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CHAPTER ONE - INTRODUCTION

1.1 Background

An experimental heat transfer facility has been constructed at Oklahoma

State University to study interior convective heat transfer in rooms. There are

three primary heat transfer processes that occur within building structures:

longwave radiation, conduction, and convection. Both conduction and radiation

processes are reasonably well understood and can be modeled accurately in

building simulation programs. Furthermore, current literature is relativel'Y

consistent when it comes to the prediction and modeling of these two heat

transfer processes in buildings. In contrast., the literature covering both analytical

and experimental studies of convective heat transfer show marked disagreement

for many of the heat transfer situations encountered in buildings. In light of this,

an experimental facility was designed and constructed to allow experimental

investigation of interior convective heat transfer in rooms.

1.2 Literature Review

A summary of experimental studies (full size and scale models) mainly

investigating forced convection in enclosures is given. Closely related, but not

included in this review, would be a number of publications covering research into

room airflows. See Ramey (1994) or Weathers (1992).

The main focus here is on full size and scale model studies aimed at

investigating convection heat transfer in rooms for forced ventilation. A few

1 Two forms of radiation impact building heat transfer: short-wave and longwave, Radiant
exchange within the internal environment (Iongwave radiation) will be the focus here, versus
solar radiation entering from the external environment (short-wave radiation),
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natural convection experiments are covered also, mainly due to their focus on

convection coefficient measurements. Akbari et al. (1986 and 1987) provides a

good background for these studies Akbari demonstrates analytically and numer

ically that an accurate characterization of the interior convection coefficient is

critical to energy analysis in buildings, especially for buildings with thermally

massive walls. As stated by Khalifa, of the three modes of heat transfer in

buildings, longwave radiation, convection, and conduction, convection is the most

complex. Additionally, Spitler et al. (1987) and Akbari et al. (1986 and 1987) both

point out that recent construction practices have produced marked variations in

convective heat flow paths. Weber (1980) adds to this that for most buildings

undergoing normal operation, the interior surface convection coefficients will vary

dramatically depending on the HVAC system mode of operation. Most

importantly, even current "state-of-the-art" hourly analysis load programs and

available literature utilize outmoded and inappropriate convection correlations. All

of these factors point to the need for more thorough research and robust

experimental studies to determine the contribution of convection in building heat

transfer.

The following literature review is grouped according to investigative body

and ordered alphabetically by principal investigator. A summary highlighting

principle investigator, date of work, enclosure size, and working fluid is shown in

Table 1.1.



Table 1.1 An Overview of Convective Heat Transfer Experiments

Principle Date Convection Working Fluid Dimensions
Investigator Flow Regime LxWxH (ft)

Bauman 1982 natural water 2.5 x 0.83 x 0.42

Bohn 1984 natural water 1.0x 1.0 x 1.0

Chandra 1984 natural & forced water 17.7x11.7x8.1

Khalifa 1989 natural & forced air 9.7 x 7.7 x 6.8

Neiswanger 1987 natural & forced water 0.9 x 0.65 x 0.65

Spitler 1991 forced air 15.0 x 9.0 x 9.0

Spitler 1987 forced air 14.6 x 12.0 x 8.5

Weber 1980 natural freon 4.7 x 2.4 x 1.4

3
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1.2.1 Full Scale Facilities

Florida Solar Energy Center (FSEC)

(1984) Chandra et. al.

A full-scale room was constructed at the FSEC to investigate room airflows

under both natural and forced convection conditions. The room is located on the

southeast corner of the FSEC Passive Cooling laboratory (PCl) and has

dimensions 17'-8" x 11'-8" x 8'-1 ". The room has a slab-on-grade floor with

rubber pad and carpeting. The walls are conventional stud frame insulated to R

11 for the two exterior walls and R-25 for the two interior walls. Wall interior

surfaces consisted of unfinished gypsum board. The facility also consisted two

windows on the east side with two wing walls to facil'itate room air circulation.

The room was first heated using two 1350 watt heaters. A ceiling fan was

allowed to run during this time. Next the heaters and fan were turned off for 15

minutes and removed from the room. The windows were then opened and the

room was allowed to cool. Data was taken for two hours thereafter.

The west wall was constructed with an additional three heat transfer

panels. Thermocouples were embedded in these panels and mounted on the

remaining five surfaces and in the window openings. Measurements of velocity

and temperature were taken every ten seconds and averaged over a five minute

period.
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Convection coefficients were isolated by performing a surface heat

balance on the west wall surface. Furthermore this heat transfer data was

correlated to local surface airspeeds and compared to ASHRAE values.

Solar Energy Unit, University of Wales

(1989) Khalifa et. al.

A full size test cell with dimensions 2.95m x 2.95m x 2.08m was

constructed to study natural and forced convection on interior building surfaces.

The test cell consisted of two separate zones, a large hot zone and a smaller cold

zone. Both zones were controlled to different temperatures to obtain a

temperature differential across the dividing partition. Hot zone dimensions were

2.95m x 2.35m x 2.08m. The cold zone had the same length and height but width

of O.8m. All four walls and the roof of the hot zone were constructed of 50mm

thick isocyanurate board covered with aluminum foil on both sides. The floor of

the hot zone was constructed of 100mm thick styrofoam board covered with a

19mm thick chipboard on both sides. All three walls, the roof and the floor of the

cold zone were constructed of 3mm thick hardboard.

Facility instrumentation consisted of arrays of thermistors mounted through

the two zones. These measured surface temperatures, as well as, adjacent air

temperatures. The cold zone temperature was controlled by circulating ambient

air via an extraction fan. The hot zone used a small fan heater to heat the zone.

Both zones used proportional temperatures controllers.

The facility was allowed to reach a steady condition by allowing for a 24

hour run between any two different temperature settings. Each test produced
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about 12 hours of temperature data which was read by a 60 channel datalogger

and analyzed by a BASIC computer program.

Khalifa provides an expression for the calculation of the convective heat

flux, as well as, the convective heat transfer coefficient. This is accompli.shed by

letting the insulation slab form the heat flux meter. Thus in a steady-state

condition the heat flowing from the air to the wal.l surface by convection should be

equal to the heat loss by conduction through the wall.

Twenty-seven data points were correlated by multi-regression with the

convection coefficient a function of temperature difference. Results of the

correlation were compared to currently available corre,lations in existing literature.

The results of these comparisons indicated that the convection coefficients

resulting from real sized enclosures are considerably higher than those reported

for isolated surface.

University of Illinois at Urbana-Champaign, UIUC

(1991) Spitler et. a/.

A full scale heat transfer facility was constructed at the University of

Illinois. This facility, which rested on the floor, made use of 53 individually

controlled panels (static) to control the temperature of the room interior surfaces.

A pattern control algorithm (Fisher 1989) was shown to provide significantly better

panel temperature control than a simple set point or predictive control algorithm

(Althof 198?). The panels were heated by way of nickel chromium resistance

wires covered with plaster. Room surfaces were instrumented with



thermocouples and controlled to 86°F for all tests. One of the walls implemented

plate coils to accommodate future cold wall instrumentation.

Tests performed included the following:

• Volumetric flow rate - 15, 3D, 50, 70, and 100 air changes per hour.

• Inlet temperatures - 61°F, 70°F, and 79°F.

• Inlet locations - ceiling and side wall.

The airflow measurement system was based on ANSI/ASHRAE Standard

51-1985. Additionally, the facility implemented an air speed and air temperature

measurement system.

Heat balance calculations were performed and were shown to be within

the allowable uncertainty range. While the faciLity was constructed to

accommodate various interior building heat transfer experiments, the primary

focus of the work was interior convective heat transfer. Specifically, the

convection coefficient was empirically calculated. The convective component of

heat transfer was isolated as per the following equation:

7

qCO"" =q il1 - (q rad +q crmd ) [1.1]

In the above equation, panel power input is known, the radiative

contribution of each surface is calculated, and the conductive back-loss is shown

to be negligible. The convection coefficient was then calculated according to the

following equation:
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[1.2]

Emphasis was placed on the proper choice of the reference temperature.

Four different reference temperatures were investigated:

• room inlet

• bulk air temperature

• air temperature adjacent to surface

• air temperature as a function of height

An approximately linear relationship was shown to exist between the room outlet

based film coefficients and the volumetric flow rates. Thus the room outlet

temperature was chosen as the reference temperature.

A total of forty experiments were performed and a detailed uncertainty

analysis due to measurement of temperature, panel power, and volumetric flow

rate was also presented. Results were obtained from this facility for thirty-seven

high ventilative flow rate experiments. A heat balance, energy in to panels versus

energy gained by the air, was calculated for all thirty-seven cases. These heat

balance results showed that actual room performance was better than the

conservative error estimate that was presented.

A correlation between the convective film coefficients and the jet

momentum/number (J) was developed. This correlation was used to develop a

new convective heat transfer model for various air supply inlet and ranges of J.
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The correlations were based on two observations that followed from the

experimental results:

1. he was linearly proportional to the bulk air velocity.

2. Bulk air velocity is proportional to the square root of the jet momentum.

This new model is contrasted with the natural convection model currently used in

building design and simulation programs. These two models were implemented

in the Buildings Loads Analysis and System Thermodynamics (BLAST) program

and an office building was simulated using the two models with significantly

different results.

(1987) Spit/eret a/.

An enclosure with modeled interior and exterior environments was

constructed. Two sides of a 4.5m x 3.6m x 2.6m room were adjacent to a

temperature controlled airspace and the other two sides were adjacent to a space

in which the temperature was allowed to float. The walls were 20.3 cm thick and

the two heated surfaces were instrumented with heat flux transducers.

The facility made use of a window-type air-conditioner and reheat coils

connected to a standard air distribution system for room air temperature control.

The room utilized a centered ceiling diffuser inlet air configuration. This was the

only air inlet configuration investigated. A sol-air space was heated via electric

resistance heaters and fans. The facility, which rested on the lab floor, measured

surface temperature, room air temperature, and cooling system air temperature,

as well as, surface heat flux.



-

10

The convection coefficient was isolated by subtracting the radiative flux

from the total flux. This local film coefficient was found to have strong

dependencies in the vertical direction. Also, a strong correlation was seen to

exist between a heat exchanger effectiveness model and mass flow and

temperature difference.

The study stressed the need to accurately measure the convective and

radiative portions of building heat transfer. Attention was brought to the fact that

previous studies have not sufficiently addressed the dynamics of flow in full scale

enclosures, nor have they been responsive to the significant changes in

convective patterns due to recent construction trends.

1.2.2 Scale Models

Lawrence Berkeley Laboratory (LBL), University of California

(1980) Bauman et. 81.

A large body of work conducted at LBl has been devoted to natural and

forced convection heat transfer analysis in buildings. One such group of

experiments investigated buoyancy-driven convection in rectangular enclosures.

The flow regimes investigated within these enclosures was meant to be

representative of many passive solar systems.

The natural convection experiment made use of two scaled models: one

single zone and one two room zone with a partition. Water was used as the

working fluitj, The rectangular apparatus had dimensions 12.7cm x 25.4cm x

76.2cm fabricated of 1.3cm clear plexiglas. The two 76.2cm side walls were
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sufficiently long enough to create the two-dimensional problem and were

fabricated with cold rolled copper sheets. The hot wall was energized using six

thermofoil heaters mounted on the outside surface of the copper plate. The cold

wall was constructed with copper tubing mounted on the copper plate surface.

Cold tap water was circulated through the copper tubing.

Thermocouple probes were arranged to measure vertical temperature

gradients within the fluid. Also thermocouples were embedded within the copper

plates of both the hot and cold plates. The heaters and water flow rates were set

to the desired levels and the entire system was allowed to reach equilibrium

(about 3-4 hours). Thermocouple readings were taken over a period of about 15

minutes. The heat input rate was measured using a wattmeter. Heat output rate

was determined by measuring the cooling water inlet-to-outlet temperature

difference and by calculating the cool'ing water volumetric flow rate.

For each experiment, average plate temperatures were calculated and

used to evaluate the characteristic Rayleigh number. Heat input and output

values were used to find average Nusselt numbers for the hot and cold plates.

Solar Energy Research Institute (SERI)

(1983) Bohn et. at.

A cubical enclosure was constructed to study three-dimensional natural

convection at high Rayleigh numbers (Ra:::::; 1010). Water was used as the

working fluid with all four walls having the capacity to be heated or cooled. The

top and bottom were transparent and considered adiabatic.
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The test cell had cubical dimensions of 30.5cm and consisted of eight

1.27cm thick aluminum plates. Four inner plates form the actual enclosure with

the four outer plates providing for the heating and cooling of the enclosure walls.

Three of the walls had thermocouples centered and within 3mm of the inner

surface. The fourth wall had eight thermocouples placed in such a way to

measure wall spatial temperature variations. These variations were less than 5%

of the overall wall temperature difference, Th - Tc. Thus the walls were considered

to be isothermal. For flow visualization purposes 1.27cm thick lucite plates were

attached to the test cell top and bottom. The four walls were insulated with 8.3cm

thick foam board insulation.

Heat loss from the insulated walls was estimated to be 0.1 % of the total

wall heat loss. The top and bottom plates were considered adiabatic and the end

conduction for overlapping plates was estimated to be about 0.8%.

Cooling and heating of the four cell walls was accomplished by circulating

hot or chilled water through milled channels in the outer plates. Heat was

supplied to the water via a 6kw in-line electric heater in combination with a

domestic hot water tank. A proportional temperature controller controlled leaving

tank temperature to within ±0.25 DC. Cold tap water was also circulated through

the channels and controlled to within ±0.25 DC. Rotameters measured cooling

and heating flow rates.

An approximate error analysis yielded experimental convective heat

transfer accuracy to within ±5.0% of actual values.
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Water properties were calculated at a temperature equal to the four wall

average, denoted as the bulk temperature. Rayleigh number was calculated

based on the hot to cold wall temperature difference and the Nusselt number was

calculated based on the bulk to wall temperature. The characteristic length used

for both the Nusselt and Rayleigh numbers was 3D.5cm.

For each experimental configuration a 24 hour runtime period was required

to reach a steady state condition. Hot to cold wall temperature difference was

taken as the measuring value for steady state conditions.

