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PREFACE

The purpose of this work was to study and analyze interrupt processing strategies

from a cost point of view. The cost referred to is the architectural cost of implementing a

particular interrupt processing strategy. The scope of this study included five strategies.

All the strategies under investigation were originally designed to make it possible for

pipelined processors to support precise interrupts. To analyze the cost of each strategy, its

design and implementation was carefully studied. Based on that it was possible to

determine or closely estimate the amount of hardware, and the complexity of software

needed to implement each strategy.

On pipelined processors, interrupt processing can be broken down into six phases.

Some phases such as detecting the interrupt, running the interrupt handler, and resuming

the interrupted process (for precise interrupts), are common for all strategies. The

strategies differ in whether they finish pending the instructions once an interrupt has

occurred, or they just flush the pipeline. Also they differ in whether they undo state

changes or maintain a precise state at all times. Hardware dominates the cost of many of

the strategies, except for one, namely Checkpoint Repair, for which the cost varies from

being mainly composed of hardware costs to being mainly composed of software costs

according to the strategy's implementation.
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CHAPTER I

INTRODUCTION

Interrupts are the events, other than branches, that change (discontinue

temporarily) the normal flow of execution [Hennessy and Patterson 90] [Cragon 96]

[Hwang 84]. Interrupts are essential to modem computer systems. By utilizing interrupts,

the processor(s) and the operating system can interact and react to different events.

Interrupts were first introduced on the UNIVAC I to signal arithmetic overflow

[Hennessy and Patterson 90]. Since then, as processors grew more complex, interrupts'

duties increased. Some of these duties include handling: I/O device requests, page faults,

segmentation faults, and hardware malfunctions.

Although interrupts are essential to the correct functioning of a system, relatively

little has been written about them [Walker 92]. This, and the numerous duties assumed by

interrupts, has led to a confusing situation of no one acceptable terminology used for

interrupts. Interrupt terminology relies mainly on computer manufacturers' creativity,

with many using different names to mean the same thing [Hennessy and Patterson 90]

[Cragon 96] [Walker 92].

There are three basic types of interrupts: External, Internal, and Software, as

described below.

- External interrupts are interrupts that occur outside the processor. With the exception of

processor malfunctions, all hardware malfunction interrupts are external.

- Internal interrupts are interrupts inside the processor. They are usually caused by the

runnmg process.

- Software interrupts are generated by the runmng process. They usually occur in

predefined points during execution, and will occur at the same location every time the

process IS run.
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Figure 1.1 names some of the existing intelTupts classified according to these

three categories.

I/O device request External

page fault Internal

illegal instruction Internal

requesting operating system service Software

traps Software

power failure External

Figure 1.1 Interrupts classified using three categories

Interrupts are essential to modem computer systems, but extremely high

frequency of occurrence of interrupts is undesirable. Interrupts have to be processed,

which implies time overhead. Interrupt processing is a time-consuming process [Tomg

and Day 93]. Therefore, special attention must be paid to their design and efficient

implementation. Interrupts are low level events, thus, the design of an interrupt

processing strategy involves modifications to both the hardware and, consequently, the

software implementations of a system. The cost of these modifications tends to be high.

This study intends to shed some light on the costs of various interrupt processing

strategies in terms of their hardware/software decomposition.



CHAPTER II

INTERRUPT PROCESSING

The general idea of interrupt processing is that when an interrupt occurs, control is

passed to a code segment known as the interrupt handler. The intemtpt handler performs

the appropriate action and then possibly returns control to the interrupted process

[MoudgiH and Vassiliadis 96]. This is a simple view of the interrupt processing process.

To allow an interrupted process to resume, the full state of the machine must be saved

before an interrupt can be processed [Hennessy and Patterson 90]. Subsequently, the

saved state must be restored before the interrupted process can resume execution.

2.1 Precise and Imprecise Interrupts

There is much more involved in resuming an interrupted process than what was

mentioned in the above paragraph. For an interrupted process to be restarted, the exact

point at which the interrupt occurred, i.e., the instruction at which the interrupt occurred,

has to be known. For a process to resume execution correctly, the following conditions

have to be satisfied [eragon 96) [Walker and Cragon 95] [Smith and Pleszkun 88]

[Moudgill and Vassiliadis 96].

- All instructions issued before the interrupted instruction have finished execution and

modified the process state.

- All instructions issued after the interrupted instruction are unexecuted or have not

modified the process state.

- The saved program counter points to the interrupted instruction.

The above conditions ensure that the process state at the time of the interrupt is

consistent with the state that would exist if the instructions were executed seriall y, i.c.,

3
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one instruction at a time. If the above conditions hold at the time of the interrupt, then

that interrupt is precise, otherwise it is imprecise.

Processes interrupted by an imprecise interrupt are usually tenninated. This is due

to the fact that the process state at the time the interrupted instruction was issued, could

not be reconstructed correctly. Therefore, the process could not continue execution

correctly [Wang and Emnett 93]. This implies that imprecise interrupts do not require any

special design.

It is the designers choice on which interrupts to be implemented as precise Of

imprecise. The choice is based on deciding which interrupts are essential to the machine's

ability to run programs correctly and which are not [Moudgill and Vassiliadis 96].

2.2 Interrupt Processing on Uniprocessors

On uniprocessors, instructions are executed sequentially. No instruction is

executed until the prior instruction has completed execution, that is, there is no

instruction overlapping. This implies that the process state is always consistent with the

conditions of a precise state. This greatly simplifies the processing of interrupts [Walker

92].

When a process is interrupted, the appropriate interrupt handling routine IS

invoked to service the interrupt. To ensure the ability to restart the interrupted process, its

state is saved. Since the process is executed sequentially, minimal information is included

in the process state. In addition to the used registers, the most important pieces of

information would be the program counter and the status register. The program counter

will provide the location in the instruction stream to restart the interrupted process. This

information is pushed onto a stack. When the interrupt handler is done, the stack is

popped and the process state is restored [Comer and Fossum 88].



5

2.3 Interrupt Processing on Pipelined Processors

As the complexity of processors increases, the complexity of interrupt processing

strategies increase accordingly. They have to "meet the demands of more applications,

peripherals, and functions" [Walker and Cragon 95J.

Pipelining is a sophisticated technique used to increase processor performance. It

IS a system implementation and execution technique that allows the staging and

overlapping of instructions during execution [Hennessy and Patterson 90]. Pipelining

presents the designers of the interrupt processing strategies with a number of chaUenges.

The overlapping of instructions means that there is an increased amount of state

information that needs to be saved and restored in case of occurrence of an interrupt.

Also, since instructions are in different stages in the pipeline, the occurrence of an

interrupt means that some instructions need to be partially or completely re-executed in

order to restore the processor's state [Walker 92].

Some pipelines allow for out-of order execution and completion of instructions.

This permits shorter instructions to complete before longer instruct'ons that have been

issued earlier. This mechanism greatly enhances the performance of a processor [Torng

and Day 93], but it clearly allows for the possibility of violation of the second condition

of precise interrupts, as explained in Section 2.1.

In pipelined processors, interrupt processing is not a one-step process [Walker 92]

[Walker and Cragon 95]. It consists of six phases (or steps). In each phase, a choice

among different tasks to be accomplished has to be made. These choices categorized by

the phase in which they might be implemented, are listed below.

Phase 1: Detect the interrupt.

- The interrupt is automatically detected by the processor.
- The interrupt is not automatically detected. Polling is used.

Phase 2: Finish pending instructions.

- Run instructions to completion.
- Nothing is done.

Phase 3: Undo state changes.

- Insure that there are no state changes to be undone.
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- Completely undo changes to the state.
- Partially undo changes to the state.
- Ignore changes to the state.

Phase 4: Save process state.

- Save the state.
- State is not saved.

Phase 5: Run the interrupt handler.

- No interrupt handler to be nm.
- Interrupt vector.
- Interrupt register.
- Software polling.

Phase 6: Resume the interrupted process.

- Complete instruction re-execution.
- Partial instruction re-execution.
- Instruction continuation.
- Process terminated.

