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INTRODUCTION

This document consists of two chapters, each reporting separate studies

conducted during my master's program. Both chapters are presented in formats

suitable for publication in professional journals.
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CHAPTER I

REMEDIATION OF ARSENIC CONTAMINATED SOIL

BY CHEMICAL IMMOBILIZATION

ABSTRACT

Chemical immobilization of arsenic involves treatment of polluted soil to

reduce solubility, bioavailability, mobility, and risk to human health from

contaminants. The ability of five chemical immobilization treatments to

remediate acidic soil (pH 3.6) contaminated with arsenic (7977 mg As kg-1
) from

arsenopyrite smelter waste were evaluated. Contaminated soils were incubated

with chemical treatments for 4 weeks. Treatments were calcium carbonate

(Limed Control), aluminum sulfate (Alum) with CaC03, ferrous sulfate (Fe) with

CaC03 , manganese sulfate (Mn) with CaG03 , and cement kiln dust (CKD) at a

2:1 metal:As treatment rate. Reductions in arsenic solubility, plant As uptake,

and As mobility in treated soil were determined by extraction (1 M NH4CI, Bray

#1, and 0.1 M P04), measuring As in carrot (Daucus carota L.) roots and tops,

and by leaching soil columns with water and 0.1 M P04 , respectively. Arsenic

solubility (in mg kg-1
) for immobilization treatments (in parentheses) ranged from

23.7 (CKD) to 7.7 (Mn) in NH4CI, 98.5 (Unlimed Control) to 0.6 (Mn) in Bray #1,

and 352 (Unlimed Control) to 154 (Alum) in 0.1 M P04 Reduction of extractable
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As by the Alum, Fe, and Mn treatments was attributed to chemisorption of As by

hydrous oxides formed during soil treatment. The Alum treatment had the most

carrot growth while the Mn had the least. Root As concentration ranged from

1.3 !J.g g-1 for CKD to 0.23 I1-g g-1 for Alum. Treatments increased soil pH and As

mobility in water but Alum, Fe, and Mn treatments decreased As mobility in 0.1 M

P04. Co-application of Alum and Lime promotes plant growth while reducing As

solubility, As mobility, and As uptake. Alum treatment may reduce arsenic

exposure and risk to human h.ealth from groundwater, erosion of denuded soil

and incidental ingestion of soil and house dust, and consumption of garden

vegetables.

INTRODUCTION

Arsenic is ubiquitous in soil environments and ranges from 0.1-40 mg As

kg-' with most soils in the lower region of this range (O'Neill, 1990). Arsenic is

present in soils as arsenopyrite (FeAsS), enargite (Cu3AsS4), orpiment (AszS3),

and realgar (As4S4) minerals, sorbed to hydrous oxides, or co-precipitated with

Ca, Mg, Fe, and AI minerals (Huang and Fujii, 1996).

Arsenic production> 30,000 metric tons worldwide (Adriano, 1986) and

among its many uses are pesticides, wood preservatives, and growth promoters

for poultry and swine (O'Neill, 1990). Arsenic contamination of soil arises from

mine tailings and aerial deposition from smelting of As and Cu ores and the use
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of inorganic As based pesticides prior to the 1970's (Huang and Fujii, 1,996;

Lindau, 1977; Nelson, 1977; O'Neill, 1990).

Long-term application of arsenical pesticides to orchards has led to As

contamination of soil and As phytotoxicity (Woolson et aI., 1971; Hess and

Blancher, 1976;. Peryea, 1991 ). Fifty-eight orchard soils nationwide that

received arsenical pesticides ranged from 1 to 2553 mg As kg-1 with a mean

content of 165 mg As kg-1
. Nearby untreated soils ranged from 0 to 96 mg As

kg·1 with a mean content of 13 mg As kg-1 (Woolson et aI., 1971). Soils

contaminated by mining and smelting have resulted in As concentrations

greater than 20,000 mg kg·1 (O'Neill, 1990).

Chronic exposure to As can result in human health problems including

skin and internal organ canoers, impaired nerve function, kidney and liver

damage, and skin lesions (ATSDR, 1991). Humans can be exposed to As from

contaminated soils by incidental ingestion of soil and house dust, contaminated

groundwater, and movement of As through the food chain (Polissar et aI., 1990;

Chaney and Ryan, 1994). The soil ingestion pathway has been shown to be the

principal exposure pathway for high levels of As in young children (measured as

urinary As) living near smelter sites where As contamination of soils is prevalent

(Polissar et aI., 1990). The use of root vegetable crops such as carrots or

radishes, poses a link for As into the food chain (Chaney and Ryan, 1994).

Remediation of smelter-contaminated sites is an expensive problem that

often involves excavation and landfilling of contaminated soil. An alternate

approach to r,emediation is chemical immobilization where soil is treated to
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reduce solubility, bioavailability, and mobility of contaminants (Logan, 1992).

Chemical amendments reduce solubility of soil contaminants by enhancing

their sorption, precipiltation, or complexation (L09an, 1992). Phosphate

fertilizers, organic amendments, and liming materials have been used for

chemical 'immobilization of Pb and Zn in smelter contaminated soils (Anderson

and Basta, 1995; Zwonitzer and Pierzynski, 1996; Onken et aI., 1996; Chlopecka

and Adriano, 1996; Ma et aI., 1993; Pierzynski and Schwab, 1993).

Chemisorption to hydrous oxides and precipitation with Fe, Mn, AI, and

Ca limits solubililty of arsenate in contaminated soil (Hess and Blancher, 1976).

The addition of AIz(S04h. FeS04, or MnS04 to contaminated soil can precipitate

As or form AI, Fe, or Mn hydrous oxides (Lindsay, 1979) that can adsorb As

(McBride, 1994) and may serve as effective chemical immobilization treatments

(U.S. EPA, 1984). Ferrous sulfate has been used for chemical immobilization of

arsenic as FeAs04 in soil contaminated from manufacturing of arsenical

pesticides (Artiola et aI., 1990), and in soi I contaminated with arsenious acid at a

chemical manufacturing plant (Liberti and Polemio, 1981). Also, Ca containing

amendments (cement kiln dust) precipitate arsenate as Ca3(As04h (Sadiq et aI.,

1983), and may serve as an effective chemical immobilization treatment. To our

knowledge, little information is available on the use of Fe, Mn, AI, or Ca-

containing treatments for chemical immobilization of As in mining contaminated

soil (Hanke and Basta, 1996).
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The objectives of this study were to evaluate the ability of five Fe, Mn, AI,

or Ca-containing treatments to reduce the solubility, uptake, and mobility of As

from soil contaminated with smelter waste.

MATERIALS AND METHODS

Approach

The ability of five chemical treatments to immobilize As by precipitation or

adsorption (chemical immobilization) was determined. Arsenic contaminated soil

and chemical treatments were mixed and incubated for four weeks at constant

temperature and moisture. Soil treatments were evaluated by measuring

changes in As solubil,ity, in As uptake and revegetation by carrots, and in As

mobility by using packed columns.

Contaminated Soil and Treatments

Surface (0-10 em) soil sampilies (Loamy, mixed, mesic Acidic Ustorthent)

were collected from an area contaminated with tailings from roasted arsenopyrite

are. Chemical and physical properties, determined on air-dried soil « 2 mm),

were: soil, pH 3.6 (1:2 soil:0.011M CaCb); electrical conductivity (EC) 2.47 dS m-1

in 1:5 soil:deionized water extract (Rhoades, 1982); soil organic carbon 2.0 9

kg-1 (Yeomans and Bremner, 1988); soil texture of fine sandy loam (710 9 kg-1

sand, 150 9 kg-1
, 140 9 kg-1 clay) determined by the hydrometer method of Gee

and Bauder (1986); and extractable P of 2.29 mg P kg-1 using Bray #1 extractant

(Bray and Kurtz, 1945).
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Total soil arsenic of 7977 mg kg-1 was determined by wet digestion with

1: 1 HN03 and 30% H20 2 (U.S. EPA Method 3050B; U.S. EPA, 1996), followed

by analysis of digest by direct nebulization inductively-coupled plasma atomic

emission sprectroscopy (ICP).

