
TIME PERSISTENT DATA ALLOCATION

STORAGE ENGINE

By

RAYHARVICK

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 1997



OKLAHOMA STATE UNIVERSITY

TIME PERSISTENT DATA ALLOCATION

STORA'GE ENGINE

Thesis Approved:

v ' ThesIs AdvIsor

ii



ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my advisor, Dr. LaFrance. When I was

facing the red tape the university places before a student, you helped cut through it, and

helped me accomplish my goal. I also wish to express my thanks to Dr. Street, who

helped me with his advice and his constructive remarks. In addition I would also like to

express a special thank you to Dr. Chandler, who is always a friend to all graduate

students in the OSU computer science department.

However, without the support, suggestions, and backing of my Wife, Lee, I would not

have my bachelor, let alone complete my Masters. Without Lee, I would be a lost souL

Not only did she support me, but was my fellow student in many claSses as well as my best

friend. If only I would have followed her advice closer, I would avoid many struggles I

have encountered. I also want to thank my daughter Kristie, who although only 2 YI, has

brought such joy into my life, and a reason to work hard. I also want to thank my wifes

parents who can inmeasurable amount of support. I would also like to thank my own

parents, Joe and Arleta Harvick who have always been supportive of me.

Finally, I wish to thank the Department of Computer Science for their support during

these last two years.

iii



Chapter

TABLE OF CONTENTS

Page

1. Introduction.................................................................................................... 1
2. Background and Related Work 5

2.1 File Systems '"'''' 5
2.2 Time Persistent........ 14

3. Problem Domain................................................................... 17
3. I Challenges facing Data Allocation Engines.......................................................... 17
3.2 Design issues ofPata Allocation Engines............................. .. 18
3.3 Detennining the organization for a Data Allocation Engine................. 19
3.4 Issues relating to organization of Data Allocation Structures .. 22
3.5 Time Persistence........................................... .. 26
3.5 Conclusion to the Problem Domain 27

4. Solution Domain 28
4.1 Using blocks in a Data Allocation Storage Engine......... 28
4.2 Collecting blocks into pages 28
4.3 Using dusters to organize pages 29
4.4 Reduction of Seek Time 30
4.5 Time Persistent.................................................................. 31
4.6 Da~ Alloeateion Storage Engine Function Pseudo code 33
4.7 Class/Object Relationships 35
4.8 Class/Object Definitions " .. .. .. 41

5. Practical Applications of Data Allocation Storage Engines. .. 49
5.1 Interfacing with the Data Allocation Storage Engine ; 49
5.2 Disk File of a Data Allocation Storage Engine 50
5.3 Storing Data in the Data Allocation Engine......................................................... 51

6. Conclusions and Future Work................. 54
Bibliography 55

iv



Chapter

LIST OF FIGURES

Page

Figure 1. Database Protocol Layers , 1
Figure 2. Data Link Sub Layers 2
Figure 3. Operating System storage structures 8
Figure 4. FAT Tables 11
Figure 5. UNIX i-node disk file structure 13
Figure 6. Persistent nodes with path copying 15
Figure 7. Persistent nodes with edge copying 15
Figure 8. Persistent nodes with limited path copying 16
Figure 9. Seek Time graph 20
Figure 10. Disk Fragmentation graph 21
Figure 11. Disk Fragmentation using Blocks, Pages, and Clusters 25
Figure 12. Linked Blocks 28
Figure 13. Page structure 29
Figure 14. Bit map frame of a Cluster.. 29
Figure 15. Cluster Header page 30
Figure 16. Time Persistent Organization 32
Figure 17. DASE Object/class relationship chart 35
Figure 18. DASE Object now chart (Insenion or Update) 37
Figure 19. DASE Object flow chart (Retrieving a document) : 39
Figure 20. Hierarchical Hypertext Documents 51
Figure 21. Example of Stored Blocks 53

v



1. Introduction

The Data Allocation Structure Engine is a software solution that is capable of storing and

retrieving data (records, documents, ,etc.) of variable sizes (lengths), in an efficient and

timely manner.

As with many technologies, databas,e engines can be presented in dependency categories

or layers. The first layer might consist of service routines to manage [hard] disk files.

This type of categorizing is also referred to as the 'layered approach' [CH089].

Level?
Level 6
LevelS
Level 4
Level 3
Level 2
Levell
Level 0

Presen
Sessi.on

Wiado,ws
Flow Control

Virtual Circuit
Routine

Data Link
OperatiRg System

Figure 1: DatalJase Protocol Layers.
Database Protocols can exist at different levels: from a physical layer
(operating system level) up to highly abstracted Layers, such as the .
Presentation layer. In this case, we are most interested in the Data
Link Protocol, which uses operating system calls to create the
internal structures used by the database [CH089].

I



Layers can be further divided into sub layers.

Levell-d·
Levell-c
Levell-b
Level I-a

Figure 2: Data Link Sub Layers.
Each of these sub layers has a specific task. The Data DefInition laye
defines the purpose, type and relationship of the data. The Structure
Link layer focuses on the access between structures (such as linking two
records of different logical file structures by using an index file). Th
File Structure layer describes the mechanics for building and using
common structures (such as B-Tree's). The Data Allocation laye
defines the mechanism to store logical structures of an unknown size,
content, and structure in one physical file. [Original Work].

The Data Link Layer shown in Figurel provides an abstraction layer between the

operating system and the higher protocol layers. The Data Link layer can be thought of

as the foundation of the database (since it is the lowest layer before the operating

system).

in Fjgure 2, the Data Link layer has been divided into sub-layers, with the lowest being

the Data Allocation layer. The Data Allocation Layer allows the database to store one or

more logical types of structures into one physical file (from an operating system

perspective). This layer is similar to the file management systems found in many

operating systems, in that it organizes data on a physical storage medium, such as a disk

[SIL9S]. The Data Allocation layer performs much the same operation, but organizes

2



data within a physical file rather than to at media The file accessed by the Data

Allocation layer can be thought of as a 'virtual disk'.

The need to discover a more robust data storage foundation for database engines IS

paramount. The speed and accuracy of any database engine is a direct result of the speed

and accuracy of its foundation. If this layer is poorly constructed, it can negatively affect

the overaU perfonnance of the database. In this thesis, we will discuss the cost and time

considerations for producing a data allocation engine for databases.

Today, computers and other related devices can generate vast amounts of information, of

which the vast majority is never utilized. The format in which this infonnation is stored

can vary from computer to computer, depending upon the machine architecture and

software source of the file. For example, information can be stored in non-formatted

files such as text files or ASCII files, or in indexed files, relational databases, hypertext

databases, object-oriented databases, or as word processing documents that incorporate

many special characters. Files are often stored on disk media and grouped in structures

often referred to as "directories." These directories have little organization information

that is useable by users of the system. They also have little to no cross-referencing and

little or no association to other files. For example, a user of word processing on a

personal computer may write several documents on the same subject. If that same user

wanted to look up previous work, he/she would have to open each document and search

manual for the required information.. If this infonnation was stored in a database, then a

database search engine could be used to find the required information.