The purpose of phases 2 and 3 is to enforce the conditions of the precise state.

Phase 2 ensures that all instructions issued before the interrupted instruction have

completed execution and modified the process state. Phase 3 ensures that any instruction

issued after the interrupted instruction has not modified the process state.

An implementation choice made in one phase can affect the choices In other

phases, i.e., the choices are not independent [Walker 92] [Walker and Cragon 95]. For

each design choice made, there are several implementation methods to accomplish that

choice. These choices also determine the cost of the interrupt processing strategy as a

whole [Wang and Emnett 93].

Since interrupt processing on ufilprocessors IS almost trivial, it will not be

considered in this study. Also, since processes interrupted by an imprecise interrupt are

usually terminated, there is no point in further considering them. The focus in this study

will be on strategies that allow pipelined processors to support precise interrupts.



CHAPTER III

INSTRUCTION WINDOW

3.1 Description

The instruction windo¥J. (IW) [Torng and Day 93] is a mechanism that enables

pipelined systems, which aUow out-of-order instruction execution and completion, to

support precise interrupts. The IW consists of a set of registers called cells. The IW acts

as a staging area for instructions entering the pipeline. An instruction enters the IW when

it is fetched and remains there until it finishes execution.

Each cell in the IW consists of at least three fields: issue, instruction, and tag. The

issue field is a one-bit field that indicates whether an instruction has been issued. The

instruction field holds a copy of the instruction itself. The tag field contains a unique

identification of the instruction i.n that cell. There is an optional field called the vector

element number (VEN) that is used by processors that support vector instructions. The

structure of the IW is shown in Figure 1.

Issue Tag Instruction VEN

(VEN = Vector Element Number)

Figure 3.1 The Instruction Window (lW) (Source: [Torng and Day 93])

The JW support three basic operations called Fill, Issue, and Remove/Update, as

described below.

7



- Fill: The Fill operation pushes the newly fetched instruction into the topmost

empty cell and assigns it a unique tag. If vector instructions are supp0l1ed, the VEN field

is set to the number of vector elements remaining to be processed, otherwise it is set to 1.

- Issue: At the beginning of each machine cycle, the topmost unissued instruction

IS checked. If there are no data dependencies and an appropriate functional unit is

available, that instruction is issued and its issue bit is set.

- Remove/Update: In this operation the IW makes use of a new parameter: No

Return Point (NRP). The NRP is a point in the pipeline after which an instruction has to

complete execution and deposit its result, in other words it can not be aborted. When an

instruction passes the NRP, its tag is passed back to the IW, where it is identified. If the

VEN field is equal to 1, the instruction is removed from the IW, otherwise the VEN field

is decremented by 1.

In the case of an interrupt, the following actions are taken by the processor. All

instructions that have passed their NRP are allowed to complete and the rest are aborted.

When the instructions that are allowed to complete their execution have deposited their

results, the processor state is saved. The IW is part of the information to be saved. The

appropriate interrupt handler is then fetched and executed.

The infornlation in the IW defines the precise point at which the interrupted

process can resume. At the completion of the interrupt handling procedure, the execution

is resumed from the instruction at the top of the IW. Since all the instructions that have

completed out-of-order had no data dependencies, and the process knows exactly which

instructions were in the pipeline, there is no need to undo any state changes.

As an example, consider the sequence of instructions in Figure 3.2 (this example

has been adapted from [Torng and Day 93]).
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1. ADD RO, RI, RO

') MUL R4, R5, R4

.,
ADD R2, R3, R2.J.

4. ADF VRO, VRl, VRO

5. ADD R6, R7, R6

Figure 3.2 Example code

ADD is an integer addition operation, MUL is an integer multiplication operation,

and ADF is a floating point addition operation. Both integer and floating point addition

operations need 3 cycles to execute. The integer multiplication operation requires 6

cycles

to execute. Three functional units are available: An integer add unit, a floating point add

unit, and an integer multiplication unit. The NRP is set to be at the end of the final cycle

of execution. An assumption is made that the processor fetches one instruction per cycle.

Assuming there is at least 4 cells in the IW, an instruction is fetched and written to

the IW in every cycle as long as there is room in the IW. At the end of cycle 4. the

contents of the IW are as shown in Figure 3.3.

Issue Tag Instruction VEN

1 1 ADD RO, Rl, RO I

1 2 MUL R4, R5, R4 I

1 3 ADD R2, R3, R2 I

0 4 ADF VRO, VRl, VRO '1....

(VEN = Vector Element Number)

Figure 3.3 The Instruction Window after cycle 4 for the example code

in Figure 3.2
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There are no data dependencies between those instructions, therefore an

instruction is issued each cycle depending on the availability of an appropriate functional

unit. The processing of those instructions is shown in Figure 3.4, where F stands for fill, I

for issue, Ex for execute, and 0 for deposit.

1 2 3 4 5 6 7 8 9
ADD F I Ex Ex Ex D
MUL F I Ex Ex Ex Ex Ex Ex
ADD F I Ex Ex Ex D
ADF F I Ex Ex Ex 0
ADD F T Ex Ex

(F = Fill, I = Issue, Ex = Execute, 0 = DeposJt)

Figure 3.4 Instruction process for the first 9 cycles for the example code

in Figure 3.2

Note that at the end of cycle 5, instruction 1 passes the NRP mark. At this point

its tag is sent back to the IW to be matched. By the end of cycle 6, the tag has been

matched, the instruction is removed, and the rest of the instructions are moved to fill the

topmost cells in the TW. This makes room for a new instruction, so at the end of cycle 6

the contents of the IW will be as shown in Figure 3.5.

Issue Tag Instruction VEN

1 2 MUL R4, R5, R4 I

1 3 ADD R2, R3, R2 1
I

I

i I 4 ADF VRO, VRl, VRO 2

a 5 ADD R6, R7, R6 1

(YEN = Vector Element Number)

Figure 3.5 The Instruction Window at the end of cycle 6 for the example code

in Figure 3.2
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Let an interrupt occur during cycle 8. At the beginning of cycle 9. instruction 4

has passed the NRP. Therefore its tag is sent back to the IW, where its YEN field is

reduced by 1. All other instructions are aborted. The contents of the IW that are going to

be saved as part of the process state are shown in Figure 3.6.

Issue Tag Instruction YEN

0 2 MUL R4, R5, R4 1

,0 4 ADF YRO, VRl, VRO 1

;

0 5 ADD R6, R7, R6 1

(VEN = Vector Element Number)

Figure 3.6 The Instruction Window to be saved for the example code

in Figure 3.2

3.2 Implementation

Implementation of the IW includes all the stages of the pipeline. It is not limited

to the actions to be taken in the case of occurrence of an interrupt. These modifications to

be implemented in the pipeline simplify interrupt processing in case an interrupt occurs.

The Fill operation does not greatly differ from the normal fetch operation in the

pipeline. Extra work has to be done to locate the cell to receive the instructions. After

that, a tag is generated and assigned to the tag field associated with the cell. In processors

that support vector operations, there is a need for a register to hold the initial number of

vector elements to be processed. From this register, called Vector Length Register [Torng

and Day 93], the initial val ue of the VEN field can be obtained.

More complicated actions are involved in the implementation of the Issue

operation. These mainly arise from the need to resolve the data dependencies that might

exist during the issuing of any instruction. At first glance, one might question the

relevancy of this to the interrupt processing strategy. On the other hand, one of the most

important features of the IW is that it allows out-of-order execution and completion of



12

instructions. This implies that an instruction that cannot issue due to unresolved data

dependencies, should not obstruct the issuance of subsequent instructions that are ready

to issue. There are several dependency-resolution algorithms. One such algorithm is

Tomasulo's algorithm [Sohi 90].

