
NEURAL NETWORK LEARNING ALGORITHMS

BASED ON LIMITED MEMORY

QUASI-NEWTON METHODS

By

YIJUNHUANG

Bachelor -of Science

Shanghai Institute of Education

Shanghai, China

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, J997



NEURAL NETWORK LEARNING ALGORITHMS

BASED ON LIMITED MEMORY

QUASI-NEWTON METHODS

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

11



ACKNOWLEDGMENTS

I wish to express my deep appreciation to my thesis advisor Dr. J. P. Chandler, for

his guidance in choosing the topic of this thesis, his skillful supervision, constructive

suggestions and unceasing encouragement in solving problems that I have encountered

throughout my work.

I extend my sincere gratitude to my other committee members Dr. G. E. Hedrick

and Dr. H. Lu as well. Their patience and guidance in reviewing this thesis were

invaluable.

I am forever indebted to my husband Debao Chen and our daughter Xuejing Chen,

whose wholehearted support made this work possible.

Throughout my life, my mother Zhuang Li had given me immeasurable love and

encouragement. She and my father were extremely proud of my entrance into graduate

school and both hoped to attend my Hooding Convocation. Unfortunately, my mother

passed away last November at age eighty-four and consequently was unable to witness

the completion of my degree.

To her memory I dedicate this thesis.

m



Chapter

TABLE OF CONTENTS

Page

1. INTRO,DUCTION 1

2. NEURAL NETWORKS 4

2.1 Feed-forward Neural Networks 4

2.2 Problem Formulation 6

3. UNCONSTRAINED OPTTh1IZATION 8

3.1 General Optimization 8

3.2 Gradient Methods 9

3.3 Quasi-Newton Methods 12

4. LIMITED MEMORY QUASI-NEWTON METHODS 14

5. COMPARISONS AMONG L-BFGS, PRAXIS AND DFMCG 21

5.1 Comparisons on Various Test Functions 22

5.2 Test Using Osborne Functions 30

5.3 Testing L-BFGS Using Different Numbers of Corrections 33

5.4 Lack of Quadratic Tennination Property 34

6. 'fES11NG 36

6.1 Some Aspects of Proben1 36

6.2 Language Irnpl,ementation 42

6.3 Test Problems " 44

6.4 Test Results 45

6.5 Test on XOR Problem 50

7. CONCLUSIONS 52

REFERENCES 53

APPENDIXES 57

APPENDIX A: Program List for DRIVEN.F 57

APPENDIX B: Program List for DRIVEF.F 68

APPENDIX C: Program List for MLBFGS.F 80

iv



Table

LIST OF TABLES

Page

TABLE 5.1 RESULT OF PRAXIS PROGRAM 23

TABLE 5.2 RESULTS OF DFMCG PROGRAM 23

TABLE 5.3 RESULTS OF L-BFGS PROGRAM 23

TABLE 5.4 ORIGlNAL RESULT OF OSBORNE FUNCTION 1 31

TABLE 5.5 L-BFGS RESULT OF OSBORNE FUNcnON 1.. 31

TABLE 5.6 PRAXIS RESULT OF OSBORNE FUNCTION 1 31

TABLE 5.7 ORIGINAL RESULT OF OSBORNE FUNCTION 2 32

TABLE 5.8 L-BFGS RESULT OF OSBORNE FUNCTION 2 32

TABLE 5.9 PRAXIS RESULT OF OSBORNE FUNCTION 2 32

TABLE 5.10 RESULTS OF OSBORNE FUNCTION 2 FOR DIFFERENT M 33

TABLE 5.11 RESULTS OF A QUADRATIC FUNcnON 35

TABLE 6.1 TEST PROBLEMS 44

TABLE 6.2 RESULTS IN PROBEN1 45

TABLE 6.3 RESULTS OF BUILDING2 (M = 5) 47

TABLE 6.4 RESULTS OF FLAREI (M = 5) 47

TABLE 6.5 RESULTS OF THYROIDI (M = 5) 47

TABLE 6.6 RESULTS OF XOR PROBLEM WITH 2-4-1 NETWORK 50

TABLE 6.7 RESULTS OF XOR PROBLEM WITH 2-2-1 NETWORK 51

v



Figure

LIST OF FIGURES

Page

FIGURE 2.1: ARCHITECTURE OF A THREE-LAYER NEURAL NETWORK 5

vi



1. Introduction

Our brains are huge biological neural networks made up of individual neurons that

are extensively interconnected with many synapses. Today's artificial neural networks

have arisen from attempts to model this biological structure with computer software.

Generally speaking, an artificial neural networks is an infonnation processing

system. It consists of a large number of artificial neurons which are interconnected

together in order to solve a desired computational task.

Currently, neural networks are used in many fields, such as aerospace,

automotive, electronics, financial, insurance, medical, transportation, and so on. For

details of such applications, the readers are referred to [15,21,23,28]. In general, the most

important and the most successful applications of neural networks can be classified as

function approximation and pattern classification [21].

One important aspect of such research is focused on standard numerical

optimization techniques. In neural network design, one usually uses the sum of squares

of oth.er nonlinear functions as the error function, and the objective of a learning

algorithm for a neural network is to minimize the error function, or objective function.

The minimization of this type of objective function is referred to as nonlinear least

squares, which is a very popular category of optimization problem [44,47]. When the

form of the objective function is known, it is often possible to design more efficient

algorithms. The Gauss-Newton method, modified Gauss-Newton methods, and

Marquardt methods are designed specifically for nonlinear least squares problems [47].

All of those methods are very efficient for some problems. Other useful methods of

1



general numerical optimization applied to neural networks are Newton methods and

variations of them [33,38,48,50], the conjugate gradient methods [12,18], and the quasi

Newton methods [20]. In general, the quasi-Newton methods are among the most

efficient known general optimization methods. However, the storage requirements

increase as the square of the number of variables of the objective function. Obviously,

th,ey are not suitable for very large neural networks. The limited memory quasi-Newton

methods have been discussed in [28,29,35], which limits the memory requirements in the

process of optimization. Liu and Nocedal proposed an efficient limited memory quasi

Newton algorithm [29].

The main purpose of this thesis is to design a supervised learning algorithm based

on a limited memory quasi-Newton method to train fully-connected feed-forward neural

networks.

To evaluate the efficiency of the limited memory quasi-Newton method, we test

this algorithm on various functions from [5,39]. We have to mention that the primary

purpose of the limited memory quasi-Newton method is to minimize high dimension

functions, especially functions with more than one thousand independent variables. The

dimensions of the test functions in [5,39] range from two to twenty. We see that the

limited memory quasi-Newton method are very fast and robust for low dimension

functions.

This thesis is organized into seven chapters.

In Chapter 2, we briefly explain fully-connected feed-forward neural networks and

fonnulate the learning algorithm as an optimization problem. We only consider fully-

2



connected feed-forward neural networks in this thesis. Ch.apter 3 gives a brief review of

unconstrained optimization. We concentrate our discussion on gradient methods,

especially the Newton-like methods. Chapter 4 describes some details of the limited

memory quasi-Newton method, and how it can be used in a neural network learning

algorithm. In Chapter 5, we test the limited memory quasi-Newton method algorithm on

various test functions from (5,39]. Chapter 6 explains how to implement and test our

learning algorithm. The conclusions are given in Chapter 7.

In Probenl [43], Prechelt collected a set of problems for neural network learning

in the realm of pattern classification and function approximation. Proben1 contains ]5

data sets from 12 different domains, and all of the data sets consist of real world data.

We choose some data sets from Proben1 to test our algorithm. The rules and conventions

of Proben1 are followed strictly in our implementation.

3



2. Neural Networks

The main purpose of this chapter is to fonnulate the learning problem within the

context of nonlinear optim:iJzation.

Artificial neural networks are much simpler than the biological neural networks.

However, there are at least two similarities between them. First, both networks are

highly-interconnected simple computational devices. Second, the connections between

neurons determine the functions of the network. In the remainder of this thesis, "neural

network" always refers to an artificial neural network or ANN.

In the literature, neural network architectures are characterized into three basic

categories: Feed-forward, Feed-back, and Self-organizing neural networks. Although

there are some essential differences among these categories, the common characterization

of neural networks is an ability to learn. Learning is the process by which a neural system

acquires the ability to carry out certain tasks by adjusting its internal parameters

according to some learning scheme [24].

2.1 Feed-forward Neural Networks

fu this thesis, we concentrate on one particular neural network category: fully

connected, feed-forward neural networks.

A feed-forward neural network can be viewed as a system transforming a set of

input patterns into a set of output patterns. It consists of an input layer, one or more

hidden layers, and an output layer of neurons. Layers are connected by sets of weights. A

neuron in any layer, except for the input layer, of the network is connected to all the

neurons in the previous layer. A neural network connected in this way is referred to as

4



fully-connected. The input signal propagates through the network in a forward direction,

from left to right, on a layer-by-layer basis. Such neural architectures are called feed-

forward since the output of each layer feeds the next layer of units. The network can be

trained to provide a desired response to a given input. The training of feed-forward

neural network often requires the existence of a set of input and output patterns, called the

training set. This kind of learning is called supervised learning [24].

Input First Layer
~-"'-~ ,--__-.-J'-. '--.....

[01 0Xo

Second Layer
,,--------'-------.....

Third Layer(outpu t)
.--------"---.---...

Figure 2.1:. Architecture of a Three-Layer Neural Network

5



2.2 Problem Formulation

Figure 2.1 is a multilayer feed-forward neural network consisting of three layers,

made of a number of neurons. The network is fully interconnected from one layer to the

next layer and the connections are represented by lines which are characterized by their

weights. Based on the weights of aU the input connections, each neuron computes a

weighted sum of all the inputs and evaluates a nonlinear activation function using the sum

as the argument of the function. In our algorithm, we choose the following widely used

sigmoid function as the activation function:

1
f(x)= --

1+ e-x

The result of this function evaluation is the output of the neuron. The objective of a

learning algorithm is to find the optimum weights, to minimize the discrepancy between

the outputs of a neural network at output layer and the desired outputs, corresponding to a

set of specific inputs. The input-output patterns used for the learning are termed

"examples" or "exemplars".

We define:

1E [1, L] where L is the number of layers in the network.

nl E [1, Nt] where Nt is the number of neurons in layer l.

P E [1, P] where P is the number of examples in the data set.

W~m as the weight of the m-th input to neuron n in layer t.

O~n as the output of neuron n in layer 1for example p.

t~n as the desired output of neuron n in layer L for example p.

6



Based on the abov,e definitions, if we define our objective function as the sum of the

squares of output errors in the output layer (layer L) of a neural network over a set of

examples, then

In the above optimization model, the learning corresponds to minimizing E(w) with

regard to the weight vector w. Thus, the training of a feed-forward neural network simply

turns into a numerical optimization problem.

In our actual implementation, we use the squared error percentage which differs

by a constant factor from the above error function. We explain the reason that we choose

the squared error percentage in Chapter 6. However, this slight difference is not essential

from the viewpoint of neural network training.

Our training is batch rather than incremental, that is the weights are updated only

after the entire training set has been presented

7



3. Unconstrained Optimization

3.1 General Optimization

The nonlinear optimization problem can be stated as follows:

given a set Dc ~n, and given a real functionf D ~ 9\, find

min{f(x): XE D}

and the vector x· E D where the minimum is achieved. Here f refers to the objective

function, and D is called the feasible region. IfD = 9r' , the optimization problem is said

to be unconstrained. In this case, nothing else needs to be said about how to specify D,

since every vector in 51r is feasible [12,31). The neural network learning algorithm can

be treated within the context of nonlinear unconstrained optimization problems. This

chapter gives a brief review of unconstrained optimization. Despite the diversity of both

algorithms and problems, all of the algorithms that we discuss in any detail in this chapter

and in Chapter 4 are all iterative processes which fit into the same general framework:

General Optimization Algorithm:

Specify some initial guess for the solution vector Xo'

For k = 0, ],2, ...

If xI: is optimal, stop.

Determine an improved estimate of the solution: XI:+1 = xI: +akPI:'

Here the vector PI: represents a search direction and the positive scalarak is a step length

that determines the point xl:+1 ' For our purpose, the word "optimize" means finding tbe

vajue of x that minimizes f. For an unconstrained problem of this form, we require that

8



the search direction Pt be a descent direction for the function f at the point xt . This

means that for a small enough step taken along Pk the function value is guaranteed to

decrease, in other words,

forO<ak <e

for some e > O. With Pt is available, we would ideally like to detennine the step length

a k so as to minimize the function in that direction:

This is a problem only involving one variable, the parameter a 1 . The restriction ak > 0

is imposed because Pk is a descent direction. The calculation of ak is called a line

search since it corresponds to a search along the line xk +atpt defined by a k •

However, it is not always the best to minimize f(x t +atpt) with regard to a k • We

discuss the line search in Chapter 4. Here we first discuss how to choose the search

direction Pk' although in optimization algorithms the choices of Pk and at cannot be

separated in general.

3.2 Gradient Methods

There are various methods to determine the direction vector Pk' The most

popular methods are gradient methods, which use first, and sometimes second,

derivatives of the objective function to compute Pt. The derivatives may be available

analytically or perhaps are approximated in some way. When we discuss their properties

in the following, we assume that the objective function has continuous second

derivatives, whether or not these are explicitly available. As we mentioned in previous

9



chapter, we choose the sigmoid function as the activation function, so that the error

function chosen in our training algorithms is infinitely differentiable, and the assumption

of differentiability is always satisfied. fu this thesis we design a learning algorithm based

on a limited memory quasi-Newton method,. so we concentrate on Newton-like methods

in this chapter. For other optimization methods the readers are referred to any good book

on nonlinear optimization, for example [12,47].

For convenience of further discussion, we first give some terminology and

notations. Let f be a smooth, nonlinear function from 9\n to 9\, the gradient of f is

defined as:

l!!& .1fS&.
g(x) = Vj{x) = ( dxl ' dx2 ,...,

The Hessian matrix off is defined as:

i!f(x) /
axn

B(x) =?j{x) = I

!

By definition, a matrix A is positive definite if

10



for any vector x E 9t 1l
, X * O~ We require that the Hessian matrix B be positive definite at

the minimum off Then the inverse of the Hessian matrix exists. We denote the inverse

matrix of the Hessian matrix offas H.

One may choose a search direction, in which the objective function decreases

fastest. For this purpose we choose Pic = -gk' which is the opposite direction of the

gradient vector. The corresponding method is referred to as the steepest descent method.

It seems that steepest descent method is not a very good method in neural network

learning since it is too slow in converging. Wang [51] compared his damped learning

algorithm and the steepest descent method. Another popular method is Newton's

method, in which one chooses the search direction as

(3.1)

where Hk = H(xk ), g/c = g(xk ) and H is the inverse Hessian matrix. Newton's method is

not always feasible, since the inverse Hessian matrix may not exist. Even if H ic is

invertible, it may not be positive definite, hence Pk may not be a descent direction.

To avoid computing any second derivatives of f, the Gauss-Newton method and

Levenberg-Marquardt method [27,30] were introduced. These methods need a particular

fonn of the objective function. That is, the objective function is a sum of squares of some

nonlinear functions. As we mentioned before, one often chooses such functions as the

error function in neural network training, hence, the Levenberg-Marquardt method is

usually considered as a good way to train neural networks [22,51]. However, we do not

discuss these methods in detail in this thesis; their storage requirements are too great for

very large networks.

11



3.3 Quasi-Newton Methods

Let us return to the general fonn of the Newton method with the search vector

calculated at each iteration as in (3.1),

Here H k is the precise inverse of the Hessian matrix at xk • As was mentioned

previously, H k may not exist or may not be positive definite. To avoid such problems

we use a BFGS update formula [47] to replace the precise inverse of Hessian matrix with

a positive definite matrix, H k. which is in some way an approximation of the inverse

Hessian matrix.

Let

We define

H k+1 = (I - SkY~ / YJSk )Hk (I - Yk sJ /Y~Sk ) +Sk sJ / yJSk •

Let

(3.2)

Then (3.2) can be expressed as

where we store each H k explicitly. It is easy to verify that if H k is positive definite and

yJ Sk > 0, then H k+1 is positive definite also. We assume that y~St > 0 for all k. In

12



gradient-related methods this can always be done, provided the line search is sufficiently

accurate. The search direction Pk is obtained from the matrix-vector product:

PI; =-Hl;gk

The quasi-Newton methods use an iterative process to approximate the inverse

Hessian matrix, so that no explicit expression for the second derivatives is needed for

canying out a Newton-like search. Although the quasi-Newton algorithms require

slightly more operations to calculate an iterate, and they require somewhat more storage

than the conjugate gradient algorithms do, but in almost all cases, these additional costs

are outweighed by the advantage of superior speed of convergence.

At fIrst glance, quasi-Newton methods may seem unsuitable for large problems

because the approximate inverse Hessian matrices are generally dense. In the next

chapter, we discuss ways to cut down on storage in order to create limited memory quasi

Newton methods for large problems.

13



4. Limited Memory Quasi-Newton Methods

In Chapter 3 we gave a brief review of unconstrained optimization. In particular,

we discussed a quasi-Newton method. When we use a quasi-Newton method, we

construct a sequence of matrices which in some way approximate the inverse Hessian

matrix instead of storing the precise inverse Hessian matrix in each iteration. In such a

way we avoid using the second derivatives of the objective function so that we save a

substantial fraction of the computing time. However, it is necessary to have O(nl
) storage

locations for each H k • In neural network training, in some cases, for example, one may

need to use a large number of weights. Sometimes the network has many thousands of

weights. In such a case, storage becomes an issue since it will be impossible to retain the

matrix in the high speed storage of.a computer.

In this chapter, we describe an algorithm which uses a limited amount of storage

and where the quasi-Newton matrix is updated continually. At every step the oldest

information contained in the matrix is updated and replaced by the newest infonnation.

Recall that the BFGS update of His:

where

Let Ho be a given positive definite matrix. Then the above BFGS update gives:

H\ = v~Hovo +Posos~

H2 =viHJv j +p,s,s{
T TH T T T

=Vj Vo OVOv\ +V\ POSOSOv\ +P\SlSl

14



T T T
+V" V"_\P"_2S"_2S"_2V"_IV,,

T T
+V" Pk-ISHS"-lV"

T
+PkS"S"

Instead of forming H" explicitly. now we store previous values of Yj and S j

separately. Here m is a given integer that represents the maximum number of correction

matrices that can be stored.. Normally we choose 3 ~ m ~ 7.

The following algorithm was given by Liu and Nocedal [28].

L-BFGS Algorithm:

Step 1. Choose xo' m, 0 < {J' < ~, {J' < f3 < 1, and a symmetric and positive

definite starting matrix Ho (normally we choose a scaled diagonal matrix or I as

the Ho)' Set k = O.

Step 2. Compute
PIc =-H"g",

Xk+1 = x" +akP",
where at satisfies the Wolfe conditions [52]:

I(x" +a"p,,) ~ I(xk)+ {J'akg{Pk'

Ig(x" +a"Pkl Pkl~ -pg{Pic

(We always try the steplength a k =1 first)

Step 3. Let m= min(k, m-l). Update H o m+l times using the pairs

" . 1(y j's) j=k-m' I.e. et

H Ic = (v[",v[_m)HO(v"_m"'VIc)

+ P"-m (vJ .. ,vJ_m+\ )s,,_msJ_m( vk-1,....\··· Vic)

15



T+PkSiSk·

(We do not calculate and store the Hi in this step, instead, we use the above

fonnulas to calculate the direction vector Pic =-Hkg" , directly).

Step 4. Set k := k + 1, go to Step 2.

The stopping criterion of L-BFGS is:

where e is a small positive number supplied by the us,er.

The L-BFGS algorithm is almost identical in its implementation to the weH-

known BFGS method. The only differences that are the amount of storage required by

the algorithm (and thus the cost of the iteration) can be controlled by the user and the later

approximations H k to the inverse Hessian deviate from the BFGS method. The user

specifies the number m of BFGS corrections that are to be kept, and provides a sparse

symmetric and positive definite matrix Ho which approximates the inverse Hessian off.

During the first m iterations the method is the same as the BFGS method. When the

available storage is used up, i.e., k > m, since the BFGS corrections are stored separately,

we can delete the oldest one to make space for the new one. All subsequent iterations are

of this form: one correction is deleted and a new one inserted. Hence, it requires only

O(mn) storage locations (m « n), contrast with usual BFGS algorithm which requires

O(n2
) storage locations as we discussed before. H there is no previous information, one

can choose the identity matrix lor a scaled diagonal matrix as the Ho .

16



It is also known that simple scaling of the variables can improve the performance

of quasi-Newton methods on small problems. For large problems, scaling becomes much

more important. Several scaling methods for the matrix Ho were introduced in [28J. We

use the following strategy.

In Step 3 of the L-BFGS algorithm, instead of using a fixed Ho' we use Hcik
)

which is a scale of the identity matrix I:

where

Yo = vllYiJI1
2

Y.I; = yf_t Sk_JIIYk_111
2

, k = 1,2,3,···.

It was showed [28] that this is a simple and effective way of introducing a scale in the

algorithm.

Since we do not store Hk explicitly, the product Hg must be computed The

following recursion performs this computation efficiently [35]. It is essentially the same

as the formula for the usual BFGS method.

In the following algorithm, m is the number of corrections stored, and Iter is the

iteration number.

Recursive Formula to Compute Hg:

1) If Iter ~ m, Set Incr =0; Bound =Iter;
else Set Iner = Iter - m; Bound = m;

2)qBound = giter;

3) For i = (Bound -1), ... ,0
j = i + Iner;

a; =pjsJqj+l;

17

(store CXi)



5) Fori=O, 1, ... ,(Bound-1)
j= i + Incr;
a - n T •
pi - ,.,j Yj ri'

ri+l = ri + si~ -f3d;

This fonnula requires at most 4nm + 2m + n multiplications and 4nm + m additions.

At the k-th iteration of the L-BFGS algorithm, we need to find a positive scalar

a k as a step length, to determine a new point X H1 that is a minimum in the direction Pk

or that gives a sufficient reduction in function value. This process is called a line search,

which is a univariate problem

As we mentioned in section 3.1, it is not always best to minimizef(x); +akPk)

with regard to a k Instead, we find an a k that satisfies the conditions:

We fix x k and Pk and let

a~O.

(4.1)

(4.2)

Then conditions (4.1) and (4.2) can be formulated as finding a> 0 such that

rJ)(a) ::; l/J(O)+ /3'tV(O)a

and

I41(a)1 ::; j31tV(O)1

18

(4.3)

(4.4)



The motivation for requiring conditions (4.3) and (4.4), or (4.1) and (4.2), in a line search

method should be clear. If a is not too small, condition (4.3) forces a sufficient decrease

in the function. However, this condition is not sufficient to guarantee convergence,

because it allows arbitrarily small choices of a> O. Condition (4.4) rules out arbitrarily

small choices of a and usually guarantees that a is near a local minimizer of CP.

