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Chapter I

INTRODUCTION

Increasing concern for environmentally sound crop production via reduction of

contaminated run-off from containerized pLant production has, and will continue to bring

new legislation. New regulations and standards are being implemented by government

agencies at all levels (Conover and Poole, 1992). Use of intensive fertilization and

irrigation techniques is common in containerized crop production and leads to potential

contamination of surface and ground water supplies. Research leading to

environmentally sound crop management is vital to providing growers with necessary

information to adjust production schemes to allow growers to become proactive instead

of reactive towards run-off contamination issues (Johnson, 1991). Reducing

contamination of surface and ground water is a regional concern since pollutants can be

carried in rivers or aquifers a great distance. Thus, many residents could potentially use

contaminated water for drinking and other uses.

Many nursery and greenhouse operations are located near surface and

underground water sources and utilize the water from, and release contaminated run-off

back into these sources. Containerized crop production is limited in medium volume

used. This limitation provides a limited storehouse for required plant nutrients and a low

water holding capacity of the medium (Sanderson, 1987). To maintain plant vigor and
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quality, growers rely heavily on fertilization, pesticides, and more frequent irrigations that

can contribute to the entry of pollutants into surface and underground water sources. By

increasing the nutrient and water efficiency of containerized crop production, the quality

of water released from production nurseries and greenhouse operations can be improved

by the reduction of pollutants released through run-off. In addition, the cost of fertilizer

and water may be reduced for the grower. Through water efficient irrigation techniques

and sound cultural practices, plant quality and environmental protection may reach an

advantageous equilibrium.

Water standards for aesthetic contaminates such as Fe, Mn, and Zn are determined

at secondary maximum contamination levels (SMCL). Inorganic SMCLs for Fe, Mn and

Zn are observed at 0.3 mg-L-1
, 0.05 mg-L-1

, and 5.0 mg·L- t
, respectively (Bradshaw,

1989). Although SMCLs are not enforceable concentrations in excess of these SMCLs

can exhibit unpleasant taste, odor, and appearance to drinking water as well as staining of

porcelain fixtures and laundry. Intensive research has been conducted examining

leaching fraction, fertilizer concentration, fertilizer type, and/or irrigation method

influence on NOrN leachate levels in a peat-based medium for container-grown plants

(Conover and Poole, 1992; Dole et aI., 1992; Dole et aI., 1994; Hershey and Paul, 1982;

Karam and Niemiera, 1994; Ku and Hershey, 1991; Morvant, 1995; Rathier and Frink,

1989; Yeager et aI., 1993; Yelanich and Biernbaum, 1990, 1993, and 1994). There has

been little research examining the leaching potential of inorganic, divalent cations such as
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Fe, Mn, and Zn in container-grown plants. This thesis will evaluate Fe, Mn, and Zn

concentrations in leachate from greenhouse and container nursery production, as

influenced by fertilizer source and irrigation method.

Fertilizer

Two fertilizer types used in greenhouse and container nursery production are:

Controlled-release fertilizer (CRF), and soluble (liquid feed) fertilizer (SF). Controlled

release fertilizer is known to decrease N in run-off and increase N retention by the crop

compared to SF (Cox, 1985). Soluble fertilizer is considered inefficient when surface

irrigation is used due to the high leaching of nutrients (Holcomb, 1980). Moreover,

production of plants with SF can produce unacceptable levels of nitrates in leachate

(Conover and Poole, 1992). An advantage of CRF over SF is the reduction of nutrient

loss via leaching, resulting in higher efficiency of nutrient recovery and reduced fertilizer

leaching (Holcomb, 1980; Maynard and Lorenz, 1979). Hershey and Paul (1982) found

that N loss ranged from 12-23% for CRF, while N loss for SF was at 12-48%. In

addition, Rathier and Frink (1989) concluded that CRF could be more efficient in

reducing N leachate concentrations if applied in split applications.

Irrigation

Many irrigation techniques are available for growers, most common are overhead

(hand) and microtube irrigation. Microtube irrigation systems, also referred to as trickle
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or drip irrigation, are used in greenhouse, outdoor container, or field crop production.

Rathier and Frink (1989) noted that trickle irrigation used less water and released run-off

with a lower N concentration than overhead sprinkler irrigation, while N loss to leaching

was also decreased. For greenhouse production, microtube irrigation allowed more water

to be retained in the media and produced plants with greater dry mass than capillary mats,

ebb-and-flow, or hand-watering (Dole et ai., 1994).

Sprinkler, mist systems, and manual (hand) watering are common types of

overhead irrigation systems. Dole et ai. (1994) noted that hand-watering resulted in a

higher quality plant only at a higher fertilizer rate than other irrigation systems. A

10-15% leaching fraction (LF) is recommended for overhead watering, however,

Yelanich and Biernbaum (1990) noted that some growers have a LF greater than 40%,

increasing potential contamination of water sources.

Media

Components of container plant growing media have different chemical and

physical properties that differ from field soils or soil-based media. Research has focused

on assessing physical properties of various soilless media and their impact on plant

growth (Bilderback et aI., 1982; Fonteno et aI., 1981). Root media must serve four

functions to attain good plant growth: I) reservoir for plant nutrients, 2) hold water so



5

that it is available to the plant, 3) gas exchange between plant roots and the atmosphere,

and 4) anchorage or support for the plant.

Peat moss is a major component in commercial mixes. Although cost is high,

peat provides excellent water holding capacity, holding up to 60% of its volume in water

(Nelson, 1991). Peat moss is acidic with a pH of3.0-4.0 and requires addition of

limestone to make the pH suitable for optimal plant growth. Pine bark is inexpensive

compared to other material like peat moss and is a suitable component in growing media.

A period of composting for bark is necessary before use in media to bring it to a stage of

slow and steady decomposition.

Sand is used in most growing media for adding coarse texture needed to induce

proper media drainage and aeration (Nelson, 1991). In addition, the high bulk density of

sand makes it suitable for anchoring plants in locations where winds are prevalent.

Perlite is a good substitute for sand for providing adequate drainage and aeration in the

root media. Perlite is a siliceous volcanic rock that is heated to high temperatures

(982°C) during the manufacturing process. Its biggest advantage over sand is its light

weight. However, perlite is chemically inert and has a negligible CEC.

Studies have evaluated the chemical properties of soilless media and their effect

on plant growth (Williams et aI., 1988), and P leaching from soilless container media

(Yeager and Barrett, 1984). Considerable amounts of P may be leached from soilless

media due to the porosity of the media, daily irrigation and the composition of soilless
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mixes using both organic and inorganic media components such as pine bark, peat, and

sand (Yeager and Barrett, 1984). Marconi and Nelson (1984) attribute greater P leaching

from 1 peat: 1 vermiculite (by volume) than from 1 sand: 1 soil: 1 peat (by volume) to

lower P sorption in 1 peat: I vermiculite. Pill et al. (1995) found that kenaf stem cores

soaked in N can serve effectively as a bulking component of soilless media with the

capacity to release N over an extended period. Moreover, they found N03 concentrations

in leachate to be greater from a peat-vermiculite soilless mix compared to a peat-kenaf

mIX.

Broschat and Donselman (1985) examined extractable (ammonium acetate

NH40Ac, pH 7.0) Fe, Mg, Mn, Zn, and Cu in a peat-based medium amended with six

commercial micronutrient fertilizers. While they found iron

diethylenetriaminepentaacetic acid (FeDTPA) to be the best source of Fe, FeDTPA is

soluble and all detectable Fe had leached from the medium within 40 weeks. Amounts of

all five elements from the various fertilizer sources decreased in the media during the first

month and then remained consistent for the remaining 18-month experimental period. In

addition, extractable Fe, Mn, and Zn in the medium were reduced by addition of

superphosphate present in Micromax Plus (Scotts Co., Marysville, Ohio) presumably due

to the formation of insoluble phosphates at pH=7.0 during the extraction. Micronutrients

like Fe, Mn, and Zn are so named due to low plant requirement. This does not mean Fe,
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Mn, and Zn cannot be readily leached from container-grown plants and become a

pollutant in potable water sources.

Many soil testing methods have been modified for evaluating soilless mixes

containing peat, bark, sand, perlite, and vermiculite. Methods for detection of pH, EC

and elemental variables have been established for many soilless mixes (Baclunan and

Halbrooks, 1994; Berghage et a\., 1987; Karla and Maynard, 1994; Markus et a\., 1981;

Warncke, 1986 and 1990). Berghage et al. (1987) modified the deionized (01) water

saturation medium extraction method by using 0.005 M nTPA

(diethylenetriaminepentaacetic acid). The use of this method enhanced micronutrient

cation test levels while maintaining macronutrient, pH, and soluble salt test results when

compared to the 01 water extraction procedure. By using nTPA extractants at a medium

to extractant ratio of 1:4 (v/v), Markus et al. (1981) increased the amount of Zn, Mn, Fe,

and eu extracted from a peat-vermiculite media. Furthermore, Bachman and Halbrooks

(1994) have shown OTPA to be an effective extraction agent for the micronutrients from

peat-based soilless media.

Micronutrients

Seventeen essential nutrient elements and numerous nonessential elements

comprise the solid material of the plant which are available in and taken up from the

growing media. Six of these are Fe, Mn, Zn, Cu, B, and Mo which are referred to as
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micronutrients due to small amounts being utilized by plants. Common fonns of these

nutrients are sulfur-based salts, impregnated clays, and chelates for metals that are

difficult to hold in media solution even at high pH.

In general, micronutrients are immobile with deficiency symptoms occurring in

young leaves of the plants. Iron deficiency is one of the most common problems of many

crops with interveinal chlorosis of young leaves. Manganese exhibits similar deficiency

symptoms to Fe; however, Mn affects middle leaves of plants more than Fe due to its

partial mobility within the plant. Zinc deficiency is noted by malformation of young,

developing plant leaves. The pH influences the availability of micronutrients in mineral

soils and soilless media (Nelson 1991). Iron, Mn, and Zn availability is highest at lower

pH while soilless medium tend to have slightly acidic to basic pH.



Objectives of Research

The research presented has three objectives:

I) to determine the effect of fertili zer source and irrigation method on plant growth and

Fe, Mn, and Zn leaching.

2) to determine the effect of media components or a combination of those media

components amended with various micronutrient fertilizers on Fe, Mn, and Zn leachate

concentration.

3) to determine Fe, Mn, and Zn leachate concentrations from media components or a

combination of those media components amended with various micronutrient fertilizers

as affected by Ca and Mg.

The information gained from this research will enable growers to produce high

quality, salable plants in selected soilless media so that the amount of heavy metals (Fe,

Mn, and Zn) released to the environment through run-off is minimized.

9
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Chapter 2

FERTILIZER SOURCE AFFECTS FE, MN, AND ZN LEACHING,

NUTRIENT DISTRIBUTION, AND GERANIUM GROWTH

Michael D. Frost, Janet C. Cole and John M. Dole
Department ofHorticulture and Landscape Architecture
Oklahoma State University
Stillwater, OK 74078-6027

Additional index words. Micronutrient, microtube irrigation, soilless media

Abstract. When Fe, Mn, and Zn were applied as a granular incorporated

fertilizer (GIF) or water soluble fertilizer (WSF), minimal differences were observed

in plant growth parameters measured. More Mn was leached from growing

medium when applied as GIF than with WSF. Secondary maximum contamination

level (0.05 mg.L-1
) for Mn was exceeded in the leachate during the experimental

period with both fertilizer sources. Upper and middle regions of the growing

medium had a higher concentration of Fe, Mn, and Zn than the lower region when

micronutrients were surface applied. Element amounts were evenly distributed

among media regions for GIF treatments that were incorporated into the medium

prior to the experiment. At the conclusion of the study, Fe medium retention

percentage was greater with WSF than with GIF. In contrast, GIF had a greater

percentage of Zn retained in the medium than WSF..
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Introduction

Improving the quality of water released from container production nurseries and

greenhouse operations is an increasing concern in many areas of the United States.

Because of availability, water from ground and surface sources is widely used for

drinking and other household needs (Hornby, 1986). Pollution is a threat to our ground

and surface waters and must be considered as management decisions are made about

production practices.

Container plant production differs from field production in that little or no mineral

soil is used in the growing medium. In addition, container crops have a limited amount

of nutrients and water available to the plant due to the small volume of growing medium

in the container (Morvant, 1995). Therefore, more frequent irrigation and fertilization is

needed to provide adequate plant nutrition for containerized plants compared to

field-grown plants with no root restriction. Intense irrigation and fertilization leads to

possible contamination of ground and surface water sources since excess water flows out

of the production area and potentially into potable water sources.