Tomasulo's algorithm is a hardware algorithm that was first introduced in the

floating point unit of the IBM 360/91 [Tomasulo 67]. Tomasulo's algorithm depends on

waiting stations also known as reservation stations. Each functional unit is associated

with a reservation station. An instruction that has unavailable operands or unresolved

dependencies is dispatched to the reservation station of the proper functional unit. The

instruction waits there monitoring the result bus until all its operands are available and its

data dependencies are resolved. Then it can be dispatched to the functional unit for

execution [Sohi 90). In the meantime, the issuing process of subsequent instructions can

continue with no delays. The structure of each reservation station is shown in Figure 3.7.

Figure 3.7 A reservation station

Source Operand 1

Ready Contents

Source Operand 2

Ready Contents

Destination

Tag

If the register containing a source operand of an issuing instruction is busy, that is,

it is the destination register for an active instruction. the tag of that register is obtained

and the instruction is dispatched to a reservation station. The ready bit of that source

operand is set to indicate that it is unavailable. The instruction also obtains a tag for the

destination register.

When an instruction completes execution, its result along with the tag of the

destination register appear in the result bus. The registers update their busy bits according

to this information.

When a source operand is available, its content is copied into the reservation

station and the ready bit for that operand is reset. When all the operands are available, the

instruction is dispatched to the functional unit. The reservation station is then freed to be
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used by subsequent instructions [Sohi 90] (more details on this algorithm and others can

be found in [Weiss and Smith 84] and [Tomasulo 67]).

The Remove/Update operation depends mainly on the implementation of the No

Return Parameter (NRP) [Torng and Day 93]. During normal execution, the NRP could

be set to a fixed stage. This is used to indicate at which point the instruction tag is sent

back to the IW, where the tag is matched and the instruction is removed or updated as

described in Section 3.1. In the case ofthe occurrence of an interrupt, the need arises for a

flexible NRP that depends on the type of the interrupt detected. The flexible NRP

provides a variable response time, according to the nature of the intenLlpt, by varying the

amount of instruction processing that is discarded in order to achieve a faster response

time [Torng and Day 93].

The flexible NRP could be implemented through a code segment associated with

each interrupt type. The code segment will direct the processor as to which stages of the

pipeline to abort. For example, if the NRP for an interrupt type is set at the final cycle of

execution,. any functional unit that has not signaled to transmit its result in the resuh bus

is flushed. The processor then will proceed to complete whatever instructions are left in

the pipeline at that point. Each different interrupt type is associated with a different code

segment that enforces its NRP.

3.3 Hardware/Software Cost Analysis

The initial cost arises from building the [W structure itself. Let the IW have n

cells, where n > 1, then

• Size in bits of the issue field = 1
• Number of issue bits = n * (l bit per cell) = n
• Size in bits of the tag field = log n bits (To ensure uniqueness)
• Number of tag bits = n * (log n bits per cell) = n * log n
• Each instruction field = size of instruction (system dependent)
• Number of bits for instruction fields = n * (size of instruction)
• size in bits of the VEN field = size of Vector Length Register
• Number of bits for VEN fields = n * (size of Vector Length Register)
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The second major cost arises from the implementation of the data dependency

resolution algorithm. Intuitively> this depends on the type of algorithm chosen. Referring

back to Tomasulo's algorithm, a reservation station has to be build in association with

each functional unit. Let there be n functional units and m registers in the system. Since

each register could be a destination register, we have

• Number of bits for registers = ill * (size ofregister)
• Size of register = size of original register + busy bit + size of tag
• Size in bits of the busy bit = I
• Size in bits of the tag field = log n

Since each functional uriit needs a reservation station associated with it, we have

the following equations.

• Number of bits for reservation stations = n >I< (size of reservation station)
• Size of reservation station = size of fields of source operand I + size of fields

for source operand 2 + destination tag
• Size of fields for source operand = size of ready field + size of tag + size of

contents field
• Size in bits of the ready field = I
• Size in bits of the tag field = log n
• Size in bits of the contents field = size of a register (without the busy bit and tag)
• Size in bits of destination tag = log n

Since each register is tagged, each register needs to be associated with a

combinational circuit to carry out the tag matching [Sohi 90]. Similar combinational

circuits need to be associated with the IW to carry out the issue bit and tag matching

during the Issue and RemovelUpdate operations respectively [Tomg and Day 93].

Software does not constitute a great part in the implementation of this strategy.

For each different type of interrupt there is an appropriate interrupt handling routine. In

addition, each interrupt type is associated with a code segment that implements its NRP.

It can be inferred from the above discussion that hardware is the major contributor

to the cost of implementing the IW strategy. Software constitutes a small but not trivial

part of the cost. It would be safe to state that the cost of implementing the IW strategy is

about 90% hardware and 10% software.



CHAPTER IV

CHECKPOINTING

4.1 Description

Out-of-order execution and completion of instructions is a mechanism that can

enhance the performance of a processor. It is a further step towards fully utilizing the

concept of concurrent processing. Unfortunately, it introduces complications with regard

to interrupt processing. These complications are mainly a result of the fact that the

machine state (the contents of registers and memory) is not always precise.

Checkpointing [Hwu and Patt 87] is a mechanism that assists 111 processmg

interrupts in processors that allow out-of-order execution. It does not force the machine

state to be precise, rather it saves the machine state at preselected points of execution

called checkpoints. In the case of an interrupt occurring, the machine state is repaired to

the state saved at the last checkpoint which is known to be precise. Instmctions are then

executed sequentially until the instruction that caused the interrupt is reached. This way

the precise state for any instruction can be restored.

When the machine state is repaired to a previous state, useful work is lost. Re

executing instructions to reach the interrupted instruction implies redundancy and extra

time overhead. A question arises: why not establish a checkpoint at every instruction?

This way no useful work is discarded and no instructions are re-executed. Hwu and Patt

addressed this question as follows [Hwu and Pat! 87]:

On the one hand, since checkpointing is an overhead function, its cost in
time and additional hardware should be kept as small as possible. This
means no more checkpoints than absolutely necessary. On the other hand,
repair to the Jast checkpoint involves discarding useful work. The further
apart the checkpoints, the more useful work gets thrown away.

15
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4.2 Checkpoint Mechanism

4.2.1 Definitions

The foHowing are definitions of the terminology used to describe the checkpoint

algorithm [Hwu and Patt 87]. Let c be the maximum number of simultaneously active

checkpoints allowed by the checkpoint algorithm.

- An instruction is active if it has been issued but not yet finished execution.

- A processor's state at one instruction is consistent if it is precise. Hwu and Patt made a

distinction between consistent and precise states [Hwu and Patt 87]. For the objectives

of this study, the difference is irrelevant.

- The E-repair range of a checkpoint consists of the sequence of instructions between this

checkpoint and the next checkpoint.

- A processor's state at one instruction is called a potential precise state if some of the

instructions issued before this instruction are still active. The condition, for a precise

state, that instructions issued after this instruction cannot affect the state, also holds.

- Active(t) is the set of consecutive checkpoints that have active instructions in their E

repair ranges at time 1. Activej{t) is the ith element of the set, where i ranges from 1 to c.

The nearest active checkpoint is at position 1.

- Potent(t) is the set of potential precise states at time 1. A potential precIse state 1S

maintained for each active checkpoint. Hence at time t, Potent j{t) holds the potential

precise state maintained for the checkpoint at Activej(t), where i ranges from 1 to c.

- A logical space is a copy of the processor's state. It can be the machine state or a

potential precise state of one of the checkpoints. Since the checkpoints are pre

determined, there will be a known number of logical spaces needed by the checkpoint

mechanism.
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4.2.2 Data Structures

The following is a description of the different data structures maintained by the

checkpoint algorithm in order to accomplish its tasks [Hwu and Patt 87]. All the arrays

are of size c.

- Current is the logical space holding the current machine state.

- Backup is an array of logical spaces holding the potential precise states. At time t.

BackuPi holds Potent;(t), where i ranges from 1 to c.

- Count is an array of counters. At time t, Counti holds the number of active instructions

in the E-repair range of Active;(t), where i ranges from 1 to c.

- Except is an an-ay of flags. At time t, f-xcept i indicates whether an inten-upt has occurred

in the E-repair range of Activej(t) , where i ranges :from 1 to c.