Chemical Immobilization Treatments

Chemical treatments were alumi!num sulfate [AI2(S04h-nH20], ferrous

sulfate (FeS04.7H20), manganous sulfate (MnS04.H20), and cement kiln dust.

Metal sulfate salts were reagent grade purity. Calcium carbonate (CaC03) was

used to adjust the soil pH.

Treatments were applied to soil with three replications in a completely

randomized design. Except for the limed control, treatments were added to the

contaminated soil on a 2: 1metal:As raUo on a molar basis (Table 1). Calcium

carbonate was added to the Limed Control, aluminum sulfate (Alum), ferrous

sulfate (Fe), and the manganous sulfate (Mn) treatments to achieve a target soil

pH of 7. The amount of CaC03 added to these treatments varied according to

the acidity produced by the amendments. The Cement Kiln Dust (CKD)

treatment did not require supplemental CaC03. Comparison of the Limed

Control and other treatment results was used to evaluate the effect of pH

adjustment on As solubility.

Treatments were added to soil in a sealed container and shaken to

achieve thorough mixing. Treated soils were transferred to perforated-lidded

clear plastic trays. Deionized water (- 25% w/w) was added to soils to achieve

7



moist and unsaturated conditions. Treated soils were incubated at constant

temperature (2r C) and water content was adjusted to 25% (w/w) every five

days.

Soil pH and phosphate extractable As were measured on subsamples (5

g) of each treatment weekly to determine the extent of CaC03 reaction and

arsenic sorption. Phosphate 'extractable As was determined by extracting 2 g of

treated soil with 20 mL of a 3:2 solution of 0.1 M Na2HP04: 0.1 M NaH2P04on a

horizontal shaker for 1 hour. The sOiil extract was centrifuged at 6000 rpm for 10

min, filtered through 0,45 Ilm membrane filters and analyzed for As by direct

nebulization ICP.

Arsenic Solubility

Ammonium chloride (1 M) was used to measure water soluble and anion

exchange As. Soil (1 g) was extracted with 20 mL of 1M NH4Cl on a horizontal

shaker for 30 min. Bray #1 solution (0.025 M HCI and 0.03 M NH4F; Bray and

Kurtz, 1945) was used to extract watel'" soluble As, weakly adsorbed As, and

easily dissolved As precipitates. Soil, (2 g) was extracted with 14 mL of Bray #1

on a horizontal shak,er for 5 minutes. Phosphate solution (3:2 0.1 M Na2HP04 :

0.1 M NaH2P04, pH 7.0) (Yamamoto, 1975) was used to extract the water

soluble, weakly adsorbed, and strong'ly adsorbed As fractions. Treated soil (2 g)

was extracted with 20 ml of the phosphate solution on a horizontal shaker for 1

hour. All soil extracts were fiHered through O,4Sllm membrane fiIters and

arsenic in the filtered extracts was determined by ICP.
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R,evegetation Abinty and Plant Uptake of Arsenic

The ability of treated soils to support vegetation and the amount of As

accumulated in vegetation was determined by growing carrots (Daucus carota

L.) for 73 days. Treated soil (500 g) and 25 % (v/v) vermiculite were placed in

600 cm3 cups with holes drilled in the bottom for drainage. Approximately 15

carrot seeds were planted in each pot. Nutrient solution, 40 mL of 0.5 g L-1

Miracle Grow®, was added every 3 days. Three weeks after emergence, the

pots were thinned to 5 carrot plants per pot. The carrots were grown in 18 hours

of light under Gro-Lux® fluorescent bulbs (Sylvania Inc., Danvers MA). The

temperature was 22°C during light and 1rc during darkness. The relative

humidity was kept at approximately 70%.

After maturity (73 days), the carrots were removed and carefully washed

with deionized water to remove soil. Carrots were dried at 80°C for 24 hours.

Carrot tops and roots were separated and ground (40 mesh).

Ground carrot tops and roots were prepared by the wet digestion of

Zarcinas et al. (1987) modified for ICP analysis by Hydride Generation. In this

method, carrot tops or roots were placed overnight in 10 mL of trace metal grade

HN03 and subsequent digestion at 90°C for 45 minutes in an aluminum digestion

block. The temperature was then raised to 150°C and heated until

approximately 1 mL of solution was left in the tube. The tubes were allowed to

cool and then 3 mL of trace metal grade concentrated Hel was added and

heated at 120°C for 30 minutes. The solution was cooled and the volume was

raised to 12.5 mL and then fi Itered through 0,45 Ilm membrane fi Iters. The root
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digests were diluted 1:50 and the top digests were diluted 1:10 with 3 M HCI and

analyzed by Hydride Generation ICP.

ReducHon in Arsenic Mobility

Mobility of As in treated soils was determined by pumping deionized water

or phosphate solution mobile phases through columns packed with treated soils.

Arsenic mobilized by wat,er was determined by packing 50 g of treated soil

into a 2.5 cm X 10 cm Kontes Flex-Column™ with a 2.5 cm flow adapter (Kontes

Glass Co.). Pore volume was determined for each treatment from measured

bulk density of soil in each packed column. Deionized water was pumped

through the column at 1.0 mL min-1 and a fraction collector was used to collect

each pore volume for a total of 50 pore volumes. Pore volumes analyzed for As

were 1-10, 12', 14, 16, 18,20, 25, 30, 35, 40, 50. Arsenic in column leachates

was measured by Hydride Generation ICP.

Arsenic mobilized by phosphate solution (3:2 0.1 M Na2HP04 : 0.1 M

NaH2P04 I pH 7.0) from treated soils was determined by using the same

procedure as previously described for collection of water leachate. Dissolved

As in phosphate leachate was measured by direct nebulization ICP.

Arsenic Analysis

The type of As analysis by ICP (Hydride Generation or Direct

Nebulization) used depended on As concentration in sample extract, di,gest, or

leachate. Hydride Generation was used for low level As analysis « 1 mg L-1 in
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solution). Sample pretreatment included acidification of sample to 3 M HCI by

adding 2.5 mL of trace metal grade hydrochloric acid to 7.5 mL of filtered extract.

FoUowing sample acidifIcation, 3 mL of a 10% (w/v) KI and 1% {w/v) ascorbic

acid solution was added to 10 mL of acidified sample to reduce As(V) to As(lIl)

for Hydride Generation. Arsenic was then measured using a Hydride Generator

connected to a Fision's Maxim, Inductively Coupled Plasma - Atomic Emission

Spectrophotometer (ICP). The conditions for the Hydride generator and the 'CP

are shown in Table 2.

were as follows: Forward Power at 1100 W, plasma flow at 1.05 L min-1
, carrier

Direct Nebulization ICP was used for >1 mg As L-1
. The ICP conditions

and analytical
. -1

mm ,

wavelength of 193.761 nm.

flow at 0.5 L min-', sample pump speed at 2.2 mL

RESULTS AND DISCUSSION

Soil pH and EC

Soil pH or phosphate extractable As did not change after four weeks of

incubation indicating rapid chemical reactions were complete. Calcium

carbonate, added to raise the soH pH to allow revegetation, resulted in soil pH

values of 6.8 to 7.6 in treated soils (Table 3). Slight but significant (P<0.05)

increases in soil EC were found between treatments (Table 3). Soil EC > 1.0 dS

m-l will decrease carrot growth by >10% (Rhodes and Miyamoto, 1990) but most

differences in EC between treatments were small and should not result in

differences in carrot growth due to treatment.
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Arsenic Sollubility

Except for Mn, treatments increased NH4CI extractable As (Fig. lA).