Nitrate-N and P04-P environmental contamination has been of utmost concern to

growers and consumers. Several studies have examined greenhouse and container

nursery production methods to reduce runoff of these two contaminants by implementing

better management practices (Broschat, 1995; Conover and Poole 1992; Dole et aI., 1994;

Hershey and Paul, 1982; Marconi and Nelson, 1984; Morvant et al., 1997; Rathier and

Frink, 1989; Yeager and Barrett, 1984; Yelanich and Biernbaum, 1994). Nitrate
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concentrations greater than 10 mg·L-1 in drinking water are considered unsafe for human

consumption (U.S. Environmental Protection Agency, 1982), and P04-P is much more

readily leached from container media composed of pine bark, spaghnum peat, perlite, and

vermiculite than from mineral soils (Marconi and Nelson, 1984; Yeager and Barrett,

1984). Phosphorous adsorption isotherms on seven media components and component

mixtures were conducted by Marconi and Nelson (1984). Resulting graphs conferred

greater leaching loss of P in soiHess mixes and components due to a lower P adsorption

capacity.

Hershey and Paul (1982) measured N leaching losses in potted chrysanthemums

(Dendranthema x morifolium Ramal. 'Bright Golden Anne') fertilized with controlled

release fertilizer (CRF) and water soluble fertilizer (WSF). They noted that N lost

through leaching was greater at higher rates of CRF and WSF. Furthermore, N loss

occurred during the first half of the crop cycle when using a CRF whi Ie N leaching losses

occurred throughout the experiment with WSF. The percentage of applied N lost by

leaching varied from 12 to 23% with CRF at rates of 1.68-3.36 g N/pot, while N losses

with WSF varied from 12 to 48% with 1.2-3.6 g N/pot. Yelanich and Biembaum (1990)

estimated that N runoff from top watering poinsettia (Euphorbia pulcherrima WiIld.

'V-14 Glory') with 400 mg·L- 1 Nand 50% leaching fraction (LF) was 40 times greater

than N runoff from top watering with 100 mg·C1 Nand 12% LF. Rathier and Frink:

(1989) examined total NOrN output from containerized nursery plants fertilized with

various N CRF and WSF and found less nitrate was leached by trickle than by overhead
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irrigation. In addition, slow release N sources lost less nitrate in the runoff water

compared to soluble N forms; however, slow release sources still lost sufficient nitrate to

pollute ground water unless annual fertilizer needs were managed by split applications.

Several studies have ex . ed other management practices to reduce runoff volume such

as irrigation method, irrigation water volume applied, and leaching fraction (LF)

(Conover and Poole, 1992; Dole et aI., 1994; Ku and Hershey, 1991).

We are not aware of any studies evaluating Fe, Mn, and Zn leaching from

greenhouse or nursery container production. Broschat and Donselman (1985), however,

examined extractable (ammonium acetate NH40Ac, pH 7.0) Fe, Mg, Mn, Zn, and Cu in a

peat-based medium amended with six commercial micronutrient fertilizers. While they

found iron diethylenetriaminepentaacetic acid (FeDTPA) to be the best source of Fe,

FeDTPA is soluble and all detectabl e had leached from the medium within 40 weeks.

Amounts of all five elements from the various fertilizer sources decreased in the medium

during the first month and then remamed consistent for the remaining 18-month

experimental period. In addition, extractable Fe, Mn, and Zn amounts in the medium

were reduced by addition of superphosphate present in Micromax Plus (Scotts Co.,

Marysville, Ohio) due to the formation of insoluble phosphates (Broschat and

Donselman, 1985).

Like P04-P, micronutrients may leach more readily from container production

using a soilless growing medium as compared to the mineral soils of field production.-
Marconi and Nelson (1984) conducted P adsorption isothenns on seven media
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components and component mixtures and noted a greater leaching loss of P in soilless

mixes and components due to a lower P adsorption capacity. Furthennore, a separate

experiment resulted in 33% ofP applied being leached from a 1 peat moss: I vermiculite

mix (by volume) compared to less than 5% P leached from a 1 sand: 1 mineral soil: I peat

moss mixture (by volume) under similar watering schemes (Marconi and Nelson, 1984).

Soilless medium components may alter the adsorption capacity (CEC) of the medium for

micronutrients, affect the number of exchange sites, or displace micronutrient cations

from exchange sites. Thus, soilless media may increase the movement ofmicronutrients

through the medium profile and out the bottom of the pot.

Iron, Mn, and Zn are inorganic cations which are major components in

commercial granular incorporated fertilizer (OIF) and WSF. These ions can be leached

during production and are considered secondary contaminants in drinking water (U.S.

EPA, 1982). The Environmental Protection Agency (EPA) has set secondary maximum

contamination levels (SMCLs) for Fe, Mn, and Zn and recommend that levels of these

elements should not exceed 0.3 mg-L- J for Fe, 0.05 mgL- 1 for Mn, and 5.0 mg.L- 1 for Zn

in drinking water (Bradshaw 1989). As secondary contaminants, these drinking water

recommendations are not enforceable by law, but unsightly discoloration of porcelain

fixtures and clothing could occur at ion concentrations in excess of their regulatory level.

In addition, micronutrient ions may have a detrimental effect on aquatic organisms, such

as mussels, many species of which are threatened or endangered in the United States

(Stolzenburg, 1992). /
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The purpose of this study was to detennine 1) the effect of Fe, Mn, and Zn applied

as a GIF or WSF on plant growth and Fe, Mn, and Zn leaching, 2) Fe, Mn, and Zn

distribution throughout the medium, and 3) Fe, Mn and Zn retention in the medium.

Materials and Methods

Commercial micronutrient source (Expt. 1). Commercially grown geranium

(Pelargonium hortorum L. 'Orbit Red') seedling plugs (loHy Farmer, East Lempster,

N.H.) were planted, three per pot, in 15 cm diameter by 11 cm deep (1.9 L) pots

containing 1.5 L of a 3 peat moss: 1 perlite (by vol.) medium amended with 11.6 g

dolomite/pot on 8 Feb. 1996. The medium had 88% total porosity (liquid and air), 38%

air space, 50% total water holding capacity, 55% available water, 45% unavailable water,

and a bulk density of 0.08 g.mL,1 based on medium dried at 80°C for 12 h. Plants were

grown in a corrugated polycarbonate covered greenhouse (Oklahoma State University

Research Greenhouse, Stillwater, Okla.) with an average air temperature of 29120°C

day/night, and maximum photosynthetic photon flux (PPF) of 1504 /-l.mol.m'2· s·l. Pots

were spaced 38 cm by 38 cm on containerized benches with 16 pots per bench, and

fertilized with 200 mg·L,1 N as 20N-4.4P-16.6K formulated with calcium nitrate,

diammonium phosphate, and potassium nitrate. Each bench (16 pots) was one

Manufacturer's recommended rates of GIF (Micromax, Scotts Co.) and WSF

(Soluble Trace Element Mix, STEM, Scotts Co.) were applied to the appropriate

replication. \
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treatments. The GIF was incorporated at 1.1 g Micromax/pot based on the recommended

rate of 0.9 kg.m'3. Water soluble fertilizer was applied at the recommended rate of 599

mg·L-1 water. A third treatment containing no micronutrient fertilizer (NOM) was

included to establish the potential Fe, Mn, and Zn leachate contribution of the unamended

medium. The WSF was applied in three applications (I 18 mLlpot), with the first

application occurring one day prior to the first irrigation and subsequent applications after

irrigation 6 and 12 during the 18 irrigation period. Each application contained 1/3 of the

recommended rate ofWSF. No leaching occurred during application of the WSF.

Plants were irrigated with microtubes consisting of a 2.5 mm diameter main line,

1.9 mm internal diameter leader tubes, and lead-massed emitters (Chapin Watermatics,

Watertown, N.Y.). All plants in each replication (bench) were watered when one

previously selected test plant per replication was at or below a target mass as determined

by daily weighing. This target mass corresponded to 50% or less available water in the

container. To determine the target irrigation mass prior to the study, 18 geranium

seedlings were planted in six pots as described above, watered to container capacity and

plant, pot, and media mass recorded. Plants were allowed to dry to the permanent wilting

point and plant, pot, and media mass recorded. Target irrigation masses were calculated

as follows: [(container capacity mass - wilting point mass) x .50] + wilting point mass =

the total mass at 50% available water. The target mass was obtained by averaging t six

container masses. When the test plant of a replication weighed at or less than the target

mass, all plants in the replication were irrigated for 45 s with a flow rate of 17.0 L·min-1
•
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Every fifth irrigation consisted of clear water (no fertilizer) to leach soluble salts. A 0.3

to 0.5 LF was used at each irrigation. Irrigation time was increased to 60 s beginning 14

Mar. 1996 to maintain LF value. Leaching fraction was detennined by dividing the total

amount of leachate for each treatment by the total amount of water applied to that

treatment during the experimental period. Standard disease and insect control procedures

were followed (White, 1993).

The following data were recorded at each irrigation: date, mass of test plant,

amount of water applied/bench, and amount of leachate/bench. The volume of water

applied per bench was determined using a flow meter (Electronics Digital Meter, Great

Plains Industries, Wichita Kans.). The volume of leachate per bench was obtained by

collecting the leachate and measuring with a 1.0 L graduated cylinder. Leachate samples

were collected at each irrigation and stored at 7°C until analyzed for pH (pH/mY/Temp

Bench Meter, Cole-Parmer Instruments, Chicago, Ill.), electrical conductivity (EC)

(Solu-bridge, Beckman Instruments Inc., Cedar Grove, N.J.), and Fe, Mn, and Zn

concentration using atomic absorption spectroscopy (Model 2380; Perkin-Elmer Corp.,

Norwalk, Conn.) (Isaac and Johnson, 1975) after each irrigation at room temperature.

Initial pH and EC of the medium were determined using a 1:2 (v/v) medium to

distilled water (dH20) extraction procedure with a 30 min equilibrium time. The

unamended medium had a pH of 3.6 and a EC < 0.1 dS·m
ol

. Final medium pH readin

were 5.1 for NOM, 5.0 for GIF, and 5.0 for WSF treatments, while final EC readings

were 1.0, 1.2, and 1.0 dS·m
ol

, respectively. Final elemental concentration was determined

-
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for medium samples dried at 50°C for 24 h, weighed, and stored at room temperature

until analysis. Micronutrients were extracted following the modified saturated media

extraction procedure described by Berghage et al. (1987), except 100 cm3 of medium was

used, gravity filtration using Whatman 41 ashless filter paper was performed, and the

dilution factor (volume extractant and dH20: grams extracted medium) varied for each

sample to allow reporting on a concentration basis (/-lg/g). Electrical conductivity of the

medium slurry, pH of medium filtrate and Fe, Mn, and Zn concentration of the medium

were determined as previously described.

At harvest, three medium samples per replication were collected as a vertical core

of medium from the top to the bottom of the root ball (growing medium and plant roots),

combined, and analyzed for pH, EC, Fe, Mn, and Zn as described above. Another three

medium samples per replication were divided into representative upper, middle, and

lower regions, combined by region, and treated as described above for each replication.

One root ball from each replication was left intact, air dried, and weighed to determine a

representative mass of medium remaining in the pot at the conclusion of the study.

Elemental concentration of each region was determined. Nutrient concentration of

vertical core samples were determined then multiplied by final media mass per pot to

obtain Fe, Mn, and Zn amounts retained by the medium at the conclusion of the study.

Initial geranium transplants were divided into shoots and roots with medium a\1d

elemental concentrations were determined for shoots and roots. Samples were dried at

50°C for seven days, weighed, ground to pass through a 947 Ilm mesh screen, and stored
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in air tight jars until analyzed for Ca, K, Mg, Fe, Mn, and Zn content by atomic

absorption spectroscopy (Isaac and Johnson, 1975). Ground plant samples were also

analyzed for ammonia-based N by the macro-Kjeldahl method (Horowitz, 1980), and P

colorimetrically (hydroquinone method) (Olsen and Sommers, 1982). Initial shoot Fe,

Mn, and Zn concentrations were 409, 179, and 77 Ilg·g,1 dry mass, respectively.

Each replication was harvested between 21 Mar. and 19 Apr. ]996, after 18

irrigations had been applied. The following data were recorded at harvest: plant height,

plant diameter (average of diameter at widest point and the diameter perpendicular to the

widest point), and quality rating (1-5, with 5 being the best salable quality). Geraniums

from each treatment were divided into shoots and roots, dried at 50°C for seven days, and

weighed. Plants were combined to obtain one homogeneous sample of shoots and one

homogeneous sample of roots per replication. Shoot and root samples were ground to

pass through a 917 /-lm mesh screen, and stored in air tight jars until analysis. Ground

plant samples were analyzed for Ca, K, Mg, P, Fe, Mn, Zn, and ammonia-based N as

described above.

