
PIGMENTED SUBCUTANEOUS SPINDLE CELL

TUMORS IN GIZZARD SHAD (Dorosoma

cepedianum): OCCURRENCE IN TWO

ADDITIONAL LAKES AND FURTHER

INVESTIGATIONS INTO

THE ETIOLOGY OF

THE LESIONS

By

DAVID ROY GETER

Bachelor of Science

Northeast Louisiana University

Monroe, Louisiana

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1997



oKLAHOMA STAT UNIVERSITY

PIGMENTED SUBCUTANEOUS SPINDLE CELL

TUMORS IN GIZZARD SHAD (Dorosoma

cepedianum): OCCURRENCE IN TWO

ADDITIONAL LAKES AND FURTHER

INVESTIGATIONS INTO

THE ETIOLOGY OF

THE LESIONS

Thesis Approved:

/,/'4/x' c, (/.((~l~,{'

~C,~
Dean of the Graduate College

11



PREFACE

Recently, an epizootic of pigmented subcutaneous spindle cell neoplasms was

reported in a population of gizzard shad (Dorosoma cepedianum) from Lake of the

Arbuckles, a man-made lake in central Oklahoma, USA (Ostrander et al. 1995; Jacobs and

Ostrander, 1995). The lesions affected about 22% of adult shad, but not juveniles and the

occurrence did not appear to be seasonal. The cell oforigin of the poorly differentiated

neoplasms was not determined precisely. HistologicaUy it appeared to be neural, being

either a pigment ceU, probably the melanophore, or a nerve sheath cell. Studies aimed at

the identification of an etiological agent such as a chemical carcinogen or a retrovirus

were unsuccessful. Cases of poorly differentiated neoplasms have occurred in oth~r

species from that lake. A lesion diagnosed as a hemangiopericytoma was reported from a

white bass (Morone chrysops) (Hawkins et a1. 1996) and two threadfin shad (Dorosoma

petenense) were recently captured and diagnosed with lesions similar to those of the

gizzard shad (Geter et al. in prep.).

The major objectives of the present study were to determine: (1) if lesions similar

to those in Lake of the Arbuckles gizzard shad occurred in gizzard shad from nearby

lakes; (2) if carcinogenic elements, detectable by inductively coupled plasma-mass

spectroscopy (ICP-MS), could be identified in sediment, water, or fish tissues; (3)
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whether naturaUy occurring uranium deposits could be contributing significant

radioactivity to the study sites; (4) examine genetic markers produced by RAPD and DS­

peR for possible banding differences between tumor-bearing and nontumor-bearing

gizzard shad; and (5) whether tumor location on the fish could be used to suggested a

cause for the lesions. This thesis has been prepared as one chapter that has been submitted

as a manuscript. This manuscript was submitted with collaborators to Environmental

Toxicology and Chemistry.

The author would lik,e to thank Dr. Gary K. Ostrander for the opportunity to work

on such a fantastic scientific study. With his guidance, patience, and advice the research

became an evolving and developing learning experience. Thanks are also extended to my

committee members, Drs. Roman Lanna and Ron Van Den Bussche, for their advice and

review of this manuscript.
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CHAPTER I

PIGMENTED SUBCUTANEOUS SPINDLE CELL TUMORS IN GIZZARD SHAD

(Dorosoma cepedianum): OCCURRENCE IN TWO ADDITIONAL LAKES AND

FURTHER INVESTIGATIONS INTO THE ETIOLOGY OF THE LESIONS

ABSTRACT

Pigmented subcutaneous spindle cell neoplasms affected approximately 20% ofthe

gizzard shad (Dorosoma cepedianum) in Lakes Murray and Texoma in southcentral

Oklahoma. No neoplasms were found in shad from a referenc·e site, Lake Carl Blackwell,

Oklahoma. Similar neoplasms were previously reported in approximately 22% of adult

gizzard shad from Lake of the Arbuckles in Oklahoma. Inductively coupled plasma mass

spectrometry (ICP-MS) did not identify significant levels of potentially carcinogenic trace

elements (beryllium, chromium, nickel, ars,enic, selenium, cadmium, mercury, and lead) in

the water, sediment, or tissue. Analysis of radon and gross alphaJheta radiation by liquid

scintillation counting failed to revealleve.ls of radioactivity above background. Genetic

marker analysis could not separate tumor-bearing gizzard shad from nontumor-bearing

gizzard shad using random amplified polymorphic DNA (RAPD) and double-sltringency

polymerase chain reaction (DS PCR) analysis. Band sharing analysis of both techniques

showed no statistical difference between the tumor-bearing and nontumor-bearing shad.

Of 2128 fish examined from all lakes, 387 exhibited lesions distributed over the head,



trunk, and fins with a significantly higher number of tumors occurring dorsally (79.5%)

versus ventrally (20.5%). Although the precis,e etiology of these tumors remains

unknown, available data appears to preclude the involvement of know carcinogens or

radioactivity.

INTRODUCTION

An epizootic of pigmented subcutaneous spindle cell neoplasms was reported in a

population ofgizzard shad (Dorosoma cepedianum) from Lake of the Arbuckles, a man­

made lake in central Oklahoma, USA [1,2]. The lesions affected about 22% of adult

gizzard shad, but not juveniles, and the occurrence did not appear to be seasonal [2]. The

cell of origin of the poorly differentiated neoplasms was not determined but appeared to

be neural, probably a pigment cell or a nerve sheath cell. Studies aimed at identification of

an etiological agent such as a chemical carcinogen or a retrovirus were unsuccessful.