BecausH As is solubility increases with soil pH, CaC03 addition may have

contributed to increases in NH4CI extractable As by simply raising soil pH.

Soluble As was CKD > Fe> Alum even though these treatments had similar soil

pH. Solubility diagrams of AI-, Ca-, Fe-, and Mn- arsenates, based on Ksp values

given by Sadiq et al. (1983) suggests treatments should have followed the trend

Fe > AI > Ca, Mn at pH 7 if precipitation was the only immobilization mechanism

(Fig. 2). The addition of metal salts of AI, Fe, and Mn, along with the addition of

lime to raise the pH, forms additional hydrous oxides in the Alum, Fe, and Mn

treatments (Lindsay, 1979). Hydrous oxides are able to strongly adsorb As

(McBride, 1994) or precipitate As (Hess and Blancher, 1976). Therefore both

adsorption and precipitation mechanisms reduce soluble As in the Alum, Fe, and

Mn treatments. However, only precipitation of CaAs04 could have occurred in

the Limed Control and CKD treatments. Soluble arsenate trend of CKD > Alum,

Fe, Mn (Fig. 1A) is consistent with adsorption of arsenate by hydrous oxides

formed during treatment with metal salts. Artiola et al. (1990) treated As-

contaminated soil with ferrous sulfate and reduced water soluble As from 2.5 g

L-1 to 0.017 g L-1
. They attributed the reduction in water soluble As to adsorption

and precipitation of As onto Fe oxides formed by addition of ferrous sulfate.

Similarly, Liberti and Polemio (1981) used FeS04 additions to form highly

insoluble arsenates in soil contaminated with arsenite.
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Because arsenate and phosphate chemistry are similar in soil, dilute acid

fluoride extractants including Bray #1 was used to measure labile As in soil

(Jacobs et aI., 1970). The Bray #1 extractable As from each treatment was

Unlimed Control> Limed Control> CKD > Alum, Fe, Mn (Fig. 1B). In addition to

soluble P, Bray extractant dissolves limited amounts of inorganic Ca-P, AI-P, and

Fe-P in soil (Fixen and Grove, 1990) and should dissolve analogous forms of

arsenates. Sesquioxides and free Fe203 increase As retention and reduce the

amount of As extracted by Bray #1 (Jacobs et aI., 1970). The additional hydrous

oxides created in the metal treatments and the precipitation of the metal

arsenates explains the greater reduction in the Bray #1 extractable As compared

to the Limed control.

Phosphate extractant (3:2 0.1 M Na2HP04:NaH2P04) has been used to

desorb arsenate from soils (Yamamoto, 1975). Because phosphate has very

similar chemistry to arsenate, phosphate is able to desorb arsenate from soil

(Woolson et aI., 1973; Peryea, 1991; Creger and Peryea, 1994; Roy et al.,

1986). Arsenic extracted by phosphate solution was Unlimed Control, Limed

Control, CKD > Fe > Mn, Alum (Fig. 1C). Phosphate fertilizer addition to

contaminated soill could desorb arsenate (Peryea, 1991), increase plant uptake

of As (Creger and Peryea,1994; Woollson et al.,1973), and potentially increase

mobility of As in soil. The greater reduction of extractable As by the Alum, Fe,

and Mn treatments compared to the other treatments is most likely due to strong

adsorption of As by hydrous oxides (Fig. 1C). Hydrous oxides strongly adsorb

As, and some adsorbed forms are not desorbed by phosphate (Woolson et aL,
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1973). The Alum and Mn treatments were able to reduce the extractable As by

more than 50 percent of the controls and should reduce environmental impacts

associated with As solubility from phosphate fertilization.

Revegetation Ability and Plant Uptake of Arsenic

Accumulation of As in garden vegetables in suburban areas adjacent to

contaminated sites is a concern (Chaney and Ryan, 1994). To determine if

treated soils could support plant growth and reduce As uptake, carrots (Daucus

carota L.), a root crop known to accumulate As (Woolson, 1983), were grown.

The average dry weights obtained from each treatment in both roots and

shoots are shown in Figure 3A. The Unlimed Control was unable to produce any

growth due to its low pH (3.6). Limed Control, Alum, and Fe treatments

produced more top growth than the CKD and Mn treatments (Figs. 3A,B).

Because soil pH and EC of CKD treatment was similar to other treatments (Table

3), the reduced growth obtained with CKD may be due to larger amounts of

NH4CI extractable As compared to other treatments (Fig. 1A). The reduced

growth in the Mn treatment compared to Fe and Alum can not be explained by

As solubility but may be attributed to manganese toxicity.

The As concentrations in the roots and the shoots of the carrots are

shown in Figur,e 3C. Greater concentrations of As in the roots than shoots is

commonly found for root crops (Merry et aI., 1986; Woolson, 1983). The CKD

treatment had the highest root As concentration {1.3 l-l9 g.1) and the Alum

treatment had the lowest root As concentration (0.23 /1g g'1) of all the treatments.

14



Apparently, NH4CI extractable As (Fig. 1A) is a better indicator of As uptake than

Bray #1 (Fig. 1B) extractable As.

Reduction in Arsenic Mobility

The mobility of arsenic through a packed soil column was determined for

each treatment (Fig. 4). Arsenic removed in each pore volume of leachate after

pumping deionized water through the soil column showed As mobility followed

the trend CKD > Fe, Alum :?: Limed Control > Mn, Unlimed Control (Fig. 4A).

Increased pH associated with the chemical treatments increased As mobility

(Fig. 4A). The trends in As concentrations in column leachates parallels trends

in NH4CI extractable As discussed previously (Fig. 1A).

Revegetation of this soil will require significant P fertilizer (Bray #1

extractable P = 2.29 mg kg·1
) and may increase As mobility. We determined the

mobility of As by using, 0.1 M P04 to simulate potential increase of As mobility in

treated soils (Fig. 48). Arsenic in column leachates and As mobility was CKD,

Limed Control > Unlimed Con1irol > Fe, Mn, > Alum. The calcium treatments

increased As mobility while the Alum, Fe, and Mn treatments decreased As

mobility compared to the Unlimed Control. These results suggest P fertilizer

application may increase As mobility in Limed and CKD treatments. Another

column study (Woolson et aI., 1973) found 77% of total As was removed by

passing 0.05M KH2P04 through a soil contaminated by As (625 ppm) from

pesticide use.
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CONCLUSION

Only co-application of A,lum and Lime promotes plant growth while

reducing As solubility, As mobility, and As uptake. This treatment may reduce

arsenic exposure and risk to human health from groundwater, erosion of

denuded soil and incidental ing,estion of soil and house dust, and consumption

of garden vegetables. Co-application of ferrous sulfate and lime promoted plant

growth and reduced As solubility but did not decrease uptake of As by carrots.

The Fe treatment may be an acceptable remediation method when consumption

of root crops does not constitute a significant risk or plants that do not

accumulate As are grown. Co-application of manganous sulfate and lime

reduced As solubility and mobility but stunted carrot growth. The Mn treatment

should reduce As transport and risk to groundwater from As contaminated soil

providing surfaoe erosion is reduced by using, tolerant cover crops or artificial

surface. The CKD treatment did not reduce As solubility, uptake, or mobility

and should not be used for remediation of As contaminated soit

Phosphorus fertilizer and lime, required to revegetate the contaminated

soil, will increase As solubility and mobility and may threaten water resources.