Since commercial micronutrient formulations were applied at manufacturer's

recommended rates in the commercial fertilizer source experiment, unequal amounts of

each micronutrient were applied per pot. Thus, the total amount of Fe, Mn, and Zn

applied to each treatment differed and statistical results were based on a percentage of Fe,

Mn, and Zn retained in the media based on the total fe, Mn, and Zn applied to the

""individual treatments.
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Balanced micronutrient source (Expt. 2). Experiment 1 was repeated with the

following exceptions. The geranium plugs were planted on 6 Sept. 1996 and harvested

on 1 Nov. 1996. Initial shoot Fe, Mn, and Zn concentrations were 286, 67, and 19 ~g/g

dry mass, respectively. The growing medium had a total porosity (liquid and air) of 43%,

21 % air space, 22% total water holding capacity by volume, 49% available water, 51 %

unavailable water, and a bulk density of 0.09 g.mL-1 medium based on oven-dried

medium at 80°C for 12 h. Average air temperatures of31119°C day/night and a

maximum PPF of 523 ~mol·m-2·s-1 were recorded. A 50 GIF/50 WSF treatment was

included which utilized 50% GIF and 50% WSF to supply equal micronutrient amounts

during appropriate GIF and WSF application period(s). No micronutrient fertilizer

control treatment was included. The WSF and 50% WSF treatments were synthesized so

that micronutrient elemental concentrations were equal to those applied by the GIF.

Nutrient sources for the WSF were B: H3B03; Cu: CUS04 . 5H20; Fe: FeC6Hs0 7; Mn:

MnS04 . H20; Mo: (NH4)6M07024; and Zn: ZnS04 . 7H20. Initial unamended medium

pH was 3.0 and EC was 0.2 dS·m-1
. Final medium pH and EC readings were 4.5 and 1.0

dS·m·] for GIF, 5.0 and 0.9 dS·m- l for WSF treatments, and 5.0 and 1.0 dS·m-1 for 50

GIF/50 WSF, respectively. Leachate samples were collected as described in the previous

experiment, pH was lowered below 2.0 using 1.0 M nitric acid (HN03), and leachate

samples were stored at room temperature until micronutrient analysis.

Statistics. A randomized complete block design was used for both experiments.

Each fertilizer treatment was replicated 4 times with 16 subsamples using benches as
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replications and pots as subsamples. Data were analyzed by the general linear model

procedures with means separation by protected LSD or a paired t-test when appropriate

(SAS Institute, Cary, N.C.). Regression models for leachate volume and amount of Fe,

Mn, and Zn leached were fit using Tablecurve (Jandel Scientific, Corte Madera, Calif.).

Results

Commercial micronutrient source (Expt. 1). Plants receiving micronutrient

fertilizer, regardless of source, were taller and had larger diameters, larger root and shoot

dry mass (DM), and better quality ratings than plants grown without micronutrient

fertilizer (Table 2.1). Plants receiving WSF were larger than those receiving OIF in all

growth parameters measured. However, plant quality did not differ between the two

micronutrient fertilizer treatments.

A greater percentage of Fe was leached from WSF than from OIF (Table 2.2, Fig.

2.1). In contrast, a greater percentage ofMn was leached from OIF than from WSF.

There was no difference in the percentage of Zn leached by the two fertilizers. The NOM

treatment had 0.17, 0.06, and 0.06 mg-L·1 Fe, Mn, and Zn leached, respectively, during

the experiment and was excluded in the statistical analysis. No significant difference

occurred in LF between treatments (Table 2.2).

Initial EC for GIF was higher than leachate EC with NOM fertilizer or WSF. At

the conclusion of the experiment, no difference in EC of OIF and WSF was apparent, but

the NOM treatment had a lower leachate Ee than either fertilizer treatment (Table 2.3).
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Commercial GIF produced leachate with the lowest pH initially, but leachate pH of GIF

and WSF were not significantly different at the conclusion of the study. In contrast,

NOM and WSF treatments had the highest initial pH with the NOM treatment exhibiting

a higher final leachate pH compared with media amended with fertilizer.

No significant difference due to fertilizer treatment was found for medium pH or

medium EC. However, the main effect of region within the pot was significant for

medium pH (Ps 0.001). Mean medium pH across all fertilizer treatments for upper,

middle, and lower root zones were 5.2,4.9, and 4.1, respectively. Upper and middle

medium regions had a significantly higher medium pH compared to the lower region.

Medium region was not significant with regards to medium EC.

A significant treatment by region interaction occurred for the percentage of Mn

retained in the medium at the conclusion of the study (Table 2.4). The percentage ofMn

in the middle and lower regions of OIF-amended medium was significantly greater than

percentages retained for those medium regions amended with WSF. The Mn percentage

decreased from the top to the bottom of the medium profile with WSF. In contrast,

GIF-amended medium had the highest percentage of Mn in the middle region of the

medium compared to the upper and lower medium regions. The main effect of region

was significant for Zn. The percentage of Zn was smallest in the lower medium region

(16.5%) compared to the upper (36.7%) and middle (35.3%) medium regions. A greater

percentage of Fe was retained in medium root haJJ with WSF (61.2%) than with GIF



26

(11.7%). In contrast, a greater percentage ofZn was retained in the mediwn root ball

with GIF (38.0%) than WSF (14.5%).

There was no significant difference in Ca, Mg, Fe, or Zn concentration in shoots

or in N, P, K, Mg, Fe, and Zn concentration in roots between micronutrient fertilizer

sources (Table 2.5). Higher Mn concentrations occurred in shoots and roots from

medium with GIF than in shoots and roots from medium treated with WSF. Plants

treated with GIF tended to have a greater Fe and Zn concentration in shoots and roots

than plants receiving WSF. Greater concentrations ofN, P, and K occurred in

GIF-treated shoots than in WSF-treated shoots (Table 2.5). Roots receiving GIF had a

higher Ca concentration than roots from WSF treatments.

Balanced micronutrient source (Expt. 2). A significantly (P:>:O.05) greater shoot

DM was produced by plants receiving WSF (12.5 g) and 50 GIF/50 WSF (12.2 g)

fertilizer treatments than plants receiving GIF (10.5 g). In all other growth parameters

measured, no difference occurred between the three micronutrient fertilizer treatments

(data not shown).

Iron and Mn amounts leached from the GIF-amended medium were greater

compared to media amended with WSF or 50 GIF/50 WSF (Fig. 2.2, 2.3). A greater

amount ofZn was leached from GIF (10.6 mg) than from WSF (6.3 mg) or 50 GIF/50

WSF (5.2 mg) treatments (Fig. 2.4). Amount leached, regardless of element, was similar

for WSF and 50 GIF/50 WSF sources. Initial leachate EC and pH readings and LF for all

fertilizer treatments were not significantly different (data not shown).
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No significant difference due to fertilizer treatment was determined for medium

pH or EC. Medium pH of the middle region was significantly higher than medium pH of

the upper and lower medium regions (Table 2.6). Electrical conductivity significantly

decreased from the upper to middle to lower medium regions (Table 2.6).

A significant fertilizer by region interaction occurred for the amount of Fe and Zn

extracted from the media (Table 2.7). There was no difference among regions for

GIF-amended medium in amount Fe extracted. In contrast, the amount of Fe extracted in

the WSF and 50 GIF/50 WSF treatments was highest in the upper region and lowest in

the lower region within the same fertilizer treatment. The amount ofZn extracted was

significantly greater in the upper and middle regions compared to the lower medium

region within WSF and 50 GIF150 WSF treatments. The total amount of Fe, Mn, and Zn

retained in the container media at the conclusion of the experiment was not significantly

different between the fertilizer treatments (data not shown).

Greater K concentrations occurred in shoots grown with GIF (2.11%) compared to

shoots receiving WSF (1.84%). The shoot K concentrations (1.97%) of plants receiving

50 GIF/50 WSF did not differ from either of the other fertilizer treatments. No other

differences in shoot or root elemental concentrations we tested between the three fertilizer

treatments were significant (data not shown).
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Discussion

As expected, plants receiving micronutrient fertilizer, regardless of source grew

better than plants receiving no micronutrient fertilizer (Table 2.1). These results confirm

the need for micronutrient application during plant production in soilless media to assure

optimum plant growth and development. Greater heights and diameters of plants

receiving water soluble micronutrient fertilizers may be attributed to their availability for

plant uptake early in the production cycle compared to GIF. Granular incorporated

fertilizers require time to dissolve in the medium before plant uptake can occur. Young

plants also have limited root systems which may have restricted root contact with the GIF

at the beginning of the experiment.

Sixty days were needed to achieve 18 irrigations for the commercial fertilizer

source experiment; whereas, the balanced micronutrient source experiment needed only

45 days to obtain an equal number of irrigations for all treatments. Differences in

experimental duration is associated with higher day/night temperatures for the second

experiment. Difference in media characteristics, such as water holding capacity and total

porosity also contributed to the 15 day duration difference. The water holding capacity

and total porosity values of the medium in the commercial fertilizer source experiment

(Expt. I) was twice the water holding capacity and total porosity values of the medium

used in the balanced fertilizer source experiment (Expt. 2). Although a 15 day difference

in experimental duration occurred, plant growth in the GIF treatment was similar between

the two studies.
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Greater quantities of Fe, Mn, and Zn were leached from GIF than from WSF

treatments (Table 2.2, Fig. 2.1) in the commercial micronutrient study; however,larger

quantities of Fe, Mn, and Zn were applied to each container in GIF than in WSF due to

formulation differences. These results support the findings of Hershey and Paul (1982) in

which more nutrient was leached as the amount of nutrient applied increased. Although

they tested within fertilizer sources, comparable results should occur regardless of

fertilizer source. Moreover, Hershey and Paul (1982) reported that with a CRF, the

amount ofN leached was decreased by half compared to that leached when using a liquid

fertilizer at the same N application rate. Since reduced amounts of Fe, Mn, and Zn in

leachate was produced from WSF with minimal differences occurring in plant growth

between GIF and WSF treatments, growers can improve management practices by

utilizing surface applications of WSF in their production schemes to minimize run-off

and potential contamination of off-site areas. However, cost of fertilizer and labor must

be considered when deciding on a micronutrient fertilizer source.

The amount of Fe, Mn, and Zn leached from GIF compared to WSF or 50 GIF/50

WSF treatments was greater at the same leachate volume for the balanced micronutrient

study (Fig. 2.2, 2.3, 2.4). However, Rathier and Frink (1989) found that a slow release N

source lost less nitrate in runoff water than a WSF. Conover and Poole (1992) reported

the effect of fertilizer type on NOrN and P leachate content (mg/pot) to be inconsistent.

However, NH4-N content in the leachate was consistently lower from the CRF than from

the liquid fertilizer. Yeager et al. (1993) also indicated that nursery operations can expect
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lower amounts ofNOrN in production bed runoff using CRF rather than a combination

of CRF and soluble fertilizers. Micronutrients may not follow the same leaching

properties ofN, and the influence of fertilizer type on macronutrient leaching may be

inversely related to micronutrient leaching and runoff. Discrepancies in results from this

micronutrient study and other macronutrient studies may be attributed to greater amounts

of macronutrients than micronutrients being applied to the production area. Furthermore,

sources of macronutrient and micronutrient fertilizers may be different.

Iron, Mn, and Zn ions applied as WSF or a 50 GIF/50 WSF combination were

better retained in the medium than with GIF. Linear regression equations for leaching of

each element were similar regardless of fertilizer treatment (Fig. 2.1, 2.2, 2.3, 2.4).

Therefore, similarities in leaching properties were element specific, rather than dependent

on micronutrient fertilizer source.

Target LF value (0.3-0.5) was achieved in all treatments for both studies. This LF

range is typical for commercial growing conditions, making our results characteristic of a

typical production situation. Ideally, the nutrient release pattern of a GIF should coincide

with the nutrient uptake of the crop (Barron, 1977). However, the amount of Fe leached

from WSF-amended media suggests that application rate was greater than nutrient uptake

of the crop. In comparison, the high percentage ofMn leached indicates that the rate of

Mn released from the GIF treatment was much greater than the rate of uptake by the plant

in the commercial fertilizer source study
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The total concentration of Fe and Zn leached throughout both studies were below

U.S. EPA guidelines for SMCLs (Bradshaw, 1989). While Fe and Zn leaching were

lower than their respective SMCLs, these elements could accumulate over time in soils

and water sources. In contrast, the cumulative concentration (mg·L- 1
) ofMn leached

exceeded the SMCL guideline of 0.05 mg.L-1 in both studies, regardless of fertilizer

source. Manganese appears to pose a contamination threat since it was released in

amounts greater than its SMCL guidelines. Although SMCLs are not enforceable by law,

ifleachate discharge is accumulated in soil and water supplies, potential Fe, Mn, and Zn

contamination may lead to problems in using ground and surface water sources for

drinking water, wash water, and other purposes. These concerns are supported by Yeager

et al. (1993) who noted that N03 concentrations exceeded the drinking water standard of

10 mg-L- l in samples collected. While Fe, Mn, and Zn pose little or no threat to human

health, results from this study suggest that aquatic organisms, such as mussels, may be

affected negatively if micronutrient-contaminated discharge continues to enter surface

water sources.