Since that study, additional cases of poorly differentiated dermal neoplasms have been

found in other fish species from Lake of the Arbuddes. These included a lesion diagnosed

as a hemangiopericytoma reported from a white bass (Morone chrysops) [3], and poorly

differentiated spindle neoplasms from two threadfin shad (Dorosoma pelenense) [Geter et

aI., in prep.].

The major objectives of the present study were to determine: (1) if lesions similar

to those in Lake of the Arbuckles gizzard shad occurred in gizzard shad from other lakes

in the same drainage~ (2) if trace elements that might affect carcinogenesis such as
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beryllium, chromium, nickel, arsenic, selenium, cadmium, mercury, and lead, detectable by

inductively coupled plasma mass spectrometry (ICP-MS), could be identified in sediment,

water, or tissues; (3) whether naturally occurring uranium deposits were contributing

significant radioactivity to the study sites; (4) ifgenetic markers produced by RAPD and

DS PCR could distinguish tumor-bearing from nonturnor-bearing gizzard shad; and (5)

whether the anatomic distribution of the tumors might provide a clue to their etiology.

MATERIALS AND METHODS

Materials

Unless noted otherwise, analytical grade reagents purchased from Sigma Chemical

Company, S1. Louis, MO, USA, were used.

Fish collection

Gizzard shad were collected from Lake of the Arbuckles, Lake Texoma, Lake

Murray (Figure I), and Lake Carl Blackwell either by seining with a IS-m, 1 ern mesh

beach seine for g.izzard shad «1 year old) or by gill netting for mature gizzard shad (2-3

years old) with 100-m gill nets with 6 cm mesh. Nets were set perpendicular to the water

flow and examined every 6 hours for 24-72 hours. Gizzard shad were weighed, measured,

and examined grossly for tumor occurrence. Liver and muscle tissue were excised for
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inductively coupled plasma mass spectrometry (ICP-MS) analysis and liver tissue excised

for both random amplified polymorphic DNA (RAPD) and double-stringency polymerase

chain reaction (DS peR) analysis. Gizzard shad were collected from the reference site,

Lake Carl BlackweU, which is a man-made lake located in a separate drainage in north

central Oklahoma, and sampled as described above.

Inductively coupledplasma mass spectrometry (lCP-MS)

ICP-MS analysis was conduct,ed on sediment, water, and tissues (gizzard shad

liver and muscle) from Lake ofthe Arbuckles and Lake Texoma to detenmne the presence

of trace elements such as beryllium, chromium, nickel, arsenic, selenium, cadmium,

mercury, and lead that might affect the occurrence or development of the neoplasms [4].

Sample sites from Lake of the Arbuckles and Lake Texoma are shown in Figure 1.

Sediment samples were taken with an Ekman dredge, hypolimnetic water samples with a

Van Dom sampler, and epilimnetic water samples by hand 5 cm below the water surface.

Sediment and water samples were placed in 50-ml acid-washed polyethylene tubes (Fisher

Scientific Co, Pittsburgh, PA). Samples and blanks were placed on ice, transported to the

laboratory in darkness, and stored at 4DC. Water samples and trip blanks were filtered

with Whatman glass microfibre filters. Filtered water and filter were placed in separate

pre-cleaned, acid-washed, aluminum-wrapped 100 rol glass sample vials. About 1.0-1.5 g

(wet wt.) liver and muscle were excised from six tumor-bearing and six nontumor-bearing

gizzard shad from both Lake of the ArbuckJes and Lake Texoma. Dissected tissues were
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placed in sterile 2-ml centrifuge tubes, placed on dry ice for transport to the laboratory,

and then stored at -20°C. Sediment and water samples were shipped on ice, and tissue

samples were shipped on dry ice for ICP-MS analysis.

Clean techniques were followed in all phases of sample preparation and analysis.

All reagents and chemicals utilized in these procedures were ofthe ultra-pure grade to

minimize the introduction ofmetals. Standard reference materials included National

Institute of Standards and Technology's Standard Reference Materials (SRM) 1646

Estuarine Sediment and SRM 1635 Oyster Tissue were processed and analyzed in parallel

with each set of samples to control for contamination and define recovery. Techniques for

sample processing, acid digestion, and trace element solubilization were conducted to

maximize recovery of in situ trace elements, and to minimize or exclude extraneous metal

contamination using a modification ofEnvironmental Protection Agency Method 6020.

AU steps in which contamination could be extraneously introduced were carried out under

a level 100 laminar flow hood. Water samples were analyzed following a 1 to 10 dilution

in 3% ultra-pure nitric acid solution.

Sediment and tissue samples were thawed and the entire sample transferred to a

metal-free vessel for thorough homogenization. An aliquot of the homogenate was

transferred to a metal-free polypropylene digestion vessel for digestion using a CEM 2000

(CEM Corp., Matthews, NC) microwave digestion system. Digestions were performed

using approximately 1 g (wet wt.) sediment or tissue in 10 ml 50% ultra-pure nitric acid

for approximately two hours. Samples were diluted to 50-ml final volume and a I-ml

aliquot was analyzed for trace element concentrations. Samples ofMilliQ water and
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reagent acids were retained for trace element detenninations as blanks or reagent blanks

with each set ofdigest. Yttrium 89 was used as an internal standard in all samples.

