RULE BASED DATA STRUCTURE

ANIMATION

By
LEE HOU HARVICK
Bachelor of Mechanical Engineering
Tongji University
Shanghai, China

1987

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May 1997



RULE BASED DATA STRUCTURE

ANIMATION

Thesis Approved:

Dean of the Graduate College



PREFACE

There are many types of methods to display Animated
Data Structures. Most o©of the methods are very cumbersome
and require an in-depth knowliedge of a particular animation
language. These animatiorn languages require the developer
to think in programming terms instead of the rules that are
associated with a data structure. This means that for any
learner, whether it is a student, developer, or a
researcher, they will be regquired to spend as much time or
more in developing the Data Structure Animation software as

they would spend developing the actual software in a more

traditional programming languages. The following document
presents a simplified Data Structure Animator that 1is
designed to be rule based. This will enable the user to

design Data Structure Animation using the more natural rules

assoclated with the Data Structure.

111




ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my
advisor, Dr. Chandler for all of his help. I would like to
thank Dr. LaFrance for his support and advise which made
this thesis possible. I would like to thank Dr. Hedrick for

all of his time and consideration.

I would also like to give an extra thanks to Dr.
Chandler for not only helping me through my thesis work, but
all the extra help he has given me during my graduate

studies the past two years.

Also, I would also like to give my special thanks to my
husband, Ray Harvick, for his suggestions, help,
encouragement, understanding and support throughout ¢the
whole process. Also, my sincere thanks to my Parents for

their support and encouragement.

Finally, I would 1like to thank the Department of
Computer Science, its faculty and staff, for all the support

during these two years of study.



TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION 1
2. RELATED WORK 5
3. OVERVIEW OF DSA 7
3.1 WHAT IS DSA 7
3.2 JUSTIFICATION FOR DSA 7
3.3 ADVANTAGES OF DSA 8
3.4 DISADVANTAGES OF DSA 9
4. DSA DATA STRUCTURE DEVELOPMENT PROCESS 11
4.1 CREATING A DSA PROGRAM 11
4.2 LoAD AND RUNNING A DSA PROGRAM 11
4.3 DEBUGGING A DSA PROGRAM 19
5. DSA PROGRAMMING 25
5.1 OVERVIEW OF THE DSA PROGRAMMING LANGUAGE 25
5.2 KEYWORDS 26
5.3 LIST DEFINITIONS 28
5.4 NODE DEFINITIONS 29
5.5 RULE DEFINITIONS 30
5.6 EXPRESSIONS, CONDITIONS, AND STATEMENTS 31

5.6.1 DESTROY EXPRESSION
5.6.2 MESSAGE EXPRESSION
5.6.3 SET EXPRESSION



5.6.4 IF EXPRESSION

33

5.6.5 REPEAT EXPRESSION 34
5.6.6 CONDITIONS 34
5.7 EXAMPLE SOURCE CODE 35
5.7.1 QUEUE.SRC 35
5.7.2 STACK.SRC 36
5.7.3 TREE.SRC 36
5.7.4 LINKLIST.SRC 39
5.8 EXAMPLE DATA STRUCTURE OUTPUT IMAGES 40
5.8.1 QUEUE STRUCTURE OUTPUT IMAGE 40
5.8.2 STACK STRUCTURE OUTPUT IMAGE 4]
5.8.3 BINARY TREE STRUCTURE OUTPUT IMAGE 42
6. DSA ARCHITECTURE 43
6.1 OVERVIEW OF ARCHITECTURE 43
6.2 CLASS/OBJECT RELATIONSHIPS 43
6.2.1 PRINCIPAL CLASS/OBJECT RELATIONSHIPS 43
6.2.2 RULE CLASS/OBJECT RELATIONSHIPS 45
6.3 EXAMPLE RULE OBJECT RELATIONSHIP CHART 47
6.4 CLASS DESCRIPTIONS 50
6.4.1 CLASS DSAAPP 50
6.4.2 CLASS ABOUTDLG 51
6.4.3 CLASS MAINFRAME 51
6.4 4 CLASS DSAVIEW 52
6.4 5 CLASS DsaDoOC 53
6.4.6 CLASS ACCESS 54
6.4.7 CLASS DESTROY 54
6.4.8 CLASS END 55
6.4.9 CLASS ENTERKEY 56
6.4.10 CLASS GRID 56
6.4.11 CLASSIF 57
6.4.12 CLASS KEYWORD 58
6.4.13 CLASS LDERROR 58
6.4.14 CLASS LINKLIST 59
6.4.15 CLASS LINKNODE 60
6.4.16 CLASS LINKORJ 61
6.4.17 CLASS LISTDEF 62
6.4.18 CLASS LISTOBI 62
6.4.19 CLASS LOAD 63
6.4.20 CLASS LOCATION 64
6.4.21 CLASS MSG 65
6.4.22 CLASS NEW 65
6.4.23 CLASS NODE 66
6 4.24 CLASS NODEDEF 67

vi




6.4.25 CLASS NODELIST
6.4.26 CLASS NODENODE
6.4.27 CLASS NODEOBI
6.4.28 CLASS OBJECT
6.4.29 CLASS REPEAT
6.4.30 CLASS ROw
6.4.31 CLASS RULEBASE
6.4.32 CLASS RULEDEF
6.4.33 CLASS SCAN
6.4.34 CLASS SELLIST
6.4.35 CLASS SELRULE
6.4.36 CLASS SET

7. FUTURE DIRECTION

68
69
70
71
72
73
74
75
75
76
77
78

79

8. CONCLUSION

81

BIBLIOGRAPHY

83

vii




Figure

1: Open Dialog

LIST OF FIGURES

2: Child Window

3: Select a List

1: Name the List

5: Displayed Queue Node

6: Select a Rule

7. Enter a Key

8: Single Node Displayed
9: Multiple Node Display

10: Load Error

11: List Definition Diagram

[2: Node Definition Diagram
13: Rule Definition Diagram
14: Destroy Expression Diagram
15: Message Expression Diagram
16: Set Expression Diagram
17: If Expression Diagram

18: Repeat Expression Diagram

VIl

18

19

2

259

30

31

31

31

33

34



19:

20:

22

23

24:

23;

26:

27

. Example output of Stack

Conditional Diagram

Example output of a Queue

Example Output of a Binary Tree

Principal Object/Class diagram

Rules & Expression Hierarchical Chart

Example Hierarchical Diagram of a ListDef & NodeDef

Example of a Rule Hierarchy of Push

Example of a Rule Hierarchy of Pop

N

34

40

41

44

46

48

49

50



1. Introduction

In examining what Ruled Based Data Structure Animation

is, it 1is important to understand the underlying related

terms. It is also important to understand any related
subject matter. Data Structures have been animated both
statically and dynamically. For purposes of this

introduction, we concentrate only on dynamic animation.
Most Dynamic Data Structure animation 1s accomplished either
using a traditional programming language (such as Pascal, C,
or FORTRAN), or Algorithmic Animators (such as Basil or
Zeus). To examine what Data Structure Animation 1s we will
examine related issues, which include Animation, Algorithm,

Abstract Data Types, Object Inversion, and Data Structure.

Animation refers to any graphic display of information
where the information to be imparted to the viewer 1is
conveyed by an 1mage change [BAE74]. Post-Simulation
Animation visualizes the input, internal, and output
behaviors of a simulation model Dby using the simulation
trace data generated from a complefted simulation run
[BALSO]. Simulation-concurrent animation visualizes the
input, internal, and output behaviors of a simulation model

as the simulation runs [BALSO0].



A Data Structure describes the way data are organized
in a computer program [VIN84]. A Data Structure is just a
particular representation of a data object [HIL88]. Data
Structures are the building blocks of computer algorithms

[MANBO] .

As previously stated, Dboth traditional programming
languages and algorithm animation languages have been used

to display data structure animation in the past.

"By a data structure we mean a ¢table of data
including structural relationships.” [CON79]

“In its simplest form, a table might be a linear

list of elements, when its relevant structural
properties might include the answers to such gquestions
as: Which element is first in the 1list? Which 1is

last? Which elements precede and follow a given one?
How many elements are there in the 1list?” [KNU73]

“"To structure data effectively, 1t 1s essential
not only to know techniques but also to know when to
apply certain techniques.” [MUF82]

“Objects such as lists, sets, and graphs, along
with their operations, can be viewed as abstract data
types.” [WEI93]

Because of the relationship algorithms have to data
structures, algorithm animators have been the traditional
method o©f displaying data structure animation. These

animation langquages require the developer *o think in

3]




programming terms instead of the rules that are associated
with a data structure. This means that for any learner,
whether it is a student or a researcher, he or she will be
required to spend as much time or more in developing the
Data Structure Animation Software as they would spend
developing the actual data structure in the more traditional
programming language. This thesis presents a simplified
Data Structure Animator that is designed to be rulea based.
This enables the user to design Data Structure Animation
using the more natural rules assoclated with the Data

Structure.