A total of four wall heating/cooling configurations were investigated and

several different ranges of Rayleigh numbers were calculated. Tests revealed an

inactive core surrounded by boundary layers on each of the four vertical walls.

Heat transfer measurements consisted of average heat transfer coefficients for

each wall. Data was plotted for Ra vs. Nu on a log-log plot and revealed a

straight line relationship. For heat transfer coefficients based on wall to bulk

temperature difference a single correlation was developed that agreed well with

analysis and two-dimensional enclosure flow. The correlation indicated that a

laminar boundary layer flow heat transfer mechanism exists even at the hig.her

Rayleigh numbers.

University of California

(1987) Neiswanger et. al.

A small-scale test apparatus with uniformly heated walls and adiabatic top and

bottom was constructed to study high Rayleigh number mixed convection. The

rectangular enclosure has dimensions interior dimensions 2Dcm x 20cm x
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27.4cm. The top and bottom sections were made of 12mm thick transparent

acrylic plastic as were the end walls. Water was used as the working fluid and

heat transfer through the plastic was negligible. Two full height and 1/3 width

openings on both ends allowed flow to pass through the test section. For the

longer side walls .0264mm thick Iconel foil was stretched over a 25.4mm thick

layer of polystyrene foam insulation. The water flow system consisted of a 246

liter storage tank, a pump, a rotameter and PVC distribution lines. Electric power

to the foil was supplied by an 1800 watt de power supply.

Thermocouples were mounted on the two side walls and at the test section

entrance. After power was set for the foil heaters and pump the system was

allowed to equilibrate for about 15 minutes. Local and mean heat transfer

coefficients were determined for the wall surfaces. Neiswanger does not

describe how these coefficients were calculated. Also, a mixed convection heat

transfer correlation was developed and compared favorably with the experimental

data.

University of Idaho

(1980) Weber

Weber reported on an experimental study of natural convection heat

transfer through a doorway in a two room passiveily heated building. Similitude

modeling was used to measure the natural convection heat transfer coefficients

with freon being used as the worki ng fluid.

The prototype to be modeled, which was not actually constructed, was a

simple two room arrangement with the following components: a separating
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partition with doorway, a trombe wall on one end, and a thermal storage wall on

the other end. The dimensions were 24' x 12' x T.

For the 1/5th scale model, a 1" polystyrene partition with an aperture

(doorway) separated the two rooms. A temperature difference between the two

rooms was maintained by a heated vertical wall at one end and cooled vertical

wall on the other. Overall scale dimensions were 56" x 29" x 17". The cold wall

consisted of two plates, one aluminum and one copper, separated by an air gap.

Copper tubing, for coolant water circulation, was mounted on the inside surface of

copper plate. Thermocouples were mounted in the vertical direction at the cold

plate center. The hot wall consisted of a copper and aluminum plate separated

by an air gap followed by a heating element, which was enclosed in a

polyurethane enclosure to reduce back losses. The heating element consisted of

nichrome wire suspended one inch behind the copper plate.

The air-tight scale model was filled with freon and, with the cold and hot

walls at steady state, temperature measurements were made. A total of 80

thermocouples were mounted throughout the model to measure gas temperature,

external wall temperatures and cold and hot wall temperatures.

Natural convection heat flow through the aperture was calculated by

subtracting the hot cell heat losses from the hot plate power input. This heat

transfer through the doorway was measure as a function of the average

temperature differentiall between the two rooms and the geometry of the aperture.
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The natural convection coefficient and average temperature difference were

expressed in terms of Nusselt, Grashof and Prandtl numbers. Two ratios: door

height to ceiling height (AHR) and door width to partition width (AWR) were

investigated for natural convection dependence.

1.3 Objectives

The main objective of this work is to design and construct an experimental

facility to study convective heat transfer in rooms. The room design is intended

to be an improvement upon the design of a previous facility constructed at the

University of Illinois at Urbana-Champaign (UIUC). Siignificant improvements

include the following:

• Design implements a grid of 2' x 4' removable panels which may be heated or
cooled or replaoed with an inlet or outlee

• Experimental room has been elevated approximately five feet off the lab floor.
This allows for the environmental control of the space surrounding all six
surfaces and reduces the heat loss by conduction through the floor.

• Experimental room is larger offering more flexibility

• Air measurement system has been designed to allow for finer measurement of
volumetric flow rates ranging from 160 to 3500 cfm.

• A 250 gallon chiUed water tank has been coupled with a water-to-water heat
pump allowing for a more uniform and constant supply of chilled water to the
fan/coil unit. This increases the ability to provide a constant inlet temperature
to the room.

2For the purposes of this study, the term "room inlet" shall be taken as the room air supp.ly
opening.
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The facility, still in initial testing stages, also has many potential uses for

further study and investigation. While the initial shakedown tests will be aimed at

investigating overall facility performance, more detailed studies are anticipated.

For instance, the experimental room data could be used to validate CFD models

of room air flow. Also, convective heat transfer from common office equipment,

lights in plenums, and windows might be considered. Lastly, the versatile nature

of this facility lends itself to the study of most heat transfer processes occurring in

buildings today. To these ends, this study seeks to provide a basis for further

investigation by validating the current facility performance through experimental

tests and providing sufficient information on the background and design of such

facilities.

Focus here will be on the air system side design and construction, as well

as room air flow measurement and facility heat balance performance. A

complementary thesis, Sanders (1995), focuses on heated panel control and

overall experimental room construction.

.
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CHAPTER TWO - EXPERIMENTAL FACILITY

2.1 Overview of Experimental Facility

The experimental room can best be described as an isolated, honeycomb

like structure with well insulated walls. The floor of the facility is located

approximately 30 feet below grade. This below grade condition makes the facility

less susceptible to external variations in temperature. Overall laboratory

dimensions are 37.5' x 30' x 20'. A guard space3
, made up of 2x4 studs and R-11

insulation surrounds the actual room and has dimensions, 28' x 20.5' x 20'. The

only connections the laboratory had with the external environment were the

supply and return grilles from the building HVAC system. Effects this may have

had on facility performance were deemed minimal enough to neglect. Figure 2.1

shows an overall facility layout and the following sections will discuss various

room features pertinent to the initial validation tests. Flex ducting shown in Figure

2.1 indicates the current inlet/outlet configuration.

3 The walls of the guard space have not been completed yet.
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2.2 Room Description

The experimental room has interior dimensions 12' wide by 16' long by 10'

high and is elevated 5' off the laboratory floor. The walls consist of two 2" x 4"

stud walls, with spacers installed to give an overall wall thickness of 18". Using

dado cut lap joints and epoxy, the wall members are partitioned off in a 2' x 4'

grid. This arrangement forms the 2' x 4' x 1.5' cells. The walls of each cell are

lined with 1/4" masonite and all voids are filled with cut-to-fit insulating styrofoam

bead board. The wall cells are then filled with insulation pillows consisting of four

layers of R-19 insulation wrapped in plastic. The back of each cell is covered

with a removable 2' x 4' section of 1/2" plywood. The front of each cell (room

interior) provides for the mounting of the 2' x 4' , removable heated panels.

These panels will be discussed further, later in this section. The overall thermal

resistance value for the wall assembly is approximately R-67.

The floor and ceiling were constructed using two layers of 2"x8" studs to

give an overall nominal thickness of 16". They also were partitioned off in a 2' x

4' grid to form the cells. These cells were filled with the insulation pillows (3

layers of R-19) also and backed with 1/2" plywood. The floor and ceiling inside

faces also allow for the mounting of the removable heated panels. The overall

thermal resistance value for the floor/ceiling assembly is approximately R-47.

The 18" thick walls and 15" thick floor/ceiling form a channel at the room

perimeter. This channel was framed with 1/2" plywood and filled with R-19

insulation. Figures 2.2 - 2.4 show typical room elevations and plan views for

clarity. Also, room interior thermocouple placement is shown in Figure 0.1 of
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Appendix D. Sanders (1995), gives additional information regarding overall room

construction.
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2.2. 1 Modular Heated Panel System

The 2' x 4' panels consisted of nickel-chromium wire affixed to the surface

of 5/8" gypsum board. This wire was then covered with a 1/2" layer of gypsum

plaster. A conduction analysis program was written to determine proper spacing

between wire rows (Sanders, 1995). A Type T thermocouple was embedded in

plaster near the panel surface for panel temperature measurement. A panel

cross-section is shown in Figure 2.5.
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2.2.2 Room Instrumentation and Controls

Currently, twelve heated panels have been installed, allan the west walt.

The other surfaces are currently passive surfaces. The heated panel system

requires a control scheme to maintain panel surface temperatures at desired

levels. This is accomplished using a Upattern" control algorithm which is

described by Fisher (1989) and Sanders (1995). This algorithm is implemented in

a BASIC computer program, and controls the panels and samples room

inlet/outlet and surface temperatures. Twelve Type T thermocouples (one per

panel) are placed near the surface of each panel and are connected to a Helios

Fluke Datalogger. The Fluke samples panel temperatures approximately every

5 seconds. The electromotive force voltage (emf) of each thermocouple is read

and passed on to the Fluke datalogger to determine respective temperatures.

The temperatures are then passed on to the serial port of the lab IBM cpu. The

control algorithm, which is fully described in Fisher (1989) and Sanders (1995),

returns control bytes to the digital I/O board. The digital 110 converts the control

bytes into either a high signal (~ 5 volts) or a low signal (0 volts). This signal is

I'
I

",
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then passed to a bank of solid state relays at the experimental room. These solid

state relays are circuited to receive both a low control voltage signal (5 volts) and

a 120 volt line voltage. On a high signal the solid state relay closes and 120 volts

are passed to the panel's resistive wire circuit. On a low signal the solid state

relay opens, short-circuiting the connection, turning the heated panel off.

Additionally, twelve thermocouples were mounted on the passive walls, floor and

ceiling.

2.3 Air System Description

The air system consists of a fan coi:1 unit, an airflow measurement box, a

reheat section and insulated ducting. The air system provides a known

volumetric flow rate of conditioned air to the room and is described in detail

below. An overall schematic is shown in Figure 2.1.

2.3. 1 Fan Coil Unit

A fan-coil unit, mounted on the experimental room platform (Ref. Figure

2.1), utilizes a chilled water coil to provide conditioned air to the experimental

room. The fan-coil unit was a Westinghouse 4 ton unit and part of a residential

direct-expansion split system. The unit was conve,rted to a chilled water fan-coil

unit for the study at hand. The fan-coil unit was rated at 1600 cfm at 0.75" inches

of water static pressure. The unit was converted to a chilled water fan-coil unit

for the study at hand. The direct expansion coil header was removed and

replaced with a chilled water header thus creating a chilled water coil. The fan-

coil unit with a 3/4 horsepower fan motor, also contained a 10 KW resistance-- ~~.

j •

/,
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heating coil. The resistance coil assembly was removed and retrofitted for

installation as a reheat coil in the supply ductwork downstream of the air

measurement box.

A variable voltage AC controller was used for most of the experiments to

provide flow control of the supply air to the room. Spitler et. al. (1991) used flow

control dampers placed in the return ducting. A combination of both fan control

and damper control is suggested for future experiments to ensure proper control

and inlet conditions at the air-flow measurement chamber.

Since the fan-coil unit was salvaged, a few performanoe indicators might

be of interest. The fan-coil unit cooling capacities for the 5,10, 15,20, and 25

ach experiments are provided in Table 2.1. For these experiments the chilled

water entering temperature ranged from 40-43 OF, subject to chiller cycling effect.

Additionally, the fan-coil capacity is a function of the heated panel output. As

such, the fan-coil entering and exiting air temperatures fluctuate with panel power

fluctuations.

Table 2.1 Fan-coil Unit Performance

Experiment VOlumetric Sensible Entering Air Exiting Air
Flow Rate Cooling (btulhr) Temperature (oF) Temperature (oF)

E091795C 5 ach (160 cfm) 3760 , 72.03 50.26-
E091795A 10 ach (325 cfm) 6730 67.18 4800

E0917958 15 ach (480 cfm) 7285 62.33 48.28

E091696 20 ach (650 cfm) 8285 6085 49.05

E090995 25 ach (820 cfm) 8175 58.49 49.26
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2.3.2 Air Flow Measurement Box

To obtain a meaningful heat balance, accurate measurement of the room

supply air volume is necessary. To this end, an air flow measurement box was

constructed. The basic design of the box is described by ASHRAE Standard 51

1985. This system utilizes the measurement of a pressure differential across a

flow nozzle of known geometry (parabolic in this case) to calculate volumetric flow

rate. This pl7essure differential occurs due to the sudden reduction in nozzle

cross-sectional area. Further, the flow rate is proportional to the square of the

result:ing pressure differential. By applying the Bernoulli equation and the

continui,ty equation, a theoretical formulation for volumetric flow rate is obtained.

Further development of the equation allows for flow losses, jet contraction and

compressible fluid flow effects. The equations used for this study are given in

Appendix B.

The measurement box, constructed mostly of 2x4 studs and 1/2" plywood,

is insulated with R-11 fiberglass batt to minimize heat loss. All joints are caulked

and adhesive stripping has been applied to each access door to minimize air

leakage. The construction is an "outlet chamber" set-up in accordance with

ASHRAE Standard 51-1985. Elevation and plan views of the measurement box

can be seen in Figure 2.6.
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A few measurement box design parameters, critical to ASHRAE Standard

51 should be mentioned. Referring to Figure 2.6, the following critical dimensions

apply: J =17.0", F =22.0", L =110", W =63", H =64.5", and M =71.9". The

dimension M is an equivalent diameter based on H x W. Additionally, an

equivalent diameter is calculated based on fan discharge dimensions, A =11.5"

and B =13.0". This equivalent fan discharge diameter, 0 is used in the following

.'
"
~.

•
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equation: J = 1.2*D. The ASHRAE Standard calls for a minimum of two settling

means. The settling means were constructed of a fine grid hardware cloth

installed across the cross-section of the measurement box. The standard allows

for multiple layers of settling means for proper flow and backpressure

requirements. However, this study utilized a single layer settling means for both

the upstream and downstream conditions. The upstream settling means provide

a uniform flow at the entrance to the nozzles, while the downstream settling

means allow for proper back-pressure. Both conditions are critical for the

measurement of the pressure drop across the nozzle bank.