Analyses of elements were perfonned on each sample using a Fisons PlasmaQuad

II+ Inductively Coupled Plasma Mass Spectrometer. All samples were analyzed using

triplicate, one-minute data acquisition/integration times. Final trace element

concentrations were blank subtracted and corrected for internal standard recovery,

analysis dilution, digestion volume, and the original mass of the sample.

Environmental radiation

Water samples for gross alpha/beta and radon-222 radiation analysis were taken

from the same locations as water samples for Iep-MS. Alpha/beta radiation samples were

treated by the following procedure. Filtered (Whatman # 1) and nonfiltered samples were

placed into two sterile, acid-washed 50-rol polyethylene tubes (Fisher Scientific Co) to a

total volume for 98 ml. To each tube, 1 m1 of 5N HCI was added to preserve the sample

until processing. Samples were placed on ice and kept in the dark for transport to the

laboratory where they were stored at 4 0 C. For analysis, samples were placed into 200-m]

acid-washed glass beakers and incubated at 80 0 C to reduce the volume to 8-10 ml. The

samples were then quantitatively transferred into 20-ml polyethylene vials and further

incubated at 80°C to a final volume of]ess than I mI. Samples were shipped to the

Scottish University Research and Reactor Center (SURRC) in Glasgow, Scotland, for

analysis.
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Upon receipt at SURRC. the samples were quantitatively transferred to 20-ml

glass vials, placed on a hot plate, and slowly taken to dryness. Residual organic matter

was oxidized using a small volume « I0 ml) ofconcentrated nitric acid and hydrogen

peroxide. In preparation for liquid scintillation analysis, the samples were again taken to

dryness, cooled, and 2 ml of IN HCI and 10 ml of Ultima Gold AB scintillation cocktail

were added to each vial. The samples were counted in a Packard Instruments 2770

TR/SL (time-resolved! super low level) scintillation counter equipped with pulse decay

discrimination (PDD) circuitry to separate alpha from beta events. The instrument was

optimized by counting an alpha (Am 241) and a beta (CI 36
) standard in the same volumes of

Hel and Ultima Gold AB as the samples, at a range ofPDD settings. The spill of alpha

events into the beta multi-channel analyzer (MeA) and the spin ofbeta events into the

alpha MeA were then plotted against PDD setting. The cross-over of these two pJots

« I% spill) was taken as the optimum setting. This was determined to be a setting

together with 2 blanks containing no measurable activity. Net sample count rates were

then determined.

The counting efficiency for alpha events is nearly I00%. Therefore, the only

correction between net count rate (counts per second) and Bq (disintegrations per second)

is for the approximate I% spill which has been determined. The counting efficiency for

beta emitters depends on the Emax of the nuclide of interest and the degree of quenching of

the sample. Typically efficiencies for beta emitters will range between approximately 2S

and 100%. Applying an efficiency of25% provides an upper limit for the activity:

however, an efficiency range of 50-100% yields a more reasonable measurement. To
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correct beta counts per second to Bq with a 50% counting efficiency, a multiplication

factor of 2X was applied to the original beta results. Limits of detection were detennined

according to the method of Currie [5]. Samples for radon analysi.s were taken with

"Radon in Water Liquid Scintillation Sampling Kits" (Nitan Corporation, Bedford, MA),

according to the manufacturer's recommendations aJild analyzed by Niton Corporation.

Random amplified polymorphic DNA (RAPD) and double-stringency polymerase chain

reaction (DS peR) analysis

Tumor-bearing and nontumor-bearing gizzard shad from Lake ofthe Arbuckles

were weighed, measured, and livers excised. Dissecting scissors were soaked in 100%

ethanol and thoroughly cleaned prior to each dissection. Tissues were individually

wrapped in 30 x 30 em sheets of autoclaved aluminum foil, placed in plastic freezer bags,

and kept on dry ice until they were brought to the laboratory, and stored at -20°C. DNA

extraction was accomplished by standard phenol/cWoroform separation followed by

ethanol precipitation and stored in a Tris EDTA (TE) buffer at 4°C [6]. For this study,

we used both RAPD and DS PCR techniques to produce genetic markers. Double­

stringency polymerase chain reaction mixtures used two primers with different annealing

temperatures [7]. The first primer, a M13 (CTCCCACCRCCRAGT) core microsatellite

primer (Oklahoma State University Recombinant DNNProtein Resource Facility,

Stillwater, OK) amplifies a region between microsatellites, whereas the second primer, a

standard 10-mer RAPD primer (Operon Technologies Inc., Alameda, CA) amplifies the
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products of the first primer. For analysis we used the 'Kit B' set ofRAPD primers, which

contained 20 individual sequences. The DS PCR reactions were carried out in two

phases. The first 15 cydes used high annealing temperatures (47°C) that amplified

template DNA by only the M13 primer. After IS rounds of replication, the annealing

temperature was reduced to 3SoC for an additional 25 cycles allowing the RAPD primer

to anneal and elongate the higher concentrated DNA fragments produced by the M13

primer. DS peR reactions were performed in 25 J,l-I volumes, containing 10 mM tris-HCL,

pH 8.4, 200 J,l-M each dNTP (perkin-Elmer, Branchburg, NJ), 50 mM KCI, 6 prool ofM13

primer, 20 pmol of 10-mer primer, and 1 U AmpliTaq DNA polymerase (Perkin-Elmer).

