
RULE BASED DATA STRUCTURE

ANIMATION

By

LEE HOU HARVICK

Bachelor of Mechanical Engineering

Tongji University

Shanghai, China

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May 1997

RULE BASED DATA STRUCTURE

ANIMATION

Thesis Approved:

Dean of the Graduate College

11

PREFACE

There are many types of methods to display Animated

Data Structures. Most of the methods are very cumbersome

and require an in-depth know:!.edge of a particular animation

language. These animatior. languages require the developer

to think in programming terms instead of tte rules that are

associated with a data structure. This means that for any

learner, whether it is a student, developer, 0'::- a

researcher I they wi 11 be required to spend as much time or

more in developing the Data Structure Animation software as

they would spend developing the actual software in a more

traditional programming languages. The fo llow ing documen t

presents a simplified Data Structure Animator that is

designed to be rule based. This will enable the user to

design Data Structure Animation using the more natural rules

associated with the Data Structure.

ill

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my

advisor, Dr. Chandler for all of his help. I would like to

thank Dr. LaFrance for his support and advise which made

this thesis possible. I would like to thank Dr. Hedrick for

all of his time and consideration.

I would also like to give an extra thanks LO Dr.

Chandler for not only helping me through my thesis work, but

all the extra help he has given me during my graduate

studies the past two years.

Also, I would also like to give my special thanks to my

husband, Ray Harvick, for his suggestIons, help,

encouragement, understanding and support throughout the

whole process. Also, my sincere thanks to my Parents for

their support and encouragement.

Finally, I would like to thank the Department of

Computer Science, its faculty and staff, for all the support

during these two years of study.

IV

TABLE OF CONTENTS

Chapter

l. INTRODUCTION

2. RELATED WORK

3. OVERVIEW OF DSA

3.1 WHAT IS DSA
3.2 JUSTIFICATION FOR DSA
3.3 AnvANTAGES OF DSA
3.4 DrsADVANTAGES OF DSA

4. DSA DATA STRUCTURE DEVELOPMENT PROCESS

4.1 CREATING ADSA PROGRAM
4.2 LOAD AND RUNNING ADSA PROGRAM
4.3 DEBUGGING ADSA PROGRAM

5. DSA PROGRAMMING

5.1 OVERVIEW OF THE DSA PROGRAMMING LANGUAGE
5.2 KEYWORDS
5.3 LIST DEFINITIONS
5.4 NODE DEFINITIONS
5.5 RULE DEFINITIONS
5.6 EXPRESSIONS, CONDITIONS, AND STATEMENTS
5.6.1 DESTROY EXPRESSION

5.6.2 MESSAGE EXPRESSION

5.6.3 SET EXPRESSION

v

Page

I

5

7

7
7
8
9

t1

11
II
19

25

25
26
28
29
30
31
31
31
31

5.6.4 IF EXPRESSION

5.6.5 REPEAT EXPRESSION

5.6.6 CONDITIONS

5.7 EXAMiPLE SOURCE CODE

5.7.1 QUEUE.SRC

5.7.2 STACK-.SRC

5.7.3 TREE.SRC

5.7.4 LINKLIST.SRC

5.8 EXAMPLE DATA STRUCTURE OUTPUT IMAGES

5.8.1 QUEUE STRUCTIJRE OUTPtIT IMAGE

5.8.2 STACK SmUCTIJRE OUTPUT IMAGE

5.8.3 BINARY TREE STRUCTURE OUTPUT IMAGE

6. DSA ARCHITECTURE

6.1 OVERVIEW OF ARCHITECTURE

6.2 CLASS/OBJECT RELATlONSHIPS

6.2.1 PRINCIPAL CLASS/OBJECT RELATIONSHIPS

6.2.2 RULE CLASS/OBJECT RELATIONSHIPS

6.3 EXAMPLE RULE OBJECT RELATlONSHIP CHART

6.4 CLASS DESCRIPTIONS

6.4.1 CLASS DsAAPp
6.4.2 CLASS ABouTDLG

6.4.3 CLASS MAINFRAME
6.4.4 CLASS DSAVIEW

6.4.5 CLASS DsADoc

6.4.6 CLASS ACCESS

6.4.7 CLASS DESTROY

6.4.8 CLASS END

6.4.9 CLASS ENTERKEy

6.4.10 CLASS GRID

6.4.11 CLASS IF

6.4.12 CLASS KEyWORD

6.4.13 CLASS LDERROR

6.4.14 CLASS LINKLIST

6.4.15 CLASS LINKNODE

6.4.16 CLASS LINKOBJ

6.4.17 CLASS LiSTDEF

6.4. 18 CLASS LISTOBJ

6.4. 19 CLASS LOAD

6.4.20 CLASS LOCATION

6.4.21 CLASS MSG

6.4.22 CLASS NEW

6.4.23 CLASS NODE

64.24 CLASS NODEDEF

\'1

33

34

34

35
35
36

36

39
40
40

41

42

43

43
43
43
45

47
50
50
51
51
52

53
54

54
55
56

56

57

58

58

59

60

61

62

62

63
64

65

6~

66

67

6.4.25 CLASS NODELlsT
6.4.26 CLASS NODENoDE
6.4.27 CLASS NODEOBJ
6.4.28 CLASS OBJECT
6.4.29 CLASS REPEAT
6.4.30 CLASS Row
6.4.31 CLASS RULEBASE
6.4.32 CLASS RULEDEF
6.4.33 CLASS SCAN
6.4.34 CLASS SELLIsT
6.4.35 CLASS SELRULE
6.4.36 CLASS SET

7. FUTURE DIRECTION

8. CONCLUSION

BffiLIOGRAPHY

vii

68
69
70
71
72
73
74
75
75
76
77
78

79

81

83

LIST OF FIGURES

/]

1-1

15

16

13

J7

18

Page

------_._-- -_.- -------

---- ---------------------- ------

Figure

1: Open Dialog _

2: Child Window 1J
-----------~---------_. --_._------_..

3: Select a List--------------

.:/: Name the List---

5: Displayed Queue Node _

6: Select a Rule ----

7: Enter a Key _

8: Single Node Displayed ----------

9: Multiple Node Display

10: Load Error --------------------_. ----------- - -_.-- - --_.

11: List Definition Diagram _ 28

12: Node Definition DiaKTam .. ._ 29

--- -------.- .-------- - - -

13: Rule Definition Diagram _

J.:/: Destroy Expression Diagram _

15: Message Expression Diagram . __

J6: Set Expression Diagram _

J7: If£xpression Diagram _

18: Repeat ExpressIOn Diagram _

30

31

31

31

33

3-1

"HI

-16

-1-1

19: Conditional Diagram 3-/

20: Example output ofa Queue -10

21: Example output ofStack -IJ

22: Example Output ofa Binary Tree---------------

23: Principal Object/Class diagram --------------

24: Rules & Expression Hierarchical Chart

25: Example Hierarchical Diagram ofa ListDef& NodeDef . _

26: Example ofa Rule Hierarchy ofPush _

27: Example ofa Rule Hierarch}' ofPop ----------

1:1:

-18

-19

50

1. Introduction

In examining what Ruled Based Data structure Animation

is, it is important to understand the underlying related

terms. It is also important to understand any related

subj ect matter . Data St ructures have been anima 'ced both

statically and dynamically. For pt.:rposes of this

introduction, we concentrate only on dynamic animation.

Most Dynamic Data Structure animation is accomplished either

using a traditional programming language (such as Pascal, C,

or FORTRAN), or Algorithmic Animators (such as Basil 0:::

Zeus) . To examine what Data Structure Animation is we will

examine related issues, which include Animation, Algorithrr.,

Abstract Data Types, Object Inversion, and Data Structure.

Animation refers to any graphic display of information

where the information to be imparted to the viewer is

conveyed by an image change [BAE74] . Post-Simulation

Animation visualizes the input, internal, and output

behaviors of a simulation model by using the simulation

trace data generated from a completed simulation run

[BAL90] . Simulation-concurrent animation visualizes the

input, internal, and output behaviors of a simulation model

as the simulation runs [BAL90J.

A Data Structure describes the way data are organized

in a computer program [VIN84] A Data Structure is just a

particular representation of a data obj ect [HIL88]. Data

Structures are the bui lding blocks of computer algor i tbJns

[MAN89] .

As previously stated, both traditional programming

languages and algorithm animation languages have been used

to display data structure animation in the past.

~By a data structure we mean a ~able of data
including structural relationships." [CON79]

~ In its simp:est form, a tab 1e migh t be a 11 near
list of elements, when its relevant structural
properties might include the answers to such questions
as: Which element is first in the list? Which is
last? Which elements precede and follow a given one?
How many elements are there In the list?" [KNU73j

~To structure data effectively, it
not only to know techniques but also to
apply certain techniques." [MUF82j

IS essential
know when to

"Obj ects such as
with their operations,
types." [WEI93j

lists, sets, and graphs, along
can be viewed as abstract data

Because of the relationship algori thms have to data

structures, algorithm anima tors have been the t rad i tiona 1

method of displaying data structure animation. These

animation languages require the developer ~o thiny. ~n

2

programming terrr.s instead of the rules that are associated

wi th a data structure. This means that for any learner,

whether it is a student or a researcher, he or she will be

required to spend as much time or more in developing the

Data structure Animation Software as they would spend

developing the actual data structure in the more traditional

programming language.. This thesis presents a simplified

Data Structure Animator that is designed to be ruled based.

This enables the user to design Data Structure Animation

using the more natural rules associated with the

Structure.