For the initial testing, 7", 3" and 1.6" flow nozzles were installed in the

measurement box. The overall measurement box is designed for the nozzle

arrangement shown in Figure 2.7. The solidly outlined nozzles indicate those

currently installed. At a design pressure drop of 0.8 inches of water across the

nozzle bank, this gives minimum and maximum cfm limits of 18.6 (0.5 ach) and

3550 (110 ach) respectively. This will allow for a large range of experiments to

be performed in the future. However, due to financial constraints we were unable

to ublize the full capacity of this design. With the current design, we were able to

produce flow rates ranging between 161 cfm (5 ach) and 820 cfm (25 ach) at 0.8"

of pressure drop. Current nozzle layout accounts for edge effects as per the

standard. Figure 2.7 shows the proposed future design and current nozzle

layout. Refer to Appendix B for equations and calculations relating to air flow rate

measurement.

'..,..,:.....
'....
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Figure 2.7 Air Flow Measurement Box Nozzle Bank Layout.

A total of 8 pressure taps were installed across the nozzle bank (four

upstream and four downstream). Planes 5 & 6, of Fig'ure 2.6, denote the center-

line of the pressure taps on each side of the nozzle bank. This center-line is 1.5"

+/-0.25" from center of the nozzle bank. The pressure taps were mounted flush

and connected to pressure averaging manifolds using 1/4" plastic tubing. This

tubing was then connected to an inclined manometer for manual pressure
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differential readings, in inches of water, across the nozzle bank. A detail of the

pressure tap design is shown in Figure 2.8.

2.0"

-j rO.0625"

1.5"

~ ~0.1250"
~·~01875"

0.4375"

Figure 2.8 Typical Cross-section of Measurement Box Pressure Tap

2.3.3 Reheat Coil

A reheat section, for temperature control, was mounted in the duct just

downstream of the measurement box. This reheat section was not implemented

for the initial testing. Room supply temperature was a steady-state value limited



33

only by the set point of the water-source heat pump (i.e., room inlet was usually

between 50 and 55 degrees Fahrenheit).

The reheat section, while not in working order at the time of the validation

tests, will provide approximately 5kw of electric resistance reheat capacity. This

will give much better room temperature control on future experiments and will

allow the investigation of variable inlet temperature experiments. A companion

project (Ferguson, 1991) investigated control of the resistance coil's, using a

proportional control algorithm in conjunction with solid state relays, and

determined that reasonable control could be maintained with minimal overshoot

and reasonable response time.

2.3.4 Ducting

The ducting system for the facility is quite basic and, has the following

components: Starting at the outlet of the measurement box, a 20" diameter f1exi-

duct section is connected to a 2' reheat section followed by 24 feet of 24" x 24"

plywood duct. Another section of 20" f1exi-duct is then connected to the south

room inlet. At the north room outlet a section of 20" f1exi-duct is connected to an

8 foot section of vertical plywood duct followed by a 20" diameter f1exi-duct

section which is then connected to the fan/coil unit at the air measurement box

inlet. The general layout is shown in Figure 1.1. Each f1exi-duct section has

been designed with fittings that can be moved and adapted for a number of room

inlet and outlet configurations. The entire air supply system is insulated and

sealed to minimize heat loss and air leakage.

'.
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2.4. Chilled Water System

A constant flow of conditioned air was supplied to the room, via a chilled

water system, utilizing a five ton water-source heat pump. Tap water was

circulated through the heat sink heat exchanger (condenser) and the five ton

chiller was set to a 40 degree Fahrenheit chilled water supply temperature.

Chilled water was then supplied to a 225 gallon chilled water tank, using a small

Grundfos circulating pump. This chilled water is discharged into the tank near the

bottom in the vicinity of the coil loop outlet. A schematic of both the chiller and

coil' loops is shown in Figure 2.9. Water is supplied at the base and retumed at

the top of the chilled water tank to a create a thermal gradient. This gradient

allows for a constant temperature supply of chilled water to the fan/coil unit.

Water flow rates were maintained between 4 and 6 gallons per minute. Also,

both loops were supplied with manual regulating valves to allow for control of the

coil temperature.

2.4. 1 Chiller Controls

A chiller control box was also implemented to provide proper temperature

control of the water-source heat pump, prevent damage to the chiller due to a dry

heat exchanger, and cycle the chiller pump and waste water off when no cooling

was required. A Goldline remote temperature sensing thermostat was used to

measure chilled water tank temperature. Initially, short-cycling of the water

source heat pump was problematic and an improved control circuit was used.

One problem was too tight of a floating temperature range « 2 degrees F). This

was adjusted to around 5 degrees Fahrenheit and chiller setpoint was set at

I I
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approximately 40 degrees Fahrenheit. A solenoid valve was connected to the

chiller control switch. This valve, which shut off the condenser water when the

chiller shut off, also required a shock control device to prevent damage to the

piping design during sudden closing of the water valve. As a separate control,

the coil pump switch was also included in the chiller control box. This separate

circuit allowed for continuous circulation of chilled water to the fanlcoil unit during

the course of the experiments. A schematic shown in Figure 2.9 outlines the

chilled water system and its controls setup.
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2.5 Air-Side Instrumentation

In addition to four thermocouples at the entrance of the airflow

measurement box, four thermocouples were mounted at both the room inlet and

outlet. Thermocouple readings were averaged to obtain room inlet and outlet

temperatures. These spatial averages were susceptible to stratification at lower

flow rates. The resulting uncertainties will be discussed later in section 2.8.

2.6 Data Acquisition

Each sampling by the Fluke datalogger is written to a data file for further

processing. Depending on the length of each experiment this data file may be as

large as 4 megabytes of temperature data. The BASIC computer program written

to control the panels also retrieves the room inlet/outlet and surface

temperatures. For each experiment large amounts of temperature and auxiliary

data are generated. The auxiliary file contains the following echoed inputs:

• Desired panel setpoint tF)

• Experimental code

• Static pressure (inches of H20)

• Differential pressure (inches of H20)

• Barometric pressure (inches of Mercury)

• Drybulb and wetbulb temperatures (oF)

• Current flow nozzle arrangement

It should be noted that most of this data was passed on to a separate data

analysis program. This data analysis program and its functions will be explained

later in chapter 3 and the source code can be found in Appendix A.
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The temperature data file contained all passive surface temperatures, all

twelve heated panel temperatures, the nozzle temperature and the room inlet and

outlet temperatures for each sample, approximately every 10 seconds.

Additionally, for each sample temperature data the program provided a counter,

the fluke datalogger control text, and the twelve panel control bytes used in the

analysis program to calculate panel power.

2.7. Experimental Procedure

Various experimental strategies were investigated and will be outlined

here. Additionally, Table 2.1 shows a typical experimental observation log for

three experiments.

While the chilled water tank, with its 225 gallons of capacity, provided

excellent chilled water cooling capacity, it also required a large lead time for chill-

down. This chill-down generally took about 2 hours for a chilled water tank

setpoint of 40 degrees Fahrenheit. The external and building environment, in

which the experimental room was enclosed, influenced this. For example, as the

outside air temperature and domestic water temperature fluctuated during the

summer and winter, this chill-down time might vary by as much as 30 minutes

either direction. During this chill-down time the fan and circulating pump were

allowed to run. This cooled the room down below the steady state temperature.

After the chliller cycled off at its setpoint the panel control algorithm was allowed

to come on and calculate the three pattern control response factors for the

current room conditions. After these parameters were calculated the fan system
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was turned off and the panels and pattern control algorithm ran their course

bringing the panel temperature up to the specified setpoint. During the time that

the panels were attaining setpoint, the chiUer was still allowed to cycle and the

coil pump was on continuously. Only the fan system was turned off during this

time. When the panel setpoints were reached, the fan system was again turned

on and the system was allowed to reach a steady-state condition. Once a

steady-state condition was judged to be reached, the energy balance phase of

the experiment was begun. Steady-state conditions were determined by a

manual observation of the room inlet and outlet temperatures. Generally

speaking this time was about one hour from the second start of the fan system.

Total experimental time from chill-down time to steady state conditions was on

the order of 3 to 3.5 hours. For consecutive experiments this time was

approximately 1 to 1.5 hours. As can be seen a large amount of the time was

spent chilling the water.

Another sequence which reduced experimental time but "fooled" the

control algorithm was as follows. The chiller and panels were energized at the

same time to reach specified setpoints simultaneously. The problem here is that

the pattern control response factors are calculated for normal room temperature

inputs. This underestimates the pattern-control parameters required under actual

experimental conditions.

Another experimental procedure, attempted but abandoned, indicated that

for the current panel control algorithm, the heated panels were underpowered.

I'
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Panel control is discussed further in section 3.2. The chiller was allowed to reach

steady state and with the fan system on (in contrast to the first procedure

above), the panel control algorithm was started and the panels were allowed to

reach setpoint. This increased experimental time threefold as the under-powered

panels struggled to reach setpoints even at low air flow rates. The first sequence

as described above was deemed most effective and used for the majority of the

experiments.

Following is an experimental log with related observations for three

experiments performed on 5/06/95. The observations point to some of the

shortcomings of the facility and these will be addressed in Chapter 4.



Table 2.2 Experimental Sequence: Instantaneous Status Log

Experiment #1: 1.6" & 3" nozzles Uncapped

air measurement system chilled water system experimental room
time fan(~p) nozzles chiller coil pump panelslrilro

12:20 0.0 -- on(65°F) off(O gpm) 105170170 of
2:30 0.0 70.4°F off(40oF) on(4 gpm) 105/83.5179.8 of
2:32 1.09 -- off(41°F) I on(4 gpm) 105/-/- of

2:45 1.09 53.9°F on(42°F) on(4 gpm) 105/63.5175.1 of
3:17 1.09 50.2°F off(39°F) on(4 gpm) 105/58.7172.2 of
3:40 1.09 51.4°F on(42°F) on(4 gpm) 105/58.0171.7 of
3:42 0.0 51.0°F on(42°F) on(4 gpm) 105/58.2f71.6 of

Experiment #1: Observations
• Air leakage problems at the air-handler and access doors to the measurement box.
• Panel setpoint is 105 OF, Actual temperatures are between 104.20-104.97 OF.
• Thermal gradient in vertical according to thermocouple readings
• Fan vibration is being transferred on to the experimental room.

Experiment #2: 7" nozzle Uncapped

air measurement system " chilled water system experimental room

time fan(~p) nozzles chiller coil pump panels/rilro

3:46 0.0 57.2 OF on(41 OF) on(O gpm) 105178.0f72.9°F

3:49 0.51 52.3 OF on(41 OF) on(4 gpm) 105/57.7172.4 OF

4:26 0.51 49.7 OF off(39 OF) on(4 gpm) 105/53.2/61.6 OF

4:49 0.51 51.1 OF on(42 OF) on(4 gpm) 105/53.9/61.7 OF

4:52 0.0 50.2 OF on(42 OF) on(4 gpm) 105/53.8/61.6 OF

Experiment #2: Observations
• Air leakage less of a problem. Barely noticeable at measurement box.
• Less fan heat transferred to air. Better fan operating point.
• Panel setpoint is 105 OF, actual temperatures are 99.6-104.5 oF.
• Panel at inlet cannot maintain setpoint at the higher flow rates. Control algorithm needs to

allow for this. This panel is washed with the chilled air.
• Room vibration is barely detectable.
• Laboratory temperature is 70 OF
• Panel at room inlet is still dropping, currently 91.35 OF. All other panels have stabilized

between 99.6-104.4 OF. Panels are under-powered.

Experiment #3: 3" nozzle Uncapped

air measurement system chilled water system experimental room

time fan(~p) nozzles chiller coil pump panels/h/ro

5:50 0.0 61.9°F off(41°F) on(4 gpm) 105/81.4178.6 OF

5:53 1.12 (-) off(41°F) on(4 gpm) 105/57.7172.4 OF

6:59 112 51.6 OF on(42 OF) on(4 gpm) 105/57.7172.7 OF

7:00 0.0 512 OF on(42 OF) on(4 gpm) 105/57.7172.7 OF

40
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2. 7. 1 Experimental Startup and Shutdown

The following list summarizes startup and shutdown procedures required

for each experimental session.

Startup

1. Open water main gate valve.

2. Switch air-handler, water sauce heat pump, panel and circulating pump
breakers to ON position.

3. Check circulating pumps for proper operation proper connections.

4. Check storage tank water level.

5. Open heat pump water source regulating ball valve to 50% position.

6. Flip all chiller control switches to auto position including main chiller
switch to start heat pump.

7. Check measurement box nozzle arrangement and ensure all access
doors are secured.

8. Check inclined manometer fluid level.

9. Turn air-handler switch to ON position.

10. Turn Fluke Datalogger ON.

11. Turn IBM PC ON and start MSDOS QBAS'IC.

12. Run Control.bas program to start panel warmup routines.

13. Check sump pump for proper operation while chiller is operating.

Shutdown

1. Turn chiller and air-handler OFF.

2. Turn fan-coil circulating pump OFF.

3. Type [control] [break] at IBM PC terminal.

4. Copy experiment data file to floppy disk and turn IBM PC OFF.

5. Turn panel, heat pump, air-handler and cirulating pump breakers OFF.

6. Close main water gate valve OFF before leaving facility
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2.8 Experimental Uncertainties

Final experimental' results and conclusions should be viewed from the

perspective of a reasonable error analysis. The variation of the measured value

from its true value is the experimental error. There are primarily two types of

experimental errors, systematic and random. Systematic errors affect the

accuracy of the measured value but each experimental sample is affected in the

same way. Instrument drift in one direction from the actual value is an example.

On the other hand variations in the measured value on either side of the true

value are the result of random errors. These errors result from the inability to

control all variables affecting the measurement of a specific value. A normal

distribution is assumed for these random errors.