Medium pH for the commercial micronutrient experiment was lowest in the lower

medium region (4.1), while the upper (5.2) and middle (4.9) regions had a significantly

greater pH. These results agree with findings from Morvant et al. (1997). However,

Molitor (1990) reported similar medium pH throughout the root zone when utilizing

trickle irrigation. Moreover, Molitor suggests that the medium pH was less stratified with

trickle irrigation due to a more uniform distribution of ammonia throughout the root zone
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preventing an increased amount of nitrifying bacteria in anyone location of the root zone.

In the balanced micronutrient experiment, medium EC was significantly higher in the

upper and middle regions compared to the lower region of the medium (Table 2.6). As

with previous experiments (Argo and Biembaurn, 1994, 1995; Molitor, 1990; Morvant et

al., 1997), root medium EC was highest in the upper region of the root zone.

In the commercial micronutrient experiment, Mn percentage decreased from the

top to the bottom of the medium profile with WSF (Table 2.4, 2.7). Water soluble

fertilizer and 50 GIF/50 WSF had more of each element in the upper and middle regions

than in the lower medium region. These results agree with Argo and Biernbaum (1994,

1995), Molitor (1990), and Morvant et al. (1997) who reported the highest medium N

concentration in the upper region compared to the middle and lower media regions.

Since WSF fertilizer treatments were applied as a surface application, these results

support the assumption that most nutrients applied as a surface application will be

retained in the upper portion of the growing medium. Greater concentration of Fe, Mn,

and Zn in the upper region of growing medium when applied as a WSF could. be

attributed to the formation of insoluble phosphates as the medium pH increased from the

initial 3.6 to 5.1, thus limiting the mobility of these elements through the medium profile.

Broschat and Donselman (1985) reported reduced extractability of Fe, Mn, and Zn from

growing medium when superphosphate was added presumably due to the formation of

insoluble phosphates. In contrast, GIF was incorporated throughout the medium and little

difference occurred between regions in the amount of each element present.
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In summary, results from this experiment indicate that micronutrient fertilizers are

desirable for optimum geranium growth and quality. A granular incorporated

micronutrient source increased the amount of Mn leached from production compared to

WSF or a 50 GIF/50 WSF combination of fertilizer sources, exceeding its SMCL. The

concentration of Mn can be elevated by accumulation of Mn in soil after leachate

discharge; posing a greater concern to potable water contamination. At regular irrigation

intervals, Fe and Zn pose less threat to ground water aquifers, though the potential of Fe

and Zn accumulation over time still exists. Upper and middle regions of the growing

medium had a higher nutrient content than the lower region when micronutrients were

surface applied. Element amounts were distributed evenly among aU regions for OIF

treatments that were incorporated into the medium prior to the experiment. At the

conclusion of the study, Fe medium retention was greater with WSF than with GIF while

GIF had a greater percentage of Zn retained in the medium than WSF.
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Table 2.1. Plant height, diameter, shoot and root dry mass, and quality rating of
Pelargonium hortorum 'Orbit Red' grown with no micronutrient (NOM), commercial
granular incorporated (OIF), or water soluble (WSF) micronutrient fertilizer. Means are
an average of data from four replications of 16 subsamples each, except for root dry mass
where 9 subsamples were used; Expt. 1.

Plant Plant Shoot Root
height diameter dry mass dry mass Plant

Fertilizer (em) (em) (g) (g) qualitl
NOM 12.6 21.8 7.9 0.8 2.0

GIF 15.1 28.5 11.4 1.2 4.5

WSF 18.4 31.1 17.2 1.8 4.5

Significance (LSDoos):
Fertilizer 1.7 2.1 1.6 0.2 0.3
Z On a scale from 1 to 5 (l =poorest and 5=best).
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Table 2.2. Leaching fraction, total (mg) and percent Fe Mn, and Zn leached from media
with no micronutrient (NOM), granular incorporated (GIF), or water soluble (WSF)
micronutrient fertilizer during 18 irrigations. Means are an average of four replications
with 16 plants each; Expt. 1.

l Percentage of Fe, Mn, and Zn applied that was leached.
NS,· Not significant or significant at P~ 0.05.

Significance:
Fertilizer NS * NS

2.2

6.6

Zn

3.3

mg %z

11.6

2.9

18.0

mg %z
Mn

8.0

79.1

3.4

0.4

O/OZmg /(
Fe

9.3

8.9

Leaching
Fertilizer fraction
NOM 0.46

GIF 0.43

WSF 0.37
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Table 2.3. Initial and final EC and pH ofleachate from no micronutrient (NOM),
granular incorporated (GIF), and water soluble (WSF) fertilizer treatments. Means are an
average of four replications each; Expt. 1.

EC (dS·m- l
) pH

Fertilizer Initial Final Initial Final
NOM 1.7 1.8 5.7 6.3

GIF 1.9 2.2 5.1 5.6

WSF 1.7 2.3 5.7 5.8

Significance (LSDoos):
Fertilizer 0.1 0.3 0.2 0.4
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Table 2.4. Percent of Mn retained in the media based on the total Mn applied. Media
were divided equally into upper, middle, and lower media regions after 18 irrigations that
were treated with a granular incorporated (GIF), or a water soluble (WSF) fertilizer.
Means are an average of four replications of three subsamples each; Expt. 1.

Fertilizer
GIF

WSF

Significance (LSDoos):
Region for same fertilizer
Region for different fertilizer

Region
Upper
Middle
Lower

Upper
Middle
Lower

Percent (%)
Mn
24.8
32.3
23.9

21.4
10.9
3.2

6.3
12.6

•4
i:
• I: I-,
• I~,

'"I
J I

~I
41
41
4,
4 t
),
4

~
),
4

~

J
)
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Table 2.5. Shoot and root elemental concentration ofPelargonium hortorum 'Orbit Red'
grown with a commercial granular incorporated (GIF), or a water soluble (WSF)
micronutrient fertilizer. Means are an average of four replications with 16 subsamples for
shoots and 9 subsarnples for roots; Expt.l.

Dry wei~ht (%) Dry wei~ht (~~/2)

Fertilizer N P K Ca Mg Fe Mn Zn

Shoot
GIF 2.97 0.29 2.56 0.98 0.37 88 353 79

WSF 2.18 0.22 2.09 1.08 0.40 54 131 40

Significance:
Fertilizer 0.73z 0.06 0.19 NS NS NS 91 NS

Root
GIF 1.57 0.36 2.10 0.49 0.18 193 269 86

WSF 1.34 0.26 1.67 0.38 0.17 68 119 35

Significance:
Fertilizer NS NS NS 0.05 NS NS 52 NS

Z Not significant (NS) or LSD at the 5% level.

,,
~:
• I: l·.
• I·.
• IJ f

~I
4 I
4 I.,
, I

),

•
~
).
4

i

I
•J
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Table 2.6. Effect of region on pH and EC of media treated with a granular incorporated
(GIF), water soluble (WSF), or a 50 GIF/50 WSF micronutrient fertilizer treatment with
micronutrient concentrations applied equally to all treatments. Means are an average of
four replications of three subsamples each; Expt. 2.

Region
Upper
Middle
Lower

pH
4.8
5.5
4.5

EC
1.7
1.1
0.8

Significance (LSDo.os):
Region 0.2 0.1 ••

~ :
• I: I·.: ~

• I
~ I

11
• I
• I
• I

• I) ,
•
~

•) ,

•j
I
I
I
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Table 2.7. Amount of Fe, Mn, and Zn in the upper, middle, and lower media regions
after 18 irrigations treated with a granular incorporated (OIF), water soluble (WSF), or a
50 OIF/50 WSF micronutrient fertilizer treatment with micronutrient concentrations
applied equally to all treatments. Means are an average of four replications of three
subsamples each; Expt. 2.

Z Not significant (NS) or LSD at the %5 level.

Significance:
Region for same fertilizer 86z

Region for different fertilizer 85

Dry wei~ht ("~/~)

Region Fe Mn Zn

Upper 189 86 33
Middle 187 67 45
Lower 199 47 32

Upper 350 62 38
Middle 191 84 32
Lower 72 60 14

Upper 377 79 42
Middle 224 93 47
Lower 112 57 24

• III

11
• I
• I
• I•
l'
•
S
;
) ,

•I
I,
I

,,
l:
• I: I·.·~·.

10
10

NS
NS

50 OIF/50 WSF

WSF

Fertilizer

OIF
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Figure 2.1. Amount of Fe, Mn, and Zn leached from granular incorporated (GIF) and
water soluble fertilizers (WSF) as a function of L leachate. Fe-GIF (y= 2.3E-02 +

2 21.5E-05xlnx, r = 0.96); Fe-WSF (y= 0.7 + 1.8E-05xlnx, r = 0.95); Zn-GIF (y= 3.5 +
E I 2 2 051.5 -05x ox, r = 0.72); Zn-WSF (y= 0.3 + 7.4E-06xlnx, r = 0.72); Mn-GIF (y = 2.1 +

2.9E-02xo,5, r2= 0.98); Mn-WSF (/.5= 0.3 + 1.2E-02x°.5, r2= 0.70), p$ 0.05; Expt. 1.

,,
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Figure 2.2. Amount of Fe leached from a granular incorporated (OIF), water soluble
(WSF) and a 50 GIF/50 WSF micronutrient fertilizer as a function of L leachate. Fe-GIF

0.76 2 0.80 2(y= 3.4E-03x , r = 0.80); Fe-WSF (y= 0.2 + 1.8E-03x I r = 0.74); Fe-SO/50 (y=
6.5E-04xo.88

, r2= 0.97), Ps 0.05; Expt. 2.
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Figure 2.4. Amount of Zn leached from a granular incorporated (GIF), water soluble
(WSF) and a 50 GIF/50 WSF micronutrient fertilizer as a function ofL leachate. Zn-GIF
(y= 2.1 + 1.8E-03xflnx, r2= 0.67); Zn-WSF (y= 0.5 + lAE-03xflnx, r2= 0.80); Zn-50/50
(y= 0.8 + 2.2E-03xo.51nx, r2

= 0.97), p~ 0.05; Expt. 2.
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Chapter 3

FERTILIZER SOURCE AFFECTS MICRONUTRIENT LEACHING

FROM CONTAINER PLANT PRODUCTION UNDER SPRINKLER

AND DRIP IRRIGATION.

Michael D. Frost, Janet C. Cole, and John M. Dole
Department ofHorticulture and Landscape Architecture
Oklahoma State University
Stillwater, OK 74078-6027

Additional index words. Micronutrient, microtube irrigation, soilless media

Abstract. When Fe, Mn, and Zn were applied as a granular incorporated (GIF) or a

water soluble (WSF) fertilizer to largeleaf Korean boxwoods (Buxus microphylla

Var. koreana Nakai.) under sprinkler or drip irrigation, minimal differences in

plant growth occurred regardless of fertilizer source. Medium pH and EC values

were greater in the upper regions of the medium compared to the lower medium

regions under drip irrigation, while little difference in medium pH and EC occurred

throughout the medium profile under sprinkler irrigation for both fertilizers.

Greater Fe and Zn concentrations occurred in the upper and middle regions of the

growing medium than in the lower medium region when micronutrients were

surface applied while Fe, Mn, and Zn amounts were distributed evenly among all
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regions for GIF treatments. Leachate pH increased from the initial to the final

sampling date while leachate EC decreased under sprinkler irrigation. Leachate Fe,

Mn, and Zn concentrations for GIF treatments were highest during the first two

weeks of the experiment; whereas, leachate from WSF treatments were released

over the course of the experimental period, especially during WSF application dates.

Cumulative Fe, Mn, and Zn leachate concentration for both GIF and WSF sources

exceeded secondary maximum contamination level (SMCL) guidelines.

Introduction

Increased environmental consciousness of the public and concern for safe

drinking water necessitates evaluation of plant nursery production practices and their

impact on water resources. The nursery industry releases large volumes of runoff that

may contaminate surface and ground water sources. Runoff from production sites may

contain NOrN, P, and other ions commonly applied as fertilizers.