Condition (4.4) is a curvature condition because it implies that

cP(a) - cP(O) > (l-/3)lcV(O)l,

and thus the average curvature of cP on (0, a) is positive. The curvature condition (4.4)

is particularly important in a quasi-Newton method or a limited memory quasi-Newton

method because it guarantees that a positive definite quasi-Newton update is possible

[11,12].

As final motivation for (4.3) and. (4.4), we mention that if a step satisfies these

conditions, then the line search method is convergent for reasonable choices of direction

[1,6,11,12,16,28,42]. In particular, in a quasi-Newton method, we choose Pk = -Hkgk ,

and the line search method is convergent if conditions (4.3) and (4.4) are satisfied.

There are still many choices of a k to satisfy the conditions (4.3) and (4.4). More

and Thuente {32] designed a very efficient line search algorithm which was used by

several authors, for example, Liu and Nocedal [28], O'Leary [38], and Gilbert and

Nocedal [16]. It seems that the main idea is to combine quadratic and cubic

interpolations to find a suitable a k • For the detail of this search procedure and the

associated convergence theory, the readers are referred to [32].

19



We design and implemented our neural network learning algorithm using Uu and

Nocedal's L-BFGS algorithm. More and Thuente's line search method is also used. Our

program works fine. Later on, we found Nocedal's L-BFGS FORTRAN program in the

Internet [36], which works even better than ours. We modified our program. In the

current version of our program, we treat Nocedal's L-BFGS as a subroutine and simply

call it in our neural network learning process.

20

.
fill'
~.Il:



5. Comparisons among L-BFGS, PRAXIS and DFMCG

The main purpose of this thesis is to design and implement neural network.

learning algorithms based on limited memory quasi-Newton methods. In this chapter we

compare the limited memory quasi-Newton methods and Brent's optimization method

[5]. We also compare the limited memory quasi-Newton methods and one conjugate

gradient method [14,31].

We have to mention that the primary purpose of the limited memory quasi-

Newton method is to minimize the high dimension functions, especially functions with

more than one thousand independent variables. The main concern is the storage. The

dimensions of the test functions we use in this chapter range from two to twenty. For

such low dimension functions, storage is not a problem at all. However, the main

difference between the L-BFGS algorithm and the BFGS algorithm is how to store the

inverse Hessian matrices in Step 3. The remaining of these two algorithms seems same.

In fact, if the correction number m is sufficient large in L-BFGS, then L-BFGS is

identical to BFGS. Hence, we stm can see how good the algorithms are.

Powell [42] introduced an optimization algorithm without using the derivatives of

the objective function. Brent [5] modified Powell's method and overcame some of the

difficulties observed in the literature. Numerical tests suggested that Brent's proposed

method is faster than Powell's original method and some other previous methods [5].

Brent [5] gave the ALGOL procedure PRAXlS to implement his algorithm. Chandler [7]

gave the FORTRAN procedure PRAXIS, a direct translation of Brent's procedure.The

conjugate gradient method [14,31] is another method to solve large optimization

21



problems. The storage complexity of the conjugate gradient method is O(n), where n is

the number of the variables of the cost function. We have tested a conjugate gradient

FORTRAN procedure DFMCG from the ffiM Scientific Subroutine Package [53].

In this chapter we mainly compare L-BFGS and PRAXIS on speed and accuracy.

We also roughly compare L-BFGS and DFMCG. In Section 5.1 we compare these three

algorithms on various test functions used in [5]. Section 5.2 summarizes the results of L-

BFGS running on Osborne's functions [39]. In Section 5.3 we run L-BFGS on Osborne

function 2 with different numbers of corrections m. Section 5.4 verifies that L-BFGS

does not have the quadratic termination property.

Recall that the stopping criterion of L-BFGS is

Throughout this chapter, we choose e = 10.7 , unless we mention otherwise.

5.1 Comparisons on Various Test Functions

Most of the functions tested in [5] are actually differentiable. We run Chandler's

PRAXIS FORTRAN program [7], the DFMCG program [53], and Nocedal's L-BFGS

program [36] on the UNIX System of the Oklahoma State University Computer Science

Department, using the same test functions in [5], and compare the results. The results of

the PRAXIS program are listed in Table 5.1, the results of DFMCG program are listed in

Table 5.2, and the results ofL-BFGS program are listed in Table 5.3.

22



Table 5.1 Result of PRAXIS Program

Function n T fix)X o nf
Rosenbrock 2 (-1.2. 1 ) 155 2.012E-24 i

I

Singular 4 (3, -I, 0 1) 421 5.476E-19
Helix 3 . (O.OI,O.OI 0) 201 2.998E-24
Helix 3

,.
(-1 0,0) 200 8.886E-25I

Cube 2 (-1.2 -1) 234 1.599E-25
Beale 2 (0.1 0.1) 80 1.595E-25

Watson 9 OT 1869 1.400E-06
Powell 3 (0, 1, 2) 86 O.ooEOO
Wood 4 I -(3, 1, 3 1) 487 2.846E-21I

Hilbert 10 I 0, ...,0 2417 7.602E-17
Tridiag 20 I 01 941 -2.00E+l

Box 3 I (0, 10 20) 154 4. 173E-25I

Table 5.2 Results of DFMCG Program

Function n T

nf f(x)Xo

Rosenbrock 2 (-1.2 1 ) 73 4.123E-27
Singular 4 (3 -1. 0, 1) 305 2.198E-18

Helix 3 (0.01,0.0I, 0) 47 5.518E-29
Cube 2 (-1.2. -1) 80 6.024E-27
Beale 2 (0.1. 0.1) 62 5.493E-l

Watson 9 OT 713 3.479E+O
Powell 3 (0, 1 2) 59 O.OEO
Wood 4 -0, 1 3, 1) 67 7.68E-26
Hilbert 10 0, ... 1) 2688 5.715E-2
Tridiag 20 0 1 111 -2.0E+l

Box I 3 (0 10.20) 121 3.579E+O

Table 5.3 Results of L-BFGS Program

Function T

nf (n+ l)nf I(x)n xo

Rosenbrock 2 (-1.2, 1 ) 49 147 1.947E-25
Singular 4 (3 -I 0 I) 76 380 7.614E-16

Helix 3 (0.01, 0.01 0) 23 92 3.276E-19
Cubic 2 (-1.2 -1) 64 192 9.917E-16
Beale 2 (0.1 0.1) 16 48 9.953E-17

Watson 9 OT 1991 19910 6.527E-6
Powell 3 (0, 1, 2) 20 80 1.11OE-15
Wood 4 -(3, 1, 3, 1) 122 610 2.053E-20
Hilbert 10 (l ... .1) 109 1199 1.236E-12
Tridiag 20 OT 98 2058 -2.ooE+l ,

Box 3 (0. 10.20) 41 164 4.508E-14 !

23



In the above tables we use the following conventions:

n is the number of variables.

x ~ is the starting point.

nf is the number of function evaluations.

fix) is the approximated minimum.

In the PRAXIS program, we do not need to calculate the derivatives, while in L-

BFGS the gradient must be calculated. In order to compare L-BFGS and PRAXIS, a

proper weighting factor [5] must be used for the number of function evaluations in the L-

BFGS program. As in [5], we define:

the weighted number of function evaluations = (n+ 1) nf ,

Note that the convergence criteria for PRAXIS are generally tighter than for L-

BFGS, resulting in "better" minima in most cases, although not in all. It is not possible to

use the convergence criterion of L-BFGS in PRAXIS, which does not have the gradient

available.

The following are brief descriptions of each function and the comparison of L-

BFSG and PRAXIS for each function. As in [5], to compare the speeds of the two

programs, we simply compare n f in Table 5.1 and (n+ 1) nf in Table 5.3.

1. Rosenbrock (Rosenbrock [45]):

This is a well-known function with a parabolic valley. Descent methods tend to fall into

the valley and then follow it around to the minimum of 0 at (I,ll.

The two programs perform similarly in both speed and accuracy.

24

I



2. Singular (Powell [40]):

This function is difficult to minimize, and provides a severe test of the stopping criterion,

because the Hessian matrix at the minimum (x = 0) is doubly singular.

The function varies very slowly near 0 in the two-dimensional subspace {(lOAI,-

AI, A2, A2)T}. For this function, PRAXIS is slightly slower, but slightly more accurate

than L-BFGS.

3. Helix (Fletcher and Powell [13]):

where

and

if XI> 0, }

if XI < O.

This function of three variables has a helical valley, and a minimum at (1, 0, ol .

Originally, Brent used (-1, 0, O)T as the starting point. However, since this

function is not differentiable when XI = 0, L-BFGS does not work for this function when

we use this starting point. Instead, we use (0.01,0.01, O)T as the starting point in both

programs.

For this function, the situation is similar as for the Singular function, PRAXIS is

slightly slower than L-BFGS, but more accurate than L-BFGS.

4. Cube (Leon [26J):

25

·1



This function is similar to Rosenbrock's, and much the same remarks apply. Here the

valley foHows the curve x2 = xi .

For this function, the situation is also similar to the Singular function, and

PRAXIS is slightly slower than L-BFGS, but more accurate than L-BFGS.

5. Beale (Beale [2]):

where c\ =1.5, c2 =2.25, c3 =2.625. This function has a valley approaching the line

x2 =1, and has a minimum of 0 at (3, 1/2) T

For this function, PRAXIS is slightly slower than L-BFGS, but more accurate than

L-BFGS.

6. Watson (Kowalik and Osborne [25]):

{
. . 2 }230 n • 1 )-2 n • 1 )-1

+L L(j-l)Xj(~) -[~Xj(~) ] -1 .
,=2 ;=2 29 )=1 29

Here a polynomial

is fitted, by least squares, to approximate a solution of the differential equation

dz
- = 1+ l , z(O) = 0,
dt

26

If:
I'·.~1.
ItI
it
,t.



for t E [0, 1]. (The exact solution is z = tant.) The minimization problem is ill-

conditioned, and rather difficult to solve, because of a bad choice of basis functions {I, t,

..., t· l
}. We choose n = 9.

For this function, the two programs have similar accuracy, but PRAXIS is much

faster than L-BFGS.

7. Powell (Powell [41]):

For a description of this function, see Powell [41].

For this function, the two programs have similar speeds, but PRAXIS is more

accurate than L-BFGS.

8. Wood (Colville [10]):

f(x) = lOO(x2 - X;)2 + (1- XI)2 + 90(x4- xi)2 + (1- X3)2

+ lOJ[(x2 _1)2 + (x4 _1)2] +19.8(x2 -1)(x4 -1).

This function is rather like Rosenbrock's, but with four variables instead of two.

For this function, the two programs have similar accuracy, but PRAXIS is faster

than L-BFGS.

9. Hilbert

f(x) = x T Ax,

where A is an n by n Hilbert matrix, i.e.,

f.:
~:,"

1
aij = i + j-l

27

for I :5 i, j :5 n.



We choose n = lO.

For this function, PRAXIS is slower, but more accurate, than L-BFGS.

10. Tridiag (Gregory and Karney (19]):

where

1 -1

-1 2 -1 0
A=

-1 2 -1

-1 2 -I

0
-1 2

This function is useful for testing the property of finite convergence on a quadratic

function. The minimum f(ll) =-n occurs when Il is the first column ofA -I , i.e.,

Il = (n, n-l, n-2, ... ,2, l) T •

we choose n =20.

For this function, the two programs have similar accuracy, but PRAXIS is much

faster than L-BFGS.

II.Box (Box [4]):

~{[exP( -ix] /10) - exp(-iX2/10]}2
f(x)= £..J [ ] .

;=1 -x3 exp(-i/lO)-exp(-i)

28

'. 'L

....1

"'t-',,'

'"'



This function has minima of 0 at (], 10, I) T and also along the line {(A., A., 0) 7: }.

Both programs find the first minimum, and have similar speeds. However,

PRAXIS is more accurate than L-BFGS.

Summary: Brent's algorithm is considered to be a very good one. Overall, it is

better than many other algorithms [5]. OUf tests shows that the L-BFGS program is

almost as good as PRAXIS, though for some test functions, PRAXIS is much better than

L-BFGS.

PRAXIS was tuned extensively by Brent on his suite of test problems, unlike L-

BFGS, which explains most of any superiority of PRAXIS.

Now we roughly compare L-BFGS and DFMCG. L-BFGS obtains satisfactory

results for all eleven test functions, while DFMCO does not converge for some functions,

such as those of Beale, Watson, Hilbert, and Box. For all other functions, it seems that L-

BFGS is slightly faster and/or more accurate than DFMCG. We do not know why the

conjugate gradient method is unstable. To answer a question posted in [54], Chandler [8]

made the following comments:"At least one conjugate gradient (CG) method was shown

to be unstable: [31], see page 383 in particular. No CG method has ever been shown to be

stable" as far as I know. Instability means that small errors such as roundoff are

magnified in each succeeding iteration, which can lead to unreliability. CG methods have

great difficulty solving moderately ill-conditioned problems efficiently.

As far as I know, no CO method has solved either of the simple nonlinear least

squares problems of M. R. Osborne [39] in a competitive time (fewer than 10,000

equivalent function evaluations). Any decent direct search method (such as my STEPIT