- Ident is a decrementing counter that is used to uniquely identify a checkpoint. At time t,

Ident holds the identification number of Active;(t), where i ranges from 1 to c.

4.2.3 Checkpoint Algorithm

Initially, all elements of the arrays Count and Except are set to zero, all the

elements of the array Backup are initialized to Current, and the decrementing counter

Ident is initialized to -c. The arrays are indexed from left to right. That is, if j > j, then

location i is to the left of location j in any of the arrays.

The main idea behind this algorithm is to maintain a potential precise state for

every active checkpoint. The algorithm manages those potential states until they evolve

into precise states. These precise states can then be used to restore the machine state in

case of the occurrence of an interrupt.

The operations performed by the algorithm are Issue, Check, Deliver, and Repair,

as explained below.

- Issue: When a new instruction is issued. the value of Ident is attached to the new

instruction to identify to which checkpoint range it belongs. The value of Count l is

incremented.
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- Check: This operation is perfonned when establishing a new checkpoint. After the last

instruction in a checkpoint's E-repair range is issued, the arrays (i.e., Backup, Count,

and Except) are shifted one position to the left. Current is copied into Backup!. and

Count, and Except, are reset to zero. Finally, Ident is decremented by I to identify the

new checkpoint. The algorithm should always maintain at least one precise state.

Therefore, if at this point Counte is not zero, this implies that all the states are still

potential. Hence, the instruction issue is stalled until Counte is zero.

- Deliver: When an instruction finishes execution, its result is written to Current. Now the

potential states have to be updated also. To do so, the following sequence of operations

are executed,

· Subtract the current value of Ident from the checkpoint identification value attached

to the instruction. The result of this subtraction is used as an index i to reference the

arrays. Write the execution result to BackuPk' where k = 1 to i.

• Decrement Countj~I'

· If an interrupt has occurred, set Exceptjl 1 to ].

- Repair: This operation is performed when an interrupt occurs. As a result of this

operation, all active instructions are discarded and the machine state is restored to a

previous precise state. This is done by copying the contents of Backupc into Current.

The next step is to execute instructions sequentially until the interrupted instruction is

reached. Then the operation Check is performed c times to reset all the positions in

Backup to become identical to Current, and all the values in Count and Except are reset

to zero. At this point, the machine state is precise and the system is ready to invoke the

interrupt handler.

The running of this algorithm is depicted in the flow chart of Figure 4.1.
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Last lost. Yes
III range?

Yes Interrupt
occtrrred?

No

Figure 4.1 Flow Chart of Checkpoint Algorithm

As an example, consider the set of instructions in Figure 4.2, this example was

gIven in [Hwu and Patt 87]. This code segment basically traverses a linked list,

multiplying the value in each location by a known factor.

A: loop: LD RO, Rl (0)
B: MULRO,R2
C: ST Rl (0), RO
D: LDR1,Rl(1)
E: U(R! != nil) goto loop

Figure 4.2 Example Code

In this figure, MUL is a floating point multiplication that needs 4 cycles to execute. LD

and ST are memory load and store operations respectively, both of which need 2 cycles to

execute. The branch operation needs only one cycle to execute.

Assume the initial machine state is as given in Figure 4.3.



Figure 4.3 Initial contents of registers and memory locations
for the example code in Figure 4.2

The pipeline is a typical one consisting of 4 stages: fetch, issue, execute, and

deposit. It makes use of a branch prediction mechanism to enhance the performance of

the pipeline. For the purpose of this example, the assumption is made that aU branch

predictions were correct. A data dependency algorithm is used to resolve dependencies

between instructions during the issue stage. More details about the data dependency

algorithms can be found in Section 4.2. The execution of the example program in Figure

4.2 is depicted in Figure 4.4.

RO
RI
R2

loc 0

loc I
loc 2

loc 3
loc 4

loc 5

pc

loc 0

2.0

3.5
loc 4

1.7
nil
2.3

loc2

inst A

20

I 2 3 4 5 6 7 8 9 III II 12 13 14 15 16 17 18

F AI Bl CI D1 El A2 B2 I C2 D2 E2 A3 83 C3 D3 E3 A4 84 C4
I AI 81 CI DI EI A2 82 C2 D2 E2 A3 83 C3 D3 E3 A4 84
Ex AI 81 DI A2 Cl 82 D2 A3 C2 83 OJ A4

EI E2 E3
Ex AI 81 DI A2 Cl 82 D2 A3 C2 B3 D3

, Ex Bl 82 8.1
Ex 81 82 133

Figure 4.4 Execution of the example code in Figure 4.2 for the first 18 cycles

The checkpoints for this example are selected to be before A I, between Eland A2, and

between E2 and A3, as shown in Figure 4.5. The initial state of all the relevant data

structures is shown in Figure 4.6.
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For this example, the maximum number of simultaneous active checkpoints IS

chosen to be two, because it has been proven theoretically that this is the minimum

number needed to implement this algorithm effectively [Hwu and Patt 87]. Therefore, c is

equal to 2, which implies that the initial value of Ident will be -2. Based on this, the

algorithm needs three logical spaces, two for the potential precise states and one for the

machine state.

Referring back to Figure 4.4, in cycle 5 instruction E 1 is issued (E 1 is instruction

E in the first iteration of the example program in Figure 4.2), which is the last instruction

in the E-repair range of checkpoint -2. At this point the code has loaded the contents of

loc 0 into RO. Now, the operation Check is to be performed, and the contents of Backup"

Count" and Except, are shifted into Backup2' Count2, and Except2. respectively. A copy

of Current is placed in Backup" and Count, and Except, are reset to zero. Finally, the

decrementing counter Ident is decremented to -3. Figure 4.7 shows a snapshot of the

system at the end of cycle 6.

At the end of cycle 14, the only instruction active III the E-repair range of

checkpoint -3 is C2, as shown in Figure 4.8. C2 will finish execution at the enu of the

next cycle. At that point, Deliver will be performed as follows,

- The value in Ident(-4) is subtracted from the checkpoint identification of C2(-3) to

obtain the index value 1.

- The result of C2 will be written to Current and BackuPI'

- Count2will be decremented.

Assume an interrupt occurred during the execution of C2. The results will not be

written to the logical spaces and Except2 will be set to 1, as shown in Figure 4.9. At this

point, Repair will restore the machine state to a precise state. The precise state is the one

in Backup!_ Backup, is not precise since B3, C3, and D3 are still active. Repair will

replace the contents of Current by those of Backup2' as shown in Figure 4.10.
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The next step is to execute instructions A2 and 82 sequentially, in order to arrive

at the preclse state before the interrupted instruction. Check is then performed twice to

reset the contents of all the positions in Backup to become identical to Current. The

system is now ready to invoke the interrupt handler. A snapshot of the state of the system,

just before invoking the interrupt handler, is shown in Figure 4.11.

[I;
Active Instruction

Issuing Instruction Stream
Activc,(O) ~

Activ~(O)

I I I I I I I I l I I I I I I I I
-2

Backupz Space BackuPl Space Current Space

RO RO RO
,

Rl lac 0 RI lac a Rl loc a

R2 2.0 R2 2.0 R2 2.0

lac a 3.5 loc 0 3.5 lac 0 3.5

IDe 1 loc 4 loc I lac 4 IDe I loc 4

lac 2 1.7 loc 2 1.7 lac 2 1.7

loc 3 nil !'loc 3 nil loc 3 nil

loc4 2.3 lac 4 2.3 loc 4 2.3

ioc 5 lac 2 loc 5 lac 2 loc 5 loc 2

pc I Inst.A I pc I Ins1. A I pc I Inst. A I

I a
I Countz I

0 ICount l I
-2 I Ident

! a I Except] I 0 IExcept)

Figure 4.6 Initial state for the example code in Figure 4.2
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Activ~(6)