For the study at hand, three forms of experimental uncertainty are

investigated. Individual measurements of quantities such at temperature, power,

and volumetric flow rate involve experimental error. Spatial averages of these

quantities, such as average inlet temperature, compound the individual

measurement errors. Finally, these errors are futher compounded for calculated

quantities, such as room air heat gain. The uncertainty associated with the

calculation of air heat gain will be discussed in chapter 3, section 3.3.1.

2.8. 1 Volumetric Flow Rate Uncertainty

Volumetric flow rate was measured in accordance with ASHRAE Standard

51-1985, Laboratory Methods of Testing Fan for Rating. This Standard outlines,

in detail, the errors introduced by direct measurement of volumetric flow rate
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according to the prescribed method. Variables affecting this measurement

include the following: nozzle discharge coefficient, fan speed, area at measuring

station, differential pressure and fan pressure. The uncertainty for determining

volumetric flow rate in equation form is as follows:

eo = [e/ + e/ + (e,l2)2 + (ep/2)2 + eN2]1I2 [2.1]

where,

ec = nozzle discharge coefficient error = 0.012

eA = area error = 0.005

ef = differential pressure error = 0.05

ep = fan static pressure error = 0.05
....

eN = fan speed = 0.005

thus,

eo= [0.0122 + 0.0052+ (0.05/2)2 + (0.05/2)2 + 0.0052]1/2 [2.1a]

= 0.038 = +/-3.8%

2.8.2 Temperature Measurement Uncertainty

The temperature measurements (i.e., nozzle, room inlet, room outlet, and

panels), are susceptible to error via the Type T thermocouple wire properties (+/-

0.9 OF), cold junction compensation (+/- 0.1 OF), and the emf voltage (+/- 0.9 OF).

Adding the errors in quadrature, due to the random nature of these errors:

[2.2]
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2.8.3 Panel Power Uncertainty

Panel power is a function of line voltage and panel resistance.

Fluctuations in line voltage during the course of an experiment ranged from two to

three volts. These voltage fluctuations introduced uncertainties on the order of

+/-2.5% for an average voltage reading of 121.6 volts. The voltmeter was a

negligible source of error on the order of +/-0.08%. Ohmmeter precision limits

were +/-0.1 Q. This reflects an uncertainty of +/-0.125% for an average panel

resistance of 79.5Q. The uncertainty introduced by the increased Ni-Cr wire

temperature was assumed to be negligible. The overall panel uncertainty can

thus be calculated as follows:

* 2 2 112epanel =[(2 evoll) + (eres) ]

where,

evolt =voltage fluctuation uncertainty =2.5%

eres =ohmmeter precision =0.125%

thus,

epanel =±5.15%

2.8.4 Spatial Average Uncertainty

[2.3]

[2.3a]

One other potential source of error is spatial uncertainty due to limited

local measurements used in determining average values. Room inlet and outlet

temperatures were measured via the thermocouple arrangement shown in Figure
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2.10. There was a vertical variation as is demonstrated in Figure 2.11. For the 1,

5 and 25 ach experiments, average inlet temperatures were 72.5,57.3 of and

52.3 of, respectively. Figure 2.11 shows the vertical temperature gradient for

these three flow rates.

The calculation of spatial uncertainty is more estimation than explicit

analytical theory. For the current study, an estimate of inlet temperature spatial

uncertainty will be the average inlet temperature plus or minus the range of

measured inlet temperatures. Thus the spatial uncertainty for the room inlet

temperature is reported as follows:

1 ach experiment: 72.5 ±7.7°F

5 ach experiment: 57.3 ±O.36 of

25 ach experiment 52.3 ±D.19 of

•
•
•
•

Figure 2.10 Room Inlet Temperature Thermocouple Arrangement

The large deviation that occurs for the 1 ach experiment serves warning

that this data is not accurate enough to be useful. These deviations at low flow

rates are discussed further in chapter 3, section 3.3.3.2. The spatial average
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uncertainty is combined with the individual measurement uncertainty by adding in

quadrature as follows:

_ 2 2 1/2 _ OF
er,1ach - [(1.3) + (7.7)] - ±7.8

2 2 1/2 _ °
er,5ach = [(1.3) + (0.36)] - ±1.35 F

2 21/2 0
er,25ach = [(1.3) + (0.19)] = ±1.31 F

Inlet Temperature Gradient

[2.4a]

[2.4b]

[2.4c]

81

- 76u.
~

e 71:::l-ca:
~

<I) 66c..
E
<I) 61....-<I)

:5 56

--.--25ACH - -------J
_.... 5 ACH

~1ACH

- , - -•..... - . - - . - - - - - - -- - - .

51 ------------------.------------------.------------------

TC1 TC2 TC3 TC4

Thennocouple

Figure 2.11 Room Inlet Temperature Gradient
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CHAPTER THREE - RESULTS AND ANALYSIS

3.1 Summary of Experiments

Results are presented here for the initial experiments performed in the

convective heat transfer experimental facility. Experimental averages and

transient versus steady-state conditions are discussed with an emphasis being

placed on facility heat balance performance.

Seventeen experiments are summarized in Table 3.1. A subset of these

experiments will receive particular attention (Le., the 5,10, 15, 20 & 25 ach

experiments). The experiments shown in Table 3.1 cover room airflows

between 28 and 820 cfm. For each experiment the following average values are

reported: inlet and outlet velocity, air density, mass flow rate, volumetric flow

rate, air changes per hour, inlet and outlet temperature, nozzle temperature,

passive wall, ceiling and floor temperatures and panel temperature. Results from

all seventeen experiments are given in Tables 3.2 and 3.3. Additionally, for the

subset of experiments mentioned above, transient behavior versus steady-state

behavior was investigated. Also, a number of representative fluid flow

parameters are investigated and reported in Table C.2. Finally, an investigation

of experimental errors is provided with their related impact on overall

experimental facility performance.



Table 3.1 Overview of Experiments.

File Name Panel Delta P Flow ACH Panel Nozzle
Temp. Rate Power Set-up

1 E012895A 105uF .20 562 17.5 5369 7",3"&1.6"
2 E022595B 10SuF .52 788 24.6 5369 7" & 1.6"
3 E030495 10SuF .49 727 22.7 5559 7"
4 E050695A 105uF 1.09 257 8 4772 1.6"&3"

5 E050695B 105uF .51 739 23.1 5724 7"
6 E050695C 10SuF 1.12 200 6.25 4239 3"

7 E080595A 100uF .40 806 25.2 5508 7",3"&1,6"

8 E080595B 100uF 1.12 200 6.25 3985 3"
9 E081295A 98uF .52 746 24 5204 7"

10 E081295B 95uF 1.20 28.3 .88 2335 1.6"

11 E082695 95°F .45 818 25.6 5255 7" & 3"

12 E090995 100uF .45 819 25.6 5610 7" &3"

13 E091695 100uF .40 652 20.4 5470 7"

14 E091795A 100uF .10 324 10.1 4582 7"

15 E091795B 100uF .225 488 15.2 5166 7"

16 E091795C 100°F .75 163 5.1 3770 3"

17 E110495 100°F .75 164 5.1 3440 3"

Refer to the following in reference to Table 3.1:

• Panel Temp. - Panel setpoint (OF)

• Delta P - Pressure differential across nozzle bank (inches of H20)

• Flow Rate - Measured volumetric flow rate (ft3/min)

• ACH - Air changes per hour

• Panel Power- Power input to the heated panels (btu/hr)

• Nozzle Set-up - Indicates which nozzles were left uncovered for experiment

3.1. 1 Data Analysis

A data analysis program was written to manipulate the large amounts of

temperature data, calculate the volumetric flow rated based on the ASHRAE

Standard 51-1985 equations and calculate the overall room heat balance. The

program is listed in Appendix A. This BASIC computer program sorts each

48
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experimental data file and assigns the temperature measurements to arrays for

processing. Overall temperature spatial averages for passive surfaces, nozzle,

and room inlet and outlet are calculated. These averages are then passed on to

an Excel spreadsheet and representative air-flow and heat transfer numbers are

calculated. The computer program also calculates the room volumetric flow rate,

panel energy input and room air heat gain. Results for the seventeen

experiments are summarized below. In addition to the measured temperatures,

the data analysis program also requires the following inputs: panel setpoint,

nozzle bank arrangement, pressure differential across the nozzle bank, fan static

pressure, barometric pressure, the experimental code number, and sample

values for the steady state averages. The sample values are pre-determined and

correspond to fan on/fan off times for each experiment. The data analysis

program is written in batch form to evaluate all seventeen experiments at once

and write corresponding results to corresponding output files. This saved large

amounts of time during results analysis. The program ran for about twenty

minutes on a 66 mhz, 486DX2 personal computer, to parse and calculate data for

all seventeen experiments.

3.1.2 Experimental Averages

Table 3.2 is a summary of the average temperature measurements for

each experiment. The final 50 measurements were used as the averaging

sample. This averaging period or Usteady-state condition" will be investigated

later. The average bulk air temperature was estimated as the average of the
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room surface temperatures. This temperature is used to calculate the bulk air

properties which are given in Table 3.3: Additionally, these average air properties

are used in calculating the following dimensionless parameters for room airflow:

Reynolds #, Prandtl #, Rayleigh #, Archimedes #, Grashof #, and Jet Momentum

#. An overview of these characteristic parameters is reported in Appendix C.

Table 3.2 Average Temperatures (Degrees Fahrenheit).

EXP Tnzl T ro Tri Tela Tftf

1 53.53 65.94 57.56 73.74 73.31
2 55.82 66.37 59.46 71.12 73.92
3 54.90 64.15 57.51 68.74 71.70
4 51.39 71.47 58.00 80.33 76.45
5 50.98 61.57 53.83 67.08 69.90
6 51.47 72.73 57.70 81.58 77.10
7 51.18 60.46 53.98 65.14 67.81
8 51.04 70.66 57.81 78.64 74.32
9 51.33 60.85 54.32 65.73 68.0B
10 53.96 77.19 72.37 80.60 77.81
11 49.16 57.65 52.05 61.42 63.55
12 49.26 58.49 52.20 63.05 65.60
13 49.05 60.85 52.88 67.93 68.45
14 48.00 67.18 55.38 77.45 73.87
15 48.28 62.33 52.83 72.60 70.56
16 50.26 72.03 57.75 80.41 75.58
17 52.27 74.22 62.11 80.46 76.99

EXP Tnnl Tswfl Tnwtl Tewll Tnnavo

1 103.68 72.53 71.17 72.45 72.64
2 103.59 71.77 69.87 71.07 71.55
3 102.93 69.58 67.69 69.01 69.35
4 104.59 78.00 78.35 79.67 78.56
5 101.70 67.61 65.46 67.03 67.42
6 104.87 79.18 79.77 80.81 79.69
7 97.84 65.85 63.68 65.05 65.50
8 9990 76.79 76.26 77.87 76.78
9 96.56 66.32 64.10 65.52 65.95
10 95.06 79.59 79.51 80.37 79.57
11 93.08 62.28 60.36 61.42 61.81
12 97.05 63.92 61.49 62.98 63.41
13 98.53 67.45 64.65 66.67 67.03
14 99.71 74.53 73.07 75.03 74.79
15 99.02 69.73 67.53 69.37 69.96
16 99.80 77.76 77.62 79.52 78.18
17 99.78 78.71 78.67 80.25 79.02
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Table 3.3 Average Air Properties.

EXP RHOj RHOa RHOnzl RHO~ mUt mu~ alphal alph~ betal beta..

1 0.0765 0.0751 0.0772 0.0740 1.204E-4 1.231 E-4 0.8167 0.8450 0.00190 0.00185

2 0.0762 0.0750 0.0768 0.0741 1.207E-4 1.229E-4 0.8202 0.8429 0.00189 ' 0.00185

3 0.0765 0.0754 0.0770 0.0745 1.204E-4 1.225E-4 0.8166 0.8387 0.00190 0.00186

... 0.0765 0.0742 0.0776 0.0730 1.204E-4 1.241E-4 0.8175 08567 0.00190 0.00183

5 0.0772 0.0758 0.0776 0.0748 1.197E-4 1.221 E-4 0.8100 0.8350 000191 0.00186

6 0.0765 0.0739 0.0776 0.0728 1.204E-4 1.243E-4 0.8170 0.8589 0.00190 0.00182

7 0.0771 0.0760 0.0776 0.0752 1.197E-4 1.218E-4 0.8103 0.8314 0.00191 0.00187

8 0.0765 0.0743 0.0776 0.0733 1.204E-4 1.238E-4 0.8172 0.8531 0.00190 0.00183

9 0.0771 0.0760 0.0776 0.0751 1.198E-4 1.219E-4 0.8109 0.8322 0.00191 0.00187

10 0.0740 0.0732 0.0771 0.0728 1.230E-4 1.243E-4 0.8445 0.8587 0.00185 0.00182

11 0.0775 0.0765 0.0780 0.0758 1.194E-4 1.211E-4 0.8069 0.8245 0.00192 0.00188

12 0.0774 0.0764 0.0779 0.0755 1.194E-4 1214E-4 0.8071 0.8275 0.00192 0.00188

13 0.0773 0.0760 0.0780 0.0749 ·1.195E---4 1.221E-4 0.8083 0.6343 0.00192 0.00187

14 0.0769 0.0749 0.0782 0.0736 1200E---4 1235E---4 0.8128 0.a.492 0.00191 0.00184

15 0.0773 0.0757 0.0781 0.0744 1.195E-4 1.226E---4 0.8082 0.8399 0.00192 0.00186

16 0.0765 0.0741 0.0778 0.0730 1204E-4 1.241E-4 0.8171 0.8559 0.00190 0.00183

17 0.0758 0.0737 0.0774 0.0729 1.212E4 1.242E-4 0.8251 0.8576 0.00188 0.00182

Please note that the subscripts t, 0, nzl, and 00 refer to air properties calculated at

the room inlet, room outlet, flow nozzle entrance and room air average

temperatures. Units for the above properties are reported in the Nomenclature

section of the thesis.