29

j
•

"J..
ill'.. \..
~l'
':1'
:i
~~~
~J

!II
", ,

oJ'
... ".
);,.",..,
ill' ,1~....
It:.,,...
-.,..,1-..C",

~
-"Of:,,.......
I"~

I:
C'
.. I

~\
~.
.<l,



[7] or Richard Brent's PRAXIS) or quasi-Newton method will solve both of these

problems much faster than this. Marquardt's method, developed specifically for least

squares problems, also solves them efficiently.

If you want a low-storage method that is reasonably robust, I recommend the

limited quasi-Newton method developed and programmed by Nocedal. It crunches both

Osborne problems with no difficulty."

5.2 Test Using Osborne Functions

Osborne [39] studied a general method for minimizing a sum of squares which

has the property that a linear least squares problem is solved at each stage, and which

includes the Gauss-Newton,. Levenberg, Marquardt, and Morrison methods as particular

special cases. In this section we do not discuss the method which Osborne discussed in

[39], but use his example functions to test L-BFGS.

The problem of minimizing a sum of squares arises naturally from the problem of

detennining parameters Xi , i = ], 2, ..., p in the model equation

yet) =F(t, x)

from observations

Yi =y(ti) + Ci, (i =1, 2,... ,n),

where the Ci (the experimental errors) are independent, normally distributed random

variables with mean zero and standard deviation cr. In the case n > p the appropriate

maximum likelihood analysis indicates that x should be estimated by minimizing

Ilf(x)r, where

fi (x) =Yj - F(ti, x)

30

r.

")
"i:~
~'-
~.

:1
;;\
:~
~)

~I
""':
j;...,.....,~
"',.......,;-..C"
~t.. ~
(.If:.
:..
~.~.

~;:

t:
«'...
~~
'*.



and
n

I:ltCx}112 = Lfi(X)2
i=1

This problem will be referred to as the model problem, and it is stressed that we have

offered a statistical justification for minimizing a sum of squares. Osborne's two test

problems are classic practical nonlinear least squares problems.

1. Osborne function 1

In this example, the data values {(ti, Yi), 1 ~ i ~ 33}, which are given in [36], are

fitted by the model

The result of [39] is copied in the following Table 5.4.

Table 5.4 Original Result of Osborne Function 1

I!ftX) 11
2

Xl X2 X3 : X4 X5

0.546E-4 0.3754 1.9358 -1.4647 0.01287 0.02212

We run L-BFGS and PRAXIS using the above example and list the results in the

following Table 5.5 and 5.6.

Table 5.5 L-BFGS &esult of Osborne Function 1

I!ftx)112 nf (n+l)nr Xl X2 X3 X4 X5

5.465E-5 172 1032 0.3754 1.9358 -1.4647 0.01287 0.02212

Table 5.6 PRAXIS Result of Osborne Function 1

I!ftx) II2
nf Xl X2 X3 X4 X5

5.465E-5 1268 0.3753 1.9203 -1.4490 0.01284 0.02186

We mention that in this section we set e =10-5 as the stopping criterion in L-

BFGS.

31

~..
;::
~"•..



The three programs have similar accuracy. Since the number of function

evaluations is not available in Table 5.4, we cannot compare the speed of the two

algorithms. However, when we use L-BFGS on Osborne function 1, there are only 172

function and gradient evaluations, which is considered very fast. L-BFGS and PRAXIS

have similar speed on Osborne function 1.

2. Osborne function 2

In this example, the model has the fonn

f(t,x) = Xl exp(-xst)+ X 2 exp[-x6(t -x9 )2]

+ X3exp[-x7(t - XIQ)2]+ X4 exp[-xg(t- XII )2]

The data values {(I;, Yi)' 1~ i ~ 65} are also given in [39]. The result of [39] is copied

in the Table 5.7.

Table 5.7 Original Result of Osborne Function 2

11!f(x)112 Xl X2 Xl X4 Xs

0.0402 1.3100 0.4315 0.6336 0.5993 0.7539
X6 X7 I X8 X9 XlO Xll

0.9056 1.3651 4.8248 2.3988 4.5689 5.6754

we run the L-BFGS and PRAXIS using the above example and list the results in the

Table 5.8 and Table 5.9.

Table 5.8 L-BFGS Result of Osborne Function 2

1!f{x)1fl (n+l)nf Xl X2 Xl X4 Xs

0.04014 2136 1.3100 0.4315 0.6337 0.5996 0.7543

nf X6 X7 Xs X9 XlO XJl

178 0.9038 1.3666 4.8227
I

2.3988 4.5688 5.6753

Table 5.9 PRAXIS Result of Osborne Function 2

l!ftx)lf Xl X2 Xl X4 Xs

0.04014 1.3100 0.4316 0.6337 0.5994 0.7542

nr X6 X7 X8 X9 XlO XJl

857 0.9043 1.3658 4.8237 ! 2.3987 4.5689 5.6753

32



Using L-BFGS, we only need 178 function and gradiient evaluations to complete

this problem. PRAXIS is faster than L-BFGS for this function. In addition, the final

result 0.04014 of both L-BFGS and PRAXIS are better than Osborne's original result

0.0402.

5.3 Testing L-BFGS Using Different Numbers of Corrections

Previously, we set the number of corrections m =5 in L-BFGS to test various

functions. For a very large problem, one cannot set m too large, otherwise, it will take too

much storage. Also, the larger the values of m, the more execution time for each

iteration. Normally, we set 3~ m ~ 7. However, the larger the m, the more information

we can store. Hence, it seems that the larger the m. the smaller the number of iterations.

We verify this by testing L-BFGS on Osborne function 2 with various m and list the

results on Table 5.10.

Table 5.10 Results of Osborne Function 2 for Different m

m Total nf l!f(x)W
Epochs

2 344 379 4.0l4E-2
3 419 446 4.0l4E-2
4 311 345 4.014E-2
5 246 268 4.0l4E-2
6 227 253 4.0l4E-2
7 144 161 4.0l4E-2
8 117 132 4.014E-2
9 113 130 4.014E-2
10 83 99 4.014E-2
llli 83 94 4.0l4E-2
12 79 91 4.014E-2
100 63 73 4.014E-2
1000 63 73 4.014E-2

33

....,.,
,\ ;

"'.

.u,



We mention that in this section we set e= 10-7 as the stopping criterion.

From Table 5.10, we can see that when 3~ m~ 13, the larger the m, the smaller the

number of iterations and the number of function evaluations. In fact, in the first m

iterations, L-BFGS and BFGS are identical. Hence, if m is sufficiently large, for

example, larger than the number of iterations, then executions of L-BFGS and BFGS are

exactly the same.

5.4 Lack of Quadratic Termination Property

Many optimization algorithms possess a property called quadratic termination

which means that they minimize a quadratic function exactly in a finite number of

iterations [34]. For example, Newton's method and quasi-Newton methods have

quadratic tennination properties.

In this section, we verify that the limited memory quasi-Newton method does not

have such property.

Let

It is not difficult to prove that this quadratic function is positive definite. We run this

function using different m and list the results in Table 5.11.

34

,
,I

,~,!
" I
1'1
<"

",/
)'

"'\
t:,
1°,1
"
t;

0,.

------------'--



Table 5.11 Results of a Quadratic Function

m #of nf j(x)
Iterations

2 16 21 1.782E-15
3 14 19 1.677E-15
4 15 20 1.5E-15
5 14 19 2.51lE-17
6 13 18 3.223E-16
7 13 18 1.805E-16
8 13 18 6.604E-17
9 12 17 1.450E-15

! 10 12 17 1.42GE-15

I 11 12 17 1.421E-15
12 12 17 1.421E-15

From the above table we see that for small m, L-BFGS does not have quadratic

termination in n or (n+1) iterations. The authors of [28] pointed out that"Our aim is that

the limited memory method resemble BFGS as much as possible, and we disregard

quadratic tennination properties, which are not very meaningful, in general, for large

dimensional problems."

35

-
~'). ,. ,
, I., ,
,".:
v.)

", r·
.>

~ ..
""
'J ..



6. Testing

In this chapter, we discuss the testing of our learning algorithm. We use the

neural network data in Proben I [43] to test our algorithm. The rules and conventions in

Proben I are followed strictly.

The scope of the ProbenI problems can be characterized as follows. All problems

can be suited for supervised learning, since input and output values are separated. All

examples within a problem are independent of each other. Some of the problems can be

tackled by pattern classification algorithms, while others need the capability of

continuous multivariate function approximation. All problems are presented as static

problems in the sense that all data to learn from are present at once and do not change

during learning. All problems consist of real data from real problem domains.

6.1 Some Aspects of Proben1

1 Training set, validation set, test set [43]

The data used for perfonning benchmarks on neural network learning algorithms

must be split into at least two parts: one part on which the training is performed, called

the training data set" and another part on which the performance of the resulting network

is measured, called the test data set. The idea is that the performance of a network 0111 the

test set estimates its performance in real use. This means that absolutely no information

about the test set examples or the test set performance of the network can be available

during the training process; otherwise the benchmark is invalid.

In some cases the training data are further subdivided. Some examples are put

into the actual training set, others into a so-called validation set [43]. The latter is used as

36

, .;
~ ,
~ .. '
,,~·'.

~, -.
"",

r .•'

·'..1'"

;,:....·,



a pseudo test set in order to evaluate the quality of a network during training. Such an

evaluation is called cross validation [43]. It is necessary due to the overfitting

(overtraining) phenomenon: For two networks trained on the same problem, the one with

larger training set error may actually be better, since the other has concentrated on

peculiarities of the training set at the cost of losing much of the regularity needed for

good generalization. This is a problem in particular when not very many training

examples are available, or when too large a network is used.

A popular and very powerful fonn of cross validation used in neural networks is

early stopping: Training proceeds not until a minimum of the error on the training set is

reached, but only until a minimum of the error on the validation set is reached during

training. Training is stopped at this point and the current network state is the result of the

training run.

The sizes of the training, validation, and test sets in all Proben1 data files are

50%, 25%, and 25% of all examples, respectively.

Our primary goal is to design a learning algorithm for a problem, either a

classification problem or a function approximation problem, with a large number of

examples. For a problem with a large number of examples, overtraining is not a big

problem, provided the network architecture is suitably chosen. In our implementation, we

choose the data sets with large number of examples, which are much larger than the

number of weights. Hence, we do not use the validation set. Instead, we combine the

training set and the validation set as the training set.

2 Input and output representation

37

• I

, .
· .
~ \)

• r

"· '~

j~· .,,
I :

·'..r. .,·'~h,
.'"
J r~.

, .".
·.·'.
~ ~,
III·.'

I,



How to represent the input and output attributes of a learning problem in a neural

network implementation of the problem is one of the key decisions influencing the quality

of the solutions one can obtain.

In Probenl, the real-valued attributes are usually rescaled by some tinear factors.

The integer-valued attributes are most often handled as if they were real-valued. Each

input in the data set is a real-valued attribute, and each output in the data set is either a

real number for the function approximation problems or an integer 0 or 1 for the

classification problems.

3 Error measures

Many different error measures (also called error functions, objective functions,

cost functions, or loss functions) can be used for network training. The most commonly

used is the squared error:

where 0; and t; are the actual output and target output at the i-th output node for one

example. The above measure gives one error value per example - obviously there are

too many data to report. Thus one usually reports either the sum or the average of these

values over the set of all examples. The average is called the mean squared error. The

author of [43] believed that the mean squared error may have the advantage of being

independent of the size of the data set. Note that the mean squared error still depends on

the number of output coefficients in the problem representation and on the range of

output values used. We thus follow [43] to normalize for these factors as well, and report

a squared error percentage as:

38

: .

• I

,
"

· ......,·.",

·.,,'

.....



Omax - OmiD P N 2
E = 100· L L(Opi - t p.)

N· P p=li=l

where Omax and Olllin are the maximum and minimum values of output coefficients in the

problem representation, N is the number of outputs of the network, and P is the number

of examples in the data set considered. However, all the data sets in Probenl have been

normalized such that Ornax = 1 and 0min = O. So the squared error percentage can be

simplified as :

100 P N 2
E =-- LL(Opi - t p;) •

N· P p=li=1

Note that this error function is never used in the field of optimization, but is specific to

ANN training. In our algorithm, we use this squared error percentage as the error

function, so that one may compare our training results with the results in [43].

4 Classification measure

The actual target function for classification problems is usually not the continuous

error measure used during training but the classification performance. However, the

classification performance is not the only measure we are interested in. We thus report

the actual error values in addition to the classification performance. Classification

performance is reported in terms of percent of incorrectly classified examples, the percent

classification error. This is better than reporting the percentage of correctly classified

examples, the classification accuracy, because the latter makes important differences

insufficiently clear: an accuracy of 98% is actually twice as good as one of 96%, which is

easier to see if the percent errors are reported (2% compared to 4%).

39

. ,
"., r

,"

-.,
I,,'

::~
.. 'I~, ..•.
• "i>,

h:
",
!t,;'
""I'.

~ '<,, -,



There are several possibilities to determine the classification a network has

computed from the outputs of the network.

In our implementation, we use the following method to determine the

classification. We calculate

where OJ and tj are the actual output and target output at the i-th output node for one

example. If there is at least one d j , such that d j ~ 0.5, then we reject this example,

otherwise we accept it. We may use 0.4 or 0.3 (instead of 0.5) to determine the rejection

region. However, in our implementation, the differences are not significant.

5 Networks used

Neural network structure is one of the most important things to be specified when

we use a neural network. No one knows which particular structure is the best for any

particular problem. Basically, we just try several different structmes. Following [43], we

mainly choose a neural network with zero, one, or two hidden layers.

To describe the topology, we try to refer to common topology models. For

instance, for the common case of fuUy-connected layered feed-forward networks, the

numbers of nodes in each layer from input to output can be given as a sequence. For

example, a 14-50-3 network refers to a network with 14 input, 50 hidden, and 3 output

nodes. We call this a network with one hidden layer.

6 Stopping criteria

We design a training algorithm based on a limited memory quasi-Newton method

to solve both classification problems and approximation problems. Since we intend to

40

"
, '.
'"

...
, I'
.1·'
, .J~

.'.
~ i

I .'..,

'"

' ..':



solve problems with a large number of examples, the validation set is not used, and the

following stopping criteria we used:

I. The weight update is within tolerance:

Ilwk+! - wkllz < tolerance

The tolerance is chosen depending on the problem. We will specifically state the

tolerance for our test problems in Section 6.4.

2. The number of function evaluations exceeds a pre-defined limit.

In our implementation, we set this pre-defined limit at 2000. Some authors use the

number of iterations instead of the number of function evaluations. In our

implementation, the difference between these two numbers is not large. Stopping on this

criterion implies failure to converge, although the results might still be of some use.

In addition to the above two stopping criteria, there is another stopping criterion in

the subroutine L-BFGS, as we mentioned in Chapter 4.

If a validation set is used in the implementation, besides the above criteria, the

GLa stopping criterion can be used. Although we do not use a validation set in our

implementation, we still state the GLa stopping criterion [43] in the following. Interested

readers may use it in their implementation.

Let Eva(t) be the squared error percentage over the validation set, measured during

epoch t. The value Eopt(t) is defined to be the lowest validation set error obtained in the

epochs up to t:

41



Eop,(t) = min Eva(t')
.'SI

Now we define the generalization loss at epoch t to be the relative increase of the

validation error over the minimum-sa-far (in percent):

GL(t) =100,( E VQ (t) - 1)
Eopt (t)

A high generalization loss is one candidate reason to stop training. This leads us to a

class of stopping criteria: Stop as soon as tbe generalization loss exceeds a certain

threshold a. We define the class GLa as

GLa : stop after first epoch t with GL(t) > ex.

Typical value used for a. is 5 [43].

6.2 Language Implementation

We use the FORTRAN 77 language to implement our learning algorithm. The

main purpose of a learning process is to train the neural network to have generalization

ability. That is, the network should have small error on data as well which it has not

learned.

We choose one-hidden-layer and two-bidden-layer feed-folWard neural network

architectures. Neural networks without hidden layer are also used. The propagated

computations and notations are exactly the same as in Wang [51]. Here we do not repeat

them.

42

)
",

I',:

.',\

,".
"..~

~ "J

. '"1
" '.
, '.

, .:

- '



Before executing our program, one must prepare an input file exactly named

"INPUT.DAT". The format of "INPUT.DAY' is as follows:

The first line--TYPE, SEED

TYPE is an integer, which represents the type of training problem.