3



In a book named Intelligent Databases [PAR89], by Kamran Parsaye, Mark Chignell,

Setrag Khoshafian, and Harry Wong, the idea of combining several database

technologies is explored. It will not take much more thought to expand this thinking to

include other file formats. While this book discussed many important topics, it did not

discuss the low-level architecture necessary to develop such a database. It did, however,

suggest that an object-oriented database would be an appropriate fonnat as an underlying

architecture. In further research, I discovered little discussion of the physical

organization of an objeet-oriented database that I was able to locate at the University

Library and local bookstores. Further search of the Internet, proved just as frustrating.

Several of the books I read simply stated that the architecture used by most object

oriented databases were proprietary and gave no other details. The best discussion on the

underling architecture came not from books on databases, but instead came from

operating system books [SIL95] [TAN92] [MIL87]. These books discussed how

operating systems organized files using file management systems .. The most import of

the operating systems discussed, was that of UNIX. UNIX has structures known as

inodes that facilitate the processing of large data files. Although the idea of inodes is

important, it is incomplete, in my opinion, for use in Data Allocation Storage Engines.

4



2. Background and Related Work

2 . 1 File Systems

Hard disks by their very nature are slow compared to computer memory (RAM). They

are capable of storing hundreds of thousands of megabytes of data at a rather

substantially financial cost saving. To illustrate, how slow they are, the time it takes for

relatively slow RAM to read a byte of data is approximately 120 nanoseconds (120

biHionth of a second). To access the same amount of data from a typical hard disk it

would take approximately 30 milliseconds (30 thousands of a second) or a ratio of

1/120,000,000,000 of at second to 1/30,000. In other words, a relatively slow RAM is

about 4,000,000 times faster than a hard disk drive. On the other hand, hard disks

provide a relatively cheap device to store large amounts of information [FOL92]. The

goal of file structures is to find creative ways to access data faster.

Some of the earliest works of file structures were based on the assumption that the files

were on magnetic tapes. This meant that the access had to be sequential and the larger

the file the greater the cost of access [FOL92].

In time hard disks became available which allowed for random access. This allowed

computer scientist to invent new ways to access data. These included many indexing

schemes. The indexes made it possible to store small amount of data with pointers to

larger data sets. This made access quicker, since a program could load more of the

5



smaller data into memory, search it for the appropriate key. and use its pointer to access

the larger data sets [FOL92]. As the need for more and more data grew, so did the size

of the files containing the indexes. More and more clever access methods were needed to

speed the search for the appropriate data. Over time, many important data structures

were invented, including AVL trees, Hashing functions, and B-Trees [FOL92]. As data

became more portable an.d distributed, the need grew to organize two or more file types

into one physical file. One of the firsts of these file types was B+ Trees. These trees

could store both the index and the data [FOL92]. As the need for heterogeneous data

grew, databases where developed that could store indexes, their data, and the definition

of their data. Many of these databases stored their data in separate physical files.

However, having data spread between different files also presented problems. When you

wanted to copy a database, you where required to copy several files. And if you wanted

to have more than one database, you needed to organize your mes either internally or

externally so that the databases were separate. If the data was separated internally, then it

was difficult to split the databases if they need to be moved to a new location. If they

were separated externally, then they would have to either have different names for

similar database files (a management nightmare) or they would have to be organized in

some other fashion (such as storing them in different directories). However, if all the

data for one database could be stored in a single file, then each file would keep all of its

data abstractions in one file. This meant to move a database, only one file was required

to be moved.

6



Files are an abstraction mechanism. They pmvide a way
to store information on the disk and read it back tater.
This must be done in such a way as to shield the user
from tbe details of how and where the information is
stored .... [TAN92]

One of the most closely guarded secrets in the database community is the underlying

storage of data in a database. While there are many books and articles written on storage

structures for databases (such as b-trees), there is little written concerning how to store

two or more different structures in one file. This is largely because companies that

produce commercial quality databases consider such information as a key technology,

and guard it jealously.

The earliest work on data storage came not from work with databases, but from work on

operating systems [FOL92].. Since operating systems must be able to store and retrieve

large amounts of information, such structure techniques are valuable in constructing a

storage system for databases.

Three common ways operating systems store data on a disk are by, (a) Byte sequence, (b)

Record sequence, or (c) Tree structure [TAN92] [SlL95].

7



One byte
or word

/

One
record

/

Figure 3: Operating System storage structures.
The first structure above (Left) shows the structure of byte allocation. In this structure,
the entire storag,e structure must be allocated before any storage can be used. The second
structure (center) stores data in records. This scheme allows for quick access to any
datum, but is difficult 10 insert records. The third structure (right) provides variable
length blocks and allows for quick insertions and deletions. [TAN92]

While storing infmmation in a sequence of bytes is efficient if you have small files or

files that have no requirement for structure (such as text files). However, storing

information in a series of sequential bytes makes it difficult to locate information that

may be buried in the middle of the file. To find any information in the file, the system

must do a sequential search. To insert information a search of the file was needed to find

the exact amount of space required for storing the information [TAN92]. Dividing the

information into a sequence of records works well, if you have well-defined record sizes,

or if your records are large enough to store the largest possible size. It then becomes a

simple task to access the information by record number. The difficulty with record

format is that the system must pre-allocate enough space for all records. Insert is also

difficult since each record must be moved down one at a time until a slot is available at

8



the proper location [TAN92]. Tree structures give little improvement over records, in

that they are capable ofstoring infonnation in a related fonnat. Tree structures work well

when you need to insert information. The system need only make a link from the

previous node. The major draw back to tree structures is when the system needs to locate

a particular record. In order to locate a particular record, the system may have to chain

down several nodes. [TAN92]

Another interesting structure for databases is the organization of file pointers. Most

operating systems (such as MS DOS and UNIX) store data files in byte fonnat, leaving

the application program to determine the internal format [TAN92] [SAL95]. However,

these same systems must store and maintain access to each separate file, otherwise the

disk would become one large binary file. To do this, operating system maintains a list of

files and directories. This division of disk into files is very useful in understanding how

to organize a disk file for use by a database [TAN92].

Three major methods of allocating disk space are in wide use:
contiguous, linked, and indexed. Each method has its advantages
and disadvantages. [SAL95]

The contiguous method requires each file to occupy a set of contiguous blocks on a hard

disk. This allows quick and easy access to any part of the disk. An application program

(operating system) need only know the starting address of the first block and the offset of

any datum that is required. This also speeds up the time required to read files, since the

9



head of the disk need not jumparolllnd to find the next piece of information, since all data

is contiguous. This is the method used by ffiM VMlCMS operating system. This

provides good perfonnance, but is may cause numerous block fragmentations. While

this soh.ltion provides for quick access time, it also produces problems, including external

fragmentation and a requirement that the amount of required space be detennined ahead

of time. [SAL95]

The problem created by contiguous allocation is solved by linked allocation. With linked

allocation, each file is a linked list of disk blocks. These blocks may be anywhere on the

hard disk. The application (operating system) need only know where the first block

resides in order to find a location on the disk file. To create a file, only one block is

needed. As the file grows, more blocks are allocated and linked to the last block in the

file. With this method there is no external fragmentation nor is there a need to know the

size of the file ahead of time. However, link allocation is not very efficient for any

purpose besides sequential processing [SAL95]. Another disadvantage of link allocation

is the need for space for the pointer. Link allocation also suffers from another problem,

reliability. If one of the block pointers is bad, then any part of the file beyond that block

is lost. One way to reduce the overhead for block pointers is to gather the blocks into a

set called clusters, and allocate clusters rather than blocks. However, the larger the

cluster, the greater the internal fragmentation, since no other file could use that duster

[SAL95].