3.2 Transient Versus Steady State

Facility heat balance calculations require that the following question be

evaluated: Did the facility reach a sufficiently steady state condition? Figure 3.1

shows a room interior elevation and the heated panel arrangement. Figure 3.2

shows panel temperature versus time for the 25 ach (820 cfm) & 5 ach (165 cfm)

experiments. By inspection of Figure 3.2, a number of panels are unable to
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maintain the setpoint at higher volumetric flow rates, whereas, at the lower

volumetric flow rates the setpoint is maintained (i.e., refer to figures 3.1 and 3.2).

To investigate this condition, panel power duty cycles were calculated for

the last 20 minutes of the 5 and 25 ach experiments. This time corresponds to

the last 250 samples at 5 seconds per sample. Table 3.4 gives these results.

Table 3.4 Heated Panel Power Duty Cycles

panel 1 2 3 4 5 6 7 8 9 10 11 12

25 ach .75 .75 .75 .74 .74 .74 .75 .71 .74 .75 .69 .75

5 ach .46 .60 .56 .38 .48 .56 .42 .42 .45 .43 .36 .50

It is evident, at the higher flow rates, that certain panels are unable to

maintain their desired setpoints. The panels with depressed temperatures are

essentially washed by the inlet jet at the higher flow rates or are located adjacent

to an area of cool air recirculation and build-up (i.e., panel 12 located adjacent to

where the inlet jet impinges on the far wall).

Two inferences can be made regarding the panels and their performance

from an examination of Figure 3.2 and Table 3.4. First, the panel control strategy

is problematic as only a 75% duty cycle is realized even at the high volumetric

flow rate. Second, the panels are sufficiently powered to control around the

desired setpoint at the lower flow rates. The panel control algorithm should be

revised to allow for a higher duty cycle.
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Figures 3.3 - 3.8 show nozzle, inlet, and outlet temperatures as functions

of time. By inspection, the nozzle temperature indicates a sensitivity to chiller

cycling. The room inlet and outlet temperatures show a somewhat dampened

effect of chiller cycling on temperature. This was true for all experiments.

The six experiments shown in Figures 3.3 -3.8 represent a subset of

experiments, all performed at a panel setpoint of 100 of at 5, 10, 15, 20, and 25

ach. The first graph in each figure shows temperature versus time from panel

control program start to system shutdown. The marked discontinuity indicates

fan start. Those experiments not indicating this discontinuity were the second or

third experiments in a series. The second graph shows nozzle, inlet, and outlet

temperatures during the averaging period (i.e., the last fifty samples).

Additionally, linear curve fit equations are displayed for all three temperatures, as

well as, the inlet to outlet temperature difference. These equations indicate that

the experiments would have benefited from a longer run time. However, it should

be noted that the temperature difference equations show a relatively flat line and

very little change over time. This is important to note, in that it is this delta T that

is used to calculate the air heat gain for the overall facility heat balance.
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Temperature vs. Time
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3.3 Room Heat Balance

Satisfactory facility performance and future usefulness is dependent upon

the facilities' ability to achieve an overall heat balance. This heat balance, for a

given time period, is given in equation form as follows:

Qair.i =I,Qpanel.i - I,Qcond,i

Where

.
Qair =air heat gain =m ep(T0-Ti)

12

Qpanel = total panel power input = L (V2/Rj)
j=l

Rj equals electrical resistance of panel j.

12

Qcond =room conduction heat loss = L Aj(Tsi-Tso)/Rj
j=1

Rj equals thermal resistance of surface j.

[3.1 ]
~
~.

[3.2] J
•
~·•

[3.3] )

~
~

~

•
~

)

[3.4]

The above equation can be simplified if it is assumed that back losses

(Qcond) are negligible (Sanders, 1995). Thus energy input to the panels should

equal the air heat gain from room inlet to outlet.

3.3.1 Air Heat Gain Uncertainty

Air heat gain is calculated according to the following equation:

where,

.
Qair = pV epAT

AT = Toutlet - T inlet

[3.5]

[3.6]



63

In equation form, the uncertainty due to this derived quantity is as follows:

-

The uncertainty due to the inlet-to-outlet temperature difference is dependent

_ [ 2 2 1/2eQair - evtr + (e T/~T) ]

where,

evtr = volumetric flow rate uncertainty from section 2.8,1

=0.038

e~T = uncertainty due to ~T between room inlet and outlet
_ 2 2 1/2
- [elin + etoul ]

upon the ~T for each experiment.

Example calculations for the 1, 5 and 25 ach temperature difference

uncertainties are offered as follows:

e T.1 =± [(7.8)2 + (7.8)2]1/2 =± 11.0°F

e T,5 = ± [(1.35)2 + (1.35)2]1/2 = ± 1.91 of

2 2 1/2 °
e\T,25 = ± [(1.31) + (1.31)] = ± 1.85 F

[3.7]

[3.8]

[3.8al

[3.8b]

[3.8c]

~

)

~
~

~

~

i
l
t

!
I

I
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For simplification the above calculation assumes inlet and outlet uncertainties are

equal. While the above temperature uncertainties include the spatial

measurement uncertainty, spot measurements at the room outlet showed these

to be much smaller than room inlet variations. The overall air heat gain

uncertainties are summarized for all seventeen experiments in Table 3.5. The

shaded entries in Table 3.5 represent the six core experiments.
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Table 3.5 Air Heat Gain Uncertainty by Experiment.

code ach Toutlet - Tinlet (oF) air heat gain uncertainty
E012895A(1 ) 18 8.38 0.23
E022595B(2) 25 6.91 0.27
E030495(3) 23 6.65 0.28
E050695A(4) 8 13.47 0.15
E050695B(5) 23 7.74 0.24
E050695C(6) 6 15.02 0.13
E080595A(7) 25 6.47 0.29
E080595B(8) 6 12.85 0.15
E081295A(9) 24 6.53 0.29
E081295B(10) 1 4.82 2.28
E082695(11) 26 5.59 0.33
E090995(12) 25 6.29 , 0.30
E091695(13) 20 7.97 0.24
E091795A(14) 10 11.81 0.17
E091795B(15) 15 9.5 0.20
E091795C(16) 5 14.28 0.14
E110495(17) 5 12.11 0.16

3.3.2 Preliminary Heat Balance Results

Table 3.6 summarizes the panel power versus air heat gain values for all

seventeen experiments. For the six core experiments (shaded entries in Table

3.6), air heat gain versus panel power is plotted in Figure 3.9. The line y=x

represents the ideal heat gain curve. The panel power uncertainties are

represented by the horizontal error bars and the air heat gain uncertainties are

represented by the vertical error bars. The lower flow rate experiments fall short

of good agreement as the predicted uncertainties do not intersect the ideal curve.
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Table 3.6 Summary of Panel Power and Air Heat Gain Values.
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code ach panel power (btu/hr) ai,r heat gain (btu/hr)

E012895A(1) 18 5369 5328
E022595B(2) 25 5369 6045
E030495(3) 23 5559 5375 I

E050695A(4) 8 4772 3823
E050695B(5) 23 5724 6415
E050695C(6) 6 4239 3369
E080595A(7) 25 5508 5853
E080595B(8) 6 3985 2882
E081295A(9) 24 5204 5460
E081295B(10 1 2335 1519
E082695(11) 26 5255 5155
E090995(12) 25 5610 5795

I E091695(13) 20 5470 5852
E091795A(14 10 4582 4313
E091795B(15 15 5166 5224
E091795C(16 5 3770 2621
E110495(17) 5 3440 2216

Air Heat Gain vs. Panel Power

8000 ....----------,

7000 -

......

~ 6000
&.-::J
:E 5000 --c:
"iij 4000
C)....
:g 3000-
:I:...< 2000

1000 .
/

0-'"--....,....---------'

o 2000 4000 6000 8000

Panel Power (btu/hr)

Figure 3.9 Room Heat Balance - Air Heat Gain VS. Panel Power.
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This condition is far from ideal and serves warning that not all experimental

uncertainties have been calculated. Additionally, it may also emphasize that

previous simplifying assumptions should be re-visited for overall heat balance

impact. The following sections outline a number of problematic uncertainties that

were difficult to quantify or would require substantial experimental verification.

3.3.3 Room Inlet Factors

3.3.3.1 Temperature and Velocity Gradient

As discussed in section 2.8, a vertical gradient at the room inlet was

observed, especially at the lower volumetric flow rates. In fact, at these lower

flow rates the top thermocouple followed the bulk air temperature. As shown in

Figure 2.11 of section 2.8, at 5ach the inlet vertical temperature gradient was

approximately 1°F. For a volumetric flow of 1 ach this vert'ical temperature

gradient at the room inlet was approximately 12.5°F. The bulk air temperature of

79.57°F, for the 1 ach experiment, closely approximated the top room inlet

thermocouple reading.

Additionally, velocity measurements were not taken across the room inlet.

This is significant because most of the air movement occurs along the bottom of

the 2' x 2' duct, even at volumetric flow rates as high as 15 ach (Spitler, 1991).

This velocity gradient at the room inlet tends to compound the temperature

gradient. Further experimentation is recommended to investigate the velocity

gradient condition.

-
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The effect the room inlet temperature gradient had on the temperature

measurement has been estimated in section 2.8. While the air heat gain

uncertainty reported in Table 3.5 accounts for these temperature gradients, as

Figure 3.9 indicates, the heat balance results still do not agree within the

predicted uncertainties at the lower flow rates.

3.3.3.2 Radiation Effects

Radiative communication to the room inlet thermocouple from surrounding

surfaces is another source of possible air heat gain error. Welty (1969), Parker

(1972), Siegel (1974) and ASHRAE HOF (1993) give the following fundamental

relationships for thermal radiation in an enclosure with n diffuse-gray surfaces.

This equation is derived from a development of the full matrix representation

method for determining radiant exchange between surfaces and is developed

fully in the above sources.

•••r,.
t

I

:w

"
.Ii = B/'b; + (I - B; )I !~Jj

j~1

where

i = 1, 2, n [3.9]

J = radiosity of surface j (Btu/hr-ft2
)

Ej =emittance of surface i

Fij = view factor from surface I to surface j

Ebi = black body emissive power of surface i

The equation for black body emissive power is:

[3.10]
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where,

cr = Stefan-Soltzman constant = 0.1714 x 10-8 btu/hr-ft2-{OR)4

finally,

where,

qradi =Net radiation heat transfer from surface i

Ai = Area of surface i

[3.11 ]

•
~

t.,

The room is divided into 9 surfaces including the thermocouple (reference

Appendix D). Table 3.7 tabulates the parameters used in equations 3.9,3.10,

3.11. The following calculations are for the 5 ach (E091795C) experiment.

Table 3.7 Summary of Radiation Calculation Parameters

surface Ai(fe) E; T j (OF) explanatory notes
north wall 120.0 0.1 77.62 Tnorth measured w/6 tc's
south wall 117.82 0.1 77.76 Tsouth measured wI 6 tc's
west wall 64.0 0.1 78.0 Twest estimated as TIi
east wall 160.0 0.1 79.52 Teast measured wI 3 lc's
heated panels 96.0 0.9 100.0 Tpanel equal to panel setpoint
inlet duct 2.18 0.9 57.75 Tduct estimated as Tin
floor 192.0 0.1 75.58 Tfloor measured wI 6 tc's
ceiling 192.0 0.1 80.41 Tceiling measured wI 6 tc's
thermocouple 8.52x10·;' 0.8 57.75 mounted al room inlet

substituting values from Table 3.7 into equation 3.10,



Etc =0.1714 X 10-8 * 517.84 =123 btu/hr-ft2

Enorth = 0.1714 x 10.8 * 537.64 = 143 btu/hr-ft2

Esouth = 0.1714 x 10.8 * 537.84 = 143 btufhr-fe

Ewest =0.1714 X 10-8 * 538.04 =144 btu/hr-ft2

Eeast = 0.1714 X 10.8 * 540.04 = 146 btu/hr-tt2

Epanel = 0.1714 X 10.8 * 560.04 = 169.0 btu/hr-tt2

Educt = 0.1714 X 10-8 * 514.04 =120.0 btu/hr-tt2

Efloor = 0.1714 x 10-8 * 536.04 =141 btu/hr-ft2

Eceiling =0.1714 X 10.8 * 540.04 =146 btu/hr-tt2
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[3.10a]

[3.10b]

[3.10c]

[3.10d]

[3.10e]

[3.10f]

[3.10g]

[3.10h]

[3.10i]

Substituting the emissivities, black body emissive powers and the view

factors into equation 3.9 yields a system of n linear equations and n unknowns.

Thus the radiosities used in equation 3.11 can be determined. Substituting the

radiosities into equation 3.11 yields the net radiative heat transfer for the surface

of interest. For this example calculation we wish to determine the net radiation

heat transfer from the room inlet thermocouple. Using Microsott Excel matrix

solving functions and estimated view factors, the system of linear equations was

solved for the radiosities. The estimated view factors are reported in Appendix E.

For the thermocouple net radiation heat transfer:

qrad,tc= (123 - 142.82)/[(1-0.9)*(0.9*8.52 x 10'5)]

=-0.00252 btu/hr

[3.11b]

By observation of equation 3.11 b, the net radiation from the thermocouple to

each surface is negative in sign. This negative sign indicates radiation heat
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transfer to the thermocouple at the room inlet from the surrounding surfaces.

Dividing the net radiation heat transfer rate by the thermocouple surface area the

radiative flux is:

q"rad,tc ~ -0.00252/8.52 x 10-5 = -12.0 btu/hr-fe [3.12]

The rate of heat gain by radiation to the thermocouple is equated to the

rate of heat loss by convection. In equation form:

q"rad,tc =hconv(Tair - Ttc) =4.0 * (Tair - 57.75)

where,

hconv ~ 4.0 btu/hr-tt2-
OF (Welty et. aI., 1969)

Ttc,5ach = 57.75

thus,

Tair =54.75 OF

[3.13]

[3.14]

Finally, for the above example, the resulting error in measured temperature

is approximately 3.0oF. Referring to section 2.8 and modifying equations 2.2 and

2.4, the corrected inlet temperature uncertainty for the 5 ach experiment

becomes:

[3.15]

Substituting this uncertainty into equation 3.8 and referring to equation 3.7, the air

heat gain uncertainty for the 5 ach experiment is then modified as follows:

( )
2 2 t/2eOair,corr = [.038 + (3.3/17.28)] = 0.195 [3.16]
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This calculation demonstrates the impact radiative communication had on

the inlet temperature measurement and consequently the air heat gain

uncertainty. This is summarized further in section 3.3.5.

