAXIS are generally tighter than for LBFGS, resulting in "better" minima in most cases, although not in all. It is not possible to use the convergence criterion of L-BFGS in PRAXIS, which does not have the gradient available.

The following are brief descriptions of each function and the comparison of L BFSG and PRAXIS for each function. As in [5], to compare the speeds of the two programs, we simply compare n_{f} in Table 5.1 and $(n+1) n_{f}$ in Table 5.3.

1. Rosenbrock (Rosenbrock [45]):

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

This is a well-known function with a parabolic valley. Descent methods tend to fall into the valley and then follow it around to the minimum of 0 at $(1,1)^{T}$.

The two programs perform similarly in both speed and accuracy.
2. Singular (Powell [40]):

$$
f(x)=\left(x_{1}+10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}-x_{4}\right)^{4} .
$$

This function is difficult to minimize, and provides a severe test of the stopping criterion, because the Hessian matrix at the minimum $(x=0)$ is doubly singular.

The function varies very slowly near 0 in the two-dimensional subspace $\left\{\left(10 \lambda_{1}\right.\right.$, $\left.\left.\lambda_{1}, \lambda_{2}, \lambda_{2}\right)^{T}\right\}$. For this function, PRAXIS is slightly slower, but slightly more accurate than L-BFGS.
3. Helix (Fletcher and Powell [13]):

$$
f(x)=100\left[\left(x_{3}-10 \theta\right)^{2}+(r-1)^{2}\right]+x_{3}^{2},
$$

where

$$
r=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}
$$

and

$$
2 \pi \theta=\left\{\begin{array}{ll}
\arctan \left(x_{2} / x_{1}\right) & \text { if } x_{1}>0, \\
\pi+\arctan \left(x_{2} / x_{1}\right) & \text { if } x_{1}<0 .
\end{array}\right\}
$$

This function of three variables has a helical valley, and a minimum at $(1,0,0)^{T}$.
Originally, Brent used $(-1,0,0)^{T}$ as the starting point. However, since this function is not differentiable when $x_{1}=0$, L-BFGS does not work for this function when we use this starting point. Instead, we use $(0.01,0.01,0)^{T}$ as the starting point in both programs.

For this function, the situation is similar as for the Singular function, PRAXIS is slightly slower than L-BFGS, but more accurate than L-BFGS.
4. Cube (Leon [26]):

$$
f(x)=100\left(x_{2}-x_{1}^{3}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

This function is similar to Rosenbrock's, and much the same remarks apply. Here the valley follows the curve $x_{2}=x_{1}^{3}$.

For this function, the situation is also similar to the Singular function, and PRAXIS is slightly slower than L-BFGS, but more accurate than L-BFGS.
5. Beale (Beale [2]):

$$
f(x)=\sum_{i=1}^{3}\left[c_{i}-x_{1}\left(1-x_{2}^{i}\right)\right]^{2},
$$

where $c_{1}=1.5, c_{2}=2.25, c_{3}=2.625$. This function has a valley approaching the line $x_{2}=1$, and has a minimum of 0 at $(3,1 / 2)^{T}$

For this function, PRAXIS is slightly slower than L-BFGS, but more accurate than

L-BFGS.

6. Watson (Kowalik and Osborne [25]):

$$
\begin{aligned}
f(x)= & x_{1}^{2}+\left(x_{2}-x_{1}^{2}-1\right)^{2} \\
& +\sum_{i=2}^{30}\left\{\sum_{j=2}^{n}(j-1) x_{j}\left(\frac{i-1}{29}\right)^{j-2}-\left[\sum_{j=1}^{n} x_{j}\left(\frac{i-1}{29}\right)^{j-1}\right]^{2}-1\right\}^{2} .
\end{aligned}
$$

Here a polynomial

$$
p(t)=x_{1}+x_{2} t+\ldots+x_{n} t^{n-1}
$$

is fitted, by least squares, to approximate a solution of the differential equation

$$
\frac{d z}{d t}=1+z^{2}, \mathrm{z}(0)=0
$$

for $t \in[0,1]$. (The exact solution is $\mathrm{z}=\tan t$.) The minimization problem is illconditioned, and rather difficult to solve, because of a bad choice of basis functions $\{1, t$, $\left.\ldots, t^{n-1}\right\}$. We choose $n=9$.

For this function, the two programs have similar accuracy, but PRAXIS is much faster than L-BFGS.
7. Powell (Powell [41]):

$$
f(x)=3-\left(\frac{1}{1+\left(x_{1}-x_{2}\right)^{2}}\right)-\sin \left(\frac{\pi}{2} x_{2} x_{3}\right)-\exp \left\{-\left[\left(\frac{x_{1}+x_{3}}{x_{2}}\right)-2\right]^{2}\right\}
$$

For a description of this function, see Powell [41].
For this function, the two programs have similar speeds, but PRAXIS is more accurate than L-BFGS.
8. Wood (Colville [10]):

$$
\begin{aligned}
f(x) & =100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}+90\left(x_{4}-x_{3}^{2}\right)^{2}+\left(1-x_{3}\right)^{2} \\
& +10.1\left[\left(x_{2}-1\right)^{2}+\left(x_{4}-1\right)^{2}\right]+19.8\left(x_{2}-1\right)\left(x_{4}-1\right) .
\end{aligned}
$$

This function is rather like Rosenbrock's, but with four variables instead of two.
For this function, the two programs have similar accuracy, but PRAXIS is faster than L-BFGS.
9. Hilbert

$$
f(x)=x^{\top} A x,
$$

where A is an n by n Hilbert matrix, i.e.,

$$
a_{i j}=\frac{1}{i+j-1} \quad \text { for } 1 \leq i, \mathrm{j} \leq n .
$$

We choose $n=10$.
For this function, PRAXIS is slower, but more accurate, than L-BFGS.
10. Tridiag (Gregory and Karney [19]):

$$
f(x)=x^{T} A x-2 x_{1}
$$

where

$$
A=\left[\begin{array}{ccccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & 0 & \\
& -1 & 2 & -1 & & \\
& & -1 & 2 & -1 & \\
& 0 & & \cdots & \cdots & \cdots \\
& & & & -1 & 2
\end{array}\right]
$$

This function is useful for testing the property of finite convergence on a quadratic function. The minimum $\mathrm{f}(\mu)=-n$ occurs when μ is the first column of A^{-1}, i.e.,

$$
\mu=(n, n-1, n-2, \ldots, 2,1)^{\tau} .
$$

we choose $n=20$.

For this function, the two programs have similar accuracy, but PRAXIS is much faster than L-BFGS.
11.Box (Box [4]):

$$
f(x)=\sum_{i=1}^{10}\left\{\begin{array}{c}
{\left[\exp \left(-i x_{1} / 10\right)-\exp \left(-i x_{2} / 10\right]\right\}^{2} .} \\
-x_{3}[\exp (-i / 10)-\exp (-i)]
\end{array}\right\}^{2} .
$$

This function has minima of 0 at $(1,10,1)^{\tau}$ and also along the line $\left\{(\lambda, \lambda, 0)^{\tau}\right\}$.
Both programs find the first minimum, and have similar speeds. However, PRAXIS is more accurate than L-BFGS.

Summary: Brent's algorithm is considered to be a very good one. Overall, it is better than many other algorithms [5]. Our tests shows that the L-BFGS program is almost as good as PRAXIS, though for some test functions, PRAXIS is much better than L-BFGS.

PRAXIS was tuned extensively by Brent on his suite of test problems, unlike LBFGS, which explains most of any superiority of PRAXIS.

Now we roughly compare L-BFGS and DFMCG. L-BFGS obtains satisfactory results for all eleven test functions, while DFMCG does not converge for some functions, such as those of Beale, Watson, Hilbert, and Box. For all other functions, it seems that LBFGS is slightly faster and/or more accurate than DFMCG. We do not know why the conjugate gradient method is unstable. To answer a question posted in [54], Chandler [8] made the following comments:"At least one conjugate gradient (CG) method was shown to be unstable:[31], see page 383 in particular. No CG method has ever been shown to be stable, as far as I know. Instability means that small errors such as roundoff are magnified in each succeeding iteration, which can lead to unreliability. CG methods have great difficulty solving moderately ill-conditioned problems efficiently.

As far as I know, no CG method has solved either of the simple nonlinear least squares problems of M. R. Osborne [39] in a competitive time (fewer than 10,000 equivalent function evaluations). Any decent direct search method (such as my STEPIT
[7] or Richard Brent's PRAXIS) or quasi-Newton method will solve both of these problems much faster than this. Marquardt's method, developed specifically for least squares problems, also solves them efficiently.

If you want a low-storage method that is reasonably robust, I recommend the limited quasi-Newton method developed and programmed by Nocedal. It crunches both Osborne problems with no difficulty."

5.2 Test Using Osborne Functions

Osborne [39] studied a general method for minimizing a sum of squares which has the property that a linear least squares problem is solved at each stage, and which includes the Gauss-Newton, Levenberg, Marquardt, and Morrison methods as particular special cases. In this section we do not discuss the method which Osborne discussed in [39], but use his example functions to test L-BFGS.

The problem of minimizing a sum of squares arises naturally from the problem of determining parameters $x_{i}, i=1,2, \ldots, p$ in the model equation

$$
y(t)=F(t, x)
$$

from observations

$$
y_{i}=y\left(t_{i}\right)+\varepsilon_{i}, \quad(i=1,2, \ldots, n),
$$

where the ε_{i} (the experimental errors) are independent, normally distributed random variables with mean zero and standard deviation σ. In the case $n>p$ the appropriate maximum likelihood analysis indicates that x should be estimated by minimizing $\|f(x)\|^{2}$, where

$$
f_{i}(x)=y_{i}-F\left(t_{i}, x\right)
$$

and

$$
\|f(x)\|^{2}=\sum_{i=1}^{n} f_{i}(x)^{2}
$$

This problem will be referred to as the model problem, and it is stressed that we have offered a statistical justification for minimizing a sum of squares. Osborne's two test problems are classic practical nonlinear least squares problems.

1. Osborne function 1

In this example, the data values $\left\{\left(t_{i}, y_{i}\right), 1 \leq i \leq 33\right\}$, which are given in [36], are fitted by the model

$$
F(t, x)=x_{1}+x_{2} \exp \left(-x_{4} t\right)+x_{3} \exp \left(-x_{5} t\right) .
$$

The result of [39] is copied in the following Table 5.4.

Table 5.4 Original Result of Osborne Function 1

$\\|f(x)\\|^{2}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$0.546 \mathrm{E}-4$	0.3754	1.9358	-1.4647	0.01287	0.02212

We run L-BFGS and PRAXIS using the above example and list the results in the following Table 5.5 and 5.6.

Table 5.5 L-BFGS Result of Osborne Function 1

$\\|f(x)\\|^{2}$	n_{f}	$(n+1) n_{f}$	x_{I}	x_{2}	x_{3}	x_{4}	x_{5}
$5.465 \mathrm{E}-5$	172	1032	0.3754	1.9358	-1.4647	0.01287	0.02212

Table 5.6 PRAXIS Result of Osborne Function 1

$\\|f(x)\\|^{2}$	n_{f}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$5.465 \mathrm{E}-5$	1268	0.3753	1.9203	-1.4490	0.01284	0.02186

We mention that in this section we set $\varepsilon=10^{-5}$ as the stopping criterion in LBFGS.

The three programs have similar accuracy. Since the number of function evaluations is not available in Table 5.4, we cannot compare the speed of the two algorithms. However, when we use L-BFGS on Osborne function 1, there are only 172 function and gradient evaluations, which is considered very fast. L-BFGS and PRAXIS have similar speed on Osborne function 1.

2. Osborne function 2

In this example, the model has the form

$$
\begin{aligned}
f(t, x)= & x_{1} \exp \left(-x_{5} t\right)+x_{2} \exp \left[-x_{6}\left(t-x_{9}\right)^{2}\right] \\
& +x_{3} \exp \left[-x_{7}\left(t-x_{10}\right)^{2}\right]+x_{4} \exp \left[-x_{8}\left(t-x_{11}\right)^{2}\right]
\end{aligned}
$$

The data values $\left\{\left(t_{i}, y_{i}\right), \quad 1 \leq i \leq 65\right\}$ are also given in [39]. The result of [39] is copied in the Table 5.7.

Table 5.7 Original Result of Osbome Function 2

$\\|f(x)\\|^{2}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0.0402	1.3100	0.4315	0.6336	0.5993	0.7539
x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}
0.9056	1.3651	4.8248	2.3988	4.5689	5.6754

we run the L-BFGS and PRAXIS using the above example and list the results in the
Table 5.8 and Table 5.9.
Table 5.8 L-BFGS Result of Osborne Function 2

$\\|f(x)\\|^{2}$	$(n+1) n_{f}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0.04014	2136	1.3100	0.4315	0.6337	0.5996	0.7543
n_{f}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}
178	0.9038	1.3666	4.8227	2.3988	4.5688	5.6753

Table 5.9 PRAXIS Result of Osborne Function 2

$\\|f(x)\\|^{2}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
0.04014	1.3100	0.4316	0.6337	0.5994	0.7542	
n_{f}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}
857	0.9043	1.3658	4.8237	2.3987	4.5689	5.6753

Using L-BFGS, we only need 178 function and gradient evaluations to complete this problem. PRAXIS is faster than L-BFGS for this function. In addition, the final result 0.04014 of both L-BFGS and PRAXIS are better than Osborne's original result 0.0402

5.3 Testing L-BFGS Using Different Numbers of Corrections

Previously, we set the number of corrections $m=5$ in L-BFGS to test various functions. For a very large problem, one cannot set m too large, otherwise, it will take too much storage. Also, the larger the values of m, the more execution time for each iteration. Normally, we set $3 \leq m \leq 7$. However, the larger the m, the more information we can store. Hence, it seems that the larger the m. the smaller the number of iterations. We verify this by testing L-BFGS on Osborne function 2 with various m and list the results on Table 5.10.

Table 5.10 Results of Osbome Function 2 for Different m

m	Total Epochs	n_{f}	$\\|f(x)\\|^{2}$
2	344	379	$4.014 \mathrm{E}-2$
3	419	446	$4.014 \mathrm{E}-2$
4	311	345	$4.014 \mathrm{E}-2$
5	246	268	$4.014 \mathrm{E}-2$
6	227	253	$4.014 \mathrm{E}-2$
7	144	161	$4.014 \mathrm{E}-2$
8	117	132	$4.014 \mathrm{E}-2$
9	113	130	$4.014 \mathrm{E}-2$
10	83	99	$4.014 \mathrm{E}-2$
11	83	94	$4.014 \mathrm{E}-2$
12	79	91	$4.014 \mathrm{E}-2$
100	63	73	$4.014 \mathrm{E}-2$
1000	63	73	$4.014 \mathrm{E}-2$

We mention that in this section we set $\varepsilon=10^{-7}$ as the stopping criterion.

From Table 5.10, we can see that when $3 \leq m \leq 13$, the larger the m, the smaller the number of iterations and the number of function evaluations. In fact, in the first m iterations, L-BFGS and BFGS are identical. Hence, if m is sufficiently large, for example, larger than the number of iterations, then executions of L-BFGS and BFGS are exactly the same.

5.4 Lack of Quadratic Termination Property

Many optimization algorithms possess a property called quadratic termination which means that they minimize a quadratic function exactly in a finite number of iterations [34]. For example, Newton's method and quasi-Newton methods have quadratic termination properties.

In this section, we verify that the limited memory quasi-Newton method does not have such property.

Let

$$
\begin{aligned}
f(x) & =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2} \\
& +0.5 x_{1} x_{2}-0.4 x_{2} x_{4}+0.3 x_{3} x_{4}-0.2 x_{4} x_{5}+0.7 x_{5} x_{6}-0.08 x_{6} x_{1}
\end{aligned}
$$

It is not difficult to prove that this quadratic function is positive definite. We run this function using different m and list the results in Table 5.11.