Individual RAPD reactions were identical except for 50 prool of the RAPD primer and

deletion of the M13 primer. All reactions were performed with a GeneAmp PCR System

9600 (Perkin-Elmer) thermal cycler. The RAPD temperature profile was denaturation at

94° C for 30 s, annealing at 35 ° C for 30s, and extension at 72 ° C for 30s, for 35 rounds

of replication. The DS PCR temperature profile was as follows: denaturation at 94°C for

30 s, annealing at 47°C for 30 s, and extension for 30 s at 72°C. The final 25 cycles were

completed with the following conditions: denaturation at 94°C for 30 s, annealing at 35°C

for 30 s, and extension at 72°C for 30 s. The products were electrophoresed in 1 X TBE

(9 roM Tris-borate, 0.2 mM EDTA, pH 8.0 ) at 25 V for 5 h in 5.0% polyacrylamide in 1

X TBE, [6], stained with ethidium bromide, and examined under UV light, and

photographed. Eight individuals were used for genetic marker analysis, four tumof­

bearing (lanes 1-4) and fOUf nontumor-bearing (Janes 5-8). Lane 9 contained one /-lg of

100 bp size standard (Cat. # 15628-050, Gibco-BRL, Gaithersburg, MD) used as a size
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reference during visualization and scoring.

Bands were hand scored according to migration distance and incorporated into a

presenoe-absence matrix. From trus matrix, a band-sharing index (BS) was calculated as

BS = 2 N a/rNa + N,J, where Nobis the number of shared bands, Nais the number ofbands

in one lane, andNb is the number of bands in the other lane [8]. Band sharing indices were

calculated for tumor bearing (lanes 1-4), nontumor-bearing (lanes 5-8), tumor bearing vs.

non-tumor-bearing (lanes 1-4 vs. 5-8), and a total comparison of aU individuals (lanes 1­

8). All individuals scored were present on the same gel for a total of40 gels (20 RAPD

and 20 DS peR).

Tumor location

The anatomical location of grossly visible tumors was noted and analyzed

statistically to determine whether a pattern emerged. To systematically record tumor

location, a schematic diagram of a gizzard shad was produced which was divided into

dorsal and ventral sections by a horizontal line from the opening of the mouth to the

middle of the caudal fin. The dorsal and ventral sections were then divided into three

zones by vertical lines running down from the anterior base of the dorsal fin and the base

of the caudal fin (Figure 2). The dorsal fin was included in zone 3 and all ventral fins were

included in zone 6 to assess fin tumor occurrence.
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Statistics

A one-way ANOVA was used to determine differences between Lake Texoma and

Lake Murray to Lake of the Arbuckles for neoplasm occurrence in the gizzard shad

population. A paired T-test was used to determine if differences existed between the prior

studies and the present studies neoplasm occurrence in Lake of the Arbuckles.

Concentrations for ICP-MS were reported as fJ..gIL for water samples and fJ..g1g

wet weight for sediment, liver, and muscle tissues. Concentrations below the detection

limits of the ICP-MS were represented as zero for statistical analysis. For analysis of the

concentrations of trace elements (beryllium, chromium, nickel, arsenic, selenium,

cadmium, mercury, and lead), all data were initially tested for normality and homogeneity

of variance. Trace element concentrations for the liver and muscle tissues were not

normally distributed, and appropriate nonparametric statistics were performed. A one­

way Wilcoxon signed ranks two sample test was performed on the data from the liver and

muscle tissues.

Paired T-tests were conducted on the RAPD and DS PCR band sharing data to

determine whether differences existed between tumor-bearing and nontumor-bearing

gizzard shad and also to test differences between the two methods.

A one way ANaVA was performed to distinguish differences from the tumor

location data area matrix and a paired T-test applied to test differences between dorsal and

ventral locations. All statistical analysis were performed at the p = 0.05 level of

significance with the Statistical Analysis Software from SAS Institute, Cary, NC.

11



RESULTS

Neoplasm prevalence

Gizzard shadcoUect,ed from the Lake of the Arbuckles for the present study had a

total neoplasm prevalence of 15.4% (73/474) which was lower than that reported in

previous studies, 21.01% (208/990) [1,2] (Table 1). However, statistical analysis testing

for differences between previous studies and the current study failed to reveal a significant

difference in neoplasm prevalence (p = 0.469). Collections from Lakes Texoma and

Murray showed neoplasm prevalences of 16.8% (111/660) and 20% (4/20), respectively.

No significant differences were noted in neoplasm prevalence from Lakes Texoma and

Murray shad populations when compared to Lake of the Arbuckles (p = 0.515 and 0.801

respectively). AJso, neoplasm oocurrence was rather evenly distributed among collection

sites in Lake Texoma 1nc1uding the Glasses (14.8%), Caney (12.5%), and Lebannon

(17.1 %) sites. No neoplasms (0/32) were found in shad from the reference site, Lake Carl

Blackwell.

Inductively coupledplasma mass spectroscopy (ICP-MS)

ICP-MS analyses for beryllium, chromium, nickel, arsenic, selenium, cadmium,

mercury, and lead [4] were conducted on sediment, water, and tissues (liver and muscle)

from Lake of the Arbuckles and Lake Texoma. Figure 1 (Table 2) shows trace metal
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concentrations in sediments as the means of three samples taken :from each lake. Water

,concentrations are shown as the means of three samples from the epilirnnion and three

samples from the hypolimnion taken from each lake as illustrated in figure 1. Water values

are given as total recoverable trace elements by adding both the dissolved and suspended

fraction concentrations (Table 3). Analysis of tumor-bearing and nontumor-bearing

tissues showed statistical differences between beryllium «0.05 vs. 0.79 I-tglg) and nickel

«0.05 vs. 21.25I-tglg) in the liver and nickel (10.35 YS. 4.48 I-tglg) in the muscle atp :s; 0.05

(Table 4).