Data

Data Structure Animation concentrates primarily o~

displaying the relationship between data, while algori thm

relationship of a set of

animation concentrates on primarily displaying the

instructions and whi Ie Algor i thm

animation car. be used to d':"splay a data structure, a data

structure animator can only display a subset of algorithms

as they relate to the structure and relationships among

data. Thus an algorithm that describes the interaction

between two nodes of data can be displayed by el ther an

algorithm animator and a data structure animator, an

algorithm that does not confine its operations or

instructions to a data structure cannot be displayed by a

data structure animator. The advantages of a data structure

)

animator are that it has a greatly reduced scope, and

therefore it has less complexity. This reduces the lear~ing

curve of the user as well as reduces the amount of work

required to display a data structure animation. The

disadvantage of a data structure animation is that because

it has a limited scope, it is limited only to data struc~ure

relationships and cannot display information beyond the

scope of the relationships among data.

2. Related Work

The History of Data Structure Animation goes bac r to

the 1960's. The initial animatio!1 was done using film.

This presented a static visualization of a known Data

Structure. This meant that the investigator or instructor

could not visualize a sequence of events not depicted in the

film.

Laboratories

In

Telephone

1966, a film prcduced

Low Level

by Knowlton,

Linked List

"1,6: Bell

Language"

demonstrated how an assembly level list processing language

works [KN066j.

In three other films, "Sorting Out Sorting" [BAEB1J,

"PQ- trees" [B007 5], and "Hashing Al gor i thms" by Hopgood,

demonstrated the importance of film in describing Data

Structure Animation ~F~R92]. Each of these films described

various static Data Structure Animations.

In the 1970's, research began to focus on static

animation from the information available to a system

debugger at run-time [ARR92]. These animators displayed the

5

structures of a program during runtime wi thout the need to

change the program itself. These animators showed the

results of the operations performed but did not show the

operation itself [ARR92].

At the present time, there are many forums that permit

the creation of animated Data Structures. These may range

from static presentation, such as film [ARR92], to more

dynamic methods such as Zeus [BR092], Tidy Animation's

[S'TA92] , and GASP [TAL95] . As was pointed out in

"Visualization of Geometric Algorithms," by Ayellet Tal

[TAL95], most algorithm and Data Structure Animations have

In "Visualization of

been developed using sophisticated

designed for general purpose usage.

software that was

Geometric Algorithms," the authors points out the need for

softwa~e solutions that are more tightly scoped and

specific. This would allow the software to be tailored for

the specific purpose intended. Tal and his co-author then

go on to describe their solution specialized to Geometric

Algorithms. It is my intentions to seek out a different

specialization in Data Structure Animation.

6

3,. Overview of DSA

3.1 What is DSA

DSA (Data Structure Animation) provides an interactive

environment that allows the user to design and run data

structures in a visual format.

DSA takes as input a text file, with DSA coding in it.

It converts this code into interactive objects.

objects provide the mechanism for al_ interaction.

3.2 Justification for DSA

These

Whi 1e there are ma;ly ways to di splay da ta structures

visually, most presentations are either static in nature or

only allow a few select data structures that are hard coded

into the software. The few software products that allow

dynamic creations of data structures are more general 1n

form. While these animators do a good job of animat1ng

algorithms, they are very cumbersome for anlmating data

structures.

7

d

In contrast to algorithm animators, DSA focuses only on

data structures and therefore is able to simplify the method

of presenting graphic displays of data structures. Because

DSA focuses on data structures, the user is required to do

less coding. In fact, with DSA, the user could actually do

less coding than he or she would have to do in a traditional

language such as C.. This allows the user to focus on the

data structure rather than the programming environment.

3.3 Advantages of DSA

In comparison wi th algorithm animators, DSA has the

advantages of focusing on data structures. Thls means that

DSA requires significantly less code to animate data

structures than a al gar i thrn animation, since DSA bui Ids In

data structure relationshIps into the environment. DSA

assumes that all structures will have one list and many

nodes. Each list can have one or more pointers to nodes.

Each node can have zero or more pointers to other nodes.

The other advantage DSA has over algorithm animators is that

it assumes that the screen is diVIded into regions and that

only one node or list can occupy that region. This frees

the user from having to calculate the locatIon of a node for

visual purposes. Another advantage of DSA is: it places

nodes on the screen In their relative positions ~o the list.

8

d

Once again, this frees the user from doing any calculations

to determine the location of a node. In DSA, only the list

is anchored at any location; all nodes are relative to the

list. For example, a list may have a root node with a

relative position of "down". This means that the system

attempts to place the root node one position down from the

list. If the root node also had two nodes with a relative

position of "down right" and "down left," then the relative

positions of the bottom two nodes are down one and to the

left or right from the root, and the root has a relative

position of down one. This means the right node's relative

position is down two and right one. The left node is down

two and left one. By freeing the user from making such

calculations, the user has more time to consider the data

structure relationship without worrying about peripheral

matters.

3.4 Disadvantages of DSA

Because DSA focuses entirely on Data Structure

A~imation, it is limited in scope. DSA 1S unable to display

any algorithm or data structure that does not cODsist of one

list and one or more node types. DSA cannot show such

things as ple charts, bar charts, etc. which algorithm

animators can do.

9

Some of the data structures that a fully operational

DSA can display include: Stacks, Linked lists, Queues,

Binary trees, AVL trees, etc. In

almost any structure that is a tree.

fact, DSA can display

But DSA would struggle

with structures such as a hashing table.

10

4. DSA Data Structure Development Process

4.1 Creating a DSA Program

To create a DSA program, the developer first must

create a text file containing DSA code. After the developer

has written his/her program, the developer starts DSA. DSA

queries the user for a file name. Once DSA recei ves the

name of the file containing the source code for the program,

DSA immediately begins to decode it. During the proc~ss of

decoding the source file, DSA creates a temporary file using

the input name and changing the extension to ". tmp" . For

example, if the developer opens up "Tree. src", DSA will

create a temporary file named "Tree. tmp". I f the program

was decoded properly, DSA will display an empty child

window. Otherwise, it will display a message informing the

user that there was an error in the program.

4.2 Load and Running a DSA Program

When the user either starts DSA or request a new source

file, DSA displays an opening dialog with a list of files.

Once the user selects a file, DSA immediately decodes the

source.

11

Open 613
..,.... '1'
.<t~jn: ,.: d Srl~ ' .

. ~iP'.~III!~.~.~~.~3
r~DblllisUmp

It~ Linklistsrc
; ~ Linklisttmp

'..~ Queue.src

1;'~ Queuetmp

~Slack.slc

8 Slack.tmp

~Temp

@) Temp

~ Temp.slc

~Temp.tmp

f§ T,ee

~ Tlee.src

~ Tree.lmp

i ···;0;/>':';;;-.'1' :.,,: "c'" :.: ':':"':./":'.:.. "

filename:
r
:·Files of!YPe: JAU Files (X xJ

:~::';" .' '.

................
-::+.,

.open

Cancel

Figure I: Open Dialog

If the program is loaded successfully wi thout error, DSA

will display an empty child window.

~ OSA • Queue.src I!!IOO Ei

NUM

IjF. Queue. SiC I!!IOO 13

A.eedy

I'
!··::~·,.···~~····\l.~·>~:!O\!Y"~~~···~··:·i· .
:.~~~:

Figure 2: Child Window

12

Once the user has an empty child window, he/she is ready to

begin. The first step in animating a data structure is the

creation of a list node. This is done by double clicking

anywhere on the blank child window.

"~HUM!

ClW:el I

Queuewt

Selecllhe Sial I l.is. SlruclUie

Re&dy

'Eilef;al y~. 'l\{lIldoW.!:!e!p '. . . : <',
·.··~·.~··§Rirr··o>·········· "·..·········..···,~,, ·..·· ..
~~I!111&~~!..iii Ii

Figure 3: Select a List

After the user has double clicked on a blank portion of the

child window, DSA prompts the user to select a list

structure. For most DSA source files, there wlll be only

one choice (al though it is poss ible to have more than one

list by coding more than one list in the input text file,

each list is a separate entity and does not share data). The

,j

~

!

I
user clicks on the list of his/her choice and proceeds to

the next step.

13

d

·-. -
........;.:: ..-~:-~ ,..,..;;;;. ~~ ; : ,: ,.., , ..-.:-:.. ' , , , ,;; ,:: :.., " .,.'

Figure 4: Name the List

Name The li~1

.

fii.~DelinlionN~me: r

N_ 01 U$t I
Localion: X: r
I' ··ok --it.:...•• __... .._•• ,.1" Ca1ce1 I

After the user has selected a list type, the system

queries the user for the name of the list and allow the user

to change the physical location of the list. Once the user

has entered a name, the system will dlsplay an oval, which

represents a list, with the name of the list inserted inside

the oval.

1-1-

d

~~ DSA - Queue SIC "~D

if. Queue.src I!I~f3

l:~7~J~j:-·'::~~:.;··-··"··· :.:_ :_..:.: :., .
Q-heaue)

...~ - : ,..,.. :~~~.:..:..:............ .-. ,.. ... " .

Figure 5: Displayed Queue Nod,e

Once the first list: has been entered, the user can

either create another list just like the previous one, or

the user can run a rule against the list (to insert or

remove a node). In order to run a rule (interact wi th the

list), the user double clicks on top of the displayed list

(oval)

15

'1
I

d

Select a Rule

Pop
f'1.<sh

Slop

Figure 6: Select a Rule

After the user double clicks on a list (oval), then the

system queries the user for the rule to be run. The user is

then free to choose the rule to be run. Once the user has

started a rule, the rule will be run until either there is a

run-time error in the user's program (rule), the rule

completes, or the system encounters a request for a new key.

16

. !

d

,_ CI x

Enlel a Key

01:

Figure 7: Enter a Key

If during the running of a rule, the system encounters

a request for a new key, the system will prompt the user to

input a key. After the user enters a key, the system

resumes runnlng the rule. After the rule has been run

successfully, DSA re-displays the list node and all of its

children. On the next pages IS the display after one node

was entered (first display) and the display after several

nodes have been entered.