Additionally, an upper limit check on the air temperature error is calculated

by assuming the thermocouple is surrounded by the panel temperature. An

expression for the radiant exchange between two gray surfaces that usee" only

each other is given in equation 3.17. Substituting values from table 3.7 and

equations 3.1 Oa, f:

Etc - Epand

where,

Ftc-panel = 1.0
2

Apanel = Aroom =944.0 ft
Ate =8.52 x 10-5 fe

thus,

qrad,fe = -0.0031 btu/hr

[3.17]

[3.17a]

Dividing this value by the surface area of the thermocouple to obtain the radiative

flux,

q"radltc = -36.4 btu/hr-ft2 [3.17b]

Substituting this value into equation 3.13 and solving for Tair , an upper limit of 9.2

OF is calculated. Thus the estimated inlet temperature error of 3.0 OF due to

radiation effects is reasonable as it falls below the upper bound.
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3.3.4 Air Heat Gain Modification

3.3.4. 1 Room Transient Effects

As per the discussion in section 3.2, the experiments could have benefited

from a longer run time. While it has not been verified, the experimental data

seems to indicate that a relatively long run time would be required to bring the

room inlet temperature in line and thus improving the overall room heat balance.

Time constraints did not allow a full investigation of this. However, with the spot

measurements indicating room stratification, the question of a non-steady state

conditions at these lower flow rates was investigated. Thus ceiling temperatures

were plotted for the 5 ach experiment. Figure 3.10 shows ceiling temperature

versus the last ten minutes of the experiment (i.e., the averaging period of 50

samples).

CEILING TEMPERATURE VERSUS TIME
(5 ACH)

80.50

80.35 .

80.30 ~,--.----r-~--.....,....------.....,....------------'

0.20 1.20 220 320 4.20 520 6.20 7.20 8.20 9.20

time (min)

Figure 3.10 Ceiling Temperature vs. Time.
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The positive slope of the line in Figure 3.10 demonstrates that the room

had not reached a true steady-state condition. This confirms what was reported

in Section 3.1. The increasing ceiling temperature and the spot measurements

indicate a stratified condition. For this non-steady state condition the buoyancy

driven flow is supplied and returned below the stratification line within the room.

The heat from the panels rises into this stratified region and the buoyancy driven

flow immediately drops upon entering the room from the side wall inlet and leaves

at the lower side wall outlet without ever mixing with the upper stratified air. At

true steady-state this room stratification should not exist.

The following equation estimates the amount of heat being transferred to

the stratified region for the 5 ach experiment. The following accounts for the

mass of the air in upper half of the room and the mass of room construction

components (i.e., two-by-twelve framing).

Qtran,5ach =mairCp.air(dTIdt) + mroomCp,framing(dTIdt)

where,

[3 18]

qtran =transient heat transfer to stratified region for 5 ach experiment

mair = mass of air in stratified region = PairVstrat = 0.075 (lbm/ft
3)* 960 (ft3)

mroom = mass of room components in stratified region

=25 (fe) * 32.0 (lbm/ft3
) =800 Ibm

Cp,air =0.24 (btullbm-OF)

Cp,framing = 0.33 (btullbm-oF)

dT/dt =slope of curve shown in Figure 3.10 =0.0018 (F/min)

thus,



Qtran,5ach <::::: 2.0·btu/hr + 28.5 btu/hr = 3D btu/hr
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[3.18a]

Although this transient heat transfer skews the' overall room heat balance results,

the effect is minimal.

One other condition is noted here. By inspection of Figures 3.3 -3.8, while

both the room inlet and outlet temperatures appear to be decreasing, for the 5

ach experiments, the inlet temperature rate of decrease is greater than the room

outlet. This indicates that the room inlet-to-outlet ~T is increasing, thus

increasing the overall air heat gain. It is not clear how long this trend continues

but assuming the room were allowed to run for an additional 4 hours, for the 5

ach experiment, the room inlet would see a 14 OF decrease. While this may over

predict, the implication is clear that the room heat balance would have benefited

from a longer run time.

3.3.4.2 Room Conduction Back/asses

As per the previous discussion, room stratification and room transient

effects are responsible for some of the problems experienced at the lower

volumetric flow rates. Additionally, room conduction backlosses, while negligible

at the higher volumetric flow rates, begin to impact the heat balance at the lower

volumetric flow rates. Table 3.8 shows a steady-state calculation of these

conduction backlosses for all six surfaces. The lab room temperature is assumed

to be approximately 70°F, which agrees well with hand measurements. Thus for

R-67 walls and R-47 floor and ceiling, the conduction heat losses are as follows

for the seven core experiments.
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Table 3.8 Room Conduction Backlosses

code ach qcond (btu/hr)
EO 12895A(1) 18 92,0

E022595B(2) 25 76.2
E030495(3) 23 57,1

E050695A(4) 8 178,4

E050695B(5) 23 55.6
E050695C(6) 6 194,9
E080595A(7) 25 46.7
E080595B(8) 6 144.2
E081295A(9) 24 45.2
E081295B(10) 1 178.8
E082695(11) 26 32.3
E090995(12) 25 42.7
E091695(13) 20 51.5
E091795A(14) 10 118.7.
E091795B(15) 15 61.1
E091795C(16} 5 166.0
E110495(17) 5 178.0

3.3.5 Modified Heat Balance Results

As per the preceding discussion, the overall heat balance equation should

be modified as follows for a given time period:

Qair,i = IQpanel,i - IQcond,i - IQtrans,i [3.19]

For the 5 ach experiment (E091795C), referring to Table 3.5, the total energy out

is calculated as follows (Here, Qair has been revised based on a correction of the

inlet temperature computed in section 3.3.3.2.):

Qout = Qair + Q cond + Qtrans



Q out = 3042 + 166 + 30 = 3238 btu/hr

With the revised uncertainty a modified heat balance plot for the 5 ach
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[3.20]

experiment is obtained in Figure 3.11. This is a plot of energy in versus energy

out treating the experimental room as the control volume. Once again the line

y=x represents the ideal heat balance. Here, the heat balance is shown to be

within the estimated uncertainty.

Energy Out vs. Energy In
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Figure 3.11 Modified Heat Balance - Energy Out vs. Energy In (5 ach)

In summary, the following complicating factors have been discussed and

have been shown to have an adverse effect on the room heat balance:

1. Inlet gradient effect, which skews the inlet temperature measurement

2. Radiation effects on the inlet temperature

3. Transient effects
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4. Conduction backloss effects

For the 5 ach test, the errors may be ranked in order of significance (approximate

% error in the heat balance):

1. Radiation effects (7.8%)

2. Conduction effects (5.1%)

3. Transient effects (1.0%)

4. Inlet gradient effects (0.3%)

Additionally, it should be noted that only 12 of the proposed 70 heated

panels have been installed for the initial tests. Especially at the lower flow rates,

increased room power, resulting in increased conduction backlosses, will have an

appreciable effect on the room heat balance. This can be mitigated by

completing the guard space and its heating system.

Finally, the room inlet temperature gradient effect was minimal and could

be reduced to negligible values by providing both a more uniform flow of air at the

room inlet and reducing the room inlet cross-section. Further experimentation

should focus on these factors to improve the overall room heat balance and thus

improve the facility performance.
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CHAPTER FOUR - SUMMARY AND RECOMMENDATIONS

An experimental facility for the study of interior convective heat transfer in

buildings has been designed, constructed and tested at Oklahoma State

University. The facilities' flexibility makes it a one-of-a-kind full scale structure for

the study of convective heat transfer. Building on previous work by Spitler et. al.

at the University of Illinois Urbana-Champaign, the following is a list of measures

taken in the design of the facility to improve overall performance and usefulness:

1. Use of a modular heated panel system to allow flexible inlet and outlet
configurations.

2. Increased cooling capacity via a water source heat pump and chilled
water tank.

3. Elevated floor of room for environmental control of all six facility
surfaces.

4. Increased overall and incremental supply of air to room via
ASHRAE Standard 51 Outlet Chamber Setup. This design provided
numerous nozzle configurations allowing for flow rates from 5 to 100
ACH.

Initial experiments focused on heated panel control and room heat

balance. The heated panels performed best at low air flow rates and were shown

to be under-powered at higher flow rates (> 15 ach) for the current panel control

strategy. An analysis of inlet and outlet temperatures versus time indicated that

the room was not at a true steady state temperature condition. However, for the

purposes of overall facility heat balance performance, the averaging period was

deemed quasi-steady state. The room heat balance results indicated, that at

higher flow rates, agreeable heat balance results were obtained. However, at the

lower volumetric flow rates, room transient effects, errors in inlet room
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temperature measurement, and room conduction backlosses combined to

adversely affect heat balance results. These uncertainties were difficult to

quantify and further experimentation is recommended to investigate and reduce

the uncertainties. For the study at hand time constraints did not allow a fuH

investigation of these issues.

At the lower volumetric flow rates, errors in the inlet temperature

measurement were caused by a vertical temperature gradient in the inlet and

radiation to the thermocouples. The overall accuracy of inlet temperature

measurement should be improved as this was a considerable source of heat

balance uncertainty.

Overall facility performance and usefulness could be improved markedly

with the implementation of the following measures:

1. Install radiation shields for thermocouples to reduce radiation error of
temperature measurement.

2. Allow room to stabilize by increasing run times to approximately 8 hours
from start of fan.

3. Finish installation of controlled guard space to diminish conduction
backlosses.

4. Reduce inlet cross-sectional area and/or install settling means for
more uniform airflow.

5. Modify panel control algorithm to obtain a panel duty cycle of 100%.

6. Install reheat coil system for variable room inlet temperature control.

7. Increase fan and air measurement box capacity.

8. Increase panel power and the number of heated panels.

9. Implement an electronic pressure measurement system, thereby
reducing averaging errors caused by manual manometer readings

10. Increase sample size for spatially averaged quantities (i.e., panel,
inlet, outlet, and room temper~tures), thereby redt1cing uncertainties.



11. Provide for variable fan operation to increase supply air volume
control.

12. Implement a velocity measurement system.

13. Install a real-time panel voltage measurement system.

14. Refine overall room radiation analysIs.
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With these measures implemented, combined with the facilities' flexibility,

the following list summarizes potential projects and investigations for this facility:

1. Determination of convection coefficients for interior building heat
transfer in a full scale facility.

2. Radiant panel heating system investigations.

3. Attic and plenum heat transfer investigations.

4. Radiant and convective fractions of various internal load sources.

5. Simulation of glazing systems.

6. Convective heat transfer dependence on wall roughness.

7. Numerous inleUoutlet configuration and flow regime studies.
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Appendix A.
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DECLARE SUB avgdata 0
DECLARE SUB nzldata 0

1================================================
'Assign global data types to variables and arrays
'================================================

COMMON SHARED pretext AS STRING
COMMON SHARED timertext AS STRING
COMMON SHARED text1 AS STRING
COMMON SHARED text2 AS STRING
COMMON SHARED conttext AS STRING
COMMON SHARED control1 AS INTEGER
COMMON SHARED int1 AS INTEGER
COMMON SHARED int2 AS INTEGER
COMMON SHARED int3 AS INTEGER
COMMON SHARED control2 AS INTEGER
COMMON SHARED filenum AS INTEGER
COMMON SHARED volt AS SINGLE
COMMON SHARED R AS SINGLE
COMMON SHARED resist AS SINGLE
COMMON SHARED rhor AS SINGLE
COMMON SHARED rhoi AS SINGLE
COMMON SHARED rhoo AS SINGLE
COMMON SHARED rhonzl AS SINGLE
COMMON SHARED pb AS SINGLE
COMMON SHARED pe AS SINGLE
COMMON SHARED pp AS SINGLE
COMMON SHARED re3 AS SINGLE
COMMON SHARED ra7 AS SINGLE
COMMON SHARED c3 AS SINGLE
COMMON SHARED c7 AS SINGLE
COMMON SHARED mdot AS SINGLE
COMMON SHARED qin AS SINGLE
COMMON SHARED qout AS SINGLE
COMMON SHARED alpha AS SINGLE
COMMON SHARED y AS SINGLE
COMMON SHARED a3 AS SINGLE
COMMON SHARED a7 AS SINGLE
COMMON SHARED d3 AS SINGLE
COMMON SHARED d7 AS SINGLE
COMMON SHARED pi AS SINGLE
COMMON SHARED cp AS SINGLE
COMMON SHARED bal AS SINGLE
COMMON SHARED ach AS SINGLE
COMMON SHARED volume AS SINGLE
COMMON SHARED index1 AS INTEGER
COMMON SHARED index2 AS INTEGER
COMMON SHARED count AS SINGLE
COMMON SHARED maincount AS INTEGER
COMMON SHARED sumup AS INTEGER
COMMON SHARED tracker AS INTEGER
COMMON SHARED qinavg AS SINGLE
COMMON SHARED qoutavg AS SINGLE
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COMMON SHARED panelsum1 AS SINGLE
COMMON SHARED panelsum2 AS SINGLE
COMMON SHARED nzlsum1 AS SINGLE
COMMON SHARED nzlsum2 AS SINGLE
COMMON SHARED nzlsum3 AS SINGLE
COMMON SHARED swllsum1 AS SINGLE
COMMON SHARED swllsum2 AS SINGLE
COMMON SHARED nwllsum1 AS SINGLE
COMMON SHARED nwllsum2 AS SINGLE
COMMON SHARED ewl,lsum1 AS SINGLE
COMMON SHARED ewllsum2 AS SINGLE
COMMON SHARED risum1 AS SINGLE
COMMON SHARED risum2 AS SINGLE
COMMON SHARED risum3 AS SINGLE
COMMON SHARED rosum1 AS SINGLE
COMMON SHARED rosum2 AS SINGLE
COMMON SHARED rosum3 AS SINGLE
COMMON SHARED clgsum1 AS SINGLE
COMMON SHARED clgsum2 AS SINGLE
COMMON SHARED flrsum1 AS SINGLE
COMMON SHARED flrsum2 AS SINGLE
COMMON SHARED riavg AS SINGLE
COMMON SHARED roavg AS SINGLE
COMMON SHARED nzlavg AS SINGLE
COMMON SHARED swllavg AS SINGLE
COMMON SHARED nwllavg AS SINGLE
COMMON SHARED ewllavg AS SINGLE
COMMON SHARED clgavg AS SINGLE
COMMON SHARED flravg AS SINGLE
COMMON SHARED panelavg AS SINGLE