Table 5.11 Results of a Quadratic Function

m	\# of Iterations	n_{f}	$f(x)$
2	16	21	$1.782 \mathrm{E}-15$
3	14	19	$1.677 \mathrm{E}-15$
4	15	20	$1.5 \mathrm{E}-15$
5	14	19	$2.511 \mathrm{E}-17$
6	13	18	$3.223 \mathrm{E}-16$
7	13	18	$1.805 \mathrm{E}-16$
8	13	18	$6.604 \mathrm{E}-17$
9	12	17	$1.450 \mathrm{E}-15$
10	12	17	$1.420 \mathrm{E}-15$
11	12	17	$1.421 \mathrm{E}-15$
12	12	17	$1.421 \mathrm{E}-15$

From the above table we see that for small m, L-BFGS does not have quadratic termination in n or ($n+1$) iterations. The authors of [28] pointed out that:"Our aim is that the limited memory method resemble BFGS as much as possible, and we disregard quadratic termination properties, which are not very meaningful, in general, for large dimensional problems."

6. Testing

In this chapter, we discuss the testing of our learning algorithm. We use the neural network data in Proben1 [43] to test our algorithm. The rules and conventions in Proben 1 are followed strictly.

The scope of the Proben1 problems can be characterized as follows. All problems can be suited for supervised learning, since input and output values are separated. All examples within a problem are independent of each other. Some of the problems can be tackled by pattern classification algorithms, while others need the capability of continuous multivariate function approximation. All problems are presented as static problems in the sense that all data to learn from are present at once and do not change during learning. All problems consist of real data from real problem domains.

6.1 Some Aspects of Proben1

1 Training set, validation set, test set [43]

The data used for performing benchmarks on neural network leaming algorithms must be split into at least two parts: one part on which the training is performed, called the training data set, and another part on which the performance of the resulting network is measured, called the test data set. The idea is that the performance of a network on the test set estimates its performance in real use. This means that absolutely no information about the test set examples or the test set performance of the network can be available during the training process; otherwise the benchmark is invalid.

In some cases the training data are further subdivided. Some examples are put into the actual training set, others into a so-called validation set [43]. The latter is used as
a pseudo test set in order to evaluate the quality of a network during training. Such an evaluation is called cross validation [43]. It is necessary due to the overfitting (overtraining) phenomenon: For two networks trained on the same problem, the one with larger training set error may actually be better, since the other has concentrated on peculiarities of the training set at the cost of losing much of the regularity needed for good generalization. This is a problem in particular when not very many training examples are available, or when too large a network is used.

A popular and very powerful form of cross validation used in neural networks is early stopping: Training proceeds not until a minimum of the error on the training set is reached, but only until a minimum of the error on the validation set is reached during training. Training is stopped at this point and the current network state is the result of the training run.

The sizes of the training, validation, and test sets in all Proben1 data files are $50 \%, 25 \%$, and 25% of all examples, respectively.

Our primary goal is to design a learning algorithm for a problem, either a classification problem or a function approximation problem, with a large number of examples. For a problem with a large number of examples, overtraining is not a big problem, provided the network architecture is suitably chosen. In our implementation, we choose the data sets with large number of examples, which are much larger than the number of weights. Hence, we do not use the validation set. Instead, we combine the training set and the validation set as the training set.

2 Input and output representation

How to represent the input and output attributes of a learning problem in a neural network implementation of the problem is one of the key decisions influencing the quality of the solutions one can obtain.

In Proben1, the real-valued attributes are usually rescaled by some linear factors. The integer-valued attributes are most often handled as if they were real-valued. Each input in the data set is a real-valued attribute, and each output in the data set is either a real number for the function approximation problems or an integer 0 or 1 for the classification problems.

3 Error measures

Many different error measures (also called error functions, objective functions, cost functions, or loss functions) can be used for network training. The most commonly used is the squared error:

$$
E(o, t)=\sum_{i}\left(o_{i}-t_{i}\right)^{2},
$$

where o_{i} and t_{i} are the actual output and target output at the i-th output node for one example. The above measure gives one error value per example - obviously there are too many data to report. Thus one usually reports either the sum or the average of these values over the set of all examples. The average is called the mean squared error. The author of [43] believed that the mean squared error may have the advantage of being independent of the size of the data set. Note that the mean squared error still depends on the number of output coefficients in the problem representation and on the range of output values used. We thus follow [43] to normalize for these factors as well, and report a squared error percentage as:

$$
E=100 \cdot \frac{o_{\max }-o_{\min }}{N \cdot P} \sum_{p=1 i=1}^{P} \sum_{p i}^{N}\left(o_{p i}\right)^{2}
$$

where $o_{\max }$ and $o_{\min }$ are the maximum and minimum values of output coefficients in the problem representation, N is the number of outputs of the network, and P is the number of examples in the data set considered. However, all the data sets in Proben1 have been normalized such that $o_{\max }=1$ and $o_{\min }=0$. So the squared error percentage can be simplified as :

$$
E=\frac{100}{N \cdot P} \sum_{p=1}^{P} \sum_{i=1}^{N}\left(o_{p i}-t_{p i}\right)^{2}
$$

Note that this error function is never used in the field of optimization, but is specific to ANN training. In our algorithm, we use this squared error percentage as the error function, so that one may compare our training results with the results in [43].

4 Classification measure

The actual target function for classification problems is usually not the continuous error measure used during training but the classification performance. However, the classification performance is not the only measure we are interested in. We thus report the actual error values in addition to the classification performance. Classification performance is reported in terms of percent of incorrectly classified examples, the percent classification error. This is better than reporting the percentage of correctly classified examples, the classification accuracy, because the latter makes important differences insufficiently clear: an accuracy of 98% is actually twice as good as one of 96%, which is easier to see if the percent errors are reported (2% compared to 4%).

There are several possibilities to determine the classification a network has computed from the outputs of the network.

In our implementation, we use the following method to determine the classification. We calculate

$$
d_{i}=\left|o_{i}-t_{i}\right|
$$

where o_{i} and t_{i} are the actual output and target output at the i-th output node for one example. If there is at least one d_{i}, such that $d_{i} \geq 0.5$, then we reject this example, otherwise we accept it. We may use 0.4 or 0.3 (instead of 0.5) to determine the rejection region. However, in our implementation, the differences are not significant.

5 Networks used

Neural network structure is one of the most important things to be specified when we use a neural network. No one knows which particular structure is the best for any particular problem. Basically, we just try several different structures. Following [43], we mainly choose a neural network with zero, one, or two hidden layers.

To describe the topology, we try to refer to common topology models. For instance, for the common case of fully-connected layered feed-forward networks, the numbers of nodes in each layer from input to output can be given as a sequence. For example, a 14-50-3 network refers to a network with 14 input, 50 hidden, and 3 output nodes. We call this a network with one hidden layer.

6 Stopping criteria

We design a training algorithm based on a limited memory quasi-Newton method to solve both classification problems and approximation problems. Since we intend to
solve problems with a large number of examples, the validation set is not used, and the following stopping criteria are used:

1. The weight update is within tolerance:

$$
\left\|w_{k+1}-w_{k}\right\|_{2}<\text { tolerance }
$$

The tolerance is chosen depending on the problem. We will specifically state the tolerance for our test problems in Section 6.4.
2. The number of function evaluations exceeds a pre-defined limit.

In our implementation, we set this pre-defined limit at 2000 . Some authors use the number of iterations instead of the number of function evaluations. In our implementation, the difference between these two numbers is not large. Stopping on this criterion implies failure to converge, although the results might still be of some use.

In addition to the above two stopping criteria, there is another stopping criterion in the subroutine L-BFGS, as we mentioned in Chapter 4.

If a validation set is used in the implementation, besides the above criteria, the GL_{α} stopping criterion can be used. Although we do not use a validation set in our implementation, we still state the GL_{α} stopping criterion [43] in the following. Interested readers may use it in their implementation.

Let $E_{v a}(t)$ be the squared error percentage over the validation set, measured during epoch t. The value $E_{\text {opt }}(t)$ is defined to be the lowest validation set error obtained in the epochs up to t :

$$
E_{o p t}(t)=\min _{t^{\prime} \leq t} E_{\mathrm{va}}\left(t^{\prime}\right)
$$

Now we define the generalization loss at epoch t to be the relative increase of the validation error over the minimum-so-far (in percent):

$$
\mathrm{GL}(t)=100 \cdot\left(\frac{E_{\mathrm{va}}(t)}{E_{\text {opt }}(t)}-1\right)
$$

A high generalization loss is one candidate reason to stop training. This leads us to a class of stopping criteria: Stop as soon as the generalization loss exceeds a certain threshold α. We define the class GL_{α} as
GL_{α} : stop after first epoch t with $\mathrm{GL}(t)>\alpha$.

Typical value used for α is 5 [43].

6.2 Language Implementation

We use the FORTRAN 77 language to implement our learning algorithm. The main purpose of a learning process is to train the neural network to have generalization ability. That is, the network should have small error on data as well which it has not learned.

We choose one-hidden-layer and two-hidden-layer feed-forward neural network architectures. Neural networks without hidden layer are also used. The propagated computations and notations are exactly the same as in Wang [51]. Here we do not repeat them.

Before executing our program, one must prepare an input file exactly named "INPUT.DAT". The format of "INPUT.DAT" is as follows:

The first line--TYPE, SEED

TYPE is an integer, which represents the type of training problem.
TYPE = 1: Function approximation problem.
TYPE $=2:$ Pattern classification problem.
SEED is an integer, which is used to generate a series of random numbers, which represent the initial weights of the network.

The second line--NTRAIN, NTEST, NLAYER
NTRAIN is an integer, which represents the number of training examples.
NTEST is an integer, which represents the number of test examples.
NLAYER is an integer, which represents the number of layers (including the input layer) of this network.

The third line--integers

These integers represent the number of nodes (excluding the bias) in each layer, starting from the input layer, and ending at the output layer.

In the remainder of the file, each line contains data for one example, data inputs followed by the desired outputs.

The major subroutines of the program and their functions are the following:
LBSET () -- define the values of several parameters in common areas.

INPUT () -- open and read the input data file.
INWEIT () - initialize all connection weights.
COMOU1 () -- compute the outputs of the network for one example.
GRADIE () -- compute the value and gradient of the error function.
MLBFGS () -- implement the limited memory BFGS algorithm. This is a slight modification of Nocedal's L-BFGS program [36].

6.3 Test Problems.

As we mentioned before, the main purpose of this thesis is to train a neural network with a large number of weights. We choose three data sets with the largest number of examples in Proben1 [43]. All these three data sets have a relatively large number of inputs, so that the number of weights may be large, though it depends on the actual design of the network. If the number of inputs and the number of outputs are fixed, then the larger the number of hidden nodes, the larger the number of weights.

Two of the problems are function approximation problems, while the third is classification problem.

Table 6.1 Test Problems

Problem	Type of Problems	\# of Inputs	\# of Outputs	\# of Training Examples	\# of Test Examples
building2	Approximation	14	3	3156	1052
flare1	Approximation	24	3	800	266
thyroid1	Classification	21	3	5400	1800

For further comparison, seven different network topologies were used for each problem: zero-hidden-layer network, one-hidden-layer networks with 4,16 , or 32 hidden nodes and two-hidden-layer networks with $4+4,8+8$, or $16+8$ hidden nodes on the first
and second hidden layer, respectively. For the two approximation problems, we also use some other network topologies. All of these networks have all possible feed-forward connections, including a bias connection.

6.4 Test Results

In optimization problems, one uses various methods to find an approximate minimum value of the objective function. Theoretically, the exact minimum of the objective function cannot be known in advance. However, some certain known results can serve as a reference.

In Probenl [43], a few results of neural network learning runs on the data sets are given. The runs were made with linear networks, having only direct connections from inputs to the outputs, and with various fully connected multilayers with one or two layers of sigmoidal hidden nodes. Training was performed using the RPROP algorithm [43]. We list the average results of [43] in Table 6.2.

We notice that for different network topologies, the propagation from input layer to output layer are different. Hence, the minimum values may not be exactly the same. However, comparing with the results in Table 6-2, we can get a rough idea how well our program works.

Table 6.2 Results in Proben 1

Problem	Total epochs	Training set	Test set	Test set classification
building2	1183	0.23	0.26	-
flarel	71	0.39	0.74	-
thyroid1	491	0.60	1.31	2.32

Training set: minimum squared error percentage on the training set.
Test set: minimum squared error percentage on the test set.
Test set classification: percent of incorrectly classified examples on the test set.
Recall that we first need to set the stopping criteria. The first criterion is that the weight update is within tolerance:

$$
\left\|w_{k+1}-w_{k}\right\|_{2}<\text { tolerance }
$$

Since the number of weights are relatively large, it is not necessary to set the tolerance to be too small. In our implementation, we set the tolerance $=10^{-3}$, with one exception. For the problem building2 with $16+16$ hidden nodes, when tolerance $=10^{-3}$, it stops too early and does not obtain the desired results. Hence, we set the tolerance $=10^{-5}$ instead of 10^{-3} for this problem.

The second stopping criterion is that the number of function evaluations cannot exceed a pre-defined limit, which we set as 2000.

The stopping criterion of L-BFGS is:

$$
\left\|g_{k}\right\|<\varepsilon \times \max \left(1,\left\|w_{k}\right\|\right),
$$

We set $\varepsilon=10^{-4}$ with a few exceptions. With a similar reason as above, we set $\varepsilon=10^{-5}$ for the following network topologies: flare 1 without hidden layer, and thyroid1 with the hidden layers $8+8$ and $16+8$.

In our actual implementation, for the building 2 with $16+16$ hidden nodes, the program stops when the number of function evaluations achieves the limit 2000. For all other situations, it stops when either $\|\Delta w\|_{2}$ is too small or $\|g\|_{2}$ is too small.

The results of our tests are listed in the following tables.

Table 6.3 Results of building2 $(m=5)$

Hidden nodes	\# of weights	Total epochs	n_{f}	$\\|\Delta w\\|_{2}$	$\\|g\\|_{2}$	Training set	Test set
None	45	67	75	0.0006483	0.002806	0.3441	0.3427
4	75	759	820	0.008264	0.002349	0.2635	0.2643
8	147	1084	1140	0.0008241	0.01060	0.2472	0.2544
16	291	1331	1421	0.0008560	0.008237	0.2267	0.2443
32	579	1341	1425	0.0009306	0.04055	0.2176	0.2464
$4+4$	95	1328	1434	0.02195	0.002396	0.2543	0.2598
$8+8$	219	1631	1747	0.0006908	0.003420	0.2172	0.2402
$16+16$	563	1801	2000	0.02671	0.01257	0.2073	0.2363

Table 6.4 Results of flarel $(m=5)$

Hidden nodes	\# of weights	Total epochs	n_{f}	$\\|\Delta w\\|_{2}$	$\\|g\\|_{2}$	Training set	Test set
None	75	138	150	0.004856	0.0002159	0.2915	0.5962
4	115	99	121	0.03944	0.003599	0.2470	0.7380
8	227	162	183	0.03414	0.003334	0.2118	0.7999
16	451	166	188	0.03917	0.004947	0.2209	0.9708
32	899	153	171	0.6937	0.007733	0.2229	0.8296
$4+4$	135	121	144	0.07549	0.005195	0.2508	0.7387
$8+4$	251	143	187	0.4097	0.005541	0.2462	0.6216
$8+8$	299	121	153	0.01822	0.004801	0.2407	0.7591
$16+8$	563	306	356	0.01908	0.004518	0.2183	1.026

Table 6.5 Results of thyroid1 $(m=5)$

Hidden nodes	\# of weights	Total epochs	n_{f}	$\\|\Delta w\\|_{2}$	$\\|g\\|_{2}$	Training set	Test set	Error rate
None	66	98	113	1.431	0.01917	2.885	3.179	6.500
4	103	236	280	0.05897	0.02529	0.9794	1.346	2.444
16	403	371	420	0.04310	0.02790	0.8786	1.246	2.500
32	803	647	735	0.02569	0.02054	1.445	1.751	4.111
$4+4$	123	35	41	21.94	0.02343	4.469	4.369	7.278
$8+8$	275	49	59	53.04	0.007671	4.477	4.391	7.278
$16+8$	515	611	730	0.003879	0.006455	2.696	2.652	4.944

$n_{f .}$ total number of function evaluations.
Training set: minimum squared error percentage on training set.
Test set: minimum squared error percentage on test set.
Error rate: percent of incorrectly classified examples.

1. Building2

It seems that the iterations converge for all network topologies we chose. Except for the network without hidden nodes, the training set error and the test set error are similar in Table 6.2. The best training set error and the best test error are 0.2073 and 0.2363 , respectively, which are better than the results in Table 6.2.