10



Another variation on the link allocation is the use of file allocation tables (FAT). This is

the method used by MS DOS and OS/2 [SAL95]. FAT systems preserve a section at the

start of each partition for the FAT table. Each block has one entry in the table and is

index by block number. FAT have much in common with link allocation. Each

directory contains a table with the block number of the first block of a file. Each

partition contains a set of pointers for that partition [SAL95]r. This has the advantage of

separating the links from the data. fu this scheme, only the links need be read to find a

particular location on in a disk file. In cases where a file resides only in one partition,

random acoess can be accomplished by first reading the FAT table for the partition, and

then following the links until the proper position can be found [SAL95].

Directory FAT Blocks
I----

I file I ... 1 128 1 000 128 -.. 000 Data
name

064 256 I-- -.. 064

128 000 -.. 128
i+-

192 064 -.. 192

256 EOF, --. 256

Figure 4: FAT tables
In the diagram above, the directory structure points to the starting address in the FAT
table (128). For every entry in the FAT table, there is a corresponding block of the file.
This is similar to a node in a tree except that the pointers to the next node are stored in a
separate file from the data. So when the directory list point to the first node in the FAT
table, it is also pointer to the data block at that address. If each entry in the FAT tabIe is
4 bytes long and each entry in the data. blocks is 512 bytes, then the first entry in the FAT
table would be at address 128 * 4, while the first entry in the data block would be 128 *
512 [SAL95].

11



The final operating system storage method to consider is indexed. This is the s·cheme

normally used by UNIX. UNIX uses a structure called an i-node (index-node). This

structure store the first few block addresses in the node itself, which is stofed in main

memory while the file is open. For smaller files, all the block address will be stored in

main memory. For larger files, one of the block addresses contains additional block

addresses (address to a node instead of a block) called a single indirect block. If even

more blocks are required, then another address in the node (called a double indirect

block) is used. The double indirect block is a node that contains the address of a block

that contains a list of single indirect blocks. If even more space is required, then a triple

indirect block is used. [SAL95]

12



Single
indirect

node

address 131. Single

I
indirect

address Ib node

I-node Double address 2a1
;ndirect

Attributes node / address 2a2

address 1 address 231. Single
indirect

address 2 address 2b ~ node

I[ address 2b 1address 3 etc
Single

address 4 Triple address 2b2 I indirect node
indirect

etc. node Double ,. address 331.131.
indirect

address 331. node address 331.131.

address 3b
I

address 3al Single
11 indirect node

~4-~ address 3a2 r---.-~~

I address 3a2a
etc

address 3a2b

Figure 5: UNIX i-node disk file strudure
In the diagram above, the attributes (such as ownership) and the initial address blocks are
stored in top node (left most block). Each address is either an address to another node or
to a block of data.. Inodes form a tree of address with the leaves pointing to blocks of
data. This allows for quick location of any data location [SAL95].

13



2.2 Time Persistent

A persistent search tree differs from an ordinary search tree in that
after an insertion or deletion, the old version of the tree can still be
accessed. [SAR86]

In 1986, Neil Samak and Robert E. Tarjan pubHshed a research paper entitled "Planar

Point Location Using Persistent Search Trees." In this report, a portion of the article is

written concerning the "persistent sorted set problem."

"We wish to maintain a set of items that changes over time. The
items have distinct keys, with the property that any collection of
keys of items that are in the set simultaneously can be totally
ordered. (The keys of two items that are not in the set at the same
time need not be comparable.) [SAR86]

This article presents three operations on the set of data:

access(Key K, Set S, Time T) Given a Set S, Time T, and a Key K,
return the Item I who's key is :?: K.

insert(Item I, Set S) Given Item I, Set S, and current Time T,
Insert Item I into Set S at current Time T.

delete(Item I, Set S) Giv,en Item I, Set S, and current Time T,
Delete Item I from Set S at Time T.

*Note: Item I always have a predefined
key. Any update occurs no earlier than
any previous operation in the sequence
than Time T. In other words, updates are
only allowed in the present time.

14



The article goes on to present two methods of time persistence in search trees. The first

method is to copy paths and the second method is to extend the edges so that for any time

T that an Item I in the Set S has been changed, there is exactly one set of Edges E.

/
AO ®
Figure 6: Persistent nodes with path copying.
In the above diagram, an letters represent datums and 8111 numerics represent time. At
time 0, there are 6 Datums (XO,LO,AO,VO,NO,BO). At time 1, EI is added and A, V are
modified. At time 2; B, A, and E are modified. [SAR86]

0),2

Figure 7: Persistent nodes with edge copying.
In the above diagram, all letters represent datums and all numerics represent time. At
time 0, there are 6 Datums (X,L,A,V,N,B). At time 1, E is added, and at time 2, B2 is
modified. SAR86

15



A major disadvantage of path copying is that it uses non-linear space. Using edge

copying reduces this problem but introduces the problem of fat nodes. For each potential

node, there must either be enough space for all edges, or addition nodes will be required

if more edges are required. The article goes on to introduce a third alternative: edge

copying with limited node copying.

Figure 8: Persistent nodes with limited path copying.
This diagram, all letters represent datums and all numerics represent time. At time 0,
there are 6 datums (X,L,A,V,N,B). At time 1, E is added, and at time 2, N and L are
modified and E is added. [SAR86]

This last method, Persistent Tree with limited node copying, reduces the overhead of

path copying at the same time limiting the size of a node (reducing the size of a fat

nodes). (See [SAR86])

16



3. problem Domain

3 . 1 Challeng,es facing Data Allocation Engines

In this document, we will be ~eferring to records. A record for sake of discussion is any

set of data that is organized and stored as a whole. This data may be relational. object,

hierarchical, textual, etc.

Two of the greatest challenges facing data allocation engines for databases are

fragmentation and seek time. Fragmentation can be either internal or external.

Fragmentation is any disk space location that is, not currently being used. This

fragmentation can either be useable space or unusable. Internal fragmentation is any free

space that is associated with a record such that no other record may use that space.

External fragmentation is any free space that is available for any purpose. External

fragmentation is normally usaMe unless it is too small. Internal fragmentation is almost

never useable. [FOL92]

For purposes of this report, seek time is defined, as the number of reads a disk must

perform to retrieve a record. The more seeks that are performed, the slower the database

will run. To reduce seek times, it is important to group related information together as

much as possible.