Environmental radiation

Radioactivity levels in forty-five water samples from Lake of the Arbuckles, Lake

Texoma, and Lake Carl Blackwell ranged from <0.07-0.51 Bq liter -I for alpha, <0.40­

1.60 Bq liter -I for beta, and <100 pei liter for radon 222 radiation (Table 5).

Random amplifiedpolymorphic DNA (RAPD) and double-stringency polymerase chain

reaction (DS peR) analysis

Tumor-bearing gizzard shad were indistinguishable from nantumor-bearing gizzard

shad by genetic marker analysis performed in this study. Band sharing analysis was

accomplished by calculating the band sharing value for the tumor-bearing markers (lanes

1-4), nantumor-bearing markers (lanes 5-8), tumor-bearing vs. nantumor-bearing markers
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(1-4 vs. 5-8), and a total value for all individuals (lanes 1-8). Band sharing analysis

showed no difference between the tumor-bearing and nontumor-bearing gizzard shad with

RAPD (p = 0.294) or DS PCR '(p = 0.236) (Tables 6 and 7, respectively). However, band

sharing comparisons between the two techniques revealed significant differences between

RAPD and DS PCR for three of the four levels ofcomparison. Differences were noticed

in the tumor-bearing (p = 0.006), tumor-bearing vs. nontumor-bearing (p = 0.027), and

total (0.019), while no significant difference was detected in the nontumor-bearing

comparisons (p = 0.056). RAPD analysis generated a greater number ofbands than DS

PCR (p = 0.001) with a total of303 and 201 scorable bands, respectively.

Tumor location

The location of 577 tumors from 346 tumor-bearing gizzard shad (Table 6) was

scored. The occurrence oftumors in the dorsal section (459/577=79.5%) was significantly

higher than that in the ventral secti.on (118/577=20.5%), (p = 0.001). Lesions were

particularly abundant in the dorso-anterior portion of the fish (zone 1) with 42.3%

(244/577) occurring there (p = 0.001). Of the 229 tumor-bearing gizzard shad that

exhibited a single tumor, 44.5% (102/229) had the tumor in zone 1 (p = 0.001), and

82.1% (188/229) had the tumor in one of the three dorsal zones (p = 0.001). About one­

third of the tumor-bearing gizzard shad had multiple tumors (117 of 346). Of those 117

specimens with multiple tumors, 86 (73.5%) had at least one tumor in zone 1, and 98.3%

(1151117) had at least one tumor in one of the three dorsal zones.
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DISCUSSION

An epizootic of pigmented subcutaneous spindle cell neoplasms in gizzard shad

(Dorosoma cepedianum) which was first observed in 1991 was thought to be limited to

Lake of the Arbuckles, Oklahoma. The epizootic now been documented in two additional

lakes, Texoma and Murray, which are about 55 kilometers south ofLake oHhe Arbuckles

but share drainages. The reference site, Lake Carl Blackwell, is 180 kilometers north and

lies in a different drainage. Neither the geographical extent nor when the date the

epizootic began are known. Both Lake of the Arbuckles and Lake Murray were stocked

by the Oklahoma Department ofWater Quality with gizzard shad and threadfin shad (D.

pentenense) from Lake Texoma in 1980 [J. Pigg, personal communication] to provide

forage for game fish. This suggests that antecedents of tumor-bearing shad from Lake of

the Arbuckles and Lake Murray were introduced from the same source at the same time.

Department of Water Quality records for Lake Texoma show shad species occurring there

naturally [1. Pigg, personal communication].

The cause of the gizzard shad neoplasm epizootic has not been determined.

Although the etiology of neoplasia in wild fish generally varies with species and site,

chemical contamination and oncogenic viruses are known causes offish neoplasia [9].

Neoplastic lesions are known to affect nearly every cell and tissue type and in fishes from

freshwater 1[10], estuarine, and marine habitats [11]. Hepatic neoplasia is usually

considered ito be caused by exposure to carcinogenic chemicals, particularly polynuclear
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aromatic hydrocarbons ~I1J sediments. Hepatic neop,.asia considered to be carcinogen

induced has been reported from winter flounder (Pleuronectes americanus) from Boston

Harbor [12], white croaker (Genyonemus lineatus) from near Los Angeles [13],

mummichog (Fundulus heteroclitus) from the Elizabeth River, VA [14], brown bullhead

(Ameiurus nebulosus) [15,16], white sucker (Ca/ostomus commersoni) [17] from several

locations in the Great Lakes region and several other species and locations. Non-hepatic

neoplasia is rarer than hepatic neoplasia in teleosts and is not as clearly related to

environmental contamination [9,11]. Epizootics of non-hepatic neoplasia that have been

associated with environmental contamination in the Great Lakes region include epidermal

neoplasms in brown bullhead [14,18] and white suckers [17], dermal pigment cell

neoplasms (chromatophoromas), and neurilemmomas in freshwater drum (Aplodinotus

grunniens) [15], gonadal neoplasms in carp/goldfish hybrids [19,20,21], and several types

of non-hepatic as well as hepatic neoplasms in sauger (Stizostedion canadense) and

walleye (s. vitreum) [22]. Several epizootics of neoplasia appear to have a viral origin.