TYPE = 1: Function approximation problem.

TYPE = 2: Pattern classification problem.

SEED is an integer, which is used to generate a series of random numbers,

which represent the initial weights of the network.

The second line--NTRAIN, NTEST, NLAYER

NTRAIN is an integer, which represents the number of training examples.

NTEST is an integer, which represents the number of test examples.

NLAYER is an integer, which represents the number of layers (including

the input layer) of this network.

The third line--integers

These integers represent the number of nodes (excluding the bias) in each

layer, starting from the input layer, and ending at the output layer.

In the remainder of the file, ,each ]ioe contains data for one example, data inputs

followed by the desired outputs.

The major subroutines of the program and their functions are the following:

LBSET ( ) -- define the values of several parameters in common areas.

43

·1



INPUT ( ) -- open and read the input data file.

INWEIT ( ) - initialize all connection weights.

COMOUI () -- compute the outputs of the network for one example.

GRADIE ( ) -- compute the value and gradient of the error function.

MLBFGS ( ) -- implement the limited memory BFGS algorithm. This is a slight

modification of Nocedal's L-BFGS program [36].

6.3 Test Problems.

As we mentioned before, the main purpose of this thesis is to train a neural

network with a large number of weights. We choose three data sets with the largest

number of examples in Probenl [43]. All these three data sets have a relatively large

number of inputs, so that the number of weights may be large, though it depends on the

actual design of the network. If the number of inputs and the number of outputs are fixed,

then the larger the number of hidden nodes, the larger the number of weights.

Two of the problems are function approximation problems, while the third is

classification problem.

Table 6.1 Test Problems

Problem , Type of #of #of # of Training # of Test
Problems Inputs Outputs Examples Examples

building2 Approximation 14 3 3156 1052

flare 1 Approximation 24 3 800 266

thyroid1 Classification 21 3 5400 1800

For further comparison, seven different network topologies were used for each

problem: zero-hidden-Iayer network, one-hidden-Iayer networks with 4, 16, or 32 hidden

nodes and two-hidden-Iayer networks with 4+4, 8+8, or 16+8 hidden nodes on the fITst

44

(}

."
t,

;,
.. '

...
"',

"
I•.,. :
II',



and second hidden layer, respectively. For the two approximation problems, we also use

some other network topologies. All of these networks have all possible feed-forward

connections, including a bias connection.

6.4 Test Results

In optimization problems, one uses various methods to find an approximate

minimum value of the objective function. Theoretically, the exact minimum of the

objective function cannot be known in advance. However, some certain known results

can serve as a reference.

In Probenl [43], a few results of neural network learning runs on the data sets are

given. The runs were made with linear networks, having only direct connections from

inputs to the outputs, and with various fully connected multilayers with one or two layers

of sigmoidal hidden nodes. Training was performed using the RPROP algorithm [43].

We list the average results of [43] in Table 6.2.

W,e notice that for different network topologies, the propagation from input layer

to output layer are different. Hence, the minimum values may not be exactly the same.

However, comparing with the results in Table 6-2, we can get a rough idea how well our

program works.

Table 6.2 Results in Proben 1

Problem Total Training Test set Test set
epochs set classification

building2 1183 0.23 0.26 -
flare] 71 0.39 0.74 -

thyroidl 491 0.60 1.31 2.32

45

nf
I

"

"

'I, "

..
, .



Training set: minimum squared! error percentage on the training set.

Test set: minimum squared error percentage on the test set.

Test set classification: percent of incorrectly classified examples on the test set.

Recall that we first need! to set the stopping criteria. The first criterion is that the

weight update is within tolerance:

Since the number of weights are relatively large. it is not necessary to set the tolerance to

be too small. In our implementation, we set the tolerance = 10-3
, with one exception. For

the problem building2 with 16+16 hidden nodes, when tolerance = 10.3, it stops too early

and does not obtain the desired results. Hence, we set the tolerance = 10-5 instead of 10-3

for this problem.

The second stopping criterion is that the number of function evaluations cannot

exceed a pre-defined limit, which we set as 2000.

..
"'
.'

r

The stopping criterion of L-BFGS is:

Ilgtil < E X max(1, Ilwt 11),

We set E = 10-4 with a few exceptions. With a similar reason as above, we set E = 10-5

for the fonowing network topologies: flare! without hidden layer, and thyroidl with the

hidden layers 8+8 and 16+8.

In our actual implementation, for the building2 with 16+16 hidden nodes, the

program stops when the number of function evaluations achieves the limit 2000. For all

other situations, it stops when either 118wlh is too small or IIglh is too small.

The results of our tests are listed in the following tables.

46

",



Table 6.3 Results of building2 (m = 5)

Hidden #of Tau.] nf IlAwlh IIgll2 Training Test
nodes wei~hts epochs set set
None 45 67 75 0.0006483 0.002806 0.3441 0.3427

4 75 759 820 0.008264 0.002349 0.2635 0.2643
8 147 1084 1140 0.()OO8241 0.01060 0.2472 0.2544
16 291 1331 I 1421 0.0008560 0.008237 00.2267 0.2443
32 579 1341 1425 0.0009306 0.04055 0.2176 0.2464

4+4 95 1328 1434 0.02195 0.002396 0.2543 0.2598
8+8 219 1631 1747 0.0006908 0.003420 0.2172 0.2402

16+16 563 1801 2000 0.02671 0.01257 0.2073 0.2363

Table 6.4 Results of flarel (m = 5)

Hidden #of Tau.] nf 1'lAwl~ IIgllz Training Test
nodes weights epochs set set
None 75 138 150 0.004856 0.0002.159 0.2915 0.5962

4 115 99 121 0.03944 0.003599 0.2470 , 0.7380
8 227 162 183 0.03414 0.003334 0.2118 0.7999
16 451 166 188 0.03917 0.004947 0.2209 0.9708
32 899 153 171 0.6937 0.007733 0.2229 0.8296

4+4 135 121 144 0.07549 0.005195 0.2508 0.7387
8+4 251 143 187 0.4097 0.005541 0.2462 0.6216
8+8 II 299 121 153 0.01822 0.004801 0.2407 0.7591 I

i 16+8 563 306 356 0.01908 0.004518 0.2183 1.026

Table 6.5 Results of thyroid1 (m = 5)

Hidden # of Total. n1 lI~w,lll2 Ilglh Training Test Error
nodes ~ weights epochs set set rate

None 66 98 113 1.431 0.01917 2.885 3.179 6.500
4 103 236 280 0.05897 0.02529 0.9794 1.346 2.444

16 403 371 420 0.04310 0.02790 0.8786 1.246 2.500
32 803 647 735 0.02569 0.02054 1.445 1.751 4.111

4+4 123 35 41 21.94 0.02343 4.469 4.369 7.278

8+8 275 49 59 53.04 0.007671 4.477 4.391 7.278

16+8 515 611 730 0.003879 0.006455 2.696 2.652 4.944

nf total number of function evaluations.

Training set: minimum squared error percentage on training set.

Test set: minimum squared error percentage on test set.

Error rate: percent of incorrectly classified examples.

1. Building2

47



It seems that the iterations converge for all network topologies we chose. Except

for the network without hidden nodes, the training set error and the test set error are

similar in Table 6.2. The best training set error and the best test error are 0.2073 and

0.2363, respectively, which are better than the results in Table 6.2.

2. Flarel

It seems that the iterations converge for every network topology. The best training

set error is 0.2118, which is obtained by the network topology with eight hidden nodes,

while the best test set error is 0.5962 which is obtained by the network without hidden

nodes. We notice that the network topology with the best training set error may not ,have

the best test set error.

3. Thyroidl

It seems that the iterations converge for some network topologies but do not

converge for some other network topologies (none, 4+4, 8+8).. The best (smallest)

training set error and the best test error are 1.445 and 1.246, respectively, and the best

percent of incorrectly classified examples is 2.444%

In the following we summarize our results:

First of all, our program handles the large number of weights of a neural network

very welL The largest number of weights in our tests is 899. Actually, we believe that

our program can work on a neural network with several thousand weights without any

problem.

48



Second, for most of the network topologies which we chose for the three

problems, the optimization procedure ,converges. The other cases presumably would have

converged eventually.

Third, compared with the results in Table 6.2, most of our results are acceptable.

Some results are more accurate than the results in Table 6.2. In particular, we get very

good generalization results on test sets.

Roughly speaking, the greater the number of hidden nodes, the greater the number

of weights, and the greater the number of iterations and functions evaluations required. It

seems that the average of the number of iterations of different topologies for each

problem is similar in Table 6.2. However, we cannot claim that our program is very fast,

since it may take more time for each iteration than the other methods. For example, it

took about 30 hours for the problem Thyroid! with 32 hidden notes when we run it on

CSA: Sequent 24 Intel 80386 processors. However, our program can handle a very large

number of weights, which the other methods may not be able to (a conjugate gradient

method may handle a large problem, but it is unstable.) fu addition, as we mentioned

before, the main difference between a limited memory quasi-Newton method and a quasi

Newton method is the storage part. If we modify the storage part of our program and

store the inverse Hessian matrixes explicitly, then our program can train a network with a

moderate number of weights and run very fast.

49



6.5 Test on XOR Problem

In this section we test our program on an "exclusive or'7 function of two variables.

This is perhaps the simplest learning problem that is not linearly separable. It therefore

cannot be solved by a network with no hidden layer. For the detailed description and

results see [55].

There are two main forms of learning architectures that have been used by others

to solve this problem [55]. The first one is a 2-2-1 network, which has two hidden units,

each connected to both inputs and to the output. The second one is a "2-1-1 shortcut

network", which has only a single hidden unit, but also has "shortcut" connections from

the inputs to the output unit. However, we do not consider the shortcut network here.

Some researchers have also investigated this problem with more than two hidden

units [56]. In general, the more hidden units there are, the easier the problem becomes.

We first call our program directly with 2-2-1 and 2-3-1 networks. But it does not

work very well. It seems to stop at a local minimum. We tben test our program with a 2-

4-1 network. The results are satisfactory. We list the results in the following table.

Table 6.6 Results of XOR Problem with 2-4-1 Network

#Of Total nf lIt1wllz IIglh Error Error
Weights Epochs Rate

17 27 55 3.187 4.966D-4 3.292D-4 0.0

WEIGHT =(-1.62ID-Ol, 1.400D-Ol, -4.693D-02, 2.231D-02, -4.414D-02,

6.472D-02, 9.630D-03, 2.71OD-02, 8.472D-02, -8.488D-02,

8.082D-02, -5.366D-02, -4.286D-02, -5.266D-02, -9.787D-02,

6. 157D-02, -8.823D-02)

error: minimum squared error percentage

50



,error rate: percent of incorrectly classified examples

In our original program, we chose the initial weights between -O.5/fanin and

O.5/fanin, where fanin is the number of nodes in previous layer [51]. Chandler [8]

suggested that we enlarge the range of the initial weights for this problem, that is the

initial weights are chosen between [-50, 50]. In addition, we randomly choose the initial

weights and calculate the value of the error function one thousand times. We save the

weights with the smallest of squared error percentage, and use these weights as the initial

weights to test the XOR problem with a 2-2-1 network. The results are satisfactory. We

mist the results in the fonowing table.

Table 6.7 Results of XOR Problem with 2-2-1 Network

:#I Of Total nf Mwlh IIglh Error Error

Weights Epochs Rate

9 1 2 1.OOOD(X) 1.576D-9. 1.119D-9 0.0

WEIGHT =(2.5980+01, 2.987D+01, -1.286D+Ol, 8.498D+OO, -3.505D+01,

3.404D+Ol, 1.236D+01, 2.570D+01, 4.382D+Ol)

51



7. Conclusions

In this thesis, we designed a neural network program based on limited memory

quasi-Newton methods to train fully-connected feed-forward neural networks. Our

program can train a neural network with a large number of weights and it has been tested

on several real world problems in Probenl [43]. Comparing with the results in Probenl,

our results are satisfactory. In particular, we obtain very good generalization results on

the test sets. Since we do not stofe the inverse Hessian matrix explicitly, it may take

more time for each iteration than for other methods. However if we modify the storage

part of our program, it will run very fast in training a neural network with a moderate

number of weights.

In addition, we tested the subroutine L-BFGS on various functions and obtained

very good test results.

Suggestion for further study:

Test our program on real data sets with a very large number of inputs and not very

many examples. H necessary, use the validation set as a pseudo test set.

52



References

[1] M. AI-Baali, Descent property and global convergence of the Fletcher-Reeves
method with inexact line searches, IMA J. Numer. Anal., 5 (1985) 121-124.

[2] E. M. L. Beale, On an iterative method for finding a local minimum of a function
of more than one variable, Tech. Report No. 25, Statistical Techniques Research
Group, Princeton Dillv. (1958).

[3] H. S. M. Beigi and C. J. Li, Learning algorithms for neural network based on
quasi-Newton methods with self-scaling, J. of Dynamics Systems, Measurement
and Control, 115(1993) 38-43.

[4] M. J. Box, A comparison of several current optimization methods, and the use of
transformations in constrained problems, Compo J. 9 (1966) 67-77.

[5] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 1973.

[6] R. H. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a class of quasi
Newton methods on convex problems, SIAM J. Numer. Anal., 24 (1987) 1171
1190.

[7] J. P. Chandler, Anonymous ftp://a.cs.okstate.edulpub/jpc/praxis.f, praxis.txt,
stepit.f.

[8] J. P. Chandler, Private communication.

[9] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal
Processing, John Wiley & Sons, Inc., New York, 1993.

[10] A. R. Colville, A comparative study of nonlinear programming codes, IBM New
York Scientific Center Report, 320-2949 (1968).

[11] J. E. Dennis and R. E. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, 1983.

[12] R. Fletcher,. Practical Methods of Optimization, Vol. 1, John Wiley & Sons, Inc.,
Chichester, 1980.

[13] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for
minimization, Compo J. 6 (1963) 163-168.

[14] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients,
Computer J. 7 (1964) 149-154.

53



[15] J. A. Freeman and D. M. Skapura, Neural Networks Algorithms. Applications, and
Programming Techniques, Addison-Wesley Publishing Co., New York, 1992.

[16J J. c. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient
methodsfor optimization, SIAM J. Optimization, 2 (1992) 21-42.

[17] P. E. Gill and W. Murray, Quasi-Newton methods for unconstrained optimization,
J. Inst. Math. Applies. 9 (1972) 91-108.

[18] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press,
London, 1981.

[19] R. T. Gregory and D. L. Karney, A Collection of Matrices for Testing
Computational Algorithms, Interscience, New York, 1969.

[20] A. Griewank and Ph. L. Toint, Partitioned variable metric updates for large
structured optimization problems, Numerische Mathematik 39 (1982) 119-137.

[21] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design, PWS
Publishing Co., Boston, 1996.

[22J M. T. Hagan and M. B. Menhaj, Training feedforward networks with the
Marquardt algorithm, IEEE Transactions On Neural Networks 5 (1994) 989-994.

[23] S. Haykin,. Neural Networks, A Comprehensive Foundation, Macmillan College
Publishing Co., 1994.

[24] N. B. Karayiannis and A. N. Venetsanopoulos, Artificial Neural Networks,
Learning Algorithms, Performance Evaluation, and Applications. KJuwer
Academic Publishers, Boston, 1993.

[25] J. S. Kowalik and M. R. Osborne, Methods for Unconstrained Optimization
Problems, Elsevier, New York, 1968.

[26] A. Leon, A comparison of eight known optimizing procedures, Recent advances in
optimization techniques, A. Lavi and T. P. Vogl eds.,Wiley & Sons, Inc., New
York, (1966).

[27] K. Levenberg, A Method For the Solution of Certain Non-Linear Problems in
Least Squares, Quart. App!. Math. 2 (1944) 164-168.

[28] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale
optimization, Math. Programming 45 (1989) 503-528.

54



[29] D. C. Liu and J. Nocedal, Test results of two limited memory methods for large
scale optimization, Technical Report NAM 04, Department of Electrical
Engineering and Computer Science, Northwestern University, 1988.

[30] D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear
Parameters, J. Soc. lndust. Appl. Math. 11 (1963) 525-553.

[31] W. Miller and D. Spooner, ACM Trans. Math. Software 4 (1978) 369-390.

[32J J. J. More and D. J. Thuente, Line search algorithms with guaranteed sufficient
decrease, ACM Transaction on Mathematical Software 20 (1994) 287-307.

[33] S. G. Nash, Preconditioning of truncated-Newton methods, SlAM Journal on
Scientific and Statistical Computing' (1985) 599-616.

[34] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill Inc.,

New York, 1996.

[35] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of
Computation 35 (1980) 773-782.