Data Structure Animation concentrates primarily on
dispiaying the relationship between data, while algorithm
animation concentrates on primarily displaying the
relationship of a set of instructions and while Algorithm
animaticn can be used to display a data structure, a data
structure animator can only display a subset of algorithms
as they relate to the structure and relationships among
data. Thus ar algorithm that describes the 1interaction
between two nodes of data can be displayed by either an
algorithm animator and a data structure animator, an
algorithm that does not confine its operations or
instructions to a data structure cannot be displayed by a

data structure animator. The advantages of a data structure



animator are that it has a greatly reduced scope, and
therefore it has less complexity. This reduces the learning
curve of the user as well as reduces the amount of work
required to display a data structure animation. The
disadvantage of a data structure animation 1s that becausse
it has a limited scope, it is limited only to data structure
relationships and cannot display information beyond the

scope of the relationships among data.



2. Related Work

The History of Data Structure Animation goes back to
the 1960’'s. The initial animation was done using £film.
This presented a static wvisualization of a known Data
Structure. This meant that the investigator or instructor
could not visualize a sequence of events not depicted in the

1.

In 1966, a film prcduced by Knowlton, “Lé6: Bell
Telephone Laboratories Low Level Linked List Language”
demonstrated how an assembly level list processing languadge

works [KNO66].

In three other films, “Sorting Out Sorting” [BAER1l],
“PQ-trees” [BQQ75], and “Hashing Algorithms” by Hopgood,
demonstrated the importance of film 1n describing Data
Structure Animation [ARRS2]. Each of these films described

various static Data Structure Animations.

In the 1970's, research began to focus on static
animation from the information available to a system

debugger at run-time [ARRS2]. These animators displayed the

L



structures of a program during runtime without the need to
change the program itself. These animators showed the
results of the operations performed but did not show the

operation itself [ARRS92].

At the present time, there are many forums that permit
the creation of animated Data Structures. These may range
from static presentaticn, such as film [ARRS2], to more
dynamic methods such as Zeus [BR092], Tidy Animation’s
[STA92], and GASP [TAL95]. As was polnted out in
“Visualization of Geometric Algorithms,” by Ayellet Tal
[TALS5], most algorithm and Data Structure Animations have
beerr developed wusing sophisticated software that was
designed for general purpose usage. In “Wisualization of
Geometric Algorithms,” the authors points out the need for
software solutions that are more tightly scoped and
specific. This would allow the software to be tailored for
the specific purpose intended. Tal and his co-author then
go on to describe their solution specialized to Geometric
Algorithms. It is my intentions to seek out a different

specialization in Data Structure Animation.




3. Overview of DSA

3.1 What is DSA

DSA (Data Structure Animation) provides an interactive
environment that allows the user to design and run data

structures in a visual format.

DSA takes as input a text file, with DSA coding in it.
It converts this code 1into 1interactive oblects. These

objects provide the mechanism for all interaction.

3.2 Justification for DSA

While there are many ways to display data structures
visually, most presentations are either static in nature or
only allow a few select data structures that are hard coded
into the software. The few software products that allow
dynamic creations of data structures are more dgeneral 1in
form. While these animators do a good Jjob of animating
algorithms, they are very cumbersome for animating data

struecktures.




In contrast to algorithm animators, DSA focuses only on
data structures and therefore is able to simplify the method
of presenting graphic displays of data structures. Because
DSA focuses on data structures, the user is reguired to do
less coding. In fact, with DSA, the user could actually do
less coding than he or she would have to do in a traditional
language such as C. This allows the user to focus on the

data structure rather than the programming environment.

3.3 Advantages of DSA

In comparison with algorithm animators, DSA has the
advantages of focusing on data structures. This means that
DSA requires significantly less code to animate data
structures than a algorithm animaticn, since DSA builds 1in
data structure relationships into the environment. DSA
assumes that all structures will have one list and many
nodes. Each list can have one or more pointers to nodes.
Each node can have zero or more pointers to other nodes.
The other advantage DSA has over algorithm animators is that
it assumes that the screen 1s divided 1nto regions and that
only one node or list can occupy that region. This frees
the user from having to calculate the location of a node for
visual purposes. Another advantage of DSA is: it places

nodes on the screen in their relative positions to the list.




Once again, this frees the user from doing any calculations
to determine the location of a node. In DSA, only the list
is anchored at any location; all nodes are relative to the
14ist. For example, a list mav have a root node with a
relative position of “down”. This means that the system
attempts to place the root node one position down from the
L8, If the root node also had two nodes with a relative
position of “down right” and “down left,” then the relative
positions of the bottom two nodes are down one and to the

left or right from the root, and the root has a relative

position of down one. This means the right node’s relative
position 1is down two and right one. The left node 1s down
two and 1left one. By freeing the user from making such

calculations, the user has more time tc consider the data
structure relationship without worrying about peripheral

matters.

3.4 Disadvantages of DSA

Because DSA  focuses entirely on Data Structure
Animation, it is limited in scope. DSA 1s unable to display
any algorithm or data structure that does not consist of one
list and one or more node types. DSA cannot show such
things as pie charts, bar charts, etc. which algorithm

animators can do.




Some of the data structures that a fully operational
DSA can display include: Stacks, Linked 1lists, Queues,
Binary trees, AVL trees, etc. In fact, DSA can display
almost any structure that is a tree. But DSA would struaggle

with structures such as a hashing table.

10




4. DSA Data Structure Development Process

4.1 Creating a DSA Program

To create a DSA program, the developer first must
create a text file containing DSA code. After the developer
has written his/her program, the developer starts DSA. DSA
queries the user for a file name. Once DSA receives the
name of the file containing the source code for the program,
DSA immediately begins to decode it. During the process of
decoding the source file, DSA creates a temporary file using
the input name and changing the extension to “.tmp”. For
example, if the developer opens up “Tree.src”, DSA will
create a temporary file named “Tree.tmp”. If the program
was decoded properly, DSA will display an empty child
window. Otherwise, it will display a message informing the

user that there was an error in the program.

4.2 Load and Running a DSA Program

When the user either starts DSA or request a new source
file, DSA displays an opening dialog with a list of files.
Once the user selects a file, DSA immediately decodes the

source.




Open [ 7§ X

Lok [ 5w -] & ol =m

[ =] Dbt src: 2] Stack stc 2] Tree
: E Dblllist.tmp ] Stack.tmp ] Tree sic
E : :ﬂ Linklist.sre d Temp &) Tree.tmp E
| @] Linklist.tmp Z| Temp
{#] Queue sic ] Temp.sic
{ =] Queue tmp ] Temp.tmp

e TR

Fiesof tope:  [All Files (7] o~ Cancel

Figure 1: Open Dialog

T —

If the program 1is loaded successfully without error, DSA

will display an empty child window.

__J}_DSA - Queue_sic

fle E& Veew Wndow Hep e :

Djes(&] 4|

-

NUM A

Aeady

Figure 2: Child Window

12



Once the user has an empty child window, he/she is ready to
begin. The first step in animating a data structure is the
creation of a list node. This is done by double clicking

anywhere on the blank child window.

Select the Stan List Stuclure |

Queuelsst

Ready | NUM |

Figure 3: Select a List

After the user has double clicked on a blank portion of the
child window, DSA prompts the user to select a list
structure. For most DSA source files, there will be only
one choice (although it 1is possible to have more than one
list by coding more than one list in the input text file,
each list is a separate entity and does not share data). The
user clicks on the list of his/her choice and proceeds to

the next step.




Nome Thelst |
Definition: Name: Fwﬁﬂ

Figure 4: Name the List

After the user has selected a list type, the system
queries the user for the name of the list and allow the user
to change the physical location of the list. Once the user
has entered a name, the system will display an oval, which
represents a list, with the name of the list inserted inside

the oval.

14




<~ DSA - Queue sic |- 0] x| [

_F.E]ueue_src - (O] X] {

TheQue

Ready ' - ' [N

Figure 5: Displayed Queue Node

Once the first 1list has been entered, the user can
either create another list just like the previous one, or
the user can run a rule against the list (to 1insert or
remove a node). In order to run a rule (interact with the
list), the user double clicks on top of the displayed list

(oval) .




Pl ER Vew Wrdow Hup
| D|=|@| :|wle| 8le]

Select a Rule I

Pop
Push

. Ready - INUM

Figure 6: Select a Rule

After the user double clicks on a list (oval), then the
system queries the user for the rule to be run. The user 1s
then free to choose the rule to be run. Once the user has
started a rule, the rule will be run until either there is a
run-time error 1in the wuser’s program (rule), the rule

completes, or the system encounters e request for a new key.

16




Feady

Figure 7: Enter a Key

If during the running of a rule, the system encounters
a request for a new key, the system will prompt the user to
input a key. After the user enters a key, the system
resumes running the rule. After the rule has been run
successfully, DSA re-displays the list node and all of its
children. ©On the next pages is the display after one node

was entered (first display) and the display after several

nodes have been entered.

17

OKILAHOMA STATE [UNIVERSITY



- DSA - Queue.sic [ {O] x]

- Fo kR Vew Wodow Heb : R e Vel et LS 2 Ny A e 1) S
- Dics|&] i |nle| &8¢

¥ Queue.sic BEE]

; (ThcﬂuHaa l .

Figure 8: Single Node Displaved

OKLAHOMA STATE TNIVERSITY

18



<« DSA - Queue xc

Mi=lE
Do Ed Yo Mrdaw Heo o - sl TR AT R A
Diesd] = [+e] @lef
jw;i[]uzue sic - 10] x]

Ready

Figure 9: Multiple Node Display

4.3 Debugging a DSA Program

If during the loading of a source file, an error is
detected, the system displays a message and halts
loading/running the offending source code. Should this
occur, the user/developer must change

the socurce code to

correct the offending code.