17



3. 2 Design issues of Data Allocation Engines

A data allocation storage engme IS a software layer, program, sub-program, or

function(s) whose purpose is to store data structures in any storage medium (such as a

hard disk). The data allocation storage engine provides the logical storage mechanism to

perform the process to manage physical storage. This storage could be the file/directory

structure of an operating system or a database. Data allocation storage engines free

calling programs from having to construct the physical organization of a file on a hard

disk. For instance, imagine if every program had to be concerned with allocation of

blocks and sectors on a hard disk, and linking them together. This would require

redundant work for each program. Instead, the operating system provides storage

protocols for programs to use. An example of this is the storage structures used by

UNIX. From the operating system point of view, data is broken into blocks and are then

linked together [SAL95]. From an application point of view, data consist of one large

chunk of physical address spaoe. The application is oblivious to the fact that blocks of

data may be physically stored in vanous parts of the hard disk. To the application, the

data is contiguous. To the operating system, the data (file) is a series of linked blocks of

data. Data allocation storage engines have three primary designs: fixed formats, buckets,

and variable length. Fixed formats means that aU data is grouped in a fonnat with

structures of the same length. Variable length fonnats means that data is stored in

variable length formats. Buckets means that a record is sub divided into chunks (blocks)

and divided between several buckets [FOL92]. These blocks of data are then linked

18



together to form one record. With fixed length fonnat and buckets, there is internal

fragmentation but no external fragmentation, since all data is organized in a fixed format

of the same length [FOL92]. In variable length formats, there is external fragmentation

but no internal fragmentation, since a group of data will only take up the amount of space

that they require. Variable length fonnats tend to have more over head dedicated to

tracking and reducing fragmentation. Fixed formats tend to have a greater loss of space,

since aU records must be stored in the same amo'unt of space reg.ardless if they are the

largest possible record or the smallest. Buckets'fonnats have more overhead in order to
."

track pieces of the data and some internal fragmentatio~. With buckets, there is a trade

off between loss of space due to internal fraginent.a:tipn and Joss of space in order to save

links between buckets [FOL92].

In examining the advantages and disadvantages of variable length format, fixed length,

and buckets, it was decided to go with buckets.

With buckets, the larger the structure for storing the data, the more internal

fragmentation and the less overhead involved. On the reverse side of the coin, the

smaller the storage structure for data, the larger the overhead.

3 . 3 Determining the organization for a Data Allocation Engine

In determining an appropriate organization structure for any data allocation storage

engine, it is important to take into account perfonnance criteria. While speed is a

primary concern, reduction in fragmentation is also critical.

19



1024

Block
Size

256

128

64

1 2 3 4 5 6 7 8 9 10 11 Ii

Number of Seeks

Figure 9: Seek Time graph
.The above graph illustrates the time required to read a record of 1500 bytes
based on the data divided into blocks. This chart only looks at usable space in
each block and does not include the overhead required linking the blocks
together. Ifa block size is 2048, the 1500 bytes will fit into the block with 548
bytes of unused space, and will require only one seek (read). With block size
of 1024,2 blocks would be required to provide enough space for 1500 bytes (2
seeks). Using the following formula, the number of seeks can be calculated:
Integer [((Record Size-I)fBlock Size)+l]. [Original work]

20



As can be seen in figure 9 above, the larger the block size, the smaller number of seeks

necessary to read a record. By reducing the number of seeks on a file, the access time is

also reduced, producing desirable access time. If access time were the only criteria, then

Marge block sizes would be highly desirable. This assumption ignores space utilization.

If we take a look at space utilization, or in other words, fragmentation, we get a very

different picture [Original work].

1024

Block
Size

50 100 150 200 250 300 350 400 450 500 550 600

Fragmentation

Figure 10: Disk Fragmentation graph .
This diagram demonstrates the fragmentation based on block size for a record of 1500
bytes. Until the block sizes approach 1024 bytes, the fragmentation remains low.
However, as the block sizes passes 512 bytes, the fragmentation increases.
dramatically. ([Block Size] - Remainder ([Record Size] divided by [Block Size]}). '

ngma wor

2l



As can be seen in the above chart, larger block sizes produce greater fragmentation. If

we oompare the graph in Figure 10 with Figure 9, we can see that the optimal block size

for a record size of 1500 is 512 bytes (based on multiples of 64 bytes). This block size

requires only 3 seeks, while only having 32 bytes of fragmentation. If we knew that all

records would be 1500 bytes, we would, of course, make all block sizes 1500 bytes.

What about when record sizes range from very sman (less than 64 bytes) to very large

(greater than 2048 bytes)? Given the information in Figures 9 and 10, there would be no

optimal block size.

3 • 4 Issues rela.t;ing to organization of Data Allocation Structures

[*Note: The following is Original work].

Suppose we group blocks together, we can then have the advantage of large and small

blocks. This group of blocks we win call a page. Then each time the database needs one

or more blocks in a page, it can read the whole page and extract the necessary blocks. In

this way, if n blocks are needed in any page, the data allocation storage engine would

only have to petfoIID one seek, read the page, and extracts n blocks. If we now use a

small block size combined with large page size, we can now have the advantage of

having large and small block sizes. Let us consider the case of a page that is 2048 bytes

long, structured with blocks 128 bytes long. We would then have less seek times and

less fragmentation (assuming that the blocks that contain the record are stored in the

same pages).

22



Can it be that simple? In a word, No! Consider a record that is 1500 bytes long. This

would require 12 blocks with 60 bytes of fragmentation (each block consisting of 120

bytes of data space+8 bytes of overhead for linking. 12 * 120 =: 1440. Then the last

block would hold 60 bytes of data space, 8 bytes overhead and an internal fragmentation

of 60 bytes.) If each page contained 16 blocks (2048 / 128), we would have 3 blocks left

over. If we use these 3 blocks plus 9 others for the next record, we have two seeks

instead of one. While not ideal, still acceptable. So far, there is no real problem. But

suppose we had records of different sizes, for example 1500 bytes and 900 bytes. Let us

call the first record, record A (1500 bytes), and let us call the second record, record B

(900 byt,es). Record A would require 12 blocks while record B would require 8 blocks

with 124 bytes of fragmentation. If we now add to the database structure, one record

type A and one record type B, then the first page would require 12 blocks for record type

A and 3 blocks for record type B. Then in the second page, record type B would utilize 5

more blocks. Now Jet us add another record type A. This would require the 11

remaining blocks in page 2, plus 1 block in page 3. So far, every thing is okay. But,

suppose we delete the record type B and add another record type A. This next record

type A could take up the blocks left by the deleted record, this would mean that this 4th

record would take up 3 blocks in page 1, 5 blocks in page 2, and 4 blocks in page 3. As

you can see, the more diverse the record sizes, the more seeks that would be required. In

the end, we have gained little by organizing blocks into pages.

23



Instead of aHowing record type A to take tbe blocks freed when record type B was

deleted, suppose we only allowed record type A to reuse blocks that were freed when

other records of type A were deleted. In this case, we are assured that for records less

than 2048 bytes, there can be no more than two seeks and no more than 127 bytes of

fragmentation per record. Let use now take this a step further, suppose that we kept track

of all pages that had no used blocks:. In this case, a page whose blocks were aU available

could be used for any record types.

Let us now consider another scenario': Suppose we a have a set of pages that was utilized

by record type A above. Let us further assume that we have 12 more records. The first

record would be in page 1 and would take up 12 blocks. The second record would start

in page 1 and take up 4 blocks, the remaining blocks would be located in page 2 (4

blocks). The third record would take up 12 blocks in page 2, and so forth. Now suppose

that ever-other record was ddeted. That would result in a significant number of free

blocks in the database.

Suppose that instead of tracking open blocks by data type, we track the number of open

blocks per page. Let us further gather a set of pages into a group and calJ it a cluster.

The first page in each cluster can contain a set of fields that track the used and Free

blocks in each page of the cluster. When a record needs a set of blocks, it can read the

first page in the cluster, determine a suitable set of blocks, place the records in the

appropriate blocks in the page(s), and mark the blocks as used. If there is no suitable sets

of blocks in this cluster, the record can then expand its search to other clusters, and if

24



necessary, allocate a new page. If we further implement a rule that says that a record of

1024 bytes or less can not span more than two pages, we would reduce the s'eek time to a

maximum oftwo seeks per record.