However, addition of metal ions that form amorphous hydrous oxides (Fe, AI,

Mn) will reduce solubility and mobility of As in phosphate- rich soil environments.

These treatments may serve as an alternate remediation techno~ogy to

expensive currently used techniques such as excavation.
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Table 1. Amendment and CaC03 addition rates for chemical treatments

Treatment Chemical Formula
Limed Control CaC03

Alum Ab(S04h-nH20
CKD GaO t
Fe FeS04-7H20
Mn MnS04.H20

t contains 2.0 9 Ca kg,i, CCE 87%

Soil (g)
700
700
700
700
700

Amendment {g)
0.0

43.15
29.23
41.63
24.72

CaC03 (g)
7.0

71.7
0.0

69.3
44.1

,."
;1"

Table 2. ICP conditions for As analysis by Hydride Generation.

Hydride Generation Conditions
Reductant 1% NaBHq in 0.1 MNaOH

@3 ml min,1

1.05 L min,1

ICP Conditions

Plasma
Flow

Forward 1150 W
Power

3 M HCl @ 8 ml min,lBlank Acid

Sample make 3 M HCI @ 8 ml min-1 Carrier
Flow

0.8 L min'1

KI add 3 ml of 10%KI, 1% ascorbic acid
solution per 10 ml sample

As
wavelength

193.761 nm
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Table 3. Soil pH and soil EC of treated soils.

Treatments
Unlimed Control
Limed Control
Alum
CKD
Fe
Mn
LSD a=0.05

Soil pH
3..6
7.4
7.4
7.5
7.6
6.8
0.5
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CHAPTER II

TRACE ELEMENT AVAILABILITY TO WINTER WHEAT IN

BIOSOLIDS AMENDED SOfL

ABSTRACT

A new rule promulgated by U.S. EPA limits land application of biosolids

based on As, Mo, and Se. More information is needed to document uptake of

oxyanions (As, Mo, Se) by crops to evaluate their risk to human and animal

health and strengthen federal guidelines. The objective of this study was to

determine the uptake of As, Mo, Se to wheat in biosolid-amended soils under

field conditions. Biosolids were added at 5 rates ranging from 45 to 540 kg ha-1

of plant available N to plots and winter wheat was grown for 2 consecutive years.

In addition, 3 treatments were used to determine liming effect on trace element

uptake. These treatments included lime addition to a 540 kg N ha-1 biosolids

treatment, and ammonium nitrate treatments at 540 kg N ha-1
, with and without

lime. Trace element content of soil and wheat grain (Triticum aestivum L.) was

determined by acid dig,estion analysis by inductively coupled plasma atomic

emission spectroscopy.
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Application of biosolids increased soil content of Cd, Mo, and Zn but not

As and Se. Biosolids application increased grain Mo from 0.4 mg kg-1 to 0.8 mgi

kg-
1
but did not increase grain As, Cd, Se, and Zn.

The addition of lime, to soils receiving the high sludge rate, increased

grain Mo from 0.76 mg kg-1 to 1.13 mg kg-1
. Increases in grain Mo is consistent

with greater solubility and availability of Mo from increases in soil pH. Lime

treatment increased soil pH and grain Mo from 0.26-0.69 mg kg-1 on control plots

that did not receive any biosolids. Uming did not affect grain content of other

trace elements. Grain Mo increases were small and shouJd not pose any risk to

human or animal health. The high biosolids rate was approximately 7.5 times

greater than the agronomic rate for 40 bu acre-1 of dryland wheat in Oklahoma.

Assuming Mo phytoavailability does not change with time, the effect of two

years of 540 kg N ha-1 biosolids represents 15 years of biosolids application at

"l

"1
"1

ii!'
"1
:1
'"

agronomic rate for dryland wheat. In this case, 15 years of biosolids

application, at agronomic rates, shoul,d have little or no effect on As, Mo, or Se

uptake in grain and pose little risk to human or animal health.

INTRODUCTION

Several trace elements exist as anionic complexes with oxygen ligands

or as "oxyanions". Some trace element oxyanions frequently used by society

include arsenic (As), molybdenum (Mo), and selenium (Se) (Alloway, 1990).

Arsenic has been used as pesticides, wood preservatives, and as growth
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promoters in poultry and sWine. Molybdenum is used as an alloy to harden steel

and as a catalyst for refining petroleum products. Selenium is used in

photocells, solar cells, rectifiers, and as a photographic toner (Hammond, 1981).

Molybdenum, selenium, and perhaps arsenic are required by living organisms

but excessive exposure to these trace elements may be toxic. Normal pilant Mo

content range from 0.8 to 5 mQl kg,1 but Mo levels of >10 mg kg,1 and low feed Cu

« 4 mg kg-1) can result in molybdenosis in cattle (Adriano, 1986; Gupta and

Lipsett, 1981). Livestock need forage and feeds that contain > 0.1 mg Sa kg-1

but conoentrations > 3 mg Se kQl-1 can be toxic. There are plants that are Se

accumulators and contain 1000 to 10,000 mg Se kQl-1 (Adriano, 1986). Cereals

usually contain < 0.5 mg As kg,l and rarely exceed 1 mg As kg-1. Toxicity occurs

in sensitive crops when tops contain 20 to 100 mg As kg,1 (Adriano, 1986).

Land application has been an attractive alternative for disposal of

municipal biosolids. The nutrient and organic matter additions are beneficial to

soil fertility, yet biosolids contain pollutants used by society. Major pollutants in

biosolids are Zn, Cu, Pb, Ni, Cr and Cd and minor pollutants include As, Mo, and

Se. In a study conducted of 208 biosolids across the United States, the 50th and

98th percentile contents (in parenthesis in mg kg'1) are As (10,48), Cd (7,31), Mo

(9,43), Se (5,19), and Zn (1202,4310) (U.S. EPA, 1988). Because of their

potential impacts on human and environmental health, there is much concern

from the accumulation and uptake of heavy metals and trace elements

associated with land application of biosolids. Contaminants that occur in large

concentrations in biosolids, or are known to accumulate in crops (Cd, Cu, Cr, Ni,
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Pb, and Zn), have been extensively studied (Chaney, 1994). However, limited

studies have been conducted on minor contaminants including As, Mo, and Se.

Significant increases of As did not occur in corn grain and stover, soybean grain,

or Swiss chard from soills amended with As containing biosolids (Ritter and

Eastburn, 1978; Chaney et aI., 1978). However, fodder rape was shown to

have greater than 50 percent increase in As content over the control (Andersson

and Nilsson, 1972). Only one study where a Mo contaminated (1500 mg Mo

kg'1) sludge showed any signi,ficant increase in plant concentrations of Mo

(Pierzynski and Jacobs, 1986b). Both Swiss chard and fodder rape showed

insignificant uptake of Se from biosolids (Chaney et aI., 1978; Andersson and

Nilsson, 1972). Cadmium in grain is measured because Cd is known to

accumulate in wheat and affect grain quality, while Zn is measured because risk

to human health is based on Zn/Cd content of grain (Chaney, 1994).

Recently, a new rule promulgated by U.S. EPA limits land application of

biosolids based on As, Mo, and Se (U.S. EPA, 1993). Biosolids that exceeds

100 mg Se kg'1 or 75 mg Mo kg-1, or 75 mg As kg'1 cannot be land applied. Also,

biosolids land application cannot exceed cumulative amounts of 41 kg As ha'1,

420 kg Mo ha-1, or 100 kg Se ha'1. Although these guidelines were based on

uptake of contaminants by crops and risk to human and animal health, only

limited information from few studies that documented uptake of As, Mo, and Se

were available. More information is needed to document uptake of these

oxyanions by crops to evaluate their risk to human and animal health and

strengthen federal guidelines.
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The objectives of this study were to determine the uptake of oxyani:ons

(As, Mo, Se) along with Cd and Zn in wheat on biosolid-amended soHs and the

effects of lime addition on uptake.