2. Flare 1

It seems that the iterations converge for every network topology. The best training set error is 0.2118 , which is obtained by the network topology with eight hidden nodes, while the best test set error is 0.5962 which is obtained by the network without hidden nodes. We notice that the network topology with the best training set error may not have the best test set error.

3. Thyroid1

It seems that the iterations converge for some network topologies but do not converge for some other network topologies (none, $4+4,8+8$). The best (smallest) training set error and the best test error are 1.445 and 1.246 , respectively, and the best percent of incorrectly classified examples is 2.444%

In the following we summarize our results :
First of all, our program handles the large number of weights of a neural network very well. The largest number of weights in our tests is 899 . Actually, we believe that our program can work on a neural network with several thousand weights without any problem.

Second, for most of the network topologies which we chose for the three problems, the optimization procedure converges. The other cases presumably would have converged eventually.

Third, compared with the results in Table 6.2, most of our results are acceptable. Some results are more accurate than the results in Table 6.2. In particular, we get very good generalization results on test sets.

Roughly speaking, the greater the number of hidden nodes, the greater the number of weights, and the greater the number of iterations and functions evaluations required. It seems that the average of the number of iterations of different topologies for each problem is similar in Table 6.2. However, we cannot claim that our program is very fast, since it may take more time for each iteration than the other methods. For example, it took about 30 hours for the problem Thyroid1 with 32 hidden notes when we run it on CSA: Sequent 24 Intel 80386 processors. However, our program can handle a very large number of weights, which the other methods may not be able to (a conjugate gradient method may handle a large problem, but it is unstable.) In addition, as we mentioned before, the main difference between a limited memory quasi-Newton method and a quasiNewton method is the storage part. If we modify the storage part of our program and store the inverse Hessian matrixes explicitly, then our program can train a network with a moderate number of weights and run very fast.

6.5 Test on XOR Problem

In this section we test our program on an "exclusive or" function of two variables. This is perhaps the simplest learning problem that is not linearly separable. It therefore cannot be solved by a network with no hidden layer. For the detailed description and results see [55].

There are two main forms of learning architectures that have been used by others to solve this problem [55]. The first one is a 2-2-1 network, which has two hidden units, each connected to both inputs and to the output. The second one is a " $2-1-1$ shortcut network", which has only a single hidden unit, but also has "shortcut" connections from the inputs to the output unit. However, we do not consider the shortcut network here.

Some researchers have also investigated this problem with more than two hidden units [56]. In general, the more hidden units there are, the easier the problem becomes.

We first call our program directly with 2-2-1 and 2-3-1 networks. But it does not work very well. It seems to stop at a local minimum. We then test our program with a 2 -4-1 network. The results are satisfactory. We list the results in the following table.

Table 6.6 Results of XOR Problem with 2-4-1 Network

\# Of Weights	Total Epochs	n_{f}	$\\|\Delta w\\|_{2}$	$\\|g\\|_{2}$	Error	Error Rate
17	27	55	3.187	$4.966 \mathrm{D}-4$	$3.292 \mathrm{D}-4$	0.0

$$
\begin{aligned}
\text { WEIGHT }=(-1.621 \mathrm{D}-01, & 1.400 \mathrm{D}-01,-4.693 \mathrm{D}-02, \\
& 6.231 \mathrm{D}-02,-4.414 \mathrm{D}-02, \\
& 8.472 \mathrm{D}-02, \\
& 9.630 \mathrm{D}-03,2.710 \mathrm{D}-02, \\
& 6.472 \mathrm{D}-02,-8.488 \mathrm{D}-02, \\
& 6.157 \mathrm{D}-02,-8.823 \mathrm{D}-02)
\end{aligned}
$$

error: minimum squared error percentage
error rate: percent of incorrectly classified examples
In our original program, we chose the initial weights between $-0.5 /$ fanin and $0.5 /$ fanin, where fanin is the number of nodes in previous layer [51]. Chandler [8] suggested that we enlarge the range of the initial weights for this problem, that is the initial weights are chosen between $[-50,50]$. In addition, we randomly choose the initial weights and calculate the value of the error function one thousand times. We save the weights with the smallest of squared error percentage, and use these weights as the initial weights to test the XOR problem with a 2-2-1 network. The results are satisfactory. We list the results in the following table.

Table 6.7 Results of XOR Problem with 2-2-1 Network

\# Of Weights	Total Epochs	n_{f}	$\\|\Delta w\\|_{2}$	$\\|g\\|_{2}$	Error	Error Rate
9	1	2	1.000 D 00	$1.576 \mathrm{D}-9$	$1.119 \mathrm{D}-9$	0.0

$$
\begin{aligned}
\text { WEIGHT }= & (2.598 \mathrm{D}+01,2.987 \mathrm{D}+01,-1.286 \mathrm{D}+01,8.498 \mathrm{D}+00,-3.505 \mathrm{D}+01, \\
& 3.404 \mathrm{D}+01,1.236 \mathrm{D}+01,2.570 \mathrm{D}+01,4.382 \mathrm{D}+01)
\end{aligned}
$$

7. Conclusions

In this thesis, we designed a neural network program based on limited memory quasi-Newton methods to train fully-connected feed-forward neural networks. Our program can train a neural network with a large number of weights and it has been tested on several real world problems in Proben1 [43]. Comparing with the results in Proben1, our results are satisfactory. In particular, we obtain very good generalization results on the test sets. Since we do not store the inverse Hessian matrix explicitly, it may take more time for each iteration than for other methods. However if we modify the storage part of our program, it will run very fast in training a neural network with a moderate number of weights.

In addition, we tested the subroutine L-BFGS on various functions and obtained very good test results.

Suggestion for further study:

Test our program on real data sets with a very large number of inputs and not very many examples. If necessary, use the validation set as a pseudo test set.

References

[1] M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line searches, IMA J. Numer. Anal., 5 (1985) 121-124.
[2] E. M. L. Beale, On an iterative method for finding a local minimum of a function of more than one variable, Tech. Report No. 25, Statistical Techniques Research Group, Princeton Univ. (1958).
[3] H. S. M. Beigi and C. J. Li, Learning algorithms for neural network based on quasi-Newton methods with self-scaling, J. of Dynamics Systems, Measurement and Control, 115(1993) 38-43.
[4] M. J. Box, A comparison of several current optimization methods, and the use of transformations in constrained problems, Comp. J. 9 (1966) 67-77.
[5] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, Inc., Englewood Cliffs, N. J. 1973.
[6] R. H. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a class of quasiNewton methods on convex problems, SIAM J. Numer. Anal., 24 (1987) 11711190.
[7] J. P. Chandler, Anonymous ftp://a.cs.okstate.edu/pub/jpc/praxis.f, praxis.txt, stepit.f.
[8] J. P. Chandler, Private communication.
[9] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley \& Sons, Inc., New York, 1993.
[10] A. R. Colville, A comparative study of nonlinear programming codes, IBM New York Scientific Center Report, 320-2949 (1968).
[11] J. E. Dennis and R. E. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983.
[12] R. Fletcher, Practical Methods of Optimization, Vol. 1, John Wiley \& Sons, Inc., Chichester, 1980.
[13] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, Comp. J. 6 (1963) 163-168.
[14] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Computer J. 7 (1964) 149-154.
[15] J. A. Freeman and D. M. Skapura, Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Co., New York, 1992.
[16] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optimization, 2 (1992) 21-42.
[17] P. E. Gill and W. Murray, Quasi-Newton methods for unconstrained optimization, J. Inst. Math. Applics. 9 (1972) 91-108.
[18] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, London, 1981.
[19] R. T. Gregory and D. L. Karney, A Collection of Matrices for Testing Computational Algorithms, Interscience, New York, 1969.
[20] A. Griewank and Ph. L. Toint, Partitioned variable metric updates for large structured optimization problems, Numerische Mathematik 39 (1982) 119-137.
[21] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design, PWS Publishing Co., Boston, 1996.
[22] M. T. Hagan and M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions On Neural Networks 5 (1994) 989-994.
[23] S. Haykin, Neural Networks, A Comprehensive Foundation, Macmillan College Publishing Co., 1994.
[24] N. B. Karayiannis and A. N. Venetsanopoulos, Artificial Neural Networks, Learning Algorithms, Performance Evaluation, and Applications, Kluwer Academic Publishers, Boston, 1993.
[25] J. S. Kowalik and M. R. Osborne, Methods for Unconstrained Optimization Problems, Elsevier, New York, 1968.
[26] A. Leon, A comparison of eight known optimizing procedures, Recent advances in optimization techniques, A. Lavi and T. P. Vogl eds.,Wiley \& Sons, Inc., New York, (1966).
[27] K. Levenberg, A Method For the Solution of Certain Non-Linear Problems in Least Squares, Quart. Appl. Math. 2 (1944) 164-168.
[28] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Programming 45 (1989) 503-528.
[29] D. C. Liu and J. Nocedal, Test results of two limited memory methods for large scale optimization, Technical Report NAM 04, Department of Electrical Engineering and Computer Science, Northwestern University, 1988.
[30] D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Indust. Appl. Math. 11 (1963) 525-553.
[31] W. Miller and D. Spooner, ACM Trans. Math. Software 4 (1978) 369-390.
[32] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Transaction on Mathematical Software 20 (1994) 287-307.
[33] S. G. Nash, Preconditioning of truncated-Newton methods, SIAM Journal on Scientific and Statistical Computing 6 (1985) 599-616.
[34] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill Inc., New York, 1996.
[35] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation 35 (1980) 773-782.
[36] J. Nocedal, Anonymous ftp://eecs.nwu.edu/pub/lbfgs/lbfgs_um
[37] L. Nyhoff and S. Leestma, FORTRAN 77 and Numerical Methods for Engineers and Scientists, Prentice-Hall, New Jersey, 1995.
[38] D. P. O'Leary, A discrete quasi-Newton algorithm for minimizing a function of many variables, Mathematical Programming 23 (1982) 20-33.
[39] M. R. Osborne. Some aspects of non-linear least squares calculations, Numerical Methods for Non-linear Optimization, F. A. Lootsma ed., Academic Press, New York, (1971) 171-189.
[40] M. J. D. Powell, An iterative method for finding stationary values of a function of several variables, Comp. J. 5 (1962) 147-151.
[41] M. J. D. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comp. J. 7 (1964) 155-162.
[42] M. J. D. Powell, Some global convergence properties of a variable metric method without line searches, Nonlinear Programming, R. W. Cottle and C. E. Lemke, eds., SIAM-AMS Proceedings, American Mathematical Society, 9 (1976) 53-72.
[43] L. Prechelt, Proben1 - A Set of Neural Network Benchmark Problems and Benchmarking Rules, Technical Report 21/94, University Karlsruhe, 1994, Anonymous ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz.
[44] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press, 1996.
[45] H. H. Rosenbrock, An automatic method for finding the greatest or least value of a function, Comp. J. 3 (1960)173-184.
[46] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagation errors, Nature 323 (1986) 533-536.
[47] L. E. Scales, Introduction to Non-Linear Optimization, Springer-Verlag, New York, 1985.
[48] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM Journal on Numerical Analysis 20 (1983) 626-637.
[49] J. G. Taylor, The Promise of Neural Networks, Springer-Verlag, London, 1993.
[50] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in: Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, New York, 1981, 57-58.
[51] L. Wang, The Damped Newton Method - An ANN Learning Algorithm, M. S. Thesis, Computer Science Department, Oklahoma State University, 1995.
[52] M. A. Wolfe, Numerical Methods for Unconstrained Optimization, Van Nostrand Reinhold Company, Ltd., Molly Millars Lane, Wokingham, Berkshire, England, 1978.
[53] System/360 Scientific Subroutine Package (360A-CM-03X) Version III Programmers Manual, IBM Corporation, 1968.
[54] Internet: comp.ai.neural-nets.
[55] Anonymous FTP: ftp.cs.cmu.edu/afs/cs/project/connect/bench/xor.

APPENDIX A: PROGRAM LIST FOR DRIVEN.F

PROGRAM DRIVEN


```
C
C
    XTOL=1. OD-16
    EPS=1.0D-4
    TOLERA = 1.0D-3
    N1=200
    N2=3
    L1=5
    L2=3
    IN1=25
    INTRAI=5400
    INTEST=1800
    NOUT=5
C
    M=5
    IPRINT(1)=50
    IPRINT(2)=0
C
C WE DO NOT WISH TO PROVIDE THE DIAGONAL MATRICES HKO, AND
C THEREFORE SET DIAGCO TO FALSE.
C
    DIAGCO= .FALSE.
    ANN = .TRUE.
    ICALL=0
    IFLAG=0
    NFMAX = 2000
    CALL LBSET
C
C READ IN INPUT FILE AND INITIALIZE THE WEIGHTS.
    CALL INPUT(INDATA, OUDATA,TESTIN,TESOUT,LAYIFO,NTEST,TYPE,SEED,
    * L1,L2,IN1,INTRAI,INTEST,NOUT)
        CALL INWEIT(WEIGHT,N,LAYIFO,SEED,L1,L2)
C
C SET BIAS INPUT.
C
    DO 10 K=1, NLAYER
        II = LAYIFO(K, 2)
        NEURON(II, 1) = -1.0
    1 0 ~ C O N T I N U E ~
C
C --- MAIN LOOP ---
    20 CONTINUE
        F=0.D0
        DO 30 I=1,N
        G(I) =0.ODO
    30 CONTINUE
C
C COMPUTE VALUE AND GRADIENT OF ERROR FUNCTION .
    CALL GRADIE(F,WEIGHT,N,G,INDATA, OUDATA,LAYIFO, NEURON,
    * N1,N2,L1,L2,IN1,INTRAI, INTEST,NOUT)
    CALL MLBFGS(N,M,WEIGHT,F,G,DIAGCO,DIAG,IPRINT,EPS,
    * XTOL,W, IFLAG, ANN,TOLERA)
    IF(IFLAG.EQ.1) THEN
C
C IF IFLAG=1, EVALUATE THE FUNCTION F AND GRADIENT G.
    ICALL=ICALL + I
```

```
C
C
C
C
C
    IFLAG = 0 INDICATES THE ROUTINE MLBFGS HAS TERMINATED SUCCESSFUL,
    THEREFORE, EVALUATE THE TEST DATA; OTHERWISE, AN ERROR OCCURS,
    THEN STOP THE EXECUTION OF THE PROGRAM.
    ELSE IF (IFLAG .EQ. 0) THEN
    40 ERTEST = ER(TYPE,TESTIN,TESOUT,NTEST,NEURON,
        LAYIFO, WEIGHT, N, NF05,N1,N2, L1, L2, IN1, INTEST, NOUT)
        WRITE(MP,50) ERTEST, EPS
        IF(TYPE .EQ. 2) THEN
            ERRATE = 1.0*NF05/NTEST
            WRITE(MP,60) NF05, ERRATE
        END IF
        END IF
    50 FORMAT(/' ERTEST = ', 1PD10.3,2X,'EPS=',1PD10.3)
    60 FORMAT(/' NF05 = ',I5,2X,'ERRATE=',1PD10.3)
C
        CONTINUE
C
        STOP
        END
        SUBROUTINE INPUT(INDATA, OUDATA, TESTIN, TESOUT, LAYIFO, NTEST,
    * TYPE,SEED, L1,L2, IN1,INTRAI, INTEST,NOUT)
```



```
C INTO THE ARRAY LAYIFO, AND ALL TRAINING DATA AND TESTING DATA
C INTO INDATA, OUTADA, TESTIN, AND TESOUT, RESPECTIVELY.
C THE FORMAT OF "INPUT.DAT" AND ALL VARIABLES ARE DESCRIBED
C AT THE BEGINNING OF THE MAIN PROGRAM.
C----------------------------------------------------------------
    IMPLICIT REAL*8 (A-H,O-Z)
    INTEGER L1,L2,I,IN,J,IN1,INTRAI,INTEST,NOUT,NOUT1,NINPUT
    INTEGER IOERR,TYPE,SEED,NTRAIN,NTEST,LAYIFO (L1,L2) ,NLAYER
    DOUBLE PRECISION INDATA(IN1,INTRAI), OUDATA(NOUT,INTRAI),
    * TESTIN(IN1, INTEST),TESOUT (NOUT, INTEST)
C
    COMMON /IP/NTRAIN, NLAYER
C
    IN = 5
C
    IOERR=0
    OPEN(UNIT=IN, FILE='INPUT.DAT', STATUS='OLD', IOSTAT=IOERR)
    IF (IOERR .NE. 0) THEN
        PRINT 10, IOERR
        FORMAT('CANNOT OPEN INPUT DATA FILE, IOERR=',I10)
        GOTO }12
            END IF
C
    READ(IN,20) TYPE, SEED
    20 FORMAT (2I5)
    PRINT 30,TYPE, SEED
    30 FORMAT(/' TYPE =',I5,5X,'SEED =',I11)
C
    READ(IN,40) NTRAIN, NTEST, NLAYER
    40 FORMAT (3I5)
    PRINT 50,NTRAIN,NTEST,NLAYER
    50 FORMAT(/' NTRAIN =',I9,8X,'NTEST =',I9,8X,'NLAYER =',I2)
C
    READ(IN, 60) (LAYIFO(I,1), I=1, NLAYER)
    6 0 ~ F O R M A T ~ ( 5 I 5 ) ~
    PRINT 70, (LAYIFO(I,1), I=1, NLAYER)
```

```
    70 FORMAT(/' LAYIFO (I,1) =',8I5)
```