NIVERSITY

J

OKILAHOMA STATE T



Eor in Loading
Source, check output
file <Linklist. tmo> for

Figure 10: Load Error

Once an error in loading the source code is detected,
the developer must fix whatever 1is wrong with the source
program. To help the developer fix bugs in the source code,
DSA outputs to a file a copy of the source output along
with line numbers, and after each error detected, DSA

outputs an error report Jjust below the offending source

code.

Example of an Output Source listing with Errors.

1::: Single Linked Last ::

2:List: LinkList

3: :Node LinkNode Head :Down

4: :Insert Insert

5: :Remove Remove

6:End:

5

8::: The Node definition ::
9:Nede: LinkNode

10: :Node LinkNode Next :Lcfi
11: :Key Key

12:End:

13:

14:Rule: Insert

15: :Node LinkNode NewNode

16: :New NewNode

17' :Set @NewNode Key <- :NewKev
18: :Set @NewNode. Next <- Head
19: :Set Head <- NewNodc
20:End:

20

RSITY

T
o]

NIVE

¥
L1

OKILAHOMA STATE




21
22:Rule: Remove
23::: TempNode is used for temporary storage will parsing the link list ::
24: :Node LinkNode TempNode
25: :Node LinkNode NextNode
26: :Node LinkNode PrevNode
27: :Set TempNode <- Head
28: :Set PrevNode <- :NULL
29: :Repeat TempNode != :NULL
Invalid use of Logical Operator inside of <Rule:<Repeat>>
30: :If :NewKey = @TempNode Key
31:  :If PrevNode = :NULL
3% :Set Head <- @TempNode.Next

33:  Else
34: :Set @PrevNode Next <- @TempNode.Next
35:  :Endif

Invalid use of Token :Endif inside of <Rule:<If>>
36:  :Destroy TempNode
37  :End
38: :EndIf
Error in defining : Assign detected
39: :Set PrevNode <- TempNode
40: :Set TempNode <- @TempNode.Next
41: :EndRepeat
Error! No Matchin <:Repeat> found for <:EndRepeat>!
42:End:
Error in defining :Assign detected
Error in defining :Repeat detected
Error in Rule: Remove detected

After the source code has been loaded successfully, DSA
maintains a log of up to 400 lines of actions performed on

the structure. This file has the extension of “.log”. For

example, if the input file name was Queue.src, the log file

would be Queue.log.

Loading C:\DSA\DSA\SRC\Queue.src
Creating: TheQue of List Type: QueueLisl

Running.. Push

:Node QueueNode

:New NewNode

:Set @NewNode Key <- :NewKeyv
:Set @NewNode.Next <- ‘Null

:If Head !=:Null

Branch Else

:Set Head <- NewNode

:Set Tail <- NewNode

End If

21

IINIVERSITY

E

OKILAHOMA STAT




Running.. Push

:Node QueueNode

:New NewNode

:Set @NewNode Key <- :NewKey
:Set @NewNode.Next <- :Null

:If Head !=:Null

Branch If

:Set (@ Tail.Next <- NewNode

:Set Tail <- NewNode

End If

Running.. Push

:Node QueueNode

:New NewNode

:Set @NewNode Key <- :NewKey
:Set @NewNode.Next <- :Null

:If Head '=:Null

Branch If

:Set (@ Tail Next <- NewNode

:Set Tail <- NewNode

End If

Running.. Push

:Node QueueNode

‘New NewNode

:Set ‘@ NewNode.Key <- :NewKey
:Set (@NewNode. Next <- :Null

:If Head !'=:Null

Branch If

:Set @Tail.Next <- NewNode

:Set Tail <- NewNode

End If

Running.. Push

:Node QueueNode

:New NewNode

:Set ‘@NewNode.Key <- :NewKey
:Set {@NewNode.Next <- :Null

:1f Head !=:Null

Branch If

:Set @Tail.Next <- NewNode

:Sel Tail <- NewNode

End If

Running.. Push

‘Node QueueNode

:New NewNode

:Set ‘@ NewNode. Key <- :NewKey
:Set ‘@NewNode Next <- :Null

:If Head !=:Null

Branch If

:Set (@ Tail Next <- NewNode

:Set Tail <- NewNode

22

OKLAHOMA STATE UNIVERSITY



End If

Running.. Push
:Node QueueNode
‘New NewNode

:Set @NewNode Key <- :NewKey

:Set @NewNode Next <- :Null
:If Head !'=:Null

Branch If

:Set /@Tail.Next <- NewNode
:Set Tail <- NewNode

End If

Running.. Pop

:Node QueueNode

:If Head !=:Null

Branch If

:Set NextNode <- (@Head. Next
:Destroy Head

:Set Head <- NextNode

End If

Running.. Pop

‘Node QueueNode

:If Head '=:Null

Branch If

-Set NextNode <- @Head. Next
:Destroy Head

:Set Head <- NextNode

End If

Running.. Pop

:Node QueucNode

:If Head '=:Null

Branch If

:Set NextNode <- (@Head Next
:Destroy Head

:Sel Head <- NextNode

End If

Running.. Pop

‘Node QueueNode

:If Head !=:Null

Branch If

:Set NextNode <- @Head.Next
:Destrov Head

-Set Head <- NextNode

End If

Running.. Pop

Node QueueNode

:1f Head '=:Null

Branch Il

:Set NextNode <- ‘@Head Next

23

INIVERSIT'Y

7T
L

OKLAHOMA STATE



:Destroy Head
:Set Head <- NextNode
End If

Running.. Pop

:Node QueueNode

:If Head !'=:Null

Branch If

:Set NextNode <- (@Head.Next
:Destrov Head

:Set Head <- NextNode

End If

24

OKLAHOMA STATE TINI VHERSIEY




5. DSA Programming

5.1 Overview of the DSA Programming Language

“"The main purpose of a compiler and of 1its close
cousin, the interpreter, 1s to translate a program
written in a high-level programming language .. into a
form that the computer can understand in order <to
execute the program. .. An interpreter .. translates the
source program into an internal form that it can
execute.” [MAK91]

Based on the above definition, DSA is an interprected
language. DSA reads in source code, translates 1t 1nto &
set of objects which are organized intc a set of lists and
nodes. DSA run-time objects are a set of lists with nodes

that contains lists.

The DSA source code has three distinct types: Lists,

Nodes, and Rules. Internally, Lists are made up of a set of
nodes and a set of rules. All rules inside of a list are
labeled either "“:Insert” or “:Remove”. These labels do not
affect the functionality of a rule; they are for
documentation purposes only. Internally, Nodes consists of
a set of Nodes and Keys. Rules are comprised of a set of

temporary nodes and expressions.

b2
wn

INIVEKSIY

T
L]

-
L ;.

OKILAHOMA STATE



All expressions are objects that share a base class
called RuleBase. RuleBase contains a virtual method for
every keyword in the DSA language. Many of methods 1in
RuleBase display an error message when called. Every Object
expression inherits RuleBase and overrides the methods
assoclated with its type. For example: Set overrides the
New method in RuleBase. Since New is only valid with a Set

expression, it is the only expression object to override 1t.

There are two types of stored data, List data and Local
data. Any datum (node) that is stored inside of the list 1is
available to the set of rules. In addition, any node that
is declared before an expression executes 1s also available.
In order to create a local variable, the “:Node” must be

used.

5.2 Keywords

The following 1is a list of keywords that are used 1in
the DSA language. Some key words are distinguished

according to where the “:” is placed. For instance, the “:”

in “:Node” is a local reference to a node, while the “:” in
“Node:” begins the definition of a node. All definitions
(List:, Node:, and Rule: all have “:” as the last character
in the key word. All other keywords with “:” have the ™“:”
as the first character. All definitions (List:, Node:,
Rule: } all end with an “End:” statement.

26

OKILAHOMA STATE IJNIVERSIEY



Keyword or Symbol

[A-Z,a-z]*[A-Z,a-2,0-9]"%

:Destroy
:Msg

:Set

<_

ks

:Then
:Else
:EndIf
:NewKey
iWhile
:Repeat
:EndRepeat
:Null

:End

: UpDown

: DownUp
:LeftRight
:RightLeft
:Ignore
:Left
:Right
:Down

:Up
:UpLeft
:UpRight
:DownLeft
:DownRight

List:
Node:
End:
Rule:
:Free
(@

&

Definition

User Token

Equal to

Greater than

Less than

Not Equal

Greater or Equal to

Less or Equal to

Insert rule

Remove rule

Node <Node Data Type>
Key <Key Data Type>
Order <Reserved, not used>
New <Create Memory>
Destroy <Destroy Memory>
Msg <Display a Message>
Set <Set a Node or Key>

Assign <Used with set (like %“=")»

Ef

Then <Reserved, not used>

Else

End If Statement

New Key <Query user for new key>
While

Repeat

End Repeat

Null <Set Data to Null>

End <Stop running the Rule>
<Reserved, not used>

<Reserved, not used>

<Reserved, not used>

<keserved, not used>

<Ignore Positioning>

Position Node to the Left
Position Node to the Right
Position Node Down

Position Node Up

Position Node Up and to the Left
Position Node Up and to the Right

Position Node Down and to the Left

Position Node Down and Right
Start/End Comments

Start definition of a List
Start definition of a Node

End the definition List,Node,Rule>

Define a Rule

remove reference link of a node
Redirect Data Pointer

Set Pointer to Reference

27

VHEHRDIY

b |
'l

™
| B

OKILAHOMA STATE



5.3 List Definitions

The List: statement defines a list.