-2 -3
I I I I I I I I I

Backup2 Space Backup! Space Current Space

RO RO 3.5 RO [I 3.5
i
[

RI locO RI .loc a RI lac 0
"
i
!!R2 2.0 R2 2.0 R2 2.0
i
I
I

loc 0 3.5 loc 0 3.5 lac 0 3.5

lac I loc 4 loc I .loc 4 lac 1 loc 4

loc 2 1.7 loc 2
[ 1.7 lac 2 1.7

lac 3 nil loc 3 nil loc 3 nil

lac 4 2.3 loc 4 2.3 loc 4 2.3

Iloc 5 loc 2 loc 5 loc 2 lac 5 loc 2

I

pc I lnst. A pc I Inst. A pc I
Inst. A

-3
4 I Count2 0 I Count] Idem

0
I, Except2

0 I Exceptl

Figure 4.7 State at the end of cycle 6 for the example code in Figure 4.2
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•Active Instruction

rssuing Instruction Stream

Activ~(14) Activel(l4) •
I; Al IB 1 ICI IDI El I A2 IB2 IIi D2

IE2 IA3 llll~11 I I I
-2 -3 -4

Backupz Space Backup I Space Curren t Space

RO 7.0 RO 4.6 RO 1.7

RI lac 4 RI Joe 2 RI loc 2

R2 2.0 R2 2.0 R2 2.0

lac 0 7.0 loe 0 7.0 lac 0 7.0

lac I loc 4 loc 1 loc4 loe 1 loc4

lac 2 1.7 loc 2 1.7 loe 2 1.7
I

lac ::I nil loe 3 nil loc 3 nil

loc4 2.3 loc 4 2.3 loc4 2.3 i

loc 5 loc 2 I loe 5 loc 2 lac 5 loc 2

pc I rnst. A I pc I lust. A I pc I 11lSt. A I

I
1

I
Countz I 2 ICount, I -4 I Idelll

I 0 I I 0 IExcept2 Except]

Figure 4.8 State at the end of cycle 14 for the example code in Figure 4.2
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•Active Instruction

Issuing [nslruction Slream

ActiveiI5) Activel(I5) •
IAl IBJ ICl IDl EI IA2 IB2 IC2 ID2 I£2 IA3 ~i~lmmill~:~I~111 1 I
-2 -3 -4

Baclcup2 Space Backup I Space Current Space

, RO 7.0 RO 4.6 RO 1.7

Rl loc4 RI Ioc 2 RI lac 2

R2 2.0 R2 2.0 I R2 2.0I

lac 0 7.0 loc 0 7.0 lac 0 7.0

lac 1 loc 4 lac 1 loc 4 lac 1 Ioc 4

loc 2 1.7 lac 2 1.7 lac 2 1.7

lac 3 nil Ioc 3 nil lac 3 nil

lac 4 2.3 lac 4 lac 4

loc 5 loc 2 Joe 5 Joe 2 Joe 5 loc 2 I

'I Ipc
1

Inst. A I pc I lnst. A
1

pc lnst A

I
0 ICounL2 I

3 ICounL I ! -4
I

Ident

I I
I, I

0
IExcep l2 Except l

Figure 4.9 State at the end of cycle 15 before Repair for the example code
in Figure 4.2
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•Active Instruclion ,
;

Issuing Instruction Stream

Activ~(16) Activel(16) •
IAl IBl ICl ID1 IEI IA2 IB2 II C2 ID2 IE2 IA3 IB3 IC3 ID3 I I I
-2 -3 -4

Backup2 Space lBackuPl Space Current Space

RO 7.0 RO 4.6 RO 7.0

Rl lac 4 Rl lac 2 RI loc 4

R2 2.0 R2 2.0 R2 2.0

loc 0 7.0 loc 0 7.0 locO 7.0

loc I loc4 loc I lac 4 Ioc 1 loc4

loc 2 1.7 lac 2 1.7 loc 2 1.7

loc 3 nil loc 3 nil loc 3 nil

lac 4 2.3 loc 4 2.3 loc4 2.3

lac 5 loc 2 lac 5 loc 2 lac 5 loc 2

pc I lnst. A
I pc I InsL. A I pc I Insl. A I

I () ICounL2 I 0 ICount l I -4 I [L1ent

I 0
I I a IExcept lExcep12

Figure 4.10 State at the end of cycle 16 after Repair for the example cndc
in Figure 4.2
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•Active Instruction

Issuing Instruction Stream

Aetive2(l6) Active\(16) •
IAl IB I ICI IDl il EI IA2 IB2 IC2 I02 IE2 IA3 IB3 IC3 ID3 IA2 IB2 I
-2 -3 -4

Backup2 Space BackuPl Space Currem Space
i

RO 4.6 RO 4.6 RO 4.6
I

RI Joe 4 RI loc 2 Rl Joe 2
I

R2 2.0 R2 2.0 R2 2.0

lac 0 7.0 locO 7.0 lac 0 7.0

lac 4 lac 4
:

lac 4lac I lac I lac I

lac 2 1.7 lac 2 1.7 lac 2 1.7

lac 3 nil lac 3 nil lac 3 nil

lac 4 2.3 loc 4 2.3 loc 4 2.3

loc 5 : loc 2 lac 5 Joe 2 loc 5 loc 2

pc I Jnsl. A I pc I lnst. A I pc I Inst. A I

I 0 I COUnl2 I
0 I Countl I -4 I Idenl

I 0
I I 0 IExcept \Excep t2

Figure 4.11 State before running interrupt handler for the example code
in Figure 4.2
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4.3 Hardware/Software Cost Analysis

The cost of this strategy can be divided into two parts: the cost to implement the

algorithm operations and the cost of maintaining the data structures used by the

algorithm.

Referring to the example given in Section 4.2, the value of c, the maXImum

number of simultaneously active checkpoints, was 2. Therefore, the system had to

maintain 3 logical spaces. Assuming that the machine state is not large, this allows for all

the logical spaces to be physically implemented. This means that the system will need

triple the usual number of registers and related hardware. The Count and Except arrays

can also be implemented using hardware. In order to perform the Check and the Repair

operations, concurrent data transfer paths between those logical spaces are needed, as

shown in Figure 4.12 [Hwu and Pa1t 87].

Check Enable Gates

Backup2

____t
Repair Enable Gate

Current

Figure 4.12 Physical implementation of Logical Spaces and the associated
data paths

If the system supports a larger number of logical spaces or the machine state is

very large, hardware implementation will be impractical because of the prohibitive cost.

The practical solution would be to store the logical spaces in secondary storage. This

implies that managing the logical spaces would be more of a task handled by software.

Based on this argument, the implementation of the operations, and hence their cost, vary

according to the implementation of the logical spaces.
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The Issue operation does not differ much from the usual issue operation. The

instruction has to be modified to carry with it a value to identify to wIDch checkpoint's E

repair range it belongs, this would be the value of the decrementing counter ldent at the

time the instruction is issued. The cost analysis for the data dependency resolution

algorithm is similar to that discussed in Section 3.3. The Check operation, on the other

hand, provides a bigger challenge. The main complexity arises from the shift operation on

the arrays, especially the Backup array. If the logical spaces are physically implemented

as shown in Figure 4.11, the Check operation has to enable the data transfer paths to

move the contents of one location to another. If the logical spaces were stored in

secondary storage, then shifting them requires a series of move operations. Since each

location in this array has the same size as the machine state, the complexity of

transferring all this information would be bound by the size of the machine state and the

value of c.

The Deliver operation involves the execution of a subtraction operation and then a

reference to the arrays. The referencing implies the calculation of an effective address.

This implies that this operation is implemented through software regardless of the way

the logical spa.ces are implemented.

If the logical spaces were physically implemented, the Repair operation has to

enable the repair data transfer path between Backupc and Current. If they are stored i.n

secondary storage, the new contents of Current are loaded from Backupc' The re

execution of the instructions is part of the normal pipeline operations. The interrupt

handler is the last piece of software needed to conclude the interrupt processing.

According to the above discussion, the cost of the algorithm depends mainly on

the maximum number of simultaneous active checkpoints supported by the algorithm,

and whether the logical spaces are implemented physically or not. Therefore, the cost of

this strategy is variable. If the logical spaces are physically implemented, then the

hardware portion of the cost dominates the cost of this strategy. As the number of active

checkpoints increases, it would be practica] to store the logical spaces in secondary

storage. Hence, more software and less hardware, would be needed to manage the

potential precise states.