These include lymphoma in the northern pike (Esox lucius) [23], plasmacytoid leukemia in

chinook salmon (Oncorhynchus tschawytscha) [24], dermal sarcoma in walleye [25], and

neurofibromatosis in bicolor damselfish (Pomacentrus par/ilus) [26].

At the sites of the gizzard shad neoplasm epizootic, the presence of trace elements

(beryllium, chromium, nickel, arsenic, selenium, cadmium, mercury, and lead) that might

play some role in carcinogenesis was determined by rCP-MS, which allows detection of

low levels of most elements in the periodic table [27]. The technique has also been used

for simultaneous analysis of multiple el.ements in biological materials [28,29]. rCP-MS
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8IIlalysis of the sediment and water samples revealed trace element concentrations below

suggested levels of both the EPA and the State of Oklahoma [30,31]. Comparison of

8IIlalyses between tumor-bearing and nontumor-bearing tissues showed statistical

differences among several elements including beryllium «0.05 vs. 0.79 J,iglg) and nickel

«0.05 vs. 21.25 I-lglg) in the liver and nickel (10.35 vs. 4.48 J,iglg) in the muscle at p :s;

0.05. However, a comparison oftested trace elements to concentrations in other teleosts

species showed gizzard shad tissue to be within average concentrations [32]. Although

significant analytical differences were noted between tumor-bearing and nontumor-bearing

gizzard shad, it is likely that these levels do not have biological significance. We must

therefore conclude from the data at hand that trace elements are not involved in shad

neoplasm formation.

Naturally occurring radiation can harm aquatic systems by producing a range of

syndromes from reduced vigor to lethality, shortened life span, diminished reproductive

rate, and genetic transmission of radiation-altered genes [33]. In this study we

investigated whether background radioactivity might be a cause or contributor to the

gizzard shad neoplasia. An Oklahoma Geological Survey minerals map published in 1969

showed deposits of uranium within the watershed around Lake of the Arbuckles. The

uranium was mostly disseminated in gray sandstone and gray to black shales, and occurred

in small low-grade deposits ranging from 0.2-70 ppm uranium. Also, local deposits of

crude oil and asphalt contained higher than normal amounts of uranium [34,35,36J.

Evaluation of environmental alphalbeta radiation and radon-222 levels in the watersheds

ofboth Lake of the Arbuckles and Lake Texoma revealed values below U.S. EPA
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drinking water guidelines [37,38], suggesting that radiation probably is not be a factor in

gizzard shad neoplasms.

Random amplified polymorphic DNA (RAPD) and double-stringency polymerase

chain reaction (DS peR) were used in an effort to generate a genetic marker to identify

and separate tumor-bearing and nontumor-bearing gizzard shad. RAPD analysis has been

used for genetic mapping, plant and animal breeding applications, and population genetics

[39]. The major advantages of this technique are its ability to detect polymorphisms, small

amount ofDNA needed, ease of use, and no requirement for sequence information on the

organism. A major drawback ofRAPD markers is that they are usuaUy dominant since

polymorphisms are detected as a presence or absence of bands afterPCR amplification.

These mark'ers result from size changes in the amplified region or base changes that alter

primer binding. Another drawback is population genetic parameters used to calculate

genetic variability cannot be used, nor can RAPD data be directly compared with other

techniques such as allozymes or restriction fragment length polymorphism (RFLP)

analysis. For these reasons, we analyzed variation between the tumor-hearing and

nontumor-bearing gizzard shad as a binary (presence/absence) value using tests which do

not require explicit genetic assumptions. With RAPD and DS peR analysis, a genetic

marker which could separate the two groups was not identified. Also, no statistical

difference was noticed in the band sharing values between tumor-bearing and nontumor­

bearing gizzard shad using both techniques. However, comparisons revealed differences

between the two techniques with RAPD analysis producing a third more markers than DS

peR. This difference in marker production is accountable to a first phase of high-
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stringency amplification in the DS PCR technique which reduces the concentration of

different DNA that can be amplified by the RAPD primers. Studies have shown genetic

markers produced by the RAPD technique do not fonow Mendelian segregation [40,41).

By induding an early first phase ofhigh-stringency amplification, DS PCR genetic markers

alleviate that problem [7]. Although the use ofRAPD analysis has its drawbacks, the

technique may potentially yield clearer and more comparative information especially for

the analytical methods using RAPD markers for population genetic estimates [42,43l

The cell of origin in the gizzard shad neoplasm has not been definitively

determined [1,2]. Two major possibilities considered are pigment cells and peripheral

nerve sheath cells.. Pigment cells, particularly melanocytes, were likely because the tumors

were usually darkly pigmented, whereas the swirling patterns of the tumors suggested an

origin from peripheral nerve sheath cells although poorly differentiated pigment cell

neoplasms can express similar patterns. Tumor location analysis revealed a significantly

higher number of tumors occurring in the dorsal section (459 of 577=79.5%) versus the

ventral section (118 of 577=20.5%). The area of highest occurrence was from the occiput

to the dorsal fin origin. This dorsa-anterior area was the location for 244 of the 577

(42.3%) tumors scored and atso conelates with a high concentration of nerve sheath cells

that arise from the neural crest. However, pigment cells also arise from the neural crest

and the dorsal area of the gizzard shad is more heavily pigmented than the ventral area.