DIM SHARED pnltemps(1 TO 500, 1 TO 12) AS SINGLE
DIM SHARED clgtemps{1 TO 500, 1 TO 6) AS SINGLE
DIM SHARED flrtemps(1 TO SOD, 1 TO 6) AS SINGLE
DIM SHARED swlltemps{1 TO 500, 1 TO 6) AS SINGLE
DIM SHARED nwlltemps(1 TO 500, 1 TO 6) AS SINGLE
DIM SHARED ewlltemps(1 TO 500, 1 TO 3) AS SINGLE

DIM SHARED nzltemps(1 TO 500, 1 TO 4) AS SINGLE
DIM SHARED rotemps(1 TO 500, 1 TO 4) AS SINGLE
DIM SHARED ritemps(1 TO 500, 1 TO 4) AS SINGLE
DIM SHARED contint(1 TO 500, 1 TO 12) AS INTEGER
DIM SHARED setpoint(1 TO 17) AS INTEGER
DIM SHARED config(1 TO 17) AS INTEGER
DIM SHARED upper(1 TO 17) AS INTEGER
DIM SHARED lower(1 TO 17) AS INTEGER
DIM SHARED deltap(1 TO 17) AS SINGLE
DIM SHARED code(1 TO 17) AS INTEGER
DIM SHARED nzlavg1 (1 TO 50) AS SINGLE
DIM SHARED riavg1 (1 TO 50) AS SINGLE
DIM SHARED roavg1 (1 TO 50) AS SINGLE
DIM SHARED nzlavg3(1 TO 500) AS SINGLE
DIM SHARED riavg3(1 TO 500) AS SINGLE
DIM SHARED roavg3(1 TO 500) AS SINGLE
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DIM SHARED clgavg1(1 TO 50) AS SINGLE
DIM SHARED flravg1 (1 TO 50) AS SINGLE
DIM SHARED nwllavg1(1 TO 50) AS SINGLE
DIM SHARED swllavg1 (1 TO 50) AS SINGLE
DIM SHARED ewllavg1(1 TO 50) AS SINGLE
DIM SHARED panelavg1(1 TO SO) AS SINGLE
DIM SHARED counter(1 TO 50) AS SINGLE
DIM SHARED instbal(1 TO 50) AS SINGLE
DIM SHARED vdot(1 TO 50) AS SINGLE
DIM SHARED qin(1 TO 50) AS SINGLE

CLS

FOR i = 1 TO 17
READ setpoint(i), config(i), upper(i), lower(i), deltap(i), code(i)

NEXTi

FOR k = 1 TO 17

filenum = FREEFILE

'================================:=======
'Initialize counters and assign constants
'========================================

volt = 121.6
resist =79.5
pb = 29.92
cp = .245
volume = 121" 10'*161
R =53.35
pi = 3.1416
d16=1.6/12 1

d3=3'/12'
d7 ;:; 7! 112'
a16=pi*d16"2/4
a3 =pi * d3 " 2 I 4
a7 = pi * d7 " 2 14
index1 = 0
index2 = 0
qintot =0
sumup = 0
tracker =1
maincount = a

'===============================
'Open data files for batch input
1===============================

SELECT CASE code(k)
CASE 1
OPEN "c:\thesis\datf'iles\p012895a.dat" FOR INPUT AS #filenum
CASE 2
OPEN "c:\thesis\datfiles\e022595b.dat" FOR INPUT AS #filenum
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CASE 3
OPEN "c:\thesis\datfiles\e03049S.dat" FOR INPUT AS #filenum

CASE 4
OPEN "c:\thesis\datfiles\pOS0695a.dat" FOR INPUT AS #filenum

CASE 5
OPEN "c:\thesis\datfiles\e050695b.dat" FOR INPUT AS #filenum

CASE 6
OPEN "c:\thesis\datfiles\e050695c.dat" FOR INPUT AS #filenum

CASE 7
OPEN "c:\thesis\datfiles\p080S95a.dat" FOR INPUT AS #filenum

CASE 8
OPEN "c:\thesis\datfiles\e080595b.dat" FOR INPUT AS #filenum

CASE 9
OPEN "c:\thesis\datfiles\e081295a.dat" FOR INPUT AS #filenum

CASE 10
OPEN "c:\thesis\datfiles\e081295b.dat" FOR INPUT AS #filenum

CASE 11
OPEN "c:\thesis\datfiles\p082695.dat" FOR INPUT AS #filenum

CASE 12
OPEN "c:\thesis\datfiles\e090995.dat" FOR INPUT AS #filenum
CASE 13
OPEN "c:\thesis\datfiles\e091695.dat" FOR INPUT AS #filenum

CASE 14 .
OPEN "c:\thesis\datfiles\e091795a.dat" FOR INPUT AS #filenum
CASE 15
OPEN "c:\thesis\datfiles\e091795b.dat" FOR INPUT AS #filenum

CASE 16
OPEN "c:\thesis\datfiles\e091795c.dat" FOR INPUT AS #filenum
CASE 17
OPEN "c:\thesis\datfiles\e11 0495.dat" FOR INPUT AS #filenum

CASE ELSE
PRINT "Invalid code number"
END SELECT

'============================================================
'Parse input files and assign all values to respective arrays
1============================================================

INPUT #filenum, pretext

FOR j =1 TO upper(k)
IF tracker =1 THEN
maincount =maincount + 1

FOR i =1 TO 12
INPUT #filenum, pnltemps(maincount, i)

NEXTi
FOR i =1 TO 6

INPUT #filenum, clgtemps(maincount, i)
NEXTi
FOR i =1 TO 6

INPUT #filenum, f1rtemps(maincount, i)
NEXTi
FOR i =1 TO 6

INPUT #filenum, swlltemps(maincQunt, i)
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ON ERROR GOTO 5
5 RESUME NEXT

NEXTi
FOR j =1 TO 6

INPUT #filenum, nwlltemps(maincount, i)
NEXTi
FOR i = 1 TO 3

INPUT #filenum, ewlltemps(maincount, i)
NEXTi
FOR i =1 TO 4

INPUT #filenum, nzltemps(maincount, i)
NEXTi
FOR i =1 TO 4

INPUT #filenum, rotemps(maincount, i)
NEXTi
FOR i = 1 TO 4
INPUT #filenum, ritemps(maincount, i)

NEXTi
INPUT #filenum, timertext
INPUT #filenum, counter
INPUT #filenum, conttext
INPUT #filenum, control1
INPUT #filenum, control2
FOR i = 1 TO 12

INPUT #filenum, contint(maincount, i)
NEXTi

sumup =sumup + 1
IF sumup = 3 THEN
tracker:= 1
sumup =0

ELSE
tracker =0

END IF
GOT010

ELSE

'===========================================
'Parse input files for averaging period only
1===========================================

FOR i =1 TO 51
INPUT #filenum, transdat
ON ERROR GOTO 3

3 RESUME NEXT
NEXTi
INPUT #filenum, text1
INPUT #filenum, count
INPUT #filenum, text2
INPUT #filenum, int1
INPUT #filenum, int2

FOR i = 1 TO 12
INPUT #filenum, int3
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NEXTi

sumup = sumup + 1
IF sumup < 3 THEN

tracker =0
ELSE
tracker =1
sumup = 0

END IF
GOT010

END IF
10 NEXT j

CLOSE #filenum

CALL avgdata

'======================================================================
'Open last six output files for transient nozzle, inlet and outlet data
1 _

------------------------------------------------'----------------------

IF code(k) >= 12 THEN
SELECT CASE code(k)
CASE 12
OPEN "c:\thesis\output\e090995 out" FOR OUTPUT AS #filenum

CASE 13
OPEN "c:\thesis\output\e091695.out" FOR OUTPUT AS #filenum

CASE 14
OPEN "c:\thesis\output\e091795a.out" FOR OUTPUT AS #filenum

CASE 15
OPEN "c:\thesis\output\e091795b.out" FOR OUTPUT AS #fjlenum

CASE 16
OPEN "c:\thesis\output\e091795c.out" FOR OUTPUT AS #filenum

CASE 17
OPEN "c:\thesis\output\e11 0495.out" FOR OUTPUT AS #filenum
CASE ELSE
PRINT "Invalid code number"
END SELECT

1=====================================================
'Print transient nozzle, inlet and outlet temperatures
1=====================================================

FOR j = 1 TO maincount
risum3 =0
rosum3 =0
nzlsum3 =0
FOR i =1 TO 4
risum3 =risum3 + ritempsU, i)
rosum3 =rosum3 + rotempsU, i)
nzlsum3 = nzlsum3 + nzltemps(j, i)
NEXTi
riavg3U) =risum3 I 4
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roavg3U) =rosum3 I 4
nzlavg3U) =nzlsum3 I 4

WRITE #filenum, nzlavg3U), riavg3U), roavg3U)
WRITE #fHenum, nzltempsU, 4), ritempsU, 4), rotempsU, 4)

NEXTj

CLOSE #filenum
END IF
1 _

---------------------------------------------------
'Open last six output files for transietllt panel data
1===================================================

IF code(k) >= 12 THEN
SELECT CASE code(k)
CASE 12
OPEN "c:\thesis\output\e090995.pnl" FOR OUTPUT AS #fiIenum

CASE 13
OPEN "c:\thesis\output\e091695.pnl" FOR OUTPUT AS #filenum

CASE 14
OPEN "c:\thesis\output\e091795a.pnl" FOR OUTPUT AS #filenum

CASE 15
OPEN "c:\thesis\output\e091795b.pnl" FOR OUTPUT AS #filenum

CASE 16
OPEN "c:\thesis\output\e091795c.pnr' FOR OUTPUT AS #filenum

CASE 17
OPEN "c:\thesis\outpu1\e11 0495.pnl" FOR OUTPUT AS #filenum

CASE ELSE
PRINT "invalid code number"

END SELECT

,-------------------------------------------------------------------
'Print transient panel data to file
1 --------------------------------------------------------------

FOR j =1 TO maincount

WRITE #filenum, pnltempsU, 1), pnltempsU, 2), pnltempsU, 3), pnltempsU, 4),
pnltempsU, 5), pnltempsU, 6), pnltempsU, 7), pnl1empsU, 8),
pnltempsU, 9), pnltempsU, 10), pnltempsU, 11), pnltempsU. 12)

NEXTj
CLOSE #filenum

END IF

PRINT timertext
PRINT counter
PRINT conttext
PRINT control 1, control2
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,- Calculation of volumetric flow rate -

pe =.000296 * nzlavg " 2 - .0159 .. nzlavg + .41
pp = pe - pb«roavg - nzlavg) 12700)
rhor = (70.73 * (pb - .378 * pp)) I (R .. (roavg + 459.7))
rhoi = rhor * (roavg + 459.7) / (nzlavg + 459.7)

re7 =1363000" d7" (deltap(k)" rhoi)".5
re3 =1363000 * d3" (deltap(k) .. rhoi) " .5
re16 =1363000 * d16 * (deltap(k) * rhoi) " .5
c16 =.9866 - (7.006/ re16 " .5) + (134.6/ re16)
e3 =.9866 - (7.006/ re3" .5) + (134.6/ re3)
e7 =.9866 - (7.006/ re7 " .5) + (134.6/ re7)

alpha =1 - «5.187 * deltap(k)) / (rhoi .. R .. (riavg + 459.7)))
Y= 1 - (.548 .. (1 - alpha))

SELECT CASE config(k)
CASE 1
vdot =1096" y" (deltap(k) / rhoi)".5 * (e7" a7)
CASE 2
vdot =1096 * Y* (deltap(k) / rhoi) " .5 * (e7 .. a7 + c3 .. a3 + e16 .. a16)
CASE 3
vdot =1096" Y.. (deltap(k) / rhoi) " .5 * (e7" a7 + c3 .. a3)
CASE 4
vdot =1096" y" (deltap(k) / rhoi) 1\ .5" (c3 .. a3 + c16" a16)
CASE 5
vdot = 1096" y" (deltap(k) / rhoi)".5" (c7" a7 + c16" a16)
CASE 6
vdot =1096" y" (deltap(k) / rhoi) 1\ .5 .. (c3 .. a3)
CASE 7
vdot = 1096" Y* (deltap(k) / rhoi) " .5 * (c16 .. a16)
CASE ELSE
PRINT "Invalid option number"

END SELECT

1===============================================
'Calculate average air heat gain and panel power
1===============================================

mdot =vdot .. 60 .. rhoi
IF code(k) =10 THEN

qoutavg =mdot .. cp .. (roavg - nzlavg)
ELSE

qoutavg =mdot .. cp .. (roavg - riavg)
END IF

achact =vdot .. 60 / volume

FOR i = 1 TO 50

addbit =0

92



FOR j = 1 TO 12
IF contint(i, j) =0 THEN

addbit =addbit + 0
ELSE

addbit =addbit + 1
END IF

NEXTj

qin(i) = addbit'" (volt 1\ 2/ resist) * 3.412
qintot = qintot + qin(i)

NEXTi

qinavg =qintot I 50

IF qoutavg < qinavg THEN
balavg =((qinavg - qoutavg) / qinavg) * 100

ELSEIF qoutavg > qinavg THEN
balavg =((qoutavg - qinavg) I qoutavg) * 100

END IF

1======================
'Print averages to file
,-------------------------------------------

OPEN "c:\thesis\output\tempdata.out" FOR APPEND AS #filenum
IF code(k) =1 THEN

WRITE #filenum, "exp code", "Tnzl", "Tro", "Tri", "Telg", "Tflr", "Tswll", "Tnwll", "Tewll"
END IF