[36] J. Nocedal, Anonymous ftp:/leecs.nwu.edulpubllbfgsllbfgs_um

[37] L. Nyhoff and S. Leestma, FORTRAN 77 and Numerical Methods for Engineers
and Scientists, Prentice-Hall, New Jersey, 1995.

[38J D. P. O'Leary, A discrete quasi-Newton algorithm for minimizing a function oj
many variables, Mathematical Programming 23 (1982) 20-33.

[39] M. R. Osborne. Some aspects of non-linear least squares calculations, Numerical
Methods for Non-linear Optimization, F. A. Lootsma ed., Academic Pr:ess, New
York, (1971) 171-189.

[40] M. J. D. Powell, An iterative method for finding stationary values of a function of
several variables, Compo J. 5 (1962) 147-151.

[41J M. J. D. Powell, An efficient method for finding the minimum of a function of
several variables without calculating derivatives, Compo J. 7 (1964) 155-162.

[42J M. J. D. Powell, Some global convergence properties of a variable metric method
w.ithout line searches, Nonlinear Programming, R. W. Cottle and C. E. Lemke,
eds., SIAM-AMS Proceedings, American Mathematical Society, 9 (1976) 53-72.

55

•



[43] L. Prechelt, Probenl - A Set of Neural Network Benchmark Problems and
Benchmarking Rules, Technical Report 21/94, University Karlsruhe, 1994,
Anonymous ftp:/lftp.ira.uka.de/pub/neuronlprobenl.tar.gz.

[44] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University
Press, 1996.

[45] H. H. Rosenbrock, An automatic methodforfinding the greatest or least value ofa
function, Compo J. 3 (1960)173-184.

[46] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by
back-propagation errors, Nature 323 (1986) 533-536.

[47] L. E. Scales, Introduction to Non-Linear Optimization, Springer-Verlag, New
York, 1985.

[48] T. Steihaug, The conjugate gradient method and trust regions in large scale
optimization, SIAM Journal on Numerical Analysis 20 (1983) 626-637.

[49] J. G. Taylor, The Promise of Neural Networks, Springer-Verlag, London, 1993.

[50] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for
minimization, in: Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press,
New York, 1981,57-58.

[51] L. Wang, The Damped Newton Method - An ANN Learning Algorithm, M. S.
Thesis, Computer Science Department, Oklahoma State University, 1995.

[52] M. A. Wolfe, Numerical Methods for Unconstrained Optimization, Van Nostrand
Reinhold Company, Ltd., Mony MiHars Lane, Wokingham, Berkshire, England,
1978.

[53] Systeml360 Scientific Subroutine Package (360A-CM-03X) Version III
Programmers Manual, ffiM Corporation, 1968.

[54] Internet: comp.ai.neural-nets.

[55] Anonymous FfP: ftp.cs.cmu.edulafs/cs/projectlconnectlbenchlxor.

56



APPENDIX A: PROGRAM LIST FOR DRIVEN.F

INPUT FILE FORMAT:

BEFORE THE PROGRAM IS EXECtrrED, THE INPUT FILE "INPUT.DAT~

MUST BE READY.

3RD LINE -- INTEGERS, WHICH REPRESENT THE NUMBER OF NODES (EXCLUDING
THE BIAS) IN EACH LAYER, START FROM THE INPUT LAYER.

WEIGHT AND G ARE DOUBLE PRECIS.ION ARRAYS, WHICH CONTAIN THE VALUE OF
WEIGHTS AND THE GRADIENT OF THE ERROR FUNCTION, RESPECTIVELY.

TYPE, SEED
TYPE IS AN INTEGER, WHICH REPRESENTS THE TYPE OF

THE TRAINING PROBLEM.
TYPE = 1: FUNCTION APPROXIMATION PROBLEM.
TYPE = 2: PkTTERN CLASSIFICATION PROBLEM.

SEED IS AN INTEGER, WHICH IS USED TO GENERATE
RANDOM NUMBERS.

NTRAIN, NTEST, NLAYER ARE ALL INTEGERS, WHICH
REPRESENT THE NUMBER OF TRAINING EXAMPLES, THE
NUMBER OF TEST EXAMPLES, AND THE NUMBER OF LAYERS
(INCLUDING THE INPUT LAYER) OF THE NETWORK,
RESPECTIVELY.

IS AN INTEGER, WHICH REPRESENTS THE NUMBER OF CORRECTION
USED IN THE BFGS UPDATE.

IS A TWO DIMENSION INTEGER ARRAY USED TO STORE THE
NETWORK STRUCTURE.
THE FIRST INDEX OVER LAYERS (INCLUDING THE INPUT LAYER).
THE 2ND INDEX ARE DEFINED AS FOLLOWS:

(*,1) CONTAINS THE NUMBER OF NODES IN EACH LAYER,
EXCLUDING THE BIAS NODE.

(*,2) CONTAINS THE STARTING INDEX OF NEURON FOR
EACH LAYER.

IS AN INTEGER, WHICH REPRESENTS THE NUMBER OF WEIGHTS

IS A DOUBLE PRECISION VARIABLE CONTAINS THE VALUE OF THE
ERROR FUNCTION IN THE TRAINING PROCESS.

F

ERTEST IS A DOUBLE PRECISION VARIABLE CONTAINS THE VALUE OF THE
ERROR FUNCTION IN THE GENERATION PROCESS WITH TEST DATA
SET.

LAYIFO

1ST LINE --

THE ACTUAL LIMITED MEMORY BFGS METHOD IS IMPLEMENTED BY
MEANS OF THE SUBROUTINE MLBFGS, WHICH IS A SLIGHT
MODIFICATION OF THE ROUTINE LBFGS WRITTEN BY JORGE NOCEDAL.

2ND LINE --

THE REMAINDER OF THE FILE EACH CONTAINS DATA FOR ONE
EXAMPLE, DATA INPUT FOLLOWED BY THE DESIRED OUTPUT.
VARIABLES:

PROGRAM DRIVEN
C--------------------------------------------- _
C WRITTEN BY JOHN P. CHANDLER AND YlJUN HUANG,
C COMPtrrER SCIENCE DEPARTMENT, OKLAHOMA STATE UNIVERSITY, 1997.C--------------------------------------------- _
C THIS IS A DRIVER TO IMPLEMENT A NEURAL NETWORK LEARNING
C ALGORITHM BASED ON THE LIMITED MEMORY QUASI-NEWTON METHOD.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C N
C
C
C
C
C M
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

57



- ..

NTRAIN, NTEST, NLAYER ARE THE NUMBER OF TRAINING EXAMPLES, THE
NUMBER OF TEST EXAMPLES AND THE, NUMBER OF LAYERS RESPECTIVELY.

CONTAINS THE STARTING INDEX OF WEIGHT FOR
EACH LAYER.

IS A INTEGER, WHICH REPRESENTS THE NUMBER OF
EVALUATIONS OF F AND G.

IS A TWO DIMENSIONAL DOUBLE PRECISION ARRAY.
THE 1ST INDEX CONTAINS THE OUTPUT FOR ONE TEST EXAMPLE.
THE 2ND INDEX OVER ALL TEST EXAMPLES IN THIS NETWORK.
1. E., EACH COLUMN OF THE ARRAY CONTAINS OUTPUT DATA FOR
ONE TEST EXAM.PLE.

IS A TWO DIMENSIONAL DOUBLE PRECISION ARRAY.
THE 1ST INDEX CONTAINS THE INPUTS FOR ONE TEST EXAMPLE.
THE 2ND INDEX OVER ALL TEST EXAMPLES IN THIS NETWORK.
I. E., EACH COLUMN OF THE ARRAY CONTAINS INPUTS DA.TA FOR
ONE TEST EXAMPLE.

IS A LOGICAL VARIABLE. SINCE THE SUBROUTINE MLBFGS IS
CALLED BY TWO DRIVERS, DRIVEN USED TO IMPLEMENT THE
ARTIFICIAL NEURAL NETWORKS, THEREFORE SET THE ANN = TRUE
IN THIS DRIVER.

IS A TWO DIMENSIONAL DOUBLE PRECISION ARRAY.
THE 1ST INDEX CONTAINS THE INPUTS FOR ONE TRAINING EXAMPLE.
THE 2ND INDEX OVER ALL TRAINING EXAMPLES IN THIS NETWORK.
I. E., EACH COLUMN OF THE ARRAY CONTAINS INPUTS DATA OF
ONE TRAINING EXAMPLE.

OUDATA IS A TWO DIMENSIONAL DOUBLE PRECISION ARRAY.
THE 1ST INDEX CONT.AINS THE OUTPUTS FOR ONE TRAINING EXAMPLE.
THE 2ND INDEX OVER ALL TRAINING EXAMPLES IN THIS NETWORK.
I. E., EACH COLUMN OF THE ARRAY CONTAINS OUTPUT DATA FOR
ONE TRAINING EXAMPLE.

INl, INTRAI, INTEST, NOUT, N1, N2, L1, L2 ARE ALL POSITIVE
INTEGERS, USED TO PASS THE DIMENSION INDICES WHEN CALLING
SUBROUTINES.

TESOUT

I CALL

TESTIN

INDATA

NEURON IS TWO DIMENSION DOUBLE PRECISION ARRAY.
THE 1ST INDEX OVER ALL NEURONS, OR NODES, IN THE NETWORK.
THE 2ND INDEX ARE DEFINED AS FOLLOWS:

(*,1) CONTAINS THE OUTPUT VALUE OF EACH NEURON.
(*,2) CONTAINS THE FIRST DERIVATIVE OF THE

ACTIVATION FUNCTION OF EACH NEURON.
(*,3) STORES THE PARTIAL DERIVATIVE OF THE ERROR

FUNCTION E(W) W.R.T. A NEURON OUTPUT.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C ANN
C
C
C
C
C
C
C
C
C
C
C
C OTHER VARIABLES AND PARAMETERS ARE DESCRIBED IN THE SUBROUTINES
C LBSET AND MLBFGS.
C----------------------------------------------------- -----------------

IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION WEIGHT (2000) ,G{2000),DIAG(2000) ,W(35000)
DOUBLE PRECISION F,EPS,XTOL,GTOL,STPMIN,STPMAX,TOLERA,ER
INTEGER IPRINT(2),IFLAG,ICALL,N,M,MP,LP,J,NFMAX,I,K,NOUT
LOGICAL DIAGCO,ANN,GRD

C
INTEGER TYPE,NTRAIN,NTEST,NLAYER,LAYIFO{5,3) ,II,

* SEED, IN1,INTRAI,INTEST,NOUT1,N1,N2,Ll,L2.NF05
DOUBLE PRECISION INDATA(25,5400) ,OUDATA(5,5400),

* TESTIN(25,1800),TESOUT(5,1800),
* NEURON(200,3),ERTEST,ERRATE

58



C

C

C

COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
COMMON / IP/ NTRAIN, NLAYER

XTOL=1.0D-16
EPS=1.0D-4
TOLERA = 1. OD-3
Nl=200
N2=3
Ll=5
L2=3
IN1=25
INTRAI=5400
INTEST=1800
NOUT=5

M=5
IPRINT{l)= 50
IPRINT(2)= 0

C
C WE DO NOT WISH TO PROVIDE THE DIAGONAL MATRICES HKO, AND
C THEREFORE SET DIAGCO TO FALSE.
C

DIAGCO= . FALSE.
ANN = . TRUE.
ICALL=O
I FLAG=0
NFMAX = 2000
CALL LBSET

C
C READ IN INPUT FILE AND INITIAL,IZE THE WEIGHTS.
C

CALL INPUT(INDATA,OUDATA,TESTIN,TESOUT,LAYIFO,NTEST,TYPE,SEED,
* Ll,L2,IN1,INTRAI,INTEST,NOUT)
CALL INWEIT(WEIGHT,N,LAYIFO,SEED,Ll,L2)

C
C SET BIAS INPUT.
C

DO 10 K=l, NLAYER
II = LAYIFO(K, 2)
NEURON(II, 1) = -1.0

10 CONTINUE
C
C --- MAIN LOOP
C

20 CONTINUE
F= O.DO
DO 30 I=l,N

G(I)=O.ODO
30 CONTINUE

C
C COMPUTE VALUE AND GRADIENT OF ERROR FUNCTION .
C

CAL,L GRADIE (F, WEIGHT,N,G, INDATA,OUDATA, LAYIFO, NEURON,
* Nl,N2,Ll,L2,IN1,INTRAI,INTEST,NOUT)

C
CALL MLBFGS(N,M,WEIGHT,F,G,DIAGCO,DIAG,IPRINT,EPS,

* XTOL,W,IFLAG,ANN,TOLERA)
C

IF(IFLAG.EQ.l) THEN
C
C IF IFLAG=l, EVALUATE THE FUNCTION F AND GRADIENT G.
C

ICALL=ICALL + 1
C

59

...



C WE ALLOW AT MOST NFMAX EVALUATIONS OF F AND G
C

IF (ICALL.GT.NFMAX) GO TO 40
GO TO 20

C
C IFLAG = 0 INDICATES THE ROUTINE MLBFGS HAS TERMINATED SUCCESSFUL,
C THEREFORE, EVALUATE THE TEST DATA; OTHERWISE, AN ERROR OCCURS,
C THEN STOP THE EXECUTION OF THE PROGRAM.
C

CONTINUE

.0:;.
I~t,'.

"

ERTEST = " IPDIO.3,2X, 'EPS=',lPDIO.3)
NF05 = ',15, 2X, 'ERRATE=' , IPDIO. 3)

*

ELSE IF (IFLAG .EQ. 0) THEN
ERTEST = ER(TYPE,TESTIN,TESOUT,NTEST,NEURON,

LAYIFO,WEIGHT,N,NF05,Nl,N2,Ll,L2,IN1,INTEST,NOUT}
WRITE (MP, 50) ERTEST,EPS
IF(TYPE .EQ. 2) THEN

ERRATE = 1. 0*NF05/NTEST
WRITE(MP,60) NF05,ERRATE

END IF
END IF

50 FORMAT (/'
60 FORMAT(/'

40

C

C
STOP
END
SUBROUTINE INPUT (INDATA, OUDATA, TESTIN, TESOUT, LAYIFO, NTEST,

* TYPE,SEED,Ll,L2,IN1,INTRAI,INTEST,NOUT)
C----------------------------------------------------- ---------------
C OPEN AND READ IN THE "INPUT. DAT". STORE THE NETWORK INFORMATION
C INTO THE ARRAY LAYIFO, AND ALL TRAINING DATA AND TESTING DATA
C INTO INDATA, OUTADA, TESTIN, AND TESOUT, RESPECTIVELY.
C THE FORMAT OF "INPUT.DAT" AND ALL VARIABLES ARE DESCRIBED
C AT THE BEGINNING OF THE MAIN PROGRAM.
C----------------------------------------------------- ---------------

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER Ll,L2,I,IN,J,IN1,INTRAI,INTEST,NOUT,NOUT1,NINPUT
INTEGER IOERR,TYPE,SEED,NTRAIN,NTEST,LAYIFO(Ll,L2),NLAYER
DOUBLE PRECISION INDATA(IN1,INTRAI),OUDATA(NOUT,INTRAI),

* TESTIN(IN1, INTEST) ,TESOUT(NOUT, INTEST)
C

COMMON /IP/NTRAIN, NLAYER
C

IN = 5
C

IOERR=O
OPEN (UNIT=IN, FILE='INPUT.DAT', STATUS='OLD', IOSTAT=IOERR)
IF(IOERR .NE. 0) THEN

PRINT 10, IOERR
10 FORMAT('CANNOT OPEN INPUT DATA FILE, IOERR=' ,110)

GOTO 120
END IF

C
READ(IN,20) TYPE, SEED

20 FORMAT (215)
PRINT 3D,TYPE,SEED

30 FORMAT(/' TYPE =',I5,5X, •SEED =' ,Ill)
C

C

READ (IN, 40) NTRA1N, NTEST, NLAYER
40 FORMAT (315)

PRINT 50,NTRAIN,NTEST,NLAYER
50 FORMAT (/' NTRAIN =',19, ax, 'NTEST = I ,19, 8X, 'NLAYER =',12)

READ (IN, 60) {LAYIFO(I,l), 1=1, NLAYER)
60 FORMAT (515)

PRINT 70, (LAYIFO(I,l), 1=1, NLAYER)

60



-..

C

C

70 FORMAT (J' LAYIFO (1,1) = ',815)

LAYIFO(1,2} = 1
LAYIFO(1,3) = 0
LAYIFO(2,3) = 1

C

C

DO 80 1=2, NLAYER
LAYIFO(I,2) = LAYIFO(I-1,1) + LAYIFO(I-1,2) + 1

80 CONTINUE
DO 90 1=3, NLAYER

LAYIFO(I,3)=LAYIFO(I-1,3)+LAYIFO(I-1,1)*(LAYIFO(I-2,1)+1)
90 CONTINUE

NOUT1 = LAYIFO (NLAYER, 1)
NINPUT = LAYIFO(l,l)

DO 100 J=l, NT'RAIN
READ (IN, *l (INDATA(I,Jl ,I=l,NINPUT), (OUDATA(I,J), I=1,NOUT1)

100 CONTINUE

.~.
~.~~.-,

,I

C

c

C

DO 110 J=l, NTEST
READ(IN,*) (TESTIN(I,J),I=l,NINPUT), (TESOUT(I,J),I=1,NOUT1)

110 CONTINUE

CLOSE (IN)

THE CALLING STATEMENT IS
CALL INWEIT(WT,N,LAYIFO,SEED,L1,L2)

IS A TWO-DIMENSION ARRAY OF INTEGERS, WHICH CONTAINS
SOME NETWORK INFORMATION, SUCH THAT THE NUMBER OF NODES
IN EACH LAYER.

IS A DOUBL,E PRECISION ARRAY, WHICH IS USED TO CONTAIN
THE INITIAL WEIGHTS.

WT

LAYIFO

WHERE

120 RETURN
END
SUBROUTINE INWEITIWT,N,LAYIFO,SEED,L1,L2)

C----------------------------------------------------------------------
C THIS SUBROUTINE IS USED TO INITIALIZE ALL THE CONNECTION WEIGHTS.
C EACH WEIGHT IS INITIALIZED TO A RANDOM NUMBER BETWEEN -O.S/FAN-IN
C AND D.5/FAN-IN, WHERE FAN-IN IS THE NUMBER OF NODES(INCLUDING THE
C BIAS NODE) IN THE PREVIOUS LAYER.
C
C
C
C
C
C
C
C
C
C
C
C
C
C SEED IS AN INTEGER VARIABLE THAT USED TO GENERATE RANDOM
C NUMBERS.
C---------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER L1,L2,LLL,I,K, NTRAIN, NLAYER
INTEGER SEED, TEMP, FANIN , LAYIFO{L1,L2), N
DOUBLE PRECISION WT (1), RANDOM

C
COMMON / IP / NTRAIN, NLAYER

C
TEMP 0

C
C ITERATE OVER ALL LAYERS (EXCLUDING THE INPUT LAYER) .
C

DO 20 K = 2, NLAYER
C
C FANIN = THE NUMBER OF NODES IN PREVIOUS LAYER + 1 (BIAS NODE)
C

61



FANIN = LAYIFO(K-l,l)+l
LLL=LAYIFO(K,l)*FANIN
DO 10 I = 1,LLL

WT(TEMP+I) = RANDOM{SEED)/FANIN
10 CONTINUE

TEMP = TEMP+I-l
20 CONTINUE

C
C SET THE TOTAL NUMBER OF WEIGHTS.
C

N = TEMP
RETURN
END
DOUBLE PRECISION FUNCTION RANDOM{ SEED )

C--------------------------------------------------- _
C THIS FUNCTION IS USED TO GENERATE A RANDOM NUMBER BETWEEN -0.5
C TO 0.5.
C REFERENCE: "A PORTABLE RANDOM NUMBER GENERATOR FOR USE IN SIGNAL
C PROCESSING', SANDIA NATIONAL LABORATORIES TECHNICAL
C REPORT, BY S.D.STEARNS.
C INPUT: SEED
C RETURN: A DOUBLE PRECISION RANDOM NUMBER.
C---------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER SEED

c
SEED = 2045*SEED + 1
SEED = SEED - (SEED/I048576)*1048576
RANDOM = (SEED+1)/1048577.0 - 0.5

C
RETURN
END
DOUBLE PRECISION FUNCTION INPROD (VEC1, VEC2, DIM)

C--------------------------------------------------------------------
C THIS FUNCTION RETURNS THE INNER PRODUCT OF TWO VECTORS.
C IT IS USED IN SUBROUTINE COMOUl TO CALCULATE THE
C OUTPUT OF THE NETWORK.
C--------------------------------------------------------------------

INTEGER DIM, I
DOUBLE PRECISION VEC1(DIM), VEC2(DIM)

C
INPROD = 0.0

C
C ITERATE OVER ALL ELEMENTS OF THE VECTORS.
C

DO 10 1=1, DIM
INPROD = INPROD + VEC1(I)*VEC2(I)

10 CONTINUE
C

RETURN
END
DOUBLE PRECISION FUNCTION SIGMOD(X)

C---------------------------------------------------------------------
C THIS FUNCTION RETURNS THE VALUE OF SINGMOID ACTIVATION FUNCTION.
C IT IS USED IN SUBROUTINE COMOU1 TO CALCULATE THE
C OUTPUT OF THE NETWORK.
C---------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION X

C
SIGMOD = 1.0/(1.0 + DEXP(-X»

C
RE'TURN
END
SUBROUTINE COMOU1(A,NEURON,LAYIFO,WT,N,N1,N2,L1,L2,INl,GRD)

62



7'

,LAYIFO IS A TWO-DIMENSIONAL DOUBLE PRECISION ARRAY WHICH CONTAINS
SOME NETWORK INFORMATION.

THE CALLING STATEMENT IS
CALL SUBROUTINE COMOU1(A,NEURON,,LAYIFO,WT,N,N1,N2,L1,L2,

IN1,GRD)

NEURON IS A TWO-DIMENSIONAL DOUBLE PRECISION ARRAY THAT CONTAINS
OUTPUT OF THE NETWORK AND THE DERIVATIVE OF THE ACTIVATION
FUNCTION.

IS A DOUBLE PRECISION ARRAY THAT CONTAINS CURRENT
WEIGHTS.

IS A DOUBLE PRECISION ARRAY THAT CONTAINS INPUT DATA.

UP AND LOW ARE DOUBLE PRECISION VARIABLES. SINCE THE SIGMOID
FUNCTION F (X) WILL OVERFLOW WIlEN THE ABSOLUTE OF X IS
TOO LARGE. WE SET THE FUNCTION VALUE TO BE 1.0
OR 0.0 WHEN X IS LARGER THAN UP OR SMALLER THAN LOW.

A

WT

WHERE

*

C---------------------------------------------------- _
C THIS SUBROUTINE IS USED TO COMPUTE THE OUTPUT OF THE NETWORK FOR
C EACH NEURON, AND STORE THEM IN ARRAY NEURON (* ,I) .
C IT IS CALLED BY THE FUNCTION ER TO CALCULATE THE VALUE OF
C THE ERROR FUNCTION ON THE TESTING DATA SET.
C IN ADDITION, IT COMPUTES THE DERIVATIVE OF THE ACTIVATION FUNCTION
C AND STORES THEM IN NEURON (* , 2) FOR FURTHER REFERENCE.
C IT IS CALLED BY SUBROUTINE GRADIE TO CALCULATE THE VALUE AND
C GRADIENT OF THE ERROR FUNCTION ON TRAINING DATA SET.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C----------------------------------------------------- ----------------

IMPLICIT REAL*B (A-H,O-Z)
INTEGER L1, 1.2, LLL, I, INDX, K,NDEX, NLAYER,NT.RAIN
INTEGER TEMP, WIDX, N, LAYIFO(L1,L2),Nl,N2,IN1,JJ
DOUBLE PRECISION SUM,WT(N),NEURON(N1,N2) ,INPROD,SIGMOD,

A( IN!) , UP , LOW
LOGICAL GRD
COMMON IIP/ NTRAIN, NLAYER

C
C SET UPPER AND LOWER BOUND FOR SIGMOID FUNCTION.
C

UP = 7.0D+2
LOW = -7. OD+2

C
C COPY ALL INPUT DATA INTO NUERON(*,l), ,LAYIFO{l,1)=NUMBER OF INPUTS
C

LLL=,LAYIFO(1,1)+1
DO 10 1=2, LLL

NEURON(I,1) = A(I-l)
10 CONTINUE

C
C FORWARD PROPAGATED COMPUTATION OVER ALL ,LAYERS.
C

00 30 K=2, NLAYER
INDX = LAYIFO(K,2)
TEMP = LAYIFO(K,3)
NDEX = LAYIFO(K-l,2}
JJ = LAYIFO(K-l,l) + 1

C
C ITERATE OVER ALL NEURONS IN LAYER K.
C NOTE: LAYIFO(K,l) = NUMBER OF NEURONS IN K-TH LAYER.
C

LLL=LAYIFO(K,l)

63



DO 20 I=l,LLL
C
C LOCATE CORRESPONDING INDEX FOR NEURONS AND WEIGHTS
C

INDX = INDX+1
WIDX = TEMP + JJ * (I-l)

C
C COMPUTE WEIGHTED SUM WITH FUNCTION INPROD
C

SUM = INPROD (NEURON {NDEX,1) , WT(WIDX), JJ)
C
C THE VALUE OF SIGMOID FUNCTION APPROACHES 1.0 OR 0 WHEN
C THE ABSOLUTE VALUE OF SUM IS SUFFICIENT LARGE.
C

IF(SUM .LE. UP .AND. SUM .GE. LOW) THEN
NEURON (INDX,1) = SIGMOD(SUM)

ELSE IF (SUM .GT. UP) THEN
NEURON (INDX,1) = 1.0

ELSE
NEURON (INDX, 1) = 0.0

END IF
C
C COMPUTE DERIVATIVE OF THE SIGMOID ACTIVATION FUNCTION F(X) WHEN IT
C IS CALLED BY SUBROUTINE GRADIE (GRD=TRUE).
C NOTE: F' (X)=F(X)*(1-F{X»
C

*
c

C

IF (GRD)
NEURON (INDX, 2)

20 CONTINUE
30 CONTINUE

NEURON (INDX, 1) * (1.0-NEURON(INDX,11)

RETURN
END
DOUBLE PRECISION FUNCTION ER(TYPE,INARY,OUTARY,NUMBER,NRON,

* LAYIFO,WT,N,NF05,N1,N2,Ll,L2,IN1,INTEST,NOUT)
C--------------------------------------------------------------------
C THIS FUNCTION IS USED TO EVALUATE THE TRAINING RESULT WITH
C THE TEST DATA SET WHEN TRAINING PROCESS HAS COMPLETED.
C IT CALCULATES THE NUMBER OF INCORRECTLY CLASSIFICATION EXAMPLES
C AND RETURN THE VALUE OF THE ERROR FUNCTION.
C
C TYPE IS AN INTEGER VARIABLE THAT SPECIFIES THE TRAINING
C PROBLEM TYPE. FUNCTION APPROXIMATION TYPE = 1. WHILE
C PATTERN CLASSIFICATION PROBLEM IF TYPE =2.
C
C I NARY IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS INPUT DAT
C FOR AN EXAMPLE.
C
C OUTARY IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS DESIRED
C OUTPUT FOR AN EXAMPLE,.
C
C NUMBER IS AN INTEGER VARIABLE, INDICATE THE NUMBER OF TOTAL
C EXAMPLES IN THE TEST DATA SET.
C
C NRON IS A DOUBLE PRECISION ARRAY THAT CONTAINS ACTUAL
C OUTPUT OF THE NETWORK.
C
C LAYIFO IS A TWO-DIMENSIONAL INTEGER ARRAY WHICH CONTAINS
C SOME NETWORK INFORMATION.
C
C WT IS A DOUBLE PRECISION ARRAY THAT CONTAINS CURRENT
C WEIGHTS.
C
C NF05 IS THE NUMBER OF INCORRECTLY CLASSIFIED EXAMPLES.