*»—’T;P <Mame of Listr - iNoge (e <Mode Defr e <Name of Noger —wh rRaghT e N
— i =
: 1lnsert i <hule [af> —Py — alp B
R Y D R
— pRight e
e ragr -
L townietr
= _n'
Figure 11: List Definition Diagram
== — — =

The <Name of the List> can be any name one wishes to
give 1it, including characters, numbers, and symbols, as long

it is not a reserved word.

The <Rule Def> can be any name, but at run time there
must be a corresponding rule definition or an error occurs.
It does not matter whether the rule definition occurs before

or after the List:.

The <Node Def> can be any name, but at run time, there

must be a corresponding node definition or an error occurs.

28

MNIVERDL! 1

ATEHE U

ol

st

"
(43

AA

\

101

O



It does not matter whether the node definition occurs before

or after the List:.

5.4 Node Definitions

The Node: statement defines a node.

——»—.1' Node: P GNase 0f Nodes —Fge  iNode [ uoas et g cvamm of
1 [ |

-

e <Eey Names _T

Figure 12: Node Definition Diagram

The <Name of node> can be any name one wishes to give

it, including characters, numbers, and symbols, as long 1t

is not a reserved word.

The <Key Name> can be any name one wilishes to give it,
including characters, numbers, and symbols, as long 1t 15

not & reserved word.
Every "“:Node” inside of “Node:” must have a relative

position key word such as “:Right”. This tells DSA that the

relative graphical display position of the node link is to

29

iVvHEnoi! 2

AHOMA STATE (15

OK



the right of the list. While DSA attempts to place the node
one region to the right, it may alter 1ts positioning
depending upon other elements (Nodes or Lists) or to give a
smoother look to the overall display. For instance, 1in a
tree, DSA may push nodes under the root in both directions

in order to reduce the bell curve look.

Each Node: can have as many :Node’s or :Key’s as 1s desired.

5.5 Rule Definitions

The Rule: statement defines a rule.

—»—’ Ruls: '—.' <Name < Fule- —!' CExpress.in: —A—Pp  Enu = N

Figure 13: Rule Definition Diagram

The <Name of rule> can be any name one wishes to give
it, including characters, numbers, and symbols, as long 1t

is not a reserved word.

Each rule is made up of one or more expressions.

30

Tl P,

-.“"J"‘ii.

ORI AHOMA STATE iJN



5.6 Expressions, Conditions, and Statements

5.6.1 Destroy Expression

The :Destroy statement deletes the memory that to which the
<name of node> points.
—w :Destray ——P= <Hame of Node> I—N——
Figure 14: Destroy Expression Diagram
5.6.2 Message Expression
The :Msg statement displays any message contained between
two guote characters.
I'ﬁ'p- B Mg —B Hessagem "H"
Figure 15: Message Expression Diagram
5.6.3 Set Expression
The :Set statement sets the value of a node or key.
- ¥ _-r-.-'-.'-.‘.T_—_'—‘ e >«
R e i A W

Figure 16: Set Expression Diagram

31

NiWoL

A 314

OKLAHOMA



Each :Set must be followed by an identifier followed by
the assignment operator “<-%. The Assignment operator is
then followed by a second identifier or the keywords
“:Null”, ™“:NewKey”, or “:Free”. The identifier may either
be direct or indirect. Any identifier containing a “@” as
its first character (or second if the first character 1is a
“&’”) 1s an indirect address and must take on *the form
<identifier>.<identfier> where the first <identifier> 1is
any node (either local or 1n a 1list) and the second
<identifier> 1is either a node or a key that is 1in the
definition of the first <identifier>. If there 1s a third
<identifier> it must be contained in the second, and so
forth. Any identifier that begins with the character “&” is
a reference. Whenever a reference 1is used to set an
identifier, any future reference to that identifier would be
the same as though it accessed the original identifier. For

example:

:Set x <- &y

:Set X <- :New

In this example, y 1s given new memory. However, we had

the following example:

32

¥

TR
vi VILK

OKILAHUMA STA L E L



:Set X <- vy

:Set x <- :New

Then y still contains whatever wvalue it had, but x

receives new memory. Once a 1ldentifier has been set to a
reference, it remains a reference until it either is out of

scope or it is set to “:Free”.

5.6.4 If Expression

The :If statement is a conditional branch.

Figure 17: If Expression Diagram

The :If statement will cause the <condition> to be
examined, and if true, all expressions listed before the
:Else statement are executed. Otherwise, all expressions

after the :Else are executed.

33

I P

v

%4

P W B O O

4 34

HO VL

A
s S

OKI



5.6.5 Repeat Expression

The :Repeat statement is a conditional loop.

I 1 = ] - —
<iX 2

Figure 18: Repeat Expression Diagram

The :Repeat statement causes the <condition> to be
examined, and if true, all expressions are executed and then
recycled to the beginning and the <cendition> 1s re-
examined. Once the condition is false, the system proceeds

to the expression after the :EndRepeat.

5.6.6 Conditions

Conditions are used in both the :If and the :Repeat

expression.

k__"__--—' —'____-__*l . -\ 3 %-J — o
{ wn — e e === -

Figure 19: Conditional Diagram

VihAhlude 2 2

OKLAHUMA S1A5 £ s



The condition causes the identifier to be on
left and right side, and based on the

(<, >,=,!=,>=,<=) returns either a true or a false.

both the
operation

Based on

these results, the :If or :Repeat flow is determined.

5.7 Example Source code

5.7.1 Queue.src

List: QueueList
:Node QueueNode Head :Right
:Node QueueNode Tail :Ignore
:Insert Push
:Remove Pop

End:

Node: QueueNode
:Node QucueNode Next :Down
Key Key

End:

Rule: Push
:Node QucueNode NewNode
‘New NewNode
:Set @NewNode Key <- :NewKey
:Set @NewNode.Next <- :Null
:If Head != :Null
:Set @Tail.Next <- NewNode
:Set Tail <- NewNode
:Else
:Set Head <- NewNode
:Set Tail <- NewNode
‘EndIf
End:

Rule: Pop
‘Node QueueNode NextNode
Il Head != :Null
:Set NextNode <- @Head.Next
:Destroy Head
:Set Head <- NextNode
:Else
‘Msg "No Nodes in List"
:EndIf
End:

Pihiaid L 2

R LAHUNVL iAo



5.7.2 Stack.src

List: StackList
:Node StackNode Top :Down
Insert Push
:Remave Pop

End:

Node: StackNode
:Node StackNode Next :Down
‘Key Key

End:

Rule: Push

:Node StackNode NewNode

:New NewNode

:Set @NewNode. Key <- :NewKey

:If Head != :Null
:Set ‘@NewNode.Next <- Top
:Set Top <- NewNode

:Else
:Set [@NewNode Next <- :Null
:Set Top <- NewNode

‘EndIf

End:

Rule: Pop
‘Node StackNode NextNode
Af Top = :Null

:Set NextNode <- @Top.Next
:Destroy Top
:Set Top <- NextNode
Else
‘Msg “"No Nodes in Stack"
‘EndIf
End:

57.3 JTree.src

List: TreeList
‘Node TreeNode Top :Down
‘Insert Insert
‘Remove Remove

End:

Node: TreeNode
‘Key Key

‘Node TreeNode LeftChild :DownLefi
:Node TreeNode RightChild :DownRight

End:

Rule: Insert
‘Node TreeNode NewNode

g § PEEY SR

IR LAHUIA 1AL e



:Node TreeNode TopNode
:New NewNode
:Set @NewNode.Key <- :NewKey
:Set @NewNode.LeftChild <- :Null
:Set @NewNode RightChild <- :Null
If Top = :Null
:Set Top <- NewNode
:Else
:Set TopNode <- &Top
:Repeat TopNode != :Null
:If NewNode > TopNode
:1f @TopNode.RightChild = :Null
:Set @TopNode.RightChild <- NewNode
:Set TopNode <- :Free
:Else
:Set TopNode <- &/@TopNede.RightChild
:EndIf
:Else
If @TopNode.LeftChild = :Null
:Set @TopNode.LeftChild <- NewNode
:Set TopNode <- :Free
:Else
:Set TopNode <- &@TopNode.LeftChild
:EndIf
:EndIf
:EndRepeat
:EndIf
End:

Rule: Remove
‘Node TreeNode NewNode
:Node TreeNode TopNode
:Node TreeNode NodeTop
:Node TreeNode SwapNode
‘New NewNode
:Set @NewNode. Key <- :NewKeyv
:Set i@NewNode.LeftChild <- :Null
:Set @NewNode.RightChild <- :Null
:Set TopNode <- &Top
.Set NodeTop <- :Null

<+ ddeofe s ook sk ko kol ok ok ok Rk kRl Rk Rk okok ok -

:: Find the Node to be replaced

3k o o oo ok o ok ok o ook oK ook K o o Rk o o o ok ok ok Kok -

:Repeat TopNode != :Null
:If NewNode = TopNode
:Set NodeTop <- &TopNode
:Set TopNede <- :Free
:Else
If NewNode > TopNode
If @TopNode RightChild = :Null
:Sel TopNode <- :Free
:Else

37

i_j_i"-&_i—ﬁ.i_-'_.'(?;l:‘.'.:,_.'-;_ oo Bl B 1B 1l S R R



:Set TopNode <- &@ TopNode.RightChild
:EndIf
:Else
:If @TopNode.LeftChild = :Null
:Set TopNode <- :Free
:Else
:Set TopNode <- &@TopNode LeftChild
:EndIf
:EndIf
‘EndIf
:EndRepeat

cokEFREkERkEkk R Rk Rk EE. .