Yeager et al. (1993) sampled nursery bed runoff, containment reservoirs or ponds,

wells, and surface water discharged from nurseries in six states. The authors found that

runoff from container beds averaged 8 to 20 mg-L-1 NOrN depending on fertilizer

method and that NOrN levels from some runoff collection ponds, property borders, and

wells exceeded Environmental Protection Agency (EPA) drinking water standards (10

mg.L-1 NOrN). Data from this report supports environmental concerns and the need for

implementation of better management practices by nursery operators.
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Container plant production is limited by container size which restricts root

volume, and limits the water and fertilizer reservoir available to the plant. Moreover,

plants are grown in an artificial medium that contains little, if any, soil. Nursery

producers must rely heavily on fertilizers and pesticides for producing high quality crops.

Runoff from production sites via rain and irrigation can concentrate these chemicals in

collection areas and/or allow them to enter surface and ground water sources (Wilkerson,

1990).

Much of the container nursery stock is fertilized with soluble fertilizers delivered

through sprinkler irrigation systems. Cultural practices that might reduce water

contamination include use ofdrip or trickle irrigation and controlled release fertilizers

(CRF). Drip irrigation reduces water inputs and runoff without effect on plant growth by

applying water and chemicals directly into containers. Rathier and Frink (1989) reported

much less nitrate leached by drip or trickle irrigation than by sprinkler irrigation. In

addition, Weatherspoon and Harrell (1980) reported that three times as much water was

necessary with sprinkler irrigation than with drip irrigation for container bed production.

Controlled release fertilizers release their nutrients slowly over time and are

considered more efficient for container culture than soluble fertilizers (Sanderson, 1987).

Rathier and Frink (1989) noted that controlled release N sources lost less nitrate to runoff

than water soluble N formulations; however, sufficient nitrate was lost by CRF to

contaminate water resources unless it was applied as split applications throughout the

crop cycle. Broschat (1995) concluded that NOrN, P and K leaching is significantly
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reduced by using CRF compared to water soluble fertilizer (WSF) formulations. In

addition, Conover and Poole (1992) found lower concentrations ofNH4-N in the leachate

from plants grown in containers using a CRF as opposed to a WSF.

To our knowledge, there are no similar studies evaluating CRF and WSF effects

on micronutrient leaching from container-grown plants. Ions such as Fe, Mn, and Zn can

be leached during production and are considered secondary contaminants in drinking

water (U.S. EPA, 1982). The EPA uses secondary maximum contamination levels

(SMCLs) in regulating and has recommended that concentrations should not exceed 0.3

mg-L- J for Fe, 0.05 mg.L,1 for Mn, and 5.0 mg-L- 1 for Zn in drinking water (Bradshaw,

1989). The purpose of this study was to detennine the effect of a granular incorporated

fertilizer (OIF) and a WSF on plant growth, plant quality, and on Fe, Mn, and Zn

leaching from container plant production using sprinkler or drip irrigation.

Materials and Methods

Sprinkler irrigation (Expt. I). Rooted cuttings (Greenleaf Nursery, Park Hill,

Okla.) oflargeleafKorean boxwood (Buxus microphylla Var. koreana Nakai.) were

grown in 3.8 liter containers containing 3 pine bark: 1 peat: 1 sand (by volume) amended

with 2.4 kg.m-3each of gypsum and dolomite, and 1.8 kg·m'3 N using 17N-3P-I OK

(Osmocote 17-7-12, Scotts Co. Marysville, Ohio). Planting medium had 63% porosity

(liquid and air), 25% air space, 36% water holding capacity, and a bulk density of 0.33

g.mL-1
• Initial pH and electrical conductivity (EC) of the medium were determined using
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a 1:2 (v/v) medium to distilled water (dH20) extraction with a 30 min equilibrium time.

The medium had a pH of 5.5 and a Ee of 0.4 dS·m'l.

Two plants per pot were planted on 19 April 1997 and grown on container plant

production beds designed for water runoff research (Cole et ai., 1993) for 13 weeks at the

Nursery Research Station in Stillwater, Okla. Containers were placed 30.5 cm by 30.5

cm on the beds. Plants were grown with an average air temperature of39/18°C day/night.

and a maximum photosynthetic photon flux (PPF) of 1535 Jlmol·m'2·s".

Nursery medium for the GIF treatment was amended with 0.9 kg·m'3 Micromax

(Scotts Co.) prior to planting. The WSF treatment was synthesized so that micronutrient

concentrations were equal to those applied via the GIF. The WSF treatment was prepared

using the following nutrient sources: B: H3B03; Cu: CUS04 . 5H20; Fe: FeC6Hs0 7; Mn:

MnS04 . H20; Mo: (NH4)6M07024; and Zn: ZnS04 . 7H20. Nutrients were applied in

two separate solutions: I) sulfate-based Cu, Fe, Mn, and Zn, and 2) B and Mo on the

same day. The B, Mo fertilizer solution was brought to a pH of7.0 using 1 M NaOH.

The WSF was applied by fertigation on 23 April, 28 May, and 24 June 1997. Each WSF

application contained 1/3 of the GIF rate.

Plants were irrigated with 1.3 cm ofwater per day, which is an industry standard.

The sprinkler irrigation was supplied by Rainbird 15Q sprinklers (Cole et aI., 1993).

Beds were calibrated periodically to insure uniform distribution of 1.3 cm of water daily.

Visual quality ratings were recorded for each container on a monthly basis (1-5,
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with 5 being best salable quality). Leachate volwne and micronutrient concentration

were determined per replication weekly and were collected in 20.3 cm diameter by 8.9

cm deep (2879 cm)) saucers (American Plant Products, Oklahoma City, Okla.). During

the week of WSF application, leachate volume and micronutrient concentration were

determined the day prior to, the day of, and the day following WSF application.

Leachate samples were representative of Fe, Mn, and Zn concentration leached through

the container during the irrigation period. Plastic collars five cm in diameter were

fabricated from saucers described above and secured in place with silicon around each 3.8

liter container to prevent water from overhead sprinklers from diluting leachate samples.

Leachate samples were stored at 7°C until analyzed for Fe, Mn, and Zn concentration

using atomic absorption spectroscopy (Model 2380; Perkin-Elmer Corp., Norwalk,

Conn.) (Isaac and Johnson, 1975). Leachate pH (pH/mVlTemp Bench meter,

Cole-Parmer Instruments, Chicago, Ill.), and EC (Solu-bridge, Beckman Instruments Inc.,

Cedar Grove, N.J.), were determined at each fertilizer application date and the last

leachate collection date.

Plants were harvested on 20 July 1997 and plant height, diameter (average of

diameter at widest point and the diameter perpendicular to that point), and quality rating

(1-5, with 5 being best salable quality) were recorded. Plants were divided into shoots

and roots and dried at S2°C for seven days. Shoot and root dry masses were determined

and samples were ground to pass through a 917 Jlm screen and stored in air tight jars until
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analyzed for Fe, Mn, and Zn concentration by atomic absorption spectroscopy (Isaac and

Johnson, 1975).

Six medium samples per treatment were divided into equal upper, middle, and

lower regions. Medium samples were air-dried, weighed, and extracted following the

modified saturated media extraction method described by Berghage et al. (1987) except

100 cm3 of medium was extracted using vacuum filtration with Whatman 41 ashless filter

paper, and a dilution factor (volume of extractant and dH20: grams extracted medium)

determined for each sample to allow reporting on a dry weight basis (Jlg/g). Electrical

conductivity of the medium slurry, pH and Fe, Mn, and Zn concentrations of the medium

filtrate were determined as previously described.

Drip irrigation (Expt. 2). This experiment was performed as previously described

with the following exceptions. Plants were drip irrigated using a 2.5 mm diameter central

line, 122 em long, 1.9 mm internal diameter flexible leader tubes, and circular drip

emitters (Dramm, Manitowoc, Wis.) placed on the media surface of each 3.8 liter

container. The WSF treatment applications were made as surface applications to the

appropriate containers in the same volume of water that would be applied in a normal

irrigation.

Statistics. For both experiments, each fertilizer treatment had twelve replications

with four pots per replication. Means were determined for all variables and data were

analyzed using 95% confidence intervals (SAS Institute, Cary, N.C.).
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Results

Sprinkler irrigation (Expt. 1). All growth parameters measured were similar

regardless of fertilizer source (data not shown). Medium pH and EC of regions were

similar, with an overall mean of4.4 and 1.3, respectively. Minimal differences in Fe,

Mn, and Zn concentrations between medium regions were found for media amended with

GIF (Fig. 3.1). In contrast, highest concentrations of Fe, and Zn were located in the

upper medium regions compared to the middle and lower media regions for WSF

amended medium (Fig. 3.1). However, the inverse of this trend was observed in Mn

distribution through the medium.

Final leachate pH (6.3) was higher than the initial pH (6.0), while leachate EC

significantly decreased from the initial (1.4) to the final (0.5) sampling date, with no

differences occurring between fertilizers. Minimal differences in Fe, Mn, and Zn leachate

concentration occurred over the 13 week experimental period between GIF and WSF

treatments (Fig. 3.2). However, leachate samples collected on WSF application dates

produced significantly greater amounts of leachate ion concentration compared to GIF

leachate. Leachate concentrations of Fe, Mn, and Zn were highest during the first 2

weeks of the experiment and then decreased for the remainder of the experiment.

Drip irrigation (Expt. 2). Plant diameter was significantly larger for plants grown

with WSF (15.1 em) compared to plants grown with GIF (14.3 em). Results were similar

between fertilizer sources for all other growth measurements. No significant difference
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due to fertilizer source occurred for medium pH or EC. Across the regions, medium pH

of the upper (4.6) and middle (4.5) regions were significantly greater than the pH of the

lower region (4.3). Electrical conductivity decreased from the upper (1.3 dS'm'l) to

middle (0.9 dS·m'l) and lower (0.9 dS.m,l) regions. Amount of Fe, Mn, and Zn extracted

from GIF-amended medium was similar among regions (Fig. 3.3). Iron and Zn

concentration of the upper region of medium amended with WSF was greater than that

extracted from the middle and lower medium regions. Amount of Mn extracted was

significantly lower in the upper than in the middle and lower regions (Fig. 3.3).

Minimal differences occurred between initial and final leachate pH regardless of

fertilizer source. Leachate EC, however, significantly decreased from the initial (1.0) to

the final (0.4) collection date, with no difference between treatments. Except on WSF

application dates, minimal differences between GIF and WSF treatments in Fe, Mn, and

Zn concentration in leachate occurred over the 13 week experimental period. Leachate

samples from the WSF treatment collected on WSF application dates contained

significantly greater amounts of all three micronutrients compared to GIF leachate (Fig.

3.4). Leachate concentrations of Fe, Mn, and Zn were highest during the first 2 weeks of

the experiment and then decreased during the remainder of the experiment.

Discussion

With exception of plant diameter, growth parameters and quality ratings were not

affected by fertilizer source (data not shown). While plants grown with WSF under drip
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irrigation (Expt. 2) produced a larger plant diameter than plants grown with GIF (15.1

cm, 14.3 cm, respectively), both fertilizer sources were adequate for production of

marketable plants. The larger diameter of plants receiving WSF may be attributed to the

readily available nutrients for plant uptake early in the production cycle compared to GIF.

Time is required for GIF to dissolve in the medium before plant uptake of nutrients can

occur. Limited root systems of young plants may have also restricted root contact with

the GIF at the beginning of the experiment. However, minimal difference in plant

diameter was observed between the fertilizer treatments with sprinkler irrigation

(Expt. 1). Delivery of WSF by fertigation may not be as efficient in delivering

micronutrients to the entire medium ball as surface applications of WSF by hand due to

excess water and nutrients falling between pots and the wetting of foliage which will

reduce the amount of nutrients reaching the medium; therefore, differences in plant

growth were not as apparent when using sprinkler compared to drip irrigation between

the fertilizer treatments. Although the different irrigation regimes of the two experiments

cannot be directly compared, both systems produced adequate commercial plant quality.

Medium pH and EC for the drip irrigation experiment were greater in the upper

medium region compared to lower region of the medium for both fertilizer sources.

These results agree with Morvant et aL (1997), who found medium pH to be greater in the

upper region of the medium compared to the lower medium region. However, Molitor

(1990) reported similar medium pH throughout the root zone when utilizing trickle

irrigation. Higher EC in the upper region compared to the lower region of the root zone
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agrees with previous experiments (Argo and Biembaum, 1994; Molitor, 1990; Morvant et

al., 1997).