17

-

:-"'i- DSA . Queue.slc I!lOOEl

.. QlAeue.SIC !lOOE!

~_1I_1I_-J

. Ready

Figure 8: Single Node Displayed

18

!
I
, I

1
1

I'
I

-

;:•. OSA . Queue SIC I!I~13
Be fQ"il .Yiewldtiilw lielp . . . ". , "".. .:.. ..'
:,~ou~-ii[ifr:;'~""""""":"""""~'~""-"''''-''~ _"_..___ - _ .

!'-iQueue src I!lIiII2

Figure 9: Multiple Node Displa}'

R~

~:

4.3 Debugging a DSA Program

If during the loading of a source file, an error lS

detected, the system displays message and halts

loading/running the offending source code. Should this

occur, the user/developer must change the source code to

correct the offending code.

19

-

load Eum!

,',." .
Error in loading
Source. check oulptt
file <LinklisltJrnJ> for

IF OK _.11

Figure 10: Load Error

Once an error in loading the source code is detected,

code.

Example of an Output Source listing with Errors.

with line numbers, and after each error detected, DSA

file a copy of the source output along

the developer must fix whatever is wrong wi th the source

program. To help the developer fix bugs in the source code,

DSA outputs to a

outputs an error report just below the offending source

I::: Single Linked L1SI ::
2:List: LinkLisl
3: :Node LinkNode Head :Down
4: :Insert Insert
5: :Remove Remove
6:End:
7:
8::: The Node definition
9:Node: LinkNode
10: :Node LinkNode Next :LefL
11: :Key Key
12:End:
13:
14:Rule: Insert
15: :Node LinkNode NewNode
16: :New NewNode
17 :Set @NewNodeKey <-NewKcy
18: :Sel @NewNode.Nexl <- Head
19: :Set Head <- NewNode
20:End:

20

-

21:
22:Rule: Remove
23::: TempNode is used for temporary storage V\'ill parsing the link list ::
24: :Node LinkNode TempNode
25: :Node LinkNode Ne>..1Node
26: :Node LinkNode PrevNode
27: :Set TempNode <- Head
28: :Set PrevNode <- :NULL
29: :Repeat TempNode != :NULL

Invalid use of Logical Operator inside of <R1I1e:<Repeat»
30: :If :NewKey = @TempNode.Key
3I: :If PrevNode = :NULL
32: :Set Head <- @TempNode.Ne!\.1
33: :E1se
34: :Set @PrevNode.Next <- @TempNode.Ne:'\1
35: :Endif

Invalid use of Token :Endif inside of <Rule:<l1»
36: :Destroy TempNode
37: :End
38: :Endlf

Error in defining :Assign detected
39: :Set PTevNode <- TempNode
40: :Set TempNode <- @TempNode.Next
41: :EndRepeat

Error! No Matchin <:Repeat> found for <:EndRepeat>I
42:End:

Error in defining :Assign detected
Error in defining :Repeat detected
Error in Rule: Remove detected

After the source code has been loaded successfully, DSA

maintains a log of up to 400 lines of actions performed on

the structure. This file has the extension of ".loqu. For

example, if the input file name was Queue.src, the log filo

would be Queue.log.

Loading C:\DSA\DSA\SRC\Queue.src
Creating: TheQue of List Type QueueLI5t

RUlluing.. Push
:Node QuelieNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Next <- :Nul1
:IfHead !=:Null
Branch Else
:Set Head <- NewNode
:Set Tail <- NewNode
End If

21

d

-

Running.. Push
:Node QueueNode
:New NewNode
:Set@NewNode.Key <- :NewKey
:Set @NewNode.Nex1 <- :Null
:IfHead !=:Null
Branch If
:Set @Tail.Ne:d <- NewNode
:Set Tail <- NewNode
End If

Running.. Push
:Node QueueNode
:New NewNode
:Set @NewNode.Key <- :NewKev
:Set@NewNode.Nexl <- :NuU
:If Head !=:Null
Branch If
:Set @Tail.Nex1 <- NewNode
:Set Tail <- NewNode
Endlf

Running.. Push
:Node QueueNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Nex1 <- :Null
:If Head !=:Null
Branch If
:Sel @Tail.Ne:\.1 <- NewNode
:Set Tail <- NewNode
End If

Running.. Push
:Node QueueNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Next <- :Null
:If Head !=:Null
Branch If
:Set @.Tail.Nex1 <- NewNode
:Sel Tail <- NewNode
End If

Running.. Push
:Node QueueNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Next <- :Null
:If Head !=:Null
Branch If
:Sel @.TaiI.Nexl <- NewNode
:Sel Tail <- NewNode

22

j ,

-

End If

Running.. Push
:Node QueueNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Ne~t <- :Null
:If Head 1=:Null
Branch If
:Set @Tail.Next <- NewNode
:Set Tail <- Nev.·Node
End If

Running.. Pop
:Node QueueNode
:IfHead !=:Nul1
Branch if
:Set NextNode <- @Head.Nex1
:Destroy Head
:Set Head <- NextNode
End If

Running.. Pop
:Node QueueNode
:If Head !=:Null
Branch If
:Set Ne:-..1Node <- @Head.Next
:Destroy Head
:Set Head <- NextNode
End If

Running .. Pop
:Node QueueNode
:IfHead !=:Null
Branch If
:Sct Ne:-"1Node <- @Head.Next
:Destroy Head
:Set Head <- NextNode
Endlf

Running.. Pop
:Node QueueNode
:If Head !=:NuJl
Branch If
:Set NextNode <- @Head.Ne\.1
:Destroy Head
:Set Head <- NextNodc
End If

Running.. Pop
Node QucueNode
:IfHead 1=:Null
Branch If
:Set NextNode <- ,-g·'Head.Next

23

cd

-

:Destroy Head
:Set Head <- NextNode
End If

Running.. Pop
:Node QueueNode
:lfHead !=:Null
Branch If
:Set Ne:-..1Node <- @Head.Ne:-"1
:Destroy Head
:Set Head <- Nex1Node
End If

-

5. DSA Programming

5.1 Overview of the DSA Programming Language

that contains lists.

The DSA source code has three distinct types: Lists,

nodes. DSA run-time obj ects are a set of lists wi th nodes

DSA reads in source code, translates 1 t into a

"The main purpose of a compiler and of its close
cousin, the interpreter, is to translate a program
written in a high-level programming language ... into a
form that the computer can understand in order to
execute the program ..., An interpreter ... translates t:.he
source program into an internal form that it can
execute." [MAK91]

Based on the above defini tion, DSA is an interpret:ed

language.

set of objects which are organized into a set of lists and

Nodes, and Rules. Internally, Lists are made up of a set of

nodes and a set of rules. All rules inside of a list are

labeled either ":Insert" or ":Remove". These labels do not

affect the functionality of a rule; they ar~ for

documentation purposes only. Internally, Nodes consists of

a set of Nodes and Keys. Rules are comprised of a set of

temporary nodes and expressions.

25

All expressions are objects that share a base class

called RuleBase. RuleBase contains a virtual method for

every keyword in the DSA language. Many of methods in

RuleBase display an error message when called. Every Object

expression inherits RuleBase and overrides the methods

associated with its type. For example: Set overrides the

New method in RuleBase. Since New is only valid with a Set

used.

In order to create a local variable, the ": Node" must be

is declared before an expression executes lS also available.

In addition, any node that

There are two types of stored data, List data and Local

expression, it is the only expression object to override it.

available to the set of rules.

data. Any datum (node) that is stored inside of the list is

5.2 Keywords

The following is a list of keywords that are used in

the DSA language. Some key words are distinguished

according to where th~ ":" is placed. For instance, the ":"

in ":Node" is a local reference to a node, while the ":" in

"Node:" begins the definition of a node. IUl definitions

(List:, Node:, and Rule: all have "." as the last character

In the key word. All other keywords with ":" have the ":"

as the first character. lUI definitions (List:, Node:,

Rule: all end with an "End:" statement.

26

-

Keyword or Symbol

[A-Z,a-zJ~[A-Z/a-z,O-9J*

>
<
1=

>=
<=
:Insert
: Remove
:Node
:Key
:Order
:New
:Destroy
.:Msg
:Set
<-
: If
:Then
:Else
:EndIf
:NewKey
:While
:Repeat
: EndRepeat
:Null
:End
:UpDown
: DownUp
:LeftRight
: RightLeft
:Ignore
:Left
:Right
: Down
:Up
:UpLeft
:UpRight
: DownLeft
: DownRight

List:
Node:
End:
Rule:
: Free
@

&

Definition
User Token
Equal to
Greater than
Less than
Not Equal
Greater or Equal to
Less or Equal to
Insert rule
Remove rule
Node <Node Data Type>
Key <Key Data Type>
Order <Reserved, not used>
New <Create Memory>
Destroy <Destroy Memory>
Msg <Display a Message>
Set <Set a Node or Key>
Assign <Used with set (like "="):­

If
Then <Reserved, not used>
Else
End If Statement
New Key <Query user for new key>
While
Repeat
End Repeat
Null <Set Data to Null>
End <Stop running the Rule>
<Reserved, not used>
<Reserved, not used>
<Reserved, not used>
<Reserved, not used>
<Ignore Positioning>
Position Node to the Left
Position Node to the Right
Position Node Down
Position Node Up
Position Node Up and to the Left
Position Node Up and to the Right
Position Node Down and to the Left
Position Node Down and Right
Start/End Comments
Start definition of a List
Start definition of a Node
End the definition List,Node,Rule>
Define a Rule
remove reference link of a node
Redirect Data Pointer
Set Pointer to Reference

27

d

-

5.3 List D'efinitions

The List: statement defines a list.