C
C
$\operatorname{LAYIFO}(1,2)=1$
$\operatorname{LAYIFO}(1,3)=0$
$\operatorname{LAYIFO}(2,3)=1$
DO $80 \mathrm{I}=2$, NLAYER
$\operatorname{LAYIFO}(1,2)=\operatorname{LAYIFO}(I-1,1)+\operatorname{LAYIFO}(I-1,2)+1$
80 CONTINUE
DO $90 \mathrm{I}=3$, NLAYER
$\operatorname{LAYIFO}(I, 3)=\operatorname{LAYIFO}(I-1,3)+\operatorname{LAYIFO}(I-1,1) *(\operatorname{LAYIFO}(I-2,1)+1)$
90 CONTINUE
NOUT1 $=$ LAYIFO (NLAYER, 1)
NINPUT $=\operatorname{LAYIFO}(1,1)$
C
DO $100 \mathrm{~J}=1$, NTRAIN
$\operatorname{READ}(I N, *)$ (INDATA (I, J), $I=1$, NINPUT) , (OUDATA (I, J), $I=1$, NOUT1)
100 CONTINUE
C
110 CONTINUE
C
C
120 RETURN
END
SUBROUTINE INWEIT (WT,N,LAYIFO, SEED,L1,L2)

THIS SUBROUTINE IS USED TO INITIALIZE ALL THE CONNECTION WEIGHTS.
EACH WEIGHT IS INITIALIZED TO A RANDOM NUMBER BETWEEN $-0.5 / F A N-I N$
AND $0.5 / F A N-I N$, WHERE FAN-IN IS THE NUMBER OF NODES (INCLUDING THE
BIAS NODE) IN THE PREVIOUS LAYER.
THE CALLING STATEMENT IS
CALL INWEIT (WT, N, LAYIFO, SEED, L1, L2)
WHERE
WT IS A DOUBLE PRECISION ARRAY, WHICH IS USED TO CONTAIN
THE INITIAL WEIGHTS.
LAYIFO IS A TWO-DIMENSION ARRAY OF INTEGERS, WHICH CONTAINS
SOME NETWORK INFORMATION, SUCH THAT THE NUMBER OF NODES
IN EACH LAYER.
SEED IS AN INTEGER VARIABLE THAT USED TO GENERATE RANDOM
NUMBERS.

IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
INTEGER L1, L2, LLL , I, K, NTRAIN, NLAYER
INTEGER SEED, TEMP, FANIN, LAYIFO (L1,L2), N
DOUBLE PRECISION WT(1), RANDOM
COMMON /IP/ NTRAIN, NLAYER
C
TEMP $=0$
C
C ITERATE OVER ALL LAYERS (EXCLUDING THE INPUT LAYER).
DO $20 \mathrm{~K}=2$, NLAYER
C
C
FANIN $=$ THE NUMBER OF NODES IN PREVIOUS LAYER + 1 (BIAS NODE)

```
            FANIN = LAYIFO(K-1,1) +1
                LLL=LAYIFO (K,1) *FANIN
                DO 10 I = 1,LLL
                        WT(TEMP+I) = RANDOM(SEED)/FANIN
        CONTINUE
        TEMP = TEMP+I-1
    CONTINUE
C
C SET THE TOTAL NUMBER OF WEIGHTS.
    N = TEMP
    RETURN
    END
    DOUBLE PRECISION FUNCTION RANDOM( SEED )
C-------------------------------------------------------------------------------
C THIS FUNCTION IS USED TO GENERATE A RANDOM NUMBER BETWEEN -0.5
    TO 0.5.
    REFERENCE: "A PORTABLE RANDOM NUMBER GENERATOR FOR USE IN SIGNAL
                                    PROCESSING', SANDIA NATIONAL LABORATORIES TECHNICAL
                                    REPORT, BY S.D.STEARNS.
    INPUT: SEED
    RETURN: A DOUBLE PRECISION RANDOM NUMBER.
    IMPLICIT REAL*8 (A-H,O-Z)
    INTEGER SEED
C
    SEED = 2045*SEED + 1
    SEED = SEED - (SEED/1048576)*1048576
    RANDOM = (SEED+1)/1048577.0 - 0.5
C
    RETURN
    END
    DOUBLE PRECISION FUNCTION INPROD (VEC1, VEC2, DIM )
C----------------------------------------------------
C IT IS USED IN SUBROUTINE COMOU1 TO CALCULATE THE
C OUTPUT OF THE NETWORK.
C-----------------------------------------------------------------------------
    INTEGER DIM,I
    DOUBLE PRECISION VEC1(DIM), VEC2 (DIM)
C
    INPROD = 0.0
C ITERATE OVER ALL ELEMENTS OF THE VECTORS.
C
    DO 10 I=1, DIM
        INPROD = INPROD + VEC1(I) *VEC2 (I)
        1 0 ~ C O N T I N U E ~
C
    RETURN
    END
    DOUBLE PRECISION FUNCTION SIGMOD(X)
C------------------------------------------------------------
C IT IS USED IN SUBROUTINE COMOUI TO CALCULATE THE
C OUTPUT OF THE NETWORK.
C-------------------------------------------------------------------------------
    IMPLICIT REAL*8 (A-H,O-Z)
    DOUBLE PRECISION X
C
    SIGMOD = 1.0/(1.0 + DEXP(-X))
C
    RETURN
    END
    SUBROUTINE COMOU1 (A,NEURON, LAYIFO,WT,N,N1,N2,L1,L2, IN1, GRD)
```

```
        THIS SUBROUTINE IS USED TO COMPUTE THE OUTPUT OF THE NETWORK FOR
        EACH NEURON, AND STORE THEM IN ARRAY NEURON(*,1).
        IT IS CALLED BY THE FUNCTION ER TO CALCULATE THE VALUE OF
        THE ERROR FUNCTION ON THE TESTING DATA SET.
        IN ADDITION, IT COMPUTES THE DERIVATIVE OF THE ACTIVATION FUNCTION
        AND STORES THEM IN NEURON(*,2) FOR FURTHER REFERENCE.
        IT IS CALLED BY SUBROUTINE GRADIE TO CALCULATE THE VALUE AND
        GRADIENT OF THE ERROR FUNCTION ON TRAINING DATA SET.
    THE CALLING STATEMENT IS
    CALL SUBROUTINE COMOU1 (A,NEURON,LAYIFO,WT,N,N1,N2,L1,L2,
    WHERE
    A IS A DOUBLE PRECISION ARRAY THAT CONTAINS INPUT DATA.
    NEURON IS A TWO-DIMENSIONAL DOUBLE PRECISION ARRAY THAT CONTAINS
        OUTPUT OF THE NETWORK AND THE DERIVATIVE OF THE ACTIVATION
        FUNCTION.
    LAYIFO IS A TWO-DIMENSIONAL DOUBLE PRECISION ARRAY WHICH CONTAINS
        SOME NETWORK INFORMATION.
    WT IS A DOUBLE PRECISION ARRAY THAT CONTAINS CURRENT
        WEIGHTS.
    UP AND LOW ARE DOUBLE PRECISION VARIABLES. SINCE THE SIGMOID
        FUNCTION F(X) WILL OVERFLOW WHEN THE ABSOLUTE OF X IS
        TOO LARGE. WE SET THE FUNCTION VALUE TO BE 1.0
        OR O.O WHEN X IS LARGER THAN UP OR SMALLER THAN LOW.
        IMPLICIT REAL*8 (A-H,O-Z)
        INTEGER L1,L2,LLL, I,INDX,K,NDEX,NLAYER,NTRAIN
        INTEGER TEMP, WIDX, N, LAYIFO(L1,L2),N1,N2,IN1,JJ
        DOUBLE PRECISION SUM,WT(N),NEURON(N1,N2),INPROD,SIGMOD,
            * A(IN1),UP,LOW
        LOGICAL GRD
        COMMON /IP/ NTRAIN, NLAYER
C
C
    UP}=7.0\textrm{D}+
    LOW = -7.OD+2
COPY ALL INPUT DATA INTO NUERON(*,1), LAYIFO(1,1)=NUMBER OF INPUTS
    LLL=LAYIFO (1,1) +1
        DO 10 I=2, LLL
            NEURON(I,1) = A(I-1)
        1 0 ~ C O N T I N U E ~
C
C FORWARD PROPAGATED COMPUTATION OVER ALL LAYERS.
    DO 30 K=2, NLAYER
    INDX = LAYIFO (K,2)
    TEMP = LAYIFO(K,3)
    NDEX = LAYIFO(K-1,2)
    JJ = LAYIFO(K-1,1) + 1
C
C ITERATE OVER ALL NEURONS IN LAYER K.
C NOTE: LAYIFO(K,1) = NUMBER OF NEURONS IN K-TH LAYER.
    LLL=LAYIFO(K,1)
```


DO 20 I=1,LLL

```
LOCATE CORRESPONDING INDEX FOR NEURONS AND WEIGHTS
    INDX = INDX +1
    WIDX = TEMP + JJ * (I-1)
    COMPUTE WEIGHTED SUM WITH FUNCTION INPROD
    SUM = INPROD(NEURON (NDEX,1), WT(WIDX), JJ)
THE VALUE OF SIGMOID FUNCTION APPROACHES 1.0 OR 0 WHEN
THE ABSOLUTE VALUE OF SUM IS SUFFICIENT LARGE.
    IF(SUM .LE. UP .AND. SUM .GE. LOW ) THEN
    NEURON(INDX,1) = SIGMOD(SUM)
    ELSE IF (SUM .GT. UP) THEN
        NEURON(INDX,1) = 1.0
        ELSE
        NEURON(INDX,1) = 0.0
            END IF
C
    COMPUTE DERIVATIVE OF THE SIGMOID ACTIVATION FUNCTION F(X) WHEN IT
    IS CALLED BY SUBROUTINE GRADIE (GRD=TRUE).
    NOTE: F' (X)=F(X)*(1-F(X))
        IF (GRD)
                        NEURON(INDX, 2) = NEURON(INDX,1)*(1.0-NEURON(INDX,1))
        20 CONTINUE
        30 CONTINUE
        RETURN
        END
        DOUBLE PRECISION FUNCTION ER(TYPE,INARY,OUTARY,NUMBER,NRON,
    * LAYIFO,WT,N,NF05,N1,N2,L1,L2,IN1, INTEST,NOUT)
C---------------------------------------------------------------------------
C THIS FUNCTION IS USED TO EVALUATE THE TRAINING RESULT WITH
C THE TEST DATA SET WHEN TRAINING PROCESS HAS COMPLETED.
    IT CALCULATES THE NUMBER OF INCORRECTLY CLASSIFICATION EXAMPLES
    AND RETURN THE VALUE OF THE ERROR FUNCTION.
    TYPE IS AN INTEGER VARIABLE THAT SPECIFIES THE TRAINING
        PROBLEM TYPE. FUNCTION APPROXIMATION TYPE = 1, WHILE
        PATTERN CLASSIFICATION PROBLEM IF TYPE =2.
    INARY IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS INPUT DAT
        FOR AN EXAMPLE.
    OUTARY IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS DESIRED
        OUTPUT FOR AN EXAMPLE.
    NUMBER IS AN INTEGER VARIABLE, INDICATE THE NUMBER OF TOTAL
        EXAMPLES IN THE TEST DATA SET.
    NRON IS A DOUBLE PRECISION ARRAY THAT CONTAINS ACTUAL
        OUTPUT OF THE NETWORK.
    LAYIFO IS A TWO-DIMENSIONAL INTEGER ARRAY WHICH CONTAINS
        SOME NETWORK INFORMATION.
    WT IS A DOUBLE PRECISION ARRAY THAT CONTAINS CURRENT
        WEIGHTS.
    NF05 IS THE NUMBER OF INCORRECTLY CLASSIFIED EXAMPLES.
```

```
C Cr THERE IS ANY ONE OF ABSOLUTE VALUE OF DIFFERENCE 
```

```
    THE CALLING STATEMENT IS
    CALL GRADIE (F,X,N,G,INDATA,OUDATA,ILAYIFO, NEURON,
                                    N1,N2,L1,L2, IN1, INTRAI, INTEST,NOUT)
    WHERE
    F IS A DOUBLE PRECISION VARIABLE THAT CONTAINS THE VALUE
        OF THE ERROR FUNCTION.
    X IS A DOUBLE PRECISION ARRAY THAT CONTAINS CORRECT WEIGHTS.
    N IS AN INTEGER, WHICH IS NUMBER OF WEIGHTS.
    G IS A DOUBLE PRECISION ARRAY THAT CONTAINS THE
        GRADIENTS AT THE POINT X.
    INDATA IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS INPUT
        DATA OF AN EXAMPLE.
    OUDATA IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS OUTPUT DA
        OF AN EXAMPLE.
    LAYIFO IS A TWO-DIMENSIONAL INTEGER ARRAY THAT CONTAINS SOME
        NETWORK INFORMATION.
    NEURON IS A TWO-DIMENSIONAL DOUBLE PRECISION ARRAY, THE FIRST COL
        OF WHICH CONTAINS OUTPUT OF EACH NEURON, THE SECOND COLUMN
        CONTAINS THE DERIVATIVE OF THE ACTIVATION FUNCTION, AND TH
        THIRD COLUMN CONTAINS PARTIAL OF E(W) W.R.T. U(K,J).
        IMPLICIT REAL*8 (A-H,O-Z)
        INTEGER L1,L2,LLL, LLLL,LLLLLL,I,J,K,KK,M,NDX1,NOUT1
        INTEGER LAYIFO(L1,L2), WDX, NDX,N, N1,N2,IN1,
    * INTRAI, INTEST,NOUT,NTRAIN, NLAYER
        DOUBLE PRECISION NEURON(N1,N2), OUDATA(NOUT,INTRAI),COEF,
        * INDATA (IN1, INTRAI),X(N),G(N), F
        LOGICAL GRD
C
C
C
C ITERATE OVER ALL TRAINING EXAMPLES
    GRD = .TRUE.
    DO }80\textrm{M}=1\mathrm{ , NTRAIN
COMPUTE THE OUTPUT OF M-TH EXAMPLE.
    CALL COMOU1 (INDATA (1,M),NEURON,LAYIFO,X,N,N1,N2,L1,L2, IN1,GRD)
C
    CONTINUE
C
    COMMON /IP/ NTRAIN, NLAYER
    NOUT1 = LAYIFO(NLAYER, 1)
    DO 10 I=1, NOUT1
        NDX = LAYIFO(NLAYER, 2) + I
        NEURON(NDX, 3) = NEURON (NDX, 1) - OUDATA (I,M)
        F = F + NEURON(NDX, 3 ) ** 2
BACKWARD PROPAGATION COMPUTATION OVER ALL LAYERS, STARTS FROM
THE LAST HIDDEN LAYER.
    LLL=NLAYER-1
    DO 40 KK=2, LLL
        K=LLL+2-KK
C
C OVER ALL NEURONS IN LAYER K.
```

```
C
LLLL=LAMIFO (K,1) 
        LLLLL=LAYIFO (K+1,1)
        DO 20 I = 1, LLLLL
    NDX1 = LAYIFO (K+1,2) +I
    WDX = LAYIFO(K+1,3) + (I-1)*(LAYIFO (K,1) +1) +J
C
C COMPUTE PARTIAL OF E(W) W.R.T. U(K,J)
    NEURON (NDX, 3) = NEURON(NDX, 3) +
                                    NEURON (NDX1, 2) *NEURON (NDX1, 3) *X (WDX)
                                CONTINUE
                CONTINUE
            CONTINUE
C
C BACKWARD PROPAGATION COMPUTATION OVER ALL LAYERS AGAIN, STARTS
C FROM OUTPUT LAYER.
C
        DO }70\textrm{KK}=2\mathrm{ ,NLAYER
            K=NLAYER+2-KK
C
C
OVER ALL NEURONS IN K-TH LAYER.
        LLLL=LAYIFO (K,1)
        DO 60 J=1, LLLL
        NDX = LAYIFO (K,2) + J
C
C OVER ALL NEURONS IN THE PREVIOUS LAYER.
C
C
C
COMPUTE THE PARTIAL OF E(W) W.R.T. W(I,J,K)
                        G(WDX) = G(WDX) +
                        NEURON (NDX, 3) *NEURON (NDX , 2) *NEURON (NDX1 , 1)
                CONTINUE
                CONTINUE
            CONTINUE
        70 CONTII
C
C
COMPUTE THE SQUARED ERROR PERCENTAGE AND GRADIENT.
    COEF = 200.0 / (NTRAIN * NOUT1)
    F = 0.5 * F * COEF
    DO 90 I=1, N
        G(I) = G(I) * COEF
    9 0 ~ C O N T I N U E ~
    RETURN
    END
```