MATERIALS AND METHODS

Approach

The uptake of three oxyanions (arsenic, molybdenum, and selenium) by

hard red winter wheat (Triticum aestivum L.), from biosolids amended soils was

determined, Biosolids were applied at five rates to a winter wheat field

experiment for two consecutive years. The accumulation of the oxyanions, Cd,

and Zn in soil and wheat grain was determined each year. Statistical methods

used were analysis of variance and contrasts (SAS, 1988).

Field Experiment

A winter wheat field experiment was established at the Efaw Experiment

Station (Oklahoma State University, Stillwater, OK) in the fall of 1993 and 1994.

The site was grown in Bermudagrass without any tillage or fertilization for more

than 10 years prior to beginning this experiment. Biosolids were applied at five

rates to a winter wheat field experiment for two consecutive years. The

experimental design was a randomized complete block with three replications.

Biosolids, anaerobic-digested sewage sludge from Stillwater, OK, were added at

5.6, 11.2, 22.4, 33.6, and 67.2 MT ha'1. Assuming 20% mineralization rate of N

(U.S. EPA, 1993), these rates correspond to treatments of 0, 45, 90, 180, 270,
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and 540 kg N ha-1y(1 of plant available N (Table 1). Three additional treatments

included ammonium nitrat,e (AN) at 540 kg ha-1y(1, AN at 540 kg N ha-1y(1 with

4.48 Mg ha-1 lime" and Biosolids at 540 kg N ha-1 y(t with 4.48 Mg ha-1 lime

(Table 1). Lime was only added in the first application year. The soil at this site

is a Norge loam (fine, mixed, thermic Udertic Paleustoll). Baseline soil

characteristics and biosolid analysis are reported in Table 2. Hard red winter

wheat (Triticum aestivum L.) was used in this experiment. Wheat varieties and

seeding rates, treatment application, soil sampling and harvest dates are

reported in Table 3.

Soil and Grain Analysis

Surface soil samples (0-15 cm) were collected from all plots following

harvest in 1994 and 1995. Soil! samp~es « 2mm) were analyzed for pH and wet

digested in nitric-perchloric acid. These digests were analyzed for Cd, Mo, and

Zn usi.ng direct nebulization Inductively Coupled Plasma-Atomic Emission

Spectroscopy (I,CP-AES). The soil digests were also analyzed for As and Se

using hydride generation ICP-AES. Biosolids from both years were wet digested

and analyzed in the same manner as soil. Soil pH was determined in 1:2

soil:001 M CaCh using a combination glass electrode (McLean, 1982). Organic

C and Total N were determined using dry combustion. Biosolids or soil wet

digestion was performed by a modification of the method described by Amacher

(1996). In this method, soil (1 Og) was placed into a 125 mL beaker. Then 20 mL

of trace metal grade HN03 was added and heated at 150°C on a hot plate until

32



almost dry. Twenty milliliters of trace metal grade HCI04 was then added and

heated at 215°C until thick white fumes appeared and then refluxed until digest

was no longer brown in color (- 2h). Digests were then removed from hot plate

and allowed to cool. Finally, 10 mL of trace metal grade HCI was added and

heated at 120°C for 30 minutes. This was a1'1owed to cool and contents were

quantitatively transferred into a vacuum filter with 0.45 IJ.m Supor® membrane

filters (Gelman Sciences, Ann Arbor, MI). Filtered digests were transferred into

50 mL volumetric flasks and diluted to volume with deionized-distilled water.

Wheat grain from each plot was harvested both years. The grain was wet

digested using nitric acid and were analyzed for total Cd, Mo, and Zn by direct

nebulization ICP-AES. Arsenic and Se in the digests were analyzed by hydride

generation ICP-AES. Wet digestion of the wheat grain was performed as

described by Zarcinas et al. (1987). Grain (2g) was placed into calibrated 50 mL

digestion tubes and 15 mL of trace metal grade HN03 was added and set

overnilght in a fume hood. Tubes were then heated at 120°C for 2 hours and

then at 140 °C until there was approximately 1 mL of digest in tube. Tubes were

removed from heat and allowed to cool. Then 6 mL of trace metal grade HCI

was added and heated at 120°C for 30 minutes. Samples were allowed to cool

and diluted with deionized-distilled water to the 25 mL mark on tube. Digest

were then vacuum filtered using 0.45~Lm Supor® membrane filters.
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ICP-AES Analysis

The type of elemental analysis by ICP-AES (Hydride Generation or Direct

Nebulization) used depended on the element of interest. Hydride Generation

was used for low level As and Se analysis « 1 mg L-1 in solution). Digests were

measured for Se without any modifications to the digest. For As analysis, 3 mL

of a 10% (w/v) KI and 1% (w/v) ascorbic acid solution was added to 10 mL of

digest to reduce any As(V) to As(llI) for Hydride Generation. Arsenic and Se

were then measured using a Hydride Generator connected to a Fision's, Maxim

Inductively Coupled Plasma - Atomic Emission Spectrophotometer (ICP-AES).

The conditions for the Hydride generator and the ICP-AES are shown in Table 4.

Direct Nebulization ICP-AES was used for Cd, Mo, and Zn. The ICP-AES

conditions were as follows: Forward Power at 1100 W, Plasma flow at 1.05 L

min-1
, Carrier flow at 0.5 L min-1

, Sample Pump speed at 2.2 mL min-1
, Cd

wavelength 228.804 nm, Mo wavelength 202.031 nm, and Zn wavelength of

206.198 nm.

RESULTS AND DISCUSSION

The ,effects of bilosolids on trace element content in soil samples in 1994

and 1995 are shown in Figure 1. Biosolids application did not increase As and

Se content in soil (Fig. 1; Table 5). Biosolids increased Zn and Mo soil content

for both years. There were small but significant increases in soil Cd from
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biosolids application in 1994 but not in 1995. Increases in soil content was

directly related to their biosolids content of Zn > Mo > As > Cd> Se (Table 2).

The effect of biosolids on trace element content in wheat grain is shown i:n

Figure 2. The application of biosolids linearly increased Mo content in grain in

1995 from 0.4 to 0.8 mg kg-1 but not in 1994 (Fig 2; Table 6). These increases

are much less than 10 to 20 mg Mo kg-1 feed associated with molybdensosis and

should not increase risk to human or animal health. Barbarick et al. (1995)

found that wheat grain Mo was < 1 mg kg-1 and did not significantly change after

eleven annual application of biosolids to dryland wheat. Pierzynski and Jacobs

(1986b) found that Mo concentrations in corn grain increased with sludge

application from 0.6 to 6.9 when 94 Mg ha-1 of a molybdenum-contaminated

(1500 mg kg,-1) sewage sludge was used. The content and phytoavailability of

Mo in their contaminated sewage sludge likely caused the tenfold increase in

grain Mo. This contaminated sewage sludge greatly exceeds the ceiling limit of

75 mg Mo kg-1 and could not be land applied under current federal regulations

(U.S. EPA, 1993).

There was no increase in the grain contents of other trace elements (As,

Cd, Se, Zn) for either year. Ritter and Eastburn (1978) found no increase in corn

grain or soybean grain concentrations of As or Cd with increased sludge

application rate. Application of biosolids to agricultural land was shown not

incr,ease Se uptake by crops (Dowdy et al. , 1984; Logan et aI., 1987). Cadmium

and Zn levels in wheat increased significantly with application of sewage

sludges (Kirleis et a/., 1984; Zwarich and Mills, 1979). Hooda and
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Alloway (1994) found sewage sludge application resulted In higher

concentrations of Cd and Zn in ryegrass.