.~~ ,,"' ._~.-

====

r--; '"P"'o"

~ '.0,,"" ..

r """""10',' .-.

Figure 11: List Definition Diagram

The <Name of the List> can be any name one wishes to

glve it, including characters, numbers, and symbols, as long

it is not a reserved word.

The <Rule Def> can be any name, but at run time there

must be a corresponding rule definition or an error occurs.

It does not matter whether the rule definition occurs before

or after the List:.

The <Node Def> can be any name, but at run time, there

must be a corresponding node definition or an error occurs.

28

cd

It does not matter whether the node definition occurs before

or after the List:.

5.4 Node Definitions

The Node: statement defines a node.

~A.":Ie ot NOde:> l '~ OlOd.~~ <:Wol/IIC of HOC.'" r-r"'" :lUqfl: ~- ..=l~"::_·_.__'_~~'-
f- 'CO,· •.~

, ;ley ~ <:P:ey N.1IN> :______ ~ :Ur :.....

f- """" ..

I-- :1.!ofl.J.Ql'l~ .-...

f-~~-".

f--. :1C\r.llocU':-.~...

f---~,,-;-'~-..

Figure 12: Node Definition Diagram

The <Name of node> can be any name one wishes to glve

it, including characters, numbers, and sYmbols, as long 1 t

is not a reserved word.

The <Key Name> can be any name one wishes to give it,

including characters, numbers, and symbols, as long lt 15

not a reserved word.

Every \\: Node" ins ide of "Node:" MUS t have a re la t i ve

.«04
,,;

~ i

il
>-.
;"~l

position key word such as ":Right". This tells DSA that the

relative graphical display posltion of the node llnk is to

29

--
the right of the list. While DSA attempts to place the node

one region to the right, it may alter its positioning

depending upon other elements (Nodes or Lists) or to give a

smoother look to the overall display. For instance, in a

tree, DSA may push nodes under the root in both directions

in order to reduce the bell curve look.

Each Node: can have as many :Node's or :Key's as is desired.

5.5 Rule Definitions

The Rule: statement defines a rule.

Figure 13: Rule Definition Diagram

The <Name of rule> can be any name one wishes to give

it, including characr.e:::-s, r.umbers, and symbols, as long it

is not a reserved word.

Each rule is made up of one or more expressions.

30

-

L

5.6 Expressions, COlnditions, and State'ments

5.6.1 Destroy Expression

The ~Destroy statement deletes the memory that to which the

<name of node> points.

~ ' ~!-- . : ['est.roy r--"'; <t~a.m-€' of Nod-&>
I '---, --'

Figure 14: Destroy Expression Diagram

5.6.2 Message Expression

The :Msg statement displays any message contained between

two quote characters.

Figure J5: Message Expression Diagram

5.6,3 Set Expression

The :Set statement sets the value of a node or key.

..............-,.,~=r-:~---;:~-:-r-·-' -]','-~""-;.-:.~~'-"j" _-JIII""'1IIII' -~ ---- ,-_._--'
..; t1 ~~--"'-:----r. =+--~ ! . _

- . '4
.-

.. ":~~~ . ------_._-- ._--j

Fil,'lJre J6: Set Expression Diagram

31

.....
' ..
t.,

-

Each :Set must be followed by an identifier followed by

the assignment operator "<-". The Assignment operatur is

then followed by a second identif~er or the keywords

" : Null" I ": NewKey" I or ": Free" . The identifier may either

be direct or indirect. Any identifier containing a "@" as

its first character (or second if the first character is a

definition of the first <identifier>. If there 1S a third

<identifier>.<identfier>' where the first <identifier> is

"&") is an indirect address and must take on the form
"

~ ,

i1
.:>-
"of
,~

::~

and the second

Whenever a reference is used to set an

(either local or in a list)

<identifier> is ei ther a node or a key that 15 1n the

<identifier> it must be com:ained in the second, and so

any node

forth. Any identifier that begins with the character "&" is

a reference.

identifier, any future reference to that identifier would be

the same as though it accessed the original identif1er. For

example:

:Set x <- &y

:Set x <- :New I"

In this example, y 1S given new memory. However, we had

the following example:

32

L

-
:Set x <- y

:Set x <- :New

Then y still contains whatever value it had, but x

receives new memory. Once a identi::ier has been set to a

reference, it remains a reference until it either is out of

scope or it is set to ":Free".

5.6.4 If Expression

The :If statement is a conditional branch.

~~ '-------"",:-·~C-O"-,d-,,,-c,n-... ~----l,----~--_.t-r~ ---~- -~,--I_:_I~__, ~' .____ :Er.-J:~ ~

___L- _

[. ,.;:xF:·-=ls.,::r.~._

Figure 17: If Expression Diagram

The : I f statement will cause the <::condi ti on> to be

examined, and if true, all expreSS10ns listed before the

:Else statement are executed. Otherwise, all expressions

after the :Else are executed.

{ .

...
~~

~

~ I

c.:l
::>
,,"
~~i
"

'...

examined, and if true, all expressions are executed and then

-

5.6,5 Repeat Expression

The :Repeat statement is a conditional loop.

I

-~ . ~:Rep~a': H <Cond;'I:.lorp ;-1------1
1
f--.------t---:E_ndJ<_~_p._a:_~-

~- <::x;oress:.::>n> ~

Figure 18: Repeat Expression Diagram
'"';
.;

i i

~

.;;:J
The :Repeat statement causes the <condition> to be ~

.",

,~

-;
,.,
~,

recycled to the beginning and the <co~dition> is re-

examined. Once the condi tion is false, the system proceeds

to the expression after the :EndRepeat.

5.6.6 Conditions

Conditions are used in both the :If and the :Repeat

expression.

~~,:==.=.n:: ;-:~~ 'I --=~ ~---'--"-"J-T':-'~::"~:;~"~"
C':ll ' -" " ~" :'_-"--~__ ~~"! l--=.~~:.::J-_._-"~~~--=~="-~_:JJ

-. .. -
-"---"----..----.. -

--........ .'.. .

Figure 19: Conditional Diagram

3-l

;:
t
I

.....

-
The condition causes the identifier to be on both the

left and right side, and based on the operation

«,>,=, !=,>=,<=) returns either a true or a false. Based on

these results, the :If or :Repeat flow is determined.

5.7 Example Source code

5.7.1 Queue.src

List: QueueList
:Node QuelleNode Head :Right
:Node QlleueNode Tail :Ignore
:Insert Push
:Remove Pop

End:

Node: QueueNode
:Node QueueNode Next :Do\\''Il
:Key Key

End:

Rule: Push
:Node QueueNode NewNode
:New NewNode
:Set @NewNode.Key <- :NcwKcy
:Set @NewNode.Next <- :Null
:lfHead != :Null

:Set @Tail.Next <- NewNode
:Set Tail <- NewNode

:Eise
:Set Head <- NewNode
:Set Tail <- NewNode

:En<llf
End:

Rule: Pop
:Node QueueNode NextNode
:If Head 1= :Null

:Set Ne:\.lNode <- @Head.Ne:\.1
:Destroy Head
:Set Head <- NextNode

:EIse
:Msg "No Nodes in LIst"

:Endlf
End:

35

'1

'-.
,,~

'f,
""l
1)

.'t
;J....
:::J

~'
.:'.)

,i
I

",

-

5.7.2 Stack.src

List: StackList
:Node StackNode Top :Down
:Insert Push
:Remove Pop

End:

Node: StackNode
:Node StackNode Next :DO\\TI
:Key Key

End:

Rule: Push
:Node StackNode NewNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:IfHead != :Null

:Set @NewNode.Ne:\.1 <- Top
:Set Top <- NewNode

:Else
:Set @.NewNode.Next <- :Null
:Set Top <- NewNode

:EndIf
End:

Rule: Pop
:Node StackNode NextNode
:If Top != :Null

:Set Nex1Node <- @Top.Nex1
:Destroy Top
:Sel Top <- NextNode

:Else
:Msg "No Nodes in Stack"

:Endlf
End:

5.7.3 oTree.src

List: TrecList
Node TreeNode Top :Down

.Insert Insert
:Removc Remove

End:

Node: TreeNode
:Key Key
:Node TreeNode LeftChild :DownLeft
:Node TreeNode RightChild :DownR.1ghl

End:

Rule: Insert
:Node TrceNode NewNode

36

-
:Node TreeNode TopNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.LeftCh.ild <- :Null
:Set @NewNode.RightChild <- :Null
:lfTop = :Null

:Set Top <- NewNode
:Else

:Set TopNode <- &Top
:Repeat TopNode != :Null

:IfNewNode > TopNode
:If@TopNode.RightCitild = :Null

:Set @TopNode.RightChild <- NewNode
:Set TopNode <- :Free

:EIse
:Set TopNode <- &@TopNode.RightChdd

:Endlf
:Else

:If @TopNode.LeftChild = :Null
:Set @TopNode.LeftCh.ild <- Nev,Nodc
:Set TopNode <- :.Free

:EIse
:Set TopNode <- &@TopNode.Lef1:Child

:Endlf
:EndIf

:EndRepeat
:Endlf

End:

Rule: Remo\"e
Node TreeNode NewNode

:Node TreeNode TopNode
Node TreeNode NodeTop

:Node TreeNode SwapNode
:New NewNode
:Sel @NewNode.Key <- :NewKey
:Set @NewNode.LeftChild <- :Null
Set @NewNode.RightChild <- :Null
Set TopNode <- &Top

.Set NodeTop <- :Null

,.**********************************"
:: Find the Node to be replaced
,,******************************••**.