CHAPTER V

STRATEGIES USING RESULT SHIFT REGISTERS

5.1 Result Shift Register

The main obstacle in interrupt processing is obtaining a precise state prior to the

processing of an intermpt. Out-of-order execution and completion of instructions is the

main cause of imprecise states. An imprecise state is a state that has been modified in an

out of order fashion, hence, one obvious course of action would be to develop a method

that controls the order according to which instructions modify the processor's state. The

result shift register is a mechanism that does just that by controlling the order at which

instructions deposit their results. Figure 5.] shows the structure of one result shift

register.

Stage Functional Unit Destination Valid Program
Register Counter

1
2
3
4
5

N

Figure 5.1 Result Shift Register (Source: [Smith and Pleszkun 88])
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When an instruction is issued, it reserves a stage in the result shift register and

writes some control information in the proper fields of that stage [Smith and Pleszkun

88]. The stage field shows how far the instruction is from completing execution. That is,

if an instruction requires i cycles to complete, stage i will be reserved for that instruction

if it is available. If the stage is not available, the issuing is stalled until the next cycle. The

vali.d bit indicates if this stage is reserved, and the rest ofthe fields are self-explanatory.

At end of each cycle, the control information of each instruction is moved one

step up towards the top of the result shift register. For the instruction at the top, the result

bus is reserved for the functional unit, shown in the functional unit field, in order to

deposit its result in the proper register, indicated by the destination register field.

By controlling which stage an instruction reserves when issued, the result shift

register controls when an instruction can deposit its results. All the intemlpt processing

strategies discussed in this chapter are built based on the use of a result shift register, with

some modifications, to accomplish their task.

5.2 Reorder Buffer

The reorder buffer strategy allows instructions to execute out of order, but it

controls the order at which instructions modify the process state. This way, the reorder

buffer utilizes the performance enhancement provided by the out-of-order execution of

instructions, but at the same time ensures a precise state all the time [Smith and Pleszkun

88].

The reorder buffer with its associated result shift register are shown in Figure 5.2.

The reorder buffer is a circular queue with head and tail pointers. Entries are

inserted in and deleted from the buffer similar to any circular queue. When an instruction

is issued, two entries are made: one in the result shift register and one in the reorder

buffer. The entry in the reorder buffer will be inserted at the location pointed to by the tail

pointer at that time.

In the result shift register, the fields for the destination register and program

counter are replaced by a tag field. The tag field holds the location of the corresponding
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entry in the reorder buffer, that entry contains the destination register and the program

counter fields. In addition, each entry in the reorder buffer will hold the result of the

instruction once it completes. Also, there is an exception field for each entry that is set in

case the instruction at that entry causes an interrupt.

Stage Functional Unit Valid Tag
1
2

3
4
5

,

N

Result Shift Register

Entry Destination Result Exceptions Valid Program
Number Register Counter

1
2
..,
j

4
I

5

[

Reorder Buffer

Figure 5.2 Reorder Buffer and the associated Result Shift Register (Source: [Smith and
Pleszkun 88])

When an instruction reaches the top of the result shift register, that is, it finished

execution, the contents of the tag field are used to locate the corresponding entry in the

reorder buffer. The result of the instruction is written, not to the destination register, but

to the designated field in that entry, and that entry is marked as valid. lf the instruction

has caused an interrupt, the exception field is set accordingly. The result of an instruction

is written to the destination register only if it is at the head of the reorder buffer, and it is

'\,
,
\

{

"

"'I",
I,..



valid. Since the instructions enter the reorder buffer in the order of their issuance, the

reorder buffer allows the processor to maintain a precise state at all time. The instructions

can finish execution out of order, but the process state is only modified in order.

Since only the instruction at the head of the reorder buffer is allowed to write its

result, only at that point will an instruction be checked for interrupts. If that instruction

indicates an interrupt, the issuing process is stopped. Since the process state is precise, no

extra work needs to be done. The program counter field indicates the precise location

where the interrupted process can resume.

Consider the example code in Figure 5.3.

ADD RO, RD, R1

MUL Rl, R2, R3

ADD R4, R4, R5

Figure 5.3 Example Code

ADD is integer addition and needs 2 cycles to finish execution. MUL is integer

multiplication and needs 4 cycles to finish execution. The execution of this code is shown

in Figure 5.4.

2 4 5 6 7

(F = Fetch, I = Issue, Ex = Execute, 0 = DepOSIt)

Figure 5.4 Execution of the example code in Figure 5.3

ADD F I Ex Ex D i
I

MUL F I Ex Ex Ex Ex D
I
I

ADD F I Ex Ex D !

!
,

At the end of cycle 4, the first ADD instruction finishes execution and exits the result

shift register. Since its entry is at the head of the reorder buffer, being the first to issue, its

result is VvTitten to its destination register and its entry is discarded. At the end of cycle 5,

the result shift register and the reorder buffer are as shown in Figure 5.5. At the end of



34

cycle 6, the second ADD has finished execution and is ready to deposit its result. Its

result will be placed in entry 3 of the reorder buffer. However, since it is not at the head

of the buffer, this result will not be written to the destination register until MUL in entry

2, has finished execution and deposited its result, hence preserving the precise state.

Stage Functional Unit Valid Tag
1 Integer ADD 1 '"\

.)

2 Integer MUL 1 2
'"\ i.)

4

5

N

Result Shift Register

Entry Destination Result Exceptions Valid Program
Number Result Counter

1
2 R2 0 2
3 R4 0 '"\

.J

4
5

Reorder Buffer

Figure 5.5 Reorder Buffer and the associated Result Shift Register at the end of cycle 5
for the example code in Figure 5.3

During the normal flow of the pipeline, an instruction ready to issue may need

some of the results being held in the reorder buffer, and, in such case, have to wait until

those results are written to the appropriate registers. To avoid this, the reorder buffer

strategy uses bypass data paths. The bypass paths allow issuing instructions to read their

operands values from the reorder buffer before they are written to registers. This will not
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affect the precise state of the process since these instructions will not be allowed to

modify the process state out of order.

5.3 History File

The history file strategy does not differ much from the reorder buffer strategy. In

fact, this strategy was developed as an enhancement of the reorder buffer strategy [Smith

and Pleszkun 88]. The primary dif:t:erence is that this strategy does not guarantee a precise

state at all time. As in the reorder buffer strategy, it allows instructions to execute out of

order, but it also allows the process state to be modified out of order. On the other hand, it

retains enough information to attain a precise state when needed [Smith and Pleszkun 88].

The history file is a circular queue that is associated with a result shift register.

The basic structure is similar to that used in the reorder buffer strategy, except for some

minor differences, as shown in Figure 5.6.

When an instruction is issued, an entry is made at the proper stage in the result

shift register. Another entry is made at the tail of the history file, and the location of this

entry is saved in the tag field of the corresponding entry in the result shift register. The

old value of the destination register for this instruction is saved in the old value field of

that instmction's entry in the history file. This value will be used, in case of an interrupt

occuning, to undo the change made by this instruction.

When an instruction reaches the top of the result shift register, it writes its result

to the destination register and exits the result shift register. Using the tag field, the

corresponding entry in the history file is located and marked as valid. If an interrupt has

occurred, the exception field is set accordingly.

A valid instruction at the head of the history file is checked for exceptions. If none

occurred, the old value of the destination register is not needed any more and that entry is

removed from the file. On the other hand, if an interrupt has occurred, the issuing process

is halted. All active instructions are allowed to complete execution until the result shift

register IS empty. To retain a precise state, all changes made to the process state by

instructions issued after the interrupted one have to be undone. Therefore, starting at the

~,.
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tail of the history file and working backwards to the head, at each entry the register

indicated by the destination register field is reloaded by the value in the old value field of

that entry, and the entry is then discarded. In other words, the state changes are undone

starting with the most recent one and working backwards until the interrupted instruction.