Further histopathological and immunocytochemical studies are underway to determine the

cell of origin (Geter et 811., in prep.). Tumor location analysis show the lesions are not

randomly distributed but that most (79.5%) occur on the dorsal surface. This argues
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strongly that the shad neoplasms are not carcinogen induced, at least from dir,ect exposure

from sediments. Most epizootics ofcarcinogen induced hepatic neoplasia and nearly all

examples of skin neoplasia in wild fishes, as listed above, occurred in bottom feeding

species with the skin neoplasms thought to have been initiated by direct exposure to

carcinogenic compounds in the sediments.

In summary, the cause ofan epizootic ofdermal neoplasia in gizzard shad

(Dorosoma cepedianum) from lakes in Oklahoma and Texas remains unsolved. The

present study suggests that an etiology from trace elements or radiation cannot be

supported. Furthermore, tumor location analysis suggests that direct exposure to

sediment-related carcinogens is not a likely cause of the neoplasia. Future studies will

investigate the geographic range of the disease, determine tumor prevalence in other

species including the threadfin shad and examine additional tumor specimens to determine

the cell of origin.
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Table 1. Dates, total gizzard shad caught and percent of tumor-bearing shad per catch for

Lake of the Arbuckles, Lake Texoma and Lake Murray, Oklahoma, USA.

Lake of the ArbuckIes

Date Shad caught Tumor-bearing % with tumors

6-23/25-95* 142 27 19.0

10-2/3-95 10 2 20.0

11-11!l2-95 15 2 13.0

11-24/26-95 129 17 13.2

5-5-96 77 9 11.7

8-11/12-96 85 7 8.2

Totals 1448 272 18.8

Lake Texoma

Date Shad caught Tumor-bearing % with tumors

5-6110-96 81 12 14.8

5-13/17-96 16 2 12.5

5-21&23-96 498 85 17.1

8-13-96 65 12 18.4

Totals 660 111 16.8

Lake Murray
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Date Shad caught Tumor-bearing % with tumors

5-22/23-96 20 4 20

* Fish sampled before 1995 were previously reported [1,21.
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Table 2. Sediment quality guideline values and average ICP-MS values in I-lg/g from

sediment samples taken from Lake of the Arbucldes (N=3) and Lake Texoma (N=3).

Detection limits for shown elements are 0.05 I-lg/g.

Element Guideline Arbuckle Texoma

Beryllium 40* 3.80 2.40

Chromium 25t 10..90 4.95

Nickel 20t 9.55 2.83

Arsenic 3t 1.76 1.89

Selenium 10* 3.30 2.73

Cadmium 1* 0.70 0.40

Mercury It 0.00 0.00

Lead 40t 14.13 6.83

*Fishbein et at 1987[4], tUS. Environmental Protection Agency, 1977[30].
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Table 3. Water quality guideline values and average ICP-MS values in ttg/L from water

samples reported as total recoverable metals (dissolved + suspended) from Lake ofthe

Arbuckles (N=6) and Lake Texoma (N=6). Detection limits for shown elements are 0.001

ttg/L.

Element Guideline Arbuckle Texoma

Beryllium 1* 0.14 0.34

Chromium 50t 11.67 7.54

Nickel 600t 2.23 7.38

Arsenic lOOt 1.60 2.18

Selenium lOt 2.02 2.04

Cadmium 20t <0.001 0.45

Mercury 2t 0.15 0.09

Lead lOOt 1.95 1.66

*U.S. Environmental Protection Agency, ]995, tOklahoma Department of Water Quality.
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Table 4. Average ICP-MS values and range in J1.g1g wet weight from liver and muscle tissue taken from tumor-bearing (TB) N;12 and nontumor-bearing (NIB)

N=12 gizzard shad from Lake of the Arbuckles and Lake Texoma with detection limits for listed elements at 0.05J1.g1g. Average biota reference values are also given.

liver Muscle Average

Tissue TB Range NTB Range TB Range NTB Range BioW

Beryllium* <0.05 0.00-0.08 0.79 0.00-1.01 <0.05 0.00-0.05 <0.05 0.00-0.04 <1

Chromium 2.02 0.33-6.18 6.74 0.77-10.82 4.68 1.30-11.32 4.62 0.54-7.89 < 1-11

Nickel*t <0.05 0.00 21.25 2.23-34.44 10.35 0.00-21.13 4.48 0.CJ0-8.78 <2-36

Arsenic 3.55 1.51-6.77 6.08 4.01-6.23 <0.05 0.00 0.49 0.00-2.24 <0.2-6.7

Selenium 0.42 0.00-.].04 0.56 0.00-2.06 1.68 0.53-4.76 1.03 0.00-3.66 <0.3-7.9

Cadmium 0.33 0.00-0.89 0.51 0.06-2.44 0.364 0.00-0.64 0.189 0.00-0.87 <0.3-9.5

Mercury 0.09 0.00-0.12 <0.05 0.00-0.07 <0.05 0.00-0.37 <0.05 0.00-0.22 <0.5

Lead 4.83 1.33-8.02 5.97 1.87-12.04 0.56 0.00-2.53 0.32 0.00-2.2 <5-22

Stastistically significant difference ofelement between tumor-bearing and nontumor-bearing gizzard shad liver (*) and muscle (t). ;U.S. Geological Survey, Water­

Resources Investigations Report 95-4045.