:Repeat TopNode != :Null
:If New'Node = TopNode

:Set NodeTop <- &TopNode
:Sel TopNode <- :Free

:Else
:lfNewNode > TopNode

:If@TopNode.RighlChild = :Null
:Sel TopNode <- :Free

:Else

37

4 -

'I

",
~~
,l.
,y(

if'
';

, .,

-
:Set TopNode <- &@.TopNode.RiglltChild

:Endlf
:ELse

:If@TopNode.LeftChiLd = :NuJI
:Set TopNode <- :Free

:Else
:Set TopNode <- &@TopNode.LeftChild

:Endlf
:EndIf

:Endlf
:EndRepeat

.. *****************************... . ..
:: Find Node to be swapped in ::
.. ***************************** ..

:lfNodeTop != :Null
:If @NodeTop.RightChild = :Null

:If @NodeTop.LeftChild = :Null
:Set NodeTop <-: ulL

:Else
:Set NodeTop <- @NodeTop.LeftChild

:Endlf
:ELse

:If @NodeTop.LeftChild = :Null
:Set NodeTop <- @NodeTop.RightChild

:Else
:Set TopNode <- &@NodeTop.LeftChiLd
'Set SwapNode <- :NulL
:Repeat TopNode != :Null

:If @TopNode.RightChiLd = :Null
:Set SwapNode <- TopNode
:If@TopNode.LeftChild = :Null

:Set TopNode <- @TopNode.LeftChild
Set TopNode <- :Free

:Else
:Set TopNode <- :Null
:Set TopNode <- :Free

:Endlf
:Else

:Set TopNode <- @TopNode.RightChild

:Endlf
:EndRepeat
:If SwapNode != :NuU

:Set @SwapNode.RightChild <- @NodeTop.RightChlld
:Set @.SwapNode.LeftChild <- @NodcTop.LcftChiid
:Set NodeTop <- S\vapNode

:ELse
:Msg "Unkown Error. SwapNode is Null?"?"

:Endlf
:Endlf

:Endlf
:Else

38

..

.~
~,

".

.,..
.~

.;,,>.........
• .1

:~

-
:Msg "UnabLe to find Node in Tree"

:EndIf
End:

5.7.4 LinkList.src

:: Single Linked List ::
List: LinkList

:Node LlnkNode Head :DO\\-l1
:Insert Insert
:Remove Remove

End:

:: The Node definition::
Node: LinkNode

:Node LinkNod!e Next :Lefi
:Key Key

End:

Rule: Insert
:Node LinkNode NewNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Next <- Head
:Set Head <- NewNode

End:

Rule: Remove
:: TempNode is used for temporary storage will parsing the link list:

:Node LinkNode Temp ode
:Node LinkNode Ne:\tNode
: ode LinkNode PrevNode
:Sel TempNode <- Head
:Set PrevNode <- :NULL
:Repeat TcmpNode 1= 'NULL

:If :NewKey = @TempNode.Key
:If PrevNode = :NULL

Sel Head <- @Temp odc.Nc:\.1
:Else

:Set @PrevNode.Ne:\1 <- @TempNode.Ne:\.1
:Enciif
:Destroy TempNode
:End

:Endlf
:Set PrevNode <- TempNode
:Set TempNode <- @TempNodc.NcX1

:EndRepeat
End:

39

"
I.,
J
.J

"

.1

:1
I
I

-

L

5.8 Example Data Structure Output Images

5,8,1 Queue Structure Output image

In the figure below, the key values aa, bb, cc, and dd were

entered in sequence, with the following results:

~~... DSA· [lJueue.srcl IlIilI3
B~, ~Iil :iIllW ~irrlJw !::!~

~~~.

Figure 2U: Example output of a Queue

-lO

'1

'I
'~

A'.,~

"



-

5.8.2 Stack Structure Output image

In the figure below, the key values aa, bb, and cc were

entered in sequence, with the following results:

,;.~_ OSA -ISlack.$lc] I!!I~EJ

\±

15l~{~dt_yleYl;' ••~~.~

-~-~~.:

_________________...--:JI!!'.!A!
I

I
I

J.
"

I
I.,·······
Ready

Figure 21: Example output of Stack

·0

£ I
'J

INUl.! . .to:



L

-

5.8.3 Binary Tree Structure Output image

In the figure below, the key values mm, gg, S5, bb, ii,

and tt were entered in sequence, with the following results:

.•;~"~i!J'i""""""

Ibb ~ ~1
~',

""-".,..,.,
:~.,.
-.:
~

~

~

~
,~

Fi~rure 22: Example Output of a Binal1' Tree

-l2



-

6. eSA Architecture

6.1 Overview of Architecture

DSA is based internally on object oriented technology.

DSA also utilizes Microsofts Foundation classes for all

.....

Windows interfaces. DSA utilizes two base classes

extensively (LinkList and LinkNodel. These two classes form

the bases of almost all functionality within DSA. This is

done by ei ther using the da ta elements inside of LinkNode

(FieldName and FieldData) or by inher i ting ei ther LinkLis t

or LinkNode, or a combination of both (usually a combination

of both). Often obj ects are stored inside a 1 inked 1 i s t as

a LinkNode object and then recast to the original class

after they are retrieved from the list.

6.2 Class/Object relationships

6.2.1 Principal Class/Object Relationships

Many of the objects in the chart below are instances of

MFC classes or classes tha tare bu i 1t upon and inherited

...~

from MFC architecture. In the chart below, all rectangles

represent classes, all ovals represent objects, and the one

hexagon represents the main function and the starting

address.



¢2

DsaDoc l.oad

"' r ~'

,.
,~

~
l===j--:'~~-

RuleD<o.f

R\;les

"'1 ::.-

-----'

N .r.Ut

LlstDe.!
I RuleLu:

____--"c..:'''-, ---;)'-:__=).~'.:_. ~~ \
12

;3..,;-

N.~

I HOCIeOuf

l"'"
Ii!
• <',-

I

Gndr

OnOpenDoc

12:

CC(~},~~ i'"'> ~
l~~ "1'::

Us tOb1 NodeOb1

" I DsaView 1

}L
" '1. Lists 1 SlOl

LlnkLlst

Figure 23: Principal Object/Class diagram

Un.k.Nod-e

All following classes that are used to instantiate

objects are described in detail. The inheritances lovolved

in the classes above. The classes, ListDef, R.uleDef,

NodeDef, and Object all inherlt Keywords. Keywords is used

to identify a word and determine whether it lS a keyword and

if so, what kind.



6.2.2 Rule Class/Object Relationships

In the chart below, the hierarchy of all expressions

and rules is shown. All expressions and RuleDef inheri t

RuleBase. RuleBase contains two very important methods.

Both methods are named Run, but have a different signatures

(parameters) . The first Run is used to scan the input file.

Once a token is read from the input file, it is exam1ned

using Keywords for its type. Once its type 1S determined,

either an error is produced and printed to the ".tmpN file

and continues to read the source until it either loses scope

obj ect is created, it is given access to the input source,

(as with a :If finding a :EndIf) or it returns control to

Once theor an object of the correct Lype 1S created.

its calling object if an error occurs.

The second run 1S for running the actual rules. Each

RuleDef is a LinkNode that contains a LinkList of

expressions. Rule processes each expression (us1ng the

"Run N method inside of RuleBase) Each Method inside of

RuleBase is a virtual method. As each expresslon is

processed, RuleBase calls the appropriate virtual method.

That method may be from the RuleBase class or an overloaded

method from another class. For ins tance, the key word

-\.5



": New" is invalid inside of most expressions and therefore

RuleBase contains a virtual method to display an error wher.

it encounters a ": New" . If the object that inherited

RuleBase is ":Set", then when RuleBase calls the virtual

method for ":New", it will execute the overload method

inside of ":Set" instead of RuleBase.

KevWord'S

-~ ,-
r-,------------------ ··----"-lnf1.-"..?:(·-,,---------------·-·~-----·-________----;--;-- ---'=-'-'--__-;-- ---- 0 .0

~~~~~~~~~
Figure 24: Rules & Expression Hierarchical Chart

The above classes are described in detail in the ensuIng

pages.

46

.'

,,~\
'.
, "
~l

6.3 Example Rule Object Relationship Chart

In the left-hand column of the source code below, is a

list of the objects/classes that each line of source code is

it

translated. The right-hand column has the source code

listed as it would be seen in the source code file.

Obj1ects
LinkList
NodeNode
NodeNode
LinkNode
LinkNode

LinkList
NodeNode
LinkNode

RuleDef
Node
New
Set
Set
If/lfExp

Set
Set

If/ElseExp
Set
Set

RuleDef
Node
If7IfExp

Set
Destroy
Set

If/ElseExp
Msg

Source Code
List: QueueList

:Node QueueNode Head :Right
:Node QueueNode Tail :Ignore
:Insert Push
:Remove Pop

End:

Node: QueueNode
:Node QueueNode Next :Down
:Key Key

End:

Rule: Push
:Node QueueNode NewNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.Next <- :Null
:If Head ~= :Null

:Set @Tail.Next <- NewNode
:Set Tail <- NewNode

:Else
:Set Head <- NewNode
:Set Tail <- NewNode

:Endlf
End:

Rule: Pop
:Node QueueNode NextNode
:If Head!= :Null

:Set NextNode <- @Head.Next
:Destroy Head
:Set Head <- NextNode

:Else
:Msg "No Nodes In List"

:Endlf
End:

·n

,
<'

"0...

I
I

'I

i

-

Below is the internal structure that 15 formed by the

source code above. In the left-hand tree, the ListDef has

two branches, the first branch is a list of nodes (Node

Names with relative positioning} and the second is a list: of

rules (Rule Names). In the right-hand tree, the NodeDef

contains a list 0: nodes and keys. The nodes contain a

names of NodeDef types and identifiers, while the Keys

contain an identi fier for the key. **Note: Noc:ieNode is a

name of a class and not a misspelling.

.'

",.,
J'
¥,

~\
"
~l

,
I, '

J I.