64



IF THERE IS ANY ONE OF ABSOLUTE VALUE OF DIFFERENCE
BETWEEN THE ACTUAL OUTPUT AND THE DESIRED OUTPUT
OF A EXAMPLE IS GREATER THAN O. 5, THEN THIS EXAMPLE
REFERS TO INCORRECTLY CLASSIFIED, AND NFOS
INCREASE BY 1.
NOTE: IT IS USED ONLY FOR PATTERN CLASSIFICATION

PROBLEMS (TYPE = 2) AND WITH THE TEST
DATA SET WHEN TRAINING PROCESS FINISHED .

c
C
C
C
C
C
C
C
C

C-----------------------------------------------------------------------
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER L1,L2,N1,N2,IN1,INTEST,NOUT
INTEGER TYPE,NUMOUT,INDX,LAYIFO(L1,L2),N,NUMBER,NF05
DOUBLE PRECISION WT(N), NRON(Nl,N2), TEMP,

* INARY(INl,INTEST),OUTARY(NOUT,INTEST)
LOGICAL ACCEPT,GRD

C
COMMON IIPI NTRAIN, NLAYER

C
GRD = . FALSE.
ER = 0
NFOS = 0
NUMOUT = LAYIFO(NLAYER, 1)

C
C ITERATE OVER ALL EXAMPLES.
C

DO 20 M=l, NUMBER
ACCEPT = . TRUE.

C
C CALL COMOUI TO COMPUTE THE OUTPUT FOR M-TH EXAMPLE
C

CALL COMOUl(INARY(l,M) ,NRON,LAYIFO,WT,N,N1,N2,Ll,L2,INl,GRD)
C
C ITERATE OVER ALL OUTPUT OF M-TH EXAMPLE.
C

DO 10 1=1, NUMOUT
INDX = LAYIFO(NLAYER, 2) + I

C
C COMPUTE THE DIFFERENCE BETWEEN THE ACTUAL OUTPUT AND THE DESIRED
C OUTPUT
C

TEMP = NRON(INDX,l) - OUTARY(I,M)
ER = ER + TEMP**2

C
C COMPUTE NF05, IF NECESSARY.
C

IF(TYPE.EQ.2 .AND. ACCEPT .AND. DABS (TEMP) .GE.O.5DO) THEN
NF05 = NF05+1
ACCEPT = .FALSE.

END IF
10 CONTINUE
20 CONTINUE

C
C COMPUTE THE SQUARED ERROR PERCENTAGE.
C

ER = ER * 100/( NUMBER * NUMOUT )
C

RETURN
END
SUBROUTINE GRADIE (F,X,N,G,INDATA,OUDATA,LAYIFO,NEURON,

* Nl,N2,Ll,L2,INl,INTRAI,INTEST,NOUT)
C----------------------------------------------------------------------
C THIS SUBROUTINE IS USED TO COMPUTE THE VALUE AND GRADIENT OF THE
C ERROR FUNCTION E(W) .
C

65

-.,



THE CALLING STATEMENT IS
CALL GRADIE (F,X,N,G,INDATA,OUDATA,LAYIFO, NEURON,

Nl,N2,L1,L2,INl,INTRAI,INTEST,NOUT)

.
" ...
.

,'I

IS A DOUBLE PRECISION ARRAY THAT CONTAINS CORRECT WEIGHTS.

IS A TWO-DIMENSIONAL INTEGER ARRAY THAT CONTAINS SOME
NETWORK INFORMATION.

IS AN INTEGER, WHICH IS NUMBER OF WEIGHTS.

IS A TWO-DIMENSIONAL DOUBLE PRECISION ARRAY, THE FIRST COL
OF WHICH CONTAINS OUTPUT OF EACH NEURON, THE SECOND COLUMN
CONTAINS THE DERIVATIVE OF THE ACTIVATION FUNCTION, AND TH
THIRD COLUMN CONTAINS PARTIAL OF E(W) W.R.T. U{K,J).

IS A DOUBLE PRECISION ARRAY THAT CONTAINS THE
GRADIENTS AT THE POINT X.

IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS OUTPUT DA
OF AN EXAMPLE.

IS A DOUBLE PRECISION VARIABLE THAT CONTAINS THE VALUE
OF THE ERROR FUNCTION.

IS A TWO-DIMENSIONAL ARRAY. EACH COLUMN CONTAINS INPUT
DATA OF AN EXAMPLE.

OODATA

NEURON

G

WHERE

F

x

INDATA

LAYIFO

N

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C------------------------------/'""---------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER L1,L2,LLL,LLLL,LLLLL,I,J,K,KK,M,NDX1,NOUT1
INTEGER LAYIFO'(L1,L2), WDX, NDX,N, N1,N2,IN1,

* INTRAI, INT.EST, NOUT , NTRAIN, NLAYER
DOUBLE PRECISION NEURON(N1,N2), OUDATA(NOUT,INTRAI),COEF,

* INDATA(IN1,INTRAI) ,X(N) ,G(N), F
LOGICAL GRD

C
COMMON lIP! NTRAIN, NLAYER

C
NOUT1 = LAYIFO(NLAYER, 1)

C
C ITERATE OVER ALL TRAINING EXAMPLES
C

GRD = .TRUE.
DO 80 M=l, NTRAIN

C
C COMPUTE THE OUTPUT OF M-TH EXAMPLE.
C

CALL COMOU1(INDATA(1,M),NEURON,LAYIFO,X,N,Nl,N2,L1,L2,IN1,GRD)
C

DO 10 1=1, NOUT1
NDX = LAYIFO(NLAYER, 2) + I
NEURON (NDX,3) = NEURON(NDX,l) - OUDATA(I,M)
F = F + NEURON (NDX, 3 ) ** 2

10 CONTINUE
C
C BACKWARD PROPAGATION COMPUTATION OVER ALL LAYERS, STARTS FROM
C THE LAST HIDDEN LAYER.
C

LLL=NLAYER-l
DO 40 KK=2, LLL

K=LLL+2-KK
C
C OVER ALL NEURONS IN LAYER K.

66

6



C
LLLL=LAYIFO(K,l)
DO 30 J=1, LLLL

NDX =LAYIFO(K,2) + J
NEURON (NDX, 3) = 0

C
C OVER ALL NEURONS IN THE NEXT LAYER.
C

LLLLL=LAYIFO(K+1,1)
DO 20 I = 1, LLLLL

NDX1 = LAYIFO(K+1,2)+I
WDX = LAYIFO(K+1,3) + (I-1)*(LAYIFO(K,1)+1) + J

C
C COMPUTE PARTIAL OF E(W) W.R.T. U(K,J)
C

--,

20
30
40

*
NEURON (NDX,3) = NEURON(NDX,3) +

NEURON(NDX1,2)*NEURON(NDX1,3)*X(WDX)
CONTINUE

CONTINUE
CONTINUE

C
C BACKWARD PROPAGATION COMPUTATION OVER ALL LAYERS AGAIN, STARTS
C FROM OUTPUT LAYER.
C

DO 70 KK=2,NLAYER
K=NLAYER+2-KK

C
C OVER ALL NEURONS IN K-TH LAYER.
C

LLLL=LAYIFO(K,1)
DO 60 J=1, LLLL

NDX = LAYIFO(K,2) + J
C
C OVER ALL NEURONS IN THE PREVIOUS LAYER.
C

LLL=LAYIFO(K-1,1}+1
DO 50 1=1, LLL

WDX = LAYIFO(K,3) + (J-1)*(LAYIFO(K-1,1)+1) + 1-1
NDX1 = LAYIFO(K-1,2) + 1-1

C
C COMPUTE THE PARTIAL OF E(W) W.R.T. W(I,J,K)
C

G{WDX}= G(WDX) +
* NEURON(NDX,3)*NEURON(NDX,2)*NEURON(NDX1,1}

50 CONTINUE
60 CONTINUE
70 CONTINUE
80 CONTINUE

C
C COMPUTE THE SQUARED ERROR PERCENTAGE AND GRADIENT.
C

COEF = 200.0 / (NTRAIN * NOUT1)
F = 0.5 * F * COEF
DO 90 1=1, N

G{I) = G(I) * COEF
90 CONTINUE

C
RETURN
END

67



APPENDIX B: PROGRAM LIST FOR DRIVEF.F

PROGRAM ORIVEF
C--------------------------------------- _
C THIS IS THE ORIVE TO SOLVE THE FUNCTIONS FROM BRENT'S SUITE OF TEST
C PROBLEMS AND OSBORNE'S FUNCTIONS BY USING THE LIMITEO MEMORY BFGS
C METHOO.
C
C REFERENCES:
C "ALGORITHMS FOR MINIMIZATION WITHOUT OERIVATIVES",
C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGE 138.
C
C "SOME ASPECTS OF NON-LINEAR LEAST SQUARES CALCULATIONS"
C M. R. OSBORNE, NUMERICAL METHOOS FOR NON-LINEAR OPTIMIZATION,
C F. A. LOOTSMA EO., ACADEMIC PRESS, NEW YORK, 1971,171-189.
C
C THE SUBROUTINE TESTIN AND FUNCTION FTEST WERE WRITTEN BY
CDR. J. P. CHANDLER, COMPUTER SCIENCE OEPARTMENT,
C OKLAHOMA STATE UNIVERSITY.
C
C THE LIMITEO MEMORY BFGS METHOD IS IMPLEMENTEO BY MEANS OF THE
C SUBROUTINE MLBFGS, WHICH IS A SLIGHT MOOIFICATION OF THE ROUTINE
C LBFGS BY JORGE NOCEDAL.
C
C VARIABLES:

Y1,Y2,AND T ARE ARRAYS USEO TO TEST OSBORNE FUNCTIONS.

IS THE NUMBER OF VARIABLES.

IS THE VALUE OF THE FUNCTION.

ARE ARRAYS OF LENGTH N, WHICH CONTAIN THE VALUE OF THE
VARIABLES AND THE GRADIENT AT THE POINT X, RESPECTIVELY.

IS THE NUMBER OF CORRECTIONS USEO IN THE BFGS UPDATE.

TOLERANCE OF THE STOPPING CRITERIA OF SUBROUTINE MLBFGS.
THE MLBFGS TERMINATES WHEN IIGII < EPS * MAX(l, IIXII).

IS THE NUMBER OF EVALUATIONS OF F AND G.

IS A LOGICAL VARIABLE. SINCE THE SUBROUTINE MLBFGS
IS CALLED BY TWO ORIVERS, DRIVE IS NOT USED TO IMPLEMENT
THE ARTIFICIAL NEURAL NETWORKS, THEREFORE SET
ANN = FALSE; OTHERWISE SET ANN = TRUE.

F

EPS

X AND G

N

I CALL

ANN

c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C OTHER VARIABLES AND PARAMETERS ARE OESCRIBED IN THE
C SUBROUTINES LBSET AND MLBFGS.
C-----------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION X(2000) ,G(2000),OIAG(2000) ,W(35000),

* YYl(33) ,YY2(65),Y1,Y2,T,TOLERA
DOUBLE PRECISION F, EPS,XTOL,GTOL,STPMIN, STPMAX,PI,FTEST
INTEGER IPRINT(2),IFLAG,ICALL,N,M,MP,LP,J,JFUNC,MAXJF,JFF,NFMAX

C
OATA YY1/0.84400,O.90800,O.932DO,0.93600,O.925DO,0.908DO,0.88100,

* 0.85000,O.81800,0.78400,0.75100,0.71800,0.685DO,O.65800,
* 0.62800,0.60300,O.58000,O.55800,O.53800,O.522DO,0.50600,
* 0.49000,0.47800,O.46700,O.45700,0.44800,O.438DO,0.43100,
* 0.42400,0.42000,0.41400,0.41100,0.40600/

OATA YY2/1.36600,l.191DO,l.11200,1.01300,O.99100,O.885DO,0.831DO,
* O.84700,0.786DO,0.72500,O.74600,0.67900,O.60800,0.65500,

68



-

C

C

*
*
*
*
*
*
*
*

0.616DO,C.606DO,O.602DQ,O.626DO,O.651DO,O.724DO,O.649D0,
0.649DO,O.694DO,O.644DQ,O.624DO,O.661DC,0.612DO,O.558D0,
0.533DO,0.495DO,O.500DO,0.423DO,O.395DO,O.375DO,0.372D0,
0.391DO,0.396DO,O.405DC,O.428DO,O.429DO,O.523DO,O.562D0,
O.607DO,0.653DO,O.672DO,O.708DO,0.633DO,O.668DO,O.645D0,
0.632DO,0.591DO,0.559DO,O.597DO,O.625DO,O.739DO,O.710D0,
0.729DQ,0.720DO,0.636DO,O.S81DO,O.428DO,0.292DO,O.162D0,
0.098DO,0.054DO/

LOGICAL DIAGCO, ANN
DATA XTOL, IEPS 11. OD-16, 1. OD-7 /

COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
COMMON /PRTESTI PI,JFUNC,MAXJF
COMMON /OSB/Y1(33),Y2(65),T(65}

M=5
IPRINT(l)= 50
IPRINT(2)= 0

•

,..
"

C
C WE DO NOT WISH TO PROVIDE THE DIAGONAL MATRICES HKO, AND
C THEREFORE SET DIAGCO TO FALSIE.
C

DIAGCO= .FALSE.
C
C WE ARE NOT IMPLEMENTING THE ARTIFICIAL NEURAL NETWORKS LEARNING
C ALGORITHM, THEREFORE SET ANN TO FALSE.
C

ANN = .FALSE.
NFMAX = 2000
TOLERA = 1. OD-3

C
C DEFINE THE DEFAULT VALUES OF SEVERAL PARAMETERS IN COMMON SECTIONS.
C

CALL LBSET
DO 5 1=1, 33

Yl(I)=¥Y1(I)
5 CONTINUE

DO 6 1=1, 65
Y2(I)=¥Y2(I)

6 CONTINUE
C

DO 50 JFF=l,13
ICALL=O
IFLAG=O
JFUNC=JFF
IF(JFUNC .LT. 12) THEN

WRITE(LP,10)JFUNC
10 FORMAT(/' SOLVE PROBLEM NUMBER',I3,

* ' FROM THE TEST SUITE USED BY BRENT.')
END IF

C
IF(JFF.EQ.6) N=9
IF(JFF.EQ.9) N=10
IF(JFF.EQ.10) N=20

C
C INITIALIZATION
C

CALL TESTIN(X,N)
C

20 CONTINUE
F= O.DO
DO 30 J=l,N

G(J)=O.DO
30 CONTINUE

C

69



C CALCULATE THE FUNCTION F AND GRADIENT G.
C

IF(JFUNC .LT. 12) THEN
F = FTEST(X,N)
CALL FGRAD(N,X,G)

ELSE
CALL OSBORNE(F,X,N,G)

END IF
C

C
*

CALL MLBFGS(N,M,X,F,G,DIAGCO,DIAG,IPRINT,EPS,XTOL,W,IFLAG,
ANN,TOLERA)

IF(IFLAG.LE.O) GO TO 35
ICALL=ICALL + 1

C
C WE ALLOW AT .MOST NFMAX EVALUATIONS OF F AND G
C

IF (ICALL.GT.NFMAX) GO TO 35
GO TO 20

C
35 WRITE (LP, 40)

WRITE (LP, 45) (X(I), I=l,N)
40 FORMAT (' VACTOR X= ')
45 FORMAT(6(2X,lPD10.3»
50 CONTINUE

C
END

C
SUBROUTINE TESTIN(X,N)

C----------------------------------------------------------------------
C TESTIN 1.2 SEPTEMBER 1995
C
C J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
C OKLAHOMA STATE UNIVERSITY
C
C INITILIZE FOR PROBLEM NUMBER JFUNC FROM BRENT'S TEST SUITE.
C
C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES",
C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGE 138
C
C CALL SUBROUTINE LBSET BEFORE CALLING TESTIN.
C
C NOTE THAT FOR JFUNC = 6, 9, OR 10,
C THE VALUE OF N MUST BE SET BEFORE CALLING TESTIN.
C

C----------------------------------------------------------------------
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,LP,MP,JFUNC,MAXJF,J
DOUBLE PRECISION X(N) ,PI,DATAN,GTOL,STPMIN,STPMAX,Y1,Y2,T

C
COMMON /PRTEST/ PI,JFUNC,MAXJF
COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX
COMMON /OSB/Y1(33) ,Y2(65),T(65)

C
MAXJF=13

C
PI=4.0DO*DATAN(1.0DO)

C

C
IF(JFUNC.LT.1 .OR. JFUNC.GT.MAXJF) STOP

GO TO (10,30,50,70,90,110,170,190,210,240,270,300,330) ,JFUNC
C
C JFUNC=l
C ROSENBROCK'S TEST FUNCTION
C

70



....

C THE MINIMUM IS F (1. 0 , 1. 0) =a.a .
C

10 N=2
X(1)'=-1.2DO
X (2) =1. 000
WRITE(LP,20)

20 FORMAT ( , ROSENBROCK TEST FUNCTION'}
RETURN

C
C JFUNC=2
C POWELL'S SINGULAR TEST FUNCTION
C
C THE MINIMUM IS F(O.O,O.O,O.O,O.O)=O.O
C

30 N=4
X(1)=3.0DO
X (2) =-1. 000
X(3)=0.ODO
X(4)=1.0DO
WRITE (LP, 40)

40 FORMAT (' SINGULAR TEST FUNCTION OF POWELL')
RETURN

C
C JFUNC=3
C HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C SINCE THE GRADIENT DOES NOT EXIST AT THE POINT (O,O,O), THEREFORE
C WE CHANGE THE INITIAL VALUE FROM (-1,0,0) TO (0.01,0.01,0)
C THE MINIMUM IS F(1.0,0.0,0.0)=O.O .
C

50 N=3
X(l)=O.OlDO
X(2}=O.OlDO
X(3}=O.ODO
WRITE(LP,60)

60 FORMAT (' HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL')
RETURN

C
C JFUNC=4
C LEON'S CUBIC TEST FUNCTION
C
C THE MINIMUM IS F(1.0,1.0)=O.0
C

70 N=2
X(l} =-1.2DO
X(2)=-1.0DO
WRITE (LP, 80)

80 FORMAT (' CUBIC TEST FUNCTION OF LEON')
RETURN

C
C JFUNC=5
C BEALE'S TEST FUNCTION
C
C THE MINIMUM IS F(3.0,0.5)=O.0
C

90 N=2
X(l}=O.lDO
X(2}=0.lDO
WRITE(LP,lOO)

100 FORMAT ( , BEALE TEST FUNCTION'}
RETURN

C
C JFUNC=6
C WATSON'S TEST FUNCTION (SEE KOWALIK AND OSBORNE)
C
C FOR N=6, THE MINIMUM IS NEAR

71

l

"
"



-

C
C
C
C
C
C
C

F(-0.015725,1.012435,-0.232992,1.260430,-1.513729.0.992996)=
2.28767005355D-3 .

FOR N=9, THE MINIMUM IS NEAR
F(-O.000015,O.999790,O.014764,O.146342,1.00081,-2.617731,

4.104403,-3.143612,1.052627)=1.399760138D-6

110 DO 120 J=1,N
X(J)=O.ODO

120 CONTINUE
WRITE(LP,130)N

130 FORMAT(' WATSON TEST FUNCTION WITH N =',I3)
RETURN

•

C
C JFUNC=7
C POWELL'S 1964 TEST FUNCTION
C
C THE MINIMUM IS F(1.O,l.0,1.0)=0.0
C

170 N=3
X(l)=O.ODO
X(2)=1.0DO
X(3)=2.0DO
WRITE(LP,180)

180 FORMAT ( , POWELL (1964) TEST FUNCTION')
RETURN

C
C JFUNC=B
C WOOD'S TEST FUNCTION
C
C THE MINIMUM IS F (1. 0,1. 0,1. 0,1. 0) =0.0
C

190 N=4
X(1)=-3.0DO
X(2) =-1. 000
X(3)=-3.0DO
X(4)=-1.0DO
WRITE (LP, 200)

200 FORMAT(' TEST FUNCTION OF WOOD')
RETURN

c
C JFUNC=9
C BRENT'S HILBERT MATRIX TEST FUNCTION
C
C THE MINIMUM IS F(O.D,O.O,O.O, ... ,0.0)=0.0
C
C FOR N.GT.10, PRAXIS MAY RUN FOR A VERY, VERY LONG TIME
C AND TERMINATE WITH SOME COMPONENTS OF X(*) FAR FROM ZERO,
C BECAUSE OF THE EXTREME ILL-CONDITIONING OF THIS PROBLEM.
C
C SHOULDN'T ILLCIN BE SET TO 1 FOR THESE FUNCTIONS.
C AT LEAST FOR LARGE VALUES OF N?
C

210 DO 220 J=1,N
X(J) =1. 000

220 CONTINUE
WRITE(LP,230)N

230 FORMAT(' HILBERT MATRIX TEST FUNCTION WITH N =',I3)
RETURN

C
C JFUNC=10
C TRIDIAGONAL MATRIX TEST FUNCTION
C
C THE MINIMUM IS F(N,N-1,N-2, ... ,2,1) -N.
C

72

'.



--

240 DO 250 J=l,N
X(J) =0. aDO

250 CONTINUE
WRITE(LP,260jN

260 FORMAT (' TRIDIAGONAL MATRIX TEST FUNCTION WITH N =', 13 )
RETURN

C
C JFUNC=l1
C BOX'S TEST FUNCTION
C
C THE MINIMUM IS F(1.0,10.0,1.0)=0.O
C

270 N=3
X(l)=O.ODO
X(2)=10.0DO
X(3)=20.0DO
WRITE (LP, 280)

280 FORMAT(' TEST FUNCTION OF BOX')
RETURN

C
C JFUNC=12
C OSBORNE 1 FUNCTION
C
C THE MINIMUM IS F(0.3754,1.9358,-1.4647,O.01287,
C 0.02212}=0.546D-4
C

300 N=5
X(1)=0.5DO
X(2) =1. 5DO
X(3) =-1. 000
X(4)=1.0D-2
X(5)=2.0D-2
00 310 J=l, 33

T(J)=10.0DO*(J-1)
310 CONTINUE

WRITE(LP,320)
320 FORMAT(/' TEST FUNCTION OF OSBORNE 1')

RETURN
C
C JFUNC=13
C OSBORNE 2 FUNCTION
C
C THE MINIMUM IS F(1.3100,0.4315,0.6336,0.5993,0.7539,0.9056,
C 1.3651,4.8248,2.3988,4.5689,5.6754)=0.0402
C

330 N=l1
X(1)=1.3DO
X(2)=6.5D-1
X(3)=6.5D-1
X(4)=7.0D-1
X(5)=6.0D-1
X(6)=3.0DO
X(7)=5.0DO
X(8)=7.0DO
X(9)=2.0DO
X(10)=4.5DO
X{1l)=5.5DO
00 340 J=l, 65

T(J)=0.lDO*(J-1)
340 CONTINUE

WRITE(LP,350)
350 FORMAT(!' TEST FUNCTION OF OSBORNE 2')

RETURN
END

C

73

•

.~

"



COMPUTE THE VALUE OF FUNCTION NUMBER JFUNC
FROM BRENT'S SUITE OF TEST PROBLEMS.

J. P. CHANDLER, Computer Science Department,
Oklahoma State University

DOUBLE PRECISION FUNCTION FTEST(X,N)
C--------------------------------------------------------------------
C FTEST 1.2 SEPTEMBER 1995
C
C
C
C
C
C
C
C ffALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES",
C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 137-154, 164-166
C---------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,JFUNC,MAXJF, I,IMAX,J,JEVEN,JJ,JJMAX
DOUBLE PRECISION X(20} ,Y,PI,DATAN,DEXP,

* DSIN,DSQRT,F,P,R,S,T,TERM,U,YY
C

•

l

C
COMMON /PRTEST/ PI,JFUNC,MAXJF

IF(JFUNC.LT.1 .OR. JFUNC.GT.MAXJF) STOP
GO TO (10,20,30,40,50,60,140,150,160,190,210),JFUNC

C
C JFUNC=1
C ROSENBROCK'S TEST FUNCTION
C

10 FTEST=lOO.ODO*(X(2)-X(1)**2)**2+(1.0DO-X(1»**2
RETURN

C
C JFUNC=2
C POWELL" S SINGULAR TEST FUNCTION
C

20 FTEST=(X(1)+10.0DO*XI2»)**2+5.0DO*(X(3)-X(4))**2+
* (XI2)-2.0DO*X(3)**4+10.0DO*(X(1)-X(4»**4

RETURN
C
C JFUNC=3
C HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C

30 R=DSQRT{Xll)**2+XI2)**2)
C

IFIXll}.EQ.O.ODO) THEN
T=0.25DO

ELSE
T=DATAN(X(2)/X(1»)/(2.0DO*PI)

ENDIF
C

IF(X(l) .LT.O.ODO) T=T+O.5DO
FTEST=lOO.ODO*(IX(3)-lO.ODO*T)**2+(R-1.0DO)**2)+X(3)**2
RETURN

C
C JFUNC=4
C LEON'S CUBIC TEST FUNCTION
C

40 FTEST=100.0DO*IX(2)-X(1)**3)**2+11.0DO-Xll) )**2
RETURN

C
C JFUNC=5
C BEALE'S TEST FUNCTION
C

50 FTEST=11.5DO-X(1)*(1.0DO-X(2»)**2+
* (2.25DO-XI1)*(1.0DO-X(2)**2»**2+
* (2.625DO-X{1)*11.0DO-X{2)**3»**2

RETURN
C

74



C JFUNC=6
C WATSON'S TEST FUNCTION (SEE KOWALIK AND OSBORNE)
C

60 S=X(1)**2+(X(2)-X(1)**2-1.0DO)**2
DO 90 1=2,30

IT=(I-1)j29.0DO
T=X(N)
JJMAX=N-1
DO 70 JJ=1,JJMAX

J=JJMAX+1-JJ
T=X(J)+IT*T

70 CONTINUE
U=(N-1)*X(N)

C
DO 80 JJ=2,JJMAX

J=JJMAX+2-JJ
U=(J-1)*X(J)+YY*U

80 CONTINUE
S=S+(U-T*T-1.0DO) **2

90 CONTINUE
FTEST=S
RETURN

C
C JFUNC=7
C POWELL'S 1964 TEST FUNCTION
C

140 IF(X(2).EQ.0.ODO) THEN
TERM=O.ODO

ELSE
TERM=DEXP(-«(X(1}+X(3»jX(2)-2.0DO)**2)

ENDIF
FTEST=3.0DO-1.0DO/(1.0DO+(X(1)-X(2»)**2)

* DSIN(0.5DO*PI*X(2)*X(3»)-TERM
RETURN

c
C JFUNC=8
C WOOD'S TEST FUNCTION
C

150 FTEST=100.0DO*(X(2)-X(1)**2)**2+(1.0DO-X(1) )**2+
* 90.0DO*(X(4)-X(3)**2)**2+(1.0DO-X(3»**2+
* 10.1DO*«X(2)-1.ODO)**2+(X(4)-1.0DO)**2)+
* 19.8DO*(X(2)-1.ODO)*(X(4)-1.ODO)

RETURN
C
C JFUNC=9
C BRENT'S HILBERT MATRIX TEST FUNCTION
C

160 S=O.ODO
DO 180 I=1,N

T=O.ODO
DO 170 J=1,N

T=T+X(J)j(I+J-1.0DO)
170 CONTINUE

S=S+T*X(I)
180 CONTINUE

FTEST=S
RETURN

C
C JFUNC=10
C TRIDIAGONAL MATRIX TEST FUNCTION
C

190 S=X(1)*(X(1)-X(2»
IMAX=N-1
DO 200 I=2,IMAX

S=S+X(I)*(X(I)-X(I-l»+(X(I)-X(I+1) »

75

•



200 CONTINUE
FTEST=S+X(N)*(2.0DO*X(N)-X(N-1))-2.0DO*X(1)
RETURN

C
C JFUNC=l1
C BOX'S TEST FUNCTION
C

C

210

220

S=O.ODO
DO 220 1=1,10

P=-I/lO.ODO
IF(P*X(2) .LT.-40.0DO) THEN

TERM=O.ODO
ELSE

TERM=DEXP (p*X (2) )
ENDIF
S=S+(DEXP(P*X(1})-TERM-

X(3)*(DEXP(P)-DEXP(10.0DO*P)))**2
CONTINUE
FTEST=S
RETURN
END

*
.;. .

SUBROUTINE FGRAD(N,X,G)
C-------------------------------------------------------------------
C COMPUTE THE GRADIENT OF FUNCTION NUMBER JFUNC
C FROM BRENT'S SUITE OF TEST PROBLEMS.
C
C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES",
C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 137-154, 164-166
C-------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,JFUNC,MAXJF, I,IMAX,J,JEVEN,JJ,JJMAX

DOUBLE PRECISION X(N) ,G(N),V,PI,DATAN,DEXP,
* DCOS, DSQRT, F, P, R, S, T (4) , C ( 3) ,TERM, U, yy

C
COMMON /PRTEST/ PI,JFUNC,MAXJF

C
IF(JFUNC.LT.1 .OR. JFUNC.GT.MAXJF) STOP
GO TO (10,20,30,40,50,60,140,150,160,190,210) ,JFUNC

C
C JFUNC=l
C ROSENBROCK'S TEST FUNCTION

10 G(2)=2.0D2*(X(2)-X(1}**2}
G(1}=-2.0DO*(X(1)*G(2)+1.ODO-X(1))
RETURN

C
C JFUNC=2
C POWELL'S SINGULAR TEST FUNCTION
C

20 T(1)=2*(X(1)+10*X(2»)
T(2)=40*(X(1)-X(4)1**3
T{3)=4*(X(2)-2*X(31)**3
T(4)=10*(X(3)-X(41)
G(1)=T(1}+T(2}
G(2)=10*T(1)+T(3)
G(3)=T(4)-2*T(3)
G(4)=-T(2)-T(4)
RETURN

C
C JFUNC=3
C HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C

30 U=X(1)**2+X(2)**2
R=DSQRT(U)

76



R=2. OD2* ,(R-1) /R
S=DATAN(X(2)/X(1»
S=2.0D2*(X(3)-5.0DO*S/PI)
G{3)=S+2.0DO*X(3}
S=5.0DO*S/(U*PI}
G(2)=-X(1)*S+R*X(2)
G(1)=X(2)*S+R*X(1)
RETURN

C
C JFUNC=4
C LEON'S CUBIC TEST FUNCTION
C

40 G(2)=2.0D2*(X(2)-X(1)**3)
G(ll=-3*G(2)*X(ll**2-2*(1-X(1))
RETURN

c
C JFUNC=5
C BEALE'S TEST FUNCTION
C

50 C(1)=1.5DO
C(2)=2.25DO
C(3)=2.625DO
DO 52 1=1,3

T(I)=1-X(2l**I
52 CONTINUE

DO 55 1=1, 3
G(l)=G(ll-(C(I)-X(l)*T(I»*T(I)