768

Record

Size

640

512

384

256

128

50 100 150 200 250 300 350 400 450 500 550 600

Fragmentation

Figure 11. Disk Fragmentation using Blocks, Pages, and Clusters.
The above graph is based on block sizes of 128 bytes with 120 reserved for data
and 8 bytes for block pointers to link blocks together. [original work]

As can be clearly seen from Figure 11 above, by using clusters, pages, and blocks, the

amount of fragmentation can be greatly reduced. In this schema, the range of

fragmentation ranges from 0 to 127 bytes. This of course is a desirable outcome, but does

it come without a cost. Once again, the answer is no. In order for 2 or more blocks to

maintain a relationship, they must have some way of tracking each other. This can be

25



accomplished by using block pointers. Block pointers would require an overhead of 4 to

8 bytes per block. This means that the system win require between 0 to 6.25% overhead

(0 to 3.125% for 41 byte pointers) not counting overhead for cluster which 'can bring

overhead up to as much as 8%. Reducing the amount of potential fragmentation (as

shown in Figure 11 above) win offset the loss ofusable space due to overhead.

Reducing the potential fragmentation is still only part of the picture, we still must look at

seek hmes. If we maintain the rule that no record of 1024 bytes or less, can span more

than two pages, then seek time will always be between 1 and 2 seeks, this is a highly

desirable outcome.

3 . 5 Time Persistence

One of the issues that arise in databases is time recovery. In many cases, the users either

wants to look at some past historical infonnation or produce reports, or back erroneous

data out. Or in other cases, users may wish to go back to a certain point in time, use the

database, and then return to the present. For whatever reason, one useful tool a database

can have is time persistence. One of the goals of this project will be able to roll back the

database to any point in time, and begin processing at that time. At some point the user

may decide to continue processing at the new time line, return to the old time line, or

update the new time line with data that was previously entered. In order to accomplish

these tasks, time persistence will be used. [SAR86]

26



3 . 6 Conclusion to the Probl,em Domain

In looking at possible structures for data allocation engmes. it appears that an

organization that consist of clusters, pages, and blocks will meet the previous stated

perfonnance criteria.

27



4. Solution Domain

4 • 1 Using blocks in a Data Allocation Storage Engine

A block is used to store a sub-set of a database record. Each block consists of <B' bytes

of user space and eight bytes of system space. For discussion sake, let 'B' bytes equal

120 bytes. These blocks are logically chained together in order to provide enough

storage to save the record. In each block, the first four bytes ar:ereserved in order to

provide a pointer to the previous block. The next four bytes are reserved in order to

provide a pointer to the next block. If either block points to the zero address, the pointer

indicates the beginning or end of the record.

cnB10CkA~kB~_k_D__

Figure 12: Linked Blm.:ks with 480 bytes of user useable space
The above figure illustrates how blocks linked together provide the' necessary storage
room for a record. (128 bytes - 8 bytes for links) '" 4 blocks = 480. [Original Work]

4 • 2 Collecting blocks into pages
[Original Work]

A page is a collection of blocks. For discussion purposes only, let each page contain 16

blocks. Each page therefore is 2048 bytes long consisting of 16 separate blocks (16 ...

128 bytes).

28



PageN
tllock Ul mocK UL -nlocKUj BlOCk U4

Block 05 Block 06 Block 07 Block 08
I

Block 09 Block 10 Block II Block 12
Block 13 Block 14 Block 15 Block 16

Figure 13: Page structure consists of 16 blocks of 128 bytes each

Each page is a physical representation of data storage allocation. In figure 3 above, the

blocks were logically linked together. In figure 4 above, the blocks are physically

positioned together. So that if we look at the blocks in figure 12, "Block A" may be the

10th block in the 2nd page, while "Block B" may be the 3rd block in page 5.

4 • 3 Using clusters to organize pages

[Original work]

A Cluster consists of a header page that relays availability of blocks in pages. Each

cluster consists of 1048 frames. Each frame is 2 bytes long consisting of 16 bit flags.

Each bit flag indicates, if true, the block is available.

Figure 14: Bit map frame of a Cluster
Blocks 1,4,5,8,11,12,13 are in use, and blocks 2,3,6,7,9,10,14,15,16 are available for use.
Each Cluster has a head cluster with 1024 frames. Each frame represents the availability
in blocks in a page. [Original Work]

29



As you can see in Figure 8 above, Frames 1,4,5,8,11,12, and 13 are available for use

while frames 2,3,6,7,9,10,14,15, and 16 are used. This indicates that there are 7 blocks

available in the page and 9 blocks that are used. This means there is 840 bytes of user

available space (7*(128-8)). Each Cluster consists of 1048 frames as described in Figure

9 below.

1 2 3. 4 S 6 7 8
9 10 11 12 U 14 13 16

Etc. . .........

1017 1018 1019 1020 1021 1022 1023 1024
I

Figure 15: Cluster Header pages consisting 1024 frames. Each frame represents the
availability of blocks in each page in the cluster. [Original Work]

By using the frame bit map of any page in the Cluster, the system can quickly indicate

which pages have enough empty blocks to fulfill the needs of a record in need of storage

space.

The cluster, page, and block fonnat appear from all analysis too significant reduce

fragmentation in the file. However, it does have a cost of 8 bytes of system allocation

for every 120 bytes ofuser space requirements. This has been deemed acceptable.

4 • 4 Reduction of Seek Time

[Original Work]

While this appears to resolve the fragmentation issues, it does not address the seek time

issues. During the Analysis phase, it has been detennined that no more than two seeks

30



per record of 1024 bytes or less is acceptable. Based on this determination, it has been

conduded that a record of 1024 bytes or less may not span more than two pages. In the

event that the current cluster is unable to provide the required block sized pages, the next

duster will be queried until an appropriate size combination is produced. In general, the

number of pages a record will be allowed to span can be computed with the following

,equation. Let R = record size, B= usable bytes per block, N = number of blocks per

page, and P = the number of pages that a record is allowed to span. Then let P =

Maximum of (Minimum of R/((B*N)/2) and R/2) and 1. Test results indicate that this

solution for random set of records will produce a very high utilization of blocks per page

while keeping the seek time down. Test conducted with all records of equal size, results

showed as R approached B*N, block utilization dropped. In a worse case scenario, up to

25% of blocks per page were never utilized. Once R = B*N, utilization become 100%.

4.5 Time Persistent
[The following is based on the work ofNeil Samak and Robert E. Tatgen --SAR86].

Let each Data Set (Record) start with a control set (151 block) that consists ofa pointer to

the start of the zurrent data source first/last data source before modification, pointer to
, '

the descriptive format (class definition), last modified by, modified date, etc ...