",.....----.:.-..::_--------

~ ~------_.--J~

(.'.- • edt.. ~

en: .:, .. ,...

1 ;

, l

('iiit~f •
l~

\ ,
, I

Figure 25: Example Hierarcbical Diagram of a ListDef & NodcDcf

48

The Chart below shows the relationship of the

expressions in the Push rule for the example code above. The

Rule, Push, contains the following objects in order: Node,

New, Set, Set, and If. Inside the object of type If are two

branches, IfExp and ElseExp. Both the IfExp and the ElseExp

are objects of type LinkList. Each LinkList has two

expressions (objects) within it. Each object inside of both

the IfExp and the ElseExp is of type :Set.

j --

,

.,'

\'
".•.

"~I'..
"f
::)

(;it' L

: t
o' '.

~
('j •• - , (;:,

~
Figure 26: Example of a Rule Hierarchy of Push

As you can see by comparing the charts above and below,

every method has the potent ial of having a unique obj ect

relationship. This relationship is in direct correlation to

the source code for the rule.

49

,

s>,
~ r-I------~ ,.J

(,.}O.d~.i~ x----:;--"'--_.......;~

,i i
----,

I J,
,

i ~

I
, ,

~
I

~, ,.. i>'(i';(""- ~

(s=~ Des~roy So::-: •

L~, ---, _

,

Figure 27: Example of a Rule Hjerarch~- of Pop

'~I

'. ~

6.4 Class Descriptions

6.4,1 Class DsaApp

Purpose: DsaApp

DsaApp is the initial class.

It is DsaApp responsibility

to start the entire process.

Inheritance: DsaApp inherits

the MFC class CWinApp.

50

«

-

Description:

DsaApp instantiates an object of an object of type MainFrame

and calls a method to display it.

with the AboutDlg.

6.4.2 Class AboutDlg

Purpose:

DsaApp also interfaces

AboutDlg

AboutDlg is responsible for

displaying the about box.

Inheritance: AboutDlg

Inherits the MFC Class

CDialog

Description:

AboutDlg Displays and exits the about box.

6.4.3 Class MainFrame

.~

Purpose:

MainFrame creates the toolbar

and the status bar.

MainFrame

Inheritance: Inherits the

MFC Class CMDIFrameWnd.

51

Description:

MainFrame provides the frame work for all other windows

including the status bar, toolbar, and all child windows.

6.4.4 Class DsaView

interfaces for child windows.

Purpose:

DsaView provides all user

DsaView

O:-:,:pda-:'O

5:'ow2 r L':':~

Rur:

CnLa~: :0nDb~C l~:

Inheritance: DsaView inherits

the MFC CScrollView to create

child windows with actions on

the child window, scrollbars.

Description:

"

;~

DsaView intercepts mouse commands and determines whether the

user clicked on an empty region or one that is occupied. If

the region is unoccupied, begin the process of creating a

list. If the region is occupied by a list node, then

DsaView examines the list for its list of rules and queries

the user for which rule he/she wishes to run. If the region

is occupied by a node then DsaView takes no action. Once

either a list is choosen or a rule is run, DsaView

invalidates the child window, causing the Draw method to be

52

called from within DsaView. From the Draw method, DsaView

processes each list the user has previously created and

calls its Draw method.

6.4.5 Class DsaDoc

Purpose:

DsaDoc purpose is to provide

access to the Dsa program

source file and the Load and

Grid objects.

DsaDoc
Prooertl.es Attrl.bute?_

L03C

Grid

OnOpenDo::u::J=r-,:
: :......:.~:

Inheritance: DsaDoc inherits the MFC class CDocument.

Description:
,[

I
When a child window is created, the method Open

OnOpenDocument is called. From inside of this method, load

and grid objects are created. The load object is passed the

path of the Dsa program source that OnOpenDocument received

from the system. After load object completes its tasy-s,

DsaDoc queries the load object to determine if it was

successful. If not successful, DsaDoc displays an error

message and terminates the child window. If the load object

1 S success ful, DsaDoc returns cont rol back to the s ys tern.

DsaDoc also provides access to the load and grid objects for

use by other classes.

53

ProDert~es Attr.l.butes

6.4.6 Class Access

Purpose:

Access provides easy access

to data files.

Inheritance: None.

Description:

Access

Path,CreateTx7.:,.
CrEa~eBi~,DE1=~e,

E>:i~,Close,

Oper'!3-:':;, O~€n~:-:: I

KeadWorc,
Wc::':eWord,

~rci:eNul:,

t"'rit~:'inE,

Reac!=-.i no;,
P,:lSltlon

operator <.~

0?a:::

oW d:~

Access provides methods to open and close files, and to read

and write to files in either binary or text format.

also provides stream operations for easier use.

6.4.7 Class Destroy

Access

Purpose:

Destroy is an Expression

Destroy

object used by rules. Destroy

releases a node and sets a

nodes properties to null.

I

:1
I

I
J
I
I

."

Inheritance: RuleBase which inherits KeyWords which Inherits

LinkNode.

54

Description:

Destroy is a child of RuleBase, KeyWords, and LinkNode.

Destroy uses the attributes of LinkNode to store the name of

the node to be destroyed. Destroy provides the name of the

node to be destroyed to the RuleBase protected method, which

in turn, ei ther destroys the named node (i f direct access)

or the node pointed to by the named node (if indirect

access) or the referenced node if a reference.

6.4.8 Class End

Purpose:

End provides a maker that

tells the RuleBase to end

execution of a Rule.

Inheritance: RuleBase who

End

Inherits KeyWords who Inherits LinkNode.

Description:

End provides a maker for RuleBase to inform it to stop

execution of a Rule and return control to the system.

5S

6.4.9 Class EnterKey

Purpose:

EnterKey queries the user to

enter a key.

Inheritance: CDialog.

Description:

EnterKey
Prooertl.es Attrl.butes

Key
I

o!\eyi

Enter Key pops up a dialog that queries the user for a key.

Once entered, EnterKey provides access to the entered key

data.

6.4.10 Class Grid

Grid provides a matrix of 25

Purpose:

x 25 regions. Each region

Grid

can be occupied by only one

object (node or list) at a

time.

Inheritance: none.

Description:

Grid provides access to an internal grid by providing

methods to access the grid to ei ther set a region to an

56

object, free a region from an object, or query the grid for

the nearest open region to given coordinates.

6.4.11 Class If

sLoring and later examining

If controls the branching of

Purpose:

execution of a rule by

If

conditional.

the contents of a
G ::-~CP';d:

Ls::q::~

t'J€'"wr~-=~·

.lui:
ElSE-

Inheritance: RuleBase who inherits KeyWords who Inherits

LinkNode.

Description:

When RuleBase encounters an If object, it calls the If

object run method to continue execution of a method. The

run method in the If object the examInes the conditional by

retrieving any nodes that the condition uses, examining

their contents and determining if the conditIonal is true or

false. The If object stores two Expression lists (IfExp and

ElseExp) both of class type linklist. If the conditIon is

true, the If obj ects call s the inher i ted RuleBase method

Run, passing it the first element of the IfExp list. If

false, the If object passes the first element of the ElseExp

to the RuleBase method Run.

details.

57

See RuleBase for further

6.4.12 Class KeyWord

Purpose:

KeyWord is an abstract base

class and provides a method

to match strings to keywords.

Inheritance: LinkNode.

Description:

i
KeyWord

PrODert~es Attr~butes

KeyW~rd

KeyWord has only one met:hod, KeyWord. KeyWord receive::: a

st~ing and attempts to match it to a KeyWord. If no match 1S

found, the string is assumed to be a user identifier.

6.4.13 Class LdError

Purpose: LdError

Display an

whenever the

error

Load

dialog

Object

fails to load a Dsa Program

source due to source program

errors.

Inheritance: CDialog.

58

Description:

DsaDoc calls the load object to load a Dsa source program.

After control lS returned to DsaDoc, DsaDoc examines the

Load Object to determine whether it was successful or

failed. If it railed, DsaDoc passes the name of the

original Dsa Program Source file to LdError and calls

LdError inherited method to display the load error message.

6.4.14 Class LinkList

Purpose: LinkList

properties of a link list,

LinkList is a general purpose

class that provide the

.A.p::,enCl

Inse:-t
Rem0V~

::'.0 1.dName­

~ ~.l f: Da t a
HEac
~'::ev

queue, and a stack.

Inheritance: None.

Description:

C'_ r:-
Ne:·::.

Tail

LinkList contains three pointers of type LinkNode. LinkList

methods either provides access to the LinkNode pointers with

the methods Head, Curr, or Tail, or LinkNode provides access

to the current LinkNode (pointed to by oCurr), which

includes access to the FieldName, FieldData, the Next

Pointer in the LinkNode, or the Previous Pointer In the

LinkNode.

59

6.4.15 Class UnkNode

Purpose: LinkNode

LinkNode is a general purpose
Propert~es Attr~butes

class that provide the

Fi€~dNa",e

t'ieldDat3:
f'\E:-:t.
?;cev

0?:~-:

o:;e:-: ~

properties of a node lO a

linked

stack.

Ii st, queue, or a

Inheritance: None.

Description:

LinkNode contains two st~ings that hold the name of the node

and the data string. In reality, these two strings could

hold any string information. LinkNode also has two pointers

(Prev, Nex t) to obj ects of the same class (LinkNode) All

methods are used to access these four attributes.

6.4.16 Class LinkObj

Purpose: LinkObj

LinkObj is used to wrap a

node object. Its purpose is

Prooert1es Attr1butes __
ObJect:
·odeLi.~t.

to provide a tree structure

to draw the nodes.

Inheritance: LinkNode.