Molybdenum availability and uptake by plants increases with soil pHi

(Barber, 1995). The Mo content of a crop grown on a pH 5,0 soil will, on

average, double if the soil is limed to pH 6.0 (Barber, 1995). A one-time,

application of agricultural lime was added in 1993 to the 540 kg treatment rates

to determine the effect of liming on trace element uptake from biosolids. In

addition to the unlimed and limed biosolids treatments, unlimed and limed

ammonium nitrate treatments were used as a control to determine if the trace

elements were coming from the biosolids. There were no significant differences

between treatments for As, Cd, Se, and Zn contents in grain (Table 6; Table 7).

Liming increased mean grain Mo from biosolids treatments from 0.69 mg kg'1 to

1.18 mg kg'1 in 1994 and to a lesser extent in 1995 from 0.75 mg kg'1 to 1.13 mg

kg'1 (Table 6; Table 7). Liming increased mean grain Mo in ammonium nitrate

treatments shghtly from 0.26 mg kg'1 to 0.69 mg kg'1 in 1995. The Mo content of

grain from the ammonium nitrate treatments was lower than biosolids treatments

in both years (Table 6; Table 7). This evidence points toward greater Mo uptake

from biosolids and that adding lime increases the plant uptake of Mo. However,

the increased levels of Mo in grain did not reach levels that would pose risk to

human or animal health (> 10 mg Mo kg·1). Studies have shown that increases

in soil pH enhances uptake of Mo in biosolids amended soils (Pierzynski and

Jacobs, 1986a and 1986b; Chaney and Ryan, 1993).
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CONCLUSIONS

Biosolids application to winter wheat plots for 2 years increased soil

content of Cd, Mo, and Zn but not As or Se. Two years of biosolids application

did not increase uptake of As, Cd, Se, and Zn by winter wheat grain. However,

uptake of Mo did increase during the second year of the experiment. The

addition of lime, to soils receiving the high sludge rate, increased the uptake of

Mo compared to the unlimed biosolids treatment. This is consistent with

increased solubility and availability of Mo associated with increases in soil pH.

No other element showed significant differences between limed and unlimed

treatments, Grain Mo increases were small and should not pose any risk to

human or animal health. The 540 kg N ha-1 biosolids rate was approximately 7.5

times great,er than the agronomic rate for 40 bu acre-'j of dryland wheat in

Oklahoma (Allen and Johnson, 1993). Assuming Mo phytoavailability does not

change with time, the effect of two years of 540 kg N ha-1 biosolids represents

15 years of biosolids application at agronomic rate for dryland wheat. In this

case, 15 years of biosolids application, at agronomic rates, should have little or

no effect on As, Mo, or Se uptake in grain and pose little risk to human or animal

health.
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Table 1. Biosolid treatment rates and sources applied to plots at EFAW, Stillwater, OK.

Treatment 1 2 3 4 5 6 7 8 9

N ratet 0 45 90 180 270 540 540 540 540

Fert source; Bio Bio Bio Bio Bio Bio Bio AN AN

Lime§ N N N N N N Y N Y

~
t Nitrogen Rate kg N ha -1 yr -1

->. :t: Fertilizer source: Bio = Biosolids; AN = ammonium nitrate
§ Lime, Ag lime applied at 4.48 Mg ha-'



Table 2. Chemical characteristicst of Norge Ipam prior to biosolids application and chemical aJ"lalysis of biosolids.

';

Soil (0-15 cm)
pH

6.4

Organic C Total N
______________g kg-1 _

11.9 1.1

As Cd Mo Pb Se Zn
k -1

----------------------------------------mg 9 ------------------------------------------
5.23 0.179 0.406 12.24 0.274 29.46

Biosolids
Year pH Total N As Cd Cu Mo Ni Pb Se Zn

k -1 k-~9 9 ---------------------------------------mg 9 ------------------~----------------------

1993 6.4 22 13.32 5.46 976 44.5 30.2 916 0.461 1115
1994 6.9 23 9.83 5.49 752 34.2 25.6 807 0.752 928

~ t pH, soil or biosolids:0.01 M CaCb 1:2; Organic C and total N, dry combustion; metals, wet digestion with HN03, HCI04

by ICP-AES.



Table 3. Wheat varieties and seeding rates; treatment application, planting and
harvest dates used in this study.
Wheat Seeding Treatment
variety Rate application date

Planting date Harvest date

Karl 67 kg ha'1 October 6, 1993

Tonkawa 84 kg ha-1 October 13, 1994

October 7,1993 June 8, 1994

October 14, 1994 June 15, 1995

I . b H d'd GdSf AdTT bl 4 ICPa e con lIOns or san e analysIs )y Iyl n e enera Ion.
Hydride Generation Conditions ICP Conditions

Reductant 1% NaBH4 in 0.1 M NaOH Forward 1150 W
@ 3 ml min'1 Power

Blank Acid 3 M HCI @ 8 ml min" Plasma Flow 1.05 L min-1

Sample make 3 MHCI CCi2 8 ml min'1 Carrier Flow 0.8 L min'1
KI add 3 ml of 10%K!, 1% ascorbic Wavelength As193.761nm

(As only) acid solution per 10 ml sample Se196.091nm

43



Table 5. F-values from statistical analysis of var'iance (ANOVA contrasts) for
trace element contents of treated soils collected in 1994 and 1995.

Year Contrasts df As Cd Mo Se Zn
1994
Treatment 6 0.75 3.00* 5.41 ** 1.25 5.66**
N rate for Bio (linear) 1 0.44 10.4** 22.9*** 3.14 25.2***
N rate for Bio (quad) 1 2.74 6.79* 3.66 1.59 3.82
Bio- Lime vs Unlimed 1 0.03 6.50* 2.26 0.03 3.76
error 14

1995
Treatment 6 0.71 1.76 4.71 ** 12.5***
N rate for Bio (linear) 1 0.01 1.88 5.71 * nd 48.7***
N rate for Bio (quad) 1 0.08 0.14 0.91 nd 5.97*
Bio- Lime vs Unlimed 1 1.36 2.05 3.67 nd 4.27
error 14
Bio, Biosolids; AN, Ammonium Nitrate; nd, not determined.
*, **, *** Significallt at the 0.05,0.01, and 0.001 probability levels respectively.

Table 6. F-values from statistical analysis of variance (ANOVA contrasts) for
trace element contents in wheat grain collected in 1994 and 1995.

Year Contrasts As Cd Mo Se Zn
1994 df
Treatment 8 OA5 0.88 2.65* 0.37 0.13
N rate for Bio (linear) 1 0.72 1.57 0,08 0.00 0.04
N rate for Bio (quad) 1 0.08 0.24 1.85 2.02 0.01
Bio lime vs Unlimed 1 0.23 0.86 5.22* 1.14 0.23
AN Lime vs Unlimed 1 OA8 0.17 2.00 0.04 0.01
Unlimed Bio vs AN 1 0.02 0.98 1.39 0.62 0.00
Limed Bio vs AN 1 0.00 DAD 4.20 0.00 0.33
error df 14 17 18 17 17

1995
Treatment 8 0.35 1.33 3.68* 0.36 1.01
N rate for Bio (linear) 1 0.00 0.31 5.60* 0.37 1.47
N rate for Bio (quad) 1 0.40 1.46 0.17 1.54 0.06
Bio Lime vs Unlimed 1, 0.33 0.13 3.63 0.38 0.61
AN Lime vs Unlimed 1 0.03 0.01 4.88* 0.07 1.70
Unlimed- Bio vs AN 1 0.01 0.90 6.31* 0.09 1.00
Limed- Bio vs AN 1 0.37 0.19 4.87* 0.00 1.23
error df 14 16 18 18 17
Bio, Biosolids; AN, Ammonium Nitrate.
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels respectively.
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Tabl,e 7. Mean trace element content in grain and soil pH from biosolids and
ammonium nitrate treatments with and without lime at the 540 kg N ha-1 rate.