Except for Mn, nutrient distribution throughout the growing medium was

consistent for both experiments. The upper medium region had more Fe and Zn than the

middle and lower medium region (Fig. 3.1, 3.3). These results agree with Argo and

Biembaum (1994), Molitor (1990), and Morvant et al. (1997), who reported the highest

medium N concentrations in the upper region compared to the middle and lower media

regions. In contrast, Mn concentration was higher in the lower medium region than the

upper and middle regions. Because WSF treatments were applied by surface application

and fertigation, most nutrients applied might be retained in the upper portion of the

growing medium as observed with Fe, and Zn. Moreover, greater Fe and Zn

concentration in the upper region of growing medium may be attributed to the formation

of insoluble Fe and Zn phosphates within the medium, thus limiting the mobility of these

elements through the medium profile (Broschat and Donselman, 1985). Manganese may

not be involved in phosphate precipitation under medium conditions and readily move

through the medium profile, thus increasing Mn concentration in the middle and lower

medium regions compared to the upper medium region. Granular incorporated fertilizer

was distributed throughout the medium and minimal difference occurred between

regions. Phosphate precipitation of Fe and Zn may have occurred within GIF-amended

medium, but the initial incorporation of micronutrients throughout the medium reduced

significant nutrient distribution differences.
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Leachate concentrations for Fe, Mn, and Zn in both experiments were similar,

regardless of fertilizer source over the 13 week experimental period except on WSF

application dates (Fig. 3.2, 3.4). Water soluble fertilizer treatments produced

significantly higher leachate concentrations for all three nutrients compared to GIF

leachate samples collected on WSF application dates. Our results agree with those of

other studies (Rathier and Frink, 1989; Conover and Poole, 1992; and Yeager et al.,

1993) that concluded that use of CRF over WSF or a combination of fertilizer sources

will produce lower NOrN, NH4-N, and P content (mg/pot) in leachate from production

sites. Granular incorporated fertilizer leachate concentrations for Fe, Mn, and Zn were

high for the first few weeks of the experiment and then decreased and stabilized for the

duration of the experiment. Hershey and Paul (1982) reported similar results in the

amount ofN leached using a CRF versus a WSF.

Cumulative Fe, Mn, and Zn concentrations for both fertilizer sources under

sprinkler and drip irrigation exceeded their respective SMCL guidelines and all elements

tested appear to pose a contamination threat to the environment. Although these

guidelines are not enforceable by law, contaminants in leachate discharge may

accumulate in soil and water supplies and potentially lead to human and animal health

problems. Fertilizer source effect on Fe, Mn, and Zn leachate concentrations were

inconsistent. Micronutrient concentration was higher for GIF compared to WSF leachate

on some dates, while on other sampling dates the opposite response occurred. Data

variability may indicate environmental effects due to plant evapotranspiration or rainfall.



60

Similar inconsistencies were reported by Conover and Poole (1992). Moreover, Yeager

and Cashion (1993) indicated that leachate NOrN concentrations varied considerably

over a production period and sampling at any given time could yield misleading results of

overall NOrN or P input into the environment.

In summary, minimal differences in plant growth occurred between plants grown

with a GIF or a WSF source. Medium pH and EC values were greater in the upper

regions of the medium compared to the lower regions under drip irrigation, while little

difference in medium pH and EC occurred under sprinkler irrigation for both fertilizers.

Upper and middle regions of the growing medium had a higher Fe and Zn concentration

than the lower medium region when micronutrients were applied to the medium surface.

Element amounts were distributed evenly among all regions for GIF treatments where

incorporation of the fertilizer source into the medium occurred prior to the experiment.

Leachate pH increased from the initial to the final testing date while leachate EC

decreased under sprinkler irrigation. Leachate Fe, Mn, and Zn concentrations for GIF

treatments were highest during the first two weeks of the experiment; whereas, leachate

from WSF treatments were released over the course ofthe experimental period, especially

during WSF application dates. While WSF source increased cumulative Fe, Mn, and Zn

leachate concentrations compared to GIF, both fertilizer sources exceeded SMCL

guidelines for each element. The concentration of these elements can increase by

accumulation in soil after leachate discharge; posing a greater concern to potable water

contamination. These results identify that human hea!th and safety are not threatened by



61

micronutrient contamination to water resources immediately. Accumulation of these

elements over time, however, may render them a potential threat. Lachate discharge from

plant production areas has caused detrimental effects on aquatic organisms such as

mussels (Stolzenburg, 1992).
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Figure 3.1. Amount ofFe, Mn, and Zn extracted from the upper middle, and lower
media regions treated with a granular incorporated (GIF) or a water soluble (WSF)
fertilizer with micronutrient concentrations applied equally to both treatments under
sprinkler irrigation. Means are an average of six replications. Horizontal bars indicate
95% confidence intervals; Expt. 1.
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Figure 3.2. Leachate concentration of Fe, Mn, Zn from Buxus microphylla Var. koreana
grown with a granular incorporated (GIF) and water soluble (WSF) fertilizer in a 3: 1: 1
(by vol.) pine bark:peatsand container medium under sprinkler irrigation at various days
after planting. Triangles indicate the three applications of WSF. Means are an average of
12 replications of two subsamples. Vertical bars indicate 95% confidence intervals; Expt.
1.

a
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Figure 3.3. Amount of Fe, Mn, and Zn extracted from the upper, middle and lower
media regions treated with a granular incorporated (OIF) or a water soluble (WSF)
fertilizer source with micronutrient concentrations applied equally to both treatments
under drip irrigation. Means are an average of six replications. Horizontal bars indicate
95% confidence intervals; Expt. 2.
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Figure 3.4. Leachate concentration of Fe, Mn, Zn from Bux:us microphyl/a Var. koreana
grown with a granular incorporated CGIF) and water soluble (WSF) fertilizer in a 3: 1: 1
(by vol.) pine bark:peat:sand container medium under drip irrigation at various days after
planting. Triangles indicate the three applications ofWSF. Means are an average of 12
replications of two subsamples. Vertical bars indicate 95% confidence intervals; Expt. 2.
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Chapter 4

MICRONUTRIENT FERTILIZER, AND CA AND MG

APPLICATION INFLUENCES FE, MN, AND ZN LEACHING FROM

SOILLESS MEDIA.

Michael D. Frost, Janet C. Cole, and John M. Dole
Department ofHorticulture and Landscape Architecture
Oklahoma State University
Stillwater, OK 74078-6027

Additional index words. Peat, pine bark, perlite, sand

Abstract. Sphagnum peat moss (PT), perlite (PR), pine bark (PH), sand

(SN), and two media formulated (by volume) from these constituents (3 PT:l PR,

and 3 PB:l PT:l SN) were investigated to determine the effect of individual media

constituents and mixes on Fe, Mn, and Zn leaching influenced by a granular

incorporated (GIF) or a water soluble (WSF) fertilizer source, and Ca or Mg surface

application. Intrinsic properties of individual media had a greater effect on Fe, Mo,

and Zn retention in the media than the influence of fertilizer source, Ca, or Mg

application. Medium EC increased linearly with increasing Ca and Mg application

rate for all six media. Perlite and SN had greater amounts of Fe, Mn, and Zn in

leachate compared to other media with similar trends observed between WSF and
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GIF sources. Medium components like PR and SN provide properties to soilless

media needed for optimum plant production such as media aeration and stability.

However, they should be used in combination with other media components that

permit ion retention in the media.

Introduction

Components of container plant growing media have different chemical and

physical properties that differ from field soils or soil-based media. Much research has

focused on assessing physical properties ofvarious soilless media and their impact on

plant growth ( Bilderback et aI., 1982; Fonteno et aI., 1981). Mathematical models for

moisture characteristics of horticultural media have also been described by Milks et al.

(1989). Various media components, macronutrient and micronutrient fertilizer sources,

water sources and application methods, liming materials, and plant roots form complex

chemical systems in the growing medium.

Studies have evaluated the chemical properties of soilless media and their effect

on plant growth (Williams et aI., 1988), and P leaching from soilless container media

(Yeager and Barrett, 1984). Considerable amounts of P may be leached from soilless

media due to the porosity of the media, dai ly irrigation and the composi tion of soilless

mixes using both organic and inorganic media components such as pine bark, peat, and

sand (Yeager and Barrett, 1984). Marconi and Nelson (1984) attribute greater P leaching

from 1 peat:! vermiculite (by volume) than from 1 sand: 1 soil:I peat (by volume) to
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lower P sorption in I peat: 1 venniculite. Pill et a1. (1995) found that kenaf stem cores

soaked in N can serve effectively as a bulking component of soilless media with the

capacity to release N over an extended period. Moreover, they found N03 concentrations

in leachate to be greater from a peat-venniculite soilless mix compared to a peat-kenaf

mix. Other research has shown that water-soluble P readily moves through a soilless

medium profile if the pH is below 6.0 while media with a pH above 6.0 restricts P

movement (Spinks and Pritchett, 1956). Based on medium pH, Spinks and Pritchett

(1956) recommend different P application methods to be utilized for the reduction ofP in

leachate.

Broschat and Donselman (1985), examined extractable (ammonium acetate

NH40Ac, pH 7.0) Fe, Mg, Mn, Zn, and Cu in a peat-based medium amended with six

commercial micronutrient fertilizers. While they found iron

diethylenetriaminepentaacetic acid (FeDTPA) to be the best source of Fe, FeDTPA is

soluble and aU supplemental Fe had leached from the medium within 40 weeks.

Amounts of all five elements from the various ferti lizer sources decreased in the media

during the first month and then remained consistent for the remaining 18-month

experimental period. Moreover, they reported extractable Fe, Mn, and Zn amounts in the

medium were reduced by addition of superphosphate present in Micromax Plus (Scotts

Co., Marysville, Ohio) possibly due to the formation of insoluble phosphates.

A series of experiments were conducted to investigate the effect of Ca and Mg on

micronutrient leaching from four media constituents and two mixes. Objectives of this
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study were to: 1) examine the effect of media constituents and mixes on Fe, Mn, and Zn

leaching influenced by a granular incorporated (GIF) or a water soluble (WSF) fertilizer

source; and 2) determine whether Ca and Mg influence the leaching of Fe, Mn, and Zn

from media constituents and mixes using GIF or WSF micronutrient sources.

Materials and Methods

General procedures. A plantless system was designed to evaluate peat moss

(PT), perlite (PR), sand (SN), and pine bark (PS) individually and in two mixes: 3 PT: 1

PR, and 3 PB:] PT:l SN (by volume). Chemical and physical characteristics of the six

air-dried, unamended media were determined (Table 4.1). Cation exchange capacity

(CEC) of each of the six media was detennined at the Research and Extension Analytical

Laboratory, Wooster, Ohio. Initial Fe, Mn, and Zn concentration of the media

components and mixes were determined negligible using the modified saturated media

extraction procedure described by Berghage et al. (1987), except 100 cm3 of medium was

used and gravity filtration using Whatman 41 ashless filter paper was performed. Fifteen

cm diameter by 11 cm deep (1.9 L) pots were filled with media. Volume of media for

each pot was determined by weight using bulk density. Micromax (Scotts, Co.,

Marysville, Ohio) (GIF) was incorporated into each medium at its recommended rate of

0.9 kg.m'3. Commercial soluble trace element mix (STEM, Scotts, Co.) (WSF) was

applied to the medium surface (100 mLipot) at its recommended rate of 599 mg·L,I.

Distilled water (dH20, pH= 5.6) was added to the surface of the medium in each pot in an
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open (draining) system until saturation. Drained dH20 was reapplied to media

constituents and mixes that were hydrophobic several times to assure uniform saturation

of the media. Each medium was allowed to equilibrate for 48 h at 20°C after saturating

and before purging the system with 500 mL/pot dH20. Leachate from each media

treatment was collected in 20.3 cm diameter by 8.9 cm deep (2.9 L) plastic saucers

(American Plant Products, Oklahoma City, Okla.). Leachate volumes were determined

and samples filtered using Whatman No. 41 ashless filter paper. Filtrate of samples was

analyzed for pH (pH/mV/Temp Bench meter, Cole-Parmer Instruments, Chicago, 111.),

electrical conductivity (EC) (Solu-bridge, Beckman Instruments Inc., Cedar Grove, N.J.),

and Fe, Mn, and Zn concentration of the leachate using atomic absorption spectroscopy

(Model 2380; Perkin-Elmer Corp., Norwalk, Conn.) (Isaac and Johnson, 1975).

Media with GIF (Expt. 1). Individual media constituents and mixes were

amended with GIF at its recommended rate on 6 Aug. 1997. The GIF was incorporated

into each medium prior to the experiment. Leachate samples were collected on 8 Aug.

1997.