31



Current Record

Last Modifi.ed

Last Mod -1

LastMod -N

Control Block Fields

Field
Control Block
Dependency
Data Set Type
Definition
Data Source
Next Modified
Prev Modified
Last Modified
Date Modified
Time Modified
Name Modified

Bytes
1 Bit
31 Bits
2
4
4
4
4
4
4
2
N

Description
1st bit indicates that it is a control block
Count ofData Sets dependent on this one
Type of Data Set (Class, Object, etc.)
Pointer to definition ofData Set
Pointer to first block in Data Set
Pointer to the Next (newer) modification
Pointer to the Previous (older) modification
Oldest Modified Data Set
Date stored numerical (12101996)
Data stored numerical (2359)
Identification ofPerson who made modification

Figure 16: Time Persistent organization.
The Control Block requires that all blocks that are not control block set their first bit to O.
This will cause no problem since the first 8 bytes of each block are used to link blocks
together. The first 4 bytes are used to link the previous block and the next 4 bytes are
used to link the next block. Since each block is 128 bytes long, the block pointer
represents the block location rather than byte location. This means that the block pointer
has 7 bits that are not required in a 32 bit system (21\7 = 128). [Original Work, based on
the work of Neil Samak and Robert E. Targen [SAR86]]

32



4 • 6 Data Allocation Storage Engine Function Pseudo code

The following is a list of function calls that the DASE win use as interfaces. These are

the calls that the interfac~ngdatabases will use.

Function
Create

Pseudo Code
if file does not exist

Create file
build control file

build Control Record
# of Clusters = 1;
Indicator for DASE
# ofPages in last cluster = 0;

Write control file
build Cluster 0

Set all bit flags to 0 (all pages unused)
Write Cluster
Close Data File

else
return error

Open if file exists
Read Control Record
if Control Record DASE

Return no error
else

return error

else
return error

Insert if file is open
Compress data
Split data into blocks
find a page with (# ofblocks)/2 free
find another page for the rest ofthe blocks
Insert the blocks into both pages

adding internal links to each block as we go along.
Return the address of the first block.

Else
return error

33



Function
Read

Update

Close

Destroy

Pseudo Code
iffile is open

using the address supplied, read the first page.
Ifaddress points to a valid block

Extract all blocks from page and build compress data set.
Continue on to the next page until all blocks are read and the
compressed data set is built.
Decompress data set
return a pointer to the decompressed data set

else
return error

else
return error

Destroy previous data set
if successful destroy

Compress data set
split data set into blocks
write the first block at the same location as the old first block
Fill the rest of the in the current page with as many blocks as
possible
Find another page with appropriate number of free blocks
write remainder of blocks to second page

else
return error

Close the data file

if file is open
Open first page pointed to by address
If it a valid record set

mark all blocks in this page and connected pages as free

else
return error

else
return error

34



4 . 7 CI.ass/Object Relationships

In developing this system, an Object-Oreinted approach. was utilized. The software was

first broken into two sub-parts, the first part (left) dealt with the clusters, pages, and

blocks (and disk access), and the second (right) dealt with assemble/disassemble of the

source data (document/record, etc.) The following chart is a diagram of the relationships

of classes/objects in this project.

Broker

Brtdge Eplsod'<l

SUbject

e...nt

Copslje

Anet

Access

Poge

Adlsk

j~l

Block

L ~-I
'---,----'I

I
I
1,
~

~
j

~
Block )

! i
il ---' ...1

;.....·..F·ig..~r~ ..i 7':"DASJE"Obj'~ctJcias·s "relationship chart

[Original Work]

35



In the above chart (Figure 17), The Broker is the main interrace and provides and

externa.l application program interfayes (API). The Bridge provides a linkage

between the Draft and the Bundle. The Bundle coordinates DASE disk structures

and storage (clusters, pages, blocks, etc.). The Draft takes as input a series of

bytes, (such as a record), breaks tbem down to blocks, or takes blocks a.nd

assembles them into the original record. The Page is a representation of a page in

the DASE and stores a collection of blocks. The Cluster class is representation of

a cluster header page and stores a collection of frames. The Block class

represents a block of data (128 bytes). The Frame class represents a frame

structure. Access class provides operating system level access to the hard disk or

network. Adisk class is used to physically store infonnation on the local

computer, and the Anet class is used to store information on a foreign computer.

The Subject class is an instance of the current datum (recor:.d) and infonnation

concerning the event instance (time space infonnation). The Document is the

actual data to be stored or accumulated. The Pocket is a collection class of the

Capsules. The Capsules are wrappers containing a single block.

36

---------------



Figure 18: DASE Object Dow chart (Insertion or updating a record).
(Original Work]

In figure 18 above, the flow of a document being added (or updated) is

diagramed. A document is a series of contiguous bytes (such as a record). The

Broker receives the document from an external source and sends it to the episode,

which in turn sends it to the Subject. The document is then temporarily stored

and an event is created. An event is a structure that tracks time dependent

infonnation of a document. The event and the document are then merged to form

an Entity. The Bridge is then called by the Broker and told to process. The

Broker calls the draft and requests that the Entity be disassembled into blocks.

The blocks are then wrapped by a Capsule to fonn a link list. The Pocket is then

37



created to store the root pointers to the Capsules. The Bridge then queries the

Draft for the total number of blocks. The Bridge then calls the bundle (who calls

the page) and request the number of blocks per page. The Bridge th.en calculates

the minimum number of Blocks that must be stored per pag,e. The Bridge then

request that the Bundle locate a Page that meets the minimum requirement of

available Blocks. Once an appropriate Page is located, the Bundle returns the

count of the number of available Blocks to the Bridge. The Bridge then

continuously queries the Draft for the first/next block until either all of the

available blocks in the page are uS'ed, or there are no more blocks to be stored.

As each block is stored in the page, the associated Frame in the Cluster is updated

to reflect the fact that the block is now in use. Whenever a new page is read from

the disk (or created), the old page is first queried to determine if it is dirty (has

been altered in some way), and if it has been, it is rewritten to the appropriate

location. Whenever a new page is retrieved, the bundle determines which cluster

it belongs to. If it belongs to a cluster that is not currently residing in the Bundle,

then the Bundle will query the Cluster to detennine if it is dirty. If it is, it ]s

rewritten back to the disk file and the new appropriate cluster is read and placed

in the Bundle.

38



~me~
1,2.R__,_

nr$er I
II. Puses_to E!Jhodo

I Epifian
10, _ Doamort 10 SUlject

I su§ect
t

9.' Pus Thru

3.~_

B1ge
4.~__

5.~o(_.1
~r"..-y__

Capsule

Figure 19: BASE Object now chart (Retrieving a dotumenl).
[Original Work]

In figure 19 above, the flow of a document being retrieved is diagramed. A document is a

series of contiguous bytes (such as a record). The Broker first receives a request for the

document at a particular location from an external source. The request is then sent to the

Bridge. The Bridge then calls the Draft and sends a message to prepare for a retrieval

process. The Draft deams out the packet and all of the Capsules and associate Blocks

are deleted. The Bridge then request that bundle retrieve a block (It the location received

from the external source. The bundle examines its current page and determines if the

block is located in that page. If it is, it returns a pointer to the block. If it is not at that

39



location, the page is queried to determine if it is dirty. If it is, it is rewritten to the disk

file and the appropriate page with the requested. Mock is read. (note: If the requested page

is in a different cluster other than the one currently in the bundle, the cluster is queried to

determine if it is dirty. If it is dirty, it is written to disk and the appropriate duster for

that page is read into memory). The appropriate block pointer is then passed 10 the

Bridge. The Bridge extracts the next block pointer from the block and then seodsthe

block pointer to the draft. The draft then copies the block., wraps it in a Capsule and

appends it to the end of the pocket. The Bridge then examines the next block pointer. If

the next block pointer is > 0, the Bridge repeats the process of requesting a block from

the Bundle and passing it to the Draft until all blocks have been read. Once all blocks

hav,e been read, the Bridge request that the Draft assemble the document. The Draft will

extract the data sub record from the blocks and will build the Entity. The Entity is then

spiit into an Event and a Document. The Bridge then releases control to the Broker. The

Broker then calls the Episode and requests the document. The Episode in tum calls the

Subject, who returns a pointer to the document. This document is then passed up to the

Episode who in turn passes it to the Broker. The Broker then makes a copy of the

Document and passes it to the calling process.