At this point of time, the process state is precise and once it is saved, the interrupt handler

can be invoked. The program counter entry at the head of the history file indicates the

precise point to restart an interrupted process.

HIstory fIle

Result ShIft RegIster

Stage Functional Unit Destination Valid Tag
Register

1
2
"-'
4

I
5

N

Entry Destination Old Value Exceptions Valid Program
Number Register Counter

1
2
"j

4
5

...

Figure 5.6 History File and the associated Result Shift Register (Source: [Smith and
Pleszkun 88])
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5.4 Future File

The future file strategy is composed of a little of each of the previous strategies

discussed in this chapter. It uses the same concept as the history file, allows instructions

to execute and modify the process state out of order, but retains information to attain a

precise state when needed. The strategy uses two register files: the future file and the

architectural file. The strategy maintains the architectural file always in a precise state,

using a reorder buffer and a result shift register associated with the file. This file will be

used, when required, to restore a precise state. The future file, on the other hand, can be

updated out of order. Issuing instructions read their operands values from the future file,

thus avoiding waiting for the results to be written to the registers. The organization of the

future file strategy is shown in Figure 5.7. The result shift register and the reorder buffer

have the same structure as in the reorder buffer strategy.

When an instruction is issued, two entries are made: one in the result shift register

and one in the reorder buffer. The mechanism behaves exactly as in the reorder buffer

strategy, except when results are ready to be written to registers. When an instruction

reaches the top of the result shift register, its result is written to both the future file and

the reorder buffer. The tag field is used to mark the corresponding entry in the reorder

buffer as valid. When a valid instruction is at the head of the reorder buffer, its result is

written to the architectural file. This way, the architectural file is guaranteed always to

contain the precise state.

When an instruction at the head of the reorder buffer indicates the occurrence of

an interrupt, the issuing process is stopped. All active instructions are allowed to

complete until the result shift register is empty. Then using the destination register field

in the entries between the head and tail of the reorder buffer, the register values in the

architectural file are used to restore the precise state to the future file. The program

counter field at the head of the reorder buffer indicates the precise point to resume the

interrupted process.

,to
~f...
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Results
Functional Units

Source Results

Data I4-C_o_nt_fO_I---jResult Shift Register Reorder Buffer

Figure 5.7 Future file organization

5.5 Hardware/Software Cost Analysis

Updated immediately Updated as in the
"-----lupon completion of an l4-__U_se_d_o_n_1Y_l_'n_-l reorder buffer method

instruction. cas,e of interrupts (Replaces future tile on
interruption).

Architectural File

Results

Future File

5.5.1 Reorder Buffer

The first task at hand is to determine the cost of implementing the result shift

register and the reorder buffer used in this strategy. Referring back to Figure 5.2, Jet the

result shift register have n stages. To allow for the accommodation of all types of

instructions, n should be equal to the largest number of cycles needed by one instruction.

As for the reorder buffer, let there be m entries. The value of m should be equal to or

greater than the maximum number of instructions that can be in the pipeline at one time.

Then, for the result shift register we have

• Size in bits of the stage field = log n
• ' Number of bits for stage fields = n * (log n hits per entry) = n * log n
• Size in bits of the functional unit field = log (number of functional units)
• Number of bits for functional unit fields = n * log (number of functional units)
• Size in bits of the valid field = 1
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• Number of bits for valid fields = n * (1 bit per entry) = n
• Size in bits of the tag field = log (size of reorder buffer) = log m
• Number of bits for tag fields = n * (log m bits per entry) = n * log m

As for the reorder buffer, we have the following

• Size i.n bits of the entry number field = log ill

• Number of bits for entry number fields = m * (log m bits per entry) = m * log m
• Size in bits of the destination register field = log (number of registers)
• Number of bits for destination register fields = m * log (number of registers)
• Size in bits of the result field = size ofregister (which is system dependent)
• Number of bits for result fields = m * (size of register)
• Size in bits of the exceptions field = log (number of interrupt types)
• Number of bits for exceptions fields = m * log (number of interrupt types)
• Size in bits of the valid field = 1
• Number of bits for valid fields = m * (l bit per entry) = n
• Size in bits of the program counter field = size of the program counter register
• Number of bits for program counter fields = m * (size of program counter register)

Two registers are needed to hold the head an tail pointers of the reorder buffer.

When inserting a new entry, the tail is incremented, and when an entry is removed, the

head is decremented. This implies the need for a small piece of code to implement those

operations.

When an entry in the result shift register needs to locate its corresponding entry in

the reorder buffer, tag matching has to be performed. This can be achieved through the

use of combinational circuits associated with each entry in the reorder buffer.

In order to enhance the performance of the system, implementing bypass paths is

crucial [Smith and Pleszkun 88]. The structure of this method is shown in Figure 5.8.

The combinational circuits are associ.ated with all entries of the reorder buffer.

They can be used to compare the operand register designator and the destination register

of each entry. When a match is found, the multiplexer is used to route the data to the

operand register output latch.

It can be inferred from the above discussion that the cost of implementing the

reorder buffer strategy is dominated by hardware costs. Apart from the small code to

implement the queue operations and the interrupt handler code itself, hardware

accomplishes all the other operations. It would be safe to state that the cost of

implementing the reorder buffer strategy is about 90% hardware and 10% software.



40

Register File

I
I

Multiplexer

t
Combinational Circuits

Reorder Buffer

Output Latches

Figure 5.8 Implementation of the Bypass Paths in the Reorder Buffer Strategy

5.5.2 History File

Implementation of the history file and its associated result shift register does not

differ greatly from that of the reorder buffer strategy. Comparing Figures 5.2 and 5.6, it is

noticeable that the differences are minor.

The result shift register in the history file strategy has an extra field: the

destination register. We have, similar to the discussion in Subsection 5.5.1,

• Size in bits ofthe destination register filed = log (number of registers)
• Number of bits for destination register fields = n * log (number of registers)

As for the history file, it has a field to hold the old value of a register. This field

replaces the field that holds the result of an instruction in the reorder buffer. Since both

fields have a size equal to that of a register, the size of this field is the same in both

strategies. The history file and the reorder buffer have the same size.
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Since the history file strategy allows instructions to modify the state in any order,

there is no need for bypass paths as in the reorder buffer. The extra hardware to

implement this mechanism is no longer needed. However, in case of interrupts, the

history file strategy needs to undo state changes, something not needed in the reorder

buffer strategy. To accomplish this, a code segment is needed to loop through the entries

of the history file, from tail to head, determining at each entry the destination register and

moving the contents of the old value field to replace the current contents of that register.

The complexity of such code depends on the size of the history file.

It can be concluded that hardware constitutes the main portion of the cost of

implementing the history file strategy. The amount of hardware needed by this strategy is

not as much as that used by the reorder buffer strategy, also it uses more software.

Therefore, it can be stated that the cost of implementing this strategy is about 75%

hardware and 25% software.

5.5.3 Future File

A large portion of the cost of implementing the future file strategy arises from the

need to support two register files, the future file and the architectural file. This implies the

need for twice the number of registers and related hardware normally needed to

implement a register file. Also, since this strategy uses the mechanisms of a reorder

buffer strategy to maintain the precise state in the architectural file, all costs of that

strategy are also included.

In the case of an interrupt, the values in the future file are replaced by the ones

from the architectural file. A code segment, similar to that used in the history file

strategy, is needed to traverse the reorder buffer from tail to head, at each entry moving

the contents of the destination register from the architectural file to the corresponding

register in the future file. Such code wiJl also manage queue operations, but the

complexity of such code mainly depends on the size of the reorder buffer.

From the above discussion, it would be safe to state that the cost of implementing

the future file strategy is about 80% hardware and 20% software.



CHAPTER VI

COMPARATIVE EVALUATION

Interrupts are a fact of life for computer systems, without them systems cannot

function correctly or at least as efficiently. Interrupt processing strategies can be generally

classified as overhead operations. And, as an obvious conclusion that can be inferred

from this study, they are expensive.