APPENDIX B: PROGRAM LIST FOR DRIVEF.F

PROGRAM DRIVEF

C	THIS IS THE DRIVE TO SOLVE THE FUNCTIONS FROM BRENT'S SUITE OF TEST			
C	PROBLEMS AND OSBORNE'S FUNCTIONS BY USING THE LIMITED MEMORY BFGS			
C	METHOD.			
C				
C	REFERENCES:			
C	"ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES",			
C	RICHARD P. BRENT, PRENTICE-HALL 1973, PAGE 138.			
C				
C	"SOME ASPECTS OF NON-LINEAR LEAST SQUARES CALCULATIONS"			
C	M. R. OSBORNE, NUMERICAL METHODS FOR NON-LINEAR OPTIMIZATION,			
C	F. A. LOOTSMA ED., ACADEMIC PRESS, NEW YORK, 1971,171-189.			
C				
C	THE SUBROUTINE TESTIN AND FUNCTION FTEST WERE WRITTEN BY			
C	DR. J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,			
C	OKLAHOMA STATE UNIVERSITY.			
C				
C	THE LIMITED MEMORY BFGS METHOD IS IMPLEMENTED BY MEANS OF THE			
C	SUBROUTINE MLBFGS, WHICH IS A SLIGHT MODIFICATION OF THE ROUTINE			
C	LBFGS BY JORGE NOCEDAL.			
C				
C	VARIABLES:			
c				
C	N IS THE NUMBER OF VARIABLES.			
C				
C	F IS ThE VALUE OF THE FUNCTION.			
C				
C	X AND G ARE ARRAYS OF LENGTH N , WHICH CONTAIN THE VALUE OF THE			
C	VARIABLES AND THE GRADIENT AT THE POINT X, RESPECTIVELY.			
C				
C	Y1,Y2,AND T ARE ARRAYS USED TO TEST OSBORNE FUNCTIONS.			
C				
C	EPS TOLERANCE OF THE STOPPING CRITERIA OF SUBROUTINE MLBFGS.			
C	THE MLBFGS TERMINATES WHEN $\|\|\mathrm{G} \\|\|<\operatorname{EPS} * \operatorname{MAX}(1,\| \| \mathrm{X}\\| \\|)$.			
C				
C	M IS THE NUMBER OF CORRECTIONS USED IN THE BFGS UPDATE.			
C				
C	ICALL IS THE NUMBER OF EVALUATIONS OF F AND G.			
C				
C	ANN IS A LOGICAL VARIABLE. SINCE THE SUBROUTINE MLBFGS			
C	IS CALLED BY TWO DRIVERS, DRIVE IS NOT USED TO IMPLEMENT			
C	THE ARTIFICIAL NEURAL NETWORKS, THEREFORE SET			
C	ANN = FALSE; OTHERWISE SET ANN = TRUE.			
c				
C	OTHER VARIABLES AND PARAMETERS ARE DESCRIBED IN THE			
C	SUBROUTINES LBSET AND MLBFGS.			
	IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)			
	DOUBLE PRECISION X (2000), G(2000), DIAG (2000), W(35000),			
	* YY1 (33), YY2 (65), Y1, Y2, T, TOLERA			
	DOUBLE PRECISION F, EPS, XTOL, GTOL, STPMIN, STPMAX, PI, FTEST			
	INTEGER IPRINT (2), IFLAG, ICALL, N, M, MP, LP, J, JFUNC, MAXJF, JFF, NFMAX			
C				
	DATA YY1/0.844D0, $0.908 \mathrm{D} 0,0.932 \mathrm{D} 0,0.936 \mathrm{D} 0,0.925 \mathrm{DO}, 0.908 \mathrm{D} 0,0.881 \mathrm{D} 0$,			
	$0.850 \mathrm{D} 0,0.818 \mathrm{DO} 0.0 .784 \mathrm{DO}, 0.751 \mathrm{DO} 0.0 .718 \mathrm{D} 0,0.685 \mathrm{D} 0,0.658 \mathrm{DO}$,			
	* $\quad 0.628 \mathrm{D} 0,0.603 \mathrm{D} 0,0.580 \mathrm{DO}, 0.558 \mathrm{D} 0,0.538 \mathrm{DO}, 0.522 \mathrm{DO} 0.0 .506 \mathrm{DO}$,			
	$0.490 \mathrm{DO}, 0.478 \mathrm{DO}, 0.467 \mathrm{DO}, 0.457 \mathrm{DO}, 0.448 \mathrm{D} 0,0.438 \mathrm{DO}, 0.431 \mathrm{DO}$,			
	0.424DO, 0.420D0, $0.414 \mathrm{DO}, 0.411 \mathrm{DO}, 0.406 \mathrm{DO} /$			
	DATA YY2/1.366D0,1.191D0, 1.112D0,1.013D0, $0.991 \mathrm{DO}, 0.885 \mathrm{DO} 0.0 .831 \mathrm{DO}$,			
	0.847D0, $0.786 \mathrm{D} 0,0.725 \mathrm{D} 0,0.746 \mathrm{D} 0,0.679 \mathrm{D} 0,0.608 \mathrm{DO} 0.0 .655 \mathrm{D} 0$,			

```
    * 0.616D0,0.606D0,0.602D0,0.626D0,0.651D0,0.724DO,0.649DO,
    * 0.649DO,0.694DO,0.644DO,0.624DO,0.661DO,0.612DO,0.558D0,
    * 0.533DO,0.495DO,0.500DO,0.423DO,0.395DO,0.375DO,0.372D0,
    * 0.391D0,0.396D0,0.405D0,0.428D0,0.429D0,0.523DO,0.562D0,
    * 0.607DO,0.653D0,0.672DO,0.708D0,0.633D0,0.668D0,0.645D0,
    *
    0.098D0,0.054D0/
    LOGICAL DIAGCO, ANN
    DATA XTOL, EPS/1.0D-16,1.0D-7/
C
    COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
    COMMON /PRTEST/ PI,JFUNC,MAXJF
    COMMON /OSB/Y1 (33),Y2(65),T(65)
C
    M=5
    IPRINT(1)=50
    IPRINT(2)=0
C
C WE DO NOT WISH TO PROVIDE THE DIAGONAL MATRICES HKO, AND
C THEREFORE SET DIAGCO TO FALSE.
    DIAGCO= .FALSE.
C
C WE ARE NOT IMPLEMENTING THE ARTIFICIAL NEURAL NETWORKS LEARNING
C ALGORITHM, THEREFORE SET ANN TO FALSE.
    ANN = .FALSE.
    NFMAX = 2000
    TOLERA = 1.0D-3
C
C DEFINE THE DEFAULT VALUES OF SEVERAL PARAMETERS IN COMMON SECTIONS.
    CALL LBSET
    DO 5 I=1, 33
        Y1 (I)=YY1 (I)
    5 CONTINUE
        DO 6 I=1, }6
            Y2(I)=YY2 (I)
        6 ~ C O N T I N U E ~
C
    DO 50 JFF=1,13
        ICALL=0
        IFLAG=0
        JFUNC=JFF
        IF (JFUNC .LT. 12) THEN
            WRITE (LP, 10) JFUNC
            FORMAT(/' SOLVE PROBLEM NUMBER',I3,
                FROM THE TEST SUITE USED BY BRENT.')
            END IF
C
    IF(JFF.EQ.6) N=9
    IF(JFF.EQ.9) N=10
    IF(JFF.EQ.10) N=20
C
C
    INITIALIZATION
    CALL TESTIN(X,N)
C
    20 CONTINUE
        F= 0.DO
        DO 30 J=1,N
        G(J) =0.D0
            CONTINUE
```

C

```
C CALCULATE THE FUNCTION F AND GRADIENT G.
C
        IF (JFUNC .LT. 12) THEN
            F = FTEST (X,N)
            CALL FGRAD(N,X,G)
        ELSE
            CALL OSBORNE (F,X,N,G)
        END IF
C
        CALL MLBFGS(N,M,X,F,G,DIAGCO,DIAG,IPRINT,EPS,XTOL,W,IFLAG,
                ANN, TOLERA)
C
C
C
C
    3
        WRITE(LP,40) (LP,45) (X(I), I=1,N)
        FORMAT(' VACTOR X= ')
        FORMAT(6(2X,1PD10.3))
        CONTINUE
C
C
    TESTIN 1.2 SEPTEMBER }199
    J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
    OKLAHOMA STATE UNIVERSITY
    INITILIZE FOR PROBLEM NUMBER JFUNC FROM BRENT'S TEST SUITE.
    "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES",
    RICHARD P. BRENT, PRENTICE-HALL 1973, PAGE }13
    CALL SUBROUTINE LBSET BEFORE CALLING TESTIN.
    NOTE THAT FOR JFUNC = 6, 9, OR 10,
    THE VALUE OF N MUST BE SET BEFORE CALLING TESTIN.
        IMPLICIT REAL*8 (A-H,O-Z)
        INTEGER N,LP,MP,JFUNC,MAXJF,J
        DOUBLE PRECISION X(N),PI,DATAN,GTOL,STPMIN,STPMAX,Y1,Y2,T
C
    COMMON /PRTEST/ PI,JFUNC,MAXJF
    COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
    COMMON /OSB/Y1(33),Y2(65),T(65)
    MAXJF=13
    PI=4.0DO*DATAN(1.0D0)
C
C
    IF(JFUNC.LT.1 .OR. JFUNC.GT.MAXJF) STOP
    GO TO (10, 30,50,70,90,110,170,190,210,240,270,300,330), JFUNC
C
C JFUNC=1
C ROSENBROCK'S TEST FUNCTION
C
```

```
C THE MINIMUM IS F(1.0,1.0)=0.0.
    10 N=2
        X(1)=-1.2D0
        X(2)=1.0D0
        WRITE(LP, 20)
    20 FORMAT(' ROSENBROCK TEST FUNCTION')
        RETURN
C
C JFUNC=2
C POWELL'S SINGULAR TEST FUNCTION
    THE MINIMUM IS F}(0.0,0.0,0.0,0.0)=0.0
    30 N=4
        X(1)=3.0D0
        X(2) =-1.0D0
        X(3)=0.0D0
        X(4)=1.0D0
        WRITE (LP,40)
    40 FORMAT(' SINGULAR TEST FUNCTION OF POWELL')
        RETURN
C
C JFUNC=3
C HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C SINCE THE GRADIENT DOES NOT EXIST AT THE POINT (0,0,0), THEREFORE
C WE CHANGE THE INITIAL VALUE FROM ( }-1,0,0) TO (0.01,0.01,0
    THE MINIMUM IS F(1.0,0.0,0.0)=0.0 .
    50 N=3
    X(1)=0.01D0
    X(2) =0.01D0
    X(3)=0.0D0
        WRITE (LP,60)
    6 0 ~ F O R M A T ( ' ~ H E L I C A L ~ V A L L E Y ~ T E S T ~ F U N C T I O N ~ O F ~ F L E T C H E R ~ A N D ~ P O W E L L ' ) ~
        RETURN
C
C JFUNC=4
C LEON'S CUBIC TEST FUNCTION
    THE MINIMUM IS F(1.0,1.0)=0.0 .
    70 N=2
        X(1) =-1.2D0
        X(2) =-1.0D0
        WRITE (LP, 80)
    80 FORMAT(' CUBIC TEST FUNCTION OF LEON')
        RETURN
C
C JFUNC=5
C BEALE'S TEST FUNCTION
C
C
    90 N=2
        X(1)=0.1D0
        X(2)=0.1D0
        WRITE(LP,100)
    100 FORMAT(' BEALE TEST FUNCTION')
        RETURN
C
C JFUNC=6
C WATSON'S TEST FUNCTION (SEE KOWALIK AND OSBORNE)
C
C
        THE MINIMUM IS F
C FOR N=6, THE MINIMUM IS NEAR
```

```
C F(-0.015725,1.012435,-0.232992,1.260430,-1.513729,0.992996)=
C
    1 1 0 \text { DO 120 J=1,N}
        X(J)=0.0D0
    120 CONTINUE
        WRITE (LP,130)N
    130 FORMAT(' WATSON TEST FUNCTION WITH N =',I3)
        RETURN
C
C JFUNC=7
C POWELL'S 1964 TEST FUNCTION
C
C
    170 N=3
        X(1)=0.ODO
        X(2)=1.OD0
        X(3)=2.0DO
        WRITE (LP, 180)
    180 FORMAT(' POWELL (1964) TEST FUNCTION')
        RETURN
C
C JFUNC=8
C WOOD'S TEST FUNCTION
C
C
190 N=4
    X(1) = -3.0D0
        X(2)=-1.0D0
        X(3)=-3.0D0
        X(4)=-1.0D0
        WRITE(LP, 200)
    200 FORMAT(' TEST FUNCTION OF WOOD')
        RETURN
C
    JFUNC=9
C BRENT'S HILBERT MATRIX TEST FUNCTION
C
C
C
C
C
    C SHOULDN'T ILLCIN BE SET TO 1 FOR THESE FUNCTIONS,
C AT LEAST FOR LARGE VALUES OF N?
2 1 0 ~ D O ~ 2 2 0 ~ J = 1 , N
        X(J)=1.0D0
    220 CONTINUE
        WRITE(LP, 230)N
    230 FORMAT(' HILBERT MATRIX TEST FUNCTION WITH N =',I3)
        RETURN
C
C JFUNC=10
    C TRIDIAGONAL MATRIX TEST FUNCTION
C
C
    FOR N=9, THE MINIMUM IS NEAR
    F}(-0.000015,0.999790,0.014764,0.146342,1.00081,-2.617731
        4.104403,-3.143612,1.052627)=1.399760138D-6 .
C
C
    THE MINIMUM IS F}(1.0,1.0,1.0,1.0)=0.0 .
    THE MINIMUM IS F}(0.0,0.0,0.0,\ldots,0.0)=0.0 .
    FOR N.GT.10, PRAXIS MAY RUN FOR A VERY, VERY LONG TIME
        AND TERMINATE WITH SOME COMPONENTS OF X(*) FAR FROM ZERO,
        BECAUSE OF THE EXTREME ILL-CONDITIONING OF THIS PROBLEM.
    THE MINIMUM IS F(N,N-1,N-2,\ldots., 2,1) = -N.
```

```
    240 DO 250 J=1,N
        X(J) = 0.0D0
    250 CONTINUE
    WRITE(LP, 260)N
    260 FORMAT(' TRIDIAGONAL MATRIX TEST FUNCTION WITH N =',I3)
    RETURN
O
C JFUNC=11
C BOX'S TEST FUNCTION
C THE MINIMUM IS F}(1.0,10.0,1.0)=0.0 .
C
    270 N=3
    X(1)=0.0D0
    X(2)=10.0D0
    X(3)=20.0D0
    WRITE(LP, 280)
    280 FORMAT(' TEST FUNCTION OF BOX')
    RETURN
C
C JFUNC=12
C OSBORNE 1 FUNCTION
C THE MINIMUM IS F(0.3754,1.9358,-1.4647,0.01287,
C 0.02212)=0.546D-4
C
    300 N=5
        X(1)=0.5D0
        X(2)=1.5D0
        X(3)=-1.0D0
        X(4)=1.0D-2
        X(5)=2.0D-2
        DO 310 J=1, 33
            T(J)=10.0D0* (J-1)
    310 CONTINUE
    WRITE(LP, 320)
    320 FORMAT(/' TEST FUNCTION OF OSBORNE 1')
        RETURN
C
C JFUNC=13
C OSBORNE 2 FUNCTION
C
C THE MINIMUM IS F}(1.3100,0.4315,0.6336,0.5993,0.7539,0.9056
C 1.3651,4.8248,2.3988,4.5689,5.6754)=0.0402
    330 N=11
    X(1)=1.3D0
    X(2)=6.5D-1
    X(3)=6.5D-1
    X(4)=7.0D-1
    X(5)=6.0D-1
    X(6) =3.0D0
    X(7) =5.0D0
    X(8)=7.0D0
    X(9) =2.0D0
    X(10)=4.5D0
    X(11) =5.5D0
    DO 340 J=1, 65
        T(J)=0.1D0*(J-1)
    340 CONTINUE
    WRITE (LP, 350)
    350 FORMAT (/' TEST FUNCTION OF OSBORNE 2')
    RETURN
    END
C
```