40



4 . B Class/Object Definiltions.

The following diagrams depict the internal functionality and storage of each of

the main classes in DASE.

Broker
Methods: Objects

Public: Private:
Create oBridge
Open oEpisode
Destroy
Close
Insert
Read
Update I

Bridge
Methods: Objects:

Public: Private:
Read oBundle
Update oDraft
Insert
Access

This Class is the main entry point into the The Bridge coordinates the efforts between

DASE system. It provides the Application the Draft and the bundle. Its purpose is to

Program Interface (API). coordinate the process of either receiving a

data stream, breaking into blocks and

storing it, or retrieving blocks, assembling

them and return the results to the calling

process.

41



Bundle
Methods: Objects

Public: Private:

NewBlock oPage
GetBlock oCluster
SetBlock oAccess
NextBlock
FreeBlock

Access
Meth9ds: Objects:

Public: Private:

Path oAdisk
Type oAnet

,

Open
Write
Read
Create
n""l",,+o

The Bundle coordinates the work of the Access is used to read or write data to the

Pages, Clusters, and the Access objects. disk file. This class removes the need for

The current working Clusters and Pages are the Bundle to read or write directly.

stored in the Bundle, and the Access Object

is used to read or write the Cluster or Page

to the hard disk.

42



Page
Methods: Objects

Public: Private:
Get oPage
Save oBlock
IsClean( )
IsDirty( )
Clean( )

Static: Static:
Size cBlkCount
Blocks
Blocks(Count)

Block
Methods: :Ob.iects:

Public: Private:
Build oBlock
SetNext oNext
GetNext oBlkID
SetData oData
GetData oStatus
CpyData
CpyBlock Static:
Operator = cBlkSize
IsClean cBlkID
IsDirty
Clean

Static:
BlockSize
DataSize
Overhead

The page holds the current page data, the Blocks contain the sub records of a

status of the current page (Dirty or Clean) document. The are also capable of

and the number ofblocks in a page. extracting the address of the next b'ock in

the link. Like Pages, they also know if

Note: A Dirty page is a page which has they are dirty.

been modified since it was either created or

read from the hard disk, but which has not They also contain the Configured block

yet been written to the hard disk. size and the next block ID.

43



Cluster
Metbods: Objects

I

Public: Private:
GetMin oFrame
GetFrame oData
Build

Static: Static:
Size cFrameCount
Count
MetaBuild

Frame
Metbods: .Objects:

Public: Private:

Check oFrame I

UnCheck aStatus
InUse
IsFree
Clean
IsClean
IsDirty
NoOfFree

Static: Static:
MetaBuild
Size cFrameSize

Private:
SetBit
GetBit

The Clusters contain the frame data as well The Frames are used to determine if the

as a pointer to the individual frames. They block is in use or not. For each block in

also hold the number of frames per cluster. the Cluster (the cluster here is a set of

cluster header and Pages, not the cluster

structure), there is one bit in the frame. If

the block is in use, and then bit is set to

one, otherwise, it is set to zero.

44



Adisk
Methods: Objects

Public: Private:

Path oFILE
Type
Open
Write
Read
Create
Delete

Anet i

Methods: Objects:

Public: Private:

Path oSocket
Type
Open
Write
Read
Create
Delete

The Adisk is used for accessing data from a This class is currently not in use in DASE.

disk file. Access must use Adisk to access It was left in the design for future

data. reference. When implemented, it will

supply the ability to read web pages off of

the Internet.

45



Episode
Methods: Objects

Public: Private:

Receive oSubject
Retrieve
Backout
CheckPoint

I

Draft
Methods: Objects:

Public: Private:

Assemble oPocket
Disassemble oSubject
GetNext
AppendBlk

j

The Episode is used as a process for The Draft either takes an Entity and breaks

passing the document to the subject and into blocks, or takes a series of blocks, and

requesting a checkpoint or a back out. If a assembles an Entity.

checkpoint or a back out is requested, then

either the previous data is read from the

disk for the current document (or the

prevIous versions of the document are

deleted).

46



Pocket
Methods: Objects

Public: Private:

Append oHead
Next oCurrent
Head oTail
Clear

The Pocket is a link list of Capsules.

Capsule
Methods: Objeds:

Public: Private:

GetBlock oNext
SetBlock oBlock
NextBlk !

This obj,ect is a node in a link list that

contains a pointer to a block.

47



Subject
Methods: Objects

Public: Private:

SetDocument oEvent
GetDocuemnt oDocument
GetPrevious oEntity

This object provides the process of either

merging an event and a document to form

>

Event
Methods: Objects:

:

Public: Private:

DataType Type Bit
Source Dependencies
Next Data Type
Prev Data Source
Last Next Modified
Date Prev Modified
Time Last Modified
Name Date Modified

Time Modified
N~meModified

The object controls the time sensitive

infonnation of an Entity. By using the

an Entity, or the process of taking an Entity Next and Previous links, this class allows

and breaking it into an Event and a

Document.

the system to go foIWard (Next) or

backwards in time (Prev).

48



5. Practical Applications of Data Allocation Storage Engines

5 . 1 Interfacing with the Data Allocation Storage Engine

ISQL Internet Applications

OSQL SQL BrowserlWP RSQL

ODMS RDMS HyperText KnowledgeBase

Data Allocation Storage Engine (DASE)

Figure 20: hi.erarchical interface to a Data AUocatioB Storage Engine.

In figure 20 above, we show a possible hierarchical view of layers of an intelligent

database. Here we can see that 4 types of databases use the Data Allocation Storage

Engine (DASE). Each of these databases has their own unique formats for data. While

this is a small collection of possible usage of a DASE, they are by no means exhaustive.

The DASE provides several general functions that all databases use. Some of these

functIons are:

Function
Create

Open

Insert

Purpose
Create a disk file for the DASE (if already exists, return error)

Open an existing DASE data file. (if it does not exist or is not a
DASE data file, return error)

Insert a data set into the DASE data file. Return errors if unable
to insert, otherwise, insert the data set into the DASE data file and
return an internal address of the first block.

49



Read

Update

Close

Destroy

Read a data set from the DASE data file. If not a legal location,
return an error, otherwise, return a pointer to the uncompressed
data set.

Locate the indicated data set, and re-write tbe infonnation. If not
a legal location, return an error.

Close the DASE data set.

Remove data set from DASE.

5 . 2 Disk File of a Data Structure Allocation Engine

Clusters 2-N

Figure 19: Full view of a Data Allocation Storage Engine disk file.