:: Find Node to be swapped in ::

e

:If NodeTop != :Null
:If @NodeTop.RightChild = :Null
:If @NodeTop.LefiChild = :Null
:Set NodeTop <- :Null
:Else
:Set NodeTop <- @NodeTop.LefiChild
:EndIf
:Else
:If @NodeTop.LeftChild = :Null
:Set NodeTop <- @NodeTop.RightChild
:Else
:Set TopNode <- &@NodeTop.LeftChild
‘Set SwapNode <- :Null
‘Repeat TopNode != :Null
:If @TopNode.RightChild = ‘Null
:Set SwapNode <- TopNode
|If @TopNode.LeftChild = :Null
:Set TopNode <- @TopNode.LeftChild
:Set TopNede <- :Free
:Else
:Set TopNode <- :Null
:Set TopNode <- :Free
:EndIf
:Else
:Set TopNode <- @TopNode RightChild
‘EndIf
:EndRepeal
:1f SwapNode != :Null
:Set @SwapNode.RightChild <- @NodeTop RightChuld
:Set @SwapNode.LeftChild <-/@NodeTop.LefiChild
:Set NodeTop <- SwapNode
:Else
:Msg "Unkown Error, SwapNode is Null??7"
:EndIf
:EndIf
:EndIf
Else

38

LN ALY S e s s oS



:Msg "Unable to find Node in Tree"
:EndIf
End:

5.7.4 LinkList.src

:: Single Linked List ::

List: LinkList
:Node LinkNode Head :Down
:Insert Insert
:Remove Remove

End:

.- The Node definition ::
Node: LinkNode
:Node LinkNode Next :Left
‘Key Key
End:

Rule: Insert
:Node LinkNode NewNode
:New NewNode
:Set @NewNode Key <- :NewKey
:Set @NewNode.Next <- Head
:Set Head <- NewNode

End:

Rule: Remove

- TempNode is used for temporary storage will parsing the link list =

:Node LinkNode TempNode
:Node LinkNode NextNode
‘Node LinkNode PrevNode
:Set TempNode <- Head
:Set PrevNode <- :NULL
:Repeat TempNode != "NULL
Al :NewKey = @TempNode Key
:If PrevNode = :NULL
:Set Head <- @ TempNode Next
:Else

:Set f@PrevNode.Next <- @ TempNode Next

:Endif
:Destroy TempNode
:End
:EndIf
:Set PrevNode <- TempNode

:Set TempNode <- @TempNode.Next

:EndRepeat
End:

39

un

e B AW A1 s P B 0 o B B



5.8 Example Data Structure Output Images

5.8.1 Queue Structure Output image

In the figure below, the key values aa,bb,cc, and dd were

entered in sequence, with the following results:

- DSA - [Queue.src] M= E3 .
[ Fle E® View Wrdow Hep =1®] x| !

ollg el sle]
@LIB }\—‘{}aa | —
bo

| cc

foa | -

TRl R B A IYESY o 5

J | o

Heady {77 /NUM |

Figure 20: Example output of a Queue

10



5.8.2 Stack Structure Output image

In the figure below, the key values aa, bb, and cc were

entered in sequence, with the following results:

#» DSA - [Stack.sic] . (O] x]
=12 x|

(J Be E® Yew Wndow Hep
D& :|[o]a] &|e|

<

Ready

Figure 21: Example output of Stack

41



5.8.3 Binary Tree Structure Qutput image

In the figure below, the key values mm, gg, ss, bc, ii,

and tt were entered in sequence, with the following results:

! <1 D5A - [Tree.sic] "
ol Do Bk (U Wi Melp (5 0 0E S s R . T =l8]x|
" plelg@] ¢ e alel
Tree .
mm
ag ss
\
- .

. f 7

Ready NUM

Figure 22: Example Output of a Binary Tree

12

Lrind g md (1Y



6. DSA Architecture

6.1 Overview of Architecture

DSA is based internally on object oriented technology.

DSA also utilizes Microsofts Foundation classes for all

Windows interfaces. DSA utilizes two base classes
extensively (LinkList and LinkNode). These two classes form
the bases of almost all functionality within DSA. This 1is

done by either using the data elements inside of LinkNode
(FieldName and FieldData) or by inheriting either LinkList
or LinkNode, or a combination of both (usually a combination
of both). Often objects are stored inside a linked list as
a LinkNode object and then recast to the original class

after they are retrieved from the list.

6.2 Class/Object relationships

6.2.1 Principal Class/Object Relationships

Many of the objects in the chart below are instances of
MFC classes or classes that are built upon and inherited
from MFC architecture. In the chart below, all rectangles
represent classes, all ovals represent objects, and the one
hexagon represents the main function and the starting

address.

43




Dsaboc load
Ds MainFrame OnopenDec =2
in.tlnztance oalieate P Rulw
OnAppAbouT v Noce
" "
i == " - —
DEA has TheApp oA A
v
—_—

DsaView '
<nicav -

Ceeataloan

Fun

LinkList

Appens

Heaz

Hext

LinkNode

LT

Nare

Figure 23: Principal Object/Class diagram

All following classes that are used to instantiate

objects are described in detail. The inheritances involved

in the classes above. The classes, ListDef, Rulebef,
NodeDef, and Object all inherit Keywords. Keywords 1s used

to identify a word and determine whether it is a keyword and

if so, what kind.

44

§ s



6.2.2 Rule Class/Object Relationships

In the chart below, the hierarchy of all expressions
and rules 1is shown. All expressions and RuleDef inherit
RuleBase. RuleBase contains two very important methods.
Both methods are named Run, but have a different signatures
(parameters). The first Run is used to scan the input file.
Once a token is read from the input file, it 1s examined
using Keywords for its type. Once its type 1is determined,
either an error 1is produced and printed to the “.tmp” file
or an object of the correct type 1is created. Once the
object 1is created, it 1s given access tc the input source,
and continues to read the source until it either loses scope
(as with a :If finding a :EndIf) or it returns control to

its calling object if an error occurs.

The second run is for running the actual rules. Each

RuleDef is a LinkNode that contains a LinkList of

expressions. Rule processes each expression ({(using the
“Run” method 1inside of RuleBase). Each Method inside of
RuleBase 1is a virtual method. As each expression 1is

processed, RuleBase calls the appropriate virtual method.
That method may be from the RuleBase class or an cverloaded

method from another class. For 1instance, the key word



“:New” is invalid inside of most expressions and therefore
RuleBase contains a virtual method to display an error when
it encounters a “:New”. If the object that 1inherited
RuleBase 1is “:5et”, then when RuleBase calls the virtual
method for “:New”, 1t will execute the overload method

inside of “:Set” instead of RuleBase.

= = =

R.u.l.dﬁef .éer. Dastroy $E | Msg New
7 1
|
]

Repeat Noda

Figure 24: Rules & Expression Hierarchical Chart

The above classes are described in detail 1in the ensuing

pages.

16




6.3 Example Rule Object Relationship Chart

In the left-hand column of the source code below,
list of the objects/classes that each line of source code 1is
translated.

listed as it would be seen in the source code file.

Objects
LinkList
NodeNode
NodeNode
LinkNode
LinkNode

LinkList
NodeNode
LinkNode

RuleDef
Node
New

The right-hand column has

Source Code

RuleDef

Node

1f/I1fExp
Set
Destroy
Set

I1f/ElseExp
Msg

List: Queuelist
:Node QueueNode Head :Right
:Node QueueNode Tail :Ignore
:Insert Push
:Remove Pop

End:

Node: QueueNode
:Node QueueNode Next
:Key Key

End:

:Down

Rule: Push
:Node QueueNode NewNode
:New NewNode
:Set @NewNode.Key <-
:Set @NewNode.Next <-
:If Head !'= :Null
:Set @Tail.Next <- NewNode
:Set Tail <- NewNode
:Else
:Set Head <- NewNode
:Set Tail <- NewNcde

:NewKey
:Null

:EndIf

End:

Rule: Pop
:Node QueueNode NextNode
:If Head !'= :Null

:Set NextNode <- @Head.Next
:Destroy Head
:Set Head <- NextNode
:Else
:Msg "No Nodes in List"
:EndIf
End:

47




Below is the internal structure that is formed by the
source code above. In the left-hand tree, the ListDef has
two branches, the first branch is a list of nodes (Node
Names with relative positioning) and the second is a list of
rules (Rule Names). In the right-hand tree, the NodeDef
contains a list of nodes and keys. The nodes contaln a
names of NodeDef types and identifiers, while the Keys
contain an identifier for the key. **Note: NodeNode is a

name of a class and not a misspelling.