Year 1994 Biosolids Ammonium Biosolids + Ammonium
Nitrate Lime Nitrate + Lime

______________________________~g kg-1 _

As mean 14.3 15.5 10.1 10.1
sd 4.40 11.9 2.40 2.00

------------------------------mg kg-1 --------------------------------------

Cd mean 0.011 0.031 0.027 0.039
sd 0.015 0.016 0.013 0.011

Mo mean
sd

Se mean
sd

Zn mean
sd

Soil pH mean
sd

0.69 0.44 1.18 0.74
0.16 0.32 0.45 0.38

0.088 0.061 0.052 0.053
0.053 0.066 0.012 0.013

27.8 29.5 27.8 27.5
1.80 10.8 1.05 1.90

6.44 6.19 6.67 6.71

0.71 0.85 0.25 0.57

Year 1995
______________________________~g kg· 1--------------------------------------

As mean 14.1 15.4 7.20 13.9

sd 6.00 16.6 2.50 11.4
k -1______________________________mg 9 --------------------------------------

Cd mean 0.008 0.02 0.011 0.020

sd 0.006 0.00 0.012 0.010

Mo mean 0.75 0.26 1.13 0.69

sd 0.45 0.23 0.12 0.07

Se mean 0.107 0.087 0.065 0.069

sd 0.110 0.080 0.003 0.042

Zn mean 54.5 48.9 50.2 571

sd 7.00 4.84 3.50 16.8

Soil pH 6.51 6.22 6.93 6.84
mean

sd 0.81 0.99 0.31 0.56
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Figure 1. Soil trace element contents vs. N rate of biosolids years 1994 and 1995.
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APPENDIX A

Table A1. Soil pH and Soil EC data for treated soils.
Treatment Rep pH IEC ds m-1

Unlimed Control 1 3.60 2.40
Unlimed Control 2 2.50
Unlimed Control 3 2.50
Limed Contro!~ 1 7.30 2.20
Limed Control 2 7.50 2.25
limed Control 3 7.30 2.25
Alum 1 7.20 2.20
Alum 2 7.60 2.20
Alum 3 7.40 2.20
CKD 1 7.10 2.30
CKD 2 7.60 2.30
CKD 3 7.70 2.35
Fe 1 7.60 2.20
Fe 2 7.60 2.20
Fe 3 7.70 2.30
Mn 1 6.50 2.95
Mn 2 7.00 2.95
Mn 3 7.00 3.00

Table A2. Arsenic solubility data of treated soils.
Treatment Rep NH4CI Bray #1 P04

mg kg'1
Unlimed Control 1 2.9 95.0 345
Unlimed Control 2 5.9 102.0 359

mean 4.4 98.5 352
Limed Control 1 10.0 49.0 350
limed Control 2 15.3 50.2 328
Limed Control 3 9.5 45.9 330

mean 11.6 48.4 336

Alum 1 12.8 4.3 139
Alum 2 10.3 2.6 162
Alum 3 9.9 3.7 161

mean 11.0 3.5 154

CKD 1 26.4 13.7 305
CKD 2 21.5 8.2 324
CKD 3 23.1 10.5 333

mean 23.7 10.8 321

Fe 1 17.9 3.5 205
Fe 2 17.0 3.5 227
Fe 3 14.7 3.0 242

mean 16.5 3.3 225

Mn 1 7.8 1.4 175
Mn 2 6.5 0.0 157
Mn 3 8.9 0.4 184

mean 7.7 0.6 172
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Table A3. Carrot weights and As concentration data.
Welght AsConc

Treatment Rep Root Shoot Root Shoot

9 k ·1--mg 9 --
Unlimed Control 1 No Growth
'Limed Control 1 0.138 0.500 0.697 0.023
Limed Control 2 0.183 0.471 1.180 0.043
Limed Control 3 0.264 0.698 0.175 0.014

mean 0.195 0.556 0.684 0.027

Alum 1 0.738 1.120 0.104 0.096
Alum 2 0.289 0.469 0.420 0.030
Alum 3 0.372 0.638 0.176 0.020

mean 0.466 0.742 0.233 0.049

Fe 1 0.275 0.676 0.955 0.194
Fe 2 0.297 0.521 0.347 0.039
Fe 3 0.489 0.802 0.521 0.015

mean 0.354 0.666 0.608 0.083

CKD 1,2,3 0.123 0.400 1.300 0.193
mean 0.041 0.133

Mn 1,2,3 0.080 0.019 0.822 0.086
mean 0.027 0.006
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APPENDIX B

Table 81. Soil pH and soil trace element concentrations sampled 1994.
Rep 0 45 90 180 270 540 540+Lime

Soil pH 94 1 6.0Q 6.3 6.41 6.21 5.98 6.6 6.5
2 593 6.06 6.82 5.92 6.33 5.66 6.56
3 6.98 6.39 6.68 6.67 6.9 7.06 6.96

average 6.3 6.3 6.6 6.3 64 64 6.7
Stdev 0.6 0.2 02 0.4 0.5 0.7 0.3

Soil As 94 1 5.1 5.9 7.1 5.8 6 7.2 7
2 6.2 7.4 7.9 4.9 7.3 7 1 6.3
3 3 5.4 6.2 7.2 5.9 3.1 5

average 4.8 6.2 7.1 6.0 6.4 5.8 6.1
Stdev 1.6 1.0 0.9 1.2 0.8 2.3 1.0

Soil Cd 94 1 0.16 0.14 0.17 0.16 0.18 0.21 0.21
2 0.18 019 0.15 0.17 0.15 0.232 0.17
3 0.15 0.16 0.15 0.17 0.19 0.2 0.16

average 0.16 0.16 0.16 0.17 0.17 0.21 0.180
Stdev 0.02 0.03 0.01 0.01 0.02 0.02 0.026

Soil Mo 94 1 0.34 0.43 0.41 0.68 0.56 119 1.11
2 0.4 0.31 0.52 0.57 0.73 1.8 0.89
3 0.37 0.68 0.54 0.68 0.93 0.75 0.88

average 0.37 0.47 0.49 0.64 0.74 1.25 0.960
Stdev 0.03 0.19 0.07 0.06 0.19 0.53 0.130

Soil Pb 94 1 12.32 16.22 20.42 21.29 20.28 34.94 33.85
2 1246 17.04 20.64 17.69 27.4 54.2 30.54
3 9.85 14.41 16.8 19.71 2545 24.39 28.12

average 11.54 15.89 19.29 19.56 24.38 37.84 30.84
Stdev 1.47 1.35 2.16 1.80 3.68 1512 2.88

Soil Se 94 1 0.27 0.249 0.24 0.284 0282 0232 0315
2 0.255 0.26 0.224 0254 0399 0.335 0.241
3 0.294 0.174 0.269 0.211 0.31 0.319 0.219

average 0.273 0228 0.244 0.250 0.330 0295 0.258
Stdev 0.020 0047 0023 0.037 0.061 0.055 0.050

Soil Zn 94 1 29.2 31.3 35.3 41 60.9 55.3 52
2 31.5 33 36.1 33.7 40.7 55.1 42.7
3 28.4 29 316 34.4 38.4 42 38.5

average 29.70 31.10 34.33 3637 4667 50.80 44.4
Stdev 1.61 2.01 2.40 4.03 12.38 7.62 69
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Table 82. Soil pH and soil trace element concentrations sampled 1995.
Rep 0 45 90 180 270 540 540+Ume