In Figure 19 above, we see the logicallphysicallayout of a DASE data file. Here we can

see that Clusters are both a logic set of pages, and a physical set of data. The Cluster

50



data set itself contains several bit flags to track the free & used blocks in pages that

belong to the logical pages of a cluster. The next 1024 pages belong to the logical duster

set. In other words, each logical cluster contains a cluster head data set, followed by a set

ofpages.

Proceeding all Clusters is a DASE control record (data set). There is only one control

record in any physical DASA disk file. The control record stores the number of clusters

and the number of pages in the last cluster. The control record also stores a unique

character sequence to indicate that the data set is a DASE and what version it is. This

will aid Open call to detennine if the file that is being open, is indeed a DASE data file.

5 . 3 Storing Data in the Data Allocation Storage Engine

HyperText Doc C

HyperText Doc F HyperText Doc

Figure 20: Hierar~hkal HyperText Documents

Consider the above set of HyperText Documents interconnected together. Let us assume

that each document is variable length. Let us therefore give each docement the following

lengths after data compression is completed:

51



Document Name
HyperText Doc A
HyperText Doc B
HyperText Doc C
HyperText Doc 0
HyperText Doc E
HyperText Doc F
HyperText Doc G

Length
100 bytes
300 bytes
800 bytes
525 bytes
303 bytes
200 bytes

50 bytes

Blocks
)

3
7·
5
3
2
1

If we look at a DASE data file that has stored only these documents, it might look as

follows: Let HyperText Doc A be represented by HA, HyperText Doc B be represented

by HE, etc.

In the next few pages, we will show how this data is stored in a DASE disk file. Each set

of data (document) is first broken into a set of blocks. Each block consists of 120 bytes

of data plus 8 bytes of overhead (for illustration purposes only). In th~ first example, we

will show the stored blocks without showing how they are linked together- In the second

example, we show how the blocks and data are linked together. A hyperlink is a link that

is not controlled by the DASE, but is a logical linked set up by the calling process. All

"Internal Block Links" are fully controlled by the DASE. All blocks that indicate free are

unused blocks that are available for future use.

51



Cluster 1 (2048 bytes)
Page 1

HA HE liB '. HB
tie He tie He
He He He He
He He He He

Pa e2

Page 3

g

.tiD HD liD .tID

tiD ~ .H.E tiE

HF HF HG I (Free) I

(Free) (Free) (Free) (Free)
Pa e 4

(I'ree) (Free) I (J:<ree) (f:<ree)
,

~l'ree) (f:<ree) I (tree) (tree)
(Free) (Free) "{FreeT (Free)
(Free) (Free) 1FreeJ (Free)

Pages 5-1024

,Figure 21: .Example of Stored ,Blocks (not showing block pointers and
links based on block size of 128 b tes.

53



6. Conclusions and Future Work

This has been an enjoyable project in which I have learned so much. In the process of

building the DASE, several issues arose. One of these issues was how big to make the

blocks and how many blocks per page. In the end, I decided to make the software

configurable. I did this by building static methods and variables into key classes. This

required the software to call these static methods before any objects were instantiated.

There are several next steps I intend to implement using the concepts and software

developed for this project. It is my hope and dream to use this software to develop an

Intelligent database capable of storing any type of data format, be that object, hypermedia,

knowledge, or any other data format.

It is my hope that the Data Allocation Structure Engine will be useful to other developers

attempting to create a single me system for multiple systems. Those systems may be word

processing, Databases, spread sheets and much more. These applications can run on

single machines, networks, internet or mtranets. The possibilities are endless.

With a strong foundation such as Data structure allocation engines, software packages can

have multiple uses but have direct access to each others data.

54



Future enhancements to the data structure allocation engine will include security checks,

with logins. Partitioning of the data fIle for greater flexibility. Other features may include

automatic backup processing.

55



BIBLIOGRAPHY

[CH089] Chorafas, D., (1989). Handbook of Database Management and Distributed
Relational Databases. Blue Ridge Summit, PA.

[DIE89] Diehr, G., (1989) Batabase Management. University of Washington. Scott,
Foreman and Company. Glenview, minois.

[FOL92] Folk, M., and ZoeUick, B., (1992). File Structures, Second Edition.
Addison-Wesley Publishing Company, Inc.

[GAR89] Gardarin, G., Valduriez, P., (1989). Relational Databases and Knowledge
Bases. Addison-Wesley Publishing Company, Inc.

[KEM94] Kemper, A., Moerkotte, G., (1994). Object-Oriented Database Management.
Prentice Hall, Englewood Cliffs, New Jersey 07632

[KJM92] Kim, Won, (1989). Introduction to Object-Oriented Databases, The MIT
Press.

[KJM90] Kim, Won, Garza, Jorge F., Ballou, Nathaniel., and Woelk Darrell, (1990).
Architecture of the ORION Next-Generation Database System. IEEE Trans.
Knowledge and Data Engineering, Vol.2, No.1, Mar 1990, pp. 102-124.

(KR083] Kroenke, D., (1983). Database Processing, Second Edition. Sdence
Research Associates, Inc. A Subsidiary of IBM.

[NUT92] Nutt, Gary, j., (1992). Centralized and Distributed Operating Systems.
Prentice Hall, Englewood Cliffs, ~New Jersey 07632.

[MJL87] Milenkovic, M., (1987). Operating Systems, Concepts and Design.
McGraw-Hill Publishing Company.

[MUL89] Mul1ender, Sape., (1989). Distributed Systems, ACM Press, New York, New
York.

[PAR93]

[PAR89]

Parsay, K., Chignell, M., (1993). InteUigent Database Tools and
Applications, Hyperinforrnation Access, Data Quality, Visualization.
Automatic Discovery. John Wiley and Sons Inc.

Parsay, K., Chignell, M., Khoshafian, S., Wong, H., (1989). Intelligent
Databases, Object-Oriented, Deductive, Hypennedia Technologies. John
Wiley & Son, Inc.

55



[SAR86] Samak, Neil., TaIjan, Robert, E., (1986) Planar Point Location using
persistent search trees. Communications of the ACM July 1986, Vol 29,
NO.7.

[SIL95] Sitberschatz, A., Galvin, P., (1994). Operating System Concepts, Fourth
Edition. Addision-Wesley Publishing Company.

[TAN92] Tanenbaum, Andrew S., (1992). Modem Operating Systems. Prentice Hall,
N.J.

[TUR90] Tuman, Efraim., (1990)., Decision Support and Expert Systems:
Management Support Systems. Macmillan Publishing Company.

56



VITA

Ray Harvick

Candidate for the Degree of

Master of Science

Thesis: Time Persistent Data Allocation Storage Engine

Major Field: Computer Science

Biographical:

Personal Data: Born Fresno, California, On December 10,1956, the son of Joe
and Betty Harvick.

Education: Graduate from Silver Creek High School, San Jose, California in
May 1983; f'eceived Bachelor of Science degree in Technical
Education from Oklahoma State University, Stillwater, Oklahoma in
December 1996. Completed the requirements for the Master of
Science degree with a major in Computer Science at Oklahoma State
University in December 1997.

Experience: Ra.ised in San Jose, California. Joined the U.S. Coast Guard in
January 1976. Left the Coast Guard in January 1980 and started
working as a computer programmer. Continued to work as a computer
programmer until January 1993 where I enrolled at Oklahoma State
University as an undergraduate student in Technical Education.