WRITE #filenum, code(k), nzlavg, roavg, riavg, c1gavg, flravg, swllavg, nwllavg, ewllavg
CLOSE #filenum

OPEN "c:\thesis\output\calcdataout" FOR APPEND AS #filenum
IF code(k) = 1 THEN

WRITE #filenum, "exp code", "Qpnl", "Qair", "8al", "CFM", "ACH", "MDOT", "Tpnl"
END IF

WRITE #filenum, code(k), qinavg, qoutavg, balavg, vdot, achact, mdot, panelavg
CLOSE #filenum

NEXTk

'=========================
'Input data for batch runs
'=========================

DATA 105,2,986,936,.2,1
DATA 105,5,657,607,.52,2
DATA 105,1,926,876,.49,3
DATA 105,4,1040,990,1.09,4
DATA 105,1,774,724,.51,5
DATA 105,6,1213,1163,1.12,6
DATA 100,2,629,579,.4,7
DATA 100,6,547,497,1.12,8
DATA 98,1,1402,1352,.52,9
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DATA 95,7,496,446,1.20,10
DATA 95,3,1004,954,.45,11
DATA 100,3,1380,1330,.45,12
DATA 100,1,1359,1309,4,13
DATA 100,1,1232,1182,.1,1,4
DATA 100,1,620,570,.225,15
DATA 100,6,873,823,.75,16
DATA 100,6,714,664,.75,17

END

SUB avgdata
DIM i, j AS INTEGER

'OPEN filename$ FOR OUTPUT AS filenum

panelsum2 =0
nzlsum2 =0
risum2 =0
rosum2 = 0
nwllsum2 =0
swllsum2 =0
ewllsum2 =0
flrsum2 =0
clgsum2 =0

FORj =1 TO 50
panelsum1 =0
nzlsum1 =0
risum1 =0
rosum1 =0
nwllsum1 =0
swllsum1 =0
ewllsum1 = 0
flrsum1 =0
clgsum1 =0

FOR i =1 TO 4
risum1 = risum1 + ritempsU, i)
nzlsum1 =nzlsum1 + nzltempsU, il)
rosum1 =rosum1 + rotempsU, i)

NEXTi

FOR i =1 TO 6
nwllsum1 =nwllsum1 + nwlltempsU, i)
flrsum1 =flrsum1 + flrtempsU, i)
c1gsum1 =c1gsum1 + c1gtempsU, i)

NEXTi

swllsum1 =swllsum1 + swlltempsU, 1)
swllsum1 =swllsum1 + swlltempsU, 2)
swllsum1 =swllsum1 + swlltempsU, 3)
swllsum1 =swllsum1 + swlltempsU, 6)
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FOR i =1 TO 12
panelsum1 =panelsum1 + pnltempsU, i)

NEXTi

FOR i = 1 TO 3
ewllsum1 = ewllsum1 + ewlltempsU, i)

NEXTi

riavg1 Ul =risum1 /4
roavg1 Ul =rosum1 /4
nZI'avg1 Ul =nzlsum1 /4
nwllavg1 U) =nwllsum1 16
swllavg1 Ul ::; swllsum1 14
ewllavg1 U) =ewllsum1 13
flravg1 Ul =flrsum1 /6
dgavg1 Ul =c1gsum1 /6
panelavg1U) =panelsum1/12

risum2 =risum2 + riavg1 Ul
rosum2 = rosum2 + roavg1U)
nzlsum2 =nzlsum2 + nzlavg1 Ul
nwllsum2 =nwllsum2 + nwllavg1 Ul
swllsum2 =swllsum2 + swllavg1 U)
ewllsum2 = ewllsum2 + ewHavg1 U)
flrsum2 =flrsum2 + flravg1 Ul
clgsum2 =clgsum2 + c1gavg1 U)
panelsum2 ::; pane,lsum2 + panelavg1 U)

NEXTj

riavg =risum2 / 50
roavg =rosum2 / 50
nzlavg =nzlsum2 / 50
nwllavg =nwllsum2 I 50
swllavg =swllsum2 150
ewllavg =ewllsum2 I 50
flravg =flrsum2 / 50
clgavg = c1gsum2 150
panelavg =panelsum2 150

END SUB
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Appendix B.

Air Side Equations for the Calculation of Volumetric Flow Rate
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Air Density Equations:

Pe = 296xl0-4 t:v -159xlO-2tllv +0.41

(
too -fIIV]

Pp = Pb 2700

70.7~Pb - 0378pp )

Po = J{/oo +459.7)

Chamber Air Density at Plane x:

Px = Po, for Psx < 4 in. wg.

Fan Air Density:

P= Po ' for an outlet chamber setup

Air Viscosity:

,l1={11.00+0.0l&d)xIO-{)

Alpha Ratio:

a=l- 5.l87L1P
P.J~Jd5 +459.7)

Beta Ratio:

p = 0, for chamber approach

Expansion Factor:

Y= 1-(Cl548+o.71jfX I-a)

Energy Factor:

E =1.0, for chamber approach

Reynolds Number:

Reynolds Number Approximation:

Simplified Reynolds Number:

.~
Re = 1,363,000 I{ V1=71

C =0.95, Y =0.96, E =1.0, and

I-l = 1.222 x 10-5 Ibm/ft-s



Discharge Coefficient:

7.f1YJ 134.6
C =0.9986 - IRe +&

for lId = 0.6 & Re >= 12,000

Flow Rate:

Q5 = 1096Y~NOI(C4,,},
Ps
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Appendix C.

Dimensionless Parameters Overview
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Archimedes Number

The Archimedes Number can be defined as the ratio of the buoyant forces

to the inertial forces. The following equation is generally used:

Ar = f3gLI1T
U

2 where, [C-1 ]

L= length of enclosure (16 ft)

Ui =fluid inlet velocity (ftfs)

For a side wall inlet, from this formulation it can be deduced that for high

Archimedes numbers buoyancy effects dominate and a natural convection flow

condition exists. Conversely, for low Archimedes numbers inertial forces are

dominant and forced convection flow is present Physically speaking, the inlet jet

enters the room and drops for high Archimedes numbers, whereas for low

Archimedes numbers, the jet will travel across the room before finally diffusing or

impinging upon a surface.

A variable of prime importance in this formulation is the characteristic

length. Based upon an analysis by Spitler (1990), for a room of similar

dimensions and inlet location, this characteristic length should be the distance

from the room inlet to an opposite wall. Table 3.5 shows the variation in

Archimedes numbers that were calculated for all seventeen experiments. It

should be noted that this form of the Archimedes disregards viscous. flow effects.
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Reynolds Number

As reported by Spitler (1990), two forms of the Reynolds number are

useful for this type of experimental setup. The two equations that follow express

the Reynolds number in terms of inlet velocity and cross-sectional velocity both of

which are reported in Table C.2.

{/*D
Re. = I I

I

V

and

Uj =inlet fluid velocity (ft/s)

where,

[C-2]

[C-3]

.
Ux =freestream velocity (fils) = V I Ax

OJ = inlet diameter (ft)

Ox = equivalent room diameter (ft)

Ax =enclosure cross-sectional area (ft2)

Prandtl Number

The Prandtl number is defined as the ratio of the diffusion of momentum to

the diffusion of heat. It is a function of fluid properties only and can be used to

characterize the thermal and velocity boundary layers. For Pr > 1, the velocity

boundary layer is thicker than the thermal boundary layer and the inverse is true
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for Pr < 1. For Pr = 1, the relative thicknesses of both boundary layers is taken to

be the same. Thus the velocity and temperature profiles are similar if the

following boundary conditions apply:

wall, y = 0, u =0, v =0, t =tw

freestream, y = 00, u =U,",lI t = lo

This boundary layer relationship, as a result of boundary layer theory (Sch.lichting,

1968), can be expressed as follows:

OV/OT =PrO.5

Additionally, in equation form, the Prandtl number is expressed as follows:

Pr = ~ = f.1C
p

a K

Grashof Number

[C-4]

[C-5]

The Grashof number represents the ratio of buoyancy forces to viscous

forces. Thus for buoyancy driven flows, fluid velocities are determined by

quantities in the Grashof number. In equation form:

where, [C-6]

h =height of enclosure (ft)

Rayleigh Number
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The Rayleigh number is generally defined for enclosures with differential

wall temperatures (Spitler, 1990). The Rayleigh number can be expressed as the

product of the Pr and Gr numbers and is defined as the ratio of buoyant forces to

viscous forces. Spitler suggests the following form:

fJg~Th3
Ra . = = GrPr

5J va

h =height of enclosure (ft)

Ui =fluid inlet velocity (ftIs)

Jet Momentum Number

where, [C-7]

The Jet Momentum number, defined as the product of the mass flow rate

and fluid inlet velocity, has been non-dimensionalized as follows (Barber, 1982):

.
V*U

J=-
g*V

where, [C-8]

v=volumetric flow rate (ft3/min)

U =fluid inlet velocity (ftIs)

v =enclosure volume (fe)

This form is potentially useful for analyzing ventilative flow patterns.



Table C.1 Dimensionless Parameters Matrix.
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number Gr Pr Ra Re Ar J

equation B"g"~T"L3 y W'g"~T*L3 U'O 13"g"~T"L U"Q
,,2 a vita \' U2 g"V

constants 9 g 9 9

properties (u, p, B)"" (u, P , K , Cu, B)"" (u , P , K , Cu • B)"" u", , P"" or Ili , Pi P·n Pi
i

~T Tsurf - T"" Tsurf- T j To -Tj

L h h I

U UjorU"" Uj Uj

0 Oi or 0""



Table C.2 Velocities and Dimensionless Parameters.
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EXP ui (fpm) UOll (fpm) Rei Re"" Prj PrOll Grj GrOll
1 257.63 6.02 45510 6573 0.6933 0.7089 1.14E+12 6.66E+11
2 356.50 8.32 62531 9133 0.6952 07078 1.07E+12 6.95E+11
3 328.77 7.68 58087 8492 0.6932 0,7055 1.12E+12 7.44E+11
4 114.50 2.67 20193 2857 0.6937 0.7151 1.15E+12 5.29E+11
5 334.06 7.80 59833 8692 0.6894 0.7035 1.23E+12 7.73E+11
6 90.53 2.11 15982 2249 0.6934 0.7162 1.16E+12 5.06E+11

7 364,65 8.51 65274 9556 0.6896 0.7015 1.12E+12 7.42E+11

8 , 90.48 2.11 15969 2273 0,6935 0.7132 1.04E+12 4.78E+11
9 337.47 7.88 60333 8829 0.6899 0.7020 1.08E+12 7.00E+11

10 26.54 0.62 4436 660 0.7086 0.7161 4.89E+11 3.12E+11

11 370.06 8.64 66718 9832 0.6876 0.6977 1.07E+12 7.43E+11

12 370.09 8.64 66689 9775 0.6877 0.6993 1.17E+12 7.88E+11

13 294.99 6.89 53020 7686 0.6884 0.7031 1.18E+12 7.13E+11

14 146.36 3.42 26064 3704 0.6910 0.7111 1.12E+12 5.25E+11

15 220.53 5.15 39644 5683 0.6884 0.7061 1.19E+12 6.40E+11

16 73.87 1.72 13039 1846 0.6935 0.7147 1.04E+12 4.41 E+11

17 74.02 1.73 12856 1844 0.6980 0.7155 8.92E+11 4.20E+11

Table C.2 Dimensionless Parameters, Continued.

EXP Raj Ra"" RaDrari Racrar"" Ar J
1 7.90E+11 4.72E+11 7.90E+11 472E+11 0.4325 6.509E-3

2 7.45E+11 4.98E+11 7.45E+11 4.92E+11 0.1865 1,246E-2

3 7.79E+11 5.31E+11 7.79E+11 5.25E+11 0.2119 1.060E-2

4 7.96E+11 3.84E+11 7.96E+11 3.78E+11 3.4809 1.286E-3

5 8.45E+11 5.51 E+11 8.45E+11 5.44E+11 0.2399 1.094E-2

6 8.07E+11 3.68E+11 8.07E+11 3.63E+11 , 6.1961 8.036E-4

7 7.73E+11 5.27E+11 7.73E+11 5.21 E+11 01690 1.304E-2

8 7.20E+11 3.45E+11 7.20E+11 3.41E+11 5.3319 8.029E-4

9 7.43E+11 4.97E+11 7.43E+11 4.91E+11 0.1987 1.117E-2

10 3.46E+11 2.24E+11 3.46E+11 2.23E+11 23.1251 6.907E-5

11 7.34E+11 5.23E+11 7.34E+11 5.19E+11 0.1428 1.343E-2

12 8.02E+11 5.57E+11 8.02E+11 5.51 E+11 0.1600 1.343E-2

13 8.12E+11 5.08E+11 8.12E+11 5.01 E+11 0.3168 8.533E-3

14 7.73E+11 3.80E+11 7.73E+11 3.73E+11 1.8800 2.101 E-3

15 8.21 E+11 4.60E+1,1 8.21 E+11 4.52E+11 0.6720 4.769E-3

16 7.20E+11 3.20E+11 7.20E+11 3.15E+11 8.8740 5. 350E-4

17 6.23E+11 3.04E+11 6.23E+11 3.00E+11 7.4783 5.373E-4



Appendix D.

Thermocouple Placement Inside Experimental Room
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Figure D.1 Room Thermocouple Layout



Appendix E

Summary of Radiation View Factors
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tc n s e w fl clg duct pnl
tc .12 0.0 .08 .05 .095 .08 .5 .075
n .03 .128 .2 .08 .22 .22 .0024 .12
s 0.0 .136 .204 .086 .224 .224 0.0 .126
e .01 .15 .147 .084 .24 .24 .003 .126
w .017 .15 .16 .21 .23 .23 .003 0.0
fl .06 .138 .14 .20 .08 .26 .002 .12
clg .138 .138 .137 .20 .08 .26 I

i .002 .12
duct .001 .13 0.0 .20 .08 .22 .22 .15
pnl .026 .15 .155 .18 0 .19 .21 .088

Figure E.1 Summary of Radiant View Factors for Experimental Room
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