,———'—'—‘—H‘\ - —
':QueueLlst/ ' QueueNode
= = = —

Figure 25: Example Hierarchical Diagram of a ListDef & NodeDef

48




The Chart below shows the relationship of the
expressions in the Push rule for the example code above. The
Rule, Push, contains the following objects 1n order: Node,
New, Set, Set, and If. 1Inside the object of type If are two
branches, IfExp and ElseExp. Both the IfExp and the ElseExp
are objects of type LinkList. Each LinkList has two
expressions (objects) within it. Each object inside of both

the IfExp and the ElseExp is of type :Set.

—

—e ]C % C e i

Figure 26: Example of a Rule Hierarchy of Push

As you can see by comparing the charts above and below,
every method has the potential of having a unique object
relationship. This relationship is in direct correlation to

the source code for the rule.

49




Figure 27: Example of a Rule Hierarchy of Pop

6.4 Class Descriptions

6.4.1 Class DsaApp

Pureose :

DsaApp 1s the initial class.

1=

t 1is DsaBRpp responsibility

to start the entire process.

Inheritance: DsaApp 1nherits

the MFC class CWinApp.

DsaApp

Properties _ Attributes

fEtat

SNADSL

50




Description:

DsaApp instantiates an object of an object of type MainFrame
and calls a method to display it. DsaRpp also interfaces

with the AboutDlg.

6.4.2 Class AboutDIg

Purpose: AboutDlg

Properties Attributes

AboutDlag is responsible for

displaying the about box.

Inheritance: AboutDlg

Inherits the MFC Class

CDhialog

Description:

AboutDlg Displays and exits the about box.

6.4.3 Class MainFrame

Purpose: :
=OTPose:, MainFrame
_Properties _ Attributes

4 2= T — is S3dl

MainFrame creates the toolbar

and the status bar.

Inheritance: Inherits the

MFC Class CMDIFrameWnd.

51



Description:

MainFrame provides the frame work for all other windows

including the status bar, toolbar, and all child windows.

6.4.4 Class DsaView

Purpose: DsaView
Properties Attributes

DsaView ©prcvides all user

interfaces for child windows.

OnMous=Movs

Inheritance: DsaView 1inherits Gt Basimeris

the MFC CScrollView to create

child windows with actions on

the child window, scrollbars.

Description:

DsaView intercepts mouse commands and determines whether the
user clicked on an empty region cor one that is occupied. If
the region 1is unoccupied, begin the process of creating a
list. If the region 1s occupied by a 1list node, then
DsaView examines the list for its list of rules and queries
the user for which rule he/she wishes to run. If the region
is occupied by a node then DsaView takes no action. Once
either a 1list 1s «choosen or a rule 1s run, DsaView

invalidates the child window, causing the Draw method to be

52



called from within DsaView. From the Draw method, DsaView
processes each 1list the user has previously created and

calls its Draw method.

6.4.5 Class DsaDoc

Purpose:
=Cpoter DsaDoc
Properties Attributes |

ad shisrLay

DsaDoc purpose 1is to provide
access to the Dsa program OnOpenDos
source file and the Load and

Grid objects.

Inheritance: DsaDoc inherits the MFC class CDocument.

Description:
When a child window is created, the method Open
OnCpenDocument 1is called. From inside of this method, load

and grid objects are created. The load object is passed the
path of the Dsa program source that OnOpenDocument received
from the system. After 1load object completes its tasks,
DsaDoc queries the load object to determine 1if 1t was
successful. If not successful, DsaDoc displays an error
message and terminates the child window. If the load object
is successful, DsaDoc returns control back to the system.
DsaDoc also provides access to the load and grid objects for

use by other classes.

53




6.4.6 Class Access

Purpose:

Access provides easy access

to data files.

Inheritance: None.

Description:

Access provides methods to open and close files,

and write to files in either binary or text format.

Access

Properties Attributes |

Path,CreatsTxs, aPash

also provides stream operations for easier use.

6.4.7 Class Destroy

Purpose:

Destroy is an Expression
object used by rules. Destroy
releases a node and sets a

nodes properties to null.

Inheritance:

LinkNode.

54

oWipd:s?
and to read
Access
Destroy
Properties Attributes

RuleBase which inherits KeyWords which Inherits



Description:

Destroy is a child of RuleBase, KeyWords, and LinkNode.
Destroy uses the attributes of LinkNode to store the name of
the node to be destroyed. Destroy provides the name of the
node to be destroyed to the RuleBase protected method, which
in turn, either destroys the named node (if direct access)
or the node pointed to by the named node (if indirect

access) or the referenced node if a reference.

6.4.8 Class End

Purpose: End

T
[T

ributes

; P A
End provides a maker that —Properties

tells the RuleBase to end

execution of a Rule.

Inheritance: RuleBase who

Inherits KeyWords who Inherits LinkNode.

Description:

End provides a maker for RuleBase to inform it to stop

execution of a Rule and return control to the system.

Lh
L




6.4.9 Class EnterKey

Properties  Attributes

EnterKey queries the user to - e

enter a key.

Inheritance: CDialog.

Description:

Enter Key pops up a dialog that queries the user for a key.
Once entered, EnterKey provides access to the entered key

data.

6.4.10 Class Grid

PUI‘EOS@: Grid

_Properties . Attributes
Frid SRow

Grid provides a matrix of 25
X 25 regions. Each region ok
can be occupied by only one

object (node or 1list) at a

time.

Inheritance: none.

Description:

Grid provides access to an internal grid by providing

methods to access the grid to either set a region to an

56




object, free a region from an object, or query the grid for

the nearest open region to given coordinates.

6.4.11 Class If

Purpose: If

Properties Attributes

USEI DRET L= JOBRo L of o g

If controls the branching of

" o ey

o

execution of a rule by

storing and later examining

the contents of a

conditional.

Inheritance: RuleBase who inherits KeyWords who Inherits

LinkNode.

Description:

When RuleBase encounters an If object, it calls the If
object run method to continue execution of a method. The
run method in the If object the examines the conditional by
retrieving any nodes that the condition uses, examining
their contents and determining if the conditional is true or
false. The If object stores two Expression lists (IfExp and
ElseExp) both of class type linklist. If the condition 1is
true, the If objects calls the inherited RuleBase method
Run, passing it the first element of the IfExp list. If
false, the If object passes the first element of the ElseExp
to the RuleBase method Run. See RuleBase for further

details.

57




6.4.12 Class KeyWord

2Urpace; KeyWord

KeyWord 1s an abstract base Prezii%%gs Attributes
class and provides a method

to match strings to keywords.

Inheritance: LinkNode.

Description:

KeyWord has only one method, KeyWord. KeyWord receives a

string and attempts to match it to a KeyWord. If no match 1s

found, the string is assumed to be a user identifier.

6.4.13 Class LdError

PAEpOEE; LdError
Properties Attributes

Display an error dialcg
whenever the Load Object
fails to load a Dsa Program
source due to source program

errors.

Inheritance: CDialog.




Description:

DsaDoc calls the load object to load a Dsa source program.

After control

Load Object to determine whether it was
failed. If it failed, DsaDoc passes the name
original Dsa Program Source file to LdError

LdError inherited method to display the load error message.

6.4.14 Class LinkList

PurEose:

LinkList is a general purpose

is returned to DsaDoc,

DsaDoc examines the

successful

of

and

Linklist

Properties _ Attributes

LZprena ohzal
Insert g
class that provide the Remave L
TieldNams
rileDatca
properties of a link 1list, Head
Erev
queue, and a stack. i

Inheritance: None.

Description:

LinkList contains three pointers of type LinkNode. LinkList

methods either provides access to the LinkNocde pointers with

the methods Head, Curr, or Tail, or LinkNode provides access
to the current LinkNode {pqinted to by oCurr), which
includes access to the FieldName, FieldData, the Next
Pointer in the LinkNode, or the Previous Pocinter in the
LinkNode.




6.4.15 Class LinkNode

PugEose: .
LinkNode
i i 5 Attributes
FieldData ' E 3
class that provide the Kext

D

a4

properties of a node in a
linked 1list, queue, or a

stack.

Inheritance: None.

Description:

LinkNode contains two strings that hold the name of the node
and the data string. In reality, these two strings could
hold any string information. LinkNode also has two pointers
(Prev,Next) to objects of the same class (LinkNode). All

methods are used to access these four attributes.

60




6.4.16 Class LinkObj

Purpose:

LinkObj
. _— ibutes
LinkObj 1is used to wrap a _,Egggfiﬁles Att%m;;"
Nodelist = migs
node object. Its purpose is Positiar
Draw

to provide a tree structure

to draw the nodes.

Inheritance: LinkNode.

Description:

LinkObj contains pointers to an object of class type Object
and a pointer to a NodeList object. LinkObj regquires that
an object of type Object (actually NodeObj) be used 1in
creating a LinkObj. LinkObj then uses the Object to
populate the NodelList with all children of the Object that
have not already be wrapped by a LinkObj. Inside of Object
is attribute called stage; every time a LinkObj] wraps an
Object, 1its stage is changed to reflect this fact. If an
Object stage 1s already set to indicate that it 1s already
wrapped, then LinkObj will not re-wrap 1it. This prevents
the possibility of never-ending looping between nodes that

are linked in a circular fashion.