G(2)=G(2)+(C(I)-X(1)*T(I))*I*X(l}*X(2)**(I-1)

55 CONTINUE
G ( 1) =2 *G (1 )
G (2) =2 *G (2)
RETURN

C
C JFUNC=6
C WATSON'S TEST FUNCTION (SEE KOWALIK AND OSBORNE)
C

•

C

C

C

60 DO 100 1=2, 30
¥Y=(I-1)/29.0DO
V=X(N)
,JJMAX=N-1
DO 70 JJ=l,JJMAX

J=JJMAX+1-JJ
V=X(J)+YY*V

70 CONTINUE
U=(N-1)*X(N)

DO 80 JJ=2,JJMAX
J=JJMAX+2-JJ
U=(J-1)*X(J)+YY*U

80 CONTINUE

U=2.0DO*(U-V*V-l.ODO)
R=1.0DD

DO 90 JJ=2, N
G(JJl=G(JJ)+U*((JJ-1)*R-2.0DO*V*R*YY}
R=R*YY

90 CONTINUE
G(1)=G(1)-U*2.0DO*V

100 CONTINUE
C

R=X(2)-X(1)*X(1)-1.ODO
G(1)=G(1)+2.0DO*X(1)*(1.0DO-2.0DO*R)
G(2)=G(2)+2.0DO*R
RETURN

77



C
C JFUNC=7
C POWELL'S 1964 TEST FUNCTION
C

140 $=(X(1)+XI3»/XI2)-2.0DO
R= IX (1) -Xl 2 ) ) / I 11 . ODD + (X (1 ) -X (2) ) **2 ) * *2 )
U=S*DEXPI-S*S)/X(2)
P=0.5DO*PI
V=P*DCOS(P*X(2)*X(3)}
G(1)=2.0DO*(R+U)
G(2)=-2.0DO*(R+U*(X(1)+X{3) )/X(2»-X(3)*V
G(3)=2.0DO*U-X(2)*V
RETURN

C
C JFUNC=8
C WOOD'S TEST FUNCTION
C

150 T(1)=X(2)-X(1)*X(1)
T(2)=X(4)-X(3)*X(3)
G(1)=-4.0D2*T(1)*X(1)-2.0DO*(1.ODO-X(1»
G(2)=2.0D2*T(1)+2.0DO*10.lDO*IX{2)-1.0DO)+19.8DO*(X(4)-l.ODO)
G(3)=-3.6D2*T(2)*X(3)-2.0DO*11.0DO-X(3)
G(4)=1.8D2*T(2)+2.0DO*10.lDO*IX(4)-1.0DO)+19.8DO*(X(2)-1.0DO)
RETURN

"
"I

JFUNC=9
BRENT'S HILBERT MATRIX TEST FUNCTION

C
C
C
C

160

170
180

DO 180 1=1, N
DO 170 J=l, N

G(I)=G(I)+2.0DO*X(J)/(I+J-1)
CONTINUE

CONTINUE
RETURN

G(1)=2*(X(1)-X(2}-1)
00 200 1=2, N-1

G(I)=2.0DO*(2.0DO*X(I)-X(I-1)-X(I+1)
CONTINUE
G(N)=2*(2*X(N)-X(N-1)
RETURN

200

C
C JFUNC=10
C TRIDIAGONAL MATRIX TEST FUNCTION
C

190

DO 240 1=1, 10
P=-I/10.0DO
T(l)=DEXP(X(l)*P)
T(2)=-DEXP(X(2)*P}
T (3) =DEXP (1. OD1 *P) -DEXP (P)
S=2*(T(1)+T(2)+X(3)*T(3»)
G(l)=G(l)+S*T(l)*P
G(2)=G(2)+S*T(2)*P
G(3)=G(3)+S*T{3)

CONTINUE
RETURN
END

240

C
C JFUNC=l1
C BOX'S TEST FUNCTION
C

210

C
SUBROUTINE OSBORNE(F,X,N,G}

C
C COMPUTE THE VALUES AND THE GRADIENTS FOR OSBORNE FUNCTIONS 1 AND 2.
C

78



--

C

C

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,JFUNC,MAXJF,J,I
DOUBLE PRECISION X(N) ,G(N) ,DEXP,FTX,F,R,S,TEMP(41 ,PI,Y1,Y2,T

COMMON /PRTEST/ PI,JFUNC,MAXJF
COMMON /OSB/Y1(33),Y2(65),T(65}

IF(JFUNC.LT.12 .OR. JFUNC.GT.13) STOP
F=O.ODO
DO 10 1=1, N

G(I)=O.ODO
10 CONTINUE

•

C
C JFUNC=12
C OSBORNE FUNCTION 1
C

IF(JFUNC .EQ. 12) THEN
DO 35 J=1,33

R=DEXP«-1)*X(4)*T(J»
S=DEXP ( (-1) *X(5) *T (J»
FTX=X(1)+X(2)*R+X(3)*S-Y1(J)
F = F+FTX**2
G(1)=G(1)+FTX
G(2)=G(2)+FTX*R
G(3)=G(3) + FTX*S
G(4)=G(4) - FTX*X(2)*T(J)*R
G(5)=G(5} - F7X*X(3)*T(J)*S

35 CONTINUE
C
C JFUNC=13
C OSBORNE FUNCTION 2
C

ELSE
DO 45 J=l, 65

TEMP (1) =DEXP(-X(5) *T (J})
TEMP(2)=DEXP(-X(6)*(T(J)-X(9}}**2)
TEMP(3)=DEXP(-X(7)*(T(J)-X(10)}**2)
TEMP(4)=DEXP(-X(8)*(T(J)-X(11»**2)
FTX=O.DO
DO 40 1=1, 4

FTX=FTX+X(I)*TEMP(1)
40 CONTINUE

FTX=FTX-Y2(J)
F = F+FTX**2
DO 42 1=1, 4

G(1)=G(I)+FTX*TEMP(I)
42 CONTINUE

G(5)=G(5)-FTX*T(J)*X{1)*TEMP(l)
G(6)=G(6)-FTX*X(2)*TEMP(2)*«T(J)-X(9»**2)
G(7)=G(7)-FTX*X(3)*TEMP(3)*{(T(J)-X(10»)**2)
G(8)=G{8)-FTX*X(4)*TEMP(4)*«T(J)-X(11»)**2)
G(9)=G(9)+FTX*X(2)*TEMP(2}*X(6)*2*(T(J)-X(9»)
G(10)=G(10)+FTX*X{3)*TEMP(3)*X{7)*2*(T(J)-X(10»
G(11)=G(11)+FTX*X(4)*TEMP(4)*X(8)*2*(T(J)-X(11»

45 CONTINUE
END IF
DO 49 J=1, N

G(J)=2*G(J)
49 CONTINUE

C
END

79

"



-- •

APPENDIX C: PROGRAM LIST FOR MLBFGS.F

c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

THIS SUBROUTINE IS USED TO IMPLEMENT THE LIMITED MEMORY
BFGS METHOD, WHICH IS VERY SLIGHT MODIFICATION OF THE ROUTINE
LBFGS WRITTEN BY JORGE NOCEDAL.
THE MODIFICATIONS ARE:
1. REPLACE THE BLOCK DATA LB2 BY THE SUBROUTINE LBSET.
2. ADD A LOGICAL VARIABLE ANN IN THE CALLING STATEMENT, SO THAT

IT CAN BE CALLED BY DIFFERENT DRIVERS, AND USES DIFFERENT
STOPPING CRITERIA.

3. IF THE SUBROUTINE IS USED TO IMPLEMENT THE NEURAL NETWORK
LEARNING ALGORITHM, THEN ANN = TRUE, WE ADD A NEW STOPING
CRITEIRIA,I.E., THE SUBROUTINE TERMINATES
WHEN IIWK+1 - WKII<TOLERA.

****************
LBFGS SUBROUTINE
****************

SUBROUTINE MLBFGS(N,M,X,F,G,DIAGCO,DIAG,IPRINT,EPS,XTOL,
* W,IFLAG,ANN,TOLERA)

THIS SUBROUTINE SOLVES THE UNCONSTRAINED MINIMIZATION PROBLEM

THE CALLING STATEMENT IS

CALL LBFGS(N,M,X,F,G,DIAGCO,DIAG,IPRINT,EPS,XTOL,W,IFLAG,
ANN, TOLERA)

LIMITED MEMORY BFGS METHOD FOR LARGE SCALE OPTIMIZATION
JORGE NOCEDAL

*** JULY 1990 ***

X= (X1,X2, ... ,XN),MIN F (Xl,

THE STEPLENGTH IS DETERMINED AT EACH ITERATION BY MEANS OF THE
LINE SEARCH ROUTINE MCVSRCH, WHICH IS A SLIGHT MODIFICATION OF
THE ROUTINE CSRCH WRITTEN BY MORE' AND THUENTE.

THE USER IS REQUIRED TO CALCULATE THE FUNCTION VALUE F AND ITS
GRADIENT G. IN ORDER TO ALLOW THE USER COMPLETE CONTROL OVER
THESE COMPUTATIONS, REVERSE COMMUNICATION IS USED. THE ROUTINE
MUST BE CALLED REPEATEDLY UNDER THE CONTROL OF THE PARAMETER
IFLAG.

USING THE LIMITED MEMORY BFGS METHOD. THE ROUTINE IS ESPECIALLY
EFFECTIVE ON PROBLEMS INVOLVING A LARGE NUMBER OF VARIABLES. IN
A TYPICAL ITERATION OF THIS METHOD AN APPROXIMATION HK TO THE
INVERSE OF THE HESSIAN IS OBTAINED BY APPLYING M BFGS UPDATES TO
A DIAGONAL MATRIX HKO, USING INFORMATION FROM THE PREVIOUS M STEP
THE USER SPECIFIES THE NUMBER M, WHICH DETERMINES THE AMOUNT OF
STORAGE REQUIRED BY THE ROUTINE. THE USER MAY ALSO PROVIDE THE
DIAGONAL MATRICES HKO IF NOT SATISFIED WITH THE DEFAULT CHOICE.
THE ALGORITHM IS DESCRIBED IN "ON THE LIMITED MEMORY BFGS METHOD
FOR LARGE SCALE OPTIMIZATION", BY D. LIU AND J. NOCEDAL,
MATHEMATICAL PROGRAMMING B 45 (1989) 503-528.

INTEGER N,M,IPRINT{2) , I FLAG
DOUBLE PRECISION X (N) , G (N) , DIAG (N) , W(1) , F , EPS, XTOL
LOGICAL DIAGCO,ANN

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

80



c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

WHERE

N IS AN INTEGER VARIABLE THAT MUST BE SET BY THE USER TO THE
NUMBER OF VARIABLES. IT IS NOT ALTERED BY THE ROUTINE.
RESTRICTION~ N>O.

M IS AN INTEGER VARIABLE THAT MUST BE SET BY THE USER TO
THE NUMBER OF CORRECTIONS USED IN THE BFGS UPDATE. IT
IS NOT ALTERED BY THE ROUTINE. VALUES OF M LESS THAN 3 ARE
NOT RECOMMENDED; LARGE VALUES OF M WILL RESULT IN EXCESSIV
COMPUTING TIME. 3<= M <=7 IS RECOMMENDED. RESTRICTION: M>O

X IS A DOUBLE PRECISION ARRAY OF LENGTH N. ON INITIAL ENTRY
IT MUST BE SET BY THE USER TO THE VALUES OF THE INITIAL
ESTIMATE OF THE SOLUTION VECTOR. ON EXIT WITH IFLAG=O, IT
CONTAINS THE VALUES OF THE VARIABLES AT THE BEST POINT
FOUND (USUALLY A SOLUTION) .

F IS A DOUBLE PRECISION VARIABLE. BEFORE INITIAL ENTRY AND 0
A RE-ENTRY WITH IFLAG=l, IT MUST BE SET BY THE USER TO
CONTAIN THE VALUE OF THE FUNCTION F AT THE POINT X.

G IS A DOUBLE PRECISION ARRAY OF LENGTH N. BEFORE INITIAL
ENTRY AND ON A RE-ENTRY WITH IFLAG=l, IT MUST BE SET BY
THE USER TO CONTAIN THE COMPONENTS OF THE GRADIENT G AT
THE POINT X.

DIAGCO IS A LOGICAL VARIABLE THAT MUST BE SET TO . TRUE. IF THE
USER WISHES TO PROVIDE THE DIAGONAL MATRIX HKO AT EACH
ITERATION. OTHERWISE IT SHOULD BE SET TO .FALSE., IN WHICH
CASE LBFGS WILL USE A DEFAULT VALUE DESCRIBED BELOW. IF
DIAGCO IS SET TO . TRUE. THE ROUTINE WILL RETURN AT EACH
ITERATION OF THE ALGORITHM WITH I FLAG=2 , AND THE DIAGONAL

MATRIX HKO MUST BE PROVIDED IN THE ARRAY DIAG.

DIAG IS A DOUBLE PRECISION ARRAY OF LENGTH N. IF DIAGCO=.TRUE.,
THEN ON INITIAL ENTRY OR ON RE-ENTRY WITH IFLAG=2, DIAG
IT MUST BE SET BY THE USER TO CONTAIN THE VALUES OF THE
DIAGONAL MATRIX HKO. RESTRICTION: ALL ELEMENTS OF DIAG
MUST BE POSITIVE.

IPRINT IS AN INTEGER ARRAY OF LENGTH TWO WHICH MUST BE SET BY THE
USER.

I PRINT (1) SPECIFIES THE FREQUENCY OF THE OUTPUT:
IPRINT(l) < 0 NO OUTPUT IS GENERATED,
IPRINT(l) = 0 : OUTPUT ONLY AT FIRST AND LAST ITERATION
IPRINT(l) > 0 : OUTPUT EVERY IPRINT(l) ITERATIONS.

IPRINT(2) SPECIFIES THE TYPE OF OUTPUT GENERATED:
IPRINT (2) 0 ITERATION COUNT, NUMBER OF FUNCTION

EVALUATIONS, FUNCTION VALUE, NORM OF TH
GRADIENT, AND STEPLENGTH,

IPRINT(2) = 1 SAME AS IPRINT(2)=O, PLUS VECTOR OF
VARIABLES AND GRADIENT VECTOR AT THE
INITIAL POINT,

IPRINT(2) = 2 SAME AS IPRINT(2)=1, PLUS VECTOR OF
VAR.IABLES ,

IPRINT(2) = 3 SAME AS IPRINT(2)=2, PLUS GRADIENT VECT

EPS IS A POSITIVE DOUBLE PRECISION VARIABLE THAT MUST BE SET B
THE USER, AND DETERMINES THE ACCURACY WITH WHICH THE SOLUT
IS TO BE FOUND. THE SUBROUTINE TERMINATES WHEN

81

•

.,



•

INFO = 5 THE STEP IS TOO LARGE.

INFO = 0 I.MPROPER INPUT PARAMETERS.

INFO = 4 THE STEP IS TOO SMALL.

.,

NO INPUT; DIAGNOSTIC MESSAGES ON UNIT MP AND
ERROR MESSAGES ON UNIT LP.

THE ONLY VARIABLES THAT ARE MACHINE-DEPENDENT ARE XTOL,
STPMIN AND STPMAX.

INFO = 2 RELATIVE WIDTH OF THE INTERVAL OF
UNCERTAINTY IS AT MOST XTOL.

IFLAG=-3 IMPROPER INPUT PARAMETERS FOR LBFGS (N OR M ARE
NOT POSITIVE) .

IFLAG=-2 THE I-TH DIAGONAL ELEMENT OF THE DIAGONAL INVER
HESSIAN APPROXIMATION, GIVEN IN DIAG, IS NOT
POSITIVE.

INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRE
THERE MAY NOT BE A STEP WHICH SATISFIE
THE SUFFICIENT DECREASE AND CURVATURE
CONDITIONS. TOLERANCES MAY BE TOO SMAL

IFLAG=-l THE LINE SEARCH ROUTINE MCSRCH FAILED. THE
PARAMETER INFO PROVIDES MORE DETAILED INFORMATI
(SEE ALSO THE DOCUMENTATION OF MCSRCH) :

INFO = 3 MORE THAN 20 FUNCTION EVALUATIONS WERE
REQUIRED AT THE PRESENT ITERATION.

THE FOLLOWING NEGATIVE VALUES OF IFLAG, DETECTING AN ERROR
ARE POSSIBLE:

"Gil < EPS MAX(l.llxIH,

WHERE I I . II DENOTES THE EUCLIDEAN NORM.

XTOL IS A POSITIVE DOUBLE PRECISION VARIABLE THAT MUST BE SET
THE USER TO AN ESTIMATE OF THE MACHINE PRECISION (E.G.
10**(-16) ON A SUN STATION 3/60). THE LINE SEARCH ROUTINE
TERMINATE IF THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTA
IS LESS THAN XTOL.

IFLAG IS AN INTEGER VARIABLE THAT MUST BE SET TO 0 ON INITIAL EN
TO THE SUBROUTINE. A RETURN WITH IFLAG<O INDICATES AN ERRO
AND IFLAG=O INDICATES THAT THE ROUTINE HAS TERMINATED WITH
DETECTING ERRORS. ON A RETURN WITH IFLAG=l, THE USER MUST
EVALUATE THE FUNCTION F AND GRADIENT G. ON A RETURN WITH
IFLAG=2, THE USER MUST PROVIDE THE DIAGONAL MATRIX HKO.

W IS A DOUBLE PRECISION ARRAY OF LENGTH N{2M+l)+2M USED AS
WORKSPACE FOR LBFGS. THIS ARRAY MUST NOT BE ALTERED BY THE
USER.

OTHER ROUTINES CALLED DIRECTLY: DAXPY, DDOT, LBI, MCSRCH

INPUT/OUTPUT

MACHINE DEPENDENCIES

GENERAL INFORMATION

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

82



C
C

DOUBLE PRECISION GTOL, ONE, ZERO" GNORM, DDOT, STPI , FTOL, STPMIN,
STPMAX,STP,YS,YY,SQ,YR,BETA,XNORM,DFNORM,TOLERA

INTEGER MP,LP,ITER,NFUN,POINT,ISPT, IYPT,MAXFEV,INFO,
BOUND,NPT,CP,I,NFEV,INMC,IYCN,ISCN

LOGICAL FINISH
C

•

II

C

C
C
C
C

10

COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX

ONE = 1.0D+0
ZERO = O.OD+O

INITIALIZE

IF(IFLAG.EQ.O) GO TO 10
GO TO (172,100), IFLAG
ITER= 0
IF(N.LE.O.OR.M.LE.O) GO TO 196
IF(GTOL.LE.l.D-04) THEN

IF(LP.GT.O) WRITE(LP,245)
GTOL=9.D-Ol

ENDIF
C
C PARAMETERS FOR LINE SEARCH ROUTINE
C

FTOL= 1.0D-4
MAXFEV= 20
NFUN= 1
POINT= 0
FINISH= . FALSE.
IF (DIAGCO) THEN

DO 30 I=l,N
IF (DIAG{I) .LE.ZERO) GO TO 195

30 CONTINUE
ELSE

DO 40 I=l,N
DIAG(I) = 1. ODD

40 .CONTINUE
ENDIF

C
C THE WORK VECTOR W IS DIVIDED AS FOLLOWS:
C ---------------------------------------
C THE FIRST N LOCATIONS ARE USED TO STORE THE GRADIENT AND
C OTHER TEMPORARY INFORMATION.
C LOCATIONS (N+l) (N+M) STORE THE SCALARS RHO.
C LOCATIONS (N+M+l) (N+2M) STORE THE NUMBERS ALPHA USED
C IN THE FORMULA THAT COMPUTES H*G.
C LOCATIONS (N+2M+l) ... (N+2M+NM) STORE THE LAST M SEARCH
C STEPS.
C LOCATIONS (N+2M+NM+l) ... (N+2M+2NM) STORE THE LAST M
C GRADIENT DIFFERENCES.
C
C THE SEARCH STEPS AND GRADIENT DIFFERENCES ARE STORED IN A
C CIRCULAR ORDER CONTROLLED BY THE PARAMETER POINT.
C

ISPT= N+2*M
IYPT= ISPT+N*M
DO 50 I=l,N

W(ISPT+I)= -G(I)*DIAG(I)
50 CONTINUE

GNORM= DSQRT(DDOT(N,G,l,G,l»
STP1= ONE/GNORM

C

83



•

IF (IPRINT (1) . GE. 0) CALL LB1 (IPRINT, ITER, NFUN,
* GNORM,N,M,X,F,G,STP,FINISH,DFNORM)

MAIN ITERATION LOOP

ITER= ITER+1
INFO=O
BOUND=ITER-1
IF(ITER.EQ.1) GO TO 165
IF (ITER .GT. M)BOUND=M

YS= DDOT(N,W(IYPT+NPT+l),1,W(ISPT+NPT+1},lj
IF ( . NOT. DIAGCO) THEN

IT= DDOT(N,W(IYPT+NPT+1},1,W(IYPT+NPT+l),1}
DO 90 I=l,N

DIAG(I}= YS/YY
90 CONTINUE

ELSE
IFLAG=2
RETURN

ENDIF
100 CONTINUE

IF (DIAGCO) THEN
DO 110 I=l,N

IF (DIAG(I) .LE.ZERO) GO TO 195
110 CONTINUE

ENDIF

c

C
C
C
C
C

80

C
C COMPUTE -H*G USING THE FORMULA GIVEN IN: NOCEDAL, J. 1980,
C "UPDATING QUASI-NEWTON MATRICES WITH LIMITED STORAGE",
C MATHEMATICS OF COMPUTATION, VOL.24, NO.15I, PP. 773-782.
C ---------------------------------------------------------
C

CP= POINT
IF (POINT.EQ.O) CP=M
W(N+CP)= ONE/YS
DO 112 I=l,N

W(I}= -G(I)
112 CONTINUE

CP= POINT
DO 125 I= I,BOUND

CP=CP-I
IF (CP.EQ. -l)CP=M-l
SQ= DDOT(N,W(ISPT+CP*N+I),l,W,l)
INMC=N+M+CP+1
IYCN=IYPT+CP*N
W(INMC)= W(N+CP+l}*SQ
CALL DAXPY(N,-W(INMC),W(IYCN+1) ,1,W,1)

125 CONTINUE
C

DO 130 I=l,N
W(I)=DIAG(I)*W(I)

130 CONTINUE
C

DO 145 I=l,BOUND
YR= DDOT(N,W(IYPT+CP*N+l),l,W,l)
BETA= W(N+CP+1)*YR
INMC=N+M+CP+1
BETA= W(INMC)-BETA
ISCN=ISPT+CP*N
CALL DAXPY (N,BETA, W(ISCN+l)" 1, W, 1)
CP=CP+1
IF (CP.EQ.M)CP=O



145 CONTINUE
C
C STORE THE NEW S~CH DIRECTION
C ------------------------------
C

•

160
C
C
C
C

165

170
172

C

DO 160 I=1,N
W(ISPT+POINT*N+I)= WeI)

CONTINUE

OBTAIN THE ONE-DIMENSIONAL MINI.MIZER OF THE FUNCTION
BY USING THE LINE SEARCH ROUTINE MCSRCH

NFEV=O
STP=ONE
IF (ITER.EQ.1) STP=STPl
DO 170 I=1,N

W(I)=G(I)
CONTINUE
CONTINUE

CALL MCSRCH(N,X,F,G,W(ISPT+POINT*N+1) ,STP,FTOL,
* XTOL,MAXFEV,INFO,NFEV,DIAG)
IF (INFO .EQ. -1) THEN

IFLAG=1
RETURN

ENDIF
IF (INFO .NE. 1) GO TO 190
NFUN= NFUN + NFEV

C
C COMPUTE THE NEW STEP AND GRADIENT CHANGE
C -----------------------------------------
C

NPT=POINT*N
DO 175 I=1,N

W(ISPT+NPT+I)= STP*W(ISPT+NPT+I)
W(IYPT+NPT+I)= G(I)-W(I)

175 CONTINUE
C

POINT=POINT+1
IF (POINT.EQ.M)POINT=O

C
C TERMINATION TEST
C ----------------
C

DFNORM=DSQRT(DDOT(N,W(ISPT+NPT+1),1,W(ISPT+NPT+1),1»
C
C ADD A STOPING CRITERION FOR NEURAL NETWORKS LEARNING ALGORITHM.
C THE SUBROUTINE TERMINATES WHEN I IXK+1-XKI 1< TOLERA.
C

IF (ANN) THEN
IF(DFNORM .LE. TOLERA) THEN

FINISH = .TRUE.
GO TO 180

END IF
END IF

C

C

GNORM= DSQRT(DDOT(N,G,l,G,l»
XNORM= DSQRT(DDOT(N,X,l,X,l»
XNORM= DMAX1 (1. aDO, XNORM)
IF (GNORM/XNORM .LE. EPS) FINISH=.TRUE.

180 IF(IPRINT(1).GE.0) CALL LB1(IPRINT,ITER,NFUN,GNORM,N,M,X,
* F, G, STP, FINISH, DFNORM)
IF (FINISH) THEN

IFLAG=O

85



C
C
C
C
C

190

195

196

C
C
C
C

200

235

240

245

RETURN
ENDIF
GO TO BO

END OF MA.IN ITERATION LOOP. ERROR EXITS.

IFLAG=-l
IF(IPRINT(l).GE.O) CALL LBl{IPRINT,ITER,NFUN,

* GNORM,N,M,X,F,G,STP,FINISH,DFNORM)
IF(LP.GT.O) WRITE (LP, 200) INFO
RETURN
IFLAG=-2
IF(LP.GT.O) WRITE(LP,235) I
RETURN
IFLAG= -3
IF{LP.GT.O) WRITE{LP,240)

FORMATS

FORMAT{/' IFLAG= -1 '/' LINE SEARCH FAILED. SEE',
, DOCUMENTATION OF ROUTINE MCSRCH'/' ERROR RETURN',
, OF LINE SEARCH: INFO= ',12/
• POSSIBLE CAUSES: FUNCTION OR GRADIENT ARE INCORRECT'/
" OR INCORRECT TOLERANCES' )

FORMAT (I' IFLAG= - 2 ' I' THE', 15, '-TH DIAGONAL ELEMENT OF THE' I
, INVERSE HESSIAN APPROXIMATION IS NOT POSITIVE')

FORMAT(j' IFLAG= -3' /. IMPROPER INPUT PARAMETERS (N OR M' ,
, ARE NOT POSITIVE) , )

FORMAT (I , GTOL IS LESS THAN OR EQUAL TO 1.D-04'
/ . IT HAS BEEN RESET TO 9.D-01')

RETURN
END
SUBROUTINE LB1(IPRINT,ITER,NFUN,

* GNORM,N,M,X,F,G,STP,FINISH,DFNORM)

•

C
C *** CHANGE PRINT STP TO DFNORM
C -------------------------------------------------------------
C THIS ROUTINE PRINTS MONITORING INFORMATION. THE FREQUENCY AND
C AMOUNT OF OUTPUT ARE CONTROLLED BY IPRINT.
C -------------------------------------------------------------
C

INTEGER IPRINT(2),ITER,NFUN,LP,MP,N,M, I
DOUBLE PRECISION X(N),G(N),F,GNORM,DFNORM,STP,GTOL,STPMIN,STPMAX
LOGICAL FINISH
COMMON IL,B3 /MP , LP , GTOL, STPMIN , STPMAX

C
IF (ITER.EQ.O)THEN

WRITE(MP,10)
WRITE(MP,20) N,M
WRITE(MP,30)F,GNORM

IF (IPRINT(2) .GE.l)THEN
WRITE (MP, 40)
WRITE(MP,50) (X(I) ,I=l,Nl
WRITE (MP, 60 l
WRITE(MP,50) (G(I) ,I=l,N)

ENDIF
WRITE (MP, 10)
WRITE (MP, 70)

ELSE
IF «IPRINT{l) .EQ.O) .AND. (ITER.NE.l.AND .. NOT.FINISH) ) RETURN

IF (IPRINT(l) .NE.O) THEN
IF{MOD(ITER-l,IPRINT(1» .EQ.O.OR.FINISH)THEN

86



IF (IPRINT (2) .GT.l.AND. ITER .GT .1) WRITE (MP, 70)
WRITE (MP, 80) ITER,NFUN,F,GNORM,DFNORM

ELSE
RETURN

ENDIF
ELSE

IF( IPRINT(2) .GT.l.AND.FINISH) WRITE (MP, 70)
WRITE(MP,80)ITER,NFUN,F,GNORM,DFNORM

ENDIF
IF (IPRINT(2) .EQ.2.0R.IPRINT(2) .EQ.3)THEN

IF (FINISH)THEN
WRITE (MP, 90)

ELSE
WRITE (MP, 40)

ENDIF
WRITE (MP, 50) (X(I) ,I=l,N)

IF (IPRINT(2) .EQ.3)THEN
WRITE (MP, 60)
WRITE (MP, 50) (G(I) ,I=l,N)

ENDIF
ENDIF

IF (FINISH) WRITE (MP, 100)
ENDIF

C
10 FORMAT('~*~*****************~~~*********~****************')

20 FORMAT ( , N= ' , IS, , NUMBER OF CORRECTIONS=' , 12
/' INITIAL VALUES')

30 FORMAT(' F= ',lPD10.3,' GNORM=' ,lPD10.3}
40 FORMAT (' VECTOR X= ')
50 FORMAT(6(2X,lPD10.3»
60 FORMAT (' GRADIENT VECTOR G= ')
70 FORMAT(/' I NFN',4X, 'FUNC',BX, 'GNORM',7X, 'DFNORM'/)
80 FORMAT(2(I4,lX),3X,3(lPD10.3,2X»
9 0 FORMAT (' FINAL POINT X= ')
100 FORMAT(/' THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS. I

/' IFLAG = 0 I )

C

IS A DOUBLE PRECISION VARIABLE WITH DEFAULT VALUE 0.9, WHICH
CONTROLS THE ACCURACY OF THE LINE SEARCH ROUTINE MCSRCH. IF
FUNCTION AND GRADIENT EVALUATIONS ARE INEXPENSIVE WITH RESPE
TO THE COST OF THE ITERATION (WHICH IS SOMETIMES THE CASE WH
SOLVING VERY LARGE PROBLEMS) IT MAY BE ADVANTAGEOUS TO SET G
TO A SMALL VALUE. A TYPICAL SMALL VALUE IS 0.1. RESTRICTION
GTOL SHOULD BE GREATER THAN 1. D-04.

IS AN INTEGER VARIABLE WITH DEFAULT VALUE 6. IT IS USED AS T
UNIT NUMBER FOR THE PRINTING OF THE MONITORING INFORMATION
CONTROLLED BY PRI.

IS AN INTEGER VARIABLE WITH DEFAULT VALUE 6. IT IS USED AS T
UNIT NUMBER FOR THE PRINTING OF ERROR MESSAGES.

MP

LP

GTOL

RETURN
END
SUBROUTINE LBSET

C----------------------------------------------------- -----------------
C THIS SUBROUTINE CONTAINS ONE COMMON AREA, WHICH DEFINED
C THE VALUES OF SEVERAL PARAMETERS DESCRIBED AS FOLLOWS:
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C STPMIN AND STPMAX ARE NON-NEGATIVE DOUBLE PRECISION VARIABLES WHIC
C SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP IN THE LINE SEAR
C THEIR DEFAULT VALUES ARE 1.D-20 AND 1.D+20, RESPECTIVELY.
C-----------------------------------------------------------------------

INTEGER LP, MP