Description:

LinkObj contains pointers to an object of class type Object

and a pointer to a NodeList object. LinkObj requires that

an object of type Object (actually NodeObj) be used In

creating a LinkObj. LinkObj then uses the Object to

populate the NodeList with all children of the Object that

have not already be wrapped by a LinkObj. Inside of ObJect

is at tr ibute called stage; every time a L.inkObj wraps an

Object, its stage is changed to reflect this fact. If an

Object stage is already set to indicate that it is already

wrapped, then LinkObj wi 11 not re-wrap it. This prevents

the possibility of never-ending looping between nodes that

are linked in a circular fashion.

61

-

6.4.17 Class ListDef

Purpose: ListDef

definition of a List.

Prooert~es Attr~butes
LinkDef provides the

NodE-;'isc

Inheritance: KeyWords which

Inherits LinkNode.

Description:

LinkDef contains the name of the List (type), and two

LinkLists that contain a list of rule names and a list of

node names.

6.4.18 Class ListObj

Purpose:

ListObj holds the

ListObj
r-J?roper t .l,~~-.-hJ~.J;~~J:)Ut~s__

~. i ~ t Do: : (". L ~ s t : If:- "

instantiated information for

a List created for the user.

Inheritance: Object.

62

K,'Jl :<.:

Description:

ListObj utilizes the inherited class Object to store a list

of pointers to all nodes that are available to a user List.

ListObj also holds a pointer to the definition of the list

(ListDef) .

6.4.19 Class load

Purpose: Load

program and creates a series

Load loads a Dsa source

Nod"
Valid

.:'M. ... • 0;.

.~~~),J(.:..

of ListDefs,

RuleDefs.

NodeDefs, and

Inheritance: KeyWords who Inherits LinkNode.

Description:

Load first creates an object of type Scan. It uses Scan to

parse out tokens. It then uses the inherited class KeyWords

to determine what the token represents. If the token

represents either a Rule:, List:, or Node:, then load

creates an object of RuleDef, ListDef, or NodeDef. Load

then calls the Run method In each of these objects and

passes it the object Scan. Each of these obj ects will in

turn use scan to build up the objects until they reach a

End: token. Once an End: token is reach, control is again

63

-

passed to the load object and Load continues to process the

input file. Each time load creates an object, it appends it

to one of three LinkLists by type. Once Load has processed

all of the input file, Load will have three LinkList's each

divided by object type: one list of RuleDefs, one list 0_

ListDefs, and one list of NodeDefs.

6.4.20 Class Location

Purpose: Location

Location provides a two- .,:':

element object that contain

coordinates x and y.

Inheritance: None.

Description:

Store and retrieve X and Y coordinates.

-

6.4.21 Class Msg

Inheritance: RuleBase which

message.

Purpose:

RuleBase

Msg
Procert.l.es Attr.l.butes

;
i

:

a

a

displayingfor

providesMsg

object

inherits KeyWords which inherits LinkNode.

Description:

Msg is a marker that holds a string to be displayed. Once

the RuleBase encounters an object of type Msg, it queries

the inherited LinkNode Data pointer to provide the contents

of the message. RuleBase then displays the message to the

user.

6.4.22 Class New

Purpose: New

New provides a RuleBase

object that causes a node to

receive memory.
I

'I

Inheritance: RuleBase which

65

-

inherits KeyWords which Inherits LinkNode.

Description:

New is a marker that holds the name of the node to be given

memory. Once RuleBase encounters an object of type New, i:

queries the inherited LinkNode Data pointer to provide the

name of the node to receive memory. RuleBase then retrieves

the NodeObj 'c:hat the New object referred to and ca Is its

New Method.

6.4.23 Class Node

Purpose: Node

Node provides a RuleBase

object that causes a Rule to

create a temporary NodeObj

(local)

Inheritance: RuleBase which inherits KeyWords whlch Inherits

LinkNode.

Description:

Node is a Maker that stores the name of the node type in the

inher i ted LinkNode class. Node also stores the temporary

name of the local Node objec~.

66

Rule3ase uses the node type

to create a temporary (local) NodeObj and gives it the name

that is stored internally in the Node (oTokenl.

6.4.24 Class NodeDef

Purpose:

NodeDef provides the

NodeDef
ProoertJ.es Attrl,p.\!..t!=.s__

NI:"CIi2::,
. '.' ,~...

definition of a Node.

Inheritance: KeyWords which

Inherits LinkNode.

Description:

NodeDef contains the name of the node types and two

LinkLists that contain names of node types and key names.

67

--

6.4.25 Class NodeList

Purpose: NodeList

of nodes to
Pronertles Attrl.butes

Provides a list

be displayed, used only

;'.ppenj
LQ~a:icn

?osi :1:::-:
Dra',

oUp/ o:'~~~::"'r

o:..ipRi.~~:' r

c>\umLJp~ ~~~.:

during the drawing.

Inheritance: LinkList.

Description:

~~)..:w~;.:.·~~ ':
oj~u:::Do""'·~r:.: ~~....

,)U'JI,·,;:- , C'\-_:~.) ".~,.

Every time DSA draws, it builds a set of nodes using

NodeList and LinkObj. NodeList builds a hierarchy of node

pointers where there can only be one node pointer per

hierarchy. Each time a NodeObj is added to a node list, its

status is changed from stage 0 to stage 1. When the NodeObj

is printed, it lS changed back to stage o. Any node that is

not at stage 0 lS not added to the NodeList.

68

--

6.4.26 Class NodeNode

Purpose: NodeNode
Propert~es Attr~bute.s._.

NodeNode is used to store the

name of a node inside of a

tia~<=

Va~ic

No.jer\am~

O\.".3~:':

.....~):. ::!:::"-_::-:-

ListDef, NodeDef, or a

temporary node inside of a

rule. It is different from a

NodeDef in that it does not hold the defini tion but holds

the node type name, name of the node pointer, and the

relative direction.

Inheritance: KeyWords which Inherits LinkNode.

Description:

NodeNode stores three values, the name of a node type, the

name of the node pointer, and the relative direction

(relative direction is not c.sed for temporary nodes in a

rule) . During run time, the name of the node type must

match the name of a node type ln a NodeDef or a run time

error will occur.

69

-

-

6.4.27 Class NodeObj

Purpose: NodeObj

instantiated information for

temporary node inside of a

Va~ic

Draw

Prooertles AttrJ,.butes

lsr:ey
~s. '.J.2.1

Ope:a::::c:- ==t >, =

a

the

be

holds

mayobject

a Node created by a rule. The

The NodeObj

node

rule, a node, a node inside

of a list.

Inheritance: Object.

Description:

NodeObj utilizes the inherited class Object to store a llst

of pointers to all nodes that are available along with all

the key objects. A NodeObj can have one of three d1fferenL

node types: Pointer, Key, or Reference. If the Node Object

1S a pointer, then it points to a list of 1nstantiateo nodes

and keys. If the NodeObj 1S a reference, then it p01nts to

another NodeObj and utilizes its internal lists.

70

6.4.28 Class Object

Purpose:

Object serves as the base

Object

class for ListObj and
~oca:.:o:-: '~J O:':7:~ .• :..-:"_

C'O: _.:

NodeObj. Its purpose is to
..: Nc ...--:·_ ..~-~ -:.

~. . ~.. . .
~ - -~

store similar information.

Inheritance: KeyWords which

Inherits LinkNode.

Description:

c', ~ , .

In both NodeObj and ListObj are stored a list of nodes. The

list of nodes are defined in the mutual parent class of

Object. Object stores a NodeType that indicates if the

object is a list, a node, a key, or a reference to a node.

71

-

6.4.29 Class Repea.t

Purpose:

Repeat controls the branching

of execution of a rule by

storing and later examining

Repeat
Prooert~es Attr~butes

Rur:

the contents of a

conditional.

Inheritance: RuleBase which inherits KeyWords which Inherits

LinkNode.

Description:

When RuleBase encounters a Repeat object, it calls the

Repeat object run method to continue execution of a method.

The run method in the Repeat object examines the conditional

by retrieving any nodes that the condi tion uses, examining

their contents and determining ~f the conditional is true or

false. The Repeat object stores an ~xDression lists (oExp)

of class type linklist. If the condition lS true, the

Repeat objects calls the inherited RuleBase method run,

passing it the fi~st element of the oExp list. After the

run method has completed and returned control back to the

Repeat object, the Repeat object loops back and rechecks the

I

!. ,

conditional. If the condition is false, the Repeat object

returns control to the calling obj ect.

further details.

72

See Rul eBase for

6.4.30 Class Row

Purpose:

Row provides a matrix of 1 x

Row
Prooertl.es Attrl.but.e~__

25 regions. Each region can
Ge:

S'-';: 'S

be occupied by only one

object (node or list) at a

time. 25 Rows make a Grid.

Inheritance: none.

Description:

Row provides access to an internal row of a grid by

providing methods to access the row to either set a reglon

to an obj ect, free a reg ion f rom an ab] ect I or query to

determine whether a region is free and availabl~.

73

-

6.4.31 Class RuleBase

Purpose: RuleBase

RuleBase is the base class

for

rules.

all expressions and

PropertJ.es AttrJ.bute~

~am=

Va~':'j

Inheritance KeyWords who

Inherits LinkNode.

Description:

RuleBase provides a virtual method for every keyword. I f a

keyword is a valid operation in all rules, it performs that

method. However, for most operations, RuleBase provides an

error message. It is the responsibility of the lnherited

Expressions to override any operation that lt conslders

valid. In addition to providing v~rtua1 methods for each

keyword, RuleBase provides a run method that loops through a

list of nodes, checks their type and calls the appropriate

method. In this way, RuleBase contains the only methods for

moving from one expression to another.

7-1

6.4.32 Class RuleDef

Purpose: RuleDef
RuleDef provides the

Propert~es Attr~butes

definition of a Rule.