Soil pH 95 1 5.97 6.55 6.49 6.25 6.25 6.79 6.8
2 5.74 5.99 7.12 5.62 6.55 5.59 6.71
3 706 6.28 6.57 6.62 6.76 7.14 7.28

average 6.3 6.3 6.7 6.2 6.5 6.5 6.9
Stdev 0.7 0.3 0.3 0.5 0.3 0.8 0.3

Soil As 95 1 5.97 6.55 6.49 6.25 6.25 6.79 6.8
2 5.74 5.99 712 5.62 6.55 5.59 6.71
3 706 6.28 6.57 6.62 6.76 714 7.28

average 6.26 6.27 6.73 6.16 6.52 6.51 6.93
Stdev 0.71 0.28 034 0.51 0.26 0.81 031

Soil Cd 95 1 0.19 0.14 0.15 0.17 0.16 0.15 0.17
2 0.14 0.13 0.17 0.17 0.16 0.19 0.19
3 0.11 0.13 0.16 0.14 0.14 0.15 0.19

average 0.15 0.13 0.16 0.16 0.15 0.16 0.183
Stdev 0.04 0.01 0.01 0.02 0.01 0.02 0.012

Soil Mo 95 1 0.5 0.39 0.36 0.42 0.46 0.73 0.75
2 0.25 0.3 0.95 0.76 0.56 0.73 1.09
3 0.3 0.41 0.5 0.43 0.51 0.55 0.8

average 0.35 0.37 0.60 054 0.51 0.67 088
Stdev 0.13 0.06 0.31 0.19 0.05 0.10 0.18

Soil Pb 95 1 11.5 13.71 16.13 15.59 15.78 20.43 25.82
2 11.81 15.02 16.82 24.02 21.95 31.36 24.7
3 11.31 12.77 18.63 15.04 16.33 22.16 30.84

average 11.54 13.83 17.19 18.22 18.02 24.65 2712
Stdev 0.25 1.13 1.29 5.03 3.41 5.88 3.3

Soil Zn 95 1 29.02 28.67 31.23 30.63 29.06 3815 37.53
2 25.37 26.28 31.86 34.43 33.08 40.82 4005
3 29.71 25.07 30.74 31.52 29.71 41.46 37 12

average 28.03 26.67 31.28 32.19 30.62 40.14 38.23
Stdev 2.33 1.83 0.56 1.99 2.16 1.76 1.59

51



Table 83. Wheat grain trace element content for 1994.
Rep 0 45 9n 180 270 540 540+1Ime 540 AN 540AN+lime

Grain As 94 1 24 0 31.75 12.4 11.78 11.68 10.36
2 11.75 11.56 11.1 34.9 17.25 19.25 h98.4 28.78 11.96
3 14.375 11.34 9.4 7.3 h83,4 11.13 8.4 5.94 8.03

average 13.1 11.5 14.8 14.1 24.5 14.3 10.09 15.47 10.12
Stdev 1.9 0.2 8.0 t8.4 10.3 4.4 2.4 11.88 1.98

Grain Cd 94 1 0.011 0.014 0.024 0.004 0.036 0 0.042 0.019 0.046
2 0.025 0.016 0.034 0.034 0.055 0.028 0.021 0.042 0.044
3 0.01 0.022 0.019 0.018 0.023 0.004 0.019 hO.54 0.026

average 0.015 0.017 0.026 0.019 0.038 0.011 0.027 0.031 0.039
Stdev 0.008 0.004 0.008 0.015 0.016 0.015 0.013 0.016 0.011

Grain Mo 94 1 0.606 0.315 0.355 0.197 0.665 0.748 0.797 007 0.39
2 0.69'9 0.577 0.54 0.358 0.242 0.809 1.012 0.59 0.69
3 0.448 0.493 0.583 0.655 0.394 0.512 1.667 0.65 1.15

averagle 0.584 0.462 0.493 0.403 0.434 0.690 1.179 0.44 0.74
Stdev 0.127 0.134 0.121 0.232 0.214 0.157 0.445 0.32 0.38

Grain Se 94 1 0.042 0.034 0043 0.039 0.039 0.046 0.061 0.048 0.044
2 0.045 0.095 0.09 0.036 0.031 0.07 0.056 0.133 0.063
3 0.155 0.047 0.06 0.049 0.093 0.147 0.039 0.003

average 0.081 0.059 0.064 0.041 0.054 0.088 0.052 0.061 0.053
Stdev 0.064 0.032 0.024 0.007 0.034 0.053 0.012 0.066 0.013

Grain Zn 94 1 29.6 27.2 30.4 28.6 24.9 29.3 24.2 28.51 26.64
2 25.4 29.2 28.7 27.1 28.9 28.2 41.9 27.02 2612
3 26.8 22.5 25.0 25.1 27.4 25.9 22.3 11113.69 29.67

average 27.2 26.3 28.0 26.9 27.1 27.8 29.5 27.77 27.48
Stdev 2.1 3.5 2.7 1.8 2.0 1.8 10.8 105 1.92

Table 84. Wheat grain trace element content for 1995.
Rep 0 45 90 180 270 540 540+lime 540 AN 540 AN+lime

Grain As 95 1 19.8 h96.6 22.6 19.6 12.8 18.3 5.5 7.625 7.075
2 10.0 18.3 42.8 13.8 34.3 9.9 4.16 7.5125
3 h73.5 10.1 7.7 12.7 6.7 h97.5 9.0 34.5 27.06

average 14.9 14.2 24.4 15.4 17.9 14.1 7.2 15.43 13.88
Stdev 6.9 5.8 17.6 3.7 14.5 6.0 2.5 1661 11 41

Grain Cd 95 1 hO.336 0.019 0.000 0.056 0.010 0.003 0.010 0.01 001
2 0.005 0.000 0.013 0.022 0.011 0.005 0.023 0.01 0.03
3 0.011 0.005 0.000 0.011 0.012 0.015 0.000 0.02 h6.24

average 0.008 0.008 0.004 0.030 0.011 0.008 0.011 0.02 0.02
Stdev 0 ..004 0.010 0.008 0.023 0.001 0006 0.012 0.00 0.01

Grain Mo 95 1 0.353 0.444 0.467 0.882 0.804 0.895 1.146 0.48 0.70
2 0.516 0.465 0429 0.447 0.490 0.245 1.239 0.01 0.76
3 0.734 0.203 0400 0.923 1.153 1.120 0997 0.28 0.62

average 0.534 0.371 0.432 0.751 0.816 0.753 1.127 0.26 0.69
Stdev 0.191 0.146 0.034 0.264 0.332 0.454 0.122 0.23 0.07

Grain Se 95 1 0.041 0.040 0.057 0.062 0.D35 0.055 0.067 0.038 0.054
2 0.038 0120 0.170 0044 0.053 0.033 0.061 0.043 0.116
3 0.364 0.049 0057 0.048 0.119 0.234 0.067 0.179 0.036

averag,e 0.148 0.070 0.095 0.051 0.069 0.107 0.065 0.087 0.069
Stdev 0.187 0.044 0.065 0.009 0.044 0.110 0.003 0.080 0.042

Grain Zn 95 1 53.4 48.9 47.3 56.1 58.4 62.3 48.8 53.68 68.93
2 51.5 52.7 56.5 60.9 67.7 48.5 54.1 44.00 45.23
3 59.0 40.2 49.0 53.1 50.4 52.8 47.6 49.17 h300.5

average 54.6 47.2 50.9 56.7 58.8 54.5 50.2 48.95 57.08
Stdev 3.9 64 4.9 3.9 8.7 7.0 3.5 4.84 16.76
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