Media with WSF (Expt. 2). Experiment 1 was repeated except no GIF was used

and WSF was surface applied in 100 mL of dH20 at its recommended rate to individual

media constituents and mixes on 6 Aug. 1997. Leachate samples were collected on 8

Aug. 1997.

GIF with Ca (Expt. 3). Granular incorporated fertilizer was incorporated into
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each medium on 14 July 1997 as described in Expt. 1. Calcium was applied as a swface

application 'chase' to each medium after allowing the saturated media to equilibrate for a

24 h period. Calcium solution was applied at 0, 100, 200, and 400 mg-L-1 in 100 mL

solution to the appropriate treatments. Calcium solution that leached into the collection

saucers initially was reapplied until absorbed by the media. The Ca source was Ca(N03)2

. 4 H20 and rates were chosen based on guidelines for Ca concentration in soilless growth

media for optimum plant production (Warncke and Krauskopf, 1983). Leachate samples

were collected on 16 July 1997.

WSF with Ca (Expt. 4). Experiment 3 was repeated except no fertilizer was

incorporated into each medium. Instead, WSF was surface applied to each medium on 29

July 1997 as described in Expt. 2. Leachate samples were collected on 31 July 1997.

GIF with Mg (Expt. 5). Media constituents and mixes were amended with GIF at

its recommended rate on 17 July 1997. One hundred mL of Mg solution was surface

applied 24 h after media saturation at 0,35,70, and 140 mg.L· 1 to appropriate treatments.

The Mg source was Mg(N03h . 6 H20 and rates based on guidelines for Mg

concentration in soilless growth media for optimum plant production (Warncke and

Krauskopf, 1983). Leachate samples for all treatments were collected in saucers on 19

July 1997.

WSF with Mg (Expt. 6). Experiment 5 was repeated with the following changes.

No GIF was used, and instead, WSF was surface applied to each media on I Aug. 1997 as
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described in Expt. 2. Leachate samples for all treatments were collected on 3 Aug. 1997.

Statistics. The design was completely randomized with six mediwn treatments

(four components and two mixes) for Expt. 1 and 2. Each treatment was replicated four

times with individual pots representing a single unit. Data were analyzed using general

linear model procedures and mean separation by protected LSD (SAS Institute, Cary,

N.C.). For Expt. 3,4,5, and 6, the experimental design was a factorial treatment

combination with four Ca or Mg rates and six media arranged in a split block. Each

treatment was replicated three times with individual pots representing a single unit. Data

were analyzed using general linear model procedures with trend analysis for Ca or Mg

rates and single-degree of freedom F-tests for significant interactions (SAS Institute,

Cary, N.C.).

Results

Media with GlF (Expt.l). Pine bark and SN had the greatest leachate pH while

PT and 3 PT: 1 PR had the lowest pH of the media. Peat, SN and 3 PT: 1 PR had a greater

EC than all other media (Table 4.2). More Fe was leached from PR than from any other

media constituent or mix (Table 4.2). In contrast, leachate from SN had the most while

PB and 3 PB: 1 PT: 1 SN had the least Mn concentration. Sand and PR had the most Zn in

leachate and leachate from PB and from 3 PB: 1 PT: 1 SN had the least.

Media with WSF (Expt. 2). Leachate pH was significantly different for all media,

as was EC except that EC for PT and 3 PT: 1 PR were similar and higher than any other
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medium (Table 4.2). A significantly greater amount of Fe was present in the leachate

from SN than from any other medium. Leachate from PR had the greatest Mn and Zn

concentration compared to leachate from the other media (Table 4.2).

GIF with Ca (Expt. 3). No significant interactions between Ca rate and media

occurred. Medium EC and Zn content in leachate increased linearly as Ca concentration

increased. Sand had the greatest pH while PT had the lowest leachate pH of the media.

In contrast, PT and 3 PT: 1 PR had a greater EC than all other media (Table 4.3). Perlite

produced a significantly greater Fe leachate content compared to all other media. More

Mn and Zn were leached from SN than any other medium (Table 4.3).

WSF with Ca (Expt. 4). There was no significant interaction between Ca rate and

media for pH of leachate; however, leachate from PR had the highest while PT and 3

PT:} PR had the lowest pH. Medium EC increased linearly as Ca rate increased for all

media except for PR which had a curvilinear response (Table 4.4). A curvilinear

response occurred for Fe leachate content as Ca application rate increased for SN and 3

PB:} PT:l SN. Manganese content in the leachate increased linearly for PT, 3 PT:I PR,

and 3 PB: 1 PT: 1 SN media as Ca rate increased. In contrast, there was a quadratic

response between Mn in leachate and Ca application rate for PH and PR media (Table

4.4). Perlite exhibited a quadratic relationship between Zn content of leachate and Ca

application rate (Table 4.4).

GIF with Mg (Expt. 5). No significant Mg by media interactions occurred, nor did

Mg rate influence any parameter measured. Sand had the highest pH while PT had the
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lowest pH of the media. Medium EC was greatest for PT and 3 PT:l PR than any other

medium (Table 4.5). Leachate Fe content was significantly greater with PR compared to

other media (Table 4.5). The amount ofMn in leachate did not differ regardless of

media. Zinc occurred in the highest concentrations in leachate from SN. Leachate from

PR contained less Zn than leachate from SN but more Zn than leachate from any other

medium tested (Table 5).

WSF with Mg (Expt. 6). No significant Mg by media interactions were found for

medium pH, Mn, or Zn leachate content. There was a linear increase in the amount of

Mn and Zn leached as Mg application rate increased (Table 4.6). Leachate pH was

highest with the inorganic constituents PR and SN compared to organic constituents and

mixes (Table 4.6). Moreover, PR had a significantly greater amount ofMn and Zn

leached compared to other media being evaluated. Medium EC linearly increased as Mg

application rate increased for all media (Table 4.7). A curvilinear response occurred for

Fe leachate content as Mg application rate increased with SN (Table 4.7).

Discussion

Greater percentages of Fe, Mn, and Zn were leached from GIF in Expt.l than

from WSF in Expt. 2 (Table 4.2). In the media with GIF study (Expt. 1), larger quantities

of Fe, Mn, and Zn were applied to each container than in Expt. 2 due to formulation and

recommendation differences of the commercial GIF and WSF products. These results

support the findings of Hershey and Paul (1982) in which more nutrient was leached as
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the amount of nutrient applied increased. Although they tested within fertilizer sources,

comparable results should occur regardless of fertilizer source. Moreover, Hershey and

Paul (1982) reported that with a CRF, the amount ofN leached was decreased by half

compared to that leached when using a liquid fertilizer at the same N application rate.

With reduced amOill1ts of Fe, Mn, and Zn in leachate produced from WSF with minimal

differences occurring in plant growth between GIF and WSF treatments when both were

applied in equal amounts (Chapter 2,3), growers can improve management practices by

utilizing surface applications of WSF in their production schemes to minimize run-off

and potential contamination of off-site areas. However, economic costs for fertilizer and

labor must be considered when deciding on a micronutrient fertilizer source.

Media CEC had the greatest influence on results from these experiments. Cation

exchange capacity is a non-specific surface adsorption where fixed, negative electrical

charges will attract and hold positive electrical charges (cations) like Fe, Mn, Zn and

other positively charged fertilizer components. In all experiments, PR and SN exhibited

high Fe, Mo, and Zn leachate content for both fertilizer sources. Both of these

components are inorganic with a very low CEC. The higher CEC ofPT, 3 PT:1 PR, and

3 PH: 1 PT: 1 SN compared to that of PR and SN should lead to better retention of

exchangeable ions. Nelson (1991) stated that most composted organic material, clay, and

PT have a high CEC while SN, PR, polystyrene and other noncomposted materials have

an insignificant CEC. A medium CEC of 6-15 meq/1 00 em'] is desirable for greenhouse

growing media and lower levels result in the medium not acting as a suitable reservoir for



78

nutrients with frequent fertilization becoming necessary (Nelson, 1991). Moreover,

physical and electrostatic adsorption within the media may also contribute to ion

retention in organic components and mixes with an organic component.

Although components like SN and PR are added to container media for specific

functions such as increased aeration and drainage, it is desirable to include a component

like PT with a high CEC. This is evident in examining the characteristics of individual

components and media mixes used in this study (Table 4.1). Peat alone has a high CEC

of23 meq/l00 g while SN and PR have a CEC of2 meg/l 00 g and 1 meql100 g,

respectively. When used in combination, CEC of 3 PT: 1 PR and 3 PB: 1 PT: I SN

increased to 17 and 5 meq/1 00 g, respectively.

Possible precipitation or chelation reactions within individual media components

and mixes must also be considered. However, for precipitation to be a m~jor factor in

prevention of micronutrient leaching of the medium, Fe, Mn, and Zn leaching

concentrations would have been consistent across all media which our results did not

show. Furthermore, no phosphate was introduced into our system which would be the

element most likely to form an insoluble precipitant with Fe, Mn, and Zn. In contrast,

Broschat and Donselman (1985) noted extractable Fe, Mn, and Zn amounts in the

peat-based medium were reduced by addition of superphosphate present in Micromax

Plus (Scotts Co., Marysville, Ohio) compared to other fertilizer sources due to the

formation of insoluble phosphates.

Chelation of Fe, Mn, and Zn may also occur within medium containing organic
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matter. However, in this study Fe, Mn, and Zn content in leachate increased when Ca or

Mg concentration increased in our 'chase' application. This is most evident in Expt. 5

(Table 4.4) where a strong curvilinear relationship occurred for Fe content in the leachate

regardless off media as Ca concentration increases. Thus, surface adsorption and not

precipitation or chelation of Fe, Mn, and Zn was the major reaction occurring within the

individual medium and mixes and adsorption of Fe, Mn, and Zn were directly related to

the CEC of each individual component or mix.

Micronutrient fertilizer source and Ca or Mg application effect on micronutrient

leaching were minimal except for EC. The increase in EC with increased Ca and Mg

application rates would be expected since excess Ca and Mg not displacing other

exchangeable ions would be leached from the media. The leaching fractions varied as a

consequence of evaporation from the media surface during the equilibrium period and

water holding capacity differences between the media, resulting in greater leachate

dilution for PB which could have contributed to lower Fe, Mn, and Zn content in leachate

from PB despite a lower CEC than with the other media.

Data obtained from these experiments represent media properties immediately

after planting. Media pH was not buffered to make pH of all media consistent. The

purpose of this experiment was to evaluate each component or mix at its inherent pH

value. Media pH may have an impact on micronutrient retention in media in all

experiments. Media pH effects the plant nutrient availability and therefore the ability of

the nutrients to be leached, since nutrients must be found in the liquid fraction of the
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medium to be plant available. In general micronutrients such as Fe, Mn, and Zn are

more readily available to plants at a low pH and are unavailable at higher pH (Nelson,

1991). Results from this study show that micronutrient retention was poorest with media

constituents possessing a slightly acidic to basic pH range. Inorganic media constituent

such as PR and SN produced a higher pH than other organic media components or mixes

consisting of organic and inorganic constituents. In contrast, Spinks and Pritchett (1956)

reported that water-soluble P readily moved through a soilless medium if the pH was

below 6.0, while P movement was restricted at higher medium pH. These findings

suggest micronutrient leaching relates more to intrinsic properties of the media like CEC

rather than pH.

In summary, intrinsic properties of individual media like CEC had a greater effect

on Fe, Mn, and Zn retention in the media than the influence of Ca or Mg application. In

general, leachate from PR and SN had greater amounts of Fe, Mn, and Zn compared to

other media. Furthermore, similar trends regarding ion content were observed between

WSF and OfF sources regardless ofCa or Mg application rates indicating that Ca or Mg

did not replace the micronutrients previously added to the medium. Medium EC

increased linearly with increasing Ca and Mg application rate for all six media. Medium

components like PR and SN provide properties to soilless media needed for optimum

plant production such as media aeration and stability. However, they should be used in

combination with other media components that permit ion retention in the media.
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Table 4.1. Chemical and physical properties of selected media components and mix.es.