Inheritance: RuleBase which

inherits KeyWords which

Inherits LinkNode.

Description:

RuleDef contains the name of the rule and a LinkList that

contains the expressions for a rule. RuleDef utllizes the

base class RuleBase to execute the expressions in a rule.

6.4.33 Class Scan

Purpose:

Scan processes the input file

by breaking the input data

Scan

; ~ -!_ . ~l

:.. ::'- J::: ~ .~.

into tokens. Scan also

writes out two temporary

files: Log File and

Tmp(debug) file.

75

-

Inheritance: Display.

Description:

Scan opens up the input file and creates a log file and a

tmp file. Each time scan encounters an end-of-line or end

of file, scan writes the line out to the tmp file along with

a line number. Scan opens the log file but does not use it,

but rather passes it to the load object which passes It on

up.

6.4.34 Class SelList

Purpose:

SelList Displays all the

SelList

lists types that are

available from the DSA

program source file.

Inheritance: CDialog.

76

-

Description:

When the user double-clicks on a free region on the child

window, DsaView creates the SelList object for the SelList

class and passes it the names of the the ListDefs. The user

then must select a list from the a listbox and either clicks

ok or double-click on the name. This name is returned La

DsaView where a list is displayed on the child window.

6.4.35 Class SelRule

Purpose:

SelRule Displays all the

SelRule
~~opert1es At tr 1PJ.tt~,?_._

CJr.~ni :D:"alo,,::, ori.3:-:::

rules that are available for

a particular list.

Inheritance: CDialog.

Description:

When the user double clicks on a region on the child window

that contains
,. .a .LlS:, DsaView retrieves the list of rules

from the ListDef and displays them, then passes them to

SelRule. Then DsaView calls a method in SelRule to dlsplay

the list of rules. When the user selects a rule, control lS

passed back to DsaView along with the name of the rule, and

DsaView processes the rule.

77

6.4.36 Class Set

Purpose:

Set provides an express~on LO

set the value 0: the va~ue of

a node.

Inheritance: RuleBase which

Set
ProDert~es Attr~butes

inherits KeyWords which Inherits LinkNode.

Description:

Set stores the name of the node to be set, the ope~ation to

be performed, and the value used to set the node (or the

name of the node to be used) .

7X

-

7. Future Direction

While Dynamic Data Structure Animation is a very

interesting and rewarding subject, it appears that it 1S

generating very little interest in the computer science

community. More emphasis is being placed on static

representations than dynamic, and almost exclusively 1n

association wi th compilers. Algori thm anima tors al so are

generating interest, but because of the large scope, it is

more difficult to produce data structure animation.

The language that was created for DSA should be

expanded to include such important language features as

methods (to be called from rules), so that recursion can

occur, as well as integer data types, strings, arrays, and

other structures besides nodes and lists. While the current

language allows for simple structures (and some not-so­

simple structures) such as linked lists, binary trees, three

trees, stacks, queues, etc .. , it would have a difficult time

animating AVL trees, Red-Black trees, or any other tree that

requires a rank. DSA would also have a difficult (if not

impossible) time animating hashes and heaps that were not

trees. By adding these features 1n the futures, such

structures would no longer be di f f icul t or impossible to

generate.

79

Another feature that would be helpful for DSA would be

the ability to convert DSA code to 'C' ,'C++', and JAVA code.

In this way, the user could build his or her structure

relationships In DSA and later use them in subsequen~

programming efforts.

It would also be useful to have an interactive debugger

and the ability to write and edit DSA code from within the

application, instead of having to use a sep2~ate text

editor. It would also be useful if a trace was buil~ lnto

DSA so that the user could step through the DSA code. While

these would all be very helpful features, they would also be

very time-consuming to implement.

80

8. Conclusion

"A picture is worth a thousand words."

}\uthor unknown.

DSA gives a visual representation to an abs~ract

concept. For many users exploring data structures, whether

they are students, researchers, or program developers, DSA

gives a concrete physical image to abstract concepts. For

students learning a data structure, the abili ty to see how

their structure interacts is a very important learning tool.

For the

ability

:::-esearcher

to explore

designing

visually

new data structures,

the data structure

the

is

invaluable. For the developer, the ability to visually

observe his/her data structure could potentially save many

hours of development time.

DSA is an important tool that improves on data

structure animation that is currently not available. While

there are many algorithm animators that are capable of

animating data structures, their focus is so broad that they

can be cumbersome to use to create a data structure

animation. Because DSA focus is exclusively on Data

81

Structures, it 1S able to narrow its focus and therefore

make it simpler to animate data structures. For animaL.ng a

dynamic data structure, I believe a DSA is the best too_ for

the job.

82

Selected Bibliography

[ARR92] Arra, Shravan K., "Object-Oriented Data Structure Animation," Graduate
College of Oklahoma State University, Master Thesis, Computer Science,
July 1992.

[BAE74] Baeker, R.M, "Genesys Ineractive Computer-Mediated Animation", [n
Computer Animation, J Halas, Ed., Hastings House, New York, N.Y. pp
97-115,1974

[BAL90] Balci, Osman, Nance Richard E., Derrick, E. Joseph., Page, Ernest H,
Bishop, John L., "Model Generation Issues in a Simulation Support
Environment", Technical Report TR-90-40, Department of Computer
Science and System Research Center, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, pp. 13, 1 August 1990

[BAE81] Baeker, RonanJd M, "Sorting out Sorting", 16mm color sound film. 1981

[B0075] Booth, K., "PQ-Trees", 16mm color silent film, 1975

[BR087] Brown, Marc H, "Algorithm Animation," An ACM Distinguished
Dissertation 1987, The MIT Press, 1988.

[BR092] Brown, Marc H, "Zeus: A System for Algorithm Animation and Multi-view
Editing," System Research Center, Digital Equipment Corporation, February
28, 1992.

[BR093a] Brown, Marc H, "The 1992 SRC Algorithm Animation Festival," System
Research Center, Digital Equipment Corporation, March 27, 1993

(BR093b] Brown, Marc H., and Nojork, Marc A, "Algorithm Animation Using 3D
Interactive Graphics," SRC Research Report, Digital Equipment
Corporation, September IS, 1993

[CHA86] Edited by: Chang, Shi-Kuo, Ichikawa, Tadao, and Ligornendies, Panos A.,
"Visual Languages," Management and Information Systems, Plenum Press,
New York and London, 1986

[CON79) Conway, Richard., and Gries, David, "A Structured Approach Using PL/J
and PUC, Third Edition," Winthrop Publishing, Inc. 1979.

83

[COP92] Coplien., James 0., "Advanced C++, Programming Styles and Idioms",
AT&T Bell Laboratories, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1992.

[FEL88] Feldman, Micheal B., "Data Structures with ModuJa-T, George Washington
University, Prentice Hall, Englewood Cliffs, N.J. 1988

[HIL88] Hille, Reinhold F., "Data Abstraction and Program Development Using
Pascal", Department of Computer Science, The University of Wollongong,
Australia, Prentice Hall, 1988.

[KN066] Knowlton, Kenneth C, "L6: Bell Telephone Laboratories low-level linked
list language", two black and white sound films. 1966.

[KNU73] Knuth, Donald E., "The Art of Computer Programming, Second Edition.'­
Addison-Wesley Publishing Company, 1973.

[LAW94] Lawrence, Andrea W., Badre, Albert, and Stasko, John T, "Empirically
Evaluating the Use of Animations to Teach Algorithms," Technical Report
GIT-GVU-94-07, Graphics, Visualization, and Usability Center, College of
Computing, Georgia Institute of Technology, Altanta, GA 30332-0280, July
1994.

[MAK91] Mak, Ronald, "Writing Compilers and Interpreters", John Wiley & Sons Inc,
1991.

[MAN89] Manber, Udi., "Introduction to algorithms, A CreatLve Approach"
University of Arizona, Addison-Wesley Publishing. \989

[MAR86] Marcus, Caudia., "Prolog Programming,", Addison-Wesley Publishing
Company, Inc, 1986

[MUF82] Mufti, Aftah, A. "Elementary Computer Graphics", Reston Publishing
Company, Inc., 1982.

[RAL2nd] Ralston, Anthony., Reilly, Edwin D, Jr, "Encyclopedia of Computer
Science and Engineering, 2nd Edition," Van Nostrand Reinhold Company,
New York, N Y.

[STAn] Stasko, John T, and Turner Carlton R. "Tidy Animations of Tree
Algorithms," Technical Report GIT-GVU-92-11. Graphics, Visualization,
and Usability Center, College of Computing, Georgia Institute of
Technology, Altanta, GA 30332-0280, November 1992

[THA90] Edited by: Thalmann, Daniel, «Scientific Visualization and Graphics
Simulation," John Wiley & Sons, Inc.., New York, 1990.

[TAL95] Tal, Ayellet and Dobkin, David. "Visualization of Geometric Algorithms,"
IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No.2,
Page 194-204, June 1995.

[VIN84] Vince, John., "Dictionary ofComputer Graphics", Knowledge Industry
Publications, Inc., White Plains, NY 1984

[WEI93] Weiss, Mark A., "Data Structures and Algorithm Analysis in C," The
Benjamin/Cummings Publishing Company, Inc., 1993.

[YOU89] Yourdon, Edward, "Modem Structured Analysis," Yourdon Press.
Englewood Cliffs, New Jersey, 1989.

85

VITA

Lee HOD Harvick

Candidate for the Degree of

Master of Science

Thesis: RULE BASED DATA STRUCTURE ANI~ffiTION

Major Field: Computer Science

Biographical:

Education: Received Bachelor of Science degree In
Mechanical Engineering from Tongji Unlverslty,
Shanghai, China, in July 1987. Completed the
requirements for the Master of Science degree wlth
a major in Computer Science at Oklahoma State
University in May, 1997.