61




6.4.17 Class ListDef

EUrpose: ListDef
: ; lbutes
LinkDef provides the Prﬁzfitfes Atifh;uf —'
NodelList Mogelist
definition of a List. Nams
Inheritance: KeyWords which
Inherits LinkNode.
Description:
LinkDef contains the name of the List (type), and two

LinkLists that contain a list of rule names and a list of

node names.

6.4.18 Class ListObj

PUI‘EOSE: LlStObj

. . P A
ListObj bolds Fhe _____szp_iei_t:_:__l_e,s_ _ttrlbutes

instantiated information for Hodes

a List created for the user.

Inheritance: Object.

62




Description:

ListObj utilizes the inherited class Object to store a list
of pointers to all nodes that are available to a user List.
ListOb]j also holds a pointer to the definition of the list

(ListDef).

6.4.19 Class Load

PurEose: Load

Properties Attributes

Load loads a Dsa source
program and creates a series Node D

Valia

of ListDefs, NodeDefs, and

RuleDefs.

Inheritance: KeyWords who Inherits LinkNode.

Description:

Load first creates an object of type Scan. It uses Scan to
parse out tokens. It then uses the inherited class KeyWords
to determine what the token represents. If the token
represents either a Rule:, List:, or Node:, then load
creates an object of RuleDef, ListDef, or NodeDef. Load

then calls the Run method in each of these objects and
passes 1t the object Scan. Each of these objects will 1in
turn use scan to build up the objects until they reach a

End: token. Once an End: token 1is reach, control is again

63




passed to the load object and Load continues to process the
input file. Each time load creates an object, it appends it
to one of three LinkLists by type. Once Load has processed
all of the input file, Load will have three LinkList’s each

divided by object type: one list of RuleDefs, one list of

ListDefs, and one list of NodeDefs.

6.4.20 Class Location

Purgose: ‘
Location
_Properties Attributes

Location provides a two-
element object that contain

coordinates x and y.

Inheritance: None.

Description:

Store and retrieve X and Y coordinates.

64




6.4.21 Class Msg

Purpose:
rurpose: MSg
Properties Attributes

Msg provides a RuleBase
object for displaying a

message.

Inheritance: RuleBase which

inherits KeyWords which inherits LinkNode.

Description:

Msg 1s a marker that holds a string to be displayed. Once
the RuleBase encounters an object of type Msg, it queries
the inherited LinkNode Data pointer to provide the contents

oi the message. RuleBase then displays the message to the

user.

6.4.22 Class New

P 1
urpose N

" Properties . Attributes

New provides a RuleBase
object that causes a node to

receive memory.

Inheritance: RuleBase which

65




inherits KeyWords which Inherits LinkNode.

Description:

New is a marker that holds the name of the node to be given
memory. Once RuleBase encounters an object of type New, 1t
queries the inherited LinkNode Data pointer to provide the
name of the node to receive memory. RuleBase then retrieves
the NodeObj that the New object referred te and calls 1its

New Method.

6.4.23 Class Node

PurEose: Node
Attributes

Properties

JESTI_ONER

Node provides a RuleBase

e

object that causes a Rule to
create a temporary NodeObj

(local) .

Inheritance: RuleBase which inherits KeyWords which Inherits

LinkNode.

Description:

Node is a Maker that stores the name of the node type 1n the
inherited LinkNode class. Node also stores the tempborary

name of the local Node object. RuleBase uses the node type

66




to create a temporary {local) NodeObj and gives it the name

that 1s stored internally in the Node (cToken).

6.4.24 Class NodeDef

Purpose: NodeDef

: P Attribut
NodeDef provides the —“zgﬁff%kgi—_—-";f_i es__
definition of a Node. Vallz ANoasLLE
Inheritance: KeyWords which

Inherits LinkNode.

Description:

NodeDef contains the name of the node types and two

LinkLists that contain names of node types and key names.

67



6.4.25 Class NodeList

Eurpose: NodeList

| Properties Attributes

a;pR:;::,

Provides a list of nodes to

be displayed, used only LS:iﬁ

during the drawing.

Inheritance: LinkList. OUBLES SO LSy

Description:

Every time DSA draws, 1t builds a set of nodes using
NodeList and LinkObj. NodeList builds a hierarchy of node
pointers where there can only be one node pointer per
hierarchy. Each time a NodeObj i1s added to a node list, its
status is changed from stage 0 to stage 1. When the NodeObj
is printed, it is changed back to stage 0. Any node that is

not at stage 0 is not added to the NodelList.

68




6.4.26 Class NodeNode

SUrpoRa! NodeNode

| Properties Attributes

Hame sNoaelamy

NodeNode is used to store the

Valic ovasi.3
jad tior N pERT Sy

name of a node inside of a Directio
ListDef, NodeDef, or a
temporary node 1inside of a

rule. It is different from a

NodeDef in that it does not hold the definition but holds
the node type name, name of the node pointer, and the

relative direction.

Inheritance: KeyWords which Inherits LinkNode.

Description:

NodeNode stores three values, the name of a node type, the
name of the node pointer, and the relative direction
(relative direction 1is not used for temporary nodes 1n a
rule) . During run time, the name of the node type must
match the name of a node type in a NodeDef or a run time

error will occur.

69



6.4.27 Class NodeObj

Eatpoget NodeOb1
The  NodeObj Kolds the —Pmﬂi’f_ggﬁ*At_;‘fff_;}fufe-s_

<<<<<

instantiated information for dast iy

a Node created by a rule. The

node object may be a

temporary node 1inside cf a Opsrator ==,5,

rule, a node, a node inside

of a list.

Inheritance: Object.

Description:

NodeObj utilizes the inherited class Object to store a list
of pointers to all nodes that are available alona with all
the key objects. A NodeObj can have one of three different
node types: Pointer, Key, or Reference. If the Node Object
is a pointer, then it points to a list of instantiatea nodes
and keys. If the NodeObj 1s a reference, then it poilints to

another NodeObj and utilizes its internal lists.

70



6.4.28 Class Object

PUEEose:

Object serves as the base
class for ListObj and
NodeObj. Its purpose 1is to

store similar information.

Inheritance: KeyWords which

Inherits LinkNode.

Description:

Object

_Properties Attributes

STATUE

In both NodeObi and ListObj are stored a list of nodes. The

list of nodes are defined in the mutual parent class of

Object. Object stores a NodeType

object 1s a list, a node, a key,

71

or

a

that indicates 1f the

reference to a node.




6.4.28 Class Repeat

Purpose: Repeat

Propertlies Attributes

Run =

Repeat controls the branching

of execution of a rule by
storing and later examining
the contents of a

conditional.

Inheritance: RuleBase which inherits KeyWords which Inherits

LinkNode.

Description:

When RuleBase encounters a Repeat object, it calls the
Repeat object run method to continue execution of a method.
The run method in the Repeat object examines the conditional
by retrieving any nodes that the condition uses, examining
their contents and determining if the conditional is true or
false. The Repeat object stores an Expression lists (oExp)
of class type 1linklist. If the condition 1is true, the
Repeat objects calls the 1inherited RuleBase method run,
passing it the first element of the oExp list. After the
run method has completed and returned control back to the
Repeat object, the Repeat object loops back and rechecks the

conditional. If the condition is false,

rt

he Repeat object
returns control to the calling object. See RuleBase for

further details.

72



6.4.30 Class Row

Purpose: Roi

| Properties _ Attributes

]

Row provides a matrix of 1 x

TR
i

Lir)

25 regions. Each region can

[
[T1)
T

be occupied by only one
object (node or 1list) at a

time. 25 Rows make a Grid.

Inheritance: nocne.

Description:

Row provides access to an internal row of a grid by
providing methods to access the row to either set a region
to an object, free a region from an o¢bject, or gquery to

determine whether a region is free and available.

73



6.4.31 Class RuleBase

Purpose: RuleBase
Properties Attributes |

Sdme

RuleBase 1is the base class

Val:ia Asda
for all expressions and NodsType J :

R o> Ta Sl it | il
rules. Slcra.s
Inheritance KeyWords who

Inherits LinkNode.

Description:

RuleBase provides a virtual method for every keyword. If a
keyword is a valid operation in all rules, it performs that
method. However, for most operations, RuleBase provides an
error message. It is the responsibility of the 1inherited
Expressions to override any operation that 1t considers
valid. In addition to providing virtual methods for each
keyword, RuleBase provides a run method that loops through a
list of nodes, checks their type and calls the appropriate
method. In this way, RuleBase contains the only methods for

moving from one expression to another.

74



6.4.32 Class RuleDef

Purpose:

RuleDef provides the
definition of a Rule.
Inheritance: RuleBase which
inherits KeyWords which

Inherits LinkNode.

Description:

RuleDef contains the name of

contains the expressions for a rule.

base class RuleBase to execute the expressions in a

6.4.33 Class Scan

Purpose:

Scan processes the input file
by breaking the input data
into tokens. Scan also
writes out two temporary
files: Log File and
Tmp (debug) file.

RuleDef
Properties Attributes

the rule and a LinkList that

RuleDef utilizes the
rule.
Scan

Properties

. Attributes

5 s e WA




Inheritance: Display.