DOUBLE PRECISION FUNCTION FTEST (X,N)


```
C JFUNC=6
C WATSON'S TEST FUNCTION (SEE KOWALIK AND OSBORNE)
C
    6 0 S = X ( 1 ) * * 2 + ( X ( 2 ) - X ( 1 ) * * 2 - 1 . 0 D 0 ) * * 2
        DO 90 I=2,30
        YY=(I-1)/29.0D0
        T=X(N)
        JJMAX=N-1
        DO 70 JJ=1,JJMAX
                J=JJMAX+1-JJ
                T=X(J) +YY*T
    70 CONTINUE
        U=(N-1)*X(N)
C
        DO }80\textrm{JJ}=2\mathrm{ , JJMAX
                J=JJMAX+2-JJ
                U=(J-1) *X(J)+YY*U
            CONTINUE
            S=S+(U-T*T-1.0DO)**2
    90 CONTINUE
        FTEST=S
        RETURN
C
C JFUNC=7
C POWELL'S 1964 TEST FUNCTION
C
    140 IF(X(2).EQ.O.ODO) THEN
                TERM=0.ODO
            ELSE
                TERM=DEXP (- ((X (1)+X(3))/X(2) -2.0D0)**2)
            ENDIF
            FTEST=3.0D0-1.ODO/(1.OD0+(X(1)-X(2))**2)-
            * DSIN(0.5D0*PI*X(2)*X(3))-TERM
            RETURN
C
JFUNC=8
C WOOD'S TEST FUNCTION
150 FTEST=100.0D0* (X(2)-X(1)**2)**2+(1.0D0-X(1))**2+
        * 90.0D0*(X(4)-X(3)**2)**2+(1.0D0-X(3))**2+
        * 10.1D0*((X(2)-1.0D0)**2+(X(4)-1.0D0)**2)+
        * 19.8D0*(X(2)-1.0D0)*(X(4)-1.0D0)
        RETURN
C
C JFUNC=9
C BRENT'S HILBERT MATRIX TEST FUNCTION
C
    160 S=0.0D0
        DO }180\mathrm{ I=1,N
            T=0.0D0
            DO 170 J=1,N
                T=T+X(J)/(I+J-1.0D0)
    170 CONTINUE
            S=S+T*X(I)
    180 CONTINUE
        FTEST=S
        RETURN
C
C JFUNC=10
C TRIDIAGONAL MATRIX TEST FUNCTION
C
    190S=X(1)*(X(1) -X(2))
        IMAX=N-1
        DO 200 I=2,IMAX
        S=S+X(I)* ((X(I) -X(I-1))+(X(I) -X(I+1)))
```

```
    200 CONTINUE
        FTEST=S+X(N)*(2.0D0*X(N)-X(N-1))-2.0D0*X(1)
        RETURN
C
C JFUNC=11
C BOX'S TEST FUNCTION
C
    210 S=0.0D0
    DO 220 I=1,10
            P=-I/10.0D0
            IF(P*X(2).LT.-40.0D0) THEN
                    TERM=0.OD0
            ELSE
                    TERM=DEXP(P*X(2))
            ENDIF
            S=S+(DEXP(P*X(1))-TERM-
                X(3)*(DEXP (P)-DEXP(10.0D0*P)))**2
    220 CONTINUE
        FTEST=S
        RETURN
        END
C
    SUBROUTINE FGRAD(N,X,G)
C------------------------------------------
C FROM BRENT'S SUITE OF TEST PROBLEMS.
C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES",
C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 137-154, 164-166
C-----------------------------
    INTEGER N,JFUNC,MAXJF, I, IMAX, J, JEVEN, JJ,JJMAX
            DOUBLE PRECISION X(N),G(N),V,PI,DATAN,DEXP,
        * DCOS,DSQRT,F,P,R,S,T(4),C(3) ,TERM,U,YY
C
    COMMON /PRTEST/ PI,JFUNC,MAXJF
C
            IF(JFUNC.LT.1 .OR. JFUNC.GT.MAXJF) STOP
            GO TO (10,20, 30,40,50,60,140,150,160,190,210),JFUNC
C
C JFUNC=1
C ROSENBROCK'S TEST FUNCTION
    10G(2)=2.0D2*(X(2)-X(1)**2)
            G(1)=-2.0D0*(X(1)*G(2)+1.0D0-X(1))
            RETURN
C
C JFUNC=2
C POWELL'S SINGULAR TEST FUNCTION
C
    20}T(1)=2*(X(1)+10*X(2)
    T(2)=40* (X(1)-X(4))**3
    T(3)=4* (X(2)-2*X(3))**3
    T(4)=10* (X(3)-X(4))
            G(1)=T(1)+T(2)
            G(2)=10*T(1)+T(3)
            G(3)=T(4)-2*T(3)
            G(4)=-T(2)-T(4)
            RETURN
C
C JFUNC=3
C HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C
    30 U=X(1)**2+X(2)**2
    R=DSQRT(U)
```

```
        R=2.0D2*(R-1)/R
        S=DATAN(X(2)/X(1))
        S=2.0D2* (X(3)-5.0D0*S/PI)
        G(3)=S+2.0D0*X(3)
        S=5.0D0*S/(U*PI)
        G(2)=-X(1)*S+R*X(2)
        G(1)=X(2)*S+R*X(1)
        RETURN
C
C JFUNC=4
C LEON'S CUBIC TEST FUNCTION
C
    40G(2)=2.0D2*(X(2)-X(1)**3)
    G(1)=-3*G(2)*X(1)**2-2*(1-X(1))
    RETURN
C
C JFUNC=5
C BEALE'S TEST FUNCTION
C
    50 C(1)=1.5D0
    C(2) =2.25D0
    C(3)=2.625D0
    DO }52I=1,
        T(I)=1-X(2)**I
    52 CONTINUE
    DO 55 I=1, 3
                G(1) =G(1)-(C(I)-X(1)*T(I))*T(I)
                G(2)=G(2)+(C(I)-X(1)*T(I))*I*X(1)*X(2)** (I-1)
    5 5 ~ C O N T I N U E ~
    G(1)=2*G(1)
    G(2)=2*G(2)
    RETURN
C
C JFUNC=6
C WATSON'S TEST FUNCTION (SEE KOWALIK AND OSBORNE)
C
        6 0 ~ D O ~ 1 0 0 ~ I = 2 , ~ 3 0 ~
        YY=(I-1)/29.0D0
        V=X(N)
        JJMAX=N-1
        DO }70\mathrm{ JJ=1, JJMAX
                J=JJMAX+1-JJ
                V=X(J)+YY*V
        CONTINUE
        U=(N-1)*X(N)
C
    DO 80 JJ=2, JJMAX
                J=JJMAX+2-JJ
                U=(J-1)*X(J)+YY*U
    CONTINUE
C
    U=2.0DO*(U-V*V-1.ODO)
    R=1.0D0
C
    DO 90 JJ=2, N
                G(JJ)=G(JJ) +U*((JJ-1)*R-2.0D0*V*R*YY)
                R=R*YY
    CONTINUE
    G(1)=G(1)-U*2.0D0*V
        CONTINUE
C
    R=X(2)-X(1)* X(1)-1.0D0
    G(1)=G(1)+2.0D0*X(1)*(1.0D0-2.0D0*R)
    G(2)=G(2)+2.0DO*R
    RETURN
```

```
C
C JFUNC=7
C POWELL'S 1964 TEST FUNCTION
C
    140 S=(X(1)+X(3))/X(2)-2.0D0
        R=(X(1)-X(2))/((1.OD0+(X(1)-X(2))**2)**2)
        U=S*DEXP(-S*S)/X(2)
        P=0.5D0*PI
        V=P*DCOS (P*X(2)*X(3))
        G(1)=2.0D0* (R+U)
        G(2)=-2.0DO* (R+U* (X(1)+X(3))/X(2))-X(3)*V
        G(3)=2.0DO*U-X(2)*V
        RETURN
C
C JFUNC=8
C WOOD'S TEST FUNCTION
150 T(1)=X(2)-X(1)*X(1)
        T(2)=X(4)-X(3)*X(3)
        G(1)=-4.0D2*T(1)*X(1)-2.0D0*(1.0D0-X(1))
        G(2)=2.0D2*T(1)+2.0D0*10.1D0* (X(2) -1.0D0)+19.8D0*(X(4)-1.0D0)
        G(3)=-3.6D2*T(2)*X(3)-2.0D0*(1.0D0-X (3))
        G(4)=1.8D2*T(2)+2.0D0*10.1D0* (X(4) -1.0D0)+19.8D0*(X(2) -1.0DO)
        RETURN
C
C JFUNC=9
C BRENT'S HILBERT MATRIX TEST FUNCTION
C
    160 DO }180\textrm{I}=1,
        DO 170 J=1, N
                G(I)=G(I) +2.0D0*X(J)/(I+J-1)
        CONTINUE
        CONTINUE
        RETURN
C
C JFUNC=10
C TRIDIAGONAL MATRIX TEST FUNCTION
C
    190G(1)=2*(X(1)-X(2)-1)
        DO 200 I=2, N-1
        G(I)=2.0DO*(2.0DO*X(I) -X(I-1)-X(I+1))
    200 CONTINUE
        G(N)=2* (2*X(N)-X(N-1))
        RETURN
C
C JFUNC=11
c BOX'S TEST FUNCTION
C
    2 1 0 ~ D O ~ 2 4 0 ~ I = 1 , ~ 1 0 ~
                P}=-I/10.0D
                T(1) = DEXP (X (1)*P)
                T(2) =-DEXP (X(2)*P)
                T(3)=DEXP(1.0D1*P)-DEXP (P)
                S=2*(T(1)+T(2)+X(3)*T(3))
                G(1)=G(1)+S*T}(1)*
                G(2)=G(2)+S*T(2)*P
                G(3)=G(3)+S*T(3)
240 CONTINUE
        RETURN
        END
C
        SUBROUTINE OSBORNE (F,X,N,G)
C
C COMPUTE THE VALUES AND THE GRADIENTS FOR OSBORNE FUNCTIONS 1 AND 2.
```

```
    IMPLICIT REAL*8 (A-H,O-Z)
    INTEGER N,JFUNC,MAXJF,J,I
    DOUBLE PRECISION X(N),G(N),DEXP,FTX,F,R,S,TEMP(4),PI,Y1,Y2,T
C
    COMMON /PRTEST/ PI,JFUNC,MAXJF
    COMMON /OSB/Y1 (33),Y2 (65),T(65)
C
        IF(JFUNC.LT.12 .OR. JFUNC.GT.13) STOP
        F=0.0D0
        DO 10 I=1, N
        G(I) =0.0DO
        CONTINUE
C
C JFUNC=12
C OSBORNE FUNCTION 1
C
        IF(JFUNC .EQ. 12) THEN
        DO 35 J=1,33
                        R=DEXP((-1)*X(4)*T(J))
                S=DEXP ((-1)*X(5)*T(J))
                FTX=X(1)+X(2)*R+X(3)*S-Y1 (J)
                F = F+FTX**2
                G(1)=G(1)+FTX
                G(2)=G(2)+FTX*R
                G(3)=G(3) + FTX*S
                G(4)=G(4) - FTX*X(2)*T(J)*R
                G(5)=G(5) - FTX*X(3)*T(J)*S
        CONTINUE
C
C JFUNC=13
C OSBORNE FUNCTION 2
C
    ELSE
        DO }45\textrm{J}=1,6
            TEMP (1) = DEXP (-X (5) *T (J))
            TEMP (2) = DEXP (-X (6) * (T (J) -X (9))**2)
            TEMP (3) = DEXP (-X(7)* (T(J) -X (10))**2)
            TEMP (4) = DEXP(-X (8)* (T(J) -X(11))**2)
            FTX=0.D0
                DO 40 I=1, 4
                    FTX=FTX+X(I)*TEMP (I)
        CONTINUE
        FTX=FTX-Y2 (J)
                F = F+FTX**2
                DO 42 I=1, 4
                    G(I)=G(I) +FTX*TEMP (I)
        CONTINUE
        G(5)=G(5)-FTX*T (J) *X(1) *TEMP (1)
                G(6)=G(6) -FTX*X(2)*TEMP (2) *((T (J) -X (9))**2)
                G(7) =G(7) - FTX*X(3)*TEMP (3)* ((T (J) -X(10))**2)
                G(8)=G(8) -FTX*X(4)*TEMP(4)*((T(J) -X(11))**2)
                G(9)=G(9)+FTX*X (2)*TEMP (2)*X(6)*2* (T (J) -X (9))
                G(10)=G(10) +FTX*X(3) *TEMP (3)*X(7) *2* (T (J) -X (10))
                G(11) =G(11) +FTX*X (4)*TEMP (4)*X(8)*2*(T(J)-X(11))
        CONTINUE
            END IF
            DO 49 J=1, N
                G(J)=2*G(J)
    49 CONTINUE
C
END
```