Table 5. Environmental radiation levels (alphalbeta and radon 222) in Lake ofthe

Arbuckles, Lake Texoma and Lake Carl Blackwell. Alpha and beta values from filtered

(F) and unfiltered (OF) samples reported in Bq liter -1 and radon 222 values in pCi/L.

U.S. EPA drinking water guidelines for alpha, beta, and radon radiation are 0.56 Bq liter"

I, 1. 85 Bq liter -\ and 400 pei liter, respectively.

Lake of the Arbuckles Alpha (FIUF) Beta (FIUF) Radon 222'"

Guy Sandy (E) <0.07/<0.07 <0.40/<0.40 <100

Guy Sandy (H) <0.07/<0.07 <0.40/<0.40 <100

Rock (E) <0.07/<0.07 <0.40/<0.40 <100

Rock (H) 0.15/<0.07 1.60/<0.40 <100

Buckhorn (E) <0.07/<0.07 <0.40/<0.40 <100

Buckhom(H) <0.07/<0.07 <0.40/<0.40 <100

Lake Texoma

Glasses (E) <0.08/0.11 0.80/1.00 <100

Glasses (H) <0.08/<0.51 1.12/0.64 <100

Caney (E) <0.07/0.12 0.52/1.24 <100

Caney (H) <0.08/0.09 0.68/<1.00 <100

Lebannon (E) 0.091<0.07 <0.40/<0.40 <100

Lebannon (H) <0.07/<0.07 <0.40/0.48 <lOa

Lake Carl Blackwell
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(E)

(II)

<0.07/<0.07

<0.07/<0.07

<0.84/1.08

<0.84/1.00

<100

<100

*Radon water samples were notfi[tered.

(E)=epilimnion (H) = hypolimnion
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Table 6. Average band-sharing indices derived by comparison ofRAPD markers from

four tumor-bearing (TB) and four nontumor-bearing (NTB) gizzard shad from Lake of the

ATbuckles.

Probe Bands TB NTB TBvsNTB Total

Bl 13 0.952 0.883 0.925 0.922

B2 12 0.903 0.835 0.875 0.872

B3 13 0.890 0.929 0.915 0.912

B4 19 0.790 0.819 0.844 0.827

B5 19 0.643 0.715 0.725 0.705

B6 12 0.894 0.943 0.926 0.923

B7 15 0.924 0.915 0.925 0.923

B8 17 0.785 0.816 0.831 0.818

B9 13 0.850 0.769 0.806 0.808

BI0 17 0.893 0.852 0.878 0.876

Bll 18 0.879 0.905 0.909 0.902

B12 14 0.810 0.823 0.838 0.829

B13 18 0.665 0.728 0.729 0.715

B14 14 0.810 0.843 0.825 0.826

B15 15 0.830 0.785 0.803 0.805

B16 13 0.868 0.894 0.911 0.898
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Bl7

BI8

B19

B20

Average

13

13

19

16

15.15

0.872

0.800

0.695

0.795

0.827
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0.904

0.847

0.745

0.823

0.839

0.912

0.835

0.733

0.815

0.848

0.902

0.830

0.727

0.812

0.842



Table 7. Average band-sharing indices derived by comparison ofDS peR markers from

four tumor-bearing (TB) and fOUf nontumor-bearing (NTB) gizzard shad from Lake of the

Arbuckles.

Probe Bands TB NTH TBvsNTB Total

M13/B1 11 0.901 0.845 0.832 0.850

M13/B2 10 0.965 1.000 0.974 0.978

M13/B3 12 0.894 0.943 0.926 0.913

M13/B4 13 0.928 0.908 0.924 0.921

M13/B5 6 0.906 0.867 0.880 0.882

M13/B6 13 0.908 0.870 0.901 0.896

M13/B7 11 0.923 0.921 0.909 0.915

M13/B8 7 0.762 0.756 0.805 0.785

M13/B9 8 0.835 0.636 0.755 0.747

M13/BIO 13 0.830 0.845 0.862 0.852

M13/Bll 14 0.903 0.949 0.941 0.934

M13/B12 12 0.908 0.895 0.923 0.914

M13/B13 9 0.929 0.900 0.898 0.905

M13/B14 7 0.916 0.906 0.907 0.909

M13/B15 8 0.870 0.919 0.880 0.886

M13/B16 10 0.943 0.922 0.924 0.928
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M13/B17

M13/B18

M13/B19

M13/B20

Average

14

8

7

8

10.05

0.868

0.956

0.789

0.879

0.891

39

0.860

0.919

0.788

0.874

0.876

0.859

-0.940

0.807

0.878

0.886

0.861

0.939

0.799

0.877

0.885



Table 8. Location analysis of tumors as illustrated in Figure 2 reported as frequency of

tumors pe.ll" zone from shad from Lake of the Arbuckles (N=243~ 1.72 tumors/shad), Lake

Texoma (N=103; 1.5 tumors/shad) and total from both lakes.

Zone Arbuckle Texoma Total (%)

1 39.05 50.10 42.29

2 17.62 12.10 16.12

3 19.52 25.50 21.14

4 7.14 3.20 6.07

5 9.38 0.60 6.93

6 7.38 7.60 7.45
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Figure 1. Map showing sampling sites within Lake of the Arbuckles, Lake Texoma and

Lake Murray.

Figure 2. Schematic diagram ofa gizzard shad used in statistical analysis oftumor

location.
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