Description:

Scan opens up the input file and creates a log file

tmp file.
of file,

a line number.
but

up.

6.4.34 Class SelList

Purpose:

SelList Displays all
ST S types that
avallable from the
program source file.
Inheritance: CDialog.

76

Each time scan encounters an end-of-line or
scan writes the line out to the tmp file along with
Scan opens the log file but deoces not use 1it,

rather passes it to the load object which passes

41

SelLlist

Properties Attributes

and




Description:

When the user double-clicks on a free region on the child
window, DsaView creates the SelList object for the Sellist
class and passes it the names of the the ListDefs. The user
then must select a list from the a listbox and either clicks
ok or double-click on the name. This name is returned to

DsaView where a list is displayed on the child window.

6.4.35 Class SelRule

P :
Properties Attributes

orinitDialog ollar

SelRule Displays all the

rules that are availablie for

a particular list.

Inheritance: CDialog.

Description:

When the user double clicks on a region on the child window
that contains a list, DsaView retrieves the list of rules
from the ListDef and displays them, then passes them to
SelRule. Then DsaView calls a method in SelRule to display
the list of rules. When the user selects a rule, control 1is
passed back to DsaView along with the name of the rule, and

DsaView processes the rule.

77




6.4.36 Class Set

PurEose: Sat

. : Properties Attributes
Set provides an expression TO e R

set the value o0f the vaiue of

a node.

Inheritance: RuleBase which

inherits KeyWords which Inherits LinkNode.

Description:

Set stores the name of the node to be set, the operation to
be performed, and the value used to set the node (or the

name of the node to be used).

78



7. Future Direction

While Dynamic Data Structure Animation 1is a very
interesting and rewarding subject, it appears that 1t 1s
generating very little interest in the computer science
community. More emphasis 1is being placed on static
representations than dynamic, and almost exclusively 1n
association with compilers. Algorithm animators also are
generating interest, but because of the large scope, it is

more difficult to produce data structure animation.

The language that was created for DSA should be
expanded to 1include such important language features as
methods (to be called from rules), so that recursion can
occur, as well as integer data types, strings, arrays, and
other structures besides nodes and lists. While the current
language allows for simple structures (and some not-so-
simple structures) such as linked lists, binary trees, three
trees, stacks, gqueues, etc.., it would have a difficult time
animating AVL trees, Red-Black trees, or any other tree that
requires a rank. DSA would also have a difficult (if not
impossible) time animating hashes and heaps that were not
trees. By adding these features 1in the futures, such
structures would no longer be difficult or impossible to

generate.

79




Another feature that would be helpful for DSA would be
the ability to convert DSA code to ‘C’,’C++’, and JAVA code.
In this way, the user could build his or her structure
relationships in DSA and later use them in subsequent

programming efforts.

It would also be useful to have an interactive debugger
and the ability to write and edit DSA code from within the
application, 1instead of having to use a separate text
editor. It would also be useful if a trace was built 1into
DSA so that the user could step through the DSA code. While
these would all be very helpful features, they would also be

very time-consuming to implement.

80




8. Conclusion

“A picture is worth a thousand words.”

Author unknown.

DSA gives a visual representation to an abstract
concept. For many users exploring data structures, whether
they are students, researchers, or program developers, DSA
gives a concrete physical image to abstract concepts. For
students learning a data structure, the ability tc see how
their structure interacts is a very important learning tool.
For the researcher designing new data structures, the
ability to explore visually the data structure 1s
invaluable. For the developer, the ability to visually

observe his/her data structure coula potentially save many

hours of development time.

DSA 1is an important tool that improves on data
structure animation that 1s currently not available. While
there are many algorithm animators that are capable of
animating data structures, their focus is so broad that they
can be cumbersome to use to create a data structure

animation. Because DSA focus 1s exclusively on Data

8l




Structures, it is able to narrow its focus and therefore

make it simpler to animate data structures. For animating a

L1 |

dynamic data structure, I believe a DSA is the best tool fo

the job.

82



Selected Bibliography

[ARR92]  Arra, Shravan K., “Object-Oriented Data Structure Animation,” Graduate
College of Oklahoma State University, Master Thesis, Computer Science.
July 1992

[BAE74] Baeker, R M, “Genesys Ineractive Computer-Mediated Animation”™, In
Computer Animation, J. Halas, Ed., Hastings House, New York, N.Y. pp
97-115, 1974

[BAL90] Balci, Osman, Nance Richard E., Derrick, E. Joseph., Page, Ernest H.,
Bishop, John L., “Model Generation Issues in a Simulation Support
Environment”, Technical Report TR-90-40, Department of Computer
Science and System Research Center, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, pp. 13, 1 August 1990

[BAE81]  Baeker, Ronanld M , “Sorting out Sorting”, 16mm color sound film. 198]
[BOO75] Booth, K., “PQ-Trees”, 16mm color silent film, 1975

[BRO87]  Brown, Marc H., “Algorithm Animation,” An ACM Distinguished
Dissertation 1987, The MIT Press, 1988.

[BRO92]  Brown, Marc H., “Zeus: A System for Algorithm Animation and Multi-view
Editing,” System Research Center, Digital Equipment Corporation, February
28,1992

[BRO93a] Brown, Marc H., "The 1992 SRC Algorithm Animation Festival,” System
Research Center, Digital Equipment Corporation, March 27, 1993

[BRO93b] Brown, Marc H., and Nojork, Marc A | “Algorithm Animation Using 3D
Interactive Graphics,” SRC Research Report, Digital Equipment
Corporation, September 15, 1993

[CHAB6]  Edited by: Chang, Shi-Kuo, Ichikawa, Tadao, and Ligomendies, Panos A |

“Visual Languages,” Management and Information Systems, Plenum Press,
New York and London, 1986

[CON79]  Conway, Richard., and Gries, David , “A Structured Approach Using PL/I
and PL/C, Third Edition,” Winthrop Publishing, Inc. 1979

83




[COP92]

[FELSS]

[HILSS]

[KNO66]

[KNU73]

[LAW94]

[MAKO1]

[MANS9]

[MARS6]

[MUF82]

[RAL2nd)

[STA92]

Coplien, James O., “Advanced C++, Programming Styles and [dioms™,
AT&T Bell Laboratories, Addison-Wesley Publishing Company. Reading,
Massachusetts, 1992.

Feldman, Micheal B., “Data Structures with Modula-2", George Washington
University, Prentice Hall, Englewood Cliffs, N.J. 1988

Hille, Reinhold F., “Data Abstraction and Program Development Using
Pascal”, Department of Computer Science, The University of Wollongong,
Australia, Prentice Hall, 1988.

Knowlton, Kenneth C., “L6: Bell Telephone Laboratories low-level linked
list language”, two black and white sound films. 1966.

Knuth, Donald E., “The Art of Computer Programming, Second Edition.”
Addison-Wesley Publishing Company, 1973.

Lawrence, Andrea W., Badre, Albert, and Stasko, John T., “"Empincally
Evaluating the Use of Animations to Teach Algorithms,” Technical Report
GIT-GVU-94-07, Graphics, Visualization, and Usability Center, College of
Computing, Georgia Institute of Technology, Altanta, GA 30332-0280. July
1994,

Mak, Ronald, “Wrting Compilers and Interpreters”, John Wiley & Sons Inc ,
1991.

Manber, Udi., “Introduction to algorithms, A Creative Approach ™
University of Arizona. Addison-Wesley Publishing . 1989

Marcus, Caudia., “Prolog Programming,”, Addison-Wesley Publishing
Company, Inc., 1986

Mufti, Aftab, A. “Elementary Computer Graphics™, Reston Publishing
Company, Inc., 1982.

Ralston, Anthony., Reilly, Edwin D . Jr, “Encyclopedia of Computer
Science and Engineering, 2nd Edition,” Van Nostrand Reinhold Company,
New York, N Y.

Stasko, John T., and Turner Carlton R. “Tidy Animations of Tree
Algorithms,” Technical Report GIT-GVU-92-11. Graphics, Visualization,
and Usability Center, College of Computing, Georgia Institute of
Technology, Altanta, GA 30332-0280, November 1992

84



[THA90]

[TAL9S]

[VINS4]

[WEI93]

[YOU89]

Edited by: Thalmann, Daniel, “Scientific Visualization and Graphics
Simulation,” John Wiley & Sons, Inc., New York, 1990.

Tal, Ayellet and Dobkin, David. “Visualization of Geometric Algorithms,”
IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No. 2,
Page 194-204, June 1995.

Vince, John., “Dictionary of Computer Graphics™, Knowledge Industry
Publications, Inc., White Plains, NY 1984

Weiss, Mark A., “Data Structures and Algorithm Analysis in C,” The
Benjamin/Cummings Publishing Company, Inc., 1993.

Yourdon, Edward, “Modern Structured Analysis,” Yourdon Press,
Englewood Cliffs, New Jersey, 1989.

85




VITA

Lee Hou Harvick
Candidate for the Degree of

Master of Sclence

Thesis: RULE BASED DATA STRUCTURE ANIMATION
Major Field: Computer Science

Biographical:

Education: Received Bachelor of Science degree 1in
Mechanical Engineering from Tongji University,
Shanghai, China, in July 1987, Completed the
requirements for the Master of Science degree with
a major in Computer Science at Oklahoma State
University in May, 1997.