Water Cation
Total holding Bulk exchange

porosity capacity Air space density capacity
Media pH EC (%) (%) (%) (g.cm"3) (meq/100
Peat (PT) 3.6 1.2 73 52 21 0.08 23
Perlite (PR) 7.2 0.1 68 35 33 0.11 1
Pine bark 5.2 0.2 52 27 25 0.17 2
(PB)
Sand (SN) 8.9 0.8 30 26 4 1.80 2
3 PT:l PR 4.0 0.2 91 69 22 0.09 17
3 PB:l PT:1 4.6 0.1 54 28 26 0.30 5
SN
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Table 4.2. Media effect on leachate pH, EC, and Fe, Mn, and Zn content as influenced by
granular incorporated (GIF) and water soluble (WSF) fertilizer. Fertilizer sources were
applied at manufacturer's recommended rates. Means are an average of four replication;
Expt. 1 and 2.

mg(%t
Media pH EC Fe Mn Zn

GIF (Expt. 1)
Peat (PT) 2.8d 1.3a 17.0b (14) l1.7b (47) 4.9be (49)
Perlite (PR) 3.7c 0.8b 48.0a (40) 12.0b (48) 5.9ab (59)
Pine bark (PH) 4.la 0.5e 2.0c (2) 3.6e (14) 0.9d (9)
Sand (SN) 4.Iab 1.2a 11.1 be (9) 25.9a (100) 7.4a (74)
3 PT:I PR 2.9d 1.3a 11.9be (10) 1LOb (44) 4.2e (42)
3 PH:l PT:l SN 3.9b 0.7be 3.ge (3) 4.1e (17) 1.Sd (15)

LSD (005): 0.2 0.3 10.8 5.6 1.7
WSF (Expt. 2)

PT 3.3f 0.35a 0.07b (2) 0.I4be (3) 0.04b (1)
PR 6.0b 0.10d 0.02b (1) 0.86a (18) 0.33a (12)
PH 4.9c 0.I5e 0.09b (2) O.2Ib (4) 0.04b (1)
SN 6.9a O.23b O.SOa (11) 0.04e (1) O.03b(1)
3 PT:I PR 3.4e O.35a 0.05b (1) 0.09be (2) 0.03b (1)
3 PB: 1 PT: I SN 4.5d O.l4e 0.09b (2) 0.08be (2) 0.01b(l)

LSD (0.05): 0.09 0.04 0.09 0,14 0.08
z Percentage ~f element leached based on amount element applied to each treatment.
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Table 4.3. Leachate pH, EC, and Fe, Mn, and Zn content of leachate from six media
amended with a granular incorporated (GIF) fertilizer as influenced by Ca application at
four concentrations 24 h after media saturation. Means are an average of 12 observations,
except for PT and SN media where 10 observations were used; Expt. 3.

mg

Treatment pH EC Fe Mn Zn
Ca rate (mg-L- 1

) main effect
0 3.6 0.9 10.0 9.5 2.3
100 3.9 0.9 6.5 8.2 2.0
200 3.9 1.1 9.0 7.5 2.5
400 3.9 1.1 8.1 9.7 3.1

Significance:

Ca-Linear (L) NS * NS NS *
Ca-Quadratic (Q) NS NS NS NS NS
Ca-Cubic (C) NS NS NS NS NS

Media main effect
Peat (PT) 2.8 1.4 5.0 9.0 2.9
Perlite (PR) 3.7 0.7 30.0 8.3 3.7
Pine bark (PS) 4.3 0.7 3.0 6.2 1.1
Sand (SN) 5.2 1.0 5.7 18.1 4.5
3 PT:1 PR 3.2 1.3 3.1 6.1 1.6
3 PB: 1 PT: 1 SN 4.0 1.0 3.7 6.3 1.2

Significance:

Media (LSDoos) 0.2 0.2 5.8 1.8 0.9
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Table 4.4. Leachate pH, EC, and Fe, Mn, and Zn leachate content of six media amended
with water soluble (WSF)fertilizer as influenced by Ca application at four concentrations
24 h after media saturation. Means are an average of three replications; Expt. 4.

Ca mg

(mg·L·1
) Media pH EC Fe Mn Zn

0 Peat (PT) 3.4 0.3 0.05 0.07 0.02
Perlite (PR) 6.0 0.1 0.02 1.22 0.39
Pine bark (PB) 4.9 0.1 0.13 0.13 0.03
Sand (SN) 5.0 0.2 0.46 0.07 0.03
3 PT:l PR 3.6 0.5 0.07 0.16 0.04
3 PB:l PT:1 SN 4.5 0.2 0.15 0.12 0.01

100 PT 3.3 0.4 0.08 0.15 0.04
PR 6.1 0.2 0.02 1.62 0.54
PB 5.0 0.2 0.12 0.17 0.03
SN 7.2 0.3 0.19 0.02 0.03
3 PT:1 PR 3.5 0.5 0.05 0.24 0.06
3 PB:1 PT:l SN 4.4 0.2 0.20 0.21 0.03

200 PT 3.3 0.4 0.07 0.24 0.08
PR 6.3 0.2 0.02 1.77 0.68
PB 5.0 0.2 0.14 0.19 0.03
SN 6.9 0.3 0.93 0.04 0.03
3 PT:l PR 3.5 0.6 0.05 0.30 0.08
3 PB:l PT:l SN 4.3 0.3 0.15 0.27 0.03

400 PT 3.2 0.6 0.07 0.31 0.08
PR 6.3 0.4 0.04 1.31 0.43
PB 4.6 0.3 0.13 0.38 0.05
SN 7.3 0.5 0.10 0.05 0.03
3 PT:l PR 3.5 0.7 0.05 0.39 0.09
3 PB:l PT: 1 SN 4.2 0.4 0.16 0.55 0.06

Significance:
Ca-Linear (L) NS *** ** ** NS
Ca-Quadratic (Q) NS NS ** NS *
Ca-Cubic (C) NS NS ** NS NS
Media (LSDo.os) 0.7 0.03 0.03 0.2 0.07
Ca-L*PT NS ** NS ** NS
Ca-Q*PT NS NS NS NS NS
Ca-C*PT NS NS NS NS NS
Ca-L*PR NS ** NS NS NS
Ca-Q*PR NS * NS ** **
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Ca-C*PR NS NS NS NS NS
Ca-L*PB NS ** NS NS NS
Ca-Q*PB NS NS NS ** NS
Ca-C*PB NS NS NS NS NS
Ca-L*SN NS ** ** NS NS
Ca-Q*SN NS NS ** NS NS
Ca-C*SN NS NS NS NS NS
Ca-L*3 PT:l PR NS ** NS * NS
Ca-Q*3 PT: 1 PR NS NS NS NS NS
Ca-C*3 PT:l PR NS NS NS NS NS
Ca-L*3 PB:l PT:l SN NS ** NS ** NS
Ca-Q*3 PB: 1 PT: 1 SN NS NS NS NS NS
Ca-C*3 PB:l PT:l SN NS NS * NS NS
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Table 4.5. Leachate pH, EC, and Fe, Mn, and Zn content of leachate from six media
amended with a granular incorporated (OIF) fertilizer as influenced by Mg application at
four concentrations 24 h after media saturation. Means are an average of 12 observations;
Expt. 5.

mg
Media pH EC Fe Mn Zn
Peat (PT) 2.9 1.4 3.2 5.5 1.7
Perlite (PR) 3.9 0.8 29.1 10.7 4.0
Pine bark (PB) 4.2 0.7 2.1 5.1 0.9
Sand (SN) 4.6 1.1 7.1 40.5 5.9
3 PT:l PR 3.2 1.3 3.3 6.2 1.8
3 PB:l PT:1 SN 3.9 0.8 2.4 4.4 0.8

Significance:
Mg-Linear (L) NS NS NS NS NS
Mg-Quadratic (Q) NS NS NS NS NS
Mg-Cubic (C) NS NS NS NS NS
Media (LSDo.os) 0.2 0.1 7.1 NS 0.9
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Table 4.6. Leachate pH, Mn and Zn content of leachate from six media amended with
water soluble (WSF) fertilizer as influenced by Mg application at four concentrations 24
h after media saturation. Means are an average of 12 observations; Expt. 6.

"'"

Treatment

o
35
70
140

Significance:
Mg-Linear(L)
Mg-Quadratic(Q)
Mg-Cubic(C)

Peat (PT)
Perlite (PR)
Pine bark (PB)
Sand (SN)
3 PT:1 PR
3 PB:I PT:1 SN

mg

pH Mn Zn
Mg rate (mg·r l

) main effect
4.9 0.21 0.06
4.9 0.24 0.06
4.9 0.32 0.10
4.9 0.38 0.12

NS * *
NS NS NS
NS NS NS

Media main effect
3.3 0.07 0.02
6.1 1.05 0.34
4.9 0.26 0.04
7.1 0.02 0.02
3.6 0.17 0.03
4.4 0.15 0.04

Significance:
Media (LSDo.os) 0.1 0.09 0.06
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Table 4.7. Leachate EC, and Fe leachate content of six media amended with water
soluble (WSF) fertilizer as influenced by Mg applied as a chase at four concentrations 24
h after media saturation. Means are an average of three replications~ Expt. 6.

o

35

70

140

Fe

Media EC mg
Peat (PT) 0.37 0.07
Perlite (PR) 0.10 0.02
Pine bark (PS) 0.15 0.11
Sand (SN) 0.21 0.22
3 PT:1 PR 0.55 0.05
3 PB:1 PT:l SN 0.16 0.12
PT 0.41 0.04
PR 0.10 0.02
PB 0.15 0.10
SN 0.27 0.07
3 PT:1 PR 0.59 0.05
3 PB:1 PT:1 SN 0.16 0.10
PT 0.41 0.04
PR 0.14 0.02
PB 0.17 0.14
SN 0.31 0.05
3 PT:1 PR 0.61 0.05
3 PB:l PT:l SN 0.21 0.11
PT 0.50 0.04
PR 0.21 0.02
PB 0.22 0.09
SN 0.44 0.03
3 PT:l PR 0.65 0.04
3 PB:l PT:l SN 0.28 0.08

Significance:
Mg-Linear (L) *** **
Mg-Quadratic (Q) NS NS
Mg-Cubic (C) NS *
Media (LSDo.os) 0.03 0.02
Mg-L*PT ** NS
Mg-Q*PT NS NS
Mg-C*PT NS NS
Mg-L*PR ** NS
Mg-Q*PR NS NS
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Mg-C*PR NS NS
Mg-L*PB ** NS
Mg-Q*PB NS NS
Mg-C*PB NS *
Mg-L*SN ** **
Mg-Q*SN NS **
Mg-C*SN NS **
Mg-L*3 PT:1 PR ** NS
Mg-Q*3 PT:l PR NS NS
Mg-C*3 PT: 1 PR NS NS
Mg-L*3 PB:l PT:l SN ** NS
Mg-Q*3 PB: 1 PT: 1 SN NS NS
Mg-C*3 PB: 1 PT: 1 SN NS NS
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Chapter 5

SUMMARY

When Fe, Mn, and Zn were applied as a granular incorporated fertilizer (GIF) or a

water soluble fertilizer (WSF), minimal differences occurred in any growth parameter

measured for greenhouse and containerized nursery production utilizing sprinkler or

microtube irrigation. Greater amounts Fe, Mn, and Zn were leached from the growing

medium when utilizing a GIF source for greenhouse production. Leachate Fe, Mn, and

Zn concentrations were highest at the beginning of experiments with GIF while leachate

concentrations were highest for WSF at application for containerized nursery production.

However, cumulative Fe, Mn, and Zn leached exceeded their respective secondary

maximum contamination level (SMCL) of 0.3 mg· L
ol

, 0.05 mg· L' l , and 5.0· mg C l

during the experimental period with both fertilizer sources. Although these guidelines are

not enforceable by law, contaminants in leachate discharge may accumulate in soil and

water supplies and potentially lead to human and animal health problems. Potential Fe,

Mn, and Zn contamination may lead to problems in using ground and surface water

sources for drinking water, wash water, and other purposes. At present, Fe, Mn, and Zn

pose no or little threat to human health; however, aquatic organisms, such as mussels,

may be affected negatively if micronutrient-contaminated discharge continues to enter

surface water sources.
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Medium analysis yielded Fe, Mn, and Zn at higher concentrations in the upper

and middle medium regions than in the lower region when micronutrients were surface

applied using a WSF while element concentrations were evenly distributed among media

regions for GIF treatments that were incorporated into the medium prior to the

experiment for greenhouse crop production. Similar trends were noted for containerized

nursery production with the exception ofMn which had a higher concentration in the

lower medium region compared to the upper and middle regions when applied as a WSF.

Medium pH and EC were greater in the upper and middle regions of the medium

compared to the lower region under drip irrigation, however, minimal differences were

found when utilizing sprinkler irrigation.

Intrinsic properties of individual media had a greater effect on Fe, Mn, and Zn

leaching from the growing media than the influence of fertilizer source, Ca, or Mg

application. Medium components with low CEC, like PR and SN, had greater amounts

of Fe, Mn, and Zn leached from the medium than other components or mixes. Although

components like PR and SN provide properties to soilless media needed for optimum

plant production, they should be utilized in combination with other media components

that permit ion retention in the media.
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