During the course of this study, five interrupt processing strategies were studied.

Their designs and implementations were discussed, and based on that their costs were

investigated in terms of their hardware and software components. The strategies share

some similarities and have a number of differences. The main similarity is that all

strategies need to detect the interrupt as their first step. Also all strategies need to run an

interrupt handkr; and, since strategies that support precise interrupts were studied, the

interrupted processes have to be resumed. Hence, these similarities were not offered any

special attention in this study.

Table 6.1 provides the conclusion of this study. It provides the cost of each

strategy studied in terms of the percentage of hardware and software costs involved. The

percentages provided are not exact figures, their main purpose is to provide a predictive

look at the decomposition of the total cost, without pinpointing the actual boundary

between the hardware and software costs of each strategy. Other categories in the table,

mainly present the commonalities and differences among the strategies under

consideration.
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Strategy Hardware cost Software cost Finish pending Undo state Save process state Location of state Memory

instructions changes changes requ irements

IW approximately approximately 10% Only the No state changes The IW is part of State changes are Extra memory

90% instructions that have to be undone the process state written to the is needed to

passed their NRP are to be saved. process state not to maintain and

allowed to complete. the IW. save the IW

Check- Dominant if Dominant if the All active instructions State changes that c copies of the State changes are Large amount

point the logical logical spaces are aborted. occurred between process state are written to the of memory is

Repair spaces (copies (copies of the Instructions between the chosen saved, where c is process state and to needed to

of the process process state) are the chosen checkpoint and the maximum any backup copy as maintain all the

state) are stored in secondary checkpoint and the the interrupted number of determined by the backup copies

implemented storage. interrupted instruction are simultaneous Check operation. of the process

physically. instruction are re- discarded. active checkpoints state.

executed. allowed by the

algorithm.

Reorder approximately approximately 10% Active instructions No state changes The reorder buffer The state changes Space is needed

Buffer 90% are aborted. to be undone. is not part of the are written to the to maintain the

process state to be reorder buffer. They result shift

saved. are later written to register and the

the process state. reorder buffer.

Table 6.1 Summary of the five inteITupt processing strategies discussed in this study (continued on next page)
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Strategy Hardware cost Software cost Fin ish pending Undo state Save process state Location of state Memory

instructions changes changes requirements

History approximately approximately 25% Active instructions The values of the The history file is State changes are Space is needed

File 75% are allowed to affected reg isters not part of the written directly to to implement the

complete. are restored using process state to be the process state. A rcsu It sh i ft

the old values saved. record of the old register and the

stored in the values is kept in history fi Ie.

history file. the history fi Ie.

Future approximately approximately 20% Active instructions The values of the The process state The state changes Space is needed

File 80% are allowed to affected registers to be saved are written both to to implement two

complete. in the future file consists of the the future file and register files, the

are restored using future file. the reorder buffer. arch itectural fi Ie

the values of the The values in the and the future

corresponding reorder buffer are file. More space

registers in the later written to the is needed for the

architectural file. architectural file. result shift

register and the

reorder buffer.

Table 6.1 Summary of the five interrupt processing strategies discussed in this study
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If an ideal strategy were to be designed, it would have to introduc~ only a

minimum time overhead, plus it has to be relatively inexpensive. The main sources of

time overhead are the time needed to redo the aborted instructions once the process is

resumed, and the time needed to undo the state changes. Running the interrupt handler is

also a source of time overhead, but since this is a process that depends on the size of the

interrupt handler and cannot be minimized, it requires no further consideration. Hence, to

minimize the overhead time, a strategy has to allow all active instructions to complete

execution once an interrupt is detected. Also it has to be able to maintain a precise state at

aU time, hence avoiding to undo any state changes. In the latter case, the operations

involved in maintaining a precise state at all tIme are another source of time overhead.

From the cost point of view, the question arises, what is an inexpensive strategy?

The answer to this quest~on involves a large number of parameters, hardware cost, design

cost, implementation cost, human resources, etc. Since the designer has access to all the

real life details involved in implementing an interrupt processing strategy, the

responsibility of determining the answer to this question falls on the designer's shoulders.

Hopefully, this study will be a helpful reference for designers to answer this question. ,;1



CHAPTER VII

SUMMARY AND FUTURE WORK

The goal of this study was to provide system designers with a document that

aBows them to roughly predict the cost of several different interrupt processing strategies

or of newly devised ones.

This thesis report can help the designers 10 making an informed choice among the

available strategies.

In Chapter II, general information and definitions related to interrupt processing

were discussed. This chapter presented different types of interrupts. It also presented an

introductory looks at how interrupts are processed on uniprocessors compared to

pipelined processors. It also presents the concept that processing an interrupt on a

pipelined processor is not a one-step process. It showed that interrupt processing involves

six phases (steps), that in each phase certain tasks have to be completed, and that they

collectively complete the processing of an interrupt.

Chapter III introduced the first of the interrupt processing strategies discussed in

this study: the Instruction window (IW). The design and implementation of the IW was

studied, and based on that an analysis of its cost was presented.

Similarly, Chapter IV introduced another strategy, the Checkpoint Repair. Along

analogous lines to the previous chapter, its design and implementation were studied, and

its cost was analyzed.

Chapter V grouped three interrupt processmg strategies together. The three

strategies (The Reorder Buffer, History File, and Future File) all depend on a data

structure named the result shift register to accomplish their goals. All these strategies

were studied and their costs were analyzed.

Chapter VI presented the conclusions of this study. A table of the results of the

cost analysis for all the strategies under consideration was presented. In addition, the

46
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characteristics of these strategies were put in perspective. They were presented in order to

show the commonalties and differences among these strategies.

Future work to extend this study can address the effects different memory

management algorithms can have on interrupt processing. For example, the impact cache

implementations and the use of virtual memory addressing can be addressed. Also, since

interrupt proct:ssing involves switching among processes, the type of scheduling

algorithm used can be a significant factor in the cost of interrupt processing that requires

further study.
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APPENDIX A

GLOSSARY

ACTIVE

ACTIVE(t)

BACKUP

CONSISTENT

COUNT

CURRENT

DATAPYPASS
PATHS

An instruction that has been issued but has not finished execution
yet.

The set of consecutive checkpoints that have active instructions in
their E-repair ranges at time t.

An array of logical spaces holding the potential precise states.

Another terminology for a precise state

An array of counters holding the number of active instruction in
the E-repair ranges of the active checkpoints.

The logical space holding the current machine state.

A mechanism used by the reorder buffer strategy to allows issuing
instructions to read their source operands from the reorder buffer
instead of the register file.

E-REPAIR RANGE A sequence of instructions between a checkpoint and the next
checkpoint in a checkpoint repair algorithm.

EXCEPT

FUTURE FILE

IDENT

HISTORY FILE

An .array of flags that indicates the occurrences of interrupts in the
E-repair ranges of the active checkpoints.

An interrupt processing strategy that, maintains two register files:
architectural file and future file. The architectural file is used to
restore a precise state to the future file.

A decrementing counter that is used to uniquely identify a
checkpoint.

An interrupt processing strategy that, with the help of a result shift
register, allows imprecise state to exist, but retain enough
information in the history file to retain a precise state.
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IW

LOGICAL SPACE

NRP

POTENT(t)

POTENTIAL
PRECISE STATE
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Instruction Window, an interrupt processing strategy that enables
systems, which allow out-of-order execution and completion of
instructions, to support precise interrupts

A copy of the processor's state.

No Return Point, a point in the pipeline after which an instruction
cannot be aborted.

The set of potential precise states at time t.

A processor's state at one instruction where some of the
instructions issued before this instruction are still active.

REORDER BUFFER An interrupt processing strategy that, with the help of a result shift
register, enables the processor to maintain a precise state at all
time.

RESULT SHIFT
REGISTER

VEN

A data structure used by several interrupt processing strategies to
to monitor the flow of instruction execution in the pipeline,

Vector Element Number, a field in the IW that indicates the
number of vector elements remaining to be processed by an
instruction.
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