WHERE

N IS AN INTEGER VARIABLE THAT MUST BE SET BY THE USER TO THE NUMBER OF VARIABLES. IT IS NOT ALTERED BY THE ROUTINE. RESTRICTION: N>0.
M IS AN INTEGER VARIABLE THAT MUST BE SET BY THE USER TO THE NUMBER OF CORRECTIONS USED IN THE BFGS UPDATE. IT IS NOT ALTERED BY the routine. Values of m less than 3 are NOT RECOMMENDED; LARGE VALUES OF M WILL RESULT IN EXCESSIV COMPUTING TIME. $3<=\mathrm{M}<=7$ IS RECOMMENDED. RESTRICTION: M>0
IS A DOUBLE PRECISION ARRAY OF LENGTH N. ON INITIAL ENTRY IT MUST BE SET BY THE USER TO THE VALUES OF THE INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON EXIT WITH IFLAG=0, IT CONTAINS the values of the variables at the best point FOUND (USUALLY A SOLUTION).
F IS A DOUBLE PRECISION VARIABLE. BEFORE INITIAL ENTRY AND O A RE-ENTRY WITH IFLAG=1, IT MUST BE SET BY THE USER TO Contain the value of the function fat the point x.
G IS A DOUBLE PRECISION ARRAY OF LENGTH N. BEFORE INITIAL ENTRY AND ON A RE-ENTRY WITH IFLAG=1, IT MUST BE SET BY THE USER TO CONTAIN THE COMPONENTS OF THE GRADIENT G AT THE POINT X.
diagco is a logical variable that must be set to .true. If the USER WISHES TO PROVIDE THE DIAGONAL MATRIX HKO AT EACH ITERATION. OTHERWISE IT SHOULD BE SET TO . FALSE., IN WHICH CASE LBFGS WILL USE A DEFAULT VALUE DESCRIBED BELOW. IF DIAGCO IS SET TO .TRUE. THE ROUTINE WILL RETURN AT EACH ITERATION OF THE ALGORITHM WITH IFLAG=2, AND THE DIAGONAL MATRIX HKO MUST BE PROVIDED IN THE ARRAY DIAG.
DIAG IS A DOUBLE PRECISION ARRAY OF LENGTH N. IF DIAGCO=.TRUE., THEN ON INITIAL ENTRY OR ON RE-ENTRY WITH IFLAG=2, DIAG IT MUST BE SET BY THE USER TO CONTAIN THE VALUES OF THE DIAGONAL MATRIX HKO. RESTRICTION: ALL ELEMENTS OF DIAG MUST BE POSITIVE.
IPRINT IS AN INTEGER ARRAY OF LENGTH TWO WHICH MUST BE SET BY THE USER.
IPRINT (1) SPECIFIES THE FREQUENCY OF THE OUTPUT:
IPRINT(1) < 0 : NO OUTPUT IS GENERATED,
IPRINT(1) $=0$: OUTPUT ONLY AT FIRST AND LAST ITERATION IPRINT(1) > 0 : OUTPUT EVERY IPRINT(1) ITERATIONS.
IPRINT(2) SPECIFIES THE TYPE OF OUTPUT GENERATED:
IPRINT (2) $=0$: ITERATION COUNT, NUMBER OF FUNCTION EVALUATIONS, FUNCTION VALUE, NORM OF TH GRADIENT, AND STEPLENGTH,
$\operatorname{IPRINT}(2)=1: \operatorname{SAME}$ AS IPRINT (2) $=0$, PLUS VECTOR OF VARIABLES AND GRADIENT VECTOR AT THE INITIAL POINT,
$\operatorname{IPRINT}(2)=2: \operatorname{SAME}$ AS IPRINT(2)=1, PLUS VECTOR OF VARIABLES, $\operatorname{IPRINT}(2)=3:$ SAME AS IPRINT(2) $=2$, PLUS GRADIENT VECT
EPS IS A POSITIVE DOUBLE PRECISION VARIABLE THAT MUST BE SET B THE USER, AND DETERMINES THE ACCURACY WITH WHICH THE SOLUT IS TO BE FOUND. THE SUBROUTINE TERMINATES WHEN


```
C
    DOUBLE PRECISION GTOL,ONE,ZERO,GNORM,DDOT,STP1,FTOL,STPMIN,
    STPMAX,STP,YS,YY,SQ,YR, BETA, XNORM,DFNORM,TOLERA
    INTEGER MP,LP,ITER,NFUN, POINT,ISPT,IYPT,MAXFEV,INFO,
                        BOUND,NPT, CP, I, NFEV, INMC, IYCN, ISCN
    LOGICAL FINISH
    COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
C
    1 0
    G.EQ.0) GO TO 10
    GO TO (172,100), IFLAG
    ITER=0
    IF(N.LE.O.OR.M.LE.O) GO TO }19
    IF(GTOL.LE.1.D-04) THEN
        IF(LP.GT.0) WRITE(LP,245)
        GTOL=9.D-01
    ENDIF
C
    FTOL= 1.0D-4
    MAXFEV= 20
    NFUN= 1
    POINT= 0
    FINISH= .FALSE.
    IF(DIAGCO) THEN
        DO }30\mathrm{ I=1,N
        IF (DIAG(I).LE.ZERO) GO TO }19
    CONTINUE
    ELSE
        DO 40 I=1,N
        DIAG(I)= 1.0D0
    CONTINUE
    ENDIF
    THE WORK VECTOR W IS DIVIDED AS FOLLOWS:
    THE FIRST N LOCATIONS ARE USED TO STORE THE GRADIENT AND
    OTHER TEMPORARY INFORMATION.
    LOCATIONS (N+1) ...(N+M) STORE THE SCALARS RHO.
    LOCATIONS (N+M+1) ...(N+2M) STORE THE NUMBERS ALPHA USED
    IN THE FORMULA THAT COMPUTES H*G.
    LOCATIONS (N+2M+1)\ldots(N+2M+NM) STORE THE LAST M SEARCH
        STEPS.
    LOCATIONS (N+2M+NM+1) ...(N+2M+2NM) STORE THE LAST M
        GRADIENT DIFFERENCES.
    THE SEARCH STEPS AND GRADIENT DIFFERENCES ARE STORED IN A
    CIRCULAR ORDER CONTROLLED BY THE PARAMETER POINT.
    ISPT= N+2*M
    IYPT= ISPT+N*M
    DO }50 I=1,
        W(ISPT+I)= -G(I)*DIAG(I)
    CONTINUE
    GNORM= DSQRT(DDOT(N,G,1,G,1))
    STP1= ONE/GNORM
C
```

```
    IF(IPRINT(1).GE.0) CALL LB1(IPRINT,ITER,NFUN,
C
C
C
    80 ITER= ITER+1
        INFO=0
        BOUND=ITER-1
        IF(ITER.EQ.1) GO TO }16
        IF (ITER .GT. M) BOUND=M
C
    YS= DDOT(N,W(IYPT+NPT+1),1,W(ISPT+NPT+1),1)
    IF(.NOT.DIAGCO) THEN
        YY= DDOT(N,W(IYPT+NPT+1),1,W(IYPT+NPT+1),1)
        DO }90I=1,
                DIAG(I) = YS/YY
        CONTINUE
        ELSE
            IFLAG=2
            RETURN
        ENDIF
    100 CONTINUE
    IF(DIAGCO) THEN
        DO }110\textrm{I}=1,\textrm{N
            IF (DIAG(I).LE.ZERO) GO TO }19
        CONTINUE
        ENDIF
C
C COMPUTE -H*G USING THE FORMULA GIVEN IN: NOCEDAL, J. 1980,
C "UPDATING QUASI-NEWTON MATRICES WITH LIMITED STORAGE",
C
C
    MATHEMATICS OF COMPUTATION, VOL.24, NO.151, PP. 773-782.
    CP= POINT
    IF (POINT.EQ.0) CP=M
    W(N+CP) = ONE/YS
    DO }112\textrm{I}=1,\textrm{N
    W(I) = -G(I)
    112 CONTINUE
        CP}= POINT
        DO 125 I= 1,BOUND
            CP=CP-1
            IF (CP.EQ. -1) CP=M-1
            SQ= DDOT (N,W(ISPT+CP*N+1),1,W,1)
            INMC=N+M+CP+1
            IYCN=IYPT+CP*N
            W(INMC) = W (N+CP+1)*SQ
            CALL DAXPY(N,-W(INMC),W(IYCN+1),1,W,1)
        CONTINUE
        DO 130 I=1,N
            W(I) =DIAG (I) *W(I)
        CONTINUE
    DO }145\mathrm{ I=1,BOUND
        YR= DDOT(N,W(IYPT+CP*N+1),1,W,1)
        BETA= W (N+CP+1) *YR
        INMC}=\textrm{N}+\textrm{M}+\textrm{CP}+
        BETA= W (INMC) -BETA
        ISCN=ISPT+CP*N
        CALL DAXPY(N, BETA,W(ISCN+1),1,W,1)
        CP=CP+1
        IF (CP.EQ.M)CP=0
```

```
    145
    CONTINUE
C
    160
        W(ISPT+POINT*N+I) = W(I)
        CONTINUE
C
C OBTAIN THE ONE-DIMENSIONAL MINIMIZER OF THE FUNCTION
C BY USING THE LINE SEARCH ROUTINE MCSRCH
C
    165 NFEV=0
        STP=ONE
        IF (ITER.EQ.1) STP=STP1
        DO 170 I=1,N
        W(I) =G(I)
    CONTINUE
    CONTINUE
C
C
    CALL MCSRCH(N,X,F,G,W(ISPT+POINT*N+1),STP,FTOL,
    * XTOL,MAXFEV, INFO,NFEV,DIAG)
    IF (INFO .EQ. -1) THEN
        IFLAG=1
        RETURN
    ENDIF
    IF (INFO .NE. 1) GO TO 190
    NFUN= NFUN + NFEV
C COMPUTE THE NEW STEP AND GRADIENT CHANGE
C
    NPT=POINT*N
    DO }175\textrm{I}=1,\textrm{N
        W(ISPT+NPT+I) = STP*W(ISPT+NPT+I)
        W(IYPT+NPT+I)=G(I)-W(I)
    175 CONTINUE
C
    POINT=POINT+1
    IF (POINT.EQ.M)POINT=0
C
C TERMINATION TEST
C
    DFNORM=DSQRT(DDOT (N,W (ISPT+NPT+1),1,W(ISPT+NPT+1),1))
C ADD A STOPING CRITERION FOR NEURAL NETWORKS LEARNING ALGORITHM.
C THE SUBROUTINE TERMINATES WHEN ||XK+1-XK||< TOLERA.
C
    IF (ANN) THEN
        IF(DFNORM .LE. TOLERA) THEN
            FINISH = .TRUE.
            GO TO }18
        END IF
    END IF
C
    GNORM= DSQRT(DDOT (N,G,1,G,1))
    XNORM= DSQRT(DDOT (N,X,1,X,1))
    XNORM= DMAX1 (1.ODO,XNORM)
    IF (GNORM/XNORM .LE. EPS) FINISH=.TRUE.
C
    180 IF(IPRINT(1).GE.0) CALL LB1(IPRINT,ITER,NFUN,GNORM,N,M,X,
    * F,G,STP,FINISH, DFNORM)
    IF (FINISH) THEN
        IFLAG=0
```


ELSE
RETURN
ENDIF
ELSE
IF (IPRINT (2).GT.1.AND.FINISH) WRITE (MP, 70)
WRITE (MP, 80) ITER, NFUN, F, GNORM, DFNORM
ENDIF
IF (IPRINT (2).EQ.2.OR.IPRINT (2).EQ.3)THEN
IF (FINISH) THEN
WRITE (MP, 90)
ELSE
WRITE (MP, 40)
ENDIF
WRITE (MP, 50) (X (I), I=1,N)
IF (IPRINT (2).EQ.3)THEN
WRITE (MP, 60)
WRITE (MP, 50) (G (I), I=1,N)
ENDIF
ENDIF
IF (FINISH) WRITE(MP,100)
ENDIF
C
FORMAT ('**)
FORMAT (' $\mathrm{N}=$ ', I5,' NUMBER OF CORRECTIONS $=$ ' , I2
FORMAT(' $\mathrm{F}=$ ', 1PD10.3,' GNORM $=$ ',1PD10.3)
FORMAT(' VECTOR X= ')
FORMAT (6 (2X,1PD10.3))
FORMAT(' GRADIENT VECTOR $G=$ ')
FORMAT (/' I NFN', 4X,'FUNC', 8X, 'GNORM', 7X, 'DFNORM'/)
FORMAT (2 (I4, 1X) , 3X, 3 (1PD10.3, 2X))
FORMAT(' FINAL POINT $X=$ ')
FORMAT (/' THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.'
(' IFLAG $=0$ ')
C
RETURN
END
SUBROUTINE LBSET

C	THIS SUBROUTINE CONTAINS ONE COMMON AREA, WHICH DEFINED
c	THE VALUES OF SEVERAL PARAMETERS DESCRIBED AS FOLLOWS:
C	
C	MP IS AN INTEGER VARIABLE WITH DEFAULT VALUE 6. IT IS USED AS T
C	UNIT NUMBER FOR THE PRINTING OF THE MONITORING INFORMATION
C	CONTROLLED BY PRI.
C	
C	LP IS AN INTEGER VARIABLE WITH DEFAULT VALUE 6. IT IS USED AS T
C	UNIT NUMBER FOR THE PRINTING OF ERROR MESSAGES.
C	
C	GTOL IS A DOUBLE PRECISION VARIABLE WITH DEFAULT VALUE 0.9, WHICH
C	CONTROLS THE ACCURACY OF THE LINE SEARCH ROUTINE MCSRCH. IF
C	FUNCTION AND GRADIENT EVALUATIONS ARE INEXPENSIVE WITH RESPE
C	TO THE COST OF THE ITERATION (WHICH IS SOMETIMES THE CASE WH
C	SOLVING VERY LARGE PROBLEMS) IT MAY BE ADVANTAGEOUS TO SET G
C	TO A SMALL VALUE. A TYPICAL SMALL VALUE IS 0.1. RESTRICTION
C	GTOL SHOULD BE GREATER THAN 1.D-04.
C	
C	STPMIN AND STPMAX ARE NON-NEGATIVE DOUBLE PRECISION VARIABLES WHIC
C	SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP IN THE LINE SEAR
C	THEIR DEFAULT VALUES ARE 1.D-20 AND 1.D+20, RESPECTIVELY.
	INTEGER LP, MP
	DOUBLE PRECISION GTOL,STPMIN,STPMAX

```
    COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
C
C
C
    P=6
    GTOL=9.OD-1
    STPMIN=1.OD-20
    STPMAX=1.0D+20
    RETURN
    END
    SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
    CONSTANT TIMES A VECTOR PLUS A VECTOR.
    USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
    JACK DONGARRA, LINPACK, 3/11/78.
    DOUBLE PRECISION DX(1),DY(1),DA
    INTEGER I,INCX,INCY,IX,IY,M,MP1,N
    IF (N.LE.0) RETURN
    IF (DA .EQ. O.ODO) RETURN
    IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
            NOT EQUAL TO 1
    IX = 1
    IY = 1
    IF(INCX.LT.0)IX = (-N+1)*INCX + 1
    IF(INCY.LT.0)IY = (-N+1)*INCY + 1
    DO 10 I = 1,N
        DY(IY) = DY(IY) + DA*DX(IX)
        IX = IX + INCX
        IY = IY + INCY
    1 0 ~ C O N T I N U E ~
    RETURN
C
C
C
C
    20M=MOD (N,4)
    IF( M .EQ. O ) GO TO 40
    DO 30 I = 1,M
        DY(I) = DY(I) + DA*DX(I)
    30 CONTINUE
    IF( N .LT. 4 ) RETURN
    40 MP1 = M + 1
    DO 50 I = MP1,N,4
        DY(I) = DY(I) + DA*DX(I)
```



```
        DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
        DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
    5 0 ~ C O N T I N U E ~
    RETURN
    END
    DOUBLE PRECISION FUNCTION DDOT (N,DX,INCX,DY,INCY)
ดロロロ○
            CODE FOR BOTH INCREMENTS EQUAL TO 1
            CLEAN-UP LOOP
    FORMS THE DOT PRODUCT OF TWO VECTORS.
    USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
    JACK DONGARRA, LINPACK, 3/11/78.
    DOUBLE PRECISION DX(1),DY(1),DTEMP
    INTEGER I,INCX,INCY,IX,IY,M,MP1,N
```

```
C
    DDOT = 0.ODO
    DTEMP = 0.0DO
    IF (N.LE.0)RETURN
    IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
            CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
        NOT EQUAL TO 1
    IX = 1
    IY = 1
    IF (INCX.LT.0)IX = (-N+1)*INCX + 1
    IF(INCY.LT.0)IY = (-N+1)*INCY + 1
    DO 10 I = 1,N
        DTEMP = DTEMP + DX(IX)*DY(IY)
        IX = IX + INCX
        IY = IY + INCY
    10 CONTINUE
    DDOT = DTEMP
    RETURN
C
20M=MOD (N,5)
    IF( M .EQ. O ) GO TO 40
    DO 30 I = 1,M
        DTEMP = DTEMP + DX(I)*DY(I)
30 CONTINUE
    IF( N .LT. 5 ) GO TO 60
40 MP1 = M + 1
    DO 50I = MP1,N,5
        DTEMP = DTEMP + DX(I)*DY(I) + DX(I + 1)*DY(I + 1) +
    * DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)
5 0 ~ C O N T I N U E ~
60 DDOT = DTEMP
    RETURN
    END
    SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL,MAXFEV,INFO,NFEV,WA)
C LINE SEARCH ROUTINE MCSRCH
    INTEGER N,MAXFEV, INFO, NFEV
    INTEGER LP,MP
    DOUBLE PRECISION F,STP,FTOL,GTOL,XTOL,STPMIN,STPMAX
    DOUBLE PRECISION X(N),G(N),S(N),WA(N)
    COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
                    SUBROUTINE MCSRCH
    A SLIGHT MODIFICATION OF THE SUBROUTINE CSRCH OF MORE' AND THUENTE
    THE CHANGES ARE TO ALLOW REVERSE COMMUNICATION, AND DO NOT AFFECT
    THE PERFORMANCE OF THE ROUTINE.
    THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES
    A SUFFICIENT DECREASE CONDITION AND A CURVATURE CONDITION.
    AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF
    UNCERTAINTY WITH ENDPOINTS STX AND STY. THE INTERVAL OF
    UNCERTAINTY IS INITIALLY CHOSEN SO THAT IT CONTAINS A
    MINIMIZER OF THE MODIFIED FUNCTION
        F(X+STP*S) - F(X) - FTOL*STP* (GRADF (X)'S).
    IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION
```

HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE DERIVATIVE, THEN THE INTERVAL OF UNCERTAINTY IS CHOSEN SO THAT IT CONTAINS A MINIMIZER OF F (X+STP*S).
THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES THE SUFFICIENT DECREASE CONDITION
$\mathrm{F}\left(\mathrm{X}+\mathrm{STP}\right.$ *S). LE. $\mathrm{F}(\mathrm{X})+\mathrm{FTOL*} \mathrm{STP}^{*}\left(\operatorname{GRADF}(\mathrm{X})^{\prime} \mathrm{S}\right)$,
AND THE CURVATURE CONDITION
ABS (GRADF (X+STP*S)'S)) .LE. GTOL*ABS (GRADF (X)'S).
IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION IS BOUNDED BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES BOTH CONDITIONS. IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH CONDITIONS, THEN THE ALGORITHM USUALLY STOPS WHEN ROUNDING ERRORS PREVENT FURTHER PROGRESS. IN THIS CASE STP ONLY SATISFIES THE SUFFICIENT DECREASE CONDITION.
THE SUBROUTINE STATEMENT IS
SUBROUTINE MCSRCH (N, X,F,G,S,STP, FTOL,XTOL, MAXFEV, INFO, NFEV,WA) WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF VARIABLES.
X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE BASE POINT FOR THE LINE SEARCH. ON OUTPUT IT CONTAINS $X+S T P * S$.
F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F AT X. ON OUTPUT IT CONTAINS THE VALUE OF F AT $\mathrm{X}+\mathrm{STP}^{\mathrm{X}} \mathrm{S}$.
G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE GRADIENT OF F AT X. ON OUTPUT IT CONTAINS THE GRADIENT OF F AT X + STP*S.
S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE SEARCH DIRECTION.
STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN INITIAL ESTIMATE OF A SATISFACTORY STEP. ON OUTPUT STP CONTAINS THE FINAL ESTIMATE.
FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. (IN THIS REVERSE COMMUNICATION IMPLEMENTATION GTOL IS DEFINED IN A COMMON STATEMENT.) TERMINATION OCCURS WHEN THE SUFFICIENT DECREASE CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE SATISFIED.
XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY IS AT MOST XTOL.
STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP. (IN THIS REVERSE COMMUNICATION IMPLEMENTATIN THEY ARE DEFINED IN A COMMON STATEMENT) .
MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN ITERATION.

```
    INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
        INFO = 0 IMPROPER INPUT PARAMETERS.
        INFO =-1 A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIEN
        INFO = 1 THE SUFFICIENT DECREASE CONDITION AND THE
        DIRECTIONAL DERIVATIVE CONDITION HOLD.
        INFO = 2 RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
        IS AT MOST XTOL.
        INFO = 3 NUMBER OF CALLS TO FCN HAS REACHED MAXFEV.
        INFO = 4 THE STEP IS AT THE LOWER BOUND STPMIN.
        INFO = 5 THE STEP IS AT THE UPPER BOUND STPMAX.
        INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRESS.
        THERE MAY NOT BE A STEP WHICH SATISFIES THE
        SUFFICIENT DECREASE AND CURVATURE CONDITIONS.
        TOLERANCES MAY BE TOO SMALL.
        NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
        CALLS TO FCN.
    WA IS A WORK ARRAY OF LENGTH N.
SUBPROGRAMS CALLED
    MCSTEP
    FORTRAN-SUPPLIED. . .ABS,MAX,MIN
    ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
JORGE J. MORE', DAVID J. THUENTE
    INTEGER INFOC,J
    LOGICAL BRACKT,STAGE1
    DOUBLE PRECISION DG,DGM,DGINIT,DGTEST,DGX,DGXM,DGY,DGYM,
    * FINIT, FTEST1, FM, FX, FXM, FY,FYM, P5, P66,STX,STY,
    * STMIN, STMAX,WIDTH,WIDTH1,XTRAPF,ZERO
    DATA P5,P66,XTRAPF,ZERO /0.5D0,0.66D0,4.0D0,0.0D0/
    P5=0.5D0
    P66=0.66D0
    XTRAPF=4.0DO
    ZERO=O.ODO
    IF(INFO.EQ.-1) GO TO 45
    INFOC = 1
    CHECK THE INPUT PARAMETERS FOR ERRORS.
    IF (N .LE. O .OR. STP .LE. ZERO .OR. FTOL .LT. ZERO .OR.
    * GTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. STPMIN .LT. ZERO
    * .OR. STPMAX .LT. STPMIN .OR. MAXFEV .LE. 0) RETURN
    COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION
    AND CHECK THAT S IS A DESCENT DIRECTION.
DGINIT = ZERO
DO 10 J = 1, N
```

```
        DGINIT = DGINIT + G(J)*S(J)
10
IF (DGINIT .GE. ZERO) THEN
WRITE (LP, 15)
FORMAT(/' THE SEARCH DIRECTION IS NOT A DESCENT DIRECTION') RETURN ENDIF
INITIALIZE LOCAL VARIABLES.
BRACKT \(=\).FALSE.
STAGE1 = .TRUE.
NFEV \(=0\)
FINIT \(=F\)
DGTEST \(=\) FTOL*DGINIT
WIDTH \(=\) STPMAX - STPMIN
WIDTH1 = WIDTH/P5
DO \(20 \mathrm{~J}=1, \mathrm{~N}\)
\(W A(J)=X(J)\)
CONTINUE
THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP, FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP. THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP, FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF
THE INTERVAL OF UNCERTAINTY.
THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP, FUNCTION, AND DERIVATIVE AT THE CURRENT STEP.
STX = ZERO
FX \(=\) FINIT
DGX \(=\) DGINIT
STY = ZERO
FY = FINIT
DGY \(=\) DGINIT
START OF ITERATION.
30 CONTINUE
SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND TO THE PRESENT INTERVAL OF UNCERTAINTY.
IF (BRACKT) THEN
STMIN \(=\) DMIN1 (STX, STY)
STMAX = DMAX1 (STX,STY)
ELSE
STMIN \(=\) STX
STMAX \(=\) STP + XTRAPF* \((S T P-S T X)\)
END IF
FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN.
STP \(=\) DMAX1 (STP, STPMIN)
STP \(=\) DMIN1 (STP, STPMAX)
IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET STP BE THE LOWEST POINT OBTAINED SO FAR.
IF ((BRACKT .AND. (STP . LE. STMIN .OR. STP .GE. STMAX))
.OR. NFEV . GE. MAXFEV-1 . OR. INFOC .EQ. 0
.OR. (BRACKT .AND. STMAX-STMIN .LE. XTOL*STMAX)) STP = STX
EVALUATE THE FUNCTION AND GRADIENT AT STP AND COMPUTE THE DIRECTIONAL DERIVATIVE.
```



```
        DGX = DGXM + DGTEST
        DGY = DGYM + DGTEST
    ELSE
```

LAST LINE OF SUBROUTINE MCSRCH.
END
SUBROUTINE MCSTEP (STX, FX, DX, STY, FY, DY, STP, FP, DP, BRACKT,

* STPMIN, STPMAX, INFO)

INTEGER INFO
DOUBLE PRECISION STX,FX,DX, STY,FY,DY, STP,FP,DP, STPMIN, STPMAX
LOGICAL BRACKT,BOUND
SUBROUTINE MCSTEP
THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR A MINIMIZER OF THE FUNCTION.

THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY WITH ENDPOINTS STX AND STY.

THE SUBROUTINE STATEMENT IS
SUBROUTINE MCSTEP (STX,FX, DX, STY, FY, DY, STP, FP, DP, BRACKT, STPMIN, STPMAX, INFO)

WHERE
STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP, THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY.

STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP, THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY.

STP，FP，AND DP ARE VARIABLES WHICH SPECIFY THE STEP， THE FUNCTION，AND THE DERIVATIVE AT THE CURRENT STEP． IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE BETWEEN STX AND STY．ON OUTPUT STP IS SET TO THE NEW STEP．

BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER HAS BEEN BRACKETED．IF THE MINIMIZER HAS NOT BEEN BRACKETED THEN ON INPUT BRACKT MUST BE SET FALSE．IF THE MINIMIZER IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE．

STPMIN AND STPMAX ARE INPUT VARIABLES WHICH SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP．

INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS： IF INFO $=1,2,3,4,5$ ，THEN THE STEP HAS BEEN COMPUTED ACCORDING TO ONE OF THE FIVE CASES BELOW．OTHERWISE INFO $=0$ ，AND THIS INDICATES IMPROPER INPUT PARAMETERS．

SUBPROGRAMS CALLED

FORTRAN－SUPPLIED ．．．ABS，MAX，MIN，SQRT
ARGONNE NATIONAL LABORATORY．MINPACK PROJECT．JUNE 1983 JORGE J．MORE＇，DAVID J．THUENTE

DOUBLE PRECISION GAMMA，P，Q，R，S，SGND，STPC，STPF，STPQ，THETA INFO $=0$

CHECK THE INPUT PARAMETERS FOR ERRORS．
IF（（BRACKT ．AND．（STP ．LE．DMIN1（STX，STY）．OR．
＊STP ．GE．DMAX1（STX，STY）））．OR．
＊DX＊（STP－STX）．GE．0．0 ．OR．STPMAX ．LT．STPMIN）RETURN
DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN．
$S G N D=D P *(D X / D A B S(D X))$
FIRST CASE．A HIGHER FUNCTION VALUE．
THE MINIMUM IS BRACKETED．IF THE CUBIC STEP IS CLOSER TO STX THAN THE QUADRATIC STEP，THE CUBIC STEP IS TAKEN， ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN．

```
IF (FP .GT. FX) THEN
```

 INFO \(=1\)
 BOUND \(=\). TRUE.
 THETA \(=3^{*}(F X-F P) /(S T P-S T X)+D X+D P\)
 \(S=\) DMAX1 (DABS (THETA), DABS (DX), DABS (DP))
 GAMMA \(=S^{*}\) DSQRT \(((T H E T A / S) * * 2-(D X / S) *(D P / S))\)
 IF (STP .LT. STX) GAMMA \(=-\) GAMMA
 \(\mathrm{P}=(\) GAMMA -DX\()+\) THETA
 \(Q=((G A M M A-D X)+\) GAMMA \()+D P\)
 \(R=P / Q\)
 \(S T P C=S T X+R^{*}(S T P-S T X)\)
 \(S T P Q=S T X+((D X /((F X-F P) /(S T P-S T X)+D X)) / 2) *(S T P-S T X)\)
 IF (DABS (STPC-STX) . LT. DABS (STPQ-STX)) THEN
 \(S T P F=S T P C\)
 ELSE
 \(S T P F=S T P C+(S T P Q-S T P C) / 2\)
 END IF
 BRACKT \(=\).TRUE.
    ```
ELSE IF (SGND .LT. 0.0) THEN
```

ELSE IF (SGND .LT. 0.0) THEN
INFO = 2
BOUND = .FALSE.
THETA = 3* (FX - FP)/(STP - STX) + DX + DP
S = DMAX1 (DABS (THETA), DABS (DX),DABS (DP))
GAMMA = S*DSQRT ((THETA/S)**2 - (DX/S)*(DP/S))
IF (STP .GT. STX) GAMMA = -GAMMA
P = (GAMMA - DP) + THETA
Q = ((GAMMA - DP) + GAMMA) + DX
R = P/Q
STPC = STP + R* (STX - STP)
STPQ = STP + (DP/(DP-DX))* (STX - STP)
IF (DABS(STPC-STP) .GT. DABS(STPQ-STP)) THEN
STPF = STPC
ELSE
STPF = STPQ
END IF
BRACKT = .TRUE.
THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES.
THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY
IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC
IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE
EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO
COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP
CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN.
ELSE IF (DABS(DP) .LT. DABS(DX)) THEN
INFO = 3
BOUND = .TRRUE.
THETA = 3*(FX - FP)/(STP - STX) + DX + DP
S = DMAX1 (DABS (THETA),DABS (DX),DABS (DP))
THE CASE GAMMA = O ONLY ARISES IF THE CUBIC DOES NOT TEND
TO INFINITY IN THE DIRECTION OF THE STEP.
GAMMA = S*DSQRT (DMAX1 (0.0D0,(THETA/S)**2 - (DX/S)*(DP/S)))
IF (STP .GT. STX) GAMMA = -GAMMA
P = (GAMMA - DP) + THETA
Q = (GAMMA + (DX - DP)) + GAMMA
R = P/Q
IF (R .LT. O.0 .AND. GAMMA .NE. O.0) THEN
STPC = STP + R* (STX - STP)
ELSE IF (STP .GT. STX) THEN
STPC = STPMAX
ELSE
STPC = STPMIN
END IF
STPQ = STP + (DP/(DP-DX))* (STX - STP)
IF (BRACKT) THEN
IF (DABS(STP-STPC) .LT. DABS(STP-STPQ)) THEN
STPF = STPC
ELSE
STPF = STPQ
END IF
ELSE
IF (DABS(STP-STPC) .GT. DABS(STP-STPQ)) THEN
STPF = STPC
ELSE
STPF = STPQ
END IF
END IF

```
```

つ口つ\cap\cap口
C COMPUTE THE NEW STEP AND SAFEGUARD IT.
C
STPF = DMIN1 (STPMAX,STPF)
STPF = DMAX1 (STPMIN,STPF)
STP = STPF
IF (BRACKT .AND. BOUND) THEN
IF (STY .GT. STX) THEN
STP = DMIN1 (STX+0.66D0*(STY-STX),STP)
ELSE
STP = DMAX1 (STX +0.66D0* (STY-STX),STP)
END IF
END IF
RETURN
C
FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES
NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP
IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN.
ELSE
INFO = 4
BOUND = .FALSE.
IF (BRACKT) THEN
THETA = 3* (FP - FY)/(STY - STP) + DY + DP
S = DMAX1 (DABS (THETA),DABS (DY), DABS (DP))
GAMMA = S*DSQRT ((THETA/S)**2 - (DY/S)*(DP/S))
IF (STP .GT. STY) GAMMA = -GAMMA
P = (GAMMA - DP) + THETA
Q = ((GAMMA - DP) + GAMMA) + DY
R = P/Q
STPC = STP + R* (STY - STP)
STPF = STPC
ELSE IF (STP .GT. STX) THEN
STPF = STPMAX
ELSE
STPF = STPMIN
END IF
END IF
UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT
DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE.
IF (FP .GT. FX) THEN
STY = STP
FY = FP
DY = DP
ELSE
IF (SGND .LT. O.0) THEN
STY = STX
FY = FX
DY = DX
END IF
STX = STP
FX = FP
DX = DP
END IF
LAST LINE OF SUBROUTINE MCSTEP.
END

```

\author{
VITA \\ Yijun (Grace) Huang \\ Candidate for the Degree of \\ Master of Science
}

\section*{Thesis: NEURAL NETWORK LEARNING ALGORITHMS BASED ON LIMITED MEMORY QUASI-NEWTON METHODS}

Major Field: Computer Science
Biographical:
Education: Graduated from Shanghai Normal University and Shanghai Institute of Education, Shanghai, China in July 1980 and July 1987, respectively.
Completed the requirements for the Master of Science degree with a major in Computer Science at Oklahoma State University in May 1997.

Professional Experience: Shanghai ChaoYang 6th High School and Technical School of 15th Cotton Mill of Shanghai, as a teacher of mathematics, Shanghai, China, September 1980 to September 1989; employed by Oklahoma State University, Department of Computer Science as a teaching assistant, January 1997 to May 1997.```