DOUBLE PRECISION GTOL,STPMIN,STPMAX

87



C

C

COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX

MP=6
LP=6
GTOL=9.0D-1
STPMIN=1.0D-20
STPMAX=1.0D+20

RETURN
END
SUBROUTINE DAXPY.(N,DA,DX,INCX,DY, INCY)

C
C CONSTANT TIMES A VECTOR PLUS A VECTOR.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C

DOUBLE PRECISION DX(1) ,DYU) ,DA
INTEGER I, INCX, INCY , IX, IY, M, MP1, N

C
IF (N .LE. 0) RETURN
IF (DA .EQ. 0.000) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.l)GO TO 20

C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
C

IX = 1
IY = 1
IF(INCX.LT.O)IX = (-N+1)*INCX + 1
IF(INCY.LT.O)IY = (-N+l)*INCY + 1
DO 10 I = 1,N

DY(IY) = DY{IY} + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY

10 CONTINUE
RETURN

C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C

20 M = MOD(N,4)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = l,M

DY(I) = DY{I) + DA*DX(I)
30 CONTINUE

IF( N .LT. 4 ) RETURN
40 MPl = M + 1

DO 50 I = MP1,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) DY(I + 2) + DA*DX(I + 2)
DY(I + 3} = DY(I + 3) + DA*DX(I + 3)

50 CONTINUE
RETURN
END
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)

C
C FORMS THE DOT PRODUCT OF TWO VECTORS.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C

DOUBLE PRECISION DX(l) ,DY(1),DTEMP
INTEGER I, INCX, INCY, IX, IY, M, MP1, N

88



C
DOOT = 0.000
DTEMP = O. 000
IF(N.LE.O}RETURN
IF (INCX.EQ.1.AND. INCY .EQ.l) GO TO 20

C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
C

IX = 1
IY = 1
IF(INCX.LT.O)IX = (-N+1)*INCX + 1
IF(INCY.LT.O)IY = (-N+1)*INCY + 1
DO 10 I = 1,N

DTEMP = DTEMP + DX(IX)*DY(IY)
IX = IX + INCX
IY = IY + INCY

10 CONTINUE
DOOT = DTEMP
RETURN

...

*

I

I.

C
C
C
C
C
C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOP

20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = I,M

DTEMP = DTEMP + DX(I)*DY(I)
30 CONTINUE

IF( N .LT. 5 ) GO TO 60
40 MPI = M + 1

DO 50 I = MP1,N,5
DTEMP = DTEMP + DX(I)*DY(I) + DX(I + l)*DY(I + 1) +
DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)

50 CONTINUE
60 DDOT = DTEMP

RETURN
END
SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL,MAXFEV,INFO,NFEV,WA)
LINE SEARCH ROUTINE MCSRCH
INTEGER N, MAX.FEV , INFO, NFEV
INTEGER LP, MP
DOUBLE PRECISION F,STP,FTOL,GTOL,XTOL,STPMIN,STPMAX
DOUBLE PRECISION X (N) , G (N) , S (N) , WA (N)
COMMON /LB3/MP;LP,GTOL,STPMIN,STPMAX

SUBROUTINE MCSIRCH

A SLIGHT MODIFICATION OF THE SUBROUTINE CSRCH OF MORE' AND THUENTE
THE CHANGES ARE TO ALLOW REVERSE COMMUNICATION, AND DO NOT AFFECT
THE PERFORMANCE OF THE ROUTINE.

THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES
A SUFFICIENT DECREASE CONDITION AND A CURVATURE CONDITION.

AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF
UNCERTAINTY WITH ENDPOINTS STX AND STY. THE INTERVAL OF
UNCERTAINTY IS INITIALLY CHOSEN SO THAT IT CONTAINS A
MINIMIZER OF THE MODIFIED FUNCTION

F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X) 'S).

IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION

89



C HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE DERIVATIVE,
C THEN THE INTERVAL OF UNCERTAINTY IS CHOSEN SO THAT IT
C CONTAINS A MINI.MIZER OF F (X+STP*S) .
C
C THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES
C THE SUFFICIENT DECREASE CONDITION
C
C F (X+STP*S), . L,E. F (Xl + FTOL*STP* (GRADF (X) 'sl ,
C
C AND THE CURVATURE CONDITION
C
C ABS(GRADF(X+STP*SI'S» .LE. GTOL*ABS (GRADF (X) 'S).
C
C IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION
C IS BOUNDED BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES
C BOTH CONDITIONS. IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH
C CONDITIONS, THEN THE ALGORITHM USUALLY STOPS WHEN ROUNDING
C ERRORS PREVENT FURTHER PROGRESS. IN THIS CASE STP ONLY
C SATISFIES THE SUFFICIENT DECREASE CONDITION.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL, MAXFEV,INFO,NFEV,WA)
C WHERE
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF VARIABLES.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE
C BASE POINT FOR THE LINE SEARCH. ON OUTPUT IT CONTAINS
C X + STP*.s.
C
C F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F
C AT X. ON OUTPUT IT CONTAINS THE VALUE OF F AT X + STP*S.
C
eGIS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE
C GRADIENT OF F AT X. ON OUTPUT IT CONTAINS THE GRADIENT
C OF F AT X + STP*S.
C
C S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE
C SEARCH DIRECTION.
C
C STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN
C INITIAL ESTIMATE OF A SATISFACTORY STEP. ON OUTPUT
C STP CONTAINS THE FINAL ESTIMATE.
C
C FTOL AND G'TOL ARE NONNEGAT'IVE INPUT VARIABLES. (IN THIS REVERSE
C COMMUNICATION IMPLEMENTATION GTOL IS DEFINED IN A COMMON
C STATEMENT. I TERMINATION OCCURS WHEN THE SUFFICIENT DECREASE
C CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE
C SATISFIED.
C
C XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
C WHEN THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
C IS AT MOST XTOL.
C
C STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH
C SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP. (IN THIS REVERSE
C COMMUNICATION IMPLEMENTATIN THEY ARE DEFINED IN A COMMON
C STATEMENT) .
C
C MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
C OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
C MAXFEV BY THE END OF AN ITERATION.
C

90



C INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS ~

C
C INFO = 0 IMPROPER INPUT PARAMETERS.
C
C INFO =-1 A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIEN
C
C INFO 1 THE SUFFICIENT DECREASE CONDITION AND THE
C DIRECTIONAL DERIVATIVE CONDITION HOLD.
C
C INFO 2 RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
C IS AT MOST XTOL.
C
C INFO = 3 NUMBER OF CALLS TO FeN HAS REACHED MAXFEV.
C
C INFO 4 THE STEP IS AT THE LOWER BOUND STPMIN.
C
C INFO 5 THE STEP IS AT THE UPPER BOUND STPMAX.
C
C INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRESS.
C THERE MAY NOT BE A STEP WHICH SATISFIES THE
C SUFFICIENT DECREASE AND CURVATURE CONDITIONS.
C TOLERANCES MAY BE TOO SMALL.
C
C NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
C CALLS TO FCN.
C
C WA IS A WORK ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C MCSTEP
C
C FORTRAN-SUPPLIED...ABS,MAX,MIN
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
C JORGE J. MORE', DAVID J. THUENTE
C
C **********

INTEGER INFOC,J
LOGICAL BRACKT,STAGE1
DOUBLE PRECISION DG, DGM, DGINIT, DGTEST, DGX, DGXM, DGY, DGYM,

* FINIT,FTEST1,FM,FX, FXM,FY,FYM,P5,P66,STX, STY,
* STMIN,STMAX,WIDTH,WIDTH1,XTRAPF,ZERO

C
C DATA P5, P66 ,XTRAPF, ZERO /0 .. 5DO, O. 66DO, 4. aDO, O. ODD/
C

P5=0.5DO
P66==O.66DO
XTRAPF=4. ODD
ZERO=O.ODO

C
IF{INFO .. EQ. -1) GO TO 45
INFOC = 1

C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C

IF (N .LE. 0 .OR. STP .LE. ZERO .OR. FTOL .LT. ZERO .OR.
* GTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. STPMIN .LT. ZERO
* .OR. STPMAX .LT. STPMIN .OR. MAXFEV .LE. 0) RETURN

C
C COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION
C AND CHECK THAT S IS A DESCENT DIRECTION.
C

DGINIT = ZERO
DO 10 J = 1, N

91

•



DGINIT = DGINIT + G(J)*S(J)
10 CONTINUE

IF (DGINIT .GE. ZERO) THEN
WRITE (LP, 15)

15 FORMAT(/' THE SEARCH DIRECTION IS NOT A DESCENT DIRECTION')
RETURN
ENDIF

C
C INITIALIZE LOCAL VARIABLES.
C

BRACKT = . FALSE.
STAGEl = . TRUE.
NFEV = 0
FINIT = F
DGTEST = FTOL*DGINIT
WIDTH = STPMAX - STPMIN
WIDTH1 = WIDTH/P5
DO 20 J = 1, N

WA(J) = X(J)
20 CONTINUE

C
C THE VARIABLES STX. FX, DGX CONTAIN THE VALUES OF THE STEP,
C FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP.
C THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP,
C FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF
C THE INTERVAL OF UNCERTAINTY.
C THE VARIABLES STP, F, DG CONTAIN THE, VALUES OF THE STEP,
C FUNCTION, AND DERIVATIVE AT THE CURRENT STEP.
C

STX = ZERO
FX = FINIT
DGX = DGINIT
STY = ZERO
FY = FINIT
DGY = DGINIT

C
C START OF ITERATION.,
C

30 CONTINUE
C
C
C
C

C
C
C

'C
C
C
C

C
C
C

*
*

SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND
TO THE PRESENT INTERVAL OF UNCERTAINTY.

IF (BRACKT) THEN
STMIN = DMIN1(STX,STY)
STMAX = DMAX1(STX,STY)

ELSE
STMIN = STX
STMAX = STP + XTRAPF*(STP - STX)
END IF

FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN.

STP DMAX1(STP,STPMIN)
STP = DMIN1(STP,STPMAX)

IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET
STP BE THE LOWEST POINT OBTAINED SO FAR.

IF «BRACKT .AND. (STP .LE. STMIN .OR. STP .GE. STMAX»
.OR. NFEV .GE. MAXFEV-l .OR. INFOC .EQ. 0
.OR. (BRACKT .AND. STMAX-STMIN .LE. XTOL*STMAX») STP

EVALUATE THE FUNCTION AND GRADIENT AT STP
AND COMPUTE THE DIRECTIONAL DERIVATIVE.

92

STX



C
C

WE RETURN TO MAIN PROGRAM TO OBTAIN F AND G.

DO 40 J = 1, N
X(J) = WA(J) + STP*S(J)

40 CONTINUE
INFO=-l
RETURN

-

C

C
C
C

C
C
C

C
C
C
C

C
C
C
C
C
C
C

C
C
C

C
C
C
C

C
C
C

45

50

*

*

*

*

*

INFO=O
NFEV = NFEV + 1
DG = ZERO
DO 50 J = 1, N

DG = DG + G(J)*S(J)
CONTINUE

FTESTl = FINIT + STP*DGTEST

TEST FOR CONVERGENCE.

IF (BRACKT .AND. (STP .LE. STMIN .OR. STP .GE. STMAX))
.OR. INFOC .EQ. 0) INFO = 6

IF (STP .EQ. STPMAX .AND.
F .LE. FTESTl .AND. DG .LE. DGTEST) INFO = 5

IF (STP .EQ. STPMIN .AND.
(F .GT. FTEST1 .OR. DG .GE. DGTEST) INFO = 4

IF (NFEV .GE. MAXFEV) INFO = 3
IF (BRACKT .AND. STMAX-STMIN .LE. XTOL*STMAX) INFO = 2
IF (F .LE. FTEST1 . AND. DABS{DG) .LE. GTOL*(-DGINIT» INFO

CHECK FOR TERMINATION.

IF (INFO. NE . 0) RETURN

IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED
FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE.

IF (STAGE1 .AND. F .LE. FTEST1 .AND.
DG .GE. DMIN1(FTOL,GTOL)*DGINIT) STAGEl = . FALSE.

A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF
WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED
F'UNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE
DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN
OBTAINED BUT THE DECREASE IS NOT SUFFICIENT.

IF (STAGEl .AND. F .LE. FX . AND. F .GT. FTEST1) THEN

DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES.

PM = F - STP*DGTEST
FXM = FX - STX*DGTEST
FYM = FY - STY*DGTEST
DGM = DG - DGTEST
DGXM = DGX DGTEST
DGYM = DGY - DGTEST

CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
AND TO COMPUTE THE NEW STEP.

CALL MCSTEP(STX,FXM,DGXM,STY,FYM,DGYM,STP,FM,DGM,
BRACKT,STMIN,STMAX,INFOC)

RESET THE FUNCTION AND GRADIENT VALUES FOR F.

FX = FXM + STX*DGTEST
FY = FYM + STY*DGTEST

93

1



C
C
C
C

C
C
C
C

C
C
C

*

*

DGX = DGXM + DGTEST
DGY = DGYM + DGTEST

ELSE

CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
AND TO COMPUTE THE NEW STEP.

CALL MCSTEP{STX,FX,DGX,STY,FY,DGY,STP,F,DG,
BRACKT,STMIN,STMAX,INFOC)

END IF

FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE
INTERVAL OF UNCERTAINTY.

IF (BRACKT) THEN
IF (DABS (STY-STX) .GE. P66*WIDTH1)

STP = STX + P5*(STY - STX)
WIDTHl = WIDTH
WIDTH = DABS(STY-STX)
END IF

END OF ITERATION.

GO TO 30
C
C LAST LINE OF SUBROUTINE MCSRCH.
C

END
SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT,

* STPMIN,STPMAX,INFO)
INTEGER INFO
DOUBLE PRECISION STX,FX,DX,STY,FY,DY,STP,FP,DP,STPMIN,STPMAX
LOGICAL BRACKT,BOUND

C
C SUBROUTINE MCSTEP
C
C THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR
C A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR
C A MINIMIZER OF THE FUNCTION.
C
C THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION
C VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS
C ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE
C DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A
C MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY
C WITH ENDPOINTS STX AND STY.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT,
C STPMIN, STPMAX, INFO)
C
C WHERE
C
C STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP,
C THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED
C SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION
C OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE
C SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY.
C
C STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP,
C THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF
C THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE
C UPDATED APPROPRIATELY.
C

94



C STP, FP, AND DP ARE VARIABLES WHICH SPECIFY THE STEP,
C THE FUNCTION, AND THE DERIVATIVE AT THE CURRENT STEP.
C IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE
C BETWEEN STX AND STY. ON OUTPUT STP IS SET TO THE NEW STEP.
C
C BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER
C HAS BEEN BRACKETED. IF THE MINIMIZER HAS NOT BEEN BRACKETED
C THEN ON INPUT BRACKT MUST BE SET FALSE. IF THE MINIMIZER
C IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE.
C
C STPMIN AND STPNAX ARE INPUT VARIABLES WHICH SPECIFY LOWER
C AND UPPER BOUNDS FOR THE STEP.
C
C INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
C IF INFO = 1,2,3,4,5, THEN THE STEP HAS BEEN COMPUTED
C ACCORDING TO ONE OF THE FIVE CASES BELOW. OTHERWISE
C INFO = 0, AND THIS INDICATES IMPROPER INPUT PARAMETERS.
C
C S~P~G~SCALLrn

C
C FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
C JORGE J. MORE I, DAVID J. THUENTE
C

DOUBLE PRECISION GAMMA, p,. Q, R, S, SGND, STPC, STPF, STPQ, THETA
INFO = 0

C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C

IF «BRACKT .AND. (STP .LE. DMINl (STX, STY) .OR.
* STP .GE. DMAX1(STX,STY») .OR.
* DX*(STP-STX) .GE. 0.0 .OR. STPMAX .LT. STPMIN) RETURN

C
C DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN.
C

SGND = DP* (DX/DABS (DX) )
C
C FIRST CASE. A HIGHER FUNCTION VALUE.
C THE MINIMUM IS BRACKETED. IF THE C~IC STEP IS CLOSER
C TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN,
C ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN.
C

IF (FP .GT. FX) THEN
INFO = 1
BOUND = .TRUE.
THETA = 3*(FX - FP)/(STP - STX) + DX + DP
S = DMAX1(DABS(THETA),DABS(DX),DABS{DP»
GAMMA = S*nSQRT«THETA/S)**2 - (DX/S)*(DP/S»
IF (STP .LT. STX) GAMMA = -GAMMA
P = (GAMMA - DX) + THETA
Q = «GAMMA - DX) + GAMMA) + DP
R = P/Q
STPC = STX + R*(STP - STX)
STPQ = STX + {(DX/«FX-FP)/(STP-STX)+DX»/2)*(STP - STX)
IF (DABS (STPC-STX) .LT. DABS(STPQ-STX)) THEN

STPF = STPC
ELSE

STPF = STPC + (STPQ - STPC)/2
END IF

BRACKT = .TRUE.
C
C SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF
C OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE C~IC
C STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP,

95



C THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN.
C

ELSE IF (SGND .LT. 0.0) THEN
INFO = 2
BOUND = •FALSE.
THETA = 3*(FX - FP)/(STP - STX) + DX + DP
S = DMAXl (DABS (THETA) , DABS (DX) , DABS (OP} )
GAMMA = S*DSQRT ( (THETA/S), **2 - (DX/S) * (DP/S) )
IF (STP .GT. STX) GAMMA = -GAMMA
P = (GAMMA - DP) + THETA
Q = «GAMMA - OP) -l- GAMMA) + DX
R = P/Q
STPC = STP + R*(STX - STP)
STPQ = STP + (DP/(DP-DX»*(STX - STP)
IF (DABS (STPC-STP) .GT. DABS(STPQ-STP» THEN

STPF = STPC
ELSE

STPF = STPQ
END IF

BRACKT = .TRUE.
C
C THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
C SAME SIGN, AND THE MAGNITUDE OF THE, DERIVATIVE DECREASES.
C THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY
C IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC
C IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE
C EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO
C COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP
C CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN.
C

ELSE IF (DABS (DP) .LT. DABS(DX» THEN
INFO = 3
BOUND = . TRUE.
THETA = 3*(FX - FP)/(STP - STX) + DX + OP
S = DMAXl (DABS (THETA) ,DABS (DX) , DABS (DP) )

C
C THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND
C TO INFINITY IN THE DIRECTION OF THE STEP.
C

GAMMA = S*DSQRT(DMAX1(O.ODO, (THETA/S) **2 - (OX/S.*(DP/S»)
IF (STP .GT. STX) GAMMA = -GAMMA
P = (GAMMA - DP) -l- THETA
Q = (GAMMA + (DX - DP» + GAMMA
R = P/Q
IF (R .LT. 0.0 .AND. GAMMA .NE. 0.0) THEN

STPC = STP + R*(STX - STP)
ELSE IF (STP .GT. STX) THEN

STPC = STPMAX
ELSE

STPC = STPMIN
END IF

STPQ = STP + (DP/(DP-DX»*(STX - STP)
IF (BRACKT) THEN

IF (DABS (STP-STPC) .LT. DABS(STP-STPQ» THEN
STPF = STPC

ELSE
STPF = STPQ
END IF

ELSE
IF (DABS (STP-STPC) .GT. DABS(STP-STPQ» THEN

STPF = STPC
ELSE

STPF = STPQ
END IF

END IF

96

III



C
C
C
C
C
C

FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES
NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP
IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN.

ELSE
INFO = 4
BOUND = . FALSE.
IF (BRACKT) THEN

THETA = 3*(FP - FYI/(STY - STP) + DY + DP
S = DMAXl (DABS (THETA) , DABS (DY) , DABS (DP) )
GAMMA = S*DSQRT«(THETA/S)**2 - (DY/S)*(DP/S»
IF (STP .GT. STY) GAMMA = -GAMMA
P = (GAMMA - DP) + THETA
Q = ({GAMMA - DP) + GAMMA) + DY
R = P/Q
STPC = STP + R*(STY - STP)
STPF = STPC

ELSE IF (STP .GT. STX) THEN
STPF = STPMAX

ELSE
STPF = STPMIN
END IF

END IF

-
-,

C
C UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT
C DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE.
C

IF (FP .GT. FX) THEN
STY = STP
FY = FP
DY = DP

ELSE
IF (SGND .LT. 0.0) THEN

STY = STX
FY = FX
DY = DX
END IF

STX = STP
FX = FP
DX = DP
END IF

C
C COMPUTE THE NEW STEP AND SAFEGUARD IT.
C

STPF = DMIN1(STPMAX,STPF)
STPF = DMAX1(STPMIN,STPF)
STP = STPF
IF (BRACKT .AND. BOUND) THEN

IF (STY .GT. STX) THEN
STP = DMIN1(STX+0.66DO*(STY-STX) ,STP)

ELSE
STP = DMAX1(STX+O.66DO*(STY-STXI ,STP)
END IF

END IF
RETURN

C
C LAST LINE OF SUBROUTINE MCSTEP.
C

END

97



vrr;0.

Yijun (Grace) Huang

Candidate for the Degree of

Master of Science

Thesis: NEURAL NETWORK LEARNING ALGORITHMS BASED ON LIMITED
MEMORY QUASI-NEWTON METHODS

Major Field: Computer Science

Biographical:

Education: Graduated from Shanghai Nonnal University and Shanghai Institute of
Education,. Shanghai,. China in July 1980 and July 1987, respectively.
Completed the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in May 1997.

Professional Experience: Shanghai ChaoYang 6th High School and Technical
School of 15th Cotton Mill of Shanghai, as a teacher of mathematics,
Shanghai, China, September 1980 to September 1989; employed by Oklahoma
State University, Department of Computer Science as a teaching assistant,
January 1997 to May 1997.

